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Introduction

Ecological multi-species systems are driven by many spatially distributed processes. There
is no general theory on the interplay of small scale ecological processes and how they a�ect
dynamics at larger scales (e.g. Levin, 2000; Wootton, 2001; Green et al., 2005). Nonetheless,
conservation of species communities in order to preserve biodiversity requires understanding
the complex systems of many interacting species (Poiani et al., 2000; Ebenman & Jonsson,
2005, and references therein). But, for a particular conservation action, it is su�cient to
develop landscape management measures, which are suitable for the community under con-
sideration. Having in mind a concrete case study, it is easier to recognise processes and their
e�ects on performance of species (Shrader-Frechette & McCoy, 1993; Krause & Ruxton, 2002;
Crowley et al., 2005).
In this thesis, we present an analysis framework for complex systems of interacting species.
It is orientated at a central objective of nature conservation: the persistence of species in a
habitat. By means of a simulation model, a multitude of scenarios is tested for their suitability
to sustain species communities. Knowledge on suitability helps to detect which properties of
the scenarios noticeably a�ect species survival. In this context, a method for the evaluation
of landscapes is suggested, which accounts for species behaviour and ecological processes. In
more detailed investigations on few strongly in�uencing scenarios, mechanisms are analysed
which provoke the e�ects.
Following the concept, we study the in�uence of spatiotemporal host distribution and species
interaction on survival of Maculinea populations on isolated habitat sites.
Parasitic butter�ies of genus Maculinea live in close relation to their speci�c obligatory host
plants and host ants of genus Myrmica (Weidemann, 1986; Thomas et al., 1998a; Wynho�,
2001). There are �ve European Maculinea species (but see Als et al., 2004; Thomas & Set-
tele, 2004). Each of them is restricted to one or two host plants and several Myrmica host
ant species, depending on the geographical region (Thomas et al., 1998a; Tartally & Varga,
2005; Thomas et al., 2005; Witek et al., 2005). The narrow interaction in Maculinea species
communities, where only few species are strongly involved, make them a perfect study system.
All �ve European Maculinea species are listed as nearly threatened or vulnerable in the IUCN
red list (IUCN, 2004). They are listed in Annex B of the EU's Habitats Directive. Because
some of the species are endemic, Europe has an increased responsibility for their conservation.
This for example expresses in the installation of the EU research project MacMan1 (Settele
et al., 2002, 2005). This thesis has arisen from the project.

In this work, we aim to reveal, how spatially distributed parasitism of Maculinea on its hosts

1Maculinea Butter�ies of the Habitat Directive and European Red List as Indicators and Tools for Habitat
Conservation and Management
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10 INTRODUCTION

a�ects population dynamics of the species and in consequence persistence of the butter�y
population. From our �ndings, we can give advises for the management and evaluation of
closed habitat sites. But, with our generic approach we do not restrict to the case study of
one Maculinea species. Observations on transient behaviour or host-parasite-mechanisms of
the Maculinea system are relevant in a broader context of interacting species systems.
A major part of the thesis is dedicated to the development of new methods. With analyti-
cal and numerical calculations, we enhance a recently by Wissel & Stöcker (1991); Stephan
(1992); Stephan & Wissel (1994b); Wissel et al. (1994); Stelter et al. (1997); Frank et al.
(2002); Grimm & Wissel (2004) suggested approach for population viability analysis (PVA)
on single species, and make it applicable for interacting species systems. Further, we suggest
a method for landscape evaluation which takes into account species perception of the spatial
structure. These methods should open new paths in community and landscape ecology.

The thesis consists of three parts. The �rst part is dedicated to a short introduction of
the ecological system and development of a simulation model. In the �rst chapter, develop-
ment of the stochastic spatially explicit rule-based simulation model Macu is presented.
The second part deals with non-spatial analysis of the system. An overview on host-parasite-
dynamics calculated by the Macu model is given in chapter two. The third chapter provides
the theoretical foundation for population viability analysis (PVA) on interacting-species sys-
tems, while in the fourth chapter, the method is tested assessing persistence of Maculinea
populations. Results of both chapters provide new interesting insight to extinction dynamics
of interacting species systems.
In the third part of the thesis spatiotemporal species interactions are taken into account. Ini-
tially, in chapter �ve, a method is developed which evaluates landscape structures according to
species demands. In chapter six, this method is extensively applied to investigate in�uence of
host plant and host ant distribution on persistence of Maculinea butter�ies. Guided by earlier
results, in the seventh chapter, we enter deeper into the complex spatiotemporal dynamics of
the system and work on the development of a spatial index for habitat suitability. Finally, in
the eighth chapter, we give a preview on model simpli�cation and approximation with some
preliminary results.
Each chapter in this thesis is a closed entity and can be read independently of the others.
This structure in few occasions leads to short repetitions of earlier results. However, this form
of presentation is advantageous, as it allows to entirely expose one topic after the other. The
sequence of the chapters follows the order of investigations.



Part II

Ecology and Model

11





Chapter 1

Development of the Macu simulation

model

1.1 Introduction

Spatially heterogenous habitat distribution can promote coexistence of interacting species
for di�erent reasons; for example di�erent dispersal abilities of species (Holyoak & Lawler,
1996; Holyoak, 2000; Ellner et al., 2001), refuges from predation (Hu�aker, 1958; Amezcua &
Holyoak, 2000; Poggiale & Auger, 2004), small probability of encounter (Hassell et al., 1991;
Cuddington & Yodzis, 2002) or self-organised pattern formation (De Roos et al., 1998). For
a brief review on literature see Hosseini (2003, and references therein).
The Maculinea system can be considered as a model system to study e�ects of spatial habitat
structures on coexistence of parasitic Maculinea butter�ies, their obligatory initial host plant
and the Myrmica host ants which are obligatory hosts for the 4th instar larvae until eclosion.
Because, �rst the system is mainly restricted to these species due to their close interaction.
Second, the distribution of initial host plants spatially structures a Maculinea habitat site.
The spatial distribution of these oviposition plants can be considered as a heterogeneous land-
scape for a local Maculinea system. Third, Maculinea systems are well studied in respect to
population ecology by �eld, laboratory and model investigations. In particular spatiotempo-
ral dynamics of Maculinea butter�ies and hosts are currently studied in �eld investigations
(Glinka or Witek, priv. comm.).
In this chapter, we develop a rule-based spatially explicit stochastic simulation model to
analyse e�ects of spatial host plant distribution (landscape structure) and spatiotemporal dy-
namics of host ants on the persistence of Maculinea butter�ies. This so called Macu model is
based on the HCET model for Maculinea rebeli populations (Hochberg et al., 1994; Clarke et
al., 1997, 1998). In simulation experiments, using the mainly validated (Elmes et al., 1996)
quite realistic HCET model, e�ects of spatial distribution of hosts on performance of Maculi-
nea populations are found. However, di�erent processes can contribute to these e�ects. Their
relative in�uence is not clear.
In contrast, the Macu model is designed for investigations of e�ects of spatiotemporal in-
teractions of hosts and parasite species, in particular. This concept is expected to provide
general new insight into theory of spatial host-parasite dynamics and species coexistence.
Nevertheless, results are supposed to be embedded and interpretable in the context of natural
Maculinea systems.

13



14 CHAPTER 1. MODEL DEVELOPMENT

Maculinea butterflies

Oviposit on host plants in summer

4th instar larvae leave host plant

And wait for Myrmica ants to be adopted

Taken into the ant nest

Maculinea larvae feed on ant brood or 
become reared by worker ants

Time

1.

2.

3.

4.

5.

Figure 1.1: Simpli�ed life cycle of Maculinea

1.2 Ecology of Maculinea systems

In this description of Maculinea ecology, we restrict to general processes which allow under-
standing of the model de�nition in sec. 1.3. For further details on the Maculinea system refer
to the following literature: An overview on population dynamics in systems of Maculinea can
be found in Thomas et al. (1998a); Nowicki et al. (2005). Elmes et al. (1998) summarise
relevant facts about the ecology of Myrmica ants concerning their interaction with Maculinea
species. An overview of ecology of Myrmica ants is given in Elmes (1991). The book by Set-
tele et al. (2005) provides comprehensive material on recent scienti�c results about Maculinea
systems.

1.2.1 Maculinea

A quick overview on the life cycle of Maculinea species is given in �g. 1.1. Adult Maculinea
butter�ies �y in summer. During the �ight period, the butter�ies lay eggs on the �owers of
their host plants. Oviposition is restricted to one or two host plant species. An overview on
host plants of each Maculinea species is given in Thomas et al. (1998a, tab. 11.1). Maculinea
females distribute their eggs (about 50-75 eggs per M. arion female (Thomas et al., 1998a),
but can be higher (Hochberg et al., 1992, 1994)) on several host plant individuals. Usually
only one egg is deposited on a �ower head (Thomas et al., 1991). This �nding is supported for
Maculinea teleius (Wynho�, 2001)[p. 25]. Thomas et al. (1991) on average have found about
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3 to 10 eggs per host plant for four di�erent Maculinea species, whereas maximum number of
eggs per plant is about 5 times higher. For Maculinea rebeli, they give an average value of
59:3 and a maximum of 304 eggs per host plant. They indicate, that the host plant species
of M. rebeli (Gentiana) typically grows in lower densities than host plants of other Maculinea
species.
During the �rst three larval stages, Maculinea caterpillars stay and feed on the plant. Only
about 1% of entire body mass of the adult Maculinea specimen is gained during that initial
period on the host plant (e.g. Thomas et al., 1991). These young larvae undergo density inde-
pendent and density dependent mortalities caused e.g. by predation or starvation (Hochberg
et al., 1992). Wynho� (2001, p. 24) reports a 50% survival for Maculinea teleius and a 47%
survival for Maculinea nausithous on plants (from the egg to 4th larval instar). Thomas et
al. (1998a) reviews earlier investigations. They �nd a larval mortality of 20 � 40% including
failure of adoption (see below). However, they point out, that inside an ant nest (see below)
Maculinea experience higher mortality rates of 80� 90%.
Fourth instar larvae leave their host plants. For Maculinea rebeli, it is observed, that lar-
vae leave the plants in the early evening which coincides with foraging time of Myrmica ants
(Elmes et al., 1991a). On the ground, Maculinea caterpillars stay in vicinity of their initial
host plants. They wait until they are found and adopted by Myrmica ants. Elmes et al.
(1991a) observe a maximum distance of movement of 6cm. Thomas (2002) reports that in the
wild Maculinea arion larvae, after leaving their initial food plant, do not disperse. Although in
laboratory experiments, Maculinea larvae were observed to follow ant trails. Myrmica worker
ants do not necessarily adopt every Maculinea larva, they �nd. Sometimes, an ant carries a
larva a short way and then drops it again (Thomas, priv. comm.). But in general, it is said,
that once a caterpillar is found and adopted, more worker ants return to the �nding place
and adopt other larvae from there. Therefore it is assumed, that Maculinea caterpillars are
accumulated in Myrmica nests, which are neighbouring to host plants, where a large amount
of Maculinea caterpillars grew up (Elmes et al., 1991a). If a Maculinea caterpillar is not found
by host ants within one or two days, it dies (Settele et al., 1995, and references therein).
Inside ant nests, Maculinea larvae can bene�t from many advantages. Only slightly varying
climatic conditions (e.g. during hibernation) and protection against predators (Elmes et al.,
1991b). But, most important is feeding. There are two di�erent life styles for Maculinea larvae
(Elmes et al., 1991a; Thomas et al., 1991, 1998a; Wynho�, 2001). So called 'predator species'
(or primitive parasites Thomas & Wardlaw, 1992) feed directly on Myrmica brood. During
most time, they stay apart of main ant activity and only approach for feeding (Wynho�, 2001,
p. 26; laboratory studies: rearing experiments). So called 'cuckoo species' (advanced predators
according to Thomas & Wardlaw, 1992; Elmes et al., 1998) mimic ant brood and therefore
are fed and cared by worker ants.
Di�erences in life styles lead to di�erent forms of intraspeci�c competition for Maculinea
caterpillars in ant nests. If there are too many predacious Maculinea caterpillars in an ant
nest, they generally eat all ant brood in the nest and thereupon all butter�y caterpillars die
(scramble competition). However sometimes, they can be rescued, if the depleted nest is taken
over by an o�shoot from neighbouring nests (Thomas & Wardlaw, 1992). In contrast, worker
ants select which of the highly abundant cuckoo caterpillars in a nest they are rearing. Thus,
in nests, which are overcrowded by cuckoo larvae, a part of these larvae survive (contest com-
petition) (Elmes et al., 1991b; Wynho�, 2001).
E�ectively, both life styles weaken rearing capacity of a Myrmica nest. From laboratory ex-
periments it is known, that about 50 workers of Myrmica schenckii (a cuckoo species) are
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needed to sustain one caterpillar of Maculinea rebeli. The result is supported by �eld obser-
vations (Hochberg et al., 1994). In contrast, a predatory Maculinea arion caterpillar needs
about 230 Myrmica sabuleti larvae until it pupates (Thomas & Wardlaw, 1992). Summarising,
Thomas et al. (1998a, and references therein) estimate that about 350 Myrmica ant workers
are needed to rear a predacious Maculinea, whereas only 50 workers can rear a cuckoo species
caterpillar. This corresponds to estimations, that Myrmica nests of the same size can support
about 6 to 7 times more cuckoo species than predacious species (Thomas et al., 1991; Thomas
& Wardlaw, 1992)
Therefore, it depends on ant nest size and life style of Maculinea caterpillars, how much but-
ter�y o�spring can be reared within one nest. It is mentioned that the number of caterpillars
of Maculinea teleius (predacious) in a host ant nest of Myrmica scabrinodis is low, rarely
exceeding one individual (Thomas et al., 1998c). In nests of Myrmica rubra, which are larger
than M. scabrinodis nests a higher number of Maculinea nausithous larvae can be supported,
basing probably on a mixed predacious and cuckoo life style (Wynho�, 2001, and references
therein). In a modelling study for Maculinea rebeli, Hochberg et al. (1992) report adoption
rates of 37:6 caterpillars into nests; 5:4 of them emerge. This result is contrasted in a further
study (Hochberg et al., 1994), where about 16 caterpillars are adopted and about 2:3 of them
emerge. In �eld studies, 3:5 emerging butter�ies are counted (Hochberg et al., 1994, tab. 3).
It is assumed, that Maculinea larvae have their highest impact on development of Myrmica
nests during spring time, when food is in shorter supply. 'They are fed in preference to
the workers' own overwintered brood, which may starve or even be fed to the caterpillars'
(Hochberg et al., 1994). In contrast, Myrmica larvae, which develop already in autumn, are
not a�ected by inter-speci�c competition with Maculinea caterpillars. It is found, that about
50% of Myrmica brood develops already in autumn ('rapid brood'), whereas the other part
is delayed to spring of next year ('diapause brood'). Hence, ant nest damage by Maculinea is
reduced, because rapid brood is saved (Elmes et al., 1991b,a; Hochberg et al., 1994; Elmes et
al., 1998).
After about 9 months, adult butter�ies leave their nests. There is evidence that, at least for
Maculinea rebeli, some caterpillars stay in the nest for another year. One year and two year
developers can be distinguished by weight and size (Weidemann, 1986; Elmes et al., 1991b;
Thomas et al., 1998b).
Parasitoids of genus Ichneumon or Neotypus predate on di�erent species of Maculinea (Anton,
priv. comm.).

1.2.2 Host plants

Host plants are necessary for oviposition and serve as habitat and food resource for young
caterpillars. Kery et al. (2001) analyse the impact of herbivorous Maculinea rebeli on popu-
lations of Gentiana cruciata. They �nd that larger populations of Gentiana cruciata are more
likely infested by Maculinea rebeli. However, genets in larger populations have more �owers.
Both e�ects seem to compensate each other. Therefore, number of developed seeds is neither
in�uenced by plant population size nor by herbivory. This corresponds to results from Thomas
et al. (1998a), that host plant populations (Thymus and Gentiana cruciata) are stable in space
and time on their Maculinea rebeli study site. (Musche, priv. comm.) assumes, that spatial
distribution of Sanguisorba o�cinalis (host plants of Maculinea nausithous and teleius) does
change only slightly from one year to the other.
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Interaction of Myrmica ants and host plants is not clear, but also not suspected.

1.2.3 Myrmica ants

During most of their life cycle, Maculinea individuals live in nests of Myrmica ants (see
sec. 1.2.1). Therefore it is important to have a closer look on the ecology of these ants.
Species distribution of Myrmica follows a gradient of soil temperature and soil moisture (Elmes
et al., 1998, �g. 1). Several Myrmica species might co-occur within one site. There is evidence
for high turn-over of nest sites between conspeci�cs (Elmes & Wardlaw, 1982b,a).
Species distribution of Myrmica ants is important for occurrence of Maculinea, because each
Maculinea species depends on special host species of Myrmica. In Thomas et al. (1998a,
tab. 11.1) some host ants are listed for di�erent species of Maculinea. However, discussion on
host-speci�city of Maculinea butter�ies is ongoing. New results show geographical variation
(Stankiewicz et al., 2005; Tartally & Varga, 2005; Thomas et al., 2005; Witek et al., 2005).
According to Elmes et al. (1998), Myrmica host ants are best described at colony level, when
considering their in�uence to local Maculinea populations. Abundance and size of Myrmica
colonies on a site depend on the number of potential nest sites and food availability (Elmes,
1991).
Consequently, the growth of Myrmica nests is density dependent; it can be described by a
logistic equation (see Elmes et al., 1998, and references therein). The growth rate is determined
by habitat conditions within the foraging area of the nest. Host ant nests usually survive for
about 10 years, if they are not infested by Maculinea (Thomas et al., 1998a)
Colony foundation in Myrmica species is realised either by mated queens or by fragmentation
of existing colonies (see Elmes, 1991; Elmes et al., 1998). On habitat sites with an established
Myrmica population, success of queen foundation is unlikely. Due to high competition for
space, these small nests are either destroyed by existing congeneric colonies or taken over by
conspeci�c colonies. For this reason, Myrmica ant dispersal mainly happens on a small spatial
scale via the so called budding mechanism (fragments of existing nests bud to empty nest
sites; see Hochberg et al., 1994).

1.2.4 Local interaction and spatial distribution of species

Parasitism of Maculinea butter�ies on Myrmica ant brood happens on a small spatial scale,
because 4th instar Maculinea larvae, after leaving their initial host plant, do not move away.
Instead, in close vicinity to the plant, they wait for adoption by Myrmica host ants from a nest
in the neighbourhood. Therefore, Maculinea individuals can complete their life-cycle only, if
the eggs are laid on host plants, which are situated within the foraging area of a Myrmica ant
nest. Foraging area of host ants is estimated to range from about 1m2 to 11m2, depending
on the Myrmica ant species (Elmes & Wardlaw, 1982b; Hochberg et al., 1994; Clarke et al.,
1997, 1998). Obviously, parasitism of Maculinea on Myrmica host ants is spatially restricted
to areas with host plants, within a habitat site.
Clarke et al. (1997, 1998) show, that spatial distribution of host plants and spatial distribu-
tion of host ant habitat both in�uence population size and persistence of Maculinea rebeli
populations.
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1.2.5 The HCET model

For their studies, Clarke et al. (1997, 1998) used the HCET model, which was �rst described in
Hochberg et al. (1994). The HCET model is a rule-based spatially explicit stochastic popula-
tion dynamical simulation model for systems of Maculinea rebeli. It was originally developed
and parameterised for a Maculinea rebeli population at Panticosa in the Spanish Pyrenees,
including as well results from an earlier so called HTE model (Hochberg et al., 1992). The
HCET-model was validated by successfully predicting dependency of sizes of Maculinea rebeli
populations and its Myrmica schencki host ant populations on densities of the initial food
plant Gentiana cruciata at 13 other sites in the French Alps and Spain (Elmes et al., 1996).
The HCET model simulates the life-cycle of Maculinea: oviposition on host plants, adoption,
caterpillar rearing in ant nests, �nally pupation and development to adult butter�ies. There
are di�erent reasons for mortality of caterpillars. Density independent mortality on host plants
and inside nests. A risky adoption process, when caterpillars either might not be found or
not adopted. Inner-speci�c contest competition of Maculinea caterpillars is assumed on host
plants and inside the ant nest. And Maculinea caterpillars might be attacked by Ichneumon
eumerus parasitoids.
Spatial distribution of host plant Gentiana cruciata is assumed to be constant in time, ac-
cording to �eld observations (Hochberg et al., 1994). Plant and their tillers are not randomly
distributed.
The Myrmica ant population is modelled individual-based, Each ant nest represents an indi-
vidual. Within nest dynamics as well as short-range colonisation (budding to neighbouring
cells) is implemented. Two types of Myrmica ants are implemented: Myrmica schencki (host
ants of Maculinea rebeli) and other Myrmica non-host species (which might adopt Maculinea
rebeli but do not rear them su�ciently). There is competition for nest places between these
types of Myrmica ants. Quality of nest places is heterogeneous throughout the simulation
area.
For the Maculinea model, in�uence of spatial host distribution on performance of Maculinea
butter�ies was found. Strong focus was laid on analysing e�ects of spatially varying host ant
habitat quality (Hochberg et al., 1994; Clarke et al., 1997, 1998). In another study, Thomas
et al. (1997, 1998a) found apparent competition of the initial food plant Gentiana cruciata
on Myrmica ants due to localised parasitism of Maculinea butter�ies. An e�ect of host plant
clumping on population size of Maculinea rebeli populations was detected (Clarke et al., 1998,
and see as well ch. 2).

1.3 Model development

1.3.1 Motivation of model design

We aim to understand the e�ect of spatial host distribution and dynamics on the persistence
of parasitic Maculinea butter�y populations. In particular, we are interested how localised
parasitism in ant nests a�ects performance of the whole Maculinea population on a site. This
is a central question for all systems of Maculinea.
For this purpose, we construct the simulation model 'Macu'. We use the HCET model as basis
for model development, which gives us two advantages. First, we gain realism by employing
tested and validated processes of the HCET model. Second, we pro�t from results of simula-
tions of the HCET model, concerning functioning and relevance of processes. This allows to
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design a model speci�cally tailored to answer our questions.
To emphasise e�ects of localised parasitism of Maculinea caterpillars on host ant nests, inner-
speci�c competition of young butter�y larvae on host plants is ignored. Hence, ant-butter�y
interactions are pronounced.
With the objective to analyse e�ects of spatial host distributions, we exclude non-host ants
from the model. Host ant habitat is homogeneously distributed on the site. By this step,
spatial host distributions arise only from host and parasite dynamics. These distributions
are expected to depend on dispersal ability of species. For this reason, we include a �exible
mechanism of host ant dispersal (budding to empty nest sites), which gives us external control
of dispersal range. Flexible host ant budding is a key factor of the Macu model. On the one
hand it can be used to test e�ects of queen dispersal, which is expected to be important for
some Maculinea systems. On the other hand is dispersal shown to in�uence coexistence of
interacting species (e.g. Ellner et al., 2001), hence it touches our main question.
In the following, we describe the model. Thereafter we explain details of the implementation,
which are important for the management of data in respect to analysis of spatial distributions
and population viability.

1.3.2 Model description

1.3.2.1 Actors and processes in the system

In �g. 1.2 a causal diagram of the system is depicted. Species (actors) and their relevant
properties are drawn as boxes. Rhombs indicate processes.
We start the description of the diagram with the process of oviposition. Adult Maculinea
distribute eggs on host plants. The amount of eggs depends on Maculinea population size.
Their spatial distribution is restricted to the spatially distributed host plants. This process
results in a spatial distribution of Maculinea eggs and -after hatching- in a distribution of
Maculinea caterpillars.
These caterpillars, after adoption feed in nests of Myrmica ants. The size of a nest (where 0
ants implicitly mean an empty nest site) in�uences the amount of butter�y caterpillars, which
can develop into adults. Parasitism of ants, however, reduces nest size. Hence, development
of Maculinea caterpillars feeds back on Myrmica ants.
The remaining three processes are part of the host ant dynamics. Growth of an ant nest
depends on nest size. In particular, if there are no ants, there is no nest growth. Such empty
nest sites can be colonised (budded) by a sprout from an existing nest, depending on its size
and its distance to the empty site. This process in�uences spatial ant nest distribution and
nest sizes. Extinction of an ant nest depends on the size of a nest. Small nests go extinct
frequently. Extinction changes spatial nest distribution and size of the local nest, because ants
and nest vanish.
From the graph, it becomes obvious that dynamics of host ants and butter�ies is coupled.
In contrast, host plants are not a�ected by any process. For this reason, host plants can be
considered as an external factor for the system. Their spatial distribution forms the landscape,
in which adult butter�ies oviposit.

1.3.2.2 State variables of the model

We use variables Zi(t), Pi(t) for numbers of ants and butter�ies at position i at time t.
Morphological state of butter�ies and ants is always given by the state reached at time t
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Figure 1.2: Schema of causal links between actors/components (boxes) and processes
(rhombs). Arrows indicate directions of in�uences.

within the life cycle. P (t) is the total number of butter�ies.
Zi(t) is given in units of caterpillar equivalents (Hochberg et al., 1994). 1 caterpillar equivalent
is the amount of worker ants lost by rearing one Maculinea caterpillar. In the system of cuckoo
species Maculinea rebeli one caterpillar corresponds to about 50 Myrmica schencki worker ants.
In contrast, in systems of predacious Maculinea one caterpillar equivalent corresponds to much
higher numbers of worker ants. The unit 'caterpillar equivalent' is useful to adapt the model
to di�erent Maculinea systems.
According to �ndings from �eld investigations (sec. 1.2.2) and description in sec. 1.3.2.1, we
ignore dynamics of host plants in the model. Spatial host plant distribution is handled as a
temporally constant external factor.

1.3.2.3 Discretisation of space and time

The model is discrete in space and time. We use naturally given scales to de�ne discretisations.

Spatial grid The model is grid based. Grid shape is rectangular. Cell size corresponds to
the foraging radius of ant nests. It is assumed, that neighbouring ant nests do not interfere
(Hochberg et al., 1994).
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Figure 1.3: Schema of program steps during one generation

Time order in a simulation step The model is discrete in time. One time step corresponds
to one year, which is the length of one generation of Maculinea butter�ies (sec. 1.2.1). A brief
overview on a single simulation step is given in �g. 1.3. We keep the order of processes close to
the order used in the HCET model (Hochberg et al., 1994). Modi�cations are due to di�erent
included processes. In comparison to the HCET model, our model starts each generation in
spring time, which allows to speed up the simulation. Temporal order of steps:

1. Interaction of Maculinea larvae and ants in ant nests (rearing of butter�y caterpillars)

2. Hatching out of butter�y pupae ! adult butter�ies

3. Internal ant nest dynamics (ant nest growth, extinction, ants leave their nest attempting
to colonise an empty nest site)

4. Ant colonisation of empty cells (budding)

5. Distribution of Maculinea eggs on plants

These processes are described below in more detail.
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1.3.2.4 Ant-butter�y-interaction

We simulate behaviour of a cuckoo species according to Hochberg et al. (1994) with corrections
from the appendix in Clarke et al. (1998). The number of emerging adult butter�ies from nest
i is

Pi(t+ 1) = min fPi(t); trunc(mZi(t))g (1.1)

whereas the remaining ant nest size (reduced by parasitism) is

Zi(t+ 1) = Zi(t)�min fPi(t);mZi(t)g (1.2)

The mathematical operation trunc(x) returns the integer part of a �oat value x (e.g. trunc(7:2324) =
7). Parameter m (0 � m � 1) is the fraction of ant brood that develops in spring. This ant
brood is mainly a�ected by Maculinea caterpillars because in spring less food is available
for the host ants. Hence, the ant brood is in competition to Maculinea caterpillars in the
nest (sec. 1.2.1). m regulates the strength of competition between Maculinea caterpillars and
ant brood. (m = 1 � �, where � is the corresponding parameter of the HCET model. See
Hochberg et al. (1994, tab. 2) for further details.)
Equations 1.1 and 1.2 can be interpreted as follows: if there are only few caterpillars in a
nest (less than mZi(t)), these caterpillars are successfully reared by the nest, which costs an
equivalent number of worker ants. However, if the nest adopts too many caterpillars (more
than mZi(t)), pressure to the nest is too high. Maculinea caterpillars compete for food with
the ant brood in spring. The maximal number of caterpillars, the nest can support, is mZi(t).
If there are more caterpillars in the nest, only mZi(t) caterpillars are reared, due to inner-
speci�c contest competition between Maculinea larvae. Rearing costs the equivalent number
of worker ants.

1.3.2.5 Internal ant nest dynamics

Using the foraging range as the spatial scale of the model is an easy way to implement com-
petition for food and for nest sites between host ant nests. In the model, ants from one ant
nest are restricted to forage within one cell. Each cell contains at most one ant nest.
For this reason, most host ant nest dynamics take place within the cell, where it is located.
The only process which a�ects other cells is dispersal (or budding) of host ants from an ant
nest to another cell (see p. 23).
Simulation of the processes is mainly according to the HCET-model (Hochberg et al., 1994).
The processes are split into three subsequent steps.

extinction Below a threshold of ZT , an ant nest goes extinct (i.e. Zi(t + 1) := 0) with
probability

pexti = 1�
Zi(t)

ZT

In contrast to HCET, if an ant nest goes extinct, the cell can be recolonised within the
same year. In this case, Maculinea larvae are rescued, else they would be lost. This
model rule is a compromise to incorporate di�erent types of Maculinea butter�ies. At
least for predating species, the rule is ful�lled (Thomas & Wardlaw, 1992; Thomas et al.,
1998a). It is implemented in a derivative of HCET for species Maculinea arion (Clarke
et al., 2005).
Clarke et al. (1997) included a further 8% density-independent ant colony mortality.
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However, in Clarke et al. (1998) this mortality is not mentioned. In the present thesis,
density-independent mortality of ant colonies is not implemented.

budding The ant colonisation mechanism of the Maculinea model di�ers substantially to the
nearest neighbour budding process implemented in the HCET model (Hochberg et al.,
1994). Budding is restricted to next neighbouring cells. In our model we allow more
�exible budding. This change allows to analyse the role of dispersal distance as a central
factor for the formation of spatial host ant distribution patterns (sec. 1.3.1)
It is clear that host ant dispersal is a species trait and, as such, a �xed process to
any modelling attempt. However, we construct a general model for Maculinea systems,
which involves behaviour of di�erent host ant species. Broadening the range of possible
ant dispersal in our model allows to represent a larger variety of species. For example in
the system of Maculinea arion another dispersal mechanism seems to become relevant.
Colonisation by queens of Myrmica sabuleti is assumed to in�uence system dynamics
(Thomas, Clarke, pers. comm.).
Now we explain the steps of budding, as implemented in the Macu model:

1. A fraction of size ratio_of_budders splits from an existing ant nest with probability

pbudi = min(�Zi(t); 1) (1.3)

where � is a constant.
These colonising ants of one nest build a budding group.
Clarke et al. (1997) suggested another more realistic function for budding prob-
ability pbudi = 2Zi(t)

��1 for the system of Maculinea rebeli. We, however, keep to
the older eqn. 1.3 suggested by Hochberg et al. (1994). We assume that the addi-
tional parameter � allows easier adaptation of the model to other Myrmica systems.
Comparing both suggested functions for the standard parameter set of our model
in tab. 1.1, we receive that budding probability from eqn. 1.3 is about 1

10 of that
calculated with the newly suggested function. Hence, in our model the chance of
budding is clearly reduced. However, budding is not seldom in the Macu model
(unpublished data).

2. According to a spatially discrete dispersal kernel (p. 27), a cell in the surrounding
of the original nest is selected.

3. If the cell, selected for colonisation, is already occupied or is situated outside the
grid, the colonising group is treated as not having left its original nest. If the cell is
empty, the group settles and builds a new nest. This nest will not grow in the year of
colonisation. However, the original nest (because it is smaller) will undergo a higher
e�ective population growth according to logistic growth of ant nests described in
step 'Ant nest growth' below. Hence, a successful budding process leads to a higher
total number of ants.

Ant nests bud stochastically independent from each other.

Ant nest growth Like in the HCET model, Myrmica ant nests grow according to density
regulated almost logistic growth.

Zi(t+ 1) = R
Zi(t)

1 + �Zi(t)
(1.4)
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would be ant nest size after one year, if no further processes would take place. � is
a 'within nest competition constant'. It is a species constant (see Elmes et al., 1998).
Logistic growth of Myrmica ant colonies is reported in Elmes et al. (1998); Hochberg
et al. (1994, and references therein). The growth rate of an ant nest R is a function
of nest site quality. It combines physical characteristics of the site and resources in
the surrounding foraging territory (see Elmes et al., 1998, and references therein). In
contrast to the HCET model, which was used to analyse e�ects of varying ant habitat
quality, R in this model is kept spatially constant over the whole grid.
From eqn. 1.4 equilibrium nest size in absence of Maculinea predation can be derived as
(see Hochberg et al., 1994; Elmes et al., 1998)

� =
R� 1

�
(1.5)

1.3.2.6 Butter�y reproduction and spatial egg distribution

The total number of adult butter�ies

P (t) =
X

all nests

Pi(t)

is multiplied by the mean fraction of females (!) in a population and the mean number of
eggs a female deposits (�f ), in order to obtain the number of Maculinea eggs at time t. It is
! � �f � P (t). The number of Maculinea eggs is a scalar, which has lost all spatial information
about the position of nests, where adults emerged from. This follows the assumption, that
adult butter�ies within a habitat site are spatially unlimited.
All Maculinea eggs are distributed uniformly in a random process over all plants (i.e. each
plant has an equal probability to receive the next Maculinea egg).
In the model, we ignore mortality of Maculinea eggs and young caterpillars. Up to their
third instar, caterpillars do not undergo density dependent or independent mortality. But see
theoretical studies of Hochberg et al. (1992, 1994); Griebeler & Seitz (2002); Mouquet et al.
(2005), where e�ects of intra-speci�c competition of butter�y caterpillars on host plants are
thoroughly studied.
The assumption of ignoring mortality to early stages of Maculinea individuals has important
consequences for the model: E�ectively, all eggs laid on a plant survive to fourth larval instar.
The capacity of larvae on the plant is unlimited.
Further, we follow the assumption, that 4th instar caterpillars are only adopted, if they are
located within the foraging range of an ant nest (sec. 1.2.1). Grid cells are de�ned to corre-
spond to the foraging range of ants. Therefore all eggs laid on a plant are adopted by the
ant nest in the same cell, provided, there is one. Hence, the number of eggs on a plant is
e�ectively the number of fourth instar larvae that can be adopted by host ants.
Summarising, the rule for adoption of caterpillars is as follows: If there is a host plant and a
host ant nest within the same cell, all eggs Pi(t) oviposited on the plant are adopted by the
nest. If there is no nest, all caterpillars die.
Therefore, ignoring intra-speci�c competition on host plants in our model, leads to a pro-
nounced interaction of parasitic butter�ies and their host ants. Maculinea eggs are spatially
distributed according to the distribution of host plants. The complete amount of developed
fourth instar larvae undergoes the adoption process and further potential rearing within the
nests.
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1.3.3 Stochasticity of the model

Stochastic processes are implemented into the model at di�erent steps. The Maculinea popu-
lation is stochastically a�ected by randomly distributing eggs to host plants (sec. 1.3.2.6). Sur-
vival of an egg depends on the presence of a host ant nest and subsequently on inner-speci�c
competition within the nest. Fate of Myrmica ant nests depends on stochastic processes, too.
They are a�ected by random extinction events and by random budding (sec. 1.3.2.5). In par-
ticular, a budding process is randomly released. Afterwards, selection of an empty nest again
is a random event.
The described processes in�uence the system by demographic stochasticity. That is, the fate
of each butter�y individual and host ant nest is decided independently of the fate of others
(Wissel, 1989). Especially, in situations when population size of Maculinea is small, by chance
each of the eggs might be laid on a host plant without an ant nest nearby. Hence, the butter�y
population goes extinct (see sec. 2.3.2).
External random processes are not implemented in the Macu model. E�ects of for example
rainy summers, which negatively in�uence �ying and oviposition activity of the whole popula-
tion (see e.g. Pfeifer et al., 2000), are ignored for simplicity. It could be interesting to include
such environmental stochasticity. However, Clarke et al. (1997, 1998) �nd only minor e�ects,
when they allow stochastic temporal �uctuations in host ant habitat.

1.3.4 Parameterisation

A summary of the model parameters is given in tab. 1.1. All parameters have a standard
value. According to the idea of only varying parameters, which directly in�uence the spatial
host distributions, many of these parameters are never changed. Hence, they do not build
a degree of freedom to the model. Several parameters and standard values are transferred
without change from the HCET model (see Hochberg et al., 1994; Clarke et al., 1998, for
further explanation). In the following, we discuss some parameters of the Macu model:

1.3.4.1 Grid size

In the model, we used parameters �eld_x and �eld_y to de�ne the size of the grid in number
of cells, where the number of cells in x-direction has to be equal or higher than number of
cells in y-direction. The analyses in this thesis are performed on a square grid of 30 cells
times 30 cells. The parameter cell_length denotes dimension of one cell side in reality. We
choose cell_length = 2m, however di�erent estimates can be found in literature (see caption
of tab. 1.1).

1.3.4.2 Host plant distribution and initial host ant distribution

In this thesis, we used 687 di�erent patterns of spatial host plant distributions and 1130
initial host ant distributions. These distributions are characterised by di�erent spatial indices
(Stoyan & Stoyan, 1992; Baddeley et al., 2005; Baddeley & Turner, 2005). Di�erent degrees of
clumping are found on di�erent scales (up to the 10th order of neighbours; see p. 27). Hence
we assume that these distributions represent a good section of the 2900 possible plant or host
ant nest distributions.
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Table 1.1: Parameters of Maculinea simulation model and standard values.

Parameter! Description Standard

Output management

index_�le process protocol index.txt
OutputFileName name pattern of output �les
save_�rst number of stored runs of population dynamical data 3
Initial values

NumberOfEggs number of initial Maculinea eggs 50*

ant_cell_�le �le name of initial ant distribution
�eld_x, �eld_y number of cells in x and y direction (�rst line in

ant_cell_�le)
30

Simulation grid

plant_index_�le �le name of initial plant distribution
cell_length real size of one cell 2m*2

Simulation parameters

NumberOfRuns number of simulation runs 50000 / 300*1

NumberOfIterations max. number of generations per run (time horizon TH) 5000
Myrmica population dynamics

R growth rate of ant nests 1.27*

Theta (�) within nest competition constant 0.025*H

ZT (ZT ) maximum nest size at which a nest might go extinct 4*H

Gamma (�) factor regulating probability that an ant nests starts to bud 0.025*H

ratio_of_budders fraction of worker ants leaving nest for colonising a new one 0.5*H

Myrmica nest dispersal

kernel dispersal kernel for ant nest budding (for other kernels see
tab. 1.2)

Gauss2d*

sigma (�) width of Gaussian dispersal kernel 8
highest_order_of_neighbours longest dispersal distance in units of neighbouring cells 100*

integration_precission accuracy of numerical integration to calculate discretised
dispersal kernel; A value of 0:01means that 1

0:01
�

1

0:01
= 100�

100 = 10000 sample points are used to calculate probability
of reaching one cell

0.01*

Maculinea species traits

EggsPerFemale (�f ) e�ective number of o�spring per female reaching 4th larval
instar

8*

SexRatio (!) mean fraction of females in population 0.5*H

Maculinea species traits

m strength of parasitism (fraction of ant brood attacked) 0.5*H

! Abbreviations from the mathematical description (sec. 1.3.2) are given in brackets.
* Values are never changed within this thesis. They can be considered as constants.
H Values are transferred from the HCET model (see. tab. 2 in Hochberg et al. (1994) and Clarke et al. (1998,
appendix) for corrections).

1 Two values are given for NumberOfRuns: In ch. 2 and ch. 4, calculation of extinction dynamics is based on
50000 simulation runs to achieve high accuracy. In ch. 5 and ch. 6 analysis of spatial patterns is based on
300 simulation runs.

2 We assumed cell length of 2m, according to estimates of ant foraging range given in Thomas et al. (1998a)
and (Glinka, pers. comm.). However, in HCET roughly foraging range of a large Myrmica schencki is
indicated to be 11:11m2 Hochberg et al. (1994); Clarke et al. (1997, 1998). Therefore, they assume a cell
length 3:3m. Griebeler & Seitz (2002) build a model for Maculinea arion with grid cell size 1m2 which
corresponds to foraging area of M. sabuleti workers (Elmes & Wardlaw, 1982b). cell_length and sigma can
be adjusted to values in HCET by rescaling with factor 2

3:3
.
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Table 1.2: Dispersal kernels implemented in Macu program.

kernel description parameters
mean_�eld no colonisation of ant nests
Gauss2d normal distribution1of dispersal distances width: sigma
uniform uniform distribution1of dispersal distances equal probability p to

reach a cell
neg_binom negative binomial distribution1of dispersal dis-

tances
probability of success A;
if r is number of suc-
cesses and x is random
number: B = x + r

Dispersal kernels are discretised according to the underlying grid. Parameter integra-
tion_precission is the resolution for numerical integration of probability distributions.
Dispersal is spatially limited by a parameter highest_order_of_neighbours, which de-
scribes the maximum distance to which the dispersal kernel is evaluated in units of next
neighbouring cells. In this thesis dispersal kernel Gauss2d is uniquely used.

1 see McLaughlin & McLean (1999)

1.3.4.3 Growth rates

Our model as many population models is especially sensitive to the growth rate of species.
In simulations ignoring ant nest dispersal1, we adjusted standard values for parameter �f
and R. According to the purpose of the model (sec. 1.3.1), we selected parameter values
for growth rates, which allow to pronounce impact of Maculinea parasitism on Myrmica ants
(unpublished data). Resulting population dynamics show predator-prey-cycles (see ch. 2).
It is di�cult to compare the adjusted value of parameter �f to reproduction rates found in
other studies. In HCET (Hochberg et al., 1994; Clarke et al., 1998) and HTE models (Hochberg
et al., 1992), modelled female Maculinea rebeli butter�ies lay about 120 to 160 eggs, Griebeler
& Seitz (2002) assumed average values of 54 hatched eggs per female Maculinea arion butter�y
in a modelling study. However, egg and early larval mortality is di�erent in these models in
comparison to the Macu model suggested here. In particular these earlier models included,
e�ects of non-host ants which reduce the number of host ant nests on a site. Therefore, risk
of dying of a caterpillar after adoption is higher in these models than in the Macu model. The
adjusted value for ant reproduction R corresponds to a low growth rate of M. schencki in the
HCET-model: at j � 13 in the habitat gradient. (Hochberg et al., 1994, �g. 2 and eqn. 5).

1.3.4.4 Budding

As mentioned on p. 23, host ants leave an existing nest, to colonise (bud) another cell. This
cell is selected according to a dispersal kernel. To analyse e�ects of di�erent dispersal mech-
anisms, several discretised dispersal kernels are implemented (see tab. 1.2). All these kernels
work in the same way. First, the distance of a cell from the original cell is determined on the
scale of next neighbours. The central cell has next neighbour order 0. The four adjacent cells
have next neighbour order 1, the diagonally adjacent cells are of order two and so on. Rele-
vant for determination of the order is the distance of the central points of the cells. Second,
the continuous probability distribution function is discretised by calculating the probability

1set model parameter kernel : mean_�eld. The mean �eld kernel is a program option which ignores dispersal.
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Figure 1.4: Budding range of a Myrmica nest for � = 4m; 8m; 12m. Di�erent grey values
correspond to di�erent probabilities to select the cell for budding. The centre cell is marked
white because it cannot be chosen for budding. Cell length is 2 m.

that a cell in a particular next neighbour order is reached. The discretisation is performed
by numerically integrating the probability to reach points in the cell. Accuracy of the inte-
gration procedure is determined by parameter integration_precission (tab. 1.1). Third, the
probability distribution is truncated. The lower limit is set to the �rst order of next neigh-
bours. This setting avoids, that ants try to bud their own nest. The upper limit is set by the
parameter highest_order_of_neighbours. Afterwards, the resulting probability distribution
is normalised. Fourth, a random number for budding distance of host ants (in units of next
neighbour order) is taken from this distribution. The direction is determined by randomly
selecting one of the cells with corresponding next neighbour order.
In this thesis, only a Gaussian kernel is used, i.e. distance of budding is selected from a
Gaussian distribution with mean 0 and standard deviation �. In the following, parameter �
is called 'budding range'. Fig. 1.4 displays the two-dimensional probability distributions for
distances from the central cell disperses to another cell (from left to right: budding ranges
� = 4m; 8m; 12m). According to the Gaussian dispersal kernel, probability declines with in-
creasing distance. It has to be noticed, that for budding range � = 12m ants from a central
cell on the grid can reach all other grid cells with almost equal probability.

1.3.5 Implementation of the model

In this section, we give details on the implementation of the model outlined in sec. 1.3.2. On
the one hand, we want to give a guideline for using the model. On the other hand, we want
to present a model design, which is oriented to the task of this thesis � analysing the in�uence
of spatial distributions of hosts on persistence of Maculinea.
Idea of the analysis is, to perform a parameter variation on parameters, which directly in�uence
the spatial distribution of hosts, whereas other parameters are kept constant (see ch. 5). In
particular, we are going to vary host plant distribution, initial host ant distribution and
budding range (dispersal) of colonising host ants (ch. 6). Other parameters of the model are
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set to a standard value. The e�ects of di�erent spatial host distributions on persistence of the
butter�y population will be assessed by population viability analysis (ch. 3, ch. 4 and ch. 5).
Complexity of the planned analysis requires a framework for data processing, which allows
�exible access to data structures at di�erently aggregated levels. In the following we describe
how the model is organised to meet this requirement.

1.3.5.1 Software package Macu

The package consists of the main c++ program code and two versions of executables. One
of them (Macu_gui) is equipped with a user-friendly graphical user interface. This version
is helpful to observe behaviour of the model for single scenarios. A help �le and example
scenarios are provided. The other version of the program is a command line application,
which reads in a speci�ed parameter �le. Advantage of this version is that it is faster and
that it can process many scenarios sequentially. Thus it is especially useful for parameter
variations.
Both programs are compiled from the same model source code �le. For this reason, changes
in the model are e�ective in both versions, after simple recompilation. Hence, it is secured
that both programs run with the same model version.
To run the simulation model, three input �les are required, which are described in the following.

1.3.5.2 Main input �le

The main input �le (extension '.txt') contains all settings that are necessary to de�ne scenarios.
The �le is organised in table form. The �rst line speci�es parameter names. Each of the
following lines speci�es one complete scenario. The parameters are explained in sec. 1.3.4.
The main input �le is used to set up parameter variation experiments. The di�erent parameter
values are easy to be surveyed. Arrangement of parameters in table form makes the �le
compatible for the use with relational databases (ch. 5 and ch. 6).
Two additional input �les for spatial host distributions are speci�ed in the main input �le.
They are described now.

1.3.5.3 Host plant �le and initial host ant �le

Each spatial pattern of host plants or initial host ants is saved in a single �le. Hence they are
available for several simulations with di�erent parameter sets and for further analysis e.g. in
ch. 6 and ch. 7.
Positions of plants are stored in a subsequent line. Plant position (x; y) is stored as y �
x_length+x in the plant �le (Plant �le extension: '.pla'.). x_length is the length of the grid
in x direction in number of grid cells (see p. 25) There is only one plant per cell. In contrast
to the HCET model (Hochberg et al., 1994), there is no subdivision on buds or tillers.
We can simplify description of spatial host plant distribution to a presence-absence representa-
tion, because we ignore density-dependent mortality of caterpillars on a plant (see sec. 1.3.2.6).
The initial host ant distribution is saved in a matrix, where each cell contains the number of
ants per nest (ant �le extension: '.ant').
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1.3.5.4 Organisation of the simulation program

Every simulation experiment consists of several simulation runs with equal parameter sets
and equal initial conditions. Hence, results of one simulation build a sample of independent
simulation runs. The sample size is controlled by the input parameter NumberOfRuns. Each
simulation run consists of a repetition of simulation steps describing Maculinea life cycles (see
�g. 1.1). Each life cycle lasts for one year and includes a complete Maculinea generation.
A simulation run ends either after extinction of butter�y or ant population or when the
prede�ned time horizon TH of the simulation (program input parameter NumberOfIterations)
is reached.

1.3.5.5 Model output

The purpose of the model, to analyse persistence of Maculinea under conditions of spatial host
distributions, implies that full insight into all spatiotemporal processes must be possible. The
disadvantage: having all information does not mean to understand it. You can't see the wood
for the trees. Therefore, the simulation program provides the data aggregated to di�erent
levels:

Times to extinction: Highly aggregated statistical data, which give the number of genera-
tions, populations of Maculinea butter�ies and Myrmica ants survive in each simulation
run. This data is used for population viability analysis (PVA) in ch. 3 and ch. 4. (Com-
piler option ext). Result �le extension: .ext

Population sizes: Time series on population sizes of Maculinea butter�ies and ants, as well
as the number of ant nests are recorded. This data gives an overview on spatially
aggregated population dynamics. (Compiler option pop). Result �le extension: .pop

Spatial host ant dynamics: In each simulation step, ant distribution on the grid is recorded.
This data is used to analyse spatial e�ects on population dynamics. (Compiler option
ant). Result �le extension: .ant

These levels of aggregation allow an hierarchical approach for data analysis (sec. 5). Input
parameter save_�rst gives control on the number of completely stored time series of population
dynamics. save_first = 3 produces 3 pop-�les or 3 ant-�les.
Population size and spatially explicit host ant distributions are calculated synchronised for
butter�ies and ants before the �rst process in each generation.

1.4 Summarising remarks

With our Maculinea model, we keep close to the HCET model (Hochberg et al., 1994; Clarke
et al., 1998) which was developed for a Maculinea rebeli (Hir.) population at Panticosa in
the Spanish Pyrenees. By basing model development on processes and parametrisation of the
HCET model, we relate the Macu model to the natural system.
Additionally, we can pro�t from results of HCET model studies, which indicate functioning
of processes in the system. This knowledge is used to determine, which mechanisms and pa-
rameters might be relevant for our study. These factors are the temporally constant spatial
host plant distribution, which can be considered as a landscape for oviposition of Maculinea,
the initial Myrmica host ant distribution, and the budding of empty nest sites by host worker
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ants (a dispersal mechanism).
To investigate the in�uence of spatial host distributions on persistence of Maculinea popu-
lations, we will perform parameter variation experiments and evaluate them by population
viability analysis (ch. 4, 5 and 6). This methodology is already re�ected in the implemen-
tation of the model. With the Macu model, it is easy to simulate population dynamics of
the Maculinea system for many di�erent scenarios of spatial host distributions. The �exible
output of simulation results supports analysis at di�erent levels of complexity.
The model presented in this chapter is developed for analysis in the frame of Maculinea sys-
tems. However, due to its particular tailoring, it can be applied more generically to give
insight to e�ects of host distribution in parasitic systems. This �exible level of abstraction
is achieved by increasing generality, coming from a concrete complex case study. The special
power of this model is, that on the one hand, it is abstract enough to be comprehensible, on
the other hand it is embedded in the context of natural Maculinea systems.
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Part III

Observing temporal dynamics
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Chapter 2

Population dynamics of the Macu

model

2.1 Introduction

As a �rst step, it is essential to get a feeling for the system to be analysed. Hence, we give
an overview on typical dynamics produced by the Maculinea model Macu. The frame of this
presentation is given by the general aim of this thesis; analysing e�ects of spatial host distri-
bution on persistence of Maculinea populations within a site.
Extinction of populations is often accompanied by typical patterns in time series of population
sizes (Stephan & Wissel, 1999; Lande et al., 2003; Wichmann et al., 2003). This results from
the fact that extinction is a stochastic event (Wissel & Stöcker, 1991; Wissel et al., 1994)
and risk of extinction is increased for small populations (Matthies et al., 2004, and references
therein). Therefore, we analyse time series on Maculinea population sizes, calculated by the
Macu model.
In single species systems with density dependent population growth, two temporal phases
can be distinguished for their di�erent population dynamics: a short initial transient phase
during which the population size approaches a quasi-stationary distribution, and a second
phase, when this quasi-stationary distribution is established but decays slowly (Nisbet & Gur-
ney, 1982; Stephan & Wissel, 1994b; Lande et al., 2003). Extinction risk can strongly vary
between both phases (see ch. 3.2 and references therein). We expect a similar e�ect for the
multi-species Maculinea system, among other reasons because such phases are observed in an-
other Maculinea model (Hochberg et al., 1994). Hence, we analyse population sizes for initial
and established phases separately.
To investigate the in�uence of the spatial distribution of hosts on the fate of Maculinea popu-
lations, we perform time series analysis on a large number of di�erent scenarios. Each scenario
consists of a �xed set of spatial host distributions and species traits, in�uencing dispersal of
host ants (see ch. 1). Comparing results from di�erent scenarios reveals dependency of Macu-
linea population dynamics on species traits and spatial host distribution.
Findings of this chapter motivate the methodology applied in the following parts of the thesis.
Additionally, here these �ndings are used to compare dynamics of Macu and HCET model
(Hochberg et al., 1994; Clarke et al., 1997, 1998) in respect to in�uences of spatial host dis-
tributions. This 'validation' of the Macu model by means of the more naturally realistic and
partly validated model for the Maculinea rebeli system is expected to improve understanding

35
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of e�ects resulting from di�erent processes in the models. Such an understanding is impor-
tant, because it helps transferring results of the general Macu model to case studies of natural
Maculinea systems.

2.2 Methods

We analyse time series of population sizes of Maculinea butter�ies and Myrmica host ants,
and numbers of Myrmica host ant nests.
Having in mind the main purpose of this thesis, the analysis of the in�uence of spatial host
distributions on persistence of Maculinea, we mainly keep to the set of standard parameters
1.1. The idea is to only change parameters with direct spatial impact: that is dispersal, plant
distribution and ant nest distribution. Further parameters (species traits) are only varied to
get an impression of robustness of results.
The investigated parameter space contains all host plant and initial host ant distributions
described in sec. 1.3.4.2. Budding range � can assume one of three values [4; 8; 12]. For each
of 17895 parameter combinations of these three spatially relevant parameters, we keep track
of population sizes in each generation from three subsequent simulation runs. These data are
graphically analysed to identify qualitatively di�erent dynamics.
In a further step quantitative analyses are performed. Each simulation run, where populations
survived for at least 1000 generations, is taken into account. This results in 18960 analysed
runs. To avoid e�ects resulting from initial conditions, we skip data from the �rst 40 gen-
erations. We calculate two types of statistics. Summary statistics (mean, median, standard
deviation) is calculated on the basis of data from three simulation runs of each simulation
experiment. Time series analysis (Chat�eld, 2000) is performed for each run separately. For
this analysis, a run is taken into account, if it consists of at least 10 generations (after skipping
the 40 initial generations). We assess autocorrelation, spectrum and phase-shift of the multi-
variate time-series on Maculinea population size, number of Myrmica host ants and number
of Myrmica host ant nests.
Explicit spatiotemporal host ant dynamics are observed only exemplarily, because it is inef-
fective to search for patterns in such complex data in a coarse analysis.
Data analysis is calculated with statistical software R (R Development Core Team, 2005).
Data is stored in a local MySQL database (MySQL, 2003; Lapsley & Ripley, 2005).

2.3 Results

2.3.1 Typical population dynamics

Fig. 2.1 shows a typical example of dynamics of Maculinea butter�ies, Myrmica host ants and
number of host ant nests. After an initial peak in population sizes of butter�ies and ants,
the data vary around a constant value. For ants and their nests, this value is close to the
median (mean correlates with median). In contrast, butter�y data is biased to higher values
(mean � median; cor = 0:580), resulting from peaks with high maxima.
Figure 2.2a shows the relation between the number of host plants and the average number of
Maculinea butter�ies. For low numbers of plants, number of butter�ies increases with increas-
ing host plant number. For higher numbers of plants (more than about 500), mean numbers
of butter�ies reach a constant level. In contrast, for high numbers of host plants, median
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Figure 2.1: Typical population dynamical output from the Macu simulation model. Top:
number of Maculinea butter�ies; centre: number of Myrmica host ants; bottom: number of
host ant nests.

numbers decline (not shown in the graph). For both measures, mean and median, variance
increases.
There is an interesting �nding: for host plant numbers, higher than 600, median of butter�y
numbers can be very small (below 10). That means, that in 50% of all generations, there
are less than 10 individuals in a population. On the other hand, mean numbers of butter�ies
rarely drop below 80. Hence, there is an enormous variance in population size. High numbers
of butter�ies can be found in one moment, but at least half of time, population is very small
and underlies a high risk of extinction due to demographic stochasticity.
In �g. 2.2b, dependency of the mean number of host ant nests on the number of host plants
is depicted. With increasing number of plants, average number of host ants declines. This
decline is linear for less than 600 host plants. For higher numbers of plants, decline in number
of host ants becomes stronger. Variance in data increases, too.
In contrast to number of host plants, host ant budding range (�) and number of initial ant
nests do not show systematic in�uence on sizes of Maculinea and Myrmica populations.
We know concentrate on time series of single runs. Fluctuations in population size seems
to change randomly within a run (see �g. 2.1). But the three time series are strongly cor-
related. This can be seen in the correlation diagrams of �g. 2.3. Signi�cant correlation or
anti-correlation between sizes of Maculinea populations (buts), Myrmica ant population (ants)
and number of Myrmica nests (nsts) can be observed up to about 100 time steps. Such a long
temporal correlation between population sizes of di�erent species indicates strong relation of
their dynamics.
In the following, the correlation diagrams will be closely inspected. In di�erent graphs of
�g. 2.1, cycles with declining amplitudes can be observed. The diagrams are not symmetric
to the x-axis, indicating higher correlation than anti-correlation.
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Figure 2.2: Mean number of butter�ies (graph (a)) and host ant nests (graph (b)). Data from
simulations on 17895 di�erent scenarios. Di�erent shapes of data points indicate di�erent
spatial random processes which are used to create spatial host plant distributions (ch. 1.3.4.2).
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Figure 2.3: Auto- and cross-correlation functions (bar-plots) of number of Maculinea butter-
�ies (buts), number of Myrmica host ants (ants) and number of Myrmica host ant nests (nsts).
Same data as in �g. 2.1. Dashed lines indicate the 95% con�dence-interval of uncorrelation.
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Cyclic autocorrelation functions (graphs on diagonal from upper left to lower right corner in
�g. 2.3) result from cycles in the original data with the same period (Chat�eld, 2000). Hence,
although there is high variation in the amplitudes of population sizes (�g. 2.1), on a short
time scale of about TP � 17 (duration of one cycle in the autocorrelation diagrams �g. 2.3),
population sizes vary periodically.
A decline of autocorrelation functions results from a loss of memory in the data with increas-
ing time. When after about 100 generations, the autocorrelation looses signi�cance in �g. 2.3,
population sizes at time t are not dependent on population sizes at least 100 generations ear-
lier. A decline of autocorrelation is related to chaotic dynamics or stochastic perturbations of
a system.
Especially for the autocorrelation function of Myrmica ant dynamics, we �nd that the cyclic
declining pattern is not symmetric to the x-axis. Instead, positive correlation is stronger than
anti-correlation. Additionally it is found, that the phase of positive autocorrelation is longer
than the phase of negative correlation, within one cycle. This pattern results from an unequal
distribution of times, when population size is higher or lower than the average population size.
Actually, within one cycle, population size of Myrmica ants increases slowly to its maximal
size, but within a short time drops down to its minimum.
Cyclic autocorrelation functions with declining amplitudes are classi�ed as phase-forgetting
quasi-cycles (see Nisbet & Gurney, 1982, p. 250�). Knowing the fact that in the simulation
model no external oscillating driving force is included (see sec. 1.3), either the quasi-cycles
are 'endogenous resonant' (a deterministically stable but underdamped system is perturbed
by stochasticity) or 'perturbed limit cycles'. Endogeneous resonant means, that a determi-
nistic system has a stable equilibrium. However, stochastic in�uence perturbs the stable state.
Both processes, acting together, lead to cyclic behaviour. Hence, cyclic behaviour is induced
by stochasticity. In contrast, limit cycles are intrinsic to the deterministic system. Stochastic
in�uence only perturbs the periodic trajectories of population sizes. In both cases, the under-
lying deterministic system shows the tendency of returning to some kind of stability.
Autocorrelation functions which result from dynamics of only one species show the same
pattern as cross-correlation functions which describe temporal correlation of dynamics of dif-
ferent species. Hence we conclude that the cycles in population size of Maculinea butter�ies
and Myrmica ants are strongly correlated. These quasi-cycles result from species interaction.
Cycles are well-known from predator-prey, host-parasite or epidemic systems (Nisbet & Gur-
ney, 1982; Wissel, 1989; Grenfell & Bjornstad, 2005). In the Macu model, coupled quasi-cycles
of butter�y population size and ant population size are found. Coupling results from interac-
tion of both species. Quasi-cycles can be explained by parasitism of Maculinea butter�ies on
Myrmica ants and stochastic e�ects (sec. 1.3.3).
Spectral analysis of population dynamics reveals almost no variation in period length of one
cycle between time series of butter�ies, ants and nests (see tab. 2.1). Fig. 2.4, as an example,
shows a power spectrum of the population dynamics displayed in �g. 2.1. Clearly, a major
peak can be seen at TP = 16:74 (top scale) simultaneously in all three spectra for butter�ies,
ants and nests. There is only very view variation in the period between time series of coupled
Maculinea and Myrmica. Increasing number of host plants leads to slightly increasing period
time. Increasing budding range � leads to a small decline in period.
Phase shift �ants, butter�ies � 1 for all analysed population runs. This means, ant dynamics fol-
lows butter�y dynamics after one generation. In the presented example �ants,butter�ies = 1:11.
Phase shift can be observed in �g. 2.3 graph 'ants & buts'. In this cross-correlation diagram,
the initial peak is delayed by one generation (positive correlation at time lag 1).
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Table 2.1: Distribution of period times TP for Maculinea
butter�ies and Myrmica ants.

1st quantile median 3rd quantile
Maculinea 12.98 13.96 16.83
Myrmica 13.22 14.79 17.44
Myrmica nests 13.02 14.00 16.83

Values are derived from spectra of all simulation
runs, where time series analysis is performed (see
sec. 2.2)

Fig. 2.5 shows an example of spatial host ant and host plant distributions (bottom graphs)
during one cycle of Maculinea butter�y number (top graph). Numbers in the top graph in-
dicate times, when ant distribution is sampled. Circles show positions of host plants which
are constant throughout the simulation (sec. 1.3.4.2). Di�erent colours indicate the number
of ants per nest. The lighter the colour, the higher is the number of host ants in a cell. Cells
without ants do not contain an ant nest. In all graphs the upper left corner contains only few
ants. In this area, plants are particularly clumped. Whereas in the lower right corner, which
is almost free of host plants, there is a high density of ants (nest size reaches capacity � = R�1

�
see eqn. 1.5 in sec. 1.3.2.5 or Hochberg et al. (1994, � is referred to as 'equilibrium nest size
in the absence of the butter�y') ). �standard = 10:8 for the standard parameter set (tab. 1.1).
Starting with the snap shot number 1 in �g. 2.5 (minimum number of butter�ies), the two
areas are clearly distinguished. Cells without plants contain nests with high numbers of ants,
whereas in many cells with plants no ant nest can be found. In step 2, although the number of
parasitic butter�ies increases, an increased number of cells with host plants contains ant nests.
Hence butter�y larvae bene�t from a large amount of suitable habitat. Butter�y population
grows further. In step 3, the highest butter�y population size is reached. But the ant nest
distribution does not show big di�erence to steps 1 or 2. The change occurs at step 4, when a
high fraction of cells containing host plants is free of ants. Remaining nests in that area are
highly threatened of extinction. Thus this next generation of Maculinea larvae is confronted
with a very low number of suitable cells. Population decline is faster than the increase before
the peak. In step 5, reduction of the Myrmica ant population seems to be even severe. During
the following generations, butter�y population size stays low. But the ant population can
recover. Refuges for Myrmica host ants can be identi�ed in the graph: although in step 4 and
5, Maculinea butter�ies damage their host ants severely, nests far away from plants are not
a�ected (e.g. lower right corner).

2.3.2 Extinction

In the example run (�g. 2.1), Maculinea butter�ies go extinct after 2156 generations (extinc-
tion: butter�y population size is 0). In our survey, we �nd three categories of survival times:
First, a population survives very short time. It goes extinct after only few generations. Second,
a population survives for several hundreds or thousands of generations before it goes extinct.
Third, the population survives for the time of TH = 5000. This is the maximal duration of
a simulation run (see standard parameters in tab. 1.1). A detailed consideration of times to
extinction in Maculinea systems is given in chapter 4. Here, we concentrate on population
dynamical patterns, which correspond to di�erent reasons of extinction.
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Figure 2.4: Power-spectrum of number of Maculinea butter�ies (line), number of Myrmica
ants (dashed line) and number of Myrmica ant nests (dotted line). Same data as in �g. 2.1

In all model experiments, extinction of Myrmica host ants is never observed. One reason
can be seen in �g. 2.1. Comparing the minimum individual numbers of Myrmica ants and
Maculinea butter�ies reveals a strong di�erence. Myrmica ant numbers (except of the �rst
few generations) do not drop below 2800 and nest number is always higher than 370, however
butter�y numbers often reach very low values. Finally, the population size of butter�ies drops
to 0, which means extinction. In the model, small populations of Maculinea underly a risk of
extinction due to demographic stochasticity. That is, fate of single individuals might strongly
in�uence development of the whole population, because the population does only consist of
few individuals (Nisbet & Gurney, 1982; Wissel, 1989). Another reason can be seen in �g. 2.5.
Myrmica host ant nests are not a�ected by parasitic Maculinea butter�ies, when there is no
host plant in vicinity of the ant nest. These refuges (see sec. 2.3.1) guarantee a minimum
number of surviving ants. Refuges for hosts are known as an important factor to stabilise par-
asitic or predator-prey systems (Hu�aker, 1958; Ellner et al., 2001; Poggiale & Auger, 2004).
One could argue, that an increase in host plant density will increase pressure on host ants
in the system. Although occupying the whole area with plants (which is one of the standard
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Figure 2.5: Spatial distribution of Myrmica host ant nests within one population cycle. Top
�gure displays Maculinea population size. Bottom graph shows explicit spatial distribution
of Myrmica host ants. Di�erent colours represent di�erent ant nest size. Dark: small nests,
Light: large nests. Circles represent host plants.
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Figure 2.6: Population extinction within few generations. Ant population has not reached
establishment. Same parameter set as in �g. 2.1.

plant distributions see. 1.3.4.2), we did not �nd extinction of host ants1. One reason, why
the parasitic Maculinea population goes extinct earlier than its Myrmica host population, can
be seen, referring to sec. 1.3.2.4. It is assumed, that small Maculinea caterpillars in autumn
reduce host ant brood only slightly. Therefore a part of the ant larvae in the nest survive
parasitism (parameter m = 0:5, see tab. 1.1). Hence, a large ant nest has a good chance to
survive a strong attack of Maculinea butter�ies. Although, if the Maculinea population is
extremely high, it cannot deplete the Myrmica population. Another reason becomes relevant
for situations of low population sizes of Maculinea and Myrmica. In this case, there are not
enough Maculinea caterpillars to parasite all nests. Hence, some of the ant nests are not
a�ected by the butter�y. They can recover.
Anyway, extinction of Myrmica ants would be followed immediately by extinction of Maculinea
on the site, because the ants are obligatory hosts for the butter�ies (see chapter 1.2).

2.3.3 Initial behaviour of the system

We consider e�ects of initial conditions on our simulations, because they might have a high
impact on the performance of Maculinea butter�ies. Fig. 2.6 shows another outcome of the
example experiment, which produced the population dynamics in �g. 2.1. In this simulation
run, extinction of Maculinea takes place after only few generations, although the parameter set
is the same for both runs. Di�erence in survival of butter�ies simply results from stochasticity
in the model (see sec. 1.3.3).
In this type of initial behaviour of the model, butter�y numbers increase to high values, while

1in 6 of 120977 simulation runs, ants are driven to extinction, in cases where all cells are occupied with
host plants. Extinction of ants leads immediately to extinction of butter�ies. Extinction events happen within
the �rst 15 generations. These simulations are test simulations on a larger grid; They are performed assuming
strong interaction of butter�ies and ants m = 0:9.
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Figure 2.7: Census data of two runs with same model parameters. (a): Butter�y popula-
tion goes extinct after running through an initial peak. (b): Within �rst 200 generations
populations have not gone extinct.

the number of ants decreases. Comparing both, �g. 2.1 and �g. 2.6 regarding their initial
population dynamics, it can be seen that the behaviour is similar. An initial peaking cycle of
butter�y numbers is accompanied by a decline of ant and ant nest numbers. Only, by chance,
in the second run, the Maculinea population goes extinct. When looking at dynamics following
the initial 20 generations in �g. 2.1, one recognises that butter�y population seems to be in a
stable situation. In contrast, ant and ant nest numbers have a clear trend of increase. Even
maxima of cycles are below the long term mean in population size. It takes the ants about 100
generations to reach long term behaviour. Closely inspecting butter�y numbers reveals that
during the transient phase of ants, the minima in butter�y numbers are only slightly above 0.
Further on for long time, minima assume higher values, until � introduced by high peaks in
butter�y numbers � the Maculinea population goes extinct. Our observations suggest that the
system behaves di�erently during a long initial transient state compared to its steady state
behaviour.
Another type of initial behaviour is shown in �g. 2.7. Again, two population runs with the
same set of parameters are depicted. Butter�y population in �g. 2.7a goes extinct after
16 generations, whereas in �g. 2.7b no extinction occurs during the �rst 200 generations.
Comparing population dynamics during initial and established state in �g. 2.7b shows, that
Myrmica ant number starts on a higher level than is reached in further generations. This
high number of food resource provides an outbreak of butter�ies, twice as high as normal
peaks reach. Overexploitation let the butter�y population collapse, but furthermore reduces
ant population size. During the following 50 generations, the mean number of Myrmica ants
increases. During this time, the variance of butter�y population size is increased in comparison
to later generations.
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Figure 2.8: Butter�y population is declining, while number of ants and ant nests increases.

A third example (�g. 2.8) shows a declining population of butter�ies which goes extinct after
8 generations. Meanwhile ant nest number and total population size of ants increase.

2.4 Discussion

2.4.1 Characterisation of dynamics of the Macu model

Quasi-cycles are found in most simulations of the Macu model. Dynamics of butter�ies and
ants are linked together by a phase shift of one generation. This coupling can be explained by
parasitism of Maculinea butter�ies on Myrmica host ants. Reason is the feedback of preda-
cious Maculinea on its ant brood prey. Thus, the Maculinea model shows predator-prey cycles.
Stochastic processes disturb this deterministic dynamics. Main e�ect of stochasticity expresses
in a strong variance of amplitudes of the cycles. These random changes in population size
lead to phase shifts during the course of the system. Both, beats and loss of coherence can be
attributed to the interaction of stochastic and deterministic processes. It cannot be decided,
whether observed �uctuations result from stochastically introduced �uctuations around a sta-
ble equilibrium point (endogenous resonant quasi cycles) or if they are 'perturbed limit cycles'
(Nisbet & Gurney, 1982).
It must be remarked, that no long time trend on population sizes of butter�ies or ants can
be observed. Predator prey cycles stabilise the system in the sense, that �uctuations or per-
turbations are redirected by deterministic behaviour of the system and do not amplify. Such
a behaviour is known from classical predator-prey models like Lotka-Volterra systems with
density limitation in prey population (damped Lotka-Volterra) when stochastic in�uence is
not too strong (e.g. Nisbet & Gurney, 1982; Dimentberg, 2002). Damping in the Macu model,
results from density dependance of Myrmica host ants (eqn. 1.4). Phenomenologically, dynam-
ics of Maculinea butter�ies, like predator dynamics in principal can be described as oscillation
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with noise on the amplitude and with slight changes in phase. This is a relevant fact for the
application of the PVA method, developed in ch. 3.

2.4.1.1 Initial behaviour of the system

We distinguish three di�erent types of initial behaviour. In one of them (�g. 2.8) the butter�y
population declines monotonously to extinction within a very short time span. Ant resource
seems to be insu�cient to support the predator. Compared to both other cases, the initial
number of ants and nests is lower.
The examples depicted in �g. 2.6 and �g. 2.1 point out that the mean number of butter�ies
can be close to the stationary population size. However, mean ant population size is far away
during the initial phase. Considering only census data of Maculinea butter�ies, it cannot
be recognised that the system undergoes a transient phase. Di�erentiation of population
dynamics during the transient and established state is crucial for habitat management.
In �g. 2.7 both butter�y populations undergo an initial outbreak in population size, which
provokes overexploitation of the host ant resource. For one of the populations, this self-
generated habitat destruction leads to extinction. In the other example, it can be observed
that host ants need some time to recover. Note that the second peak in butter�y population
size is higher and sharper than following peaks, although ant number is low. Very low butter�y
numbers preceding the peak, almost do not a�ect the recovering host ants. Suddenly, butter�y
population size increases,because the population can pro�t from a well developed resource.

2.4.1.2 Equilibration of the system

For many ecological questions, initial conditions of a system cannot be ignored (e.g. system
reaction after catastrophes or colonisation of new sites). As we can see above, the Maculinea
model shows remarkably di�erent behaviour during a few years after simulation start in com-
parison to long time behaviour. Even extinction is possible. Hence, this phase of population
dynamics cannot be ignored in our analysis.
It is notoriously di�cult to estimate the time, a system takes to adapt to new conditions (Fath
et al., 2003; Labra et al., 2003). In �g. 2.7b it can be seen, that population dynamics of Ma-
culinea seems to enter into a regular cyclic structure after about 2 cycles, whereas the number
of Myrmica ants shows a trend until the fourth cycle. Can parasitic Maculinea butter�ies
been adapted although its prey still is not? How does the system show, that it is completely
adapted?
Nisbet & Gurney (1982, ch. 6.2; p. 170) discuss a statistically quasi-stationary state of density
dependent single isolated populations. The statistically quasi-stationary state of a population
is determined by repeatedly simulating population dynamics, always starting with the same
initial conditions. Distribution of population sizes at time t is determined from population
sizes at time t of all simulation runs. Nisbet & Gurney (1982) show in �g. 6.1a that this
distribution changes strongly during some initial time (transient behaviour) and then builds
up an almost constant distribution, which decays slowly (quasi-stationary behaviour). The
decay results from the fact that extinction of populations is an attracting boundary to closed
populations. Leaving out all simulations in which populations have gone extinct before reach-
ing time t, it can be shown that the resulting distribution of population sizes is stable for
long time spans (see Nisbet & Gurney (1982) and �g. 1 in Stephan (1992)). Stephan (1992)
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calculates colonisation times, which correspond to the duration of the transient behaviour.
When the concept of a quasi-stationary state should be applied to population dynamics re-
sulting from the Macu model, it needs ampli�cations. Firstly, in the Maculinea model, we
deal with three species instead of one. In such cases, usually a system state is de�ned multi-
dimensional, comprising all state variables of the system (Wissel, 1989; Fath et al., 2003).
Secondly, population dynamics shows quasi-cyclic behaviour. This cyclic behaviour, as well,
will express in the quasi-stationary distribution of system states. Therefore, the shape of a
cyclic quasi-stationary distribution changes periodically with time. Thirdly, the Macu model
is phase-forgetting. Because stochasticity provokes a loss of information about initial condi-
tions, population dynamics from di�erent simulation runs are out of phase. Hence, although
each simulation run shows periodical �uctuations, cycles are not found in the quasi-stationary
distribution of system states. The distribution might resemble to �g. 1 in Stephan (1992),
hiding the real structure of cyclic dynamics.
Determining a quasi-stationary distribution of system dynamics in the Maculinea model must
be done carefully. However, the theoretical concept of a quasi-stationary state is helpful to
derive a PVA method for interacting species in ch. 3.

2.4.2 Comparison of the Macu model with the HCET model

As mentioned already in ch. 1, the Macu model, we use for our analysis, is based on the
HCET model for Maculinea rebeli. To detect di�erences in behaviour of both models, we
compare results, which are important in respect to e�ects of di�erent host plant or host ant
distributions. This can be done only qualitatively, because of model di�erences. For example
plants are modelled more detailed in the HCET model than in the model presented here.
Hence absolute values of plant densities are not comparable between the models.

2.4.2.1 In�uence of the initial ant distribution

As in the HCET model, in our model the initial ant nest distribution does not strongly in�u-
ence long-term distributions of species (Hochberg et al., 1994, tab. 3). Hence, populations in
both models reach one stable state from di�erent initial situations. In our model, depending
on the initial conditions and random e�ects, the stable state sometimes is not reached, be-
cause butter�y population goes extinct within only a few generations after simulation start.
Such extinction events are not reported from the HCET model, maybe because in HCET
simulations, ants are allowed to equilibrate for 50 generations before Maculinea is introduced.

2.4.2.2 Population sizes of Maculinea and Myrmica ants

In our model, total numbers of butter�ies are smaller than in the HCET model, whereas
numbers of host ant nests are higher. This result sounds contra-intuitive but can be attributed
to di�erences of the models. Lower number of Myrmica ants in the HCET model should be
expected, because of interspeci�c competition between Myrmica ants and because some area
of the habitat is unfavourable for Myrmica schencki host ants (low quality; reproduction rate
R is small). Fig. 1 in Clarke et al. (1998) shows the ratio of area occupied by Myrmica schencki
ants, which is at most only one half of the total area.
Larger Maculinea populations observed with the HCET model might result from a higher
number of butter�y caterpillars reaching ant nests (see sec. 1.3.4). Although, afterwards there
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(a) (b)

Figure 2.9: Population size of Maculinea butter�ies (a) and host nest density (b) for di�erent
densities of Gentiana cruciata. Solid line: host plants are clumped according to equation 2
from Clarke et al. (1998); Dotted line: host plants are uniformly distributed. (Clarke et al.,
1998, From HCET model; �gures according to �g. 2c and 2d in).

is high mortality due to adoption by non-host ants, resulting butter�y reproduction in the
HCET model still might exceed that of the Macu model.

2.4.2.3 Temporally averaged population sizes - dependency on host plant distri-
bution

We now compare �g. 2c and 2d from Clarke et al. (1998), which are shown in �g. 2.9, with
results from the Macu model (�g. 2.2). Graphs show butter�y numbers and host ant nest
numbers for di�erent host plant distributions. Clarke et al. (1998) report an initial linear
increase of mean Maculinea population size with increasing numbers of host plants, which
after running through a maximum, changes to a slight decline. Our model reproduces this
curve qualitatively (top graph). The optimum plant density to get highest mean numbers of
Maculinea butter�ies lies slightly below 1

2 of the possible maximal plant number. In contrast
to Clarke et al. (1998), who showed a strong di�erence between clumped and non-clumped
host-plants, we did not �nd this e�ect, although using many host plant distributions with
di�erent degrees of clumping. Corresponding to Clarke et al. (1998), we �nd higher numbers of
butter�ies for plant numbers below optimum density, when plants are less clumped (uniformly
or even regularly distributed). But, we do not see a peak or strong changes in the mean of
butter�y numbers, when varying the degree of host plant clumping. Curves, resulting from
our model, resemble to the curves that are observed for clumped Gentian distributions in the
HCET model. As stated in Clarke et al. (1998), for plant densities above the optimum we
observe a stronger decline of mean butter�y population size, if host plant distributions are
less clumped. But, the e�ect we �nd is much lower and underlies high variation.
Both models show a decline in host ant nest numbers (graphs (b)) with increasing host plant
density. Independent of the degree of host plant clumping, our results show a linear correlation
of mean number of host ant nests and number of host plants. This again resembles to HCET
model observations for clumped host plant distributions. However, a stated di�erence with
changed degree of clumping (Clarke et al., 1998) is not reproduced by the Macu model.
Looking closer to di�erences in models helps to understand, why we cannot �nd the e�ects
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provoked by host plant clumping, as stated in Clarke et al. (1998). The reason lies in di�erent
de�nitions of plants in the two models. In the Macu model, one host plant in a cell means
that an unlimited number of Maculinea eggs can be supported by this plant. Instead, Clarke
et al. (1998) model strong intra-speci�c competition of Maculinea caterpillars on host plants,
but they allow several host plants per cell. With increasing number of host plants in a cell,
the number of butter�y caterpillars supported by this cell increases. In both models, a density
of 900ha�1 evenly distributed plants mean that no host ant nest escapes parasitism (all cells
are occupied by at least one plant). In the Macu model, in this case, every ant nest can be
a�ected by an in�nite number of caterpillars. In the HCET model, due to caterpillar mortality
on a plant, this density leads to only low parasitation rates. In both models at a density of
900ha�1 evenly distributed plants there are no ant refuges. However, clumping of host plants
in the HCET model means that there are refuges for ant nests even for high plant densities.
This corresponds to the way, how we model plant distribution. Our model reproduces HCET-
evenly-distributed plants only for HCET densities below 900ha�1 or in the case, when in the
HCET model very high plant densities are used and in our model all cells are occupied with
host plants (that is 900 host plants). Hence, it becomes clear that in general the Macu model
reproduces curves which result from clumped host plant distributions in the HCET model.
Anyhow, in results of the Macu model for high host plant densities, mean population size of
butter�ies varies strongly. This variance might result from changes in system regimes. That
is, when host plant density is high, there is space left for only few ant refuges. Depending on
the arrangement of these refuges, the Macu model either might act as the HCET model with
evenly distributed host plants or with clumped host plant distributions. As known from �g.
2.9, changes in the degree of clumping provoke strongly di�ering population sizes.

2.4.2.4 Temporal variation in population sizes

Hochberg et al. (1994) give a temporal coe�cient of variation of 6:7% for Maculinea butter�ies.
Our simulation results range from 24% to 203%, which is almost 1 to 2 orders of magnitude
higher. In contrast to observations of the HCET model, we �nd host-parasite cycles. Mainly
these deterministic cycles contribute to variation in population sizes, whereas the part from
demographic stochasticity is smaller.
The HCET model structurally incorporates feedback between Maculinea rebeli and Myrmica
schencki populations. Why are oscillations suppressed in that model? To argue on this
question, we can pro�t from keeping our model close to the HCET model. Because we know
the di�erence of both models, we are able to assume reasons for damping in the HCET model.
There are two additional forms of competition in the HCET model: interspeci�c competition
between Myrmica ants and intraspeci�c competition of Maculinea caterpillars on their initial
Gentiana host plants. We suppose the �rst mechanism to have lower in�uence. Observations
of simulations from the HCET model Hochberg et al. (1994, �gure 5b,d) suggest that rearing
of Maculinea caterpillars is not strongly in�uenced by non-host ants, in the main range of
the Myrmica schencki distribution. Instead we suspect intra-speci�c competition of young
Maculinea caterpillars � during stages before they leave their host plants � to damp later
interaction with Myrmica ant brood.
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2.4.2.5 In�uence of initial conditions

The HCET model for Maculinea rebeli always produced an initial peak in the number of
butter�ies with a width of about 4 generations (Hochberg et al., 1994). A new model by
(Thomas et al., pers. comm.) for a predacious species of Maculinea arion does not show this
peak. In our model we see both initial situations. The later mainly in cases when there
are only few ants at the beginning of a simulation. Hence, we suppose that in the HCET
model for Maculinea rebeli, the butter�y population always �nds good conditions at the time
of introduction. But it is not clear, if results of both models can be compared, because of
di�erent initial conditions of the host ants. In the HCET model, introduction of Maculinea
is delayed for 50 generations in order to initially get an equilibrium distribution of host and
non-host ants. In the Macu model, the butter�y is introduced immediately. Butter�ies and
host ants equilibrate at the same time.

2.4.2.6 Interpreting the results of our model in context of the HCET model

From model comparison ahead, we are now able to evaluate results of our more abstract and
generic predator-prey model in the context of speci�c species of Maculinea. The reason is
that both models qualitatively give similar results concerning our questions on importance of
spatial host distributions. Degree of similarity is surprisingly high. Firstly, because spatial
distribution of host ants is di�erent in both models due to interspeci�c competition in the
HCET model. Secondly, because in our model parasitism of Maculinea butter�ies seems to
drive population dynamics much stronger (missing intraspeci�c competition of young Macu-
linea caterpillars on host plants).
Correspondence of both models indicates that we grasped main processes for on the one hand
analysing general problems of spatiotemporally interacting species, on the other hand inferring
results to the speci�c Maculinea system. We assume that we made a step forward to discuss
Maculinea systems in a broader more general context. This is an example to show how theory
and practice can be linked closer via mediating models.

2.4.3 Conclusion

We present population dynamics simulated by the Maculinea model (ch. 1). Census data
shows typical behaviour of a host-parasite system. Deterministic cyclic structure interacts
with stochasticity, which leads to phase-forgetting quasi-cycles. Population data has a complex
structure.
Two temporal phases can be distinguished. The initial state is transient and often shows a
trend in census data. However, the trend is not necessarily obvious in all populations, although
they interact. This initial phase is followed by a stationary oscillating state. Stationary in the
sense that no trend can be observed. Population cycles vary in shape and size.
Extinctions are observed only for the butter�y population.
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Chapter 3

Foundation of a PVA approach for

interacting species

3.1 Introduction

Population viability analysis (PVA) focusing on extinction risk of single species is a well es-
tablished technique in conservation biology. Di�erent problems which might drive populations
to extinction have been addressed by PVA methods. Studies have been made on habitat de-
struction, fragmentation of landscapes, metapopulations, disturbance or even catastrophes.
Although reliability of PVA models was criticised because of their caricatured picture of nat-
ural processes, di�culty to parameterise them, and complication of validation, the models
might help to understand processes and in�uence of internal and external factors of the eco-
logical system under consideration. Comparative PVA on di�erent management options has
been used in decision making (e.g. Akcakaya & Sjögren-Gulve, 2000; Beissinger & McCullough,
2002; Frank et al., 2002).
In spite of their success in single species systems, only few PVA studies on interacting species
systems can be found in literature (Ives et al., 2000, 2003; Sabo, 2005). One reason might
be the high level of complexity in such systems, which makes them di�cult to evaluate (Ak-
cakaya & Sjögren-Gulve, 2000). Especially for the distribution of extinction times, which is
the general measure for length of persistence of a system, Holyoak et al. (2000) formulated the
problem as follows: 'Density cycles cause predator and prey populations to regularly reach low
abundances where extinction through demographic stochasticity may be more likely. With
cyclical dynamics, the timing and likelihood of extinction may be a function of the density
cycles [...]'.
Attempts to analytically derive a formula for the mean time to extinction were made by Ren-
shaw (1991, ch. 6) for a Volterra model following an approach of Nisbet & Gurney (1982) for
single species and assumed that both species might be treated separately. Hitchcock (1986)
derived approximated formulae for two predator-prey systems formulated as stochastic di�er-
ential equations. Nisbet & Gurney (1982, ch. 10) used a patch occupancy model to calculate
extinction times for Hu�aker's experiment of a predator-prey system of mites (Hu�aker, 1958).
They could show, in accordance to the experiments, that at least one of the species should go
extinct after a few predator-prey cycles.
In a case study on a predator-prey system by means of an individual based simulation model,
Holyoak et al. (2000) tried to cope with the problem of handling the distribution of extinction
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times by considering the mean and 95% con�dence interval for both, predator and prey. They
found reasonable agreement with experimental results. In a theoretical study of spatial e�ects
on survival probability of predator and prey species Donalson & Nisbet (1999) found di�er-
ences in the tail of the distribution of extinction times. They therefore based their analysis
on a visual examination of the frequency distribution of extinction times.
Analysing population dynamics of the Maculinea model (ch. 1), we found eventual extinction
of the butter�y population (sec. 2.3.2). Assessing viability of Maculinea would be helpful to
analyse habitat suitability, as it is standard for single species systems. However, the studies of
Holyoak (2000) and Donalson & Nisbet (1999) show, that species interaction might introduce
patterns to the distribution of times to extinction, which are not known from simpler single
species systems. Hence, PVA methods for single species systems cannot be applied directly
to the host-parasite Maculinea system.
In this chapter, we aim to develop a suitable PVA method for interacting species systems by
enhancing a recently suggested unifying PVA-approach for single species systems. For this
purpose, we initially brie�y review this so called ln(1 � P0)-method for estimation of risk
to extinction from single species models (Wissel & Stöcker, 1991; Stephan, 1992; Stephan &
Wissel, 1994b; Wissel et al., 1994; Stelter et al., 1997; Frank et al., 2002; Grimm & Wissel,
2004). Then, we analytically enhance this method to a PVA approach for interacting species
systems. Finally we present two example studies: typical e�ects of interacting species systems
like strong cyclic �uctuations or mixing of stochastic and deterministic in�uences are analysed
by the PVA method.

3.2 PVA in single species systems

We �rst provide a brief introduction to evaluation of extinction processes in single species
systems. This will be the background for assessing population viability in interacting-species
systems, because many concepts can be transferred to the new situation. In our brief presen-
tation, we mainly summarise a recently published paper from Grimm & Wissel (2004), who
suggest a 'unifying approach to analysing persistence and viability of populations' (see also
Stelter & Grimm, 1994; Frank et al., 2002).

3.2.1 Theory

From a simple Markov model1, a formula for the probability that a population is extinct at
time t can be derived

P0(t) = 1� c1e
�

t
tm (3.1)

tm is interpreted as intrinsic mean time to extinction of the population, c1 is related to the
probability that the population does survive an initial transient phase (Keilson, 1979; Wissel
& Stöcker, 1991). An exact interpretation of both parameters follows below.
Stelter et al. (1997); Frank et al. (2002); Grimm & Wissel (2004) argue, that for most popula-
tion dynamical simulation models the negative exponential decline of distributions of times to
extinction (eq. 3.1) holds. That is, these models ful�ll Markov condition: they are processes

1Grimm & Wissel (2004) work with a Master equation of birth and death type for populations with over-
lapping generations (see also Leigh, 1981; Nisbet & Gurney, 1982). Stephan (1992) developed a corresponding
approach for non-overlapping generations (see also Ludwig, 1996)
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without memory. It is assumed, that a Markovian state can comprise many state variables of
the model like individual age, weight and size. To test this assumption, they give a protocol.

3.2.2 Protocol for PVA analysis

1. Perform many simulation runs with an appropriate population model without changing
initial conditions up to a maximum number of iterations (time horizon TH). From each
run, determine the number of iterations (generations) the population persists.

2. Count these times in a histogram (see �g. 3.1a). This is the frequency distribution of
times, when the population went extinct in the simulation experiment. Simulation runs
without extinction event are skipped. They can be seen in the �nal bar in the histogram
of �g. 3.1a.

3. Estimate the probability that a population goes extinct at time t. These are relative
frequencies of the histogram.

4. Build the cumulative probability distribution P0(t) by summing up the estimated prob-
abilities (see �g. 3.1b). P0(t) is the probability, that a population is extinct at time
t.

5. Transform the probability distribution P0(t) according to

� ln (1� P0(t)) = � ln (c1) +
t

tm
(3.2)

which is the logarithmic form of eq. 3.1. It allows a linear �t of distributions of extinction
times P0(t) calculated from simulation runs against time of extinction t (see �g. 3.1c).

6. Determine measures of persistence tm and c1 from the �t. (In the example tm = 1308gen
and c1 = 1:033 � for interpretation see caption of �g. 3.1.)

The estimated persistence measures describe probability distribution P0(t), if the �t is ac-
curate. In this case, the simulation model follows the assumption of Markov conditions and
can be estimated with the approach. Correlation coe�cient r2 can be used as a quantitative
measure for �t quality (Frank et al., 2002).
Grimm & Wissel (2004) cite several studies for di�erent ecological applications, where the
ln(1 � P0(t)) showed linear dependency on time. The approach is tested widely and is sug-
gested to be used for PVA in models, which are density regulated.

3.2.3 Description of measures of persistence

Here, measures of persistence tm and c1 are explained in greater detail. It is shown, how
they correspond to other measures for assessment of viability and persistence discussed in
literature.

3.2.3.1 Intrinsic mean time to extinction tm

Density-regulated single species systems have an established state. This is a quasi-stationary
probability distribution of population sizes (Darroch & Seneta, 1965; Nisbet & Gurney, 1982;
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(a) Histogram of extinction events at each generation
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(b) Cumulative probability of extinction P0(t)
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(c) � ln(1� P0(t))-plot
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Figure 3.1: Protocol of ln(1 � P0)-PVA method for an example metapopulation study of
one arti�cial type of species. Calculations are performed with a commercial software for
metapopulation viability analysis MetaX (Frank et al., 2002; Grimm et al., 2004). Graphs
show sequence of data transformations to calculate measures of persistence tm and c1. In
this example, tm = 1308gen, c1 = 1:03. Persistence measure c1 � 1 indicates that the
metapopulation system initially was in the established state. From the intrinsic mean time to
extinction tm the probability that the population goes extinct within 100 generations can be
estimated to P0(t = 100gen) � 0:08. In graph. (b) this estimation is con�rmed.
The PVA example is taken from tests on the software tool MetaX (unpublished data).
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Stephan, 1992; Wissel et al., 1994; Pollett, 1996). In a time-series of population sizes of a single
type of species, at each point of time,population size is realised according to this distribution.
Population sizes stochastically �uctuate around the most likely positive population size (see
e.g. Nisbet & Gurney, 1982, �g. 1.4). There is no trend of a deterministic long-term change
in population size.
However, the probability distribution of population sizes is not completely stationary in time.
This is due to the fact that an extinct population cannot recover without external help from
immigrating individuals. Extinction (that is a population size of 0) is an absorbing state for
closed populations.
It is shown that density-regulated populations have a non-zero probability to go extinct (Nis-
bet & Gurney, 1982; Wissel et al., 1994, e.g.). However, in many cases, extinction is a rare
event. For this reason, the probability that a population is extinct P0(t) increases slowly in
time (see �g. 3.1b).
In the following, the probability that a population goes extinct at time t is called extinction
rate p(t). If a population is in the established state, extinction occurs with a constant prob-
ability per time (i.e. p(t) = p = const). In this case, the intrinsic mean time to extinction
tm = 1

p
. Therefore, tm is related to risk of extinction of a population in the established state

(Grimm & Wissel, 2004, and references therein). High values of intrinsic mean time to extinc-
tion tm indicate low risk of extinction of a population in the established state.

3.2.3.2 Estimation of the probability to reach the established state - Persistence
measure c1

For di�erent reasons a population might not be established (e.g. after a severe decline of
population sizes due to a catastrophe or after colonisation of a new site Wissel et al. (1994)).
During the following time, the population tends towards establishment or extinction. During
this transient phase, distribution of population sizes changes quickly (Nisbet & Gurney, 1982,
�g. 6.1a).
The question is, if the population reaches the established state before going extinct. The

probability for a population to reach the established state can be calculated as c1 �e
�
Tini
tm , where

Tini is the time a population takes to reach establishment (Grimm & Wissel, 2004). Time Tini
is di�cult to be obtained from simulation data. But assuming Tini � tm, which should be
the normal case for an application of the approach, the probability2 can be approximated by
c1.
Values for c1 are positive. A value close to 0 indicates that a population has a low chance to
reach the established state. The risk of extinction during the initial transient state is high. If
c1 � 1, the population is already established in its initial state. Therefore, there is no change
in extinction rate. c1 assumes values higher than 1 when the extinction risk during the initial
transient phase is lower than during the established phase.

3.2.4 Assessment of viability

The general measure for PVA analysis is to determine the probability that a population has
gone extinct after a certain time horizon P0(t = th). Length of this time horizon th as well
as critical levels for the probability of extinction are discussed in literature (see Grimm &

2c1 can take values above 1. In this case, the probability should be approximated by 1
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Wissel, 2004, and references therein). The intrinsic mean time to extinction tm is related to
P0(t) according to equation 3.1. Under conditions of c1 � 1 and P0(th)� 1, which normally
is the interesting case, P0(th) =

th
tm
. Grimm & Wissel (2004) suggest the intrinsic mean time

to extinction tm as a general currency to measure viability.

3.2.5 Summary of the ln(1� P0(t))-method

The method has several advantages to other PVA measures. Because of exploiting a general
mathematical relation, parameters can be estimated highly accurately from simulation data.
The linear �t allows assessment to what extent the approach can be used with the model.
Deviations from the linear �t can be analysed to gain insight in the reasons for the unex-
pected pattern in the distribution of times to extinction. Very helpful is that the complete
distribution of times to extinction can be described by only two parameters c1 and tm. These
parameters give access to two crucial but di�erent processes of extinction in single species
systems: extinction during the initial transient phase and during the established phase.

3.3 Development of the multi-species PVA method

To develop a PVA method for multi-species systems, we enhance the single species approach
presented in sec. 3.2. The reason, why this approach is powerful to analyse single species,
lies in the Markov structure of the system (sec. 3.2.1 and the resulting slow decay of the
quasi-stationary distribution of population sizes (sec. 3.2.3.1). It is already mentioned that
distributions of population sizes do not show quasi-stationary states for the Macu model.
Instead, the distribution of population sizes oscillates (sec. 2.4.1.2).
In the following, in a short review on literature, we show that the behaviour of the Macu model
is typical for predator-prey systems. We summarise characteristics of the phenomenology of
predator-prey systems in three observations. From these observations the most general model
is build that describes the cyclic properties of interacting species systems. Based on this
model we analytically derive the distribution of times to extinction of populations with an
oscillating number of individuals. This distribution of extinction times is analysed according
to the protocol for PVA on single species in sec. 3.2.2.

3.3.1 Overview on behaviour of oscillating populations

It is di�cult to observe population cycles in the �eld, because long time series of observations
during decades are necessary. However, from analysing observations on three sites during 13
years Hondo (2003) assumes to have found predator-prey cycles in the system of mulberry
tiger moth (Thanatarctia imparilis) and its carabid predator Parena perforata. He shows that
on two of the three sites both species are closely related.
In experimental studies on predator-prey systems quasi-cyclic structure of population dynam-
ics is observed. Begon et al. (1996) �nd that introducing a third interacting species into a two
species system changes periodicity of the cycles. However, cycles still are observed. Bjornstad
et al. (2001) show that di�erences in time series of a single type of species re�ect strength
of coupling to other species. Kendall et al. (1999) review several time series of cycling pop-
ulations. They suggest a synthesis of statistical and mechanistic models, to reveal reasons
for cyclic behaviour. In all of these studies time series of population sizes are presented, in
which cycles can be observed. These cycles seem to be disturbed by stochastic processes. The
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studies show that system traits can be revealed from the information of single time series.
Holyoak et al. (2000) compare results of an experimental study with predictions from an
individual-based population model. They �nd good coincidence, especially when adding
stochasticity to the model. Stochastic e�ects noticeably reduce persistence of prey and preda-
tor.
Much insight on oscillating population dynamics is gained from theoretical studies. Nisbet &
Gurney (1982, ch. 7.2) give an example for statistical properties of a birth and death process
with an externally oscillating factor. They indicate that these oscillations can be observed
when averaging time series of population sizes calculated from many simulation runs as well as
in the temporal course of a single simulation run. Stephan & Wissel (1994a, 1999) analyse a
stochastic resource-consumer system, where birth and death processes of the resource undergo
random �uctuations. The underlying deterministic population model shows limit cycles. Re-
sulting, they �nd gross �uctuations of population sizes due to deterministic variation and small
stochastically induced �uctuations (Stephan & Wissel, 1994a, �g. 4). Studying a model with
time-delay in density-dependence, Kaitala et al. (1996) show that random disturbance might
induce sustained oscillations, which can be observed directly in population size as well as in
autocorrelation diagrams (Kaitala et al., 1996, �g. 1). They argue that observed oscillations
coincide surprisingly well with observed long-term dynamics of Finnish grouse populations
(Kaitala et al., 1996, and references therein). Wilson & Hassell (1997) investigate a stochastic
predator-prey metapopulation model and �nd that stochastic �uctuations at small levels of
population sizes are ampli�ed by the dynamics. They observe an initial transient state in their
model, but do not closer analyse it. Hastings (2001) outlines that transient dynamics in a
deterministic coupled species system can enhance persistence of the species. Therefore impor-
tance of initial transient dynamics should not be underestimated. Ives et al. (2000) analyse the
e�ect of periodic mortality events in predator-prey systems. In the deterministic model several
stable cycles and transient dynamics are found for predator and prey population sizes. When
stochasticity is introduced, these phenomena in�uence variance of population sizes, because
random e�ects might induce switching between stable cycles or alter the transient dynamics.
Spagnolo et al. (2003) investigated e�ects of increasing sinusoidally modulated external noise
intensity to dynamics of a Lotka-Volterra system. For low intensity of noise both species
coexist. Increasing noise, quasi-deterministic oscillations occur. For high noise intensity, they
detect stochastic resonance (but in this state, one of the two species goes extinct immediately
Spagnolo et al. (2003, �g. 2b)).
For the Maculinea system, Hochberg et al. (1994) with the HCET model �nd an initial out-
break of the butter�y population, which afterwards quickly stabilises due to damping of �uc-
tuations (see sec. 2.4.2). However, with the Macu model (see ch. 1), several types of initial
behaviour and afterwards an oscillating Maculinea population is observed (see ch. 2). Popu-
lation dynamics of the Macu model comprises most of the behaviour which is described in
literature.
Summarising the literature survey, population dynamics show periodic oscillations, which are
stochastically disturbed. E�ects of stochasticity are not strong enough to destroy the cyclic
pattern (but see Spagnolo et al., 2003). However, demographic stochasticity is mentioned to
be the reason for extinction in this systems (Nisbet & Gurney, 1982; Stephan & Wissel, 1994a,
1999; Holyoak et al., 2000; Hastings, 2001). Stephan & Wissel (1994a); Holyoak et al. (2000)
point out that risk of extinction is enhanced, when � due to the population cycle � population
size is small. The phenomenona observed in cyclic population dynamics can be condensed by
the following statements:
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(O1) After an initial time Tini, stochastic distribution of population sizes for several simula-
tions shows almost stable periodical oscillations3 in time (e.g. see ch. 2). These might
for a predator-prey-system result from intrinsic population dynamical cycles or can be
driven by an external factor like seasonality. The observation (O1) transfers the concept
of a quasi-stationary distribution of population sizes for single species systems 3.2.3 to
interacting species systems. Note, that here the probability distribution of population
sizes is not quasi-stationary, but changes periodically.

(O2) Reason for extinction of populations in such systems is stochasticity, because deter-
ministically driven extinction events would not allow to build up the cycling population
dynamics.

(O3) Probability p(t) that a population which survived for time t � 1 goes extinct at time
t (actual rate of extinction) does only implicitly depend on time t. Explicitly it is
determined by the distribution of population sizes of the population N(t) at time t.
Therefore p(t) = p(N(t)).

3.3.2 Analytical development of the PVA method

According to observations (O1) and (O2) we formulate the general model for population
dynamics showing cyclic behaviour.

N(t) =

(
N(t) ; t � Tini

N(Tini + ((t� Tini) mod TP )) ; t > Tini
(3.3)

N(t) denotes the stochastic distribution of population sizes. The upper line in eqn. 3.3 de-
scribes the initial transient state of the system before establishment (ch. 3.2). For the initial
state, we do not have information about the temporal development of the distribution of
population sizes. Hence, we use the most general distribution.
It is assumed that after time Tini the system reaches its established state (O1). This state is
described by the lower line in eqn. 3.3 - a deterministically oscillating distribution of popu-
lation sizes. TP is periodic time of cycles. mod denominates the modulo-division. For the
model, we assume separate generations as often occur in e.g. insect populations. Anyhow,
with slight modi�cations our approach is applicable to systems with mixed generations, too
(Nisbet & Gurney, 1982, p. 234).
According to observations (O2) and (O3), we determine the rate of extinction p(t) (i.e. prob-
ability that a population, which has survived for the time t� 1, goes extinct at time t) from
equation 3.3. Periodic structure of N(t) is transmitted to probability p(t). This is due to
observation (O3), which couples p(t) to the distribution of population sizes N(t).

p(t) = p(N(t)) =

(
p(t) ; t � Tini

p(Tini + ((t� Tini) mod TP )) ; t > Tini
(3.4)

Now we are able to calculate distribution of times to extinction for the general model in
eqn. 3.3. The probability, that a population goes extinct exactly at time t, is the probability,

3Fath et al. (2003) point out, that a stationary distribution of population sizes can be considered as a
degraded cycling distribution
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that it has survived until time t � 1 and goes extinct at time t: p(t) �
t�1Q
i=1

(1 � p(i)), whereQ
denotes a product. Hence, by summing up these values for all times t, we receive the

probability P0(t) that a population is extinct at time t.

P0(t) =
tP

j=1

h
p(t) �

j�1Q
i=1

(1� p(i))
i

= 1�
tQ

j=1
(1� p(j))

(3.5)

For single species systems, when a population is in the established state, p(t) is assumed to
be constant4. Formalism for Markov processes can be applied. A linear relation between
transformation � ln(1 � P0(t)) and time t (sec. 3.2) can easily be shown (Stephan & Wissel,
1994b; Wissel et al., 1994).
In the case regarded here, periodic structure in p(t) (eqn. 3.4) leads to a more complex mathe-
matical form. But, it can be shown that for long time scales the � ln(1�P0(t)) transformation
leads to a linear dependency, too. For the calculation, a separation of time scales is introduced
according to natural scales Tini and TP in model eqn. 3.3:

t = Tini + l � TP + i (3.6)

where like before Tini is the time, the system takes to reach the established state and TP
denotes duration of one cycle. l is the number of cycles, the system has completed until time
t. i indicates the remaining time steps after the last completed cycle. Applying separation of
time scales (eqn. 3.6) leads to

P0(t) = 1�

(
TiniQ
j=1

(1� p(j)) �
tQ

j=Tini+1
(1� p(j))

)

= 1�

(
TiniQ
j=1

�

Tini+TPY
j=Tini+1

�

Tini+2TPY
j=Tini+TP+1

� � � � �

Tini+lTPY
j=Tini+(l�1)TP+1| {z }

all products are equal because of periodicity

�
tQ

j=Tini+lTP+1

)

= 1�

(
TiniQ
j=1

(1� p(j)) �
h Tini+TPQ
j=Tini+1

(1� p(j))
il
�

tQ
j=Tini+lTP+1

(1� p(j))

)
(3.7)

To save space and present the equation more clearly, some products are only symbolised

by
Q

and their limits (that is
bQ

j=a
�

bQ
j=a

(1� p(j))).

Performing transformation, � ln(1� P0) we receive

� ln (1� P0(t)) = � ln

 
T iniQ
j=1

�
h Tini+TPQ
j=Tini+1

il
�

tQ
j=Tini+lTP+1

!

= �l � ln
� Tini+TPQ
j=Tini+1

�
� ln

�T iniQ
j=1

�
tQ

j=Tini+lTP+1

� (3.8)

4This is the discrete form of eqn. 3.1 for non-overlapping generations. It describes a binomial instead of a
negative exponential distribution of times to extinction.
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The last line of eqn. 3.8 separates into two terms. The �rst part is linear in l. The product
in this term represents the probability, that the population survives one cycle. It is equal
for each cycle, thus independent of time on a long time scale. Hence, this part of eqn. 3.8 is
linear in time on the long run. Contributions of the nonlinear second term are under general
conditions of t � Tini and t � TP small in comparison to the linear part. These conditions
are ful�lled, when we ask for long time survival of populations.
This explains, why the standard ln(1 � P0(t))-PVA method suggested by Grimm & Wissel
(2004, and references therein) can be applied to more complex stochastic systems with a
cyclic �uctuating probability distribution of population sizes. On a short time scale (t < TP ),
extinction of a population is driven by deterministic cycles of the system. But on the long run,
these short time �uctuations accumulate to a total value for a cycle. This value is constant
in time (see Nisbet & Gurney, 1982, who perform analysis for a periodically disturbed single
species system).
In our analysis, although we aim to describe systems of interacting species, we have restricted
to the distribution of population sizes N(t) of one single species. This would be one focused
species of a system of interacting species. We now argue, that this result is valid also for the
entire system. Without further assumptions, we can interpret N(t) as the distribution of states
of the interacting species systems (which of course might be very complex multi-dimensional
objects). These states then cyclically oscillate with a period time of TP . On the time scale
of completed cycles (TP is the naturally shortest time scale), the stochastic process ful�lls
Markov condition. Time of memory in the process is shorter than TP . Hence, the distribution
of extinction times on long time scales follows a Markov process, as it is well known from
single species systems (Goel & Richter-Dyn, 1974; Grimm & Wissel, 2004; Lande et al., 2003).
The PVA protocol in ch. 3.2.2 can be applied to very general interacting species systems. To
analytically derive measures of persistence tm and c1 under conditions of deterministic cycles
in a distribution of population sizes, the Gaussian mean square �t for eqn. 3.8 is calculated in
the limit of an in�nite time horizon TH (see appendix A.1). The formulae for the measures of
persistence are

tm = �
TP

ln
nTini+TPQ
i=Tini+1

(1� p(i))
o

c1 =
hTiniQ
i=1

(1� p(i))
i
�
hTini+TPQ
i=Tini+1

(1� p(i))
i 1+TP

2TP �
hTini+TPQ
i=Tini+1

(1� p(i))
�

i
TP

i
=

hTiniQ
i=1

(1� p(i))
i
�
hTini+TPQ
i=Tini+1

(1� p(i))
TP�2i+1

2TP

i
(3.9)

The intrinsic mean time to extinction tm is the negative reciprocal arithmetic mean over
one cycle of the natural logarithm of the probability that the population survives at time t.
This is an averaged measure for the probability, that populations in the system survive during
one cycle. From a corresponding result for a single species system with periodic perturbations
Nisbet & Gurney (1982) argued that mean time to extinction can be calculated already from
one cycle. This statement holds for the calculation of the intrinsic mean time to extinction
tm in systems of interacting species.
The formula for the persistence measure c1 is composed of two parts. The �rst describes
survival probability during the initial phase, the second is a weighted geometrical mean of
the survival probability during the �rst cycle. Due to weighting, high extinction risk at the
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Table 3.1: Limit approximations for PVA-parameters tm and c1 for extremes in risk of
extinction

established state persistence established state extinction

(
TPQ
! 1) (

TPQ
! 0)

transient state persistence tm !1, c1 ! 1 tm ! 0, c1 ! 0 _ c1 !1

(
TiniQ

! 1)
transient state extinction tm !1, c1 ! 0 tm ! 0, c1 ! �1

(
TiniQ

! 0)

TPQ
! 0: in�nitely high risk of extinction during the established phase

TPQ
! 1: no risk of extinction during the established phase

TiniQ
! 0: in�nitely high risk of extinction during the initial phase

TPQ
! 1: no risk of extinction during the initial phase.

beginning of the cycle decreases c1 stronger than at the end. Grimm & Wissel (2004) in-
terpreted c1 as an index for the probability that a population reaches its established state,
provided Tini � tm (see sec. 3.2.3.2). In context of interacting species, initial transient phase
is extended to the �rst cycle. This is not surprising, as cyclic behaviour is of course transient.
Only on the long run (that is taking into account many cycles), stationarity of periodicity can
be perceived.

3.3.3 Extrapolation for the ln(1� P0)-PVA-method

In this section we analyse behaviour of PVA-parameters for extremes in risk of extinction.
Extremes mean that either the risk of extinction is extremely high (probability of survival
tQ
! 0) or extremely low (probability of survival

TPQ
! 1). Extremes in risk of extinction are

analysed for the initial and the established state. Table 3.1 shows results from extrapolations
of persistence measures tm and c1 for all four combinations of extremes in risk of extinction.
The upper left entry refers to the case of a persisting population. In this case, c1 ! 1
and tm ! 1. These approximations are in accordance with the expectation we have for
the persisting populations. Going to the lower left entry of tab. 3.1, extinction risk during
the initial transient phase is extremely high. In the approximation c1 ! 0. In such cases,
populations have a very small chance to survive longer than the initial phase. But a population,
which overcomes the high risk of extinction during the initial phase, will persist on the long
run. Hence, in this case populations undergo an initial bottleneck (for single species see e.g.
Ludwig, 1996). For the Maculinea model, this e�ect is found frequently (see ch. 4.5.2.2).
Right entries of tab. 3.1 refer to habitat conditions which are insu�cient to sustain a population
during the established phase. Correctly tm ! 0 indicates that a population cannot survive
any time during the established phase. In such cases, immediate habitat management must
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be established in order to save endangered populations. Here, a change of initial conditions
does not reduce the substantial problem, hence we ignore them. Qualitatively values of c1 can
be interpreted taking into account eqn. 3.13 which is discussed in sec. 3.4.1.
This analysis of extreme values for risk of extinction reveals an important result. Although
mathematical conditions of the ln(1 � P0)-approach are violated and actual extinction rate
p(t) does not follow a binomial distribution on a long time scale, the behaviour of persistence
measures tm and c1 qualitatively follows our expectation. Behaviour of tm and c1 is robust
approaching borders of applicability of the ln(1�P0)-method. Hence for simulation studies we
hypothesise: extremely high values of tm should correctly indicate persistence and extremely
low values of c1 can be interpreted as high risk of extinction during the initial phase. In ch. 4
these assumptions are tested for the Maculinea model.

3.4 Application of ln(1� P0) to di�erent systems

It is analytically shown in eqn. 3.7 that ln(1 � P0(t)) is proportional to the time t, for the
general model of oscillating population sizes (eqn. 3.3). By applying eqn. 3.2, Measures of
persistence c1 and tm are estimated, according to the PVA protocol for single species systems
in sec. 3.2.2. Hence, it is demonstrated that the PVA protocol suggested by Stelter et al.
(1997); Frank et al. (2002); Grimm & Wissel (2004) can be applied to the general description
of species systems with oscillating population sizes.
In this section, we show applicability of the protocol for models of di�erent complexity in
population dynamics. We analyse general behaviour of PVA parameters intrinsic mean time
to extinction tm and c1 in context of multi-species systems, check for enhancements and fathom
robustness of the approach.

3.4.1 In�uences of system characteristics on measures of persistence
� a sinus model

3.4.1.1 Description of the sinus model

We construct a model for the phenomenological description of a population with a sinusoidally
�uctuating distribution of population sizes. Mean level of population size follows the deter-
ministic equation

N(t) =

(
Nini ; t � Tini

a � sin(2�
Tp
t� ') + n0 ; t > Tini

(3.10)

The six parameters are interpreted in the following way: Nini is a constant population size for
the initial phase, Tini is duration of the initial phase. In the established phase, a is amplitude,
TP is period length, ' is phase shift and n0 is an all time average population size. Amplitude
a is stochastically disturbed according to

a = amax + 2ar(p(t)� 1) (3.11)

where amax describes the deterministic part of the amplitude and ar denotes the strength of
noise. Random numbers p(t) are uniformly distributed (p(t) 2 [0; 1) ). The population goes
extinct, when its number of individuals drops to zero or below.
We have chosen this extremely oversimpli�ed model for two reasons. First, it is easy to handle,
because parameters in the sinus model and their e�ects are well-known. Hence, their in�uence
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on the measures of persistence tm and c1 can be interpreted easily. Parameter variation in the
sinus model gives an impression, how di�erent cyclic population dynamics express in di�erent
values of the persistence measures. Second, actual rate of extinction p(t) can be calculated
explicitly by solving inequation N(t) � 0.

p(t) =

8>>>>>>>><
>>>>>>>>:

pini ; t � Tini

min
n
1;max

h
0; 1� 1

2ar

�
amax +

n0
sin( 2�

TP
t�')

�io
; (t > Tini) ^ (sin( 2�

TP
t� ') > 0)

min
n
1;max

h
0; 1

2ar

�
amax +

n0
sin( 2�

TP
t�')

�io
; (t > Tini) ^ (sin( 2�

TP
t� ') < 0)

0 ; (t > Tini) ^ (sin( 2�
TP
t� ') = 0)

(3.12)
Hence, measures of persistence can be calculated numerically from eqn. 3.9. By comparison

of analytical and simulation results, accuracy of the parameter estimation from the protocol
(described in sec. 3.2.2) can be assessed.

3.4.1.2 Population and extinction dynamics of the sinus model

For simulations we used a standard parameter set presented in table 3.2. The maximum
amplitude amax is bigger than the deterministic mean population size n0. Hence, the de-
terministic model always goes extinct. In contrast, the stochastic model only goes extinct
with a certain probability p(t) (see eqn. 3.12). The parameter pini is chosen to be constant:
pini = p(Nini) = 0:005.
Fig. 3.2 shows three realisations calculated with the stochastic simulation model for the set
of standard parameters. The resulting histogram of times to extinction and the corresponding
ln(1�P0)-plot for 50000 runs can be seen in �g. 3.3. Looking at the time series of population
sizes, deterministic and stochastic �uctuations can be clearly distinguished. They reproduce in
sharp peaks of extinction events (�g. 3.3a) and in a stair-structure around the �t line (�g. 3.3b).
From the �t, we deduce mean time to extinction tm = 349gen and c1 = 1:0437. The �t has
an accuracy of r2 = 0:9975, which means perfect applicability of the PVA-approach.
On the one hand, we �nd that the �t method suggested in the protocol (sec. 3.2.2) can be ap-
plied and results in high accuracy. On the other hand, an unexpected pattern is observed. In
contrast to the single species case (�g. 3.1c), where data points in the ln(1�P0)-plot arrange
in a straight line, we �nd a stair-structure in the case of the sinus model. As well, histograms
of extinction events are di�erent in the single species and the sinus model cases. Instead of a
stochastically disturbed decline in the frequency of extinction events with time (see �g. 3.1a),
we �nd regularly ordered single peaks with high frequency of extinction events (�g. 3.3a).

Table 3.2: Standard parameter set for sinus model with stochastic variation of amplitude.

Established phase Transient phase
amax 30 Tini 0
ar 10 pini 0:005
TP 80
' 0
c 29
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Figure 3.2: Sinus model: population sizes of three independent example simulation runs (solid,
dotted and dashed lines). Simulations are performed with parameters in tab. 3.2

Between two extinction peaks, surprisingly populations do not go extinct. Amplitude of the
peaks however declines in the same form as in the single species case.
With help of eqn. 3.7 for the probability P0(t) of a population to be extinct at time t, the
observed pattern can be explained. The last line of eqn. 3.7 contains three terms. The �rst
term accounts for e�ects during the initial phase of population dynamics. It can be ignored,
because Tini = 0 (see tab. 3.2). The second term contains an aggregated probability that
the population survives during l full cycles. This term transforms to the linear relationship
between ln(1 � P0) and l in eqn. 3.8. As remarked in sec. 3.3.2, the linear relation is an
approximation for long times. It is only valid, when the third factor in eqn. 3.7 on the long
run becomes small in comparison to the second factor. For this reason, we �nd the linear �t
in �g. 3.3b to be highly accurate. It is valid for long time scales.
However, to explain the stairs (�g. 3.3b) and peaks (�g. 3.3a), we must turn to a shorter time
scale � to a time scale shorter than the period TP of one cycle. The last product in the equa-

tion
tQ

j=Tini+l�TP+1

(1 � p(j)) aggregates the rate of extinct during the last uncompleted cycle.

If up to time t in the last cycle, actual rate of extinction p(t) � 0, the product evaluates to
1. P0(t) does not change from one time step to the next. So, while population sizes are high,
no extinction event occurs. The ln(1 � P0)-plot produces a straight line. Only during times
when extinction is possible, the values of ln(1� P0) change. tm averages over the duration of
one cycle. Therefore, the �t line intersects steps in �g. 3.3b.
Hence, the observed short-term patterns in extinction dynamics of the sinus model result from
cyclic variation of population size. Only, when population size is small, the risk of extinction is
high. This corresponds to observation (O3) in sec. 3.3.1 and to �ndings in systems of interact-
ing species (Stephan & Wissel, 1994a; Holyoak et al., 2000) or systems with seasonally driven
population dynamics (Stephan (1992); Stelter and Grimm, pers. comm.). When analysing the
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Figure 3.3: Sinus model: Distribution of times to extinction and ln(1 � P0)-PVA-plot. In
graph (a) spikes are found at times of increased risk of extinction. In graph (b) these spikes
transform to a step structure around the �t line. Inaccuracies for large generation numbers
result from the low number of extinction events (compare graph (a)). Simulation is performed
with parameters in tab. 3.2
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Figure 3.4: Sinus model: Measures of persistence c1 (graph (a)) and tm (graph(b)) for di�erent
values of mean population size n0. Dots indicate simulated values, lines numeric calculation.

Macu model, the histogram of times to extinction shows peaks. However, they are broadened
(see ch. 4).

3.4.1.3 Parameter variation experiments

Parameter variation of the sinus-model is calculated both analytically and in simulations with
software Mathematica (Wolfram, 1988). We expect small di�erences in results, because in con-
trast to the analytical formulas (eqn. 3.9), which are developed for an in�nite time horizon TH
(appendix A.1), simulation studies only can be performed for a �nite time horizon TH (maxi-
mal simulation time within one run). Surprisingly, in all experiments, we �nd good agreement
of results (see e.g. �g. 3.4). This shows that a time horizon of TH = 1000 generations for
a simulation run, is enough to calculate the parameters in the sinus model with su�cient
accuracy. This is an important information for studies of systems, where an analytical solu-
tion is not accessible. Our general experience is that simulation models for a reasonable time
horizon TH provide measures of persistence with reasonable accuracy (see ch. 4 for qualitative
reasons; ch. 5 and ch. 6 for an estimation of accuracy for persistence measures calculated from
the Maculinea model).
In the following, results of the parameter variation are summarised. There are only two pa-
rameters n0 and ar, which show a strong in�uence on mean time to extinction tm. Results of
variation of mean population size n0 can be seen in �g. 3.4b. There is a threshold behaviour
in tm. Below n0 = 28, populations die out almost immediately. A population is endangered
severely during a long time in each cycle. For very small values of n0, a population almost
surely dies within the �rst cycle. But, when n0 > 28, mean time to extinction tm increases
extremely. The model is very sensitive to mean population size n0. n0 must be seen as the
crucial factor in the PVA. This is not surprising as n0 in�uences the probability to survive in a
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double sense. First, it regulates the actual rate of extinction p(t). Second, it has an in�uence
on the period of time during which the population size is low and the population is prone to
extinction (a result of the nonlinear min function in eqn. 3.12). As we know from eqn. 3.9,
the intrinsic mean time to extinction tm is determined by a mean value of extinction risk for
the whole cycle. Hence extinction risk at all times during the cycle accumulates. Decreasing
n0 a�ects this accumulated value extremely.
Model parameter ar describes the amount of stochastic temporal variance in population sizes
(variance �2(a(t)) = 1

3ar). In a �rst experiment, maximum amplitude is �xed to 30. With
increasing ar, the mean amplitude is decreasing (a(t) = amax(t)�ar(t); see eqn. 3.11). Hence,
frequency of large amplitudes in the stochastic process is decreased with increasing ar. Only
these extreme values lead to extinction at times, when the sinus function is in vicinity of its
minimum. This explains the increase of mean time to extinction tm with increasing parame-
ter ar. But, there is one exception: for ar = amax = 30, tm drops to only half the value as
for ar = 29. This jump is surprising, but for such high variance, even when the sinus func-
tion reaches its maximum, extinction is possible. Here, this result seems to be an artefact.
However, increasing variance in population size, while keeping the maximum constant, also in
natural systems might lead to a sudden drop in times to extinction. In the second experiment,
we keep the mean value of amplitude a constant (a = 29), while only the stochastic variance
is changed. In that case tm is decreasing with increasing variance. Extinction risk of a popu-
lation is higher, because small population sizes can be reached. Our �nding corresponds to
observations for single species systems; an increase in environmental stochasticity increases
extinction risk (e.g. Ludwig, 1996). Stephan &Wissel (1999) show that in a resource-consumer
system, environmental stochasticity increases extinction risk but the e�ect of internal cycles is
di�erent. Dimentberg (2002) shows that the number of consumers in damped Lotka-Volterra
systems stays at low levels for long times, when environmental stochasticity is high.
For the other parameters, only small in�uences on tm can be detected. These result from the
discrete model structure and can be considered as artefacts. For period length TP , this �nding
is surprising. It means for long term behaviour of the sinus-model that duration of phases
with low numbers of individuals (high risk of extinction) is perfectly balanced by phases with
su�cient numbers of individuals5. Wichmann et al. (2003) analyse in�uence of periodically
oscillating environmental conditions on persistence of the tawny eagle in South Africa. In this
more realistic model they �nd strong dependency of persistence on the duration of a period.
In contrast to the few parameters, which in�uence intrinsic mean time to extinction tm, per-
sistence measure c1 is a�ected by all model parameters. As mentioned in ch. 3.3, extinction
risk during an initial phase of the population dynamics should in�uence c1. Hence, we �rst
focus on parameters connected directly to this initial transient phase. Tini and pini describe
the transient state. If risk of extinction during the initial phase pini is higher than risk during
the established state then c1 < 1 and vice versa. Longer Tini enhances the e�ect. This cor-
responds to eqn. 3.9 where initial extinction risk enters as a product over duration of initial
phase Tini.
An increase of parameter ' shortens initial time of no extinction risk within the �rst cycle.
This leads to a decrease in c1. According to the interpretation of formula 3.9 in sec. 3.3, c1
accounts for temporal distribution of extinction risk within a cycle. Low extinction risk at the

5(Singer, unpublished) analysed a model consisting of only two mean levels of population sizes. For this
model, intrinsic mean time to extinction tm depends on the ratio of time, the system stays in one of the two
levels.
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beginning of a cycle increases c1.
When increasing duration of a period TP in the sinus model, an increase in c1 is observed.
This can be explained by the extension of the time with low risk of extinction during the early
stage of the �rst cycle.
Anyhow, it must be taken into account that in each experiment, a single parameter was varied.
According to eqn. 3.9 for c1 and eqn. 3.12 interactions between parameters can be expected.
Having in mind the interpretation of c1 from single species systems (sec. 3.2.3), it can be
assumed that a total risk of extinction prior to �rst extinction in the established phase can
be seen as risk of extinction during the transient phase. c1 is determined by the ratio of this
initial extinction risk and the risk of extinction during the established state.
A strong in�uence on c1 is found for variation of n0 or ar In �g. 3.4a exemplarily variation of
n0 is depicted. Results from simulation as well as results from the analytic calculations show
a strong decline of c1 from values far greater than 1 down to 1 with increasing value of n0.
Note, both parameters n0 or ar determine population dynamics during the established state
of the system. However, intuitively, they are not supposed to a�ect the initial transient phase.
Can c1 be used as an indicator for extinction risk during the transient state anyhow? The
answer is yes. E�ects of n0 and ra can be explained, when the formula for c1 in eqn. 3.9 is
transformed slightly, by inserting the formula for tm

c1 = [

TiniY
i=1

(1� p(i))] � [

Tini+TPY
i=Tini+1

(1� p(i))
�

i
TP ] � e�

TP+1

2tm (3.13)

Here, the �rst product in eqn. 3.13 describes the in�uence of the initial phase. To the second
product mainly the phase shift ' contributes. But, via the exponential function in the last
term, changes of parameters determining risk of extinction during the established state in�u-
ence c1 exponentially, too.
Now, notice that for TP � tm the exponent approaches almost unity. Hence, in ecologically
reasonable situations, when intrinsic mean time to extinction tm is su�ciently long, transient
state and established state are evaluated independently by c1 and tm. This can be observed
in �g. 3.4. For n0 > 29, tm increases tremendously meanwhile c1 is almost not in�uenced.
In contrast, for low values of n0, tm � 0. In this case, the ln(1�P0)-approach is used beyond
its range of applicability. Correlation coe�cient r2 � 1, which indicates di�culties with the
method. Anyhow, as explained in sec. 3.3.3, measures of persistence tm and c1 qualitatively
tend to the right direction. Indeed, c1 should assume values above 1, because the risk of ex-
tinction during the initial phase is much lower than afterwards, when populations immediately
go extinct.
In �g. 3.4a simulation results (circles) deviate from analytic calculations (line) for low values
of n0. Simulation results are evaluated inaccurately, because the data is not appropriate for
the ln(1 � P0)-approach. The exponent in eqn. 3.13 assumes large values because of an esti-
mated value of tm � 0. Small errors in calculations of tm provoke high variation in c1. Hence,
inaccuracy in values of c1 has to be expected, when estimated values of tm are low.
It is possible to explain errors in the c1 estimation, because initial phase and established phase
are separated arti�cially in the simple sinus model. Hence, parameters n0 and ra can be at-
tributed to the established phase. Observing in�uence on c1 for example in �g. 3.4a motivates
a thorough analysis and reveales technical reasons for c1 variation and inaccuracy. It becomes
clear that inaccuracy has to be expected, when extrapolating PVA parameters for high risk of
extinction. In complex simulation models, the impact of parameters is not previously clear.
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A parameter a�ecting both tm and c1 must be seen as acting on initial and established state.
It would be much more di�cult to reveal an artefact. In ch. 4 PVA analysis of the Maculinea
model in certain cases results in low values of tm and high values of c1. Referring to �ndings
with the simple sinus model, we immediately conclude that c1 values might be incorrect. In
this case, the simple model helps to understand results of the complex one. It protects from
misinterpretation.

3.4.2 Stochastic variations in�uence deterministic periodicity � a predator-
prey model

We use a mathematical predator-prey model (eqn. 3.14), which is similar to a Lotka-Volterra
system but includes density dependence for the prey. Interaction between species is formulated
as laissez-faire-predation (see e.g. Wissel, 1989). The discretised equations for non-overlapping
generations of the deterministic model are

Nt+1 = Nt �
h
1 + r

�
1�Nt

K

�i
� V (Nt)Pt

Pt+1 = Pt �
h
wV (Nt)

i
V (Nt) =

(
aNt ; aNt < Vmax

Vmax ; else

(3.14)

Nt and Pt represent the size of prey and predator population respectively. Values of Nt

and Pt are continuous; we do not account for demographic e�ects of single individuals. In the
model a population goes extinct, when population size is 0. A simulation run ends, when the
�rst population is extinct. This simple mathematical model includes only 5 parameters. r
describes growth rate of the prey population, K is its capacity, w regulates predator repro-
duction, coupling is determined by a and Vmax, where a is the coupling strength (0 � a < 1)
and Vmax de�nes the maximal impact of the predator species on its prey. Parameter values
are given in tab. 3.3.
In contrast to the sinus model (sec. 3.4.1) which only describes phenomenologically the deter-
ministically induced oscillations in the system, the predator-prey model can be used to study
interaction between species. Parameter variation of the model shows many kinds of quali-
tatively di�erent behaviour, reaching from stable equilibrium states via limit cycles toward
chaos (data not shown here). Hence, this model is an appropriate example to check, if the
PVA method can be applied to stochastic models of interacting species.
We introduce stochasticity to coupling parameter a via

a! a� ar + 2arp(t)

where the new stochastically in�uenced parameter a varies by �ar around its original value.
p(t) are uniformly distributed random numbers between 0 and 1. Stochasticity in a can be

Table 3.3: Standard parameter set of the deterministic predator-prey model
r 0:5 a 0:02
K 120 Vmax 3
w 1
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Figure 3.5: Predator-prey model: population size of predator P and prey N for example sim-
ulation runs with standard parameter set (tab. 3.3). Graph (a): without stochastic in�uence
(ar = 0), graph (b): with stochastic in�uence (ar = 0:002)

interpreted as random chance of �nding prey by the consumer species. This corresponds to
randomly distribute butter�y eggs on food plants in the Maculinea model (ch. 1). Hence, this
study might give insight, if the ln(1�P0)-approach can be applied to the complex Maculinea
model.
Fig. 3.5 shows two example runs. Fig 3.5a is from the deterministic model (ar = 0). For the
run in �g. 3.5b, stochastic variation was implemented via coupling parameter a (ar = 0:002
which corresponds to �10% variation). The deterministic model shows periodic cycles, where
amplitude in peaks of population size of predator species is slightly varying. In �g. 3.5b, it can
be seen that stochasticity increases these �uctuations in the amplitude. But, it in�uences the
period length of cycles, too. In some cases it even seems that cycles are lost. Strict periodicity
of the deterministic system is disturbed.
Stochastic e�ects, which in�uence periodic structure of cycling populations, are not taken into
account in the analytical calculations of sec. 3.3.2. Formulae 3.9 for the measures of persistence
do not hold in these situations, because they are derived assuming deterministically oscillating
population sizes with �xed periodicity. However, in this example for a simple predator-prey
model, population dynamics show quasi-cycles with disturbed periodicity.
Nevertheless, we apply the protocol for PVA (sec. 3.2.2), having in mind that accuracy of
the ln(1 � P0)-�t is a measure for applicability of the approach. Hence, when the �t does
not demonstrate the linear relation in our data, we simply conclude that the PVA method
suggested by Grimm & Wissel (2004) is not appropriate to study this type of interacting
species systems.
But, application of the PVA method returns even better linear �ts than in the periodic case
of the sinus model (sec. 3.4.1), as can be seen in �g. 3.6. Correlation coe�cient for the �t
is r2 = 0:999. In the following, we will discuss reasons for this result: Earlier calculation
(sec. 3.3) revealed that the stochastic process, which leads to extinction, is a Markov-process,
if probability of survival is aggregated for single cycles. This result is only a convenient
special case. Generally, the Markov condition is ful�lled, when a system has the same risk of
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Figure 3.6: Predator prey model: ln(1 � P0)-plot for an example simulation with standard
parameter set (tab. 3.3). Stochasticity is introduced via coupling strength a (ar = 0:002).
Grey circles indicate simulation data, the dashed line represents the �t line. PVA results:
tm = 612, c1 = 1:01, r2 = 0:999, in 206 simulation runs, both populations survived.

extinction any time it assumes the same state. This is

N(t1) = N(t2)) p(t1) = p(t2)

at any times t1, t2 before the population goes extinct. Observation (O3) in ch. 3.3 assures this
condition independently of the type of periodicity in the �uctuations of the distribution of
population sizes. Hence, instead of using eqn. 3.7 to describe probability P0(t) of a population
to be extinct at time t, dynamics of P0(t) also can be written in a more general form

P0(t) = 1�
NY
k=1

h
(1� pk)

lk(t)
i

(3.15)

Here, k is a system state. Without loosing generality we assume the simple case, where k can
be interpreted as population size (k 2 f1; : : : ; Ng). lk(t) counts, how often a population at time
t already has passed through state k (that is, how often there have been k individuals in the
population,before time t is reached). The actual rate of extinction p(t) can be transformed to
a rate pk to go extinct from state k within the next time step (that is the risk that a population
consisting of k individuals goes extinct within the next time step). This extinction rate pk is
independent of time. From transformation � ln(1� P0) follows

� ln(1� P0(t)) = � ln
� NQ
k=1

h
(1� pk)

lk(t)
i�

= �
NP
k=1

[lk(t) � ln(1� pk)]

(3.16)
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We now analyse, in which case � ln(1 � P0(t)) is proportional to time t. Because if this
condition is ful�lled, a ln(1 � P0(t))-plot will lead to a straight line and the PVA-approach
can be applied. The only time-dependent term in eqn. 3.16 is lk(t). lk(t) is a time-dependent
distribution of frequencies to realise state k. That is, at time t it is determined, how often
each state k has been realised (or how often the population has consisted of k individuals).
Determining lk(t) from many simulation runs and normalising the result leads to the relative
frequency

lk(t)
NP
i=0

li(t)

This can be interpreted as the probability that at time t a population of k individuals can
be found. If this probability distribution is quasi-stationary on a long time scale, the Markov
condition is ful�lled. The PVA procedure can be applied. In this general Markov description,
intrinsic mean time to extinction tm is a weighted mean of the logarithmic probability to
survive in states k. lk are weights.
In the special case of periodic deterministic oscillations of the distribution of population sizes
(sec. 3.3), all lk are equal for a full cycle. Within a cycle, these lk vary depending on the phase
in the cycle. Therefore, in ln(1� P0)-plots for the sinus model, a stair like pattern appears.
In general, if

lk(t)
NP
i=0

li(t)

varies in time only on a short time scale, compared to the intrinsic mean time to extinction
tm, the method can be applied. Hence, the method is valid for cycles and quasi-cycles. In
contrast, if there are long trends in the distribution (no quasi-stationary state is reached), the
Markov condition is violated. The transformed distribution of extinction times cannot be �t-
ted linearly. Therefore this method is not useful for declining populations until they reach an
established state. Recently, occurrence of supertransients and mesotransients (sudden changes
of system dynamics after time scales of hundreds or thousands of generations, respectively)
have been reported for spatial population models (Saravia et al., 2000; Labra et al., 2003). We
assume that these sudden changes destroy quasi-stationarity and therefore cannot be analysed
by this PVA-approach.
In contrast to �g. 3.4, �g. 3.6 does not express cyclic structure of population dynamics.
The cyclic structure is lost by statistically aggregating phase-forgetting population dynamics.
Therefore we see a straight line in the ln(1�P0)-plot (�g. 3.6). This graph looks structurally
the same as a plot for a single species system (�g. 3.1c). Hence, restricting on interpretation
of the distribution of times to extinction can lead to misinterpretation of short term ecological
processes.

3.5 Discussion

3.5.1 Dynamics of the extinction process in interacting species systems

Although population viability analysis is an important and established tool in conservation
of single species, to our knowledge for the �rst time a PVA method for systems of interacting
species is suggested. Reason for this lack in methodology might have been the great variety
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and complexity of dynamics in these systems.
In our study, we revise literature in order to identify common reasons for extinction of popu-
lations in interacting species systems. We end up with a surprisingly small list of important
phenomena (see observations in sec. 3.3.1): Population sizes are periodically oscillating, how-
ever cycles are disturbed by stochasticity (O1). Extinction of a population is a random event
(O2). Risk of extinction depends on population size (O3); small populations are more en-
dangered than large populations (see e.g. Nisbet & Gurney, 1982; Stephan, 1992; Stephan &
Wissel, 1994a, 1999; Holyoak et al., 2000).
This is an interesting set of observations. Observation (O1) describes dynamic of popula-
tion sizes, which is mainly deterministic. Observation (O2) determines an extinction event
as stochastically driven. Observation (O3) �nally links together deterministic population
dynamics and stochastic extinction. Hence, the observations indicate that stochastic and
deterministic processes hardly interact. The only way, deterministic processes can in�uence
extinction is by varying population sizes (O3). Therefore, it is su�cient to describe deter-
ministic processes phenomenologically by their e�ects on population size in order to analyse
persistence of a population.
With the most general model ful�lling the observations it is shown that deterministic and
stochastic processes a�ect persistence on di�erent timescales. Deterministic processes act be-
low the natural timescale of period TP . They in�uence persistence of a population within one
oscillation. In contrast, stochasticity acts on longer timescales of many population cycles.
On this long scale, deterministic e�ects within a cycle can be aggregated. They cause the
risk that a population goes extinct within one cycle. Due to periodicity of the deterministic
process, this risk is equal for each cycle.
Consequently, details of deterministic e�ects on persistence are not detectable on the long run.
Hence, di�erent deterministic processes which provoke the same risk of extinction during one
population cycle cannot be distinguished. Particularities of interacting species systems result
in a characteristic risk of extinction. But, the stochastic extinction process is equal for all of
the many di�erent systems. Although variety and complexity of population dynamics is high
in systems of interacting species, there is only one type of extinction process.
The derived dynamics of the stochastic extinction process in interacting species systems is the
same as the well known dynamics in systems of single species with non-overlapping genera-
tions (Stephan, 1992; Wissel et al., 1994). Within each generation (in the interacting species
system, within each complete cycle) the population has the same risk to go extinct. In single
species systems, the probability that a population at time t already has gone extinct P0(t)
is geometrically distributed. In systems of oscillating populations, P0(t) is geometrically dis-
tributed on the time scale of one cycle.
This general �nding comprises and helps to explain earlier results on special cases for example
from Nisbet & Gurney (1982, sec. 7.2), Stephan (1992, sec. 3.1), Stephan & Wissel (1994a,
1999) and Bonsall & Hastings (2004).

3.5.2 PVA for interacting species systems

Stephan (1992) suggests an e�ective way to calculate intrinsic mean time to extinction of sin-
gle species from simulation data. With this so called ln(1�P0(t))-method the general pattern
of extinction dynamics in single species is evaluated. The method is widely and successfully
used (Grimm & Wissel, 2004, and references therein). On this background Stelter & Grimm
(1994); Frank et al. (2002); Grimm & Wissel (2004) give a protocol for a general PVA analysis
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on single species systems. They outline the power of the intrinsic mean time to extinction tm
as a unifying currency to assess and compare persistence in single species systems.
We �nd the long term extinction process in interacting species systems to be equal to that in
single species systems. Hence, it is natural to test the applicability of the PVA protocol for
more complex systems of interacting species. Grimm & Wissel (2004) indicate that the PVA
protocol contains an internal mechanism to check whether it is suitable to analyse a certain
system. Because of this security mechanism, we can apply the protocol to any system of
interacting species and afterwards, according to the internal test, decide if the PVA protocol
is successful.
The PVA protocol consists of several steps (see sec. 3.2.2). Initially from many repeated sim-
ulation runs determine the distribution of times to extinction of species in the system. After-
wards calculate the cumulative probability P0(t) that at time t species are already extinct. The
function � ln (1� P0(t)) is �tted linearly. Measures of persistence are c1 = exp(�intersection)
and tm = 1=slope. If the linear �t is not accurate (correlation coe�cient r2 � 1), the PVA
protocol cannot be applied (test for applicability). Persistence measure c1 is an indicator for
the probability that populations establish and do not go extinct during the initial transient
phase. Intrinsic mean time to extinction tm is a measure for long term persistence of the
populations.
Our results suggest, that the PVA protocol is suitable and useful for PVA on interacting species
systems. However, due to di�erent dynamics in systems of single or interacting systems, we
�nd di�erences in results of PVA on short timescales.

� Oscillations of population size provoked by interaction of species result in short term
modulation of risk of extinction. Therefore extinction risk varies on a short timescale.
Stephan & Wissel (1994a, 1999) indicate that the internal noise from species interactions
has a di�erent e�ect on persistence than stochastic environmental noise. For this rea-
son, depending on the type of noise, di�erent management methods have to be applied.
Wichmann et al. (2003) �nd that even short term patterns of periodical environmental
variation in�uence persistence of populations. Johst & Wissel (1997) add di�erent types
of correlated noise to population dynamics and estimate the risk of extinction. They �nd
that correlation in environmental stochasticity increases risk of extinction of a popula-
tion. We think that correlated random e�ects tend to act as a mixture of deterministic
dynamics and stochasticity. Correlations seem to enhance the time during which the
population is small. Hence populations have a higher risk of extinction.

� In contrast to oscillations with �xed periodicity, quasi-cycles sometimes cannot be iden-
ti�ed from short term patterns in risk of extinction. Quasi-cycles result from interaction
of deterministic and stochastic processes. Stochastic in�uence wipes out the clear deter-
ministic patterns.

� Measure of persistence c1, as an indicator for risk of extinction during the initial phase
of an interacting species systems, is evaluated in a slightly di�erent way to single species
systems. Grimm & Wissel (2004) argue that c1 � 1 can be directly interpreted as the
probability that a population reaches the established state. In the case of interacting
species systems, Persistence measure c1 additionally depends on the pattern of extinction
risk within the �rst population cycle, which means the initial phase e�ectively lasts
longer.
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Short term patterns in the distribution of times to extinction result from characteristic prop-
erties of the system like for example species traits, species interaction, or habitat condition.
But, the short term patterns do not explicitly re�ect in the value of intrinsic mean time to
extinction tm. They express as the aggregated risk of extinction during one cycle. This ag-
gregated risk is perceived by the persistence measure tm. The big advantage from a point
of measurement is that intrinsic mean time to extinction tm is a single scalar value, which
evaluates persistence of species in a system, accounting for all conditions and processes that
a�ect species performance.
Therefore, intrinsic mean time to extinction tm is a comparable measure for many di�er-
ent types of species systems. It is a unifying currency for PVA on either single species or
community systems.
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Chapter 4

Distributions of times to extinction of

Maculinea populations

4.1 Introduction

Assessing viability of populations is essential for species conservation. Sha�er (1981) suggested
to use stochastic population models to evaluate the fate of species in their environment. Prob-
ability of extinction of a population within a certain time horizon is estimated from repeated
simulation runs. Since then population viability analysis (PVA) has developed to a standard
tool in conservation biology (Beissinger & McCullough, 2002; Frank et al., 2002; Grimm et al.,
2004). It is included as one of the criteria to assess threat of species extinction in the IUCN
Red List (IUCN, 2004; Lande et al., 2003).
The aim to preserve species diversity in whole regions (e.g. Soule et al., 2005) has invoked
a new application for PVA. It is expected that a range of rare species can be preserved by
managing only few indicator species. Lande et al. (2003, p. 104) point out that 'PVA for se-
lected species of certain interest should be an integral part of large-scale conservation e�orts'.
Indicator species are selected, because they are 'typical' in the planning area; that is, the envi-
ronment meets their special needs. Hence, they are closely linked to both, habitat conditions
and community. But it must be taken into consideration that interaction between di�erent
species provokes qualitatively di�erent population dynamics and therefore viability than it is
shown by single species (Berger, 1999; Amezcua & Holyoak, 2000; Arditi et al., 2001). Hence
viability of populations should not be assessed separately from their community.
For single species systems, the ln(1�P0)-approach constitutes a framework to asses population
viability. Strength of this approach is that it measures risk of population extinction for the
transient and the established phase of population dynamics separately; therefore taking into
account the di�erent dynamics of a population when it is either colonising or established (see
sec. 3.2 and references therein). However, it becomes obvious in ch. 3 that the more complex
population dynamics of interacting species systems in�uence their risk of extinction. This
�nding leads to a modi�cation of the single species framework.
In this chapter, we apply this modi�ed framework. We perform population viability analysis
for Maculinea butter�y species, which are supposed to act as indicators for special types of
habitats (Settele et al., 2002, 2005), especially because of their close interactions with their
obligate host ants of genus Myrmica and host plants (see ch. 1.2). With the generic but
quite realistic Macu model (see ch. 1 and 2), we calculate distributions of times to extinction
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for a variety of spatially structured habitat sites. From these, we estimate persistence mea-
sures tm and c1.
Our objectives are twofold. We want to get a systematic overview of extinction dynamics
occurring in the Macu model. Additionally we want to assess, if these extinction dynamics
ful�ll assumptions of the ln(1� P0(t))-approach and thus can be analysed with the method.

4.2 Methods

In this chapter, we aim to analyse population persistence of Maculinea in a large number
of di�erent scenarios. In fact, we use the same scenarios as in ch.2, i.e. all scenarios with
variations in spatially relevant parameters spatial host plant distribution, initial spatial host
ant distribution, and budding range �. Other parameters are set to standard values (tab. 1.1).
To analyse persistence of Maculinea for all these scenarios, a high number of simulation runs
is required. Thus the analysis is time consuming even on powerful computers. To cope with
this problem, we use a two step adaptive approach towards analysing distributions of times to
extinction. For a broad overview we calculate distributions of times to extinction from only
300 simulation runs of the Macu model. This �rst step enables us to scan the large parameter
space. However, we have to accept that the resulting histograms of times to extinction are
only sparsely occupied. In mean, there are 300

5000 = 0:06 measurements of extinction events
per generation, provided populations in all simulation runs went extinct before reaching time
horizon TH = 5000 generations. To overcome this drawback we apply a second type of analysis,
where we repeat the simulations for selected scenarios, performing 50000 simulation runs. In
the following it is described, how these analysis stick together.
For the initial overview analysis, inspecting all histograms by eye would fail because of the
amount of di�erent scenarios. But even more severely, because most of these sparsely occupied
histograms look very similar. Fortunately, the ln(1� P0(t))-method presented in ch. 3 is able
to extract intrinsic mean time to extinction tm from small amounts of data.
We de�ne three viability classes: persistence (tm > 106gen) 1, medium risk of extinction
(102gen < tm � 106gen) and not persistent (tm < 102gen). These categories correspond to
qualitative observations of di�erent shapes of distributions of times to extinction2 and are
ecologically reasonable for assessment of species performance (ch. 3). The distributions of
times to extinction are analysed within these viability classes.
The variety of extinction dynamics, which is found in the initial overview analysis for the
Maculinea model, is broader than the variety detected in less complex models analysed in
ch. 3. Therefore, in the second step of the analysis, we select typical representatives of the
viability-categories de�ned above and repeat simulations with the increased number of 50000
simulation runs. The few but highly detailed results are accurately analysed. We calculate
histograms of times to extinction and perform PVA according to the protocol discussed in

1For practical reasons tm is given a maximum value of tmaxm = 107gen in coarse analysis.
2At this stage, we e�ectively use two descriptions of viability. On the one hand the risk of being extinct

P0(t) at time t is assessed directly from the distribution of extinction times. On the other hand we aggregate
those applying the ln(1 � P0(t))-method with resulting measures of persistence c1 and tm. In sec. 3.2.4 it is
shown that persistence can be de�ned equally in the frame of both descriptions. To de�ne persistence for an
established population in a single species system, a threshold has to be laid down for either the maximum
probability that a population goes extinct within a given time horizon or for the minimum intrinsic mean time
to extinction tm. According to eqn. 3.9, this procedure is also suitable for interacting species systems, if the
intrinsic mean time to extinction tm is much longer than duration of cycles in population sizes TP .
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ch. 3. We analyse results qualitatively, inspecting histograms of times to extinction and
ln(1�P0(t))-plots. We then study the relation between extinction dynamics and measures of
persistence.
Finally, we assess the ability of the ln(1�P0(t))-method to cope with the patterns of extinction
dynamics, which are found for the Macu model. For this purpose, the accuracy of ln(1�P0(t))-
�ts is studied by analysing the resulting correlation coe�cient r2. Reasons for inaccuracies
are assessed taking into account the knowledge, which is gained in the second analysis step.
Jumping between broad and detailed analysis, we improve the understanding of patterns
occurring in distributions of times to extinction of our model.

4.3 Results

In the coarse parameter variation analysis, we �nd a broad range of resulting intrinsic mean
times to extinction tm (tm ranges from 6:21gen to 107gen). This means that, depending on the
parameter settings, Maculinea populations might persist or go extinct. In ch. 6 in�uence of
the factors is analysed in detail. Here, we concentrate on classifying patterns in distributions
of times to extinction.

4.3.1 Long term persistence of a population

Distributions of times to extinction can be categorised into three di�erent idealised classes (see
sec. 4.2), which afterwards are subdivided due to di�erent patterns for the initial transient
phase. Ranges of tm de�ned in ch. 4.2 are chosen reasonably, anyhow arbitrarily. Hence,
an observed histogram may share properties from several classes. The categories serve to
distinguish di�erent underlying behaviours for extinction, which allows to only investigate
typical representatives of each class.

4.3.1.1 Type I: Long-term persistence

In stochastic population models, there is no absolute persistence. Because of random e�ects,
populations have to go extinct in the limit of in�nite time. However, we de�ne populations
to be persistent, when they do not go extinct in all (or almost all) runs of a simulation.
Quantitatively a population is de�ned as persisting when tm > 106gen (see sec. 4.2). When
tm = 106gen, the risk that an established population goes extinct before reaching time horizon
TH = 5000gen is P0(TH = 5000gen) � TH

tm
= 5000

106
= 0:005 (see ch. 3). This low risk of

extinction justi�es the assumption of persistence. A typical histogram of times to extinction
for a persisting population looks like �g. 4.1a, where populations in all simulation runs reach
time horizon TH = 5000 generations. The ln(1�P0(t))-plot (�g. 4.1b) is a horizontal line. This
leads persistence measures of tm = 1 and c1 = 1, in accordance with theoretical estimation
of PVA measures for persisting species in sec. 3.3.3. Although the distribution of times to
extinction in �g. 4.1a does not resemble to the expected decline (see ch. 3), estimated measures
of persistence are reasonable.
Fortunately long survival is a frequent result for the simulated Maculinea system.
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Figure 4.1: Histogram of times to extinction (a) and ln(1 � P0(t))-plot (b) for Experiment
115_3. Within 50000 simulation runs, extinction events are not observed.

4.3.1.2 Type II: Medium risk of extinction

Fig. 4.2a depicts the histogram of times to extinction of a population with noticeable risk of
extinction. On the long run, a decline in number of extinction events can be observed. In
sec. 3 it is predicted that the longtime shape of the distribution should decline following a
power law, well-known from single species systems (Stephan, 1992; Stephan & Wissel, 1994b;
Wissel et al., 1994). The plot in �g. 4.2b con�rms this prediction with impressive accuracy.
Data is �tted exactly. Resulting measures of persistence are tm = 457gen and c1 = 0:886.
The value of r2 = 0:998 ensures that the ln(1�P0(t))-PVA-method can be applied to analyse
Maculinea model results on a long time scale. The �t becomes inaccurate for high numbers of
generations, because only few populations survive long enough. Therefore, there are only few
extinction events if times to extinction are long (sparsely occupied slots for high numbers of
generations in the corresponding histogram 4.2a). The limited number of 50000 simulations is
not su�cient to realise exactly the theoretically predicted distribution. Data di�ers from the
�t curve in 4.2b for the �rst generations, too. This e�ect of a transient phase in population
dynamics will be discussed in sec. 4.3.2.
Fig. 4.2c and 4.2d show the same simulation data as �g. 4.2a and 4.2b, but only the �rst 350
generations are displayed. This higher resolution graph has a completely di�erent aspect. In
the histogram (�g. 4.2c), humps can be observed, which become smaller and broader with
increasing time. Humps are separated by lags of several years, especially for low numbers of
generations. Obviously, there are generations, when populations do not go extinct or only go
extinct with a very low probability. Durations of these 'save periods' decline with increasing
time.
The histogram in �g. 4.2c shows exactly what one expects from cyclic population dynamics
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Figure 4.2: Histogram of times to extinction and ln(1 � P0(t))-plot for Experiment 133_16.
Graphs (a) and (b) show extinction dynamics over 5000 years. The distribution of times to
extinction (a) declines exponentially, which expresses in linearity of the ln(1 � P0(t))-plot
(b). Non-linear behaviour for times above 3000 years is due to statistical errors resulting from
small numbers of data (compare the sparsely occupation in the histogram of times to extinction
above 3000 years). Graphs (c) and (d) depict only the �rst 350 years. Humps can be seen in
the histogram of times to extinction (c). These express in steps in the ln(1� P0(t))-plot (d).
The �t in the ln(1� P0(t))-plot underestimates, due to the in�uence of initial conditions.
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Figure 4.3: Histogram of times to extinction (a) and ln(1 � P0(t))-plot (b) for Experiment
116_1. Populations in all simulations go extinct during �rst 20 generations.

(see ch. 3). As already mentioned in ch. 2 (see �g. 2.1), numbers of butter�ies can drop to very
low values. When the butter�y population size undergoes a minimum, there is an increased
risk of extinction due to demographic stochasticity. Meanwhile, when population sizes are
high, this risk is reduced and populations do not go extinct.
The ln(1� P0(t))-plot in �g. 4.2d shows a step structure in the data, which is already known
from �g. 3.3b. Hence, as predicted in ch. 3, host-parasite cycles of the Maculinea system
express themselves in periodical variation of extinction risk. Periodic �uctuation in risk of
extinction can be observed only for some early generations, because of losing coherency. As
mentioned in ch. 2, the system shows phase-forgetting quasi-cycles.
There is clear deviation of data from the predicted line. As mentioned before, the system
behaves di�erent during transient and established state, which leads to inaccuracy of the �t
for the �rst generations. From ch. 3 it is known that deviation of transient and established
behaviour expresses in a shift of the intercept, which is observed in �g. 4.2d graphically as
a parallel shift of the �tting line in comparison to the data points. Slope of the line and
therefore tm stays almost unin�uenced. Importance of initial conditions is discussed explicitly
in sec. 4.3.2.

4.3.1.3 Type III: Non-Persistence

Populations of this type cannot persist. Fig. 4.3a shows that in all simulation runs populations
go extinct within only a few generations. In general, no single run can be observed, which
survives for longer times. The reason is that either populations go extinct deterministically
or have a tremendous risk of extinction. Note the fact that during the �rst 10 generations
in �g. 4.3a no extinction event is counted. This results from favourable conditions for the
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populations during this short period.
The ln(1 � P0(t))-plot in �g. 4.3b does not show linear behaviour of the transformed P0(t)
with increasing time. The �t is bad (r2 = 0:686), which is not surprising, as the PVA method
is valid for long time scales (see ch. 3). But, in the process, long time scales are not realised.
Anyhow, low tm = 2:073gen points to the right direction: no persistence of populations3.
This result corresponds to the theoretical estimation (ch. 3.3.3), that tm ! 0 for populations,
which cannot persist (which is far beyond conditions of applicability of the approach). Hence,
tm can be used as a qualitative indicator for non-persisting populations.

4.3.2 Extinction during an initial transient phase

Population dynamics of Maculinea systems during an initial phase di�er from longtime be-
haviour (see ch. 2.3.3). These short-time e�ects express in the distribution of times to extinc-
tion for the �rst few generations. Note, in a single species system, initial dynamic of the system
depends only on the initial conditions (e.g. Ludwig, 1996). Due to the complex interactions
in multi-species systems, the initial transient phase might last longer and dynamics can be
di�erent from dynamics during the established state (ch. 2.3.3 or Hastings (2001); Neubert et
al. (2004)). For this reason, we have a close look on risk of extinction for the initial transient
phase of the Maculinea system. We distinguish between

reduced extinction: Few populations go extinct during the transient phase because of good
initial conditions. The adaptation process of the system deteriorates these conditions.
Measure of persistence c1 > 1.

increased extinction (bad conditions): Conditions at beginning of the simulation are bad
but improve with system adaptation. This case is known from single species systems
with a constant resource (e.g. Ludwig, 1996), when the initial number of individuals in
the population is low. Measure of persistence c1 < 1.

increased extinction (overexploitation): Initial conditions provoke the consumer popu-
lation to grow immensely, which leads to overexploitation of resources. Afterwards, the
consumer population declines to very low numbers of individuals, which increases the
risk of extinction. Such a scenario can last for several cycles. This case results from
species interactions. Measure of persistence c1 < 1.4

For the Maculinea system we �nd all of these transient phase behaviours. In principal,
they co-occur with all three types of longtime persistence, which might e�ectively change
distributions of times to extinction. Consequences are di�erent for persistence types. Hence,
we present them for each type separately.

4.3.2.1 Type I: Persistence

Fig. 4.4a shows the tremendous e�ect of bad initial conditions to a longtime persistent popula-
tion. 56% of the populations go extinct during the �rst 61 generations. All other populations

3Note, tm is smaller than time of �rst extinction event in �g. 4.3. tm cannot be interpreted as intrinsic
mean time to extinction, in cases where the PVA approach of ch. 3 is not applicable.

4Whether extinction risk is increased due to initially bad conditions or due to overexploitation cannot be
distinguished easily and doubtless from distributions of times to extinction. It is better to check population
dynamics to securely determine the reason of extinction (see e.g. ch. 2.3.3)
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Figure 4.4: Histogram of times to extinction (a) and ln(1 � P0(t))-plot (b) for Experiment
168_2. Either populations go extinct within 61 generations or they survive.

survive; during the established state no further extinction events are observed. In other words,
although conditions are good for a population, when it has established, the chance of coloni-
sation of a new site is small. Hence, we �nd a bottleneck to Maculinea populations. The
butter�y population has problems to establish, because it needs some time to change habitat
conditions. Self-regulation mechanisms of the system increase quality of habitat during the
transient phase. To our knowledge this is the �rst observation, in a PVA study, that a colonis-
ing species changes habitat condition and hence increases its own probability of persistence.
Furthermore, colonising Maculinea individuals can turn habitat conditions of a site from un-
suitable to suitable.
This does not mean that population sizes of butter�y or ant species need to decrease during
the initial phase. In fact, in both scenarios of slow adaption or overexploitation, which means
an increase or decline in numbers of butter�ies respectively, high extinction risk during the
initial phase can be found (see ch. 6.4.2.3). The decisive measure for persistence is the risk of
extinction.
ln(1 � P0(t))-analysis of this simulation can be seen in �g. 4.4b. Obviously, the approach is
not suitable to �t the non-linear shape of the ln(1 � P0(t))-plot (r2 = 0:013). We are not
astonished, when we consider the bimodal distribution of �g. 4.4a. Theoretical estimation,
how the approach reacts in this extreme case, shows that c1 ! 0, tm ! 1 (see 3.3.3). In
simulations, c1 � 1 and tm assumes very large values. The approach extrapolates correctly
and can be taken as an index for these situations.
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4.3.2.2 Type II: Medium risk of extinction

Depending on the ratio of risk to extinction during the initial and the established state, all
three cases of transient behaviour are realised for type II persistence. Return to �g. 4.2.
This is an example of increased risk of extinction during the initial phase. The histogram in
�g. 4.2c shows higher counts of extinction events for the �rst generations than expected, if the
population had been initially established. The ln(1 � P0(t))-plot in �g. 4.2d initially starts
with a strong increase, diverging from the linear �t. As argued above, the arising error to
tm is negligible. In contrast, the value of c1 = 0:886 indicates an about 10% higher risk of
extinction during the initial transient phase than during the established phase.

4.3.2.3 Type III: Non-Persistence

Non-persistence might have two reasons. First, long term conditions of the habitat do not
support the species community. Second, initial conditions avoid establishment of populations,
although habitat conditions would support them on the long run. Distributions of times to
extinction resemble each other in both cases. The reason for extinction only can be deduced,
if either initial conditions or longtime conditions of the habitat can be varied.
If the intrinsic mean time to extinction tm is very low, parameter c1 is not a secure measure,
because the population does not establish (see sec. 3.4.1). For this reason, we do ignore c1 in
PVA analyses of non-persisting populations.

4.4 Applicability of the PVA protocol and the coarse analysis

method

The Maculinea model (ch. 1) shall be used to test the applicability of the ln(1 � P0)-PVA
method for complex spatially explicit individual-based population-dynamical simulations of
interacting species. We are especially interested in its applicability in coarse analysis, where
a wide range of scenarios is characterised by measures of persistence tm and c1. Such coarse
analyses of population viability can be enormously powerful. For the �rst time, they allow
comparative studies on the in�uence of a huge amounts of parameter settings and processes
on the performance of species in communities. However, coarse analysis are limited by time
and computational power. For this reason, in coarse analysis, simulations are restricted to a
short time horizon TH or to a low number of simulation runs. We assume some inaccuracy
when estimating measures of persistence in coarse analysis. In the following, we asses these
inaccuracies and analyse, why they occur.

4.4.1 Using the PVA-approach to analyse di�erent types of extinction dy-
namics

The PVA protocol based on the ln(1�P0(t))-approach for single species incorporates a natural
test for its applicability: A population can be analysed with the approach, when the resulting
ln(1�P0)-plot of data is linear (see Grimm & Wissel (2004) or sec. 3.2). Accuracy of the plot
is estimated qualitatively by graphical inspection or numerically by the correlation coe�cient
r2 of the linear �t. This test possibility allows to naively apply the method and either accept
or reject results according to their accuracy. The ln(1 � P0)-method for interacting species
changes this type of model test by accepting slightly higher inaccuracy due to �uctuations in
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population size and therefore resulting short term patterns in distributions of times to extinc-
tion (ch. 3).
Applicability of the ln(1� P0)-approach means that the examined system obeys to a certain
rule: Deterministic temporal �uctuations of quasi-stationary distributions must act on a much
shorter time-scale than stochastic extinction provides. This means, for single species systems
that the quasi-stationary distribution is constant, for interacting species systems it may be
short-time cyclic or constant according to loss of coherency in quasi-cycles.
It is by no means clear for an ecological system that its population dynamics follow the pre-
dicted law, although many example studies for single species systems support the assumption
(Grimm & Wissel, 2004, and references therein). However, a general protocol for PVA should
be applicable to an as large as possible set of species systems. If we can show, that the pro-
tocol delivers su�ciently accurate measures of persistence for the relevant types of occurring
extinction dynamics, the method can be applied without necessity to check applicability in
every special case.
Three types of behaviour are distinguished from our analysis. Only type II (medium extinc-
tion) shows good agreement with a theoretically predicted long-time linear behaviour of the
ln(1� P0)-plot. The other two classes behave structurally di�erent. Populations of type I do
not go extinct within the prede�ned time horizon TH . Of course, in this case, a method based
on the assumption of certain extinction is not applicable. Type III population dynamics do
not allow longtime survival. The ln(1� P0)-method must fail, because it requires the proba-
bility of long term survival before extinction.
Surprisingly, analytically and from simulation studies it can be shown that the ln(1� P0(t))-
approach extrapolates values for tm qualitatively correct for both, type I and type III be-
haviours. Therein lies a strong power of the method, because it can be applied to the whole
range of system behaviour, when one is interested in only qualitative or comparative results.
Comparative studies are a usual use of PVA (Beissinger & McCullough, 2002; Grimm et al.,
2004). We will see that the method developed in ch. 5 and applied in ch. 6 is successful, be-
cause of this nice property of the ln(1� P0)-approach. But we have to keep in mind that the
method is applied inadmissibly to type I and type III behaviour. Hence, if there are doubts
about the type of extinction dynamics, the save way should be taken, which means checking
the ln(1� P0)-plot graphically or numerically via r2.

4.4.2 Statistical error of the approach

In the following, we restrict to type II behaviour, which can be assessed in accordance with
the assumptions made for the development of the ln(1� P0(t))-approach. In coarse analyses,
we �nd 10101 type-II-simulations. Correlation coe�cient r2 of these experiments ranges from
0:01 to 1:00. Fig. 4.5 depicts the dependency of the correlation coe�cient r2 on the intrinsic
mean time to extinction tm. It is striking that data varies extremely for high and low values of
tm. In a small range, from tm � [103:5gen; 104:5gen], �t quality is high for all PVA experiments.
We now discuss several causes for errors in the linear �t.

Low number of simulation runs: In coarse analysis, only 300 simulation runs are included
to determine measures of persistence. In sec. 4.2 it is argued that on average less than
one observation is counted per slot. From theoretical considerations, we assume times to
extinction to decline according to a power law. Hence, as can be seen in �g. 4.2a, there
is a high concentration of data points in histogram slots for low values of t, whereas
others are almost not occupied. Even in this graph, which shows results of a PVA
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Figure 4.5: Dependency of �t quality r2 on intrinsic mean time to extinction tm for all coarse
type II PVA analysis. The x-axis is log10-scaled. Number of simulation runs is 300.
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analysis. Number of simulation runs is 300.
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study including 50000 simulation runs, data deviates from the �t for late generations
(t > 4000gen). This error is attributed to the stochastically imperfect realisation of the
theoretically predicted distribution (see ch. 4.3). The ln(1�P0(t))-�ts of coarse analysis
base on sparser occupied histograms, hence stochastic errors in�uence the estimation
already for earlier generations.

Decreased �t quality for high tm (survival): Intrinsic mean time to extinction tm ranges
from 100gen to 106gen. For the example study in ch. 4.3.1.2 tm = 457gen. Nonetheless,
in several of the simulations, populations survive for TH = 5000gen (no extinction), as
can be seen in �g. 4.2. With increasing intrinsic mean time to extinction tm, the number
of simulation runs without extinction events increases. For systems with high values of
tm, we �nd survival in 90% and more of the runs. These simulation runs are counted in
the last slot of a histogram of times to extinction. These runs, which would in reality
go extinct after �nal time horizon TH of the experiment, due to practicability of the
approach are accumulated at TH . They enter into the PVA analysis indirectly (theo-
retically without provoking a mistake, as described in ch. 3), because many simulation
runs with surviving populations increase the value of tm. But, in real PVA experiments,
because the rate of extinction is low, there are only few extinction events counted for
t < TH . As mentioned before, the sparsely occupied histogram provokes statistical
errors.

In�uence of initial conditions: Accuracy of persistence measure c1 is di�cult to be esti-
mated. For di�erent risks of extinction during the established state, r2 describes accu-
racy of c1 di�erently. Hence, in �g. 4.6 points are marked di�erently, according to ranges
of intrinsic mean time to extinction tm. Corresponding shapes of typical distributions
of times to extinction are described with legends. We can summarise results as follows:

Low values of tm (circles): Fit quality is bad only for very small values of c1. In
other cases, histograms show the theoretically predicted decline. When extinction
due to initial conditions is extremely high, slots corresponding to the established
state are sparsely occupied, which results in low �t quality.

High values of tm (crosses): Low risk of extinction during the established state re-
sults in high numbers of simulation runs without extinction. Bad initial condi-
tions (c1 is small) lead to bimodal distributions of times to extinction as shown
in �g. 4.4, which cannot be analysed with the ln(1 � P0)-approach (see ch. 4.3.2).
Hence, r2 � 0. With increasing c1, the variance in r2 increases. In corresponding
histograms, single extinction events can be found during the established state. The
linear �t strongly reacts on these points, as can be observed in graphical �t anal-
ysis (here not shown). Hence, both tm and r2 strongly vary with single stochastic
events.
According to our classi�cation, these cases should be mapped as type I. Here, ex-
trapolation of the ln(1 � P0)-approach cannot estimate tm appropriately. E�ects
of initial conditions, sparsely occupied histograms and high numbers of runs with
surviving populations are mixed. Surprisingly, c1 still indicates correctly, if popu-
lations are endangered due to the initial conditions.

Medium values of tm (triangles): The intermediate case is e�ected by the same fac-
tors as both cases before. Values of tm indicate, if either one or the other case is
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more important. Hence, r2 varies strongly. This is exemplary discussed for c1 � 0:2.
Points with high values of tm have very poor �t quality. In contrast, correlation
coe�cient of r2 � 0:9 is realised for points, which correspond to low values in tm.

We show, that for type II systems, in the coarse analysis, low �t quality arises from di�erent
reasons. Results from exemplary analysis with 50000 simulation runs show, that �t quality
can be improved by increasing the number of runs in most cases (sec. 4.3). But, increasing
sample size is not helpful, when the ln(1�P0)-approach is not applicable for principle reasons.
Especially high variance of r2 in �g. 4.6 results from systems, which do not have extinction
events in many PVA simulation runs.
We conclude from our analysis of �g. 4.6 that only the small part of experiments, which results
in 100gen < tm < 5000gen (cycles in the graph), ful�ls required conditions of the ln(1� P0)-
approach. In fact, time horizon TH = 5000 is too short to appropriately evaluate simulations of
the Maculinea model. If we chose a higher value for TH , we would grasp more simulation runs
into the histogram to asses the distribution of times to extinction more accurately. Anyhow,
we argue that a time horizon TH = 5000gen is su�cient for this work. First, because from
an ecological point of view, tm = 5000gen corresponds approximately to a probability of
extinction within 100 years of P0(t = 100) � 0:02. Second, because the approach extrapolates
values for tm to the right direction, when populations do not go extinct in many population
runs. Third, because assessment of spatial patterns can be done su�ciently accurate with
the selected time horizon TH (see ch. 6). Hence, for economic reasons of saving time and
computer power, we accept the level of accuracy, which can be achieved with a time horizon
of TH = 5000gen. It's a moot point, why persistence measures tm and c1 are estimated with
su�cient accuracy, meanwhile �t quality r2 varies extremely. There are di�erent reasons for
the behaviour of each of the three measures:

Intrinsic mean time to extinction tm: The ln(1 � P0)-approach is designed to evaluate
population dynamics according to a theoretical model (see ch. 3 and below). When
simulated dynamics obey that theory, the method is very powerful to perform good
estimations even from very few data points. This is, because data from runs with
surviving populations is not completely ignored. It at least contains information about
the number of runs surviving TH � 1 generations.
On the other hand, high accuracy in tm values is not necessary. tm is a qualitative
indicator on vulnerability of populations under certain conditions. Model inaccuracy
might have a much stronger in�uence on tm than uncertainty in the outcome of the
PVA method. Hence, it is su�cient to consider orders of magnitude of tm. This rough
measure is robust against small changes in tm.

Measure of persistence c1: c1 measures di�erences between extinction behaviour during
the transient and the established state. It is mainly in�uenced by population extinction
during the �rst generations of simulation runs. Behaviour during the established state
is perceived aggregately. Detailed information on exact times of extinction during the
established state is not necessary to estimate c1. Hence, already from very few simulation
runs, su�cient data can be gained to �t the value of c1.

Coe�cient of correlation r2: It is explained above that variance in values of correlation
coe�cient r2 results from a low probability that a population can go extinct during the
established state. Single extinction events have a strong in�uence in the sparsely occu-
pied histograms of times to extinction. Hence, r2 from two similar PVAs are probably
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di�erent.
The problem is that statistics r2 does not account for the number of extinction events,
which have actually occurred in the ln(1�P0)-PVA-method. The number of data points
to estimate r2 in the approach is always TH � 1. If number of extinction events during
the established state is su�ciently high, �t quality parameter r2 can and should be used
to determine accuracy of the approach (cycles in �g. 4.6). In other cases, a possible
lag of accuracy can be evaluated by counting the number of extinction events during
the established state. If this number is low, one should be careful in interpreting PVA
results.

In ch. 5, a bootstrap method is described, which allows to estimate the deviation in persistence
measures tm and c1. This method can be applied in critical cases.

4.4.2.1 In�uence of population cycles on the accuracy of the approach

For the Maculinea model, periodicity cannot be found to strongly in�uence results of PVA.
This might be on the one hand, because quasi-cycles wipe out phase information and humps in
distribution of times to extinction. On the other hand, variation of period length estimated in
ch. 2 is small in comparison to time scales of extinction. Hence, the Maculinea model cannot
be used to test e�ects of large changes in period length to the ln(1 � P0)-PVA-method (but
see Wichmann et al., 2003).

4.4.3 Is the approach appropriate to analyse complex interacting species
systems?

In this chapter, the PVA protocol is applied in two di�erent kinds of analysis. For single
scenarios, we evaluate viability with high accuracy. This e�ort cannot be made for comparative
studies of many scenarios. Hence, in this type of analysis, lower accuracy has to be accepted
(however, accuracy has to be su�cient to distinguish extinction dynamics by the persistence
measures). Therefore, we apply di�erent criteria for a successful PVA in the both types of
analysis.

4.4.3.1 Detailed highly accurate PVA

In detailed analysis we want to estimate measures of persistence tm and c1 highly accurate.
For the Maculinea model, it is found that the ln(1� P0(t))-approach gives very good results,
when population dynamics is cyclic or quasi-cyclic and time horizon TH as well as the number
of simulation runs is high. Hence, spending su�ciently large e�ort to improve statistical
accuracy, persistence of oscillating populations can be assessed with high accuracy by the
method.
An important feature of the applied PVA-protocol is that risk of extinction can be estimated
independently for an initial transient and the established state. In our assessments, we �nd
good accuracy for both persistence measures c1 and tm. Therefore, this method is powerful
enough to be applied to spatially explicit or interacting species systems, where the importance
of a transient phase has been pointed out recently (Hastings, 2001; With, 2002; Snyder, 2003;
Gardner & Gustafson, 2004; Grez et al., 2004; Frank, 2005a, and ch. 6 in this thesis).
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4.4.3.2 Coarse comparative PVA analysis for a wide range of scenarios

In a coarse PVA analysis, high accuracy is renounced in favour to the possibility to assess
persistence of species or communities in a broad range of scenarios. In this type of analysis
special di�culties occur due to variety of extinction dynamics and inaccuracy in statistics.
For the Macu model, we assessed uncertainty in persistence measures tm and c1. In spite of the
wide range of extinction dynamics and the small number of only 300 simulation runs, the two
measures of persistence characterise di�erent types of extinction dynamics astonishingly well.
Although, in many experiments, correlation coe�cient r2 � 1 indicates that the persistence
measures are uncertain, accuracy is high enough to estimate the order of magnitude of the
intrinsic mean time to extinction tm and to assess the risk of early extinction by persistence
measure c1.
This result con�rms impressively, what is indicated by the theoretical studies in ch. 3: The
PVA protocol is applicable to a wide range of dynamics of population extinction. Hence,
analytical and numerical results suggest that the PVA protocol can be used in coarse analysis
to assess persistence of species in many di�erent scenarios. In ch. 5, we present an example,
how spatial habitat structures can be assessed for their e�ects on persistence of Maculinea
butter�ies. Generally, coarse PVA allows to install broad mechanistic analysis on the condi-
tions of survival for species and communities of species. From this new type of analysis, we
expect a deeper mechanistic understanding of ecological patterns (see e.g. ch. 6 and ch. 7).

4.5 Discussion

4.5.1 Methodology of the analysis

In this study, we present a structured overview on extinction risk of Maculinea butter�ies.
Challenge of such an analysis is twofold. On the one hand, a wide parameter space has to
be scanned to record most of possible extinction behaviour. On the other hand, detailed
analysis is necessary to understand the occurring behaviours. Time and computer power limit
broadness and speci�city of investigations.
This constraint determines structure of our analysis. In two complementary investigations, we
adjust the level of accuracy to either survey patterns of extinctions or inspect their structures.

� Coarse PVA on a wide range of parameter sets evaluates extinction risk in Maculinea
systems. The two numerical persistence measures tm and c1 aggregate complex data on
stochastic distributions of times to extinction and even more complex census and spatial
data on population dynamics. Behaviour of these measures can be overlooked easily.
Gained overview allows us to distinguish time scales on which extinction risk becomes
important. According to these scales, we de�ne types of extinction.

� Detailed analysis of extinction in simulations of the Maculinea system cannot be done for
a high number of parameter sets. Hence, we concentrate on only few examples. These
are selected to e�ectively cover the range of possible patterns of extinction. That is, we
choose single representatives for each of the types of extinction, we found in the coarse
PVA.

Using both investigations complementarily, we receive a fairly exhaustive understanding of
possible reasons for extinction in Maculinea systems in the range of reasonable parameter
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settings. Hereby, coarse PVA serves to �nd as many characterising patterns as possible.
Detailed analysis helps to �nd characteristics of �ltered types and mechanistic explanations
for di�erent behaviour of the types. Hence, one feels secure about completeness of the observed
extinction behaviours, because of the high number of samples and because of an intellectual
review of their behaviour.
Another important outcome of the twofold analysis is that the theoretically motivated ln(1�
P0) method has shown to be useful for qualitative surveys in a wide range of extinction types,
occurring in the Maculinea model. Persistence measures tm and c1 are good indicators for
persistence during established and transient state, respectively. This makes the PVA-method
especially helpful in comparative landscape analysis of ch. 5 and ch. 6. As good applicability
of the ln(1� P0) method is generally indicated by analytical calculations (see ch. 3), and we
can con�rm this �nding in a concrete example for the complex simulation model of Maculinea
butter�ies, we strongly recommend the application of the method.

4.5.2 Patterns of population extinction in parasitic systems

Maculinea butter�ies are known for obligate parasitism on their host ants of genus Myrmica.
Population dynamics of our model shows typical host-parasite characteristics like for example
cycles (see ch. 2). Hence, results of this study can be interpreted in a broader framework of
resource-consumer theory.

4.5.2.1 Persistence time

For di�erent settings of parameters, the system realises the whole range from immediate ex-
tinction on one end to factual persistence on the other. Therefore fate of butter�ies and ants
depends on the varied parameters: host plant distribution, initial host ant distribution and
dispersal range. The in�uence of each of them is discussed in ch. 6.
Longtime persistence of the Maculinea system is the outcome for pleasingly many parameter
sets. This result is in accordance to a rather new impression gained from work of the MacMan-
Project that undisturbed populations of Maculinea butter�ies persist relatively well (Settele;
personal communication). The e�ects of di�erent parameters on persistence of Maculinea
populations is analysed in ch. 6.
If populations do not persist for more than a few generations, it cannot be distinguished from
our analysis, whether they go extinct due to habitat unsuitability or due to only initial prob-
lems. Further investigations might help in this case (see e.g. ch. 6). In systems of interacting
species, it might be much more di�cult to separate initial short-term from long-term reasons
of extinction than in single species systems, as will be discussed below.
For intermediate risk of extinction, distributions of times to extinctions can be �tted aston-
ishingly well with the ln(1�P0)-method for interacting species systems. From a point of view
of the approach, longtime model behaviour can be characterised by a stochastically disturbed
oscillating population size (see ch. 3). Extinction on a long time-scale can be described by a
Markov process. Hence, on a certain time scale5, the rate of extinction is constant. This time
scale is the length of one period - for the Maculinea model approximately 10 - 20 generations
(see ch. 2). In contrast, within one period, risk of extinction is strongly varying. In �g. 4.2c
one cycle expresses as a hump and its following lag. Only during a fraction of the period,
the risk of extinction is high. During this time, the population is endangered. It is the time,

5The time scale needs to be much shorter than the scale for extinction (see. ch. 3)
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when cycles in population size take low values and therefore can be a�ected by demographic
stochasticity. Note that with increasing time, no more humps can be observed in the his-
togram of times to extinction. As mentioned earlier, this is because the quasi-cycles in the
butter�y population forget about their initial phase. Within one simulation run, a population
goes through a minimum of population size to a slightly di�erent time, than another one. The
histogram looks as if there was an equal risk of extinction during a cycle (e�ectively cyclic
structure is lost). But, only the minima in di�erent simulation runs are shifted. Population
sizes are still cyclic. It is therefore necessary to determine cyclic structure of a population
directly from time-series analysis of census data. Distribution of times to extinction might
suppress the cycles. This might lead to mistakes in the interpretation of the data: distribution
of times to extinction and resulting ln(1 � P0(t))-plots look the same in parasitic Maculinea
systems as in single species systems (see Grimm & Wissel (2004), Stephan (1992)).
When quasi-cycles in population dynamics and humps in histograms of times to extinction are
correctly determined, one should think about possible management actions. Clearly, highest
risk of extinction is acute, when the population size is small. Hence, it could be assumed to
support the endangered population especially at these points of time. This would be correct,
if population cycles result from an extrinsic force, like seasonality (see Nisbet & Gurney, 1982;
Stephan, 1992; Wichmann et al., 2003). Yet, Maculinea is a parasitic butter�y. Cycles are
intrinsic to the resource-consumer-system. An increase of numbers of butter�ies could lead to
additional exploitation of its Myrmica host ant during a phase of host recovery. At least, this
mechanism would slow down population growth of host ants and extend the critical time span
of low Maculinea numbers. In an extreme case, overexploitation of the already weak host ant
population could lead to extinction of even both host and parasite. From theory of harvesting,
it is known, that pasture needs breaks of grazing and time to recover after stocking was high
(Müller; personal communication). This system is comparable, in the way that Maculinea
butter�ies feed on their host ants.
In our opinion, it would be better to avoid strong variance in population sizes. This procedure
would reduce times with low numbers of individuals. In many respects, deterministic variation
in our model can be compared to environmental stochasticity. Variation on population level
might produce situations of low numbers of individuals with an increased risk of extinction
due to demographic stochasticity (Johst & Wissel, 1997; Wichmann et al., 2003).

4.5.2.2 The danger of initial extinction

If populations in general go extinct immediately after the start of a simulation, substantial
improvement of habitat conditions will be necessary. In systems of single species with an
unchanging resource, the type of management action is the same for long time or short time
objectives. In contrast, interacting species might have substantially di�erent needs during the
process of establishment than in the established state. This is impressively demonstrated in
�g. 4.4a. In this distribution of times to extinction, it is revealed that Maculinea populations
might have an extremely high risk of extinction for a time of at least three population cycles6,
although the general habitat condition is perfect for established populations. The initial
transient phase of establishment of populations can be an important factor for the conservation
of endangered species. During this time span, colonising species have to build up their links
in the community. This phase of self-regulation in interacting species systems can be an
additional bottleneck for colonising species in addition to others like the Allee e�ect or genetic

6Period length during established state is 11gen
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Table 4.1: Comparison of di�erent PVA methods

class experiment P0(t = 200gen) median mean tm c1
type I E168 0.56 21 2207 268496 0.445
type II E133 0.47 229 391 457 0.886

PVA analysis for Experiment 168_2 (see �g. 4.4) and Experiment
133_16 (see �g. 4.2). P0(t = 200gen) is almost equal for both ex-
periments. Di�erent reasons for extinction are only resolved by the
ln(1� P0(t))- approach.

e�ects from inbreeding. In our analysis, parasites and hosts are introduced at the same time
to the site, which means that they undergo the transient phase at the same time. Anyhow,
it can be assumed that when a single species enters a community, the adaptation phase is
crucial, too.
The bottleneck e�ect cannot be safely detected when measuring the risk of a population to
be extinct after a given time span. We calculate statistics P0(t = 200gen), median and mean
of times to extinction of data presented in �g. 4.2a (exp 133) which is type II behaviour
and �g. 4.4a (exp 168) of type I with extinction due to initial conditions. These results are
compared to estimations from ln(1 � P0)-plots (tab. 4.1). Probability that a population has
gone extinct after 200 years P0(t = 200gen) is almost the same in both cases. But from
histograms of times to extinction, it is clear that the reason of going extinct is di�erent. Even
worse: P0(t = 200gen) does not indicate, that in experiment 168, the main risk of extinction
has been overcome after 200 generations and that during more than 100 generations before,
no extinction event has been counted. Often, it is suggested to use the median of times to
extinction of a population as PVAmeasure (Lande et al. (2003); Drake & Lodge (2004); Saether
& Engen (2004), but see Grimm & Wissel (2004)). In this case of a bottleneck, the 'median'
would be misleading. Both distributions of times to extinction are evaluated to have very high
risk of extinction. Oddly enough, the in reality long term persisting population in exp 168 is
assessed even more endangered than the population in the really vulnerable case (exp 133).
The measure of mean time to extinction text distinguishes both experiments, indicating that
experiment 133 has a high risk of extinction. But, problems during initial phase in experiment
168 are ignored. Instead, ln(1 � P0) correctly distinguishes longterm and shortterm risk of
extinction of both experiments. Although, the data displayed in �g. 4.4 can be estimated only
extrapolated, resulting persistence measures perceive the di�erent structures of distributions
of times to extinction in both experiments.
The ln(1�P0)-analysis indicates that experiments 168 and 133 need di�erent management to
improve persistence of Maculinea butter�ies. In experiment 133 longterm habitat improvement
is required (tm is low). Only small e�ort is necessary, to support colonising populations
(c1 < 1). In contrast, for experiment 168 assistance to invading populations is important
(c1 � 1), whereas conditions for established populations are good (tm high).

4.5.3 Conclusion

We conclude from reviewing dynamics of extinction of spatially explicit, individual-based
simulations for parasitic Maculinea butter�ies that extinction in interacting species systems
might take place at di�erent time scales and for di�erent reasons. Rate of extinction might
vary deterministically due to short term population dynamics. But the actual extinction
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event is triggered by demographic stochasticity. Therefore, longtime distribution of times to
extinction can be described with a Markov process, known from single species systems. This
structural similarity allows the comparison of PVA for systems with di�erent communities and
numbers of species. Hence, it is possible to test the e�ect of di�erent species compositions on
the system. We suppose this as a method to determine indicator species for a community or a
region. As demanded in (e.g. Soule et al., 2005), PVA is an essential part to build up regional
species biodiversity.
Increased importance must be given to the transient phase of species colonisation. In our
investigations, we �nd that populations might need rather long time to adapt to conditions
on a site. Species interactions strongly drive population dynamics and in�uence colonisation
success. We interpret this e�ect of species interaction as a new bottleneck mechanism for
colonising populations.
We used the theoretically based ln(1�P0)-PVA-method suggested by Grimm & Wissel (2004)
for single species systems and enhanced it in ch. 3 for interacting species systems. It revealed
to be highly potential to estimate persistence measures for established and colonising phases
of population systems for all types of extinction dynamics occurring in the system of parasitic
Maculinea butter�ies.
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The in�uence of spatial structure
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Chapter 5

Methodology for assessing landscape

structures from population viability

5.1 Introduction

E�ects of habitat loss or fragmentation on biodiversity are intensively studied in conservation
biology (e.g. Fahrig, 2003). It is empirically shown that reduction of the total amount of
habitat decreases biodiversity. However, changes in spatial structure (keeping the amount of
habitat constant) can have both, positive and negative e�ects on biodiversity (see review in
Fahrig, 2003).
In landscape ecology, a common way to assess in�uence of landscape structure on biodiversity
is, to relate landscape characteristics to biodiversity measures (e.g. Turner, 1989). Outcome of
this type of analysis strongly depends on the choice of predictor variables (landscape indices)
and response variables (biodiversity measures). Accepting these variables means de�ning a
view on the system. This view does not necessarily correspond to species perception of the
landscape structure. Therefore when choosing wrong indices, detected e�ects are di�cult to
be interpreted or can be misleading (Tischendorf, 2001). Especially because spatial measures
tend to be correlated (Schumaker, 1996; Gustafson, 1998; Dale et al., 2002; Fahrig, 2003),
wrong predictors might hide the real reason of an observed e�ect. This problem goes together
with another shortcomings of this statistical approach. The step from neutral spatial mea-
sures to biodiversity indicators is usually too far to learn about processes of species-landscape
interaction. Hence, this method poorly supports understanding, why species perform di�erent
in certain landscapes.
On the other end of the spectrum, studies on species behaviour, theoretically supported by
process or rule-based models, aim to understand small scale interaction of individuals or pop-
ulations with the spatially structured landscape in which they are embedded (Kramer-Schadt
et al., 2004; Revilla et al., 2004; Wiegand et al., 2005; Heinz et al., 2005; Peer et al., 2006).
However, these detailed studies are usually restricted to single species and few landscape struc-
tures to reduce system complexity.
Yet landscape structure is of special interest in systems of interacting species (refuges in preda-
tor prey systems, wave propagation of epidemics or natural and agricultural areas in biological
pest control (Amezcua & Holyoak, 2000; Schneider, 2001; Bonsall et al., 2002; Tscharntke et
al., 2002; Hansen et al., 2003; Orrock et al., 2003). Because of variety in processes and e�ects,
in�uence of spatial heterogeneity to multi-species systems is either studied theoretically on
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a highly abstract level (De Roos et al., 1998; Gurney et al., 1998; Donalson & Nisbet, 1999;
Grenfell et al., 2001; Lima, 2002; Pascual et al., 2002b; Briggs & Hoopes, 2004, and references
therein) or in case studies (Hochberg et al., 1994; Arditi et al., 2001; Winder et al., 2001;
Wootton, 2001). Results of di�erent studies are di�cult to be compared and hence only con-
tribute in small parts to a more general understanding.
The missing link could be a framework to evaluate in�uence of spatial landscape structures
to population dynamics in species communities. Such an approach has to be �exible to allow
incorporation of detailed population dynamical processes and a variety of spatial structures.
However, assessment of resulting dynamics has to be comparable and therefore needs to be
�xed by the methodology.
The PVA-protocol presented in sec. 3 and sec. 4 provides the power for such a framework.
Flexibly a variety of species traits and landscape characteristics can be included into simu-
lation models. Resulting extinction dynamics can be uniformly evaluated by the two simple
measures of persistence c1 for initial risk of extinction and intrinsic mean time to extinction
tm for extinction risk during the established state of a community.
In this section, we describe a framework to assess many highly complex landscape structures
by their ability to sustain species communities. A spatially explicit model is used to sim-
ulate species and their interaction with landscapes. According to ranking order of species
persistence, suitability of landscapes can be estimated. Hence, simulated species themselves
evaluate their ability to cope with particular spatial structures.
In our opinion, by this method, species perception of landscape structures can be revealed.
This landscape assessment can be seen as a �lter: Suitable and unsuitable landscapes are dis-
tinguished. Hence, further investigations by neutral spatial indices can be directed to evaluate
di�erences between landscapes of di�erent suitability.
We illustrate usage of the framework by applying it to the host-parasite Maculinea system. By
means of the spatially explicit Macu model (ch. 1), we analyse in�uence of host plant density
on persistence of the butter�y. In this section, we restrict to a consideration of methodolog-
ical aspects, whereas in sec. 6 we extensively analyse e�ects of spatial host distribution to
Maculinea performance.

5.2 Framework for assessing spatial habitat patterns from PVA

analysis

Extensive studies require a conceptual hierarchical approach. Figure 5.1 displays, how the
suggested analysis of ecologically relevant spatial structures takes its course.
To start, we choose a variety of spatial con�gurations of habitat, which could potentially
occur for the species system under consideration. Following standard methods from landscape
ecology, we calculate spatial indices as characteristics for the habitat structures. Instead
of correlating these measures to population data from �eld investigations (like abundance
or occurrence of individuals), we evaluate spatial structures by PVA. For this purpose, we
construct a spatially explicit simulation model for the ecological system. It might incorporate
species behaviour or other important species traits. The previously selected habitat structures
are applied to the model in form of a 'parameter variation'. That is, for each spatial structure,
we perform a PVA on results of the simulation model. Hence, the ability of the ecological
system to cope with o�ered di�erent landscapes is calculated. In the next step, knowledge
is gained on importance of spatial properties of habitat for species persistence by comparing
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Figure 5.1: Conceptual overview how to analyse the in�uence of spatial patterns on population
dynamics

PVA evaluation with standard spatial indices. This information helps to understand, how
species perceive di�erent spatial structures, concerning survival in a certain area.
We suggest to apply PVA instead of directly analysing simulated population sizes because of
four reasons. First, PVA is a standard method, which is successfully used to asses conservation
management options (Sha�er, 1981; Grimm et al., 2004; Beissinger, 2002; Lacy & Miller, 2002).
Hence, landscape structures can be assessed in a well known framework. Second, PVA, as it is
a form of statistical aggregation, delivers robust results for minor model inaccuracy, especially
when used as a ranking order method (see ch. 4 and Grimm et al. (2004); Frank et al. (2002)).
This means for the presented method that, although model abstraction or uncertainty in
parameters reduce reliability of the simulation model, qualitative ranking of habitat structures
is stable. Third, in ch. 3, a PVA method was presented, which is applicable to a large variety
of species systems. This PVA characterises species' extinction risk by only two numerical
parameters: Mean time to extinction tm evaluates viability during the established state (that is
viability of species in the system). Persistence measure c1 contains information about the risk
of extinction during an initial transient phase (Grimm & Wissel, 2004). These two persistence
measures allow to evaluate long term suitability of a spatial habitat structure (tm) and initial
suitability of the habitat con�guration (c1), e.g. in a reintroduction scenario. Fourth, species
persistence is the relevant measure for habitat suitability. It explicitly contains information
about how species cope with their environment in critical situations of small population sizes
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Table 5.1: Standard PVA parameter set for habitat suitability analysis

parameter description name value
time horizon: maximum number of generations calculated within one
simulation run

TH 5000

number of simulation runs from which times to extinction are calculated NumRuns 300
number of runs for which population dynamics was saved (always the
�rst runs in a PVA experiment)

savedRuns 3

maximum value of tm* tmax
m 107

* tmax
m was adaptively de�ned from observed PVA results to avoid tm ! 1 in the database
and in further statistical calculations. tm !1 is calculated by the numerical PVA method,
when all simulation runs reach TH (populations survive in all simulation runs).

(ch. 3). It can be said: if a species cannot persist with a spatial habitat con�guration, the
con�guration is unsuitable.

5.3 An exemplary application

We illustrate this framework, applying it to the host-parasite system of Maculinea (ch. 1).
We want to answer the question, if explicit spatial plant structures are important for survival
of Maculinea butter�ies on a site or if plant density is a su�cient predictor for persistence
of the butter�y. For this purpose, we estimate suitability of 687 host plant distributions (see
ch. 1.3.4.2). Each of these host plant distributions represents one landscape in our case study.

5.3.1 Methods

Following the protocol, we parameterise the simulation model with the set of standard pa-
rameter and a standard spatial host ant distribution (see tab. 1.1). PVA is performed for all
di�erent plant distributions. Standard simulation parameters for the PVA calculations can be
seen in tab. 5.1. NumRuns = 300 is a very low value (see ch. 4), but it is a trade o� between
simulation time (687 � 300 � 5000gen � 109gen need to be simulated for the full analysis) and
accuracy of PVA results.
To estimate accuracy, we select di�erent host plant patterns and repeat the PVA procedure
with each of these spatial patterns for 166 times. Hence, for each host plant pattern we receive
166 estimates of persistence measures tm and c1. Resulting distributions1 of persistence mea-
sures can be evaluated by their range of 90%-quantiles. This is a 'rough analysis of deviation'.
Finally, we calculate density of host plants in each of the spatial host plant patterns. The
predictor variable 'plant density' is related to the response variable 'intrinsic mean time to
extinction tm' (see bottom of �g. 5.1).

1In di�erent simulations, we observe that the distributions of persistence measures are usually concentrated
around the maximum likelihood but are not normally distributed
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5.3.2 Results

5.3.2.1 Relevance of plant density

In �g. 5.2, the result of the example study is presented. For plant densities up to about 50%,
values of intrinsic mean time to extinction tm range from 104 to 107 generations. These high
tm-values indicate long viability of populations. However, there is variance in the data. In-
creasing plant density decreases values of tm. Hence we conclude that not too high density
of host plants on a site is good for persistence of Maculinea butter�ies. Finally, for very high
plant densities we �nd tm < 10 generations. Thus, very high plant densities are unsuitable for
Maculinea persistence. Transition between both extremes happens on a small range of plant
density.
Distinguishing three types of system reactions for di�erent ranges of plant densities, we al-
ready implicitly assume that spatial index 'density of plants' is a proper predictor for system
viability. Why can we draw this assumption? Because points in �g. 5.2 arrange themselves
in a functional pattern according to plant density and not totally random. This means that
viability of the system is related to plant density.

5.3.2.2 Relevance of explicit spatial patterns

But remember, each point in �g. 5.2 represents a full spatial host plant distribution. This is
more information than the numerical value of 'plant density' contains. We �nd that points in
the graph do not string on a narrow line. There are some deviations. These can arise from
two causes. Either persistence measures are measured inaccurately, resulting from errors in
statistical analysis of the stochastic simulation model (ch. 4.4.2). Or, the analysis results in
di�erences in viability because the explicit spatial distribution of host plants is di�erent. In
this case, an e�ect of spatial structure on species persistence is found.
To distinguish between both alternatives at points, where an explicit spatial e�ect is suspected,
the 'rough analysis of deviation' (sec. 5.3.1) should be applied. Exemplarily, we show results for
two plant patterns with the same number of 146 host plants (corresponding, plant density =
0:162). The upper row of �g. 5.3 displays boxplots of the distributions of tm-values from 166
repeated PVA-analysis for each pattern. Pattern 1 has unique tm = tmax

m = 107gen. The
histogram in the middle row of �g. 5.3 con�rms this observation. All 50000 simulation runs
reach time horizon TH = 5000 generations. In contrast, pattern 2 shows a narrow distribution
of tm around 104:8. All of the 166 values are far below 107. The corresponding histogram shows
that Maculinea populations can go extinct during the �rst 5000gen. Comparing boxplots and
histograms for both patterns, it is obvious that there must be a substantial di�erence in
population dynamics for both patterns, although they consist of the same amount of host
plants. Looking at the plant distributions at bottom row of �g. 5.3, it is not surprising that
they have a clearly di�erent aspect. In pattern 1, plants are much more arbitrarily distributed
than in pattern 2, which consists of only one patch. Hence, explicit distribution of host plants
is important for the system.

5.3.3 Conclusion of the example study

In the example study, results of the suggested approach are manifold. First, plant density
can be seen as a good predictor for persistence of Maculinea butter�ies. Second, it is deduced
that, in certain cases, the explicit spatial patterns of plant distributions have strong in�uence
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Figure 5.2: Times to extinction log10(tm) for di�erent host plant distributions of Maculinea.
Parameter to characterise the spatial plant distribution is 'density of plants'. Although show-
ing a functional relation between plant density and tm, there is a high variance at least for
low plant densities. This variance results from di�erent e�ects of plant distributions, which
are equally dense.
Note, for simplicity, least plant density is about 10%. In analysis of ch. 6, lower host plant
densities are considered.
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Figure 5.3: Analysis of spatial host plant distribution with the help of mean time to extinction
tm. Each column represents results of one plant distribution pattern. Both patterns comprise
146 host plants. Upper row: distribution of mean time to extinction from 166 tm-calculations.
Middle row: Histograms of times to extinction from 50000 simulation runs (y-axis break at
500). Bottom row: spatial host plant distributions. Note that for pattern 1, no extinction event
could be found, whereas for pattern 2 extinction of Maculinea butter�ies was not unusual.
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on persistence. Third, the framework �lters out, in a comfortable way, the critical patterns
(those with strong variances in tm-plant density correlations). And fourth, it indicates that,
for di�erent patterns, population dynamics might result from di�erent processes.

5.4 Discussion

5.4.1 The meaning of population persistence for the assessment of land-
scapes

In the approach, population viability is used to assess spatial habitat con�gurations. What is
the meaning of population persistence for the landscape analysis?
PVA measures persistence of a population under �xed environmental conditions. It is a com-
mon methodology to vary external environmental factors in order to evaluate their e�ects on
the viability of a population (see di�erent authors in Beissinger & McCullough, 2002). In
the suggested framework, spatial con�gurations are varied and evaluated. High viability of a
population indicates that this type of species performs good with the tested spatial arrange-
ment. Hence, the arrangement is suitable.
Neutral landscape indices consist of purely spatial measures which ignore any ecological at-
tributes. Habitat suitability or population viability, however, always summarise both, the
landscape setting and the species' speci�c response to it.
In the example study, the spatial con�guration is a spatial distribution of host plants. This
arrangement is evaluated by the persistence of a Maculinea population. Assume that per-
sistence is high, hence we conclude that the plant distribution is suitable. However, another
species acts in this system: host ants of genus Myrmica. For these Myrmica ants, suitability
of the host plant distribution could be assessed to be completely di�erent. The ants have
other demands on suitable habitat (Elmes et al., 1998). Hence, suitability of a spatial habitat
con�guration normally is di�erent for di�erent species. But, it can be di�erent for the same
species as well, when other environmental factors change: On a site without host ants, Ma-
culinea butter�ies cannot persist, although the host plant distribution would be suitable, if
Myrmica ants were present.
It is obvious that the suggested method does not only assess spatial properties of a habi-
tat structure, but as well includes in�uencing environmental conditions. This approach of
landscape evaluation is useful, because the same landscape can have di�erent suitabilities for
di�erent species and under di�erent environmental conditions.

5.4.2 Suitability of landscape structure for colonising and established species

The method presented in this section automatically assesses suitability for two di�erent situ-
ations: for an initial colonisation by a species and for a time, when the species is established.
Usually we are interested in suitability of a spatial habitat arrangement on the long run that is
for an established population. In this case, habitat suitability is assessed by the intrinsic mean
time to extinction tm. High values of tm indicate high suitability of the spatial con�guration.
However, some species might have di�erent needs to a spatial habitat structure during coloni-
sation than during the established phase (see ch. 4). For such species, it is important to
assess, if spatial habitat structures are suitable for colonisation. Because, if colonisation of a
site is never possible, we won't �nd an established population on the site, although it would
be suitable.
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Table 5.2: Assessment of habitat suitability for a site

c1 < 1 c1 � 1 c1 > 1

tm high suitable habitat, but
less suitable during
adaptation phase

suitable habitat suitability of habitat
is even higher during
adaptation phase

tm low habitat less suitable and
even worse during adap-
tation phase

habitat less suitable habitat less suitable,
but the system adapts
well

tm < 1000 habitat unsuitable

Suitability for colonisation can be evaluated by persistence measure c1. A value of c1 < 1
indicates that, under the given conditions, a spatial habitat con�guration is less suitable for
colonisation than for being established.
Table 5.2 helps to assess habitat suitability from persistence measures.

5.4.3 Analysing spatial structures and spatial interactions

PVA tells us, which spatial habitat con�guration is suitable. However, it is important to know,
why it is di�erent to an unsuitable one. To answer this question, the framework supports a
variety of methods.

5.4.3.1 Testing a spatial index for habitat suitability and population viability

In the example study, we used a neutral spatial measure (host plant density) to characterise
geometry-statistical properties of landscapes. This approach, inspired by methods from land-
scape ecology, relates geometric landscape characteristics to habitat suitability. A good spatial
statistical descriptor for suitability reveals, which spatial structures in the landscape are rele-
vant for the performance of species.
The important spatial structures are revealed by the help of the population dynamical process.
Their relevance is approved by the species system. However, these spatial patterns are geo-
metrical properties of the landscape, independent of the population dynamical process. Hence,
we can attach suitability of a landscape to its spatial properties, ignoring the spatiotemporal
population dynamics of the system.
This means, a good spatial descriptor for suitability of a habitat con�guration, on the one
hand is a simple spatial statistic. On the other hand, it is approved to describe the relevant
properties of a landscape to sustain species. Hence, it is a spatial index which takes into
account species demands on the spatial habitat con�guration. Such indices are required for
species conservation (Frank, 2005b).

5.4.3.2 Learning from variance in data

In our example study of the Maculinea model, we �nd that host plant density is a good
predictor for habitat suitability. However, several host plant distributions are less suitable
than indicated by their density (sec. 5.3.2.2; data points which lie below the general trend in
�g. 5.2). We argue that, for these types of host plant patterns, density is not su�cient to
predict suitability. Hence, further spatial properties, which are not assessed by density, a�ect
suitability.
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Structurally, our reasoning follows the way of statistical modelling (e.g. in an analysis of
deviation). Sadly, these established statistical methods cannot be applied in our case, because
we do not know the distribution of data or errors. However, in sec. 5.2 an alternative method
is suggested, which can be used to assess signi�cance of variance in data (which is a type of
Monte-Carlo method).
Here, we want to discuss what we can learn, if a spatial index does not su�ciently re�ects
suitability. A spatial index is the quanti�cation of the assumption, that a spatial property of
a landscape relevantly in�uences suitability. By this assumption, other spatial properties are
ignored explicitly. Hence, if the spatial index is insu�cient, we learn that excluded spatial
properties are relevant for suitability.
In particular, if two spatial patterns are equally evaluated by the spatial index, but their
suitability is highly di�erent, the e�ect of excluded spatial properties is strong. There has
to be a reason, why the same population dynamical system performs di�erent in two spatial
habitat con�gurations. Therefore it is promising to compare such spatial patterns, in order to
reveal, which of their properties are the reason for the variance in suitability. Probably their
spatial con�gurations clearly di�er (like shown in �g. 5.3). This clear di�erence can be used
to generate hypothesis about the relevant spatial properties.
In practice, learning from variance can have large impact. It is easy to overview a graph,
which relates a spatial index to habitat suitability (such as �g. 5.2). Variance in data points
is obvious. Hence, we quickly know, where to search for unrevealed patterns. In detailed
analysis, we can restrict to few spatial habitat con�gurations for which we already know that
their structures have strong di�erent e�ects on suitability. This allows to limit the e�ort of
complicate and demanding spatial or spatiotemporal analysis, because it has to be done for
only few examples. The alternative would be, to investigate all spatial habitat con�gurations
by maximum e�ort and to deal with high amounts of redundant information.
In ch. 7, using knowledge on variance, a spatiotemporal analysis of population dynamics of
the Maculinea system of about 2000 scenarios can be restricted to only 18. A spatial index to
assess suitability, developed from detailed investigations on the 18 scenarios, approved to be
e�ective as well in all the other scenarios.

5.4.3.3 Comparing between spatial statistics

The framework suggested in this chapter has another important advantage: predictive power
of di�erent statistics for spatial habitat structure can be compared, because they are assessed
against standardised measures tm and c1. Here, we show two ways, why this is useful. Firstly,
spatial statistics can be compared to identify, which of them is the best indicator for population
persistence, hence the best spatial index. Secondly, knowing about their characteristics, the
spatial statistics can be applied to generate hypothesis. For example, if measures for spatial
clumping are better predictors for tm than those ignoring clumping, spatial structure probably
has an in�uence on population persistence2.

2Within the work of this thesis, �ve di�erent types of spatial statistics were compared for their predictive
power of persistence measures tm and c1. Although not explicitly showing this comparison here, the results
strongly improved understanding of the system and motivated analysis of ch. 7
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5.4.4 Understanding certi�es models of habitat suitability and landscape
indices

We see an important advantage of the framework in its guiding structure. The scientist is
taken through several steps which all give a di�erent point of view on habitat characteristics.
In each step, the scientist re�nes and approves thinking about the species' habitat use.
First step is that PVA provides a view on habitat suitability through the eyes of the modelled
species. Populations react with high or low viability to the given environment. Second, the
method works as a �lter. It characterises di�erent patterns according to their spatial proper-
ties and to their ability of supporting populations. A spatial index, which describes suitability
well, seizes spatial properties, which are relevant for species persistence. Additional variance,
which cannot be explained by the spatial index, can be attributed to unconsidered spatial
properties. Third, to explain variance, the scientist can concentrate on few spatial patterns,
where unexplained e�ects are large. Detailed analysis of population dynamics on only these
patterns provides understanding of spatiotemporal processes and spatial patterns. Fourth,
knowledge from these few scenarios can be reformulated as hypothesis and tested on the other
scenarios.
In our opinion, the framework can improve investigations on spatiotemporal population sys-
tems, because it allows to quickly assess a broad range of di�erent spatial habitat con�gura-
tions. Results can be presented in few graphs that provide overview on the e�ects of di�erent
spatial patterns. Weaknesses in understanding patterns are easily revealed. Improving under-
standing is supported by the framework, as following analysis can be concentrated to spatial
patterns which provoke unexplained e�ects on species viability.

5.5 Conclusion

The presented framework allows assessment of suitability of spatial habitat con�guration for
species and species communities by means of a generally applicable population viability anal-
ysis. In comparative investigations of many di�erent spatial habitat structures, it can be
revealed, which spatial characteristics are relevant for suitability.
In the framework, advantages of detailed analysis of localised spatiotemporal process are com-
bined with large scale approaches from landscape ecology. Suitability incorporates species
interaction with a habitat and environmental conditions. Therefore the framework allows to
switch between analyses of ecological processes and of geometrical properties of spatial habitat
distributions.
The framework can be used to develop spatial indices. These indices are approved to seize
properties of a habitat con�guration, which are relevant for species persistence.
As well, the framework facilitates detailed analysis of spatiotemporal population dynamics re-
sulting from di�erent spatial habitat structures. Hence, understanding the in�uence of spatial
heterogeneity on populations can be improved.
The framework supports investigation on reasons for extinction that result from habitat change
and fragmentation, because it allows insight on species perception of spatial habitat structure.
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Chapter 6

E�ects of spatial host distributions on

viability of Maculinea butter�ies

6.1 Introduction

Some of the previous chapters, are concerned with developing methodology. In others, dy-
namics of the Macu model is analysed to get a general understanding of the behaviour of the
Maculinea model. With this background we are now in the position to tackle the main topic
of this thesis � to study how persistence of Maculinea populations is a�ected by the spatial
distribution of hosts.
Host plants form the �xed part of the spatial habitat distribution for the Maculinea popula-
tion. Their spatial con�guration can be considered as a landscape for oviposition of Maculinea
(sec. 1.3.2.1). Adult Maculinea butter�ies are supposed to be able to reach every host plant
on a site. That is, they disperse globally (sec. 1.3.2.6). In contrast, Myrmica host ants are the
dynamical part of the spatial habitat con�guration. Spatial host ant distribution is a�ected
by ant population dynamics (sec. 1.3.2.5) as well as by parasitism of Maculinea caterpillars
(sec. 1.3.2.4). Thereby we want to remind that several processes of the system are con�ned
to di�erent spatial patterns and scales.
In ch. 2, it is found that global parasite distribution leads to synchronisation in nest dynamics
of host ants. However, host ant movement and parasitism take place locally. These processes
are spatially related to the spatial habitat structure caused by the host plant distribution.
As population dynamics are strongly in�uenced by spatial distributions of hosts (plants and
ants), these spatial con�gurations are supposed to a�ect persistence of Maculinea butter�ies,
too (Bonsall et al., 2002; Briggs & Hoopes, 2004; Hosseini, 2003).
From model de�nitions in ch. 1 and results in ch. 2, it can be concluded that strength of
spatially acting processes changes temporarily. Hence, spatial e�ects are observed di�erently
at di�erent time scales. In the following, we summarise spatiotemporal e�ects, which can be
expected:

Long time scale - established state: Spatial host plant distribution is �x during a simu-
lation run. It imprints long term spatial fragmentation of Maculinea habitat on a site.
In contrast, host ants dynamically adapt to spatially distributed parasitism of Maculinea
caterpillars. During the established phase, a �uctuating quasi-stationary distribution of
host ants is observed. This distribution is found to be independent of the initial host
ant distribution (see ch. 2). We hypothesise that host plant distribution and budding

113



114 CHAPTER 6. SPATIAL HOST DISTRIBUTION AND VIABILITY

range � in�uence persistence in the established state, whereas initial Myrmica host ant
distribution does not have any e�ects. (H1)

Short time scale - initial transient state: The degree of spatial correlation between the
plant distribution and the ant nest distribution during the transient phase should a�ect
persistence of Maculinea butter�ies. Imagine an initial situation, where host ants and
host plants are spatially separated. In such a case, the Maculinea butter�y population
cannot colonise a site. At least few cells, containing plants and ants, are necessary.
On the other hand, a contrasting situation, where all ant nests are situated in cells with
host plants, is possibly not suitable, because ant nests might be overexploited and cannot
su�ciently recover (Singer & Merelo, 2004, unpublished work). We hypothesise that the
initial host distributions and adaption processes have an in�uence on persistence during
the initial phase. Interaction is expected to be complex, depending on explicit spatial
distributions and ability of ants to build new nests. (H2)

The method for analysing the spatial habitat structure in terms of its e�ect on population
viability presented in ch. 5 can di�erentiate habitat conditions according to their e�ects during
initial transient state and during the established state of the system. Hence, it gives a chance
to test our hypotheses. Further, if persistence during establishment is actually not in�uenced
by initial host ant distribution, investigation can be simpli�ed by ignoring this parameter.
In this and the following chapter, we restrict investigation to three 'parameters', which are
supposed to drive spatial in�uence on population dynamics of Maculinea systems: host plant
distribution, initial Myrmica host ant distribution and budding range of Myrmica host ant
nests �. We perform 'parameter variation' experiments on � and both explicit spatial distri-
butions of host plants and host ants.

6.2 Methods

We investigate the in�uence of spatial distributions of host plants and host ants using the
methodology described in ch. 5. For designing our experiments we follow �g. 5.1. To analyse
e�ects of spatial patterns, we use the pool of spatial host distributions described in ch. 1. We
characterise host distributions by numbers of host plants and numbers of initial host ant nests.
Absolute host numbers correspond directly to densities

density =
total number of respective hosts

maximum number of cells
=

total number of respective hosts
900

as each cell can be occupied at most by one nest and one plant.
In all experiments, the Maculinea model is parameterised with the set of standard parameters
(tab. 1.1). For PVA we use the parameter set from tab. 5.1. Keeping these parameters constant
makes results of PVA comparable (see protocol in ch. 5). Hence, measures of persistence tm
and c1 can be used to assess persistence under di�erent conditions of host plant density, initial
Myrmica host ant nest density and Myrmica budding range �.
In the following sections, parameter variation experiments for each of the three spatially
relevant parameters are described precisely.

6.2.1 Variation of host plant distribution

In our �rst experiment, host plant distribution is varied. We run the Maculinea model with
all 645 plant distributions described in ch. 1.3.4.2. To test the dependence on either initial
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Table 6.1: Scenario groups and representative host plant distributions

SG Scenario group
description

Range of
# host plant+

Persistence
type

Host plant pattern! # plants �g.*

SG1 Lowest host plant
coverage

< 100 Type II plantsSG1 39 6.3

SG2 Highly suitable
host plant coverage
(intermediate cover-
age)

100� 500 Type I plantsSG2a 146 6.4

plantsSG2b 478 6.5
SG3 Declining persistence

(high plant coverage)
500� 700 Type II plantsSG3 598 6.6

SG4 Highest host plant
coverage

> 700 Type III plantsSG4 858 6.7

SG5 Intermediate
plant density with de-
creased persistence

119� 186 Type II plantsSG5 146 6.8

+ see �g. 6.2
! names of host plant con�gurations indicate the functional group, which they represent. Note,
the two plant patterns for SG2 are distinguished by letters 'a' and 'b'

* Column '�g.' refers to graphs depicting variation of initial ant distribution.

host ant distribution or on budding range of Myrmica ants �, this study is repeated for
di�erent combinations of these additional parameters. Noticing that e�ects are small we
restrict further analysis to three initial ant nest distributions ants1 (#nests: 217), ants2
(#nests: 483), ants3 (#nests: 716) with nest sizes of 10 caterpillar equivalents and budding
range � = 4m; 8m or 12m. These parameters are chosen to cover a reasonable range of nest
numbers and movement scales.

6.2.2 Distinguishing scenario groups

Dependence of intrinsic mean time to extinction tm on plant density allows to de�ne di�er-
ent groups of scenarios. These groups sort scenarios together, for which certain functional
relations of intrinsic mean time to extinction and host plant density can be assumed. The
scenario groups are discriminated by eye from the plot and in doubting cases con�rmed by
the analysis of variance method described in ch. 5.3.1 (see e.g. �g. 5.3). From these scenario
groups, randomly one or two representative plant patterns are chosen for further analysis.
Representative plant patterns are listed in tab. 6.1.

6.2.3 Variation of initial Myrmica host ant distribution

Host ant distribution is varied for each representative of a scenario group and each of the values
� = 4m; 8m or 12m. We apply 605 di�erent initial host ant nest distributions, where each nest
is occupied with 10 caterpillar equivalents (see ch. 1.3.4.2). This nest size corresponds to nest
capacity, when parasitic Maculinea butter�ies are absent. Results are analysed in context of
their scenario group.
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6.2.4 Variation of Myrmica host ant budding range �

We further restricted parameter variation of � to scenario groups, where an in�uence of bud-
ding range on long term persistence has been found. Parameter � is varied between 1m and
18m. We used spatial host plant distributions from scenario groups 1, 3 and 5 (see tab. 6.1)
and the same three initial host ant distributions as in sec. 6.2.1.

6.3 Results

We �nd that the parameter variations have a strong and complex, often interacting in�uence on
persistence of Maculinea. To cope with interactions, we carefully describe analyse and interpret
e�ects in context of their occurrence. Results are linked to earlier mentioned properties of PVA
(ch. 3 and ch. 4) and of the spatial analysis framework (ch. 5) in order to extract characteristics
of the Maculinea system.

6.3.1 In�uence of host plant distribution

In �g. 6.1 the measures of persistence tm and c1 are displayed for varying host plant distribu-
tion. Spatial distributions of host plants are characterised by the total number of host plants
on the site. Note, there are several host plant distributions with equal number of plants but
di�erent spatial arrangements. Di�erent symbols in graphs represent simulations with di�er-
ent initial Myrmica host ant distributions. Budding range is not varied (� = 8m).
In the following, we concentrate on �g. 6.1a1. Evidently, range of intrinsic mean time to ex-
tinction tm is broad, when host plant density is varied. According to their e�ect on persistence
of Maculinea populations, four categories of host plant densities can be distinguished. There
is a critical density dlowc (dlowc � 10%) below which the intrinsic mean time to extinction tm
of a Maculinea population strongly declines with declining host plant density. For host plant
densities higher than dlowc but below an upper limit dhighc � 60%, tm assumes highest values.
For host plant densities above dhighc intrinsic mean time to extinction tm declines sharply. For
highest host plant densities, values of tm are lowest.
The strong di�erence in long term persistence of Maculinea populations for di�erent plant
distributions motivates to divide plant distributions into several di�erent scenario groups (see
ch. 6.2.2). Results for each scenario group are presented separately. In the following, scenario
groups (SG) are de�ned and analysed according to dependence on host plant distribution.
Criteria to distinguish groups are determined qualitatively from observations in graph 6.1a.
De�nitions of scenario groups are chosen pragmatically to make analysis easier. Scenario
groups should not be considered as absolutely �xed and exact categories. Description of each
group ends with a short assessment of consequences for the persistence of Maculinea popula-
tions. In sec. 6.3.2, representative host plant distributions for each scenario group are selected
to investigate e�ects of the initial host ant distribution.

6.3.1.1 SG1 - Lowest host plant coverage

Sites with less than dlowc � 10% host plant coverage provide high variance in viability of
Maculinea butter�ies. With increasing plant density, intrinsic mean time to extinction tm

1In �g. 5.2 a similar analysis is depicted, but with a di�erent initial ant nest distribution. General shape of
graphs is similar, hence revealing that initial ant nest distribution is of minor importance for intrinsic mean
time to extinction tm
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Figure 6.1: Measures of persistence tm and c1 for variation of plant patterns. Budding range
� = 8m. Di�erent symbols correspond to di�erent initial ant distributions (nest size is 10);
circle: ants1, triangle: ants2, cross: ants3.
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increases strongly. Values range from a few decades in one case with 26 plants up to the
maximally allowed value tmax

m = 107gen. In�uence of initial host ant distribution on tm is not
found (except for one case with lowest ant nest density2). Now, we turn to �g. 6.1b, where
persistence measure c1 is displayed for varying host plant density. c1 indicates extinction risk
during initial phase (see ch. 3). It responses strongly to the variation of host plant numbers
and initial host ant distributions. For the smallest initial Myrmica host occupancy (circles),
c1 increases from 0 to 1 with increasing host plant numbers. Increasing numbers of initial
host ant nests provoke an increased onset and a reduced number of host plants, which are
necessary to reach saturation c1 � 1.
When we summarise, it can be said that in scenario group 1 (very low host plant coverage),
persistence of Maculinea populations during initial and established state increases with in-
creasing host plant density. Hence, in the case of low host plant coverage, the more host
plants are on a site, the more suitable it is for a Maculinea population. In contrast, the ini-
tial ant nest distribution e�ects persistence of a Maculinea population only during the initial
transient phase. Thus, initial host ant distribution in�uences performance of Maculinea, while
it colonises the site.

6.3.1.2 SG2 - Highly suitable host plant coverage (intermediate plant density)

Host plant distributions with densities between dlowc � 10% and dhighc � 60% are favourable
for Maculinea butter�ies. For many simulations maximum value tmax

m = 107gen is reached.
In most simulation runs of a PVA study, populations survive to time horizon TH . However,
there is variance in tm. On the one hand, initial ant nest distributions in�uence tm. On
the other hand, di�erent plant distributions can lead to noticeable lower values in tm and to
di�erent properties in extinction dynamics (see sec. 5.3.2.2). Hence, these plant distributions
and resulting persistence measures are collected in an extra class (SG5 - Intermediate plant
density with decreased long term persistence) and are described in sec. 6.3.1.5.
The reason, why initial ant nest distribution can decrease tm for up to 1.5 orders of magni-
tude, is discussed in sec. 4.4 and is known to be an artifact. As hints we �nd: First, quality
of the ln(1 � P0)-�t is low (r2 � 0). Second, number of simulation runs with populations
surviving until time horizon TH = 5000 is high. Third, c1 strongly varies between about 0.5
and 1. Hence, we refer to crosses at the lower border of �g. 4.6 or even type I - persistence
(ch. 4.3.1.1 and ch. 4.3.2.1). That is, populations either persist on long term or go extinct
early during the initial phase. Measured variation in tm can be contributed to inaccuracy of
the PVA method when applied beyond its applicability (sec. 4.4).
Summarising, intermediate host plant coverage provides highly suitable habitat conditions for
Maculinea butter�ies. However, during the initial phase, there is a potential risk that Macu-
linea cannot establish. Depending on initial host ant and host plant distributions, population
dynamics during the initial transient phase in�uences colonisation and hence can be decisive
for occupancy of the site (see ch. 4.5.2.2).

2In this case, risk of extinction during the initial transient phase is extremely high (c1 � 0) for ant nest
distribution ants1. Hence, the PVA-method cannot distinguish properly between initial and established state
(see sec. 4.4). tm is strongly in�uenced from both, initial and established extinction.
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6.3.1.3 SG3 - Declining persistence due to high plant density

For denser host plant coverage up to about 80%, a sharp decline of intrinsic mean time to
extinction tm is observed. Shape of the decline seems to be exponential. Most data points lie
on a line in the logarithmic plot (�g. 6.1a). But, for some plant distributions tm is reduced by
several orders of magnitude in comparison to plant distributions with similar density. Hence,
explicit spatial host plant distribution can change survival ability of Maculinea populations
in this scenario group (see ch. 7 for detailed analysis). No cases are found, in which plant
patterns enhance viability of butter�ies compared to the average density dependence.
An in�uence of initial host ant distribution on intrinsic mean time to extinction tm is not
observed. But there is an e�ect on persistence measure c1. c1 declines with increasing host
plant density. Onset of the decline is shifted for di�erent ant nest distributions and values of c1
rank with ant nest distribution. Mean of persistence measure c1 calculated from Myrmica dis-
tribution ants2 (triangles in �g. 6.1) is signi�cantly smaller than c1 of both other distributions
(Paired two sample t-test (Zar, 1998) on persistence measure c1 3; Pants3;ants1 < 2:2 � 10�6;
Pants3;ants2 < 2:2 � 10�6; df = 132). Surprisingly, suitability of ant nest distributions for sur-
viving the initial state is ranked di�erently in comparison to SG1 (sec. 6.3.1.1). A reason can
be found in an overexploitation e�ect, explained in sec. 6.3.2.2.
Summarising, increase of host plant coverage for values between 60% and 80% leads to a
strong decline of persistence of Maculinea populations during initial and established phase.
In�uence of explicit spatial host plant patterns on long term persistence is observed but e�ects
are low in comparison to density e�ects.

6.3.1.4 SG4 - Highest host plant coverage

A site, which is for more than 80% covered by host plants, is unsuitable for Maculinea pop-
ulations. Intrinsic mean time to extinction tm � 100gen. Variance of about 30 generations
is found, which is provoked by the initial ant nest distribution. Distribution ants1 (circles)
provides highest values of tm. An explanation is given in sec. 6.3.2.4.
It has to be mentioned that the PVA approach is inappropriate for this scenario group. Initial
and established state of population dynamics are not su�ciently separated (type III persis-
tence, see ch. 4.3.1.3). Accuracy of the persistence measure c1 is heavily a�ected. High values
of c1 � 1 are shown to be artifacts of the PVA-approach (see sec. 3.4.1). Hence, they are
ignored.
We conclude that Maculinea butter�y populations cannot persist on meadows with too high
density of host plants. Estimations of intrinsic mean time to extinction tm indicate that ap-
propriate initial host ant distributions might delay population extinction for few generations.
However, general unsuitability of sites with too high plant density is demonstrated.

6.3.1.5 SG5 - Intermediate plant density with decreased long term persistence

As mentioned in description of SG2 (sec. 6.3.1.2), explicit spatial host plant distribution can
lead to qualitatively di�erent extinction dynamics. In �g. 6.1a, for some host plant distribu-
tions, with numbers of plants ranging from about 100 to 200, intrinsic mean time to extinction
tm < 105gen. These values of tm are clearly below the values for the majority of PVA anal-
ysis with plant distribution of that density (see variance estimation for tm for two di�erent

3Five samples are removed from the data set, because c1 > 1. These values are supposed to be wrong,
because of an arti�cial e�ect on c1 for PVA studies which result in very low values of tm (sec. 3.4.1)
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host plant distributions of equal density: sec. 5.3.1 and �g. 5.3). Di�erence in viability of
Maculinea butter�ies for SG2 and this scenario group results from the in�uence of explicit
spatial patterns in the host plant distributions (see �g. 5.3 bottom and ch. 7). Extinction
dynamics are di�erent for both scenario groups (see sec. 5.3.2.2). For this scenario group type
II extinction is determined, whereas PVA of SG2 results in type I (sec. 6.3.1.2).
Persistence measure c1 varies unsystematically with host plant density. But, the initial Myr-
mica host ant distribution has an in�uence. The mean values of persistence measure c1 for
the distribution ants3 is signi�cantly higher than for the other two initial ant distributions.
(Paired two sample t-test Zar (1998); Pants3;ants1 = 0:050; Pants3;ants2 = 1:731 � 10�6; df =
7). Mean c1 of distribution ants2 is not signi�cantly lower than mean c1 of distribution ants1.
Persistence measure c1 does not rank according to ant nest density. This result is attributed
to overexploitation (sec. 6.3.2.2).
We summarise that long term persistence of Maculinea butter�ies is su�ciently high, however
lower than in SG2 (sec. 6.3.1.2). As host plant densities of this group are similar to the den-
sities of scenarios in SG2, we conclude that explicit spatial host plant distribution in�uences
persistence of Maculinea butter�ies. This e�ect is analysed in ch. 7. Short time persistence
for initial ant nest distribution ants2 is slightly lower compared to other PVA analysis of the
same plant densities.

6.3.2 In�uence of initial host ant distribution

Five di�erent scenario groups are distinguished according to host plant coverage and distribu-
tion. They are graphically indicated in �g. 6.2. From each group one or two plant patterns are
chosen to investigate the dependence of Maculinea persistence on initial ant nest distribution
and on ant nest dispersal �. The patterns are listed in tab. 6.1.
From variation of initial host ant distribution and host ant dispersal parameter �, it becomes
obvious that selection of scenario groups is reasonable. Extinction dynamics vary remarkably
between groups, not only according to host plants (see sec. 6.3.1) but also according to host
ants. We �nd it necessary that the reader gets an overview on possible e�ects of Myrmica host
ants on extinction dynamics of Maculinea butter�ies. Hence, for each scenario group, host
ant in�uence is described separately. Displayed graphs are all of the same type. Measures of
persistence tm and c1 are presented for the variation of initial host ant distributions, which
is characterised by number of host ant nests. Symbols correspond to di�erent values of �
(circles: � = 4m shortest dispersal range; triangles: � = 8m intermediate dispersal range;
crosses: � = 12m furthest dispersal range).

6.3.2.1 SG1 - Lowest host plant coverage

Initial Myrmica variation depicted in �g. 6.3 is calculated for plant distribution pattern
plantsSG1. For very few numbers of host ant nests, intrinsic mean time to extinction tm
is very small (values below 10 generations). Increasing the initial number of Myrmica nests,
tm jumps for 3 to 4 orders of magnitude. Further increase of ant nest number does not a�ect
tm anymore. Intrinsic mean time to extinction tm is not in�uenced by almost all initial Myr-
mica distribution. In contrast, budding range � (di�erent symbols in �g. 6.3) a�ects tm. In
an additional parameter variation it is found that increasing � from 1m to 18m reduces tm
for almost one order of magnitude.
Measure of persistence c1 for low numbers of host ant nests is highly varying with values above
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SG4

SG3SG2SG1

SG5

Figure 6.2: Identi�ed scenario groups. The scenario groups distinguish qualitatively di�erent
extinction dynamics resulting from the variation in number of host plants. This schematic
graph is based on �g. 6.1a.
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1 , which is according to the known artifact of the PVA method for non-persisting populations
(tm very low) described in sec. 3.4.1 and is therefore ignored. With increasing initial number
of host ant nests, c1 grows up to a saturation value of c1 � 1. Saturation is reached for about
600 initial host ant nests.
A small number of initial host ant patterns is evaluated to be unsuitable (tm very low). In
sec. 4.3.2.3 it is argued, that non-persistence of a population might occur because of long term
unsuitable conditions or because extinction risk during the initial transient phase is extremely
high. Without further information, it cannot be determined from extinction dynamics, for
which of the two reasons a population is not persistent. Here, information is provided to
ensure that, in fact, Maculinea butter�y populations cannot overcome the initial conditions.
This can be seen for two reasons. First, for slightly higher numbers of initial Myrmica host
ant nests, c1 � 0 indicates that almost no population survives the initial phase, but tm � 104

means high long term persistence. Second, in all but these few cases, initial Myrmica distri-
bution does only in�uence c1 but not intrinsic mean time to extinction tm. Therefore, no long
term e�ect of initial host ant distribution can be detected. Hence, for very low numbers of
host ants, Maculinea butter�ies do not persist for long term, because populations already go
extinct during the initial transient phase. In other scenario groups, non-persistence because
of extinction during the initial phase is found for low numbers of initial host ant nests, too
(see below).

6.3.2.2 SG2 - Highly suitable host plant coverage (intermediate plant density)

Two examples of parameter variation for intermediate plant coverage can be seen in �g. 6.4
and �g. 6.5. Fig. 6.4 results from an experiment with host plant distribution plantsSG2a (146
host plants). Fig. 6.5 is calculated for host plant distribution plantsSG2b (478 host plants).
Except for very few numbers of host ants (see sec. 6.3.2.1), intrinsic mean time to extinction
tm > 105gen. For high numbers of host ant nests (coverage > 60%), tm = tmax

m = 107gen.
This saturation is reached on di�erent ways in both examples. In �g. 6.4 with increasing
number of Myrmica nests, values of tm grow. Contrasting in �g. 6.5, after an early increase,
tm undergoes a minimum at � 350 ant nests, before it augments to saturation. Note, in this
case tm values depend on budding range of Myrmica host ants. Lower dispersal range leads
to higher intrinsic mean time to extinction tm.
For persistence measure c1, the shape of the curve is qualitatively the same as for tm. For high
numbers of Myrmica nests, saturation value c1 = 1 is reached. In �g. 6.4 for ant nest numbers
below 400 a trend of increasing values of c1 can be observed with augmenting abundance of
host ant nests (but there is high variance on the data). Instead, in �g. 6.5, the minimum
observed in the tm values is repeated for c1, again with dependency on �.
Analysing histograms of times to extinction more thoroughly, type I persistence (see ch. 4.3.2.1)
is found. Maculinea populations on sites with intermediate host plant density either go ex-
tinct during the initial transient phase or persist for long time. Extinction risk during the
established phase is very low. Hence, according to analysis in sec. 4.4.2, values of tm < 107

result from accuracy problems of the PVA-approach, where early extinction in�uences tm.
E�ects on risk of extinction during the established phase cannot be detected, because no ex-
tinction events occur during the established phase until time horizon TH is reached. Here,
the ln(1�P0)-PVA-approach is used beyond its applicability. But it delivers the qualitatively
correct result that the butter�y population is persistent in the established state (see ch. 3.3.3,
ch. 4.3.2.1 and ch. 4.5.2.2). Hence, patterns in both measures of persistence tm and c1 are
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provoked by the risk of extinction during the initial phase, which is explained in the following.
Two di�erent patterns of reaching saturation in measures of persistence are found. They re-
sult from di�erent population dynamics during the transient phase. Be reminiscent of section
2.4.1.1, where three types of behaviours are distinguished for the transient phase of Maculinea
butter�ies and Myrmica ants. Here, we �nd that the ln(1 � P0(t))-PVA method is sensitive
enough to detect these behaviours. In �g. 6.5, initial increase of c1 for low numbers of host
ants can be attributed to population dynamics, where numbers of Myrmica ants start at low
levels and slowly increase until saturating at levels of the established state. Depending on
the initial number of Maculinea, population size of butter�ies might drop within few gener-
ations due to low resource availability, then grows with Myrmica ant number again. Such
population dynamics is depicted in �g. 2.6 or in �g. 2.8. Decline of persistence measure c1
begins, when resource availability is high enough to be initially overexploited by Maculinea
butter�ies. Because of initially su�cient Myrmica ant nests (high resource), the predacious
Maculinea population can grow to a high population size. Exploitation depresses the host
ant population. In following generations, number of butter�ies declines to very low values
until the host ant population recovers. During this phase, butter�y population is prone to go
extinct (see e.g. �g. 2.7). For initial numbers of host ants higher than about 400 (minimum in
c1), the reservoir of host ants in cells without host plants is high enough to quickly recolonise
overexploited cells. Hence, decline of number of butter�ies is weaker and extinction risk lower;
c1 increases. For high numbers of initial ant nests, there are enough unparasitised nests, which
quickly recolonise emptied cells. Initial overexploitation can be absorbed in almost all simula-
tion runs. c1 � 1. In �g. 6.5, it can be observed, that a wider spatial range of ant nest budding
(� is high) results in lower values for persistence measure c1. Two di�erent processes provoke
this e�ect. First, large budding range allows Myrmica ants to quickly colonise the whole site.
Hence, butter�ies pro�t from a big resource. Higher numbers of butter�ies are detected in
the initial peak, when � is high. These abundant butter�ies very e�ectively exploit host ant
nests, leaving a poor situation for following generations. Not parasitised host ant nests from
cells without host plants quickly recolonise and produce suitable habitat, but on cost of their
own nest size. This recolonisation might be too slow for the remaining butter�ies. Or, it leads
to a further explosion of butter�y numbers. The following phase of recolonisation is based
on already weakened ant resources. Second, with large budding range �, in the model, the
probability is high, that host ants try to colonise area outside the site. In such a case, the
colonisation attempt is unsuccessful and the ants return to their original nest (ch. 1). But
the possibility is lost that the nest colonises an empty cell within the study site, in that year.
Hence, this edge e�ect reduces colonisation e�ciency of the Myrmica population, and there-
fore the number of suitable cells for the Maculinea population after an overexploitation event.
The di�erent types of initial population dynamics are found in the next scenario group, too.
Summarising, long term persistence of populations is found for intermediate plant coverage.
Initial ant nest distribution has to be monitored, because it can lead to early population
extinction. This scenario group especially is a�ected by the bottleneck e�ect described in
ch. 4.5.2.2. Large budding range of Myrmica host ants increases extinction risk during the
initial transient phase.

6.3.2.3 SG3 - Declining persistence due to high plant density

For this scenario group, representative host plant distribution plantsSG3 is analysed exem-
plarily. In �g. 6.6 for very low nest numbers, tm is low and c1 is high, which indicates that
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Figure 6.3: Variation of initial host ant distribution for scenario group 1 (plants: PlantsSG1;
number of plants: 39, �- Variation; circle: � = 4, triangular: � = 8, cross: � = 12)
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Figure 6.4: Variation of initial host ant distribution scenario group 2 (plants: plantsSG2a;
number of plants: 146, �- Variation; circle: � = 4, triangular: � = 8, cross: � = 12)
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Figure 6.5: Variation of initial host ant distribution scenario group 2 (plants: PlantsSG2b;
number of plants: 478, �- Variation; circle: � = 4, triangular: � = 8, cross: � = 12)
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Figure 6.6: Variation of initial host ant distribution scenario group 3 (plants: plantsSG3;
number of plants: 598, �- Variation; circle: � = 4, triangular: � = 8, cross: � = 12)
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Figure 6.7: Variation of initial host ant distribution scenario group 4 (plants: plantsSG4;
number of plants: 858, �- Variation; circle: � = 4, triangular: � = 8, cross: � = 12)
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Figure 6.8: Variation of initial host ant distribution scenario group 5 (plants: plantsSG5;
number of plants: 146, �- Variation; circle: � = 4, triangular: � = 8, cross: � = 12)
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populations do not survive the initial transient phase (see sec. 6.3.2.1). For higher numbers
of initial host ant nests, tm � const 4. Most data variation can be explained from di�erent
budding ranges of host ants. Smaller dispersal ranges (� small) result in higher intrinsic mean
time to extinction tm. It must be noticed that, with increasing �, variation of tm around a
mean level declines.
Persistence measure c1 reaches very high values for very low numbers of host ant nests (e�ect
explained in sec. 6.3.2.1). For slightly higher numbers of initial Myrmica ant nests, c1 sharply
increases from c1 = 0 to c1 = 1. Afterwards, it drops, reaching a minimum at about 400
initial Myrmica nests and then increases up to values of almost c1 � 1. For host ant nest
numbers above 400 (after minimum in c1), it can be seen that the higher the budding range
parameter �, the lower the persistence measure c1. Shape of the curve in the lower graph of
�g. 6.6 follows the described overexploitation-e�ect in sec. 6.3.2.2. But minimal values of c1
are noticeably lower than in �g. 6.5. A strong arti�cial e�ect of initial extinction dynamics to
tm, like described in sec. 6.3.2.2, is not found for the scenario group of higher numbers of host
plants4.
Long-term persistence in this example is su�ciently high. But, it must be kept in mind that
persistence of this scenario group depends extremely on host plant coverage and ranges from
high chance of population persistence to high chance of population extinction (sec. 6.3.1.3).
Initial Myrmica ant distribution a�ects vulnerability of populations during the initial phase.
Because of di�erent initial population dynamics, increasing initial ant nest number can lead to
both augmentation and decline of early extinction risk. An important �nding is that colonisa-
tion probability (surviving the initial phase) of Maculinea is sensitive to initial host ant nest
numbers on the whole range. Budding range of host ants in�uences persistence during the
initial and the established phase.

6.3.2.4 SG4 - Highest host plant coverage

Simulations with host plant distribution plantsSG4 (number of host plants: 858) are inves-
tigated representatively for this scenario group. Results are presented in �g. 6.7. tm ranges
from 0 to 1.5 for all ant nest distributions. c1 varies from 0 to 5 (usually higher than 1).
Such persistence measure values are restricted to situations with very low numbers of ant
nests in other scenario groups (see sec. 6.3.2.1). Here, for this almost entire plant coverage,
non-persistence (type III) is found for all host ant distributions. Hence, it can be deduced,
that sites with high host plant coverage are unsuitable for Maculinea butter�ies.
For about 100 ant nests, a maximum of tm can be observed in �g. 6.7. It results from a delay
of population extinction, because of favourable ant nest distributions. Contrasting to lower
initial numbers of host ant nests, these favourable distributions ensure su�cient numbers of
cells with ants and plants. But, their limited number of nests additionally avoids an immedi-
ately peaking butter�y population, which occurs for higher numbers of initial host ant nests.
In sec. 6.3.1.4 it is described that the initial host ant distribution ants1 provides higher values
of tm than the other ant distributions: This can be explained from the fact that number of
Myrmica nests for ants1 (#nests 217) is in the range of the observed peak in �g. 6.7.
An e�ect of budding range of Myrmica ants is not detected. This corresponds to the expecta-

4tm very slightly follows the shape of the curve of c1, in particular for low values of �. This results from
inaccuracies in the PVA-procedure (see �g. 4.6 crosses). The linear �t to estimate measures of persistence is
a�ected by single extinction events during the established state, because many populations might go extinct
during the initial phase (c1 is low) or survive until time horizon TH
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tion that dispersal on di�erent scales should not change persistence strongly on homogeneously
covered sites. Hence a globally dispersing parasite should not percept whether its host dis-
perses further or shorter.
Concluding, it can be said that very high host plant density is unsuitable for Maculinea but-
ter�ies. Populations cannot persist. Favourable density of host ant nests can delay extinction
of the Maculinea population for some generations.

6.3.2.5 SG5 - Intermediate plant density with decreased long term persistence

For data depicted in �g. 6.8, host plant distribution plantsSG5 is chosen as a representative.
It consists of 146 plants, the same number as in plant distribution plantsSG2a (sec. 6.3.2.2),
but has a di�erent spatial pattern. Host plants in pattern plantsSG5 are much more clumped
(see bottom of �g. 5.3).
For very low numbers of host ants, the e�ect of extinction during the initial phase is found,
which is already described in sec. 6.3.2.1. In contrast to other scenario groups the e�ect can
also occur for nest numbers up to 200 nests. In general, tm does not depend on initial Myrmica
nest density. This constance begins for lower nest numbers than in other scenario groups. But,
dependence of intrinsic mean time to extinction tm on Myrmica dispersal range is observed.
For � = 4m, tm � 1000gen, whereas for � = 12m, tm is almost about 2 orders of magnitude
higher. In a separate study (not shown here), we �nd that for � > 15m, tm = tmax = 107gen
can be reached, depending on initial host ant distribution and the strength of the numerical
artifact (see sec. 4.4.2) they provoke4. Note, the e�ect of varying budding range � is reversed
compared to e�ects observed in other scenario groups.
Measure of persistence c1 tends to augment with increasing number of host ant nests up to
saturation value c1 � 1. Budding range of Myrmica ants in�uences c1 positively up to a
saturation. However, height of the saturation depends on the distribution of Myrmica ant
nests. Although � in�uences c1 positively, the e�ect is not strong enough to compensate for
bad initial conditions (data not shown here). Variance of c1 is very high, especially for � = 4
(circles).
For scenarios with few clumped host plants, it is not surprising that explicit initial host
ant distribution and dispersal ability of ants have an impact on the initial performance of
a Maculinea population. If, initially, ants and plants are mainly located in separate spatial
areas, it takes some time until host ants will have dispersed towards host plants. During
this phase, the butter�y population is vulnerable. In contrast, if initially ants and plants are
situated more favourable, Maculinea butter�ies do not su�er during the initial phase.
Long term persistence of Maculinea butter�ies in scenarios of this group depend on budding
range of host ants. We �nd in this example that, for high and intermediate values of �,
Maculinea populations persist, whereas for � = 4 the population is vulnerable. An additional
e�ect on probability of extinction during the initial phase is found. Especially, when Myrmica
ants have a locally restricted budding range, early extinction is a considerable factor up to 600
initial host nests. This �nding demonstrates that host ant dispersal can be crucially important
for colonisation success of Maculinea, e.g. after catastrophes like an inundation, during which
an ant population has been destroyed.
Strong dependence of persistence on dispersal abilities of host ants indicates that spatial
structures of host distributions can strongly in�uence Maculinea fate.
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6.4 Discussion

6.4.1 Spatial analysis on the Maculinea system

Analysing e�ects of spatial patterns on population dynamics is a di�cult task for several
reasons. First, previously, it is not clear at all, which kind of patterns might be relevant for the
ecological process (Grimm et al., 2005). Second, spatial scale of ecological processes determines
on which scale spatial objects are important (Perry et al., 2002; Wiegand & Moloney, 2004,
and references therein). Third, there are many spatial indices, which quantify particular
characteristics of point patterns. But, most indices are correlated with intensity and many
are correlated among each other (Gustafson, 1998; Dale et al., 2002; Fahrig, 2003). Hence, it
is di�cult to reveal, which of the slight di�erences of measures are important. Fourth, the
parameter space is large.
For these reasons, spatial analysis has to ful�ll several requirements to be successful. It has
to incorporate ecological processes. It �exibly has to incorporate di�erent spatial scales. It
has to measure di�erences between correlated patterns accurately. And �nally many di�erent
spatial patterns have to be processed, for which results of the analysis need to be comparable
(see ch. 5). In the following it is discussed how the spatial analysis of host distributions in the
Maculinea system ful�lls these requirements.

6.4.1.1 Incorporating ecological processes into the analysis

The assessment of spatial host distributions is based on their suitability for persistence of
Maculinea populations. This is achieved by applying PVA on a rule based population model
for Maculinea systems (ch. 1), which incorporates dynamics and processes of the system. The
model, although generic, is related to a model for a case study (Hochberg et al., 1994; Clarke et
al., 1997, 1998) and is therefore quite realistic. Using the generic model in this study we take
advantage of its special design to emphasise e�ects of spatial host distributions and dynamics
(sec. 1.3). With this model, we are able to incorporate all relevant ecological processes into
the analysis.

6.4.1.2 Spatial scales of the system

Species in the system act on di�erent scales. Myrmica host ant foraging range is restricted to
a small scale, however, their dispersal range (budding process) is larger. Maculinea butter�ies
are not restricted in reaching host plants on the site. Additionally, host plant distribution
introduces a further scale of spatial organisation. These di�erent scales are considered and
implemented in the Macu simulation model and thus can be assessed in the analysis.

6.4.1.3 Resolution in the evaluation of spatial patterns

In our analysis, the resolution, to which spatial patterns can be assessed, is limited by the
accuracy of PVA estimations. In sec. 4.4 it is found that measures of persistence can be reliably
estimated only for a small range of intrinsic mean times to extinction (tm 2 [103:5gen; 104:5gen]
5. For other values of tm, both persistence measures can be inaccurate. However, it is argued
in sec. 4.4 that we can trust the trend of a PVA, although exact values for the measures of
persistence cannot be determined.

5The range depends on the setting of PVA parameters. For PVA parameters in this study, see tab. 5.1.
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From the knowledge on inaccuracy of the PVA results, there are two possibilities how to
proceed with the analysis of e�ects of spatial host patterns. Either, accuracy is increased
by performing more simulation runs with a longer time horizon, or inaccuracy is taken into
account for further analysis. Assessing increased accuracy by applying the �rst possibility for
several scenarios, we decided that this way is not practicable for reason of computer and time
resources.
However, the second way is successful. To deal with the accepted inaccuracy, we transform the
data. We categorise the continuous measures of persistence and host plant coverage by only
�ve so called scenario groups. Data of each group can be characterised by unique properties.
The suggested categorisation is rougher than numerical estimates of measures of persistence.
For this reason, inaccuracy does not matter. In a similar way, we describe results from variation
of initial distribution of host ants.
Obviously, the PVA method is too inaccurate to allow distinction of small e�ects of spatial
patterns. But, general trends are revealed. The method is accurate enough to distinguish
strong e�ects of spatial distributions (for e.g. it is shown, that clumping of host plants
in�uences persistence of Maculinea). This accuracy is su�cient for analysing e�ects of spatial
patterns on performance of species, because in general, for conservation neither data nor
management methods are more accurate.

6.4.1.4 Completeness of spatial patterns and processes

In this analysis, suitability of 645 host plant distributions and 605 initial host ant distributions
is assessed. The distributions are generated by di�erent random processes and are clumped on
di�erent spatial scales (ch. 1). This set of scenarios is assumed to be large enough to represent
the major part of possible distributions.
Many di�erent reasons for vulnerability of Maculinea populations are found (sec. 6.4.2). We
assume that spatial e�ects provoking extinction during the established phase are completely
detected. On the one hand, strong in�uence of host plant density, on the other hand, no in�u-
ence of initial host ant distribution, allow to separate e�ects of the three di�erent parameters.
Hence, the parameter space is strongly reduced and mostly scanned by our investigations.
In contrast, it is much more di�cult to �nd reasons for extinction during the transient phase.
In�uence of all three parameters is strong. Hence parameter interaction can provoke quali-
tatively new e�ects. Anyhow, main processes should be grasped by our method. All e�ects
mentioned in sec. 6.4.2 are found at least in variations of two parameters or for di�erent sce-
nario groups. Hence, these e�ects are double checked. It is unlikely that a probable further
mechanism is not seen in one of these parameter variation experiments.
In our analysis, observed e�ects of explicit spatial structures of hosts on the risk of extinc-
tion during the initial phase are much smaller than for the risk during the established phase.
Hence categorisation of data might hide further e�ects. However, the e�ort to achieve higher
accuracy in data cannot be taken in this thesis. To our opinion, further e�ects would not
relevantly (that is for purpose of species conservation) in�uence persistence of Maculinea.

6.4.1.5 What can be achieved with the spatial analysis?

From the sections above, it can be concluded, that the method of spatial analysis presented in
ch. 5 can be successfully applied to analyse e�ects of spatial host distributions on persistence of
Maculinea populations. The results give a broad and comprehensive overview on how di�erent
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host plant coverage and host ant nest numbers a�ect Maculinea. In particular, we can deduce
three kinds of results:

1. We �nd, whether the spatially implicit measure 'host plant coverage' is su�cient to
predict persistence of the butter�y population. It is su�cient, if variance in measures of
persistence is small for di�erent host plant distributions of the same coverage.

2. The circumstances are determined, under which initial host ant distribution is an im-
portant factor for persistence of Maculinea.

3. Results of the analysis are derived separately for two di�erent time scales - for an initial
period of butter�y colonisation and for the phase, when a population has established.

These types of results are essential to analyse how the spatial host distributions a�ect dynamics
of the Maculinea system (following sections) and to deduce recommendations for management
of Maculinea sites (sec. 6.4.5).

6.4.2 Summary of e�ects

Our analysis was guided by the objective to collect spatial factors and processes, which a�ect
persistence of Maculinea populations. Parameter interactions forced us to perform investiga-
tions for di�erent scenario groups separately. Analysing one group at a time, we have tried to
compile all important e�ects. Findings are explained in context of scenario groups.
Necessarily, this type of piecewise analysis is troublesome, when trying to get a broad overview.
Therefore, to complete our investigations, we now change the emphasis and turn from scenario
groups to e�ects. This change allows to elaborate circumstances for population extinction in
terms of parameter constellations. In other words, we answer the question, how the parameters
a�ect the processes and how they in�uence persistence of Maculinea.

6.4.2.1 E�ects of spatial distributions during di�erent temporal periods of sys-
tem dynamics

Spatial parameters and processes are found to a�ect persistence di�erently during initial tran-
sient phase or established phase. Due to parasitism, Maculinea in�uences spatial distribution
of its host ant and again a�ects its own dynamics. A similar result is found by Tobin &
Bjornstad (2003) who have observed that the spatial distribution of a prey �y changed after
introducing a predatory beetle.
For the Maculinea population we state that on one hand it depends on the parameters (host
ant distribution) at each moment, on the other hand it changes these parameters continuously.
Subject to system state, e�ects of parameters and processes change. This is an important �nd-
ing, which implies that conditions of a site are di�erently suitable for colonising Maculinea
butter�ies or for an established population (sec. 4.5.2.2, sec. 6.4.5). For this reason, in the
following we consider initial and established phase separately.

6.4.2.2 E�ects of spatially induced processes on risk of extinction during the
established state

Three main reasons can provoke high risk of extinction during the established state.
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Few host plants: On a site with only few host plants (below � 30), Maculinea populations
are endangered. Slightly increasing number of host plants, improves conditions for the
butter�ies strongly.
A small number of host plants provides only few oviposition places for adult Maculi-
nea butter�ies. Their e�ective amount of suitable habitat on the site is small. It is
widely observed that small habitats can only support small populations because capac-
ity is small. In �eld observations on 13 sites and modelling studies, Elmes et al. (1996)
�nd a linear dependence of numbers of observed Maculinea rebeli eggs and number of
Gentians, when food plant density is below 1200-1600 gentians per ha (see comparison
of HCET and Macu model in ch. 2). Equally for Maculinea rebeli, Kery et al. (2001)
show, a positive relation of host plants (Gentiana cruciata) and population size as well
as persistence of Maculinea rebeli populations on sites with low densities of Gentiana
cruciata.

High plant density: When plant density is high on a site, Maculinea eggs are distributed
widespread. Many host ant nests can be a�ected by parasitism. Only few nests are save
in areas without host plants.
Assume a large population of Myrmica ants. Maculinea caterpillars will exploit this
large resource almost entirely. Therefore, nests in vicinity of host plants will go extinct.
Suddenly, the butter�y population must cope with a shortage of resource. It will decline
until extinct nests are replaced by budding from nests, which are not in vicinity of host
plants. The process is explained in more detail in ch. 7 and 8.
This overexploitation e�ect provokes extinction in scenarios of group 3 and 4. (sec. 4.5.2.1).

Unfavourable host plant con�guration and small host ant budding range: SG5 com-
prises host plant patterns with high clumping. It is found that small dispersal range
leads to high risk of extinction in this scenario group (sec. 6.3.2.5). Similarly, Clarke et
al. (1998) �nd an e�ect of host plant clumping on Maculinea rebeli population size. For
a detailed discussion refer to sec. 2.4.2. In ch. 7, e�ects of spatial host plant patterns on
Maculinea butter�ies are investigated in detail.

Spatial parameters are ranked according to the strength of their in�uence on Maculinea persis-
tence. Host plant density mainly drives persistence of Maculinea butter�ies. But, to a certain
extent, explicit spatial host plant patterns vary viability of Maculinea. Especially on habitats
with inhomogeneous plant distributions, Myrmica budding range is an important factor. In
contrast, longterm viability is insensitive to changes in the initial Myrmica distribution.
As mentioned already in ch. 4, variation of spatial factors can drive Maculinea viability from
extinction (type III) to persistence (type I). Resuming results for di�erent scenario groups,
it is found that intuitive classi�cation corresponds to these persistence types (see tab. 6.1).
Hence, it is clear that although plant densities are similar, distinction of persistence types
requires separation of SG2 and SG5.

6.4.2.3 E�ects of spatially induced processes on risk of extinction during the
transient phase

Risk of extinction during the transient phase of population dynamics is determined by di�erent
processes. E�ects of these processes are common to several scenario groups. This is not
surprising. Groups are classi�ed according to the in�uence of host plant distributions on long-
term persistence. E�ects provoked during the initial phase can be independent of those found
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during the established phase.
High initial risk of extinction for Maculinea populations is provoked from the following factors:

Too few Myrmica host ants: On sites with a very small number of initially distributed
host ant nests, risk of extinction is extremely high for Maculinea butter�ies. Initial
vulnerability might even totally imped establishment of populations. This e�ect is in-
dependent of host plant distribution or Myrmica budding range.
High extinction risk of Maculinea populations re�ects two search problems. First, as-
sume few host plants on the site. Hence, Myrmica nests are located in vicinity of host
plants with only a small probability. But, the constellation of neighbouring nests and
plants is essential for Maculinea to reproduce. The amount of suitable habitat is too
low. In the second case, host plant density is high. The few Myrmica nests are located
close to host plants with high probability. But, chance is low that adult Maculinea select
plants with nests, from the large host plant pool. Host eggs are lost after oviposition.

Few host plants and few Myrmica host ant nests: As explained before, the probability
is low that both spatial distributions of host plants and host ants �t to each other. Hence,
the amount of suitable habitat is low.
In contrast to the case before, few numbers of host plants do not endanger Maculinea
populations, when abundance of Myrmica ants is high enough (lower graph in �g. 6.3).
The reason is found in the way, adult Maculinea butter�ies perceive a site. Butter�ies
restrict oviposition to host plants. Myrmica abundance is high. Thus, ant nests are
situated in vicinity of plants and can adopt caterpillars. Hence, when ant nest number
is high enough, Maculinea �nds only suitable habitat.

Intermediate to high host plant density and intermediate host ant number: This con-
stellation provokes overexploitation of Myrmica ants by Maculinea butter�ies and is an
important reason for extinction during the initial phase. The process is explained in
sec. 6.3.2.2. Overexploitation is a reason for extinction of Maculinea butter�ies for es-
tablished populations, too (sec. 6.4.2.2). But, there is an important di�erence between
both processes. If the system is established, spatial distribution of Myrmica host ants
is adapted to the spatial pattern of parasitism (see ch. 7). In particular, host ant nests
occupy most area, which is far away from host plants and therefore is not a�ected by
parasitism. Hence, destroyed host ant nests can be e�ectively substituted from save
Myrmica host nests.
If Maculinea butter�ies overexploit Myrmica during the initial phase, nest distribution
is not yet adapted. Hence, e�ciency to recover parasitised ant nests is reduced. For
high numbers of initial host ant nests, this e�ciency is augmented, because more ant
nests are available. Highest risk of extinction due to the overexploitation e�ect occurs
for intermediate Myrmica host ant density.
In �g. 6.1b, increased initial risk of extinction because of overexploitation can be ob-
served for host plant numbers above 450 specimen. Strongest e�ect is found for the
initial Myrmica distribution ants2 with an intermediate number of 483 nests.

Unfavourable host ant distribution, short-range budding: Unfavourable host ant dis-
tribution in combination with host ant budding on a short range, increase risk of extinc-
tion for Maculinea butter�ies during the initial phase. High numbers of host ant nests
are required to compensate the negative e�ect.
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During the initial phase, initial Myrmica host ant nest density plays a crucial role. It deter-
mines suitability of host plants. Plants with a neighbouring host ant nest provide resource
for Maculinea reproduction. Without Myrmica host ant nests, host plants are sinks. Our
result is in�uenced by the assumption that adult Maculinea butter�ies perceive their habitat
only via host plants. Hence, they cannot adapt to host ant distribution (see Hochberg et al.
(1994), but vanDyck et al. (2000); Wynho� et al. (2001)). Host ant budding range � is of
minor relevance.

6.4.3 Hypothesis

We are now able to evaluate the hypothesis raised in the introduction of this chapter (sec. 6.1).
It was hypothesised that the initial Myrmica host ant distribution is not relevant for persis-
tence of Maculinea butter�ies during the established state (H1). Results con�rm this state-
ment. Only in the case, when initial conditions imped the system to survive the transient
state, initial host ant distribution a�ects long-term persistence.
In�uence of host plants and Myrmica dispersal range on survival of Maculinea during the es-
tablished phase is found, according to hypothesis H1. Additionally, it can be stated that host
plant density is the most important factor. Dispersal range of host ants has strong e�ects,
when host plant distribution is inhomogeneous.
Persistence of Maculinea populations during the initial phase depends on all three factors, as
predicted by hypothesis H2. Occurrence of spatially induced e�ects is in�uenced by interac-
tions of parameters.

6.4.4 Population dynamical processes provoking high risk of extinction

Fig. 6.9 shows population sizes and their relation to long-term persistence of Maculinea popula-
tions. The population sizes are compiled from the same experiments as measures of persistence
in �g. 6.1a. Statistics on the population sizes is calculated according to the protocol described
in sec. 2.2. Data from experiments with di�erent initial host ant distributions is clumped
together, because long-term behaviour is not in�uenced by this factor. Fig. 6.9a depicts de-
pendency of mean Maculinea population size on the number of host plants. Di�erent symbols
indicate scenario groups. As expected, the shape of the curve corresponds to the shape in
�g. 2.2a.
Comparing graph 6.9a and �g. 6.1a, it is learned that for small numbers of butter�ies, both
mean population size and intrinsic mean time to extinction increase. A threshold in popula-
tion size (� 50 individuals) indicates transition to SG2 (triangles), that is persistence. Hence,
persistence of Maculinea butter�ies depends on a critical population size, when number of
host plants is low. In contrast, for numbers of plants above 500, although mean Maculinea
population size is high, the intrinsic mean time to extinction tm declines (SG3). High variance
in mean population size, can be explained partly from the in�uence of long transient phases (a
dependency on initial conditions is found). But stronger e�ect results from large amplitudes
in population cycles (see ch. 2.3.1).
Therefore, in the following, e�ects of temporal population �uctuations are discussed. Fig. 6.9b,
shows correlation between the intrinsic mean time to extinction tm and the coe�cient of vari-
ation of population sizes (CV). CV(x) = s(x)

x
, where s(x) denotes the standard deviation and
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x is the mean value of x 6. CV is a measure for �uctuation originating either from stochastic
or from deterministic variation. In �g. 6.9b it is found for SG3 (crosses +), that increase of tm
means declining CV. That is, strong variation in data leads to high risk of extinction. Fluctua-
tions mainly result from deterministic predator-prey cycles (see ch. 2). Hence, although mean
number of butter�ies is high, temporal cycles strongly increase and decline population size.
Demographic stochasticity a�ects the population for low numbers of individuals and might
lead to extinction (see ch. 3 and ch. 4). Mean number of butter�ies is misleading when assess-
ing persistence. The concept of minimum viable populations (MVP; Sha�er (1981)) cannot
be applied to the Maculinea system, as the butter�y population only temporarily drops below
a critical threshold. This is typical for systems with overexploitation (Abrams, 2002).
Returning to SG1 (circles). As before, increasing mean time to extinction goes together with
a decline in variance. But, although extinction risk is comparably high, CV values of SG1 are
smaller than those for SG3. Low risk of extinction is even possible, for values of CV below
those of SG2 (persistent populations). Why are systems of SG1 vulnerable? The reason is
easily seen in �g. 6.9a: census data indicates a low mean number of butter�ies of only few
individuals. Hence demographic extinction is not necessarily restricted only to minima in
temporal variation. Generally, population size is low and therefore a�ected by demographic
stochasticity.
Hence, �g. 6.9 illustrates that extinction of Maculinea butter�ies is driven by two di�erent
processes: small mean population size due to low numbers of host plants or overexploitation
of Myrmica ants due to high numbers of host plants.
Remarkably, SG5 (diamonds) cannot be attributed to one of both processes. CV values lie in
between. Mean numbers of butter�ies although slightly below the values of persistent group
SG2, are higher than values of SG1. In ch. 7 it is argued, that clumping of host plants on sites
with low numbers of host plants invokes Maculinea butter�ies to be a�ected by both reasons.

6.4.5 Conservation aspects

Results presented in this section show that host plant distribution has a strong impact on
persistence of Maculinea butter�ies, especially during the established phase. In ch. 5, it is
argued that with the applied method, suitability of habitat can be measured in terms of tm.
For these reasons, host plant distribution should be taken into account as an important factor
for habitat quality. From a point of view of adult butter�y behaviour, these plants represent
suitable habitat, at least for oviposition and early larval stages. In contrast, initial Myrmica
host ant distribution does not a�ect suitability, provided that a least number of host ants is
present.

6.4.5.1 Critical densities of host plants to support Maculinea populations

Discussing host plant distribution in terms of habitat quality, allows to check which are least
conditions that Maculinea populations can persist. Critical are scenarios with either low or
high numbers of host plants. Additionally, extinction during colonisation of a new site must
be considered. It is an important factor for landscape management.

6In this context, usage of CV is critical because census data is far from being normally distributed. Hence,
distribution of data points cannot be modelled correctly. However, as CV is a non-robust measure, CV is
in�uenced by strong amplitudes, which are essential for persistence. Therefore, CV is suitable to analyse risk
of extinction due to high data variation



6.4. DISCUSSION 139

(a)

●●●●

●●
●

●●
●●●

●

●●●●

●
●●●

●●
●●

●●●●●●
●●

●●●●

●●
●

●●
●●●

●
●

●●
●●●●
●

●●
●

●●
●●●●

●●
●●●●●●●●●●

●●
●●●●

●●
●

●●
●●●

●
●

●●
●●●●
●

●●
●

●●
●●●●

●●
●●●●●●●●●●

●●

0 200 400 600 800

0
50

10
0

15
0

20
0

number of host plants

m
ea

n 
nu

m
 M

ac
u

(b)

●●●●
● ●

●
● ●

● ●●
●

●
●●●

●● ●● ●●● ●●
●●

●● ● ●● ● ● ●●
● ●

●
● ● ● ●●

●
●

●●
● ●●

●
●

● ●

●

● ●● ● ●● ● ●●●
●●●● ●● ●●● ● ●●●●

● ●
●

● ●●●●
●

●

●●
● ●

●
●

●
● ●

●

●●● ●● ●
●●● ●●●●●

●● ●● ●●

1 2 3 4 5 6 7

0.
5

1.
0

1.
5

2.
0

intrinsic mean time to extinction log10(tm)

C
V

 n
um

 M
ac

u

Figure 6.9: Number of Maculinea butter�ies is compared to persistence of Maculinea popula-
tions. In graph. (a) dependency of mean Maculinea population size on number of host plants
is depicted. Fig. (b) compares the coe�cient of variation of Maculinea population size with
intrinsic mean time to extinction. Di�erent symbols correspond to scenario groups: SG1 -
circles, SG2 - triangles, SG3 - crosses (+), SG4 - crosses (x), SG5 - diamonds. Statistics on
census data is calculated following the protocol in sec. 2.2
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Minimum host plant density to support Maculinea butter�ies Too few host plants
are risky for Maculinea populations, because they restrict the amount of suitable habitat.
Surprisingly, for long-term persistence, this restriction is not critical. Very low numbers of
plants can support Maculinea butter�ies. See for example �g. 6.3 (top), which results from a
scenario with only 39 plants. Intrinsic mean time to extinction is in the order of tm � 104,
which corresponds to an extinction risk of approximately 1% within 100 years. A compre-
hensive study on sites in the natural reserve Moerputten (the Netherlands) was performed by
Wynho� (2001). She found Maculinea nausithous populations on sites with not more than 30
host plants (Sanguisorba o�cinalis) with about 50 �owerheads per plant. Results of a model
for Maculinea arion, based on �eld observations, indicate that low densities of host plants are
su�cient to support the Large Blue Butter�y (Griebeler & Seitz, 2002). Glinka et al. (2004)
mention the existence of small populations of Maculinea nausithous and teleius along streets
or ditches.
In �g. 6.3 (bottom) is demonstrated that extinction during the initial transient phase after
colonisation of a site, can be the crucial factor to imped population persistence. Establishment
is only save for high numbers of initial host ant nests.

Maximum host plant density to support Maculinea butter�ies Overexploitation of
Myrmica host ants endangers Maculinea populations in case of too many host plants. First, a
bottleneck e�ect during the colonisation period can extinct butter�y populations. This e�ect
depends on the joint initial distribution of host plants, host ants and their budding range.
Wynho� (2001) suspected overexploitation after reintroduction as one reason for a strong de-
cline in population size of a population of Maculinea teleius: The site was highly occupied
by host plant Sanguisorba o�cinalis (15 plants per m2 with on average 30 �owerheads). Co-
occurring with low number of butter�ies, Myrmica host ant density was comparatively high
(0.4 - 1.3 nests/m2) in contrast to all other sites in the natural reserve (0 - 0.6 nests/m2).
Second, long-term persistence strongly declines with increasing host plant density. Too high
densities make a site completely unsuitable. There are several anecdotal reports that Ma-
culinea butter�ies are not found in the middle of meadows with high density of host plants.
They prefer to occupy boarder range of such meadows or sites with only few plants (Tagfalter-
Workshop Leipzig 2003, pers. comm.). Clarke et al. (1998) �nd that the number of Maculinea
rebeli declines, when 1000 host plants are added to a 1 ha site containing 1700 Gentiana
cruciata plants (see �g. 2.9).

6.4.5.2 Rules of thumb

The Maculinea model presented in ch. 1 and used in this investigation is not close enough to
natural conditions to predict exact threshold densities for host plants. Exemplary variation
of model parameters describing species traits, immediately shows that quantitative results
are not robust. However qualitatively, �ndings should be relevant for Maculinea systems.
Therefore it is useful to restrict on qualitative results. We formulate them as rules of thumb:

� Maculinea habitat sites should not contain too less host plants, although low numbers
of host plants can support small Maculinea populations surprisingly well.

� For introduction of Maculinea to sites with low host plant density, high density of Myr-
mica host ants is necessary.
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� Sites with dense host plant coverage are unsuitable for Maculinea butter�ies.

6.5 Summary

This chapter is the central part of the thesis. Di�erent threads are brought together in order
to investigate, how spatial host distributions in�uence persistence of Maculinea butter�ies.
The complete methodological framework developed throughout the thesis is applied. That is,
simulation model (ch. 1), ln(1�P0)-PVA-approach (ch. 3) and assessment of spatial host dis-
tributions by means of viability of Maculinea populations (ch. 5). This hierarchical approach
leads to highly aggregated information on Maculinea population dynamics. On the one hand,
results give complete overview on the in�uence of spatial host distributions to Maculina per-
sistence. On the other hand, the aggregated data incorporate methodological inaccuracy,
di�erent population dynamical processes and complex parameter interaction of up to 900 di-
mensional spatial objects. Hence, interpretation of data requires a manifold of background
information. This is provided by comprehensive analysis of methodological di�culties (ch. 1,
ch. 3, ch. 4, ch. 5) and non-spatial investigations on Maculinea population dynamics (ch. 2)
as well as extinction dynamics (ch. 4).
Main results are compiled in a short list:

� Host plant distribution is an important factor of habitat quality for Maculinea sites.

� Both scenarios of too many or too few host plants provide high risk of extinction to
Maculinea populations. Few host plants are negative, because the amount of suitable
habitat is reduced. Dense host plant coverage provokes Maculinea to overexploit its host
ant resource. Host-parasite cycles have large amplitudes.

� Too low initial density of Myrica host ants impedes Maculinea populations to establish
on a new site.

� During the established state of the system, Myrmica host ant distribution is spatio-
temporally adapted to parasitism. Initial host ant distribution is irrelevant.
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Chapter 7

Analysis of spatiotemporal population

dynamics of the Maculinea system to

derive a spatial index

,

7.1 Introduction

In the last chapters, it was investigated, how host plant distribution a�ects persistence of Ma-
culinea populations. It has been found that the aggregated measure 'coverage of host plants'
is an important factor for survival of Maculinea populations. However, in certain cases, it
could be shown that patterns of host plant distribution and budding range � of Myrmica host
ants have a remarkable e�ect on persistence of Maculinea populations. Factors like host plant
distribution or budding range a�ect interaction of parasitic Maculinea butter�ies and Myr-
mica host ants only locally, not globally on the complete site. Hence, if these locally acting
factors in�uence persistence of the whole system, it must be assumed that local processes play
an important role for the behaviour of the complete system. Local processes need to be taken
into account when trying to understand Maculinea systems.
For this reason, in this chapter, we analyse spatiotemporal population dynamics of the Ma-
culinea system on highest resolution - that is, we observe local processes of species movement
and species interaction (see ch. 1.3.5.5). Here, we need to cope with a problem, which was
avoided in analysis of earlier chapters, because we used highly aggregated measures like e.g.
intrinsic mean time to extinction tm to quantify population dynamics. Now, we are forced
to consider full spatiotemporal population dynamics, which are represented by time series on
multi-dimensional spatial distributions of host ants. Each time series is a realisation of the
stochastic spatial host-parasite process of the Maculinea system.
In �g. 2.5, only a short part of such a time series is displayed. Anyhow, already the few maps
in this �gure contain large amounts of information. Processing and categorising this data is
a demanding task for the researcher. Extensive, specially designed methods for the analysis
of stochastic spatiotemporal population dynamics have to be developed. In the literature,
there are few examples, where analysis of spatiotemporal dynamics of an ecological process
are performed successfully (e.g. Donalson & Nisbet, 1999; Pascual et al., 2001)
These examples restrict to analyse only few scenarios of di�erent landscapes. However, in our
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study, we aim to compare Maculinea systems on many di�erent sites with di�erent spatial
arrangements. Like in chapters 2, 4 and 6 we want to analyse dynamics, which result from
di�erent host plant distribution and di�erent host ant behaviour.
Such an investigation can only be performed, when one restricts to a concrete problem. Here,
restriction is given by the general question of this thesis: How do spatial distributions of host
plants and host ants in�uence persistence of Maculinea populations in the established state1?
Focusing on the question, we can pro�t from results in earlier chapters, to simplify the inves-
tigations.

� In sec. 6.3.2 it is found that intrinsic mean time to extinction tm in principle is not
a�ected by an initial Myrmica host ant distribution, provided there is a least number of
host ant nests (sec. 6.4.2.3). For this reason, we ignore initial distribution of host ants
as an in�uencing factor for population dynamics during the established state.

� We restrict detailed spatiotemporal studies to representative examples (according to
suggestions in sec. 5.4.3). As examples, we select scenarios, for which we can assume
that persistence is strongly in�uenced by local dynamics. In concrete, we select host
plant distributions, which contain an equal number of host plants. However, persistence
of Maculinea varies depending on the selected host plant distribution.

Restricting the problem provides another important advantage. According to the general
question, persistence is the decisive measure. We can use this measure to check �ndings of
properties of local processes. If a property shows to be a relevant factor in the representative
examples, it can be tested on other scenarios, whether it a�ects long term persistence in the
suspected way (see sec. 6.4.2.3).
Final aim of the study is to develop a spatial index, which allows to measure properties of
spatial host distributions, which relevantly in�uence persistence of Maculinea populations.
Such an index can be used to assess suitability of spatial host distributions for Maculinea
persistence on a habitat site and therefore is an important management tool for conservation
of the species.

7.2 Analysis

Our aim is to investigate, how localised processes in the population dynamics of Maculinea
butter�ies and their Myrmica host ants in�uence persistence of the parasitic butter�y popu-
lation. Analysing stochastic spatiotemporal dynamics on the level of single local processes is
di�cult due to the complex information of the data sets. It is in particular an unresolved
problem, how to compare di�erent realisations of the same or even of di�erent stochastic pro-
cesses (which are in our case dynamics resulting from simulations on di�erent scenarios).
We try to cope with this task by concentrating analysis on extreme scenarios. For these
example scenarios we know from earlier studies in ch. 6 that local dynamics strongly a�ect
persistence of Maculinea butter�ies. We think that it is easier to detect microscopic local
processes when they provoke strong e�ects.
Once understanding dynamics of these extreme examples, we develop ideas about how dy-
namics of the system generally work. These ideas are tested on other scenarios.

1Here, we restrict our analysis to the established state of the system. In principle, the methodology suggested
in this chapter could be used to analyse transient dynamics of the system, too. For this case, we would expect
further interesting results. However such an investigation is beyond the frame of this thesis



7.2. ANALYSIS 145

Table 7.1: Host plant patterns used in analysis of spatiotemporal
dynamics.

Host plant pattern # plants tm in gen+

� = 4m � = 8m � = 12m

plantsSG5 146 1276 86576 927310
plantsSG2a 146 107 107 107

plantsSG1 39 12285 6519 4342
plantsSG3a 597 294782 161848 26869
plantsSG3b 597 2177 3018 1548
plantsSG3c 597 366 540 555

Patterns with identical plant density are grouped together.
+ Intrinsic mean time to extinction tm is calculated for initial
host ant distribution ants3.

Organisation of the analysis needs to go stepwise. We take this natural coarse into account
by describing steps sequentially. In this way, methods, results and interpretation of each step
can be explained in the context of earlier results.

7.2.1 Selection of scenarios

We select scenarios, for which we have found that local dynamics strongly in�uence persistence
of Maculinea butter�y populations. We follow the idea of sec. 5.4.3. In �g. 5.3 it is demon-
strated that simulations with two di�erent host plant distributions can result in strongly
varying extinction dynamics of the butter�y population, although host plant coverage in the
two distributions is equal. It is argued that the explicit spatial structure of the host plant
distributions in�uences dynamics of the system. Hence, local interactions and processes play
an important role. From results in ch. 6 we especially select these scenarios (de�ned by host
plant distribution and budding range �), for which PVA results in strongly varying intrinsic
mean time to extinction tm, although host plant coverage is equal. Selected scenarios com-
prise a wide range of plant coverage and mean time to extinction. The scenarios are listed
in tab. 7.1. It can be seen that, for some scenarios, intrinsic mean time to extinction tm is
varying, although number of host plants is equal. We take this set of scenarios as basis for
the following analysis of spatiotemporal dynamics.

7.2.2 Simulations

For each scenario, we simulate population dynamics of the Maculinea system. We track num-
ber of host ants per cell and the total number of butter�ies in each simulation step (Compiler
option ant see sec. 1.3.5.5). We use the standard parameter set (tab. 1.1). Initial host ant
distribution is ants4. This host ant distribution contains 899 nests (only one corner cell ini-
tially does not contain an ant nest). We choose this high initial host ant coverage, because
results from sec. 6.3.2 indicate that Maculinea populations reach the established state with
highest probability, if initial number of host ants is highest. We analyse only one realisation of
the stochastic process for each scenario. The simulation procedure is repeated until butter�y
population at least survives for 350 generations. Maximum number of generations in a run is
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limited to 5000.

7.2.3 Time series of numbers of Myrmica ants within cells

We analyse the number of Myrmica host ants within the individual cells for each time step.
Fig. 7.1 shows four typical time series. Upper two graphs belong to cells with host plants,
lower two graphs result from cells without host plants.
In the upper two graphs (cells with host plants), the number of host ants varies between 0
and 8 caterpillar equivalents. 0 ants mean that there is no ant nest. In lower graphs (cells
without host plants), host ant number ranges from 4 to 10:8 caterpillar equivalents. Hence,
these cells are always occupied by host ants. Nests are likely to reach maximum size of 10.8
caterpillar equivalents, which is the capacity of ants per nest in absence of Maculinea (see
eqn. 1.5). The observation corresponds to our expectation that Maculinea butter�ies have
a stronger negative in�uence on their host ants in cells, where the butter�y caterpillars are
adopted by worker ants to the nest and can exploit - direct parasitism only takes place in cells
with host ants and host plants.
Number of ants displayed in �g. 7.1a shows that the cell is seldom occupied by host ants.
Once a nest can establish (number of host ants > 0), it vanishes shortly afterwards. It must
be remarked, that established nests have at least a nest size of 4 caterpillar equivalents. Time
series in �g. 7.1b shows that the cell is frequently occupied by host ants. However, although
peaks are broader than in �g. 7.1a, it seems that ant nests cannot establish for long time in
the cell. They vanish after several generations. Host ant number in �g. 7.1c frequently drops
steeply, but afterwards it recovers. Hence, nests do not go extinct. Finally, ant nest number
in �g. 7.1d does not change and stays equal to nest capacity.
Although for total number of butter�ies or total number of host ants, periodic behaviour
is observed (see sec. 2.3), periodic cycles are not found for number of ants in single cells.
Variation seems to be driven by stochastic events. This is an e�ect of global synchronisation
(e.g. Bjornstad et al., 1999; Bonsall & Hastings, 2004, and references therein) provoked by
Maculinea predation, which is a�ected by dynamics of Myrmica ants on a smaller scale.
Pascual et al. (2001) stated a dependence on the spatial scale for predator-prey dynamics.
We now have a closer look to the shape of curves in �g. 7.1. It is striking that peaks in graph
7.1b steeply build up or drop down within only one generation. However, in between, number
of ants only slightly varies. Hence, we can conclude that creation or destruction of an ant nest
have stronger e�ects to number of ants than other processes, which a�ect an existing ant nest.
The strong increase in number of ants at the beginning of a peak is provoked by colonisation
of an empty cell. Colonisation via budding is the only process, which leads to creation of a
new nest (see sec. 1.3). The sharp decline of ant number at the end of a peak is due to the loss
of ants, when a nest goes extinct (see sec. 1.3.2.5). Hence small peaks in graph 7.1a indicate
that an ant nest after being established immediately goes extinct. Shape of the curve in
�g. 7.1c is di�erent from the shape in graphs above. It steeply declines to recover afterwards.
From model description in sec. 1.3 it is clear that the budding process provokes the decline in
numbers of ants. It is the only process, which can reduce host ant number of large nests in
cells without host plants. The steepness of drops in time series graph 7.1c to about one half
of the original nest size veri�es this assumption (compare sec. 1.3.2.5). Recovery of the ant
nest after a budding event is driven by logistic growth (e.q. 1.4). In contrast, constancy of
number of host ants in �g. 7.1d indicates that the ant nest does not bud any empty cells.
Local processes of the simulation model result in typical shapes of time series on host ant
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Figure 7.1: Temporal development of host ant numbers within one cell. A typical example
is shown for each of the four cell e�ectiveness classes. In reproductive cells (graph (b)) and
bu�er cells (graph (c)), host ant number is strongly varying, whereas, in sink cells (graph (a))
and in non-contributing cells (graph (d)), number of host ants is constant, except for single
short events. Ant number is measured in caterpillar equivalents.
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number within a cell. Vice versa, if a time series of ant numbers in a cell has a certain shape,
we can argue, which processes mainly drive ant dynamics in the cell. For this reason, it is
worth to analyse the type of time series (respectively the type of ant dynamics) we �nd for
di�erent cells.

7.2.4 Quanti�cation of properties of time series

Time series in �g. 7.1 show four types of qualitatively di�erent behaviours. Other time series
share to a certain extent characteristics of these four types. It is useful to measure the type
of a time series quantitatively.
The two top graphs in �g. 7.2 show, how quantitative characteristics of time series on ant
number in a cell are determined. First, we skip 100 simulation steps at the beginning of
each run to avoid e�ects of initial conditions. Second, data points from the time series are
aggregated temporarily. The histogram in the middle graph of �g. 7.2 displays the relative
frequency of �nding a certain number of ants in the cell. Width of each class in the histogram
is 1 caterpillar equivalent. This corresponds to the butter�y rearing mechanism in host ant
nests (eq. 1.1). Third, from the histogram, two values are determined:

relative frequency of main mode fant: The main mode of the distribution is the number
of ants, which most frequently occurs. In the middle graph of �g. 7.2, most often, there
are no ants in the cell. As measure fant, we use the relative frequency of this main mode
(fant = 0:6 in the example). This value indicates how often the number of ants can be
found in its most probable value. In the example, during 60% of the time, the number
of host ants is equal. Hence, the described value measures constancy of host ant number
in a cell. We denote this measure by fant.
The relative frequency of the main mode2 fant accounts for the occurrence of peaks or
drops. A time series with only few peaks like in graph 7.1a frequently assumes the same
value. Hence, fant assumes values close to 1. In contrast, a frequently changing time
series (like that in graph 7.1b) will be evaluated by lower values of fant 3.
In section 7.2.3 strong changes of host ant number in a cell are shown to be provoked by
either budding or nest destruction. In cells with frequent changes of host ant number,
these processes often occur (time series like in graphs 7.1b or 7.1c). Hence, we can
detect occurrence of nest colonisation and destruction by measuring fant. fant � 1
indicates that these processes hardly happen. fant decreases with increasing number of
colonisation or extinction processes.

mean number of host ants: We calculate the average number of host ants over time. Time
series 7.1c and 7.1d will result in a higher mean number of host ants, than the two other
time series of �g. 7.1. Highest mean values are usually measured in cells without host
plants.
The temporal mean of number of host ants in a cell indicates the mean potential power

2fant is related to the information contained in a time series, as it measures the probability to predict a
certain value (Fath et al., 2003).

3Why don't we use a standard measure such as variance? The reason is that we aim to quantify constance
of the number of ants in a cell. Variance determines deviation of values from the mean. In this sense,
small variance would indicate that the mean value is frequently assumed. However, to asses constance of the
distribution in graph 7.1b, variance is obviously not the right measure. In this case, we are neither interested
in the concentration of values around the mean, nor how data deviates.
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Figure 7.2: Protocol to create maps on host ant distribution. Calculate statistics on temporal
host ant variation in a cell. The mean value is a measure for the e�ective power of the cell
to reproduce Maculinea. Relative frequency of the main mode determines whether host ant
number is almost constant. Strongly varying ant number indicates that the cell contributes
to the process of Maculinea reproduction. Ant number is measured in caterpillar equivalents.
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of the ants to support butter�y reproduction. Cells with host plants and a high mean
number of host ants have a high capacity to rear Maculinea larvae.

The two measures su�ciently distinguish between the four types of histograms from �g. 7.1.
Time series in graphs 7.1a and 7.1b can be distinguished from the other two because mean
number of ants is clearly lower. Within the two groups, the time series can be distinguished
by their tendency to stay at the same value. This is measured by the relative frequency of the
main mode fant.
Following the methodology depicted in �g. 7.2, in the last step, maps are plotted, which display
characteristics of the time series of each cell. That means, for each cell, the two quantities
'mean number of host ants' and 'relative frequency of main mode' are determined from the
time series on host ant number and depicted in maps by di�erent colours. Additionally, in the
maps, circles indicate the position of host plants.
Creating these maps, we subsume time series information of each cell in temporally aggregated
measures. Spatiotemporal dynamics is reduced to a spatial representation.

7.2.5 Maps of spatial distribution of host ant dynamics

7.2.5.1 Mean number of host ants per cell

Maps of mean number of host ants per cell are calculated from all simulations of representative
scenarios summarised in tab. 7.1. They are displayed in �g. 7.3. In a row in �g. 7.3, budding
range � increases from left to right by values 4m, 8m to 12m. Di�erent rows contain simulation
results for di�erent host plant patterns.
It can be seen that spatial host plant distribution (small circles) in�uences the distribution
of mean numbers of host ants per cell (di�erent colours). Cells with host plants on average
contain less host ants than cells without plants. The negative e�ect of host plants to host
ant nest size is stronger, if the cells are surrounded by other cells with host plants. We now
have a look at the left map of graph 7.3a (�rst row). Cells at the edge of the plant patch
on average contain about 2 to 4 caterpillar equivalents (green). Deeper inside the host plant
patch, cells are not occupied by ants (red). Cells without host plants are the less occupied,
the closer they are located to the plant patch. Cells in direct vicinity of host plants contain
about 8 caterpillar equivalents. Farer away from the host plants, nests contain more than 10
caterpillar equivalents.
This spatial structure of mean numbers of host ants is found in all maps of �g. 7.3. It is more
pronounced for a short budding range � = 4m. Increasing �, the spatial pattern wipes out.

7.2.5.2 Constancy of host ant occupation - Relative frequency of main mode of
host ant number fant

In�uence of spatial host plant distribution is re�ected in maps of fant (�g. 7.4), too4. It can be
observed that in areas containing both, cells with and without host plants, host ant occupation
is highly �uctuating (grey; fant < 1). In contrast, in areas, which either are homogeneously
occupied or homogeneously unoccupied by host plants, number of Myrmica host ants is quite
constant (white; fant � 1).

4Maps of relative frequency of main mode of host ant number fant in �g. 7.4 are created from the same
simulation results as maps of mean number of ants in �g. 7.3.
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Similar to description in sec. 7.2.5.1, spatial patterns of host ant activity wipe out with in-
creasing budding range �.

7.2.5.3 Spatial distribution of host ant dynamics

The spatial distributions of temporal mean number of host ants and relative frequency of
main mode of host ant number fant give an overview on the spatial distribution of host ant
dynamics. We can distinguish spatial areas with high turnover of host ants from areas, where
host ants do not show any dynamics.
No host ant dynamics is observed in areas, where host plants are homogeneously distributed.
Areas, which are homogeneously occupied by host plants, on average contain almost no host
ants. Hence, the absence of ants avoids host ant dynamics. These red cells in �g. 7.3 corre-
spond to time series in graph 7.1a. In contrast, areas which are homogeneously unoccupied
by host plants contain highest numbers of host ants. Obviously, although large ant nests are
present, these show no dynamics (violet cells in �g. 7.3 and time series 7.1d).
From patterns in fant-maps (�g. 7.4) we conclude that dynamics of Myrmica host ant popula-
tion is restricted to areas with a heterogeneous distribution of host plants. Following argumen-
tation in sec. 7.2.3, in this area, ant nests in cells with host plants frequently go extinct and
afterwards cells become recolonised (graph 7.1b). Whereas ants in cells without host plants
often bud empty cells (graph 7.1c).
It is obvious that spatial distribution of host ant dynamics arranges according to spatial dis-
tribution of host plants. Additionally, the spatial pattern is in�uenced by budding range �.
In contrast to the spatial distribution of host ants, which temporarily changes as can be seen
in �g. 2.5, spatial distribution of ant dynamics is �x in time.

7.2.6 'Cell e�ectiveness' - E�ective dynamic contribution of cells

We now discuss the combined dynamics of host ants and Maculinea butter�ies within a cell.
We concentrate on the question, how hosts a�ect performance of Maculinea population within
a cell. From maps in �gures 7.3 and 7.4 it is veri�ed that, to a high extent, host ant dynamics
within cells follows one of the four types of temporal dynamics represented in time series of
�g. 7.1. Hence, host ant dynamics within most cells can be described by one of these four
types. Therefore, in the following, we restrict to these types. According to the four identi�ed
types of host ant dynamics and presence or absence of a host plant, we categorise the grid cells.
For each of the four cell classes, we describe butter�y caterpillar development and host ant
dynamics. From these considerations, we evaluate the contribution of a cell to the performance
of the Maculinea population. The cell categorisation is called 'cell e�ectiveness'.

Cells with host plants (suitable for Maculinea oviposition)

Sink cells: Cells containing almost no Myrmica ants. Maculinea butter�ies can oviposit
on these cells, but larvae will not be adopted. Hence, eggs are lost. The cells are
sinks for Maculinea.
Time series: 7.1a; cell colour: red or yellow in �g. 7.3 and white in �g. 7.4

Reproductive cells: Cells which often contain Myrmica ants. These cells reproduce
Maculinea butter�ies. Rearing of butter�y larvae reduces Myrmica nest size and
can lead to extinction of ant nests. However, they become recolonised. These cells
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(c) host plant distribution plantsSG1
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Figure 7.3: Temporal averaged number of Myrmica ants per cell, in the established state.
Circles indicate position of host plants. Di�erent colours represent mean number of Myrmica
host ants. Red is 0, Purple is 11 (see scale bar).
Each row displays data from simulations with equal host plant distribution but di�erent
Myrmica budding range. From left to right, budding range increases (� = 4; 8; 12).
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(d) host plant distribution plantsSG3a
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(e) host plant distribution plantsSG3b
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Figure 7.3: Temporal averaged number of Myrmica ants per cell, in the established state.
Circles indicate position of host plants. Di�erent colours represent mean number of Myrmica
host ants. Red is 0, Purple is 11 (see scale bar).
Each row displays data from simulations with equal host plant distribution but di�erent
Myrmica budding range. From left to right, budding range increases (� = f4; 8; 12g).
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Figure 7.4: Relative frequency fant of most frequent number of Myrmica ants per cell, in
the established state. Circles indicate position of host plants. Di�erent grey levels represent
relative frequencies. Black is 0, White is 1 (see scale bar).
Each row displays data from simulations with equal host plant distribution but di�erent
Myrmica budding range. From left to right, budding range increases (� = 4; 8; 12).
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Figure 7.4: Relative frequency fant of most frequent number of Myrmica ants per cell, in
the established state. Circles indicate position of host plants. Di�erent grey levels represent
relative frequencies. Black is 0, White is 1 (see scale bar).
Each row displays data from simulation with equal host plant distribution but di�erent Myr-
mica budding range. From left to right, budding range increases (� = 4; 8; 12).
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are called 'reproductive cells'.
Time series: 7.1b; cell colour: green in �g. 7.3 and grey in �g. 7.4

Cells without host plants (unsuitable for Maculinea oviposition)

Bu�er cells: Cells with host ant nests which often bud empty cells. Although nests in
these cells are not directly parasitised, because host plants are missing, they are
a�ected by the Maculinea population. Ants from these cells bud empty cells in the
parasitised area. They recolonise the reproduction area. Host ants from these cells
work as bu�er for the parasitised cells, in the sense that they re�ll resources for
Maculinea in the area with host plants. These cells are called bu�er cells.
Time series: 7.1c; cell colour: blue in �g. 7.3 and grey in �g. 7.4

Non-contributing cells: Cells with large ant nests which do not show ant dynamics.
Host ants in these cells are almost not a�ected by parasitism of Maculinea. In
contrast to bu�er cells, ants from here almost do not colonise empty cells. If they
colonised empty cells, ant dynamics would be much more active. Because these cells
do not contribute to butter�y reproduction, they are denoted 'non-contributing
cells'.
Time series: 7.1d; cell colour: violet in �g. 7.3 and white in �g. 7.4

7.2.7 Quantifying cell e�ectiveness

Up to now, cell e�ectiveness is a qualitative concept to summarise and explain the in�uence
of microscopic processes on performance of a Maculinea population. For statistical analysis,
it would be useful to �nd a quanti�cation of the qualitative concept. That is, we search for
quantitative criteria to decide, whether a cell belongs to one or the other e�ectiveness class.
Let's think, what we try to do. Formally speaking, cell e�ectiveness is a categorisation (hence
a statistical model) of in-cell population dynamics (input parameter) according to their e�ect
on butter�y performance (explanatory variable). Using language of statistics, there is a clear
frame, how to �nd a correct quantitative categorisation for cell e�ectiveness. It is a satisfac-
tory model, which allows description of explanatory variables by the input parameter5.
Hence, doubtless it is allowed to take an arbitrary model for cell e�ectiveness e.g. based on our
qualitative reasoning in sec. 7.2.6 and test, whether it reveals a relation of cell e�ectiveness
and macroscopic measures. If the model is satisfactory, resolution of the categorisation is suf-
�cient to relate microscopic processes with macroscopic observables. That is, cell e�ectiveness
correctly represents e�ects of local dynamics on butter�y performance.
But note, if such a model is successful, we implicitly demonstrate another statistical assump-
tion: we show that variance of elements within a class is irrelevant for explaining the e�ect. In
concrete, all cells of one e�ectiveness class contribute equally to performance of the Maculinea
population. This means, cell e�ectiveness aggregates the system on a spatially implicit level.
For the quantitative categorisation, we orientate on the qualitative description of cell e�ective-
ness in sec. 7.2.6. The categorisation consist of four classes. These classes are �rstly separated
by presence or absence of a host plant. Secondly, presence or absence of host ant dynamics is
taken as an indicator.

5In a strict statistical sense, the best model should be found, comparing di�erent variants by a formal
criteria (e.g. Akaike index for model evaluation). In our context, we can restrict to a 'satisfactory' de�nition
of cell e�ectiveness, which shows dependency of mean time to extinction tm on cell e�ectiveness.
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It is known from sec. 7.2.3 that in sink cells sometimes host ants can be found. Host ant
dynamics is not completely absent. For this reason, a threshold needs to be introduced, which
allows to distinguish strong host ant dynamics from low host ant dynamics. It showed up that
relative frequency of main mode fant � 0:7 is a suitable criteria to distinguish sink cells from
reproductive cells and non-reproductive from bu�er cells.
From simulations of all scenarios listed in tab. 7.1, e�ectiveness is determined for each grid
cell. We count the number of cells corresponding to each of the four e�ectiveness classes.
For example, the number of sink cells of a scenario can be determined by

#(sinks) =
X

c= grid cells

1[(c contains plant) ^ (fant(c) � 0:7)]

where 1 symbolises an indicator function

1(x) =

(
1 ;x 2 ftrueg

0 ;x 2 ffalseg

Resulting numbers of cells for each e�ectiveness are correlated. Correlation is caused geomet-
rically, because total area of the habitat site and number of host plant cells is limited. For
example we �nd relation #(sinks) = #(plants)�#(reproductive). But, population dynam-
ics is another reason for correlation. For example, an increased number of bu�er cells allows
a higher number of reproductive cells.

7.2.8 Comparison of cell e�ectiveness and macroscopic population data

For each of the scenarios described in tab. 7.1, we determine the number of cells per cell
e�ectiveness class. These values are compared to macroscopic measures 'mean number of but-
ter�ies' and 'intrinsic mean time to extinction' tm gained in simulations of ch. 2 and ch. 6.
In the left column of �g. 7.5 we show the relation of host plant numbers to macroscopic ob-
servables on butter�y performance as a reference. The right column depicts dependence of
these macroscopic measures on the number of reproductive cells. Data points are marked by
colours and symbols. Colours account for di�erent host plant distributions. Symbols indicate
di�erent budding ranges �. Hence, each scenario of tab. 7.1 is marked by one coloured symbol.
In the left column of �g. 7.5, it is seen that the number of host plants in�uences the macro-
scopic measures. However, scenarios, which contain equal number of host plants, can lead to
di�erent macroscopic e�ects and therefore di�erent mean numbers of butter�ies or intrinsic
mean times to extinction. Hence, we verify earlier results from ch. 6 that in some cases, the
number of host plants insu�ciently evaluates host plant patterns to predict intrinsic mean
time to extinction tm or other macroscopic measures.
Number of reproductive cells overcomes this weakness. In the right graph of �g. 7.5a we �nd a
clear increase of mean number of Maculinea butter�ies with increasing number of reproductive
cells. In the right graph of 7.5b dependency is not that clear. However, the resolution is bet-
ter than in the left graph. As reproductive cells have clearer e�ects on population dynamics
of Maculinea butter�ies than plant cells, it is worth to inspect dependencies of macroscopic
observables on e�ectiveness of cells in more detail.
First, we call attention to a di�erence between right graphs of �g. 7.5a and �g. 7.5b. Mean
number of butter�ies is related to the total number of reproductive cells. In contrast, intrinsic
mean time to extinction has closer dependency on the quotient of number of reproductive cells



158 CHAPTER 7. A SPATIAL INDEX

(a) Mean size of Maculinea population
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(b) Intrinsic mean time to extinction tm of Maculinea population
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Figure 7.5: Dependency of macroscopic measures on cell e�ectiveness is measured for the
di�erent scenarios (tab. 7.1). Scenarios are distinguished by point marks (budding range;
circles: � = 4, triangles: � = 8, plus: � = 12) and colours (host plant distribution; black:
plantsSG5, red: plantsSG2a, purple: plantsSG1, turquoise: plantsSG3a, green: plantsSG3b,
blue: plantsSG3c). Number of reproductive cells is calculated, based on host plant presence
and constancy of host ant number (see �g. 7.4). Number of ants in a cell is considered
as constant, when its integer value is equal in at least 70% of all simulation steps (relative
frequency of highest mode � 0:7).
Graph (a) displays dependency of mean number of Maculinea butter�ies in a population
on number of host plants (left) and number of reproductive cells (right). Graph (b) depicts
dependency of intrinsic mean time to extinction tm on number of host plants (left) and number
of reproductive cells per host plant (right). Note that in graph (a), total numbers of cells are
given, whereas in graph (b) number of reproductive cells is measured relative to host plant
number. Exchanging these measures weakens correlation in the graphs.
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and number of host plants. Two di�erent aggregated measures are decisive for two di�erent
macroscopic e�ects.
At this point, we learn about the process. Reproductive cells are the only area, where Ma-
culinea individuals successfully develop. Hence, we �nd the well-known e�ect that increasing
suitable habitat can support an increasing population. However, persistence of Maculinea in
most cases does not depend on the average number, but on low numbers of butter�ies. The
population undergoes a high risk of extinction, when temporarily population size is low, that
is when the cyclic population dynamics goes through a minimum. When number of butter�ies
is low, their number of eggs is low, too. Hence there is a critical situation whether there are
enough of these few eggs laid in cells with plants and ants. Such cells can only be reproductive
cells. The probability to either lay an egg into a reproductive or a sink cell is expressed in the
ratio how many of the plant cells are reproductive. The number of reproductive cells must be
normalised by the number of plant cells to predict persistence of Maculinea.
There is a quite clear increase of intrinsic mean time to extinction with the increasing quotient
of number of reproductive and number of plant cells in �g. 7.5b. But, a group of three purple
data points does not �t into the observed pattern. Although, for these points it is indicated
that all plant cells are reproductive, which should lead to high intrinsic mean time to extinc-
tion (red points), persistence of Maculinea butter�ies for the purple points is very low. These
points result from simulations with host plant pattern plantsSG1. This pattern consists of
39 plants (see tab. 7.1), which is a very low number. As can be seen in the right graph of
�g. 7.5a, mean butter�y population is very low (purple data points). This low number of
butter�ies underlies risk of extinction by demographic stochasticity. Instead of the number of
reproductive cells, the number of host plants is limiting, in this case. For scenarios of very
low numbers of host plants, the quotient of number of reproductive cells and number of host
plants is a bad predictor for the assessment of Maculinea persistence. The absolute number
of reproductive cells is decisive.
Number of reproductive cells is closely related to macroscopic observables of the system. For
measures, based on other e�ectiveness classes, we �nd relations, too. These mainly can be
explained by correlation between the di�erent aggregated measures and the number of repro-
ductive cells (see sec. 7.2.7). If detailed questions are to be answered, it can be useful to take
into account measures based on cell e�ectiveness classes other than the reproductive cells.
Our analysis reveals that indeed aggregated measures based on cell e�ectiveness well explain
macroscopic properties of the Maculinea system. Hence, we can follow the argumentation in
sec. 7.2.7. We deduce that cell e�ectiveness is an aggregation level, where local dynamics
is aggregated spatially implicitly. For this reason, cell e�ectiveness is an important concept,
when trying to understand the e�ects of local dynamics on the behaviour of the Maculinea
system.

7.2.9 Revision of analysis and results

Before turning to an application of our �ndings, we want to brie�y recapitulate the last
sections, to be aware of some important points. By the analysis, knowledge is won for di�erent
topics: methodology, aggregation of microscopic dynamics on the level of cell e�ectiveness, and
understanding of dynamics of the Maculinea system. In the following, each of these themes
will be discussed in an own section.
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7.2.9.1 Methodology

We want to explain, in a short and general way, how we achieve to analyse spatiotemporal
dynamics. The methodology is typical for science, but to our knowledge seldom applied to
this extent.
To explain the approach, take the development of cell e�ectiveness as an example. It is men-
tioned in sec. 7.2.7 that cell e�ectiveness is a model to describe the e�ect of microscopic
dynamics on macroscopic observables of the system. Hence, the only task to do is �nd that
model.
This complete section deals with describing that model. Initially, input parameters, that are
local dynamics, are presented. In the following, characterisation of input parameters is in-
tended. This characterisation already is the actual modelling work. We search for a suitable
model to evaluate the e�ect of observed local dynamics on performance of Maculinea: that is
e�ectiveness. In the �nal step, we test, if the model is suitable for our purpose.
Now to some details. Finding the model of course is intuitive work. And, it might be surpris-
ing to inspect in-cell host ant dynamics, when one wants to explain persistence of butter�ies.
However, it is the natural way in the Maculinea system. Host ant dynamics is the only spa-
tiotemporal dynamics of the Macu model � and, it is grid based. If spatiotemporal dynamics
is too complex, it should be aggregated on lowest level. There are two convenient ways of
aggregation. Either, aggregation over time or space. If spatial aggregation is performed, the
object to observe is a time series of the total number of butter�ies in the habitat. We choose
to aggregate over time. Hence, we observe host ant dynamic within a cell and describe the
in-cell time series aggregatedly.
The following step, �nding a characterisation of the time series, here in fact is solved intuitively
from knowledge of the model. However, there are di�erent methods to support categorisation
or model building (statistical methods like e.g. cluster analysis or stochastic methods like e.g.
simulated annealing, genetic algorithms or neural networks). Hence, if one does not have any
idea about the system, such methods might be helpful. Important at this step, it has to be
clari�ed, which kind of e�ect shall be analysed. The e�ect is the purpose of the model.
In the �nal step, the model needs to be tested. In the model test, it is answered, if the de-
scription of macroscopic e�ects is good enough. The assessment is essential, because it de�nes
accuracy. In this thesis, we consider a model as accurate, if e�ects of unexplained variance are
small enough, not to disturb explanatory power of the model. In other words, can we assume
two members of one class to be equal in respect to the e�ect? For example, we reject host
plant density as a model for persistence of butter�ies, because host plant patterns with the
same density might provoke strong di�erence in intrinsic mean time to extinction. As well,
we reject the quotient of number of reproductive cells and number of host plants as a model
for patterns with small numbers of host plants. Indeed, we suggested to use total number of
reproductive cells or total number of host plants instead.
The way of model testing, performed in this thesis, might be accused as subjectively depend-
ing on our opinion. In fact, we dispense with quantitative criteria. However, de�ning these
strict objective criteria as well is a subjective decision of the researcher. We instead prefer a
practically orientated model testing, which is evaluated, according to the power it provides
to our mechanistic understanding of the system. For example, variance of data points in a
graph makes us understand that the selected model has some weakness. In a further step, we
analyse the reason for the error.
One point, which to our opinion is not clear in many studies, is applied often in this thesis: if a
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model is accepted to be su�ciently accurate, it implies that, in the following, the model can be
used instead of the input data. This means, all unexplained variance of the input parameters
can be ignored. Hence, all elements of a class de�ned by the model can be considered as equal
in respect to the e�ect, they provoke. The total e�ect of a class is n times the e�ect of one
element, when n denotes the number of elements in the class. Therefore, an accepted model
de�nes an aggregation level, on which aggregated elements can be considered implicitly.

7.2.9.2 Properties of cell e�ectiveness

Cell e�ectiveness is derived from characteristics of system dynamics. Hence, several properties
of population dynamics of Maculinea and Myrmica enter into cell-e�ectiveness. Some of these
are necessary in further argumentation. For this reason, properties are listed and collectively
explained here.

1. Cell e�ectiveness is a property of a cell.
Host ants in a cell can interact with other components of the system from outside
the cell (e.g. parasitic Maculinea butter�ies). These interactions express in in-cell host
ant dynamics. Hence, the way we observe host ant dynamics by time-series, already
includes these interactions. In particular without interactions host ants in a cell cannot
contribute to system dynamics (e.g. non-contributing cells). Cell e�ectiveness evaluates
the contribution of host ants in a cell to Maculinea reproduction on the site. This e�ect
of localised host ants certainly is a local property of a cell.

2. Cell e�ectiveness is constant in time.
Cell e�ectiveness is derived from host ant dynamics in a cell, not from host ant number
directly. Number of ants temporally varies, however this variation can be described by
one of the four types of host ant dynamics presented in �g. 7.1. It is argued that, in the
established state, the type of host ant dynamics is �x (7.2.5.3). Hence, cell e�ectiveness
as well is constant in time.

3. Cell e�ectiveness is spatially localised.
Overall spatiotemporal dynamics induce a spatial pattern to the distribution of cell
e�ectiveness types. This pattern can be represented in spatial maps of e�ectiveness type
distributions.

4. Spatial distribution of cell e�ectiveness types depends on host plant distribution and
budding range � of Myrmica host ants.
In sec. 7.2.5.3 it is argued that spatial distribution of host ant dynamics depends on
spatial host plant distribution and on budding range �. This arrangement transfers to
cell-e�ectiveness. Maps on distribution of host ant dynamics (�g. 7.3 and �g. 7.4) give a
visual impression of the distribution of cell e�ectiveness, too. According to these maps,
sink cells are cells with host plants, which are far away from cells without plants (that
is in the centre of plant patches). Reproductive cells contain plants, too. But they are
localised close to cells without host plants (that is e.g. at the boarder of plant patches).
Bu�er cells do not contain host plants, but are in vicinity of cells with plants. They
surround cells with host plants. Non-contributing cells do not contain host plants and
are far away from cells with host plants.
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5. Contribution of host ants in a cell is equal in cells of the same cell e�ectiveness type.
It is found that in-cell host ant dynamics qualitatively can be categorised by only four
di�erent types. This simple categorisation is su�cient to explain dependency of macro-
scopic observables on local processes. Hence, variance of dynamics in di�erent cells of
the same e�ectiveness class has minor e�ect on butter�y performance. For this reason,
cells of the same e�ectiveness class contribute equally to population development of Ma-
culinea. This �nding means that system dynamics can be described spatially implicit
on the level of cell e�ectiveness.

7.2.9.3 Why de�ning cell e�ectiveness?

Cell e�ectiveness is a model to describe microscopic population dynamics of the system with
regard to its e�ect on performance of the Maculinea population. It aggregates microscopic
processes spatially and temporarily. Hence, we are no longer forced to deal with numbers of
host ants which vary in space and time.
In contrast to macroscopic measures like 'mean population size' or 'intrinsic mean time to
extinction' used in chapters before, for cell e�ectiveness, we know the underlying model of
aggregation. We have a mechanistic understanding, how 'cell e�ectiveness' depends on micro-
scopic dynamics.
Thus, cell e�ectiveness can be seen as a link between full complexity of microscopic dynamics
and ad hoc statistical measures on macroscopic e�ects.

7.2.9.4 Understanding spatiotemporal dynamics of the Maculinea model

Basing on cell e�ectiveness, we are now able to explain upward macroscopic e�ects and down-
ward, why they are provoked by microscopic e�ects.
We �nd in sec. 7.2.8 that aggregations of reproductive cells can be used to describe persis-
tence and mean size of the Maculinea population. This is not surprising, as Maculinea can
reproduce successfully only in these cells. Hence, the reproductive area can be considered as
the 'habitat' for Maculinea.
However, it must be kept in mind that this habitat is temporarily variable (see sec. 7.2.3).
Whether a reproductive cell is suitable at a time, depends on the momentary number of host
ants present. Hence, reproductive cells are the only cells, where Maculinea can reproduce, but
they are not always suitable.
Complexity of the system enters, when taking into account that temporal suitability of a cell
depends on earlier stages of the butter�y population. Hence, the butter�y population regu-
lates its habitat. Butter�y population size as well as host ant distribution are self regulated
by the system.
The resulting cyclic population dynamics of Maculinea butter�ies is the reason, why mean
size and persistence of the population depend on di�erent aggregations of cell-e�ectiveness.
Mean population size depends on the total amount of reproductive cells. It follows the rule
that large total habitat allows high population size. In contrast, persistence of the butter�y
population depends on the quotient of number of reproductive cells and number of host plants.
This is, because the Maculinea population is only endangered by demographic stochasticity,
when it is small. That is, when population cycles go through the minimum. At these times,
the decisive process is, whether there are enough butter�y eggs laid on host plants in cells
with ants. Because these cells are the only reproductive ones. Hence, with the aggregated
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quotient, we describe the probability for an egg to be laid into a reproductive cell.
It is found that for low numbers of host plants, persistence depends on total number of repro-
ductive cells (or, what in this case is the same, total number of host plants). This is because,
in such scenarios, population size of Maculinea is limited to low numbers by the few plants.
Hence, we can explain macroscopic e�ects by numbers of reproductive cells. In the following,
we discuss, how the amount of reproductive cells is limited by local processes.
Reproductive cells contain host plants and a �uctuating host ant population. Both compo-
nents can be limiting to the amount of reproductive cells.

Low number of host plants: When number of host plants is low, all cells containing plants
in general are reproductive. However, due to the low number of plants, there are only
few reproductive cells.

Host ant dynamics: Host ant dynamics in cells with plants depends on how the cell can be
reached. There are two factors which determine budding of a plant cell.

Large patches of host plants and limited budding range: Host plants in the cen-
tre of large plant patches cannot be reached by host ants, because budding range
is limited. These cells act as sinks. Reproductive range is limited to the boarder of
a patch.

Few bu�er cells: On sites with many host plants, few space is left, which cannot
be exploited by Maculinea caterpillars. This restricted amount of bu�er cannot
su�ciently support cells with host plants. Hence, although an empty cell with a
host plant can be easily reached, there are no budding ants available to colonise
the site. Number of reproductive cells is limited, because there are too few bu�er
cells.

There are three di�erent causes, why number of reproductive cells is low. In many scenarios
several reasons are limiting. That's why it is very di�cult to determine these reasons for the
Maculinea system.
But, having them identi�ed, it is easy to explain dependency of intrinsic mean time to extinc-
tion tm on the number of host plants (�g. 6.1a). For low numbers of host plants, persistence
is reduced, because butter�y population is always low. For high numbers of host plants, few
bu�er cells are available to recolonise empty host plant cells. And large patches of host plants
provoke a decline in tm, although the number of host plants would suggest higher persistence.
Hence, in �g. 6.1a, the general trend is given by sites with unclumped host plants.

7.3 A spatial index for the assessment of suitability of host

plant distributions for the Maculinea system

In sec. 7.2.8 it is shown that aggregated measures based on cell e�ectiveness describe macro-
scopic measures of Maculinea dynamics in a better way than host plant coverage does. In
particular, e�ects of explicit spatial patterns on Maculinea performance can be resolved.
However, in contrast to plant coverage, cell e�ectiveness is immanent of the system. In order
to determine cell e�ectiveness, simulation results have to be analysed. Hence, cell e�ectiveness
cannot be used to assess suitability of a habitat patch.
To overcome this disadvantage, we search for an index, which detects habitat suitability di-
rectly from external factors like for example host plant distribution. Because measures based
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on cell e�ectiveness proved their ability to model performance of Maculinea populations, it is
a good idea to orientate the new index on cell e�ectiveness.
According to ch. 5, suitability of habitat is best measured by the persistence of a species on
the site. Therefore, we try to �nd an index, which predicts intrinsic mean time to extinction
tm.

7.3.1 Development of the index

We develop the spatial index in three steps. In the following these are developed from ecological
understanding of the processes gained in previous sections.

1. It is stated in sec. 7.2.9.2 that spatial distribution of cell e�ectiveness is closely linked to
distribution of host plants. Especially, reproductive cells and bu�er cells are restricted
to areas with spatially heterogeneous occupation by host plants.
For these distributions it is known that they are constant (sec. 1.3.2 and sec. 7.2.9.2).
They can be represented in maps (�g. 7.3 and �g. 7.4).
Comparing these maps makes us aware of a pattern. Reproductive cells are situated
on cells with host plants, but there have to be bu�er cells without host plants in the
surrounding (sec. 7.2.9.2). Hence, the index has to detect this pattern.

2. The reason for this pattern is explained in sec. 7.2.6. Cells with host plants can only
have a positive e�ect to Maculinea reproduction, when they contain an ant nest. Overex-
ploited and therefore extinct ant nests have to be replaced, before Maculinea caterpillars
can grow up in that cell. Therefore, only cells that can be reached by budding ants from
cells, which are not a�ected by Maculinea, can be reproductive.
Additionally, if a plant cell can be reached by budding host ants from di�erent cells, its
probability to be recolonised is increased (sec. 1.3.2.5).
Hence, the host ant budding process (sec. 1.3.4.4) introduces a scale to the spatial dis-
tribution of reproductive and bu�er cells. For developing the index, this scale has to be
taken into account.

3. Now, we develop a statistical measure, which detects reproductive cells depending on
budding range and spatial host plant distribution.
We take advantage from the fact that the system is spatially implicit on the level of cell
e�ectiveness (sec. 7.2.9.2). Therefore, it is not necessary to take into account the exact
spatial position of a host plant. An aggregated measure for the host plant distribution
is su�cient.
It is clear from steps 1 and 2 that this measure should account for the number of non-
parasitised ant nests, by which a cell with a host plant can be budded. That is the
number of cells without host plants within budding distance of cells with host plants.
The budding process is a characteristic of the modelled host ant species (sec. 1.3.4.4)
and not a property of the spatial arrangement of host plants on a site. This is considered
by allowing variation of the spatial scale of the index.
Finally, in sec. 7.2.8, it is found that persistence measure intrinsic mean time to extinc-
tion tm and therefore habitat suitability is related to the ratio of number of reproductive
cells and the number of host plants. For this reason, we assume a relative measure
(normalised by number of host plants) to be adequate as index for habitat suitability.
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Following this reasoning, we develop the spatial index dempty(r). It is de�ned as

dempty(r) =
1

#(plants)

X
n=cells with plants

X
k=cells without plants

1[d(n; k) � r] (7.1)

1 is an indicator function which is set to 1, if the condition d(n; k) � r is ful�lled, else it is set
to 0. d(n; k) denotes the Euclidean distance between the centres of cell n and k. The index is
normalised by the number of plants #(plants).
The spatial index dempty(r) is a simple measure. It measures the mean number of cells without
plants around a cell with plants inside a neighbourhood of �xed radius r. It is closely related
to Ripley's K function (ch. 4.4 in Stoyan & Stoyan, 1992). In fact, it is the discrete form
of the bivariate quantity �1 �K1;2(r), where �1 is the intensity of cells with host plants and
K1;2 indicates bivariate Ripley's K of cells without plants around cells with plants without
edge correction. How to discretise Ripley's K function on a grid is described for example in
Wiegand & Moloney (2004).
The index dempty(r) depends on radius r. This radius de�nes the spatial scale of perceptivity
of the measure. Only empty cells are counted, which lie within a distance of r from a host
plant. Radius r is an important parameter of the index.
Looking at maps of distribution of host ant dynamics (�g. 7.4), we �nd that ant dynamics
is highest in areas of heterogeneously distributed host plants (areas containing cells with
plants and without plants). These areas are stated to contain reproductive and bu�er cells
(sec. 7.2.9.2). However, width of these areas depends on budding range �. Comparing graphs
from left to right columns in �g. 7.4, it can be seen that the area with strong host ant dynamics
broadens with increasing � (sec. 7.2.5.3).
Changing radius r of the spatial index dempty(r) allows to adjust spatial perception width of
the index to the width of the area of strong host ant dynamics. If radius r is chosen too small
for a spatial distribution of host ant dynamics, the index does not measure the complete area
of ant dynamics. In contrast, if r is chosen too large, area is included in the measurement,
which does not relevantly contribute to dynamics of the system. In this case, resolution of the
index is decreased.
Thus, varying radius r provides information about the spatial scale of host ant dynamics. This
is similar to studies, which use Ripley's L function (ch. 4.4 in Stoyan & Stoyan, 1992) or ring
statistics (Wiegand et al., 1999; Wiegand & Moloney, 2004). The spatial scale depends on
budding range �. For this reason, dependence of dempty(r) on radius r for given scenarios can
reveal further insight on the relation between system scale and �.

7.3.2 Testing the index

It is found that the index dempty(r) is a predictor for the ratio of number of reproductive cells
and number of host plants. In the following, we test that it is a predictor for suitability of
habitat for Maculinea persistence, too.
According to the method for assessing spatial landscape structures by population viability
(introduced in ch. 5), intrinsic mean time to extinction tm is compared to the spatial index
dempty(r). As discussed in sec. 7.3.1, radius r is varied to detect the relevant spatial scale of
system dynamics. We perform simulations with standard parameter set (tab. 1.1), but bud-
ding range is set to � = 4m and initial host ant distribution is ants3. Host plant distributions
are varied.
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Figure 7.6: The four graphs show dependence of intrinsic mean time to extinction tm on spatial
host plant distribution (ant distribution: ants3; budding range � = 4m). In each graph,
spatial host plant distribution is characterised by a di�erent spatial index. Left: number of
host plants; the others: dempty(r) with scaling range r � 2m; 4m; 6:3m, respectively.
Data points designated to FG5 are marked by triangles. Note that these points are mapped
towards points of FG3 depending on the range of perception of the spatial index dempty(r).
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Fig. 7.6 shows results for di�erent values of radius r. For comparison, the top left graph de-
picts relation of number of host plants and intrinsic mean time to extinction tm. The typical
shape is already known from graph 6.1a in ch. 6. The following three graphs show dependency
of tm on landscape index dempty(r) for increasing values of radius r = f2m; 4m; 6:3mg. In all
three graphs, intrinsic mean time to extinction tm increases with increasing index dempty(r) in
form of a threshold. For very high values of the index, it can be observed that intrinsic mean
time to extinction tm drops to lower values. This pattern can be explained as follows.
Obviously, if number of empty cells around plant cells is too low (very low index values in
the three graphs), Maculinea cannot persist. But, the more empty cells in mean are around
a plant cell (increasing dempty(r)), the higher is the probability that Maculinea populations
persist. This �nding is in accordance to the idea that dempty(r) is measuring heterogeneity6

of host plant distribution on a spatial scale r. Regions with heterogenous host plant distri-
bution are those with high numbers of reproductive cells (sec. 7.2.9.2). Hence, a high index
value represents a high number of reproductive cells and thus high persistence of Maculinea
populations.
However, if index values are too high, persistence of Maculinea populations decreases. To
explain this e�ect, we look at the number of host plants in plant distributions, which lead to
high values of dempty(r). It is found that these host plant distributions consist of less than
100 host plants. In sec. 6.4.2.2 and sec. 7.2.9.4, it is shown that in the case of low host plant
coverage, the total number of host plants is the important parameter for the performance of
Maculinea populations. The number of host plants limits the size of the Maculinea population.
Resulting small Maculinea populations are endangered by demographic risk of extinction.
Comparing the top left graph with the others in �g. 7.6, it appears that the shape of the
curve is reversed (i.e. intrinsic mean time to extinction tm for scenarios with high host plant
numbers can be mapped to values for low numbers of dempty(r) and vice versa). This pattern
can be explained by the fact that for randomly distributed host plants, the index decreases
with increasing number of host plants.
There is another important di�erence between the top left and the other three graphs. In the
top left graph, many randomly distributed points are observed, which di�er from the main
shape of the curve. In contrast, in the other graphs, these points arrange much closer to the
main shape. Variance in the top left graph indicates that, for some scenarios, the number of
host plants is not su�ciently related to the intrinsic mean time to extinction tm. The measure
'number of host plants' cannot account for di�erences in the spatial distribution of plants,
when their number is not varied. In ch. 6, it is pointed out that the spatial arrangement of
host plants in�uences persistence of Maculinea populations. Comparing graphs in �g. 7.6 it
is obvious that there is a rather sharp functional relationship between intrinsic mean time
to extinction tm and landscape index dempty(r). This indicates that dempty(r) appropriately
evaluates the e�ect of the spatial con�guration on tm.
Anyhow, for di�erent values of radius r the sharpness of the relationship varies. To clarify
this e�ect, some of the data points are marked by triangles. In the top left graph, these data
points are evaluated by host plant number as a group of outliers (actually these points belong
to scenario group SG5 in sec. 6.3.1.5). Evaluated by dempty(r) these points move towards
the threshold-like main shape of the curve. On a spatial scale of r = 2m to 4m, the points
marked by triangles integrate in the functional relationship. For the larger radius r = 6:3m,

6A distribution of cells with host plants and without host plants is heterogeneous on a spatial scale r, if
there are many cells of both types randomly distributed.
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the triangles are separated from the main shape of the curve.
The radius r, for which the relation of index dempty(r) and intrinsic mean time to extinction
tm is closest, depends on budding range �. This is observed in additional simulations, where
the budding range is varied.
Hence, as required, the spatial index dempty(r) can be used to assess persistence of Maculinea
populations by simply assessing spatial arrangement of host plants. It is sensitive to the spa-
tial arrangement of the plants and can be adjusted to the spatial scale of host ant budding,
hence to di�erent Myrmica species.

7.3.3 Properties and applications of the index

Spatial index dempty(r) could be developed purely from geometric and statistical reasoning on
the correlation of two spatial distributions. One of them, distribution of host plants, is an
external factor, a landscape structure. The other, distribution of reproductive cells, indicates
where Maculinea butter�ies successfully reproduce o�spring. Such an approach of matching
spatial distributions of di�erent habitat characteristics is widely used in landscape ecology.
There, landscape structure is statistically related to species distribution. From this relation,
attributes of suitable habitat are identi�ed.
In contrast, the way the index is develop here, includes knowledge on processes and dynamics
of the system. This additional ecological information improves our understanding of the in-
dex. Input parameters of the index, like radius r as well as the mechanism of aggregation, are
deduced from knowledge about the ecological system. For this reason, we know how results
of the index have to be interpreted in the ecological context (as for example requested by
Tischendorf & Fahrig, 2000).
Taking into account ecological processes when developing a spatial index is essential (Tischen-
dorf, 2001; Vos et al., 2001); especially in situations of complex habitat, when species can
in�uence and change conditions like in the Maculinea system. Looking at spatial host ant or
host plant distributions alone, would not allow to correctly assess habitat conditions for Ma-
culinea butter�ies. The important step is, to understand how these distributions contribute to
the performance of a Maculinea population. This step enables us to derive the level of spatial
aggregation, at which the e�ective contribution of host ants and host plants can be described
spatially implicit and constant in time. Only from this point on, development of the spatial
index is sound and straightforward.
To test power of the spatial index dempty, we applied the methodological framework to assess
landscape structures by their e�ect on population viability (sec. 5). This method is the �nal
check for the spatial index. It ensures that dempty is an appropriate statistic, which predicts
persistence of Maculinea from measuring spatial host plant distribution.
Additionally, the method provides the link between spatial landscape structure and popula-
tion viability (sec. 5.4.3). Our study showed that the explicit spatial host plant distribution
is a component of Maculinea habitat, which has to be considered, when assessing suitability
of a site for Maculinea persistence.
This can be done by calculating the index dempty(r) for the host plant distribution on a site.
For this purpose, host plant coverage has to be assessed with a spatial resolution of foraging
range of Myrmica host ants (2m to 3m; see caption of table 1.1) on the site. Practically, a
grid with cells of size 2m x 2m is drawn on a map of the assessed host plant distribution. If
there are host plants in a grid cell, the cell is evaluated as plant cell. Finally, dempty(r) is the
average number of non-plant cells around plant cells within radius r (based on cell centres).
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Hence, the spatial index dempty(r) is a handy measure to assess the suitability of the host
plant distribution for Maculinea persistence on a habitat site. Although a simple measure, it
is powerful. It originates from and thus incorporates dynamics and processes of the complex
spatially explicit Maculinea model.
Deriving the index from a model has a major drawback. The spatial index is restricted to
model assumptions. Does this mean, the index is only applicable in very special situations?
No, if the de�nition of dempty(r) is not taken as absolutely �x but adaptable. In the following,
we explain in one example, how the index can be �exibly adapted for di�erent applications.
This is possible for two reasons: First, because development of the Macu model is based on
the HCET model (Hochberg et al., 1994; Clarke et al., 1997, 1998). Thus, we know how to
link results from the Macu model to the case study of the Maculinea rebeli system (ch. 1).
Second, the way, the index dempty(r) is derived from the Macu model, lets us understand its
mechanism.
In the example, we assume a habitat site with Myrmica host ants and Myrmica non-host ants
(see Hochberg et al., 1994). Non-host ants can adopt Maculinea caterpillars, however do not
rear them su�ciently. Thus, the caterpillars do not survive. Myrmica non-host and host ants
compete for suitable nest sites (i.e. areas where quality of host ant habitat is suitable for
host and non-host species) (Elmes, 1991; Elmes et al., 1998; Hochberg et al., 1994). In this
scenario, host plant distribution is not su�cient to predict persistence of a Maculinea popu-
lation. Spatial distribution of host and non-host ants has to be taken into account (Clarke et
al., 1997, 1998; Thomas et al., 1998a). However, the spatial index can be adapted to these new
circumstances. When comparing results from the HCET and the Macu model, the main e�ect
of non-host ants on host ant dynamics can be seen. Non-host ants might bud areas, where
host ant nests have gone extinct due to parasitism of Maculinea caterpillars. For this reason,
spatial distribution of host ants is restricted to areas which cannot be easily colonised by
non-host ants, be it because nest sites are unsuitable for non-host species, the areas cannot be
reached by budding or host ant nests do not go extinct because they are not in vicinity of host
plants. The e�ect of non-host ants on Maculinea performance can be understood in terms of
cell-e�ectiveness. By pushing away host ants, non-host ants will increase non-contributing and
sink area. Simultaneously, they will decrease bu�er and reproductive area. Therefore, number
of butter�ies should be decreased. Further, decrease of ratio of reproductive to sink area should
decrease viability of Maculinea populations. Understanding these processes, a new index can
be developed, taking into account e�ects of non-host ants. Following this approach, we ex-
pect that an index for the described scenario can be derived easily. Tischendorf (2001) found
that correlation of landscape indices with measures of ecological processes can be inconsistent
between di�erent scenarios. Our reasoning shows that the index dempty(r) cannot be applied
directly, when circumstances are di�erent from those assumed for the model. Nonetheless,
knowledge about the processes of the system allows to adapt the index to di�erent scenarios
in an educated way. Inconsistencies can be explained and avoided. In this thesis, we do not go
further, however, adapting and testing the index to a variety of di�erent Maculinea scenarios
will be an interesting task for further investigations. Comparing the di�erent modi�cations of
dempty(r) should provide deeper understanding of di�erences of Maculinea systems.
The previous reasoning shows that understanding the mechanisms makes the index much more
powerful. Now, we use our insight to interpret the results of an application of the index. It is
common knowledge, often reported in anecdotal data (e.g. Discussion at Tagfalter workshop,
Leipzig 2003) that Maculinea cannot be found within large meadows, which are densely oc-
cupied by the host plant. Applying the index to such a site would result in low values for all
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spatial scales of radius r, which re�ects that the close host plant coverage does not support a
bu�er area. This corresponds to a recent �nding: (Nowitzcki et al. at the MacMan conference
Budapest) showed that activity patterns of Maculinea nausithous are concentrated around
bushes, where coverage of host plant Sanguisorba o�cinalis is lower than in other parts of the
habitat site.

7.4 Discussion

In this chapter, our earlier investigations are extensively enhanced. In chapters before, we re-
strict analysis to macroscopic e�ects of the Maculinea system. Most analysis are concentrated
on persistence of the butter�y as a central measure to determine, whether habitat conditions
are suitable for Maculinea populations. Macroscopic measures like intrinsic mean time to
extinction tm give answers to relevant questions for conservation. However, they do not allow
mechanistic understanding of the reasons for persistence. Here, we turn to the microscopic
level of the system dynamics. Our aim is to explain, how local processes contribute to persis-
tence of a Maculinea population on a site.
The microscopic level in this system consists of spatiotemporal interacting Myrmica host ants
and parasitic Maculinea butter�ies. Resulting dynamics is multidimensional and highly com-
plex. It is extremely di�cult to �nd patterns in this large amount of data. Analysis is even
more complicated, as di�erent stochastic processes (resulting from simulations of di�erent sce-
narios) need to be observed.
We cope with complexity by applying a contrasting method of model building. That is, we
aggregate dynamical data as far as possible by simple parameters, with the purpose of accu-
rately describing observed e�ects. Further on, we test accuracy of the aggregation. If variance
of aggregated data does not noticeably in�uence the observations, the model is accepted. In
following steps, variance of the dynamical data is ignored (or considered as implicit); hence
further analyses are based on the model consisting of the approved simpler parameters. If
variance in the data has an in�uence, we concentrate investigations on understanding that
variance.
By means of this contrasting method, we for example select scenarios, which are sensitive
for butter�y persistence, but insensitive to host plant coverage, or we build a model of cell
e�ectiveness.
Cell e�ectiveness accounts for the contribution of host ants in a cell to performance of the
Maculinea population. Cell e�ectiveness is an important concept. It de�nes a level of aggre-
gation, where the spatiotemporal dynamics are described spatially and temporally implicit.
It links macroscopic e�ects to the microscopic level of local processes. Cell e�ectiveness can
be seen as the intermediate level of aggregation (Pascual & Levin, 1999).
The spatial distribution of cell e�ectiveness classes on a site reveals the reasons, why per-
formance of a Maculinea population depends on the selected scenario. Population size and
persistence are related to the amount of reproductive area. However, an area is reproductive
only, if there are host plants, which can be reached by unparasitised budding host ants. If this
condition is ful�lled, oviposition and rearing of Maculinea are supported. Additionally, the
condition provides us with a spatial criterium, which de�nes a reproductive area: host plant
distribution and dispersal ability of host ants must allow frequent budding of ant nest sites
near host plants.
From this criterium we �nd limiting conditions for the persistence of Maculinea populations
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on a habitat site, which are all realised in the model:

� For low numbers of host plants, viability of Maculinea populations is low, because repro-
ductive area is limited by the number of plants. This leads to a low number of butter�ies.
This small population is endangered from stochastic extinction.

� For large host plant patches, the reproductive area is restricted to the edge of the patch.
The width of the reproductive area is limited by host ant budding range. A resulting
small reproductive area leads to low numbers of butter�ies and therefore to vulnerable
Maculinea populations.

� For high host plant coverage, the area where host ants are not parasitised by Maculinea
larvae (bu�er zone) is small. Under these circumstances, a large part of the host ant
population on the habitat site is exploited by Maculinea. For this reason, the repro-
ductive area is limited by the size of the bu�er zone (the number of unparasitised host
ants). Persistence of the butter�y population depends on the ability of the ants in the
bu�er zone to recover and provide new ants for the parasitised area.

Conditions for the in�uence of host plant coverage on persistence of Maculinea populations can
be derived form purely macroscopic analysis (e.g. sec. 6.4.2.2, sec. 6.4.5, Hochberg et al. (1994);
Clarke et al. (1997, 1998); Thomas et al. (1998a); Griebeler & Seitz (2002); Mouquet et al.
(2005). However, explanations for the conditions have to be guessed, because it is unknown,
how microscopic processes build up macroscopic e�ects. In this chapter, we analysed the
link of microscopic and macroscopic levels in Maculinea system. Result of this study is the
microscopic explanation of macroscopic e�ects. We �nd the same conditions for persistence
of Maculinea as in earlier studies. But, because they now can be explained mechanistically
from microscopic processes, they are much more reliable. In this chapter, we 'proofed' the
assumptions and guesses underlying earlier studies.
The listed conditions depend on host plant distribution on a site and on budding range.
Therefore, based on these 'parameters' we construct the spatial index dempty(r). The index
evaluates the mean number of cells without host plants around cells with host plants within a
spatial scale. It is approved by two di�erent ways: it is based on mechanistic understanding
of local processes and its power is shown by PVA. Population viability analysis ensures that
the index is linked to persistence of the Maculinea population.
We developed the index by means of a simulation model for a general type of Maculinea
systems. But, we argue that the index can be adapted to di�erent types of Maculinea systems
and can be used to assess suitability of host plant coverage for persistence of Maculinea
populations in the �eld.
Hence, the suggested spatial index dempty(r) is easily and �exibly applicable. It is meaningful
and even mechanistically understood. Payne et al. (2005) ask for these properties for spatial
indices used in conservation and management. We therefore suggest application of the index,
when assessing habitat suitability of Maculinea sites.
Findings in this chapter should motivate detailed analysis of spatiotemporal systems. Methods
used here can probably be applied e�ectively and successfully to investigate other systems.
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Chapter 8

Prospects of developing a spatially

implicit version of the Macu model

8.1 Introduction

Spatiotemporal models incorporating small-scale interactions are highly suitable to repre-
sent knowledge on individual behaviour from case studies. These models are typically high-
dimensional, including large numbers of variables, distributed ecological interactions and
stochasticity. Therefore, their macroscopic behaviour is complex, di�cult to understand,
and often restricted to special cases.
For this reason, deriving generic results from these models requires sophisticated analysis tools
(e.g. ch. 7, Grimm et al. (2005) and Grimm & Railsback (2005, ch. 9)). Nonetheless, �nding
general principles for ecological systems requires generic results. These principles are impor-
tant for building general theory (e.g. Turchin, 2001; Kitano, 2002), but as well for concrete
problems in conservation biology (e.g. With, 2002; Norris, 2004; Huggett, 2005).
Generic, spatially implicit, typically analytical models provide a straight forward approach to
generic theoretical results. But, to be easily treatable, these models are often kept at an ab-
stract level. Results are di�cult to be interpreted in concrete realistic ecological problems, as
probably important processes are omitted and mechanisms of the system cannot be analysed
in detail.
There is large theoretical interest in combining both approaches to gain insight in the links
between complex, individual-based, spatially explicit models and abstract, spatially implicit
models on the basis of aggregated measures. Much e�ort has been invested in �nding the
spatial scale, which allows aggregation (up-scaling) of pattern-forming small-scale interactions
in predator-prey models (De Roos et al., 1998; Donalson & Nisbet, 1999; Pascual & Levin,
1999; Pascual et al., 2001, 2002a,b; Petrovskii & Malchow, 2001; Wootton, 2001; Keeling et
al., 2002). In most of these studies, analytical models are enhanced to incorporate individuals
and an explicit representation of space. Comparing results of these models at di�erent spa-
tial scales allows to assess the intermediate scale, below which explicit individual small-scale
interactions can be ignored.
However, this approach does not allow to analyse population dynamical systems acting on
heterogeneous landscapes. In ch. 7 of this thesis, we took a di�erent approach: Instead of
starting from an analytical model, we analysed and aggregated dynamics of the complex spa-
tially explicit Macu model, until we derived a spatially implicit description of the dynamics:
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cell e�ectiveness (sec. 7.2.9.2). Knowing that dynamics in the Macu model can be described
spatially implicit, we are now in the position to derive a spatially implicit version of the model.
Comparing results from spatially explicit and spatially implicit versions can provide further
theoretical insight in the Maculinea system, in the same way as it is done in the earlier studies
mentioned above. But, as the Macu model is based on a case study model, results can be
interpreted in a concrete ecological context (ch. 1).
The spatially implicit version of the Macu model is only one of several spatially implicit Ma-
culinea models, which were developed during the last years (Hochberg et al. (1992); Mouquet
et al. (2005); Clarke et al. (2005) and (Thomas, pers. comm.)). Although simple, these models
give realistic results. However, they are based on strong assumptions about dynamics of the
Maculinea system. Here, we can derive a spatially implicit model from a spatially explicit
mechanistic version. This background should enable us to test some of the assumptions.
Finally, there is the need for simple realistic Maculinea models for single habitat sites in the
MacMan project (Settele et al., 2002), to develop a model on landscape scale.
In the following, we give some rules, how to derive a spatially implicit version of the Macu
model. We then develop a simpli�ed deterministic version. Results are brie�y compared to
outcome of the spatially explicit model. We only provide �rst results, which shall serve as an
outlook on potential further studies.

8.2 Description of a mean �eld version of the Macu model

The results of the analysis in sec. 7.2 encourage us to develop a mean �eld model for the
spatially explicit processes of the system. For this purpose, the Macu model of ch. 1 is
simpli�ed by aggregating system variables on the level of cell e�ectiveness.

8.2.1 Spatially implicit system variables

Variables for a mean �eld description of the Maculinea system are created by accumulating
values from all cells of one e�ectiveness class1. They are listed here:

CP : number of cells with host plants. This value is given by the host plant distribution and
is constant in time.

N(t): number of Maculinea eggs at time t. The number of adult butter�ies is determined by
N(t)
e
, where e is the number of eggs per butter�y (see below).

Z(t): number of Myrmica ants in cells with host plants at time t. This value contains ants
from two e�ectiveness classes: reproductive cells and sink cells. However, sink cells are
almost free of host ants. Number of reproductive ants Z approximately is the number
of ants in reproductive cells.

1Several of the presented mean �eld measures are build by accumulating values of cells from two e�ectiveness
classes. This is done for a technical reason. It allows to accumulate over cells which either contain or do not
contain host plants. Host plant cells are known in advance, as these cells are determined by the external factor
host plant distribution. In contrast, the e�ectiveness class of a cell depends on system dynamics. It therefore
can be determined only after the simulation.
Clearly, the two criteria of cell e�ectiveness and host plant occupancy are di�erent. Especially cell e�ectiveness
cannot be ignored, when it is important to measure e.g. the spatial area of a reproductive zone. However, the
mean �eld measures we suggest to analyse population dynamics are almost equal for both criteria. Di�erences
using either one or the other of these criteria can be ignored.
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CAP (t): number of cells with host plants and Myrmica nests. This value, in good approxima-
tion, is similar to the number of nests in reproductive cells.

B(t): number of host ants in bu�er cells.

CB: number of bu�er cells. This value accumulates all cells without host plants, which are
close enough to cells with plants, to allow budding of empty cells. According to results in
ch. 7.2, cells which are not directly parasitised, do not go extinct. Hence, CB is constant
in time.
In the following mean �eld approach, we assume unlimited budding range for the host
ants. Therefore, by de�nition, CB = 900 � CP . That is, CB is equal to the number of
cells without host plants.

The variables, de�ned in this section, allow a spatially implicit description of the Maculinea
system.
Additionally, for simplicity, we set

e = ! � �f
� = ratio_of_budders

where !, �f and ratio_of_budders are parameters of the spatially explicit Macu model (see
tab. 1.1)

8.2.2 Rules to transform the spatially explicit model into a spatially im-
plicit version

We simplify the spatially explicit model described in ch. 1 according to following rules:

1. Host ant dynamics is tracked only in cells which contribute to the process � in repro-
ductive cells (Z(t)) and in bu�er cells (B(t)).

2. To calculate the number of host ants, a mean �eld approximation is applied for dif-
ferent e�ectiveness classes separately. That is, numbers of host ants in all cells of one
e�ectiveness class are assumed to be equal. The number of ants per reproductive cell is
determined by Z(t)

CAP (t)
; the number of ants per bu�er cell is B(t)

CB
.

3. In sec. 7.2 it is argued that the dynamical processes are spatially restricted to certain
areas. In the mean �eld approach, we follow these �ndings. Hence, processes are limited
to cells of the appropriate e�ectiveness class:

� Reproduction of Maculinea butter�ies takes place in reproductive cells.

� Extinction of host ant nests only takes place in reproductive cells.

� Successful budding events are always directed from bu�er cells to reproductive cells.

4. The mean �eld approach requires a non-spatial version of the budding process. It is
realised in the way that ants from all bu�er cells are assumed to undertake one attempt
to bud an empty cell in the reproductive area. The probability to �nd an empty repro-
ductive cell is CP�CAP (t)

CP
. If an empty reproductive cell is found, the budding attempt

is successful with probability �, otherwise ants do not bud in this time step. Budding
parameter � is used to account for reduced reachability of the spatially explicit models
in di�erent scenarios.
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Rule 1 is a strict condition, which assumes that sink cells and non-contributing cells do never
take part in host ant dynamics. However, in sec. 7.2 we show that number of host ants in these
cells is not strictly constant. We account for this weak de�nition of cell e�ectiveness classes,
by using the number of cells with plants CP instead of the number of reproductive cells in the
mean �eld model. The exact number of cells occupied at time t by host ants and host plants
CAP (t) corrects this simpli�cation. Using CP instead of the number of reproductive cells has
another advantage. CP is an external parameter given for a scenario, whereas the number of
reproductive cells is determined internally from system dynamics.
Budding parameter � is the only free parameter in the mean �eld model in comparison to the
spatially explicit version. All other relevant parameters (see tab. 1.1) are directly taken from
the explicit model and are therefore �xed. Hence, parameters as reproduction rate of a host ant
nest R have the same value in both versions of the Maculinea model. Aggregated parameters
as number of host plants CP are exactly determined from the host plant distribution.
Parameter � is used to adjust the mean �eld model to the explicit model. Such an adjustment
is necessary, because spatially induced e�ects cannot be simulated with the implicit model. As
known from sec. 7.2, budding is a process, which is acting on a small spatial scale. Nature of
the mean �eld approach does not allow to include small scale processes. Budding parameter �
accounts for the aggregated e�ects of local budding processes on the scale of a site. � therefore
depends on local spatial structures of host distributions and on budding range �.
A value of � = 1 assumes that in a scenario which realises budding as described in rule 4,
every empty cell which is found by a group of budding ants will be colonised. Smaller values
of � reduce the probability that a budding process is successful.

8.2.3 Approximation for the expected population sizes

In the sections above, we presented a generic way to create a spatially implicit version of the
Macu model. However, to give a prospect on further research, in this chapter, we only want
to show that it is possible to create a simpli�ed spatially implicit version of the Macu model
and derive some �rst results. Therefore, we undertake a further simpli�cation: the stochastic
model is approximated by a deterministic version. In the following, instead of keeping track
of the complete stochastic distribution of the system variables, we approximate them by their
expectation values.

8.2.4 Model equations

We give model description in the temporal course of one simulation step.

8.2.4.1 Distribution of Maculinea eggs

In the spatially explicit model, eggs are randomly distributed to cells with host plants. This
process results in a Poisson distribution with mean N(t)=CP . Proceeding to the distribution
of eggs, it is decided, if the eggs are found by Myrmica host ants. This corresponds to a
binomial process with probability p = CAP (t)

CP
. Finally, each ant nest invests, at most, the

fraction m of its size for caterpillar reproduction (see sec. 1.3.2.4). Hence, we must ignore all
Maculinea eggs, which exceed fraction m times the nest size.
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We now turn to the mean �eld approach. The Poisson distribution2 of the egg distribution
on plants is denoted by P (x = j;� = N(t)

CP
), where j indicates the number of eggs per host

plant. In the mean �eld approach, all nests in vicinity of host plants are assumed to contain
the same amount of host ants Z(t)

CAP (t)
. Therefore, jmax(t) = m � Z(t)

CAP (t)
is the highest number

of caterpillars which can be reared in the nest. Hence, the probability to �nd a cell with host
plant and j potentially reared caterpillars can be calculated as

dpoteggs(j; t) =

8><
>:
P (x = j;� = N(t)

CP
) j � jmax(t)

1�
jmax(t)P
k=0

P (X = k;� = N(t)
CP

) else
(8.1)

However, caterpillars are only reared in a cell, when the cell additionally contains an ant nest.
Hence, the probability to �nd k nests with j reared butter�ies in a cell is

deggs(j; t) = B(x = j;n = trunc(CP � d
pot
eggs(j; t)); p =

CAP

CP

) (8.2)

where B(x,n,p) denotes a binomial distribution3. We have to truncate4 the value of n to avoid
non-integer numbers of cells.
We now calculate the expected number of reared butter�ies within generation t. The formula
strongly simpli�es, because expectation value of a binomial distribution is calculated as n � p.
Hence, we receive

N reared(t) =
CAP (t)

CP

jmaxX
j=0

[j � trunc(CP � d
pot
eggs(j; t))] (8.3)

According to model description in sec. 1.3, the number of butter�y eggs in the next generation
is

N(t+ 1) = e �N reared(t)

The number of host ants (caterpillar equivalents) in cells with an ant nest and a host plant is
reduced to

Ẑ(t) = Z(t)�N reared(t)

8.2.4.2 Inner nest dynamics

Within nest dynamics is modelled in the same way as in sec. 1.3.2.5. But, all nests contain
the same amount of ants (mean �eld approach). Extinction process takes place only in cells,
where parasitism is possible (sec. 8.2.2). It can be calculated by the following rule:

If mean size of nests is below threshold ZT , a nest can go extinct with probability pext = 1� Ẑ(t)
ZT

(compare sec. 1.3.2.5). For expectation values, we receive

2Poisson probability distribution function P (x; �) = �x

x!
�e�� where � equals mean and variance (McLaughlin

& McLean, 1999)
3Probability distribution function of the binomial distribution: B(x; n; p) =

�
n

x

�
� px(1� p)(n�x) with mean

is n � p (McLaughlin & McLean, 1999)
4trunc(x) returns the next smaller integer value of the real number x.
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if ( Ẑ(t)
CAP (t)

< ZT )

~CAP (t) = Ẑ(t)
ZT

~Z(t) = (Ẑ(t))2

ZTCAP (t)

else, nothing changes:

~CAP (t) = CAP (t)

~Z(t) = Ẑ(t)
~CAP (t)

Reproduction of host ants takes place in all cells, independent of presence of host plants.
Corresponding to eq. 1.4, we receive

�Z(t) = R
~Z(t)

1+�
~Z(t)

~CAP (t)

�B(t) = R B(t)

1+�
B(t)
CB

8.2.4.3 Budding

The budding process, in the mean �eld model, is strongly simpli�ed in contrast to the original
spatially explicit model. First, according to rule 3 in sec. 8.2.2, only Myrmica ants from cells
without plants can colonise cells with plants. Second, budding is no longer restricted to a
local area. Instead, each budding cell can bud with probability ppotbud(t) = �� �B(t)=CB one of
all cells on the site, where � controls the probability that ants start to bud (tab. 1.1) and
parameter � accounts for e�ective budding range and spatial structures (see sec. 8.2.2). The
budding process is successful, when the cell, to be budded, does not contain an ant nest, else,

nothing happens. Probability of reaching an empty cell is pempty cell(i; t) = CP� ~CAP (t+1)�i
Call

where i is the number of cells which are already budded by host ants within generation t.
Call is the total number of cells. It is Call = field_x � field_y = 30 � 30 = 900 in this model
version (standard parameters in tab. 1.1). Probability pempty cell accounts for the change in
probability, after a budding event was successful, because with each newly occupied cell, the
probability to reach an empty cell is reduced for further budders.
Budding can be seen as a series of Bernoulli trials with changing probability of success, when
a budding event was successful. When the number of already budded cells is i (see above),
the probability of budding success is

pbud(i; t) = pempty cell(i; t) � p
pot
bud(t)

= CP� ~CAP (t)�i
900 ��

�B(t)
CB

To calculate the expected number of newly budded cells, we estimate the mean number of
budding attempts until budding was successful in the binomial process. Afterwards, proba-
bility of budding success is reduced and the next Bernoulli trials start with remaining bu�er
cells. The number of attempts, which are needed to successfully bud an empty cell, follows a
Geometric distribution5. G(x; p = pbud). The expected number of events, to bud the i-th cell

5Probability distribution function of a geometric distribution G(x; p) = p � (1 � p)x�1, with mean value 1
p

(McLaughlin & McLean, 1999)
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successfully, is k = 1
pbud(i;t)

. The expected number of successful budding events achieved by
CB budding cells is

Cbud
P (t) = min

 
fx 2 [0;CB] j

xX
i=0

1

pbud(i; t)
� CBg; (CP � ~CAP (t))

!
(8.4)

Eq. 8.4 ensures, that maximally all cells with host plants can be occupied by host ants.
The budding process changes population sizes as follows

Z(t+ 1) = �Z(t) + � � Cbud
P (t)B(t)

CB

B(t+ 1) = �B(t)� � � Cbud
P (t)B(t)

CB

CAP (t+ 1) = ~CAP (t) + Cbud
P (t)

(8.5)

where � denotes the ratio of ants, which are leaving an ant nest (sec. 8.2.1).

8.2.4.4 Model output

It is useful, for model output at the end of the procedure, to divide the number of Maculinea
eggs N(t+ 1) by parameter e, to receive the number of adult butter�ies.
Interestingly, in the frame of this deterministic model, the mean probability of Maculinea
population extinction per time step pext(t) can be estimated from eq. 8.2. The population
goes extinct in time step t, if we �nd all nests to contain no butter�y caterpillars. That is:
j = 0.

pext(t) = deggs(j = 0; t)

= (1� CAP (t)
CP

)
CP (1�exp(�

N(t)
CP

)) (8.6)

From pext(t), the intrinsic mean time to extinction tm can be calculated according to equation
3.9.

8.3 Comparison of the spatially implicit model version with the

spatially explicit Macu model

In the following, we verify that the spatially implicit mean �eld model reproduces results from
the explicit model in high accuracy. Budding parameter � is used to adjust the mean �eld
model to the spatially explicit model (sec. 8.2.2). Objective of the adjustment is to minimise
the sum of mean square error of median number of butter�ies and mean number of butter�ies.
The adjustment is done for all host plant distributions used in ch. 6 at the same time. Hence, in
this overview study, we do not explicitly account for di�erent local spatial plant distributions.
Fig. 8.1 shows a comparison between results of the spatially explicit Maculinea model (circles)
and of the approximated mean �eld model (line). Simulation results of the spatially explicit
model are gained by methods described in ch. 2. We choose budding range � = 12m to achieve
long distance dispersal of host ants. With the initial host ant distribution ants3 (high number
of initially distributed host ants, refer to sec. 6.2.1), the risk of unwanted extinction due to
initial conditions is reduced (ch. 6). Host plant distributions are varied in the same way as in
ch. 6.
The mean �eld model is adjusted to simulation results of the explicit model (mean number
of butter�ies: R2 = 0:94, median number of butter�ies: R2 = 0:95). With this �t, budding
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Figure 8.1: Results from the mean �eld model (lines) and the spatially explicit model 'Macu'
(circles) are compared. Both models are parameterised with the standard parameter set in
tab. 1.1. For the spatially explicit Macu model we used host ant scenario: budding range
� = 12, initial host ant distribution: ants3. The mean �eld model was run with colonisation
parameter � = 0:7. Correlation of mean number of butter�ies: 94%; correlation of median
number of butter�ies: 95%
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parameter � = 0:7. The value of � is reasonable. On the one hand, with a budding range
� = 12m, host ant budding approximately ful�lls the condition of unlimited dispersal, which
would result in � � 1. On the other hand, the probability of successfully �nding an empty
nest is reduced in the explicit model, because of border e�ects. Budding parameter � = 0:7
indicates that about 30% of budding attempts fail because cells are searched outside of the
habitat site.
Correspondence of results from spatially explicit and mean �eld model is close, as can be
seen in �g. 8.1. The best reproduction of shape of a curve is accomplished for the median
number of Maculinea butter�ies (central graph). Both, the initial increase of median number
of butter�ies at low levels of host plant number as well as subsequent decline due to higher
number of host plants is modelled well. In contrast, in the lower graph, intrinsic mean time to
extinction tm is overestimated for very small and intermediate number of butter�ies. Anyhow,
qualitative shape of the curve is correctly indicated by the mean �eld model.
A wrong shape of the curve is found for the mean number of Maculinea butter�ies (top
graph). For intermediate numbers of plants, the spatially explicit model (circles) indicates
a slight decline, whereas the mean �eld model calculates an increase and a further strong
decline. A possible reason for this discrepancy is the deterministic approximation of the mean
�eld model. It is known that approximations, which only take into account expectation values
of stochastic population models, might overestimate results from the stochastic model (Lande
et al., 2003). For example in the Maculinea system, deviation of the expectation value in low
numbers of Maculinea butter�ies can be ampli�ed during a cycle. It can be assumed that
variance might damp the system. However, to test the in�uence of variance to the mean-�eld
model, simulation experiments are required, which are beyond the scope of this preliminary
study.
As well, it is interesting to analyse the shape of the curve calculated by the deterministic
approximation of the mean �eld model (solid line in �g. 8.1). It is striking that dependence
of population data on number of host plants is not smooth. Instead, the line is jagged, which
indicates a non-linear relation. In stochastic simulations, such small deterministic �uctuations
can hardly be distinguished from stochastic variance. However, they could be the reason for
some concentrations or absences of data points (circles) in �g. 8.1.
Another interesting observation is that we do not �nd predator-prey cycles in the deterministic
approximation of the mean-�eld model, if the number of host plants is below 500. With less
than 500 host plants, either the system is in its equilibrium state or it switches between two
states. This is in contrast to dynamics of the spatially explicit model, where cycles can be
observed at all numbers of host plants. At about 500 host plants, the period of cycles increases
in the spatially implicit deterministic version as well as in the spatially explicit version of the
Macu model. Then duration of periods are almost the same in both model versions.
The reason, why the deterministic version is cyclic, when the number of host plants is above 500
plants, can be found in a retardation of Maculinea reproduction. This can be seen in eq. 8.2 for
small numbers of butter�y eggs. When N(t) is small, the probability distribution function in
eq. 8.2, which describes spatial Maculinea egg distribution on host plants, can be approximated
by a binomial distribution. This is, because it can be assumed that the few Maculinea eggs
are solitarily distributed to the many host plants (the probability to �nd two eggs on the same

plant is small). The approximated binomial distribution B(p =
CAP (t)

CP
;n = N(t)) determines

the amount of eggs, placed in cells with host plants and Myrmica host ants. Thus, the expected
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reproduction rate of Maculinea butter�ies for low numbers of eggs is

e
CAP (t)

CP

where e is the number of o�spring per adult butter�y, when all eggs are placed in suitable
cells (sec. 8.2.1). Only for a reproduction rate greater than 1, the Maculinea population can
grow. Hence, there is a condition for the least number of cells, which needs to be occupied by
both, host plants and host ants, to allow growth of the Maculinea population:

CAP (t) >
CP

e
(8.7)

The condition in ineqn. 8.7 is independent of the actual size of ant nests. Although, nests
might be large, Maculinea larvae cannot exploit them, because there is not more than one
caterpillar in a nest.
The negative e�ect of single caterpillars to host ant nests is small. Hence, growth of the ant
population is only slightly hindered by Maculinea butter�ies. As long as the number of ant
nests is too small to support growth of the Maculinea population, these few nests can grow
up to large sizes.
In contrast, when the threshold of a growth rate equal to 1 has been overcome, the growing
butter�y population can pro�t from large host ant nests. Consumption on the large resource
leads to high numbers of butter�ies and to strong overexploitation e�ects.
Because reproduction of Maculinea can depend on di�erent mechanisms at di�erent times
during a population cycle, the system is destabled.
There is an interesting point: The time, how long it takes for a small population of butter�ies
to ful�ll the condition in ineqn. 8.7, depends on the amount of bu�er cells in the system. It
is stated in the model description of the mean �eld model (sec. 8.2.2) that empty cells can
be colonised only from ants, which are coming from nests in bu�er cells. For this reason,
budding from bu�er to reproductive cells triggers, at which moment in a cycle the Maculinea
population starts to grow.
In this study, parameter e = ! � �f = 4 (see sec. 8.2.1 and standard parameter set tab. 1.1).
Fig. 8.2 shows the percentage of time steps, in which condition 8.7 is not ful�lled. There is a
clear threshold at approximately 500 host plants. Below this threshold condition 8.7 is almost
always ful�lled. Fig. 8.2 demonstrates that overexploitation in the Maculinea system becomes
severe, when the butter�y population destroys too many host ant nests. If that happens,
colonisation from the bu�er area is essential to recover the reproductive area. Budding from
the bu�er area takes time and provokes population cycles and further overexploitation.

8.4 Discussion

With the mean �eld model, we present a further step towards simpli�cation of the Maculi-
nea model. In contrast to ch. 1, where simpli�cations are introduced ad hoc by discussion
of plausibility, in this chapter, simpli�cations are based on extensive analysis of system and
processes. Before developing the mean �eld model, mean �eld properties of the spatially ex-
plicit model have been known, already. The mean �eld model is a reformulation of the spatial
version. Similarity of both models is shown with surprising accuracy, even by using a �rst
order deterministic approximation of the mean �eld model.
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Figure 8.2: Percentage of time steps, when CAP (t) �
CP
e

versus the number of cells with host
plants CP . If number of host plants is below 500, condition 8.7 is usually ful�lled.
Results from the deterministic mean �eld model; parameters as in �g. 8.1. CP = 900 is
excluded, because there is no bu�er area left.

Hence, in many cases, the complex spatially explicit model can be substituted by the mean
�eld model. Advantages will arise from simpler model structure, which can be understood
easier and from quicker simulation routines. Di�erent applications of the mean �eld model
can be imagined. For example in the frame of EU-project MacMan. In this project, additional
to analysis of local populations of Maculinea butter�ies within a patch, population dynamics
shall be investigated on landscape scale. That means, di�erent local populations or subpop-
ulations are observed for their interactions. In this context, the fast Maculinea mean �eld
model could be used as a module. It could be integrated to simulate nearly realistic behaviour
of local populations.
The simple mean �eld model can be applied as well, to better understand the Maculinea
system. The deterministic model version, developed in this chapter, is used to generate new
hypothesis on reasons for overexploitation. Depending on the size of the butter�y population,
di�erent processes are relevant. For low numbers of butter�ies, number of host ant nests is
decisive for reproduction rate. Instead, for large numbers of Maculinea individuals, size of the
ant nests is relevant. Change in process types retards population development and provokes
cyclic behaviour. In the deterministic approximation to the mean �eld model, cycles occur
only for high numbers of host plants, because, for low numbers of host plants, deterministic
mean butter�y numbers are high and allow only for the latter mechanism. In contrast, in
the spatially explicit model, quasi-cycles can be found independently of the number of host
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plants. Tests reveal that, due to stochastic variance in spatially explicit simulations, Macu-
linea population size can drop to low values even for low numbers of host plants. For this
reason, switching of reproduction types occurs and leads to a time delay. It can be observed
that the resulting cycles have larger amplitudes (higher maxima) than in cases, where the
time delay does not occur.
In sec. 2.3.1, it is discussed if observed quasi-cycles in the Maculinea system are 'endogenous
resonant' or 'perturbed limit cycles'. Findings of the deterministically approximated mean
�eld model indicate that both forms of quasi-cycles can occur in the system. For low num-
bers of host plants, the deterministic model calculates a stable population size (or switching
between two close values). Hence, quasi-cycles in the stochastic spatially explicit model are
probably provoked by perturbation of the underdamped system ('endogenous resonant'). In-
stead, for high numbers of host plants, the deterministic approximation shows limit cycles.
Therefore, it can be assumed that in the spatially explicit model, these limit cycles transform
to stochastically perturbed limit cycles.
In recent publications, Mouquet et al. (2005) suggest a spatially implicit analytical model for
the support of management actions in a Maculinea arion system. Some of their results are
similar to �ndings in ch. 6 and in this chapter. However, the study of Mouquet et al. (2005)
is based on strong assumptions of spatial implicity, which are not explained in the publica-
tion. Our results in the last two chapters can �rstly prove that the Maculinea system indeed
can be described spatially implicit. Secondly, we show that there is a threshold-like change
in exploitation regimes with increasing number of host plants. This change is emulated by
Mouquet et al. (2005), when they argue that cycles in their Hassell-type single species model
indicate increased risk of extinction for Maculinea. However, as they use a Hassell model,
they �nd periodicity of one simulation step, which does not re�ect duration of population
cycles measured in the �eld. In contrast, our range of periodicity could explain them. For
this reason, care has to be taken, when following their arguments on mechanisms for cyclic
Maculinea populations.
In this chapter, we presented the development of a spatially implicit version of the Macu
model. This model version is an application of results derived in the comprehensive analysis
of the spatiotemporal dynamics of Maculinea systems, performed in this thesis. Aim of this
chapter was, to give an example for the potential of the analyses in this thesis and to give an
outlook on further investigations. For this reason, analysis in this chapter have a preliminary
character.
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Summary

Analysis of spatiotemporal population dynamics of interacting species is di�cult because of
the multitude of spatially distributed processes. However, understanding these systems is
crucial for the development of methods to protect endangered species communities.
In this work, we develop a concept to analyse complex multi-species systems. It is adjusted
to an important tasks of nature protection: conservation of species in their habitat. The hi-
erarchical approach allows to detect scenarios, which might endanger a community of species
on an aggregated level. Stepwise reducing aggregation, mechanisms can be identi�ed, which
negatively in�uence species of the community.
Following this concept, we analyse e�ects of species-interaction and spatiotemporal host dis-
tribution on persistence of Maculinea populations at isolated habitat sites. During their life
cycle, parasitic Maculinea butter�ies change their hosts. Young Maculinea caterpillars feed
on the host plant, at which they have emerged from the egg, without impacting the plant
seriously. However, after reaching 4th instar, a caterpillars leave their plants and wait in their
vicinity for adoption by ants of genus Myrmica. Once accepted, the caterpillars parasite the
ant colony. Depending on the kind of Maculinea species, they might directly feed on the ant
brood or become fed by worker ants. In both cases, a su�ciently high number of adopted
caterpillars can damage an ant nest to the extent that it will be abandoned by the ants. Sur-
viving caterpillars pupate and emerge as adult butter�ies from the nest in summer.
Spatial distribution of initial host plants (oviposition plants), implies a spatial distribution of
4th instar larvae. Therefore, parasitism of Maculinea caterpillars on Myrmica host nests is
spatially distributed. This leads to pattern formation in the spatial distribution of host ant
nests.
Self-organised pattern formation depends on the dispersal of the interacting species. In gen-
eral, host plants change their spatial distribution only on a long time scale. For the Maculinea
system, this distribution can be considered as stationary. It is assumed that adult Maculinea
butter�ies can reach every host plant of the habitat site for oviposition. Host ants have a
small foraging area (radius about 2-3 metres) around their nest. Within this area, they can
�nd Maculinea caterpillars for adoption. The process of colonising empty nest sites (budding
process) happens on a larger scale than foraging, but on a smaller scale than movement of
Maculinea butter�ies.

Methodology

We develop a generic spatially-explicit rule-based simulation model for a Maculinea system
(Macu-model). To achieve natural realism, the Macu-model is based on an existing realistic
and mostly validated model for Maculinea rebeli (Hochberg et al., 1992, 1994; Elmes et al.,
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1996; Clarke et al., 1997, 1998; Thomas et al., 1998a). However, as we aim to analyse the
e�ects of spatially distributed parasitic interactions on persistence of Maculinea populations,
we emphasise these interactions. This means that we consider only one Myrmica species and
ignore inner-speci�c competition of young Maculinea caterpillars on their initial host plants,
which would disturb spatial patterns resulting form Maculinea-Myrmica interactions. But, we
enhance �exibility of the budding process, allowing Myrmica ants to colonise empty nest sites
in larger distances (variable dispersal speed of host ants).
To analyse the in�uence of di�erent spatially relevant parameters on the performance of a
Maculinea population, scenarios are created that form the input parameters of the Macu-
model. Each scenario consists of a spatial host plant distribution, an initial spatial host ant
distribution and a parameter � (budding-range), which de�nes the probability distribution of
colonising distances of ants. The scenarios represent spatial distributions (density and clump-
ing varied) of hosts in a Maculinea habitat. The scenarios allow to analyse, how di�erent
spatial host distributions a�ect population dynamics of the Maculinea system. In the next
step, we are interested, how they in�uence persistence of the butter�y population.
Population viability analysis (PVA) is a standard method for single species systems. However,
the Maculinea system consists of interacting species with more complex dynamics than it is
known from single species systems. There is still no standardised methodology for PVA of
multi-species systems. By means of literature research and investigations on simple examples
and the complex Macu model, we derive a phenomenological description of distributions of
extinction times for populations in a large class of systems of interacting species. We �nd
in analytical calculations that the long term behaviour of distributions of times to extinction
in multi-species systems can be analysed with the ln(1 � P0)-method suggested for single
species systems (Wissel & Stöcker, 1991; Stephan, 1992; Stelter et al., 1997; Frank et al.,
2002; Grimm & Wissel, 2004). The resulting measures of persistence are the intrinsic mean
time to extinction tm and a coe�cient c1. tm indicates viability of an established population.
c1 is an indicator for the probability that a population reaches the established state before
going extinct. It can be used to assess risk of extinction during an initial transient phase of
system dynamics (e.g. after recent colonisation of a habitat site). Applicability of the method
is assessed by means of analytical calculations and numerical simulations. The method shows
robust and reliable results. To our knowledge, this is the �rst PVA-method, which can be
applied to a large range of species communities.
Robustness of the method enables us to perform a new type of PVA analysis, which allows to
e�ciently assess viability of populations under many di�erent conditions. This achievement
is essential in the context of spatial analysis, where high-dimensional parameter spaces have
to be scanned through. With comparably low e�ort, the method provides an overview on how
di�erent parameters in�uence population persistence. Aim of this screening study is, to grasp
all major e�ects.
Going a step further, we develop a landscape analysis method for multi-species systems. For
that purpose, suitability of di�erent landscapes is assessed for their ability to sustain partic-
ular populations. Suitability is measured by population persistence. Therefore, dynamics of
the system and requirements of the populations are taken into account when assessing suit-
ability. However, it is not yet clear, which spatial properties of a landscape are relevant for its
suitability. Here, methodology of landscape ecology can be applied to characterise landscapes
geometrically and calculate spatial statistical indices. If there is a relation between an index
and suitability, the index almost certainly characterises features of the landscape, which are
important for population viability.
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Therefore, such a spatial index is an important tool for nature conservation. It can be easily
calculated for a given landscape by means of spatial statistics. However, it comprises knowl-
edge about the importance of landscape features on population viability � it is automatically
an indicator for habitat suitability for species of the system.
There is another situation, where the methodology provides important insight in the e�ect of
landscape features on the species systems. This is the case, when the spatial statistical index
evaluates landscapes equally, although population persistence in these landscapes strongly
di�ers. This means that the index does not cover all relevant landscape elements adequately.
However, we learn from the analysis, for which landscapes there might occur unexpected popu-
lation dynamical processes. These special landscapes are worth a more detailed investigation.
Hence, expensive and di�cult landscapes analysis can be concentrated on few examples.
In this work, analysis follows two principles:

� It is hierarchically structured. That means, system dynamics are investigated on di�erent
levels of aggregation. Studies on the basis of highly aggregated measures (e.g. population
persistence) aim on a comprehensive overview of e�ects, but details of the dynamics are
perceived only implicitly. Stepwise reduction of levels of aggregation allow insight in the
underlying details down to the complete complexity of the spatiotemporal dynamics.

� The analysis is e�ect driven. In this way, it can be decided, whether it is worth to
decrease the level of aggregation. If the in�uence of a factor on the system is obvious
on a high level of aggregation, there is no need for detailed studies on lower aggregation
levels. Directing the analysis at e�ects allows to e�ciently concentrate on critical factors.

To study the e�ects of spatiotemporal species interaction on persistence of Maculinea butter-
�ies, we perform landscape analysis on the basis of multi-species PVA. 'Landscapes' consist
of stationary host plant distribution and initial host ant distribution. In detailed studies of
spatiotemporal dynamics of the system, we analyse, how small-scale interaction of Maculinea
and its hosts in�uence performance of the butter�y population.

Results

Population dynamics

For the Macu model, we �nd quasi-cyclic population sizes of Maculinea butter�ies and Myr-
mica host ants, resulting from their host-parasite interactions. Small-scale interactions are
synchronised throughout areas with host plants, because adult butter�ies can reach all host
plants of a site for oviposition.
In simulation runs, it can be seen that the spatial distribution of host ants adapts to the
spatially distributed parasitism from Maculinea caterpillars. Areas without host plants (un-
exploited areas) are completely inhabited by host ants. In areas with host plants (exploited
areas) mean density of host ants is lower. Ant nests show dynamics. They are abandoned or
nest sites are recolonised.
Because of spatial segregation of exploitable and non-exploitable areas and by small scale
dispersal of host ants (budding), areas of di�erent e�ectiveness for Maculinea population per-
formance can be distinguished on a Maculinea habitat site:

Sinks: In areas of homogeneous dense host plant coverage, there are very few host ants.
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These areas are sinks for the Maculinea population. Maculinea eggs are lost, because
the developed 4th instar larvae are not adopted by their second host, the ants.

Reproductive area: In areas with heterogeneous host plant distribution, Maculinea can re-
produce successfully. The reproductive area restricts to close vicinity of host plants.
Under condition that there is at least one host plant within the foraging area of a host
ant nest, Maculinea caterpillars can complete their development. If the ant nest becomes
abandoned because of parasitic pressure from Maculinea caterpillars, surrounding unex-
ploited ant nests can recolonise the area close to the plant.

Bu�er: Non-exploitable ant nests in an area of heterogeneous host plant distribution can be
considered as bu�er of the ant resource for butter�y caterpillars. Ants in this area cannot
reach a host plant, when foraging. They, therefore, do not adopt Maculinea caterpillars.
However, the nests are close enough to colonise vacant nest sites in the vicinity of host
plants.
Colonising ants from the bu�er area build new nests in the reproductive zone. This
process results in a lack of worker ants in the original nests of the bu�er area. However,
nest size hardly drops to such low numbers that a nest would be abandoned. For this
reason, the bu�er area is densely covered with ant nests.

Non-contributing area: Host ant nests, which are far away from host plants (further than
the usual dispersal distance), do not contribute to the performance of Maculinea pop-
ulations. In the Macu model, these nests cannot colonise vacant nest sites, because all
sites are occupied in their surrounding. Size of these nests is around their capacity.

Consequently, number of host plants is not the only decisive factor for performance of a
Maculinea population. As well it is important how well empty nest sites in the vicinity of host
plants can be colonised by host ants.
Dynamic of the system during one cycle is as follows: a large butter�y population overexploits
its ant resource in the reproductive area. This leads to a decline of both populations, butter�ies
and ants. Then, the small butter�y population has to survive a phase with only few host ants
in the reproductive area, until host ant population in this area has recovered su�ciently.
We �nd two di�erent mechanisms, which limit re-growth of the Maculinea butter�y population:

1. There is a su�ciently large number of host ant nests in the reproductive area. But these
nests are too small to rear a large amount of butter�y caterpillars.

2. There are too few ant nests in the reproductive area. Hence, too many Maculinea eggs
are lost on host plants, where there are no ant nests in the neighbourhood.

The two mechanisms lead to di�erent types of system dynamics. In the �rst case, it is possible
that host ant nests in the reproductive area recover on their own, because they grow with only
low parasitic pressure from the few butter�ies. Colonising ants from the bu�er area support
system recovery. In contrast, in the second case, contribution of the bu�er is essential. Host
ant nests in the reproductive zone in general are too small for colonisation. Therefore, they
cannot compensate the lack of ant nests. Colonisation of vacant nests sites in the reproductive
area by host ants from the bu�er area is necessary.
In the second case, host parasite cycles have longer periods and larger amplitudes than in the
�rst case. We show that the time delay, provoked by the time it takes to compensate the
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lack of host ant nests in the reproductive area, leads to limit cycles. In the �rst case, cycles
result from stochastic disturbance of the systems equilibrium state. The second case dynamic
occurs, if host ant density in the area of host plants declines below a critical threshold. The
probability for this event increases with increasing host plant density. Hence, interaction of
deterministic dynamics and stochastic events decide on the momentary type of dynamics of
the system. To our knowledge, this is a newly described phenomenon for population systems.

Extinction dynamics in multi-species systems

Risk of extinction is high, when populations consist of only few individuals, because of demo-
graphic e�ects. This general law is found in a phenomenological study of extinction risk for a
general class of interacting species systems, too. Having a look on the distributions of times
to extinction6 of interacting species systems, we �nd similarities and di�erences to the single
species case. Similarities are the di�erent momentary extinction risks (rates of extinction)
between an initial transient and an established phase of the system. In the established phase,
long term extinction dynamics can be described as a Markov process. For this reason, we can
show analytically that the single-species PVA method (see above) can be applied to analyse
multi-species systems.
However, di�erences between single and multi-species systems can result in important dif-
ferences of persistence of populations. For example, it is found that deterministic cycles in
population sizes can a�ect momentary extinction risk. It is possible that, when the cycle is
in its maximum, populations e�ectively never go extinct, meanwhile in the minimum, mo-
mentary extinction risk is drastically high. If this is the case, estimates of population size,
counted only over a short period, can lead to incorrect assessment of the risk of extinction of
a population.
In systems of interacting species, an initial transient phase (e.g. after colonisation of a new
habitat site) can have a strong in�uence on persistence of the population. In simulations of
the Macu model, we observe that it takes up to 50 generations until the system reaches its
established state.
In this context, a new type of bottleneck e�ect is found. It expresses as a bimodal distribution
of times to extinctions: either the population goes extinct during the �rst 20 generations (with
high risk of extinction) or it survives for the maximum of 5000 generations (in the simulation).
The bottleneck e�ect arises from interaction of Maculinea with its hosts. If this e�ect occurs,
in principle, conditions are good to support long-term persistence of the butter�y population
(survival for 5000 generations in the simulation). However, the populations undergo an initial
phase of adaptation. During this phase, the spatial distribution of host ants is changed. Before
this change, the butter�y population is highly endangered of going extinct. Afterwards, the
risk has become extremely low. E�ectively, the Maculinea population is able to improve its
'habitat conditions' during the initial phase.

In�uence of host distribution on survival of Maculinea populations

For the Maculinea system, all these types of extinction behaviour are realised, depending on
the selected scenario. In the following, we describe how these scenarios (that are spatial host
distributions) in�uence persistence of Maculinea.
Analysing population dynamics, it is found that the spatial distribution of host ants adapts

6Times to extinction of one of the populations of the interacting species system
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to the spatially distributed parasitic pressure from Maculinea butter�ies. For this reason, in
the established state of the system, no e�ects of initial host ant distribution on persistence
of Maculinea populations can be found. In contrast, spatial distribution of host plants has a
main e�ect. Thus, the host plant distribution can be considered as landscape structure of the
Maculinea system on the site.
Understanding the e�ects of host plant distribution on performance of the butter�y population,
we can derive rules of thumb for the structure of suitable host plant distributions. In general
heterogeneous host plant distributions of intermediate density are a good option. Problematic
are:

Very low host plant densities: Low host plant densities limit the size of Maculinea pop-
ulations and they become vulnerable to demographic e�ects. However, it is found that
established Maculinea populations cope surprisingly well with small numbers of host
plants.
But, colonisation of such sites is only possible, if Myrmica host ant density is high.

Very high host plant densities: If host plant density is too high, Maculinea caterpillars
exploit Myrmica ants throughout the entire habitat site. There is only few space left
for the host ant population to develop undisturbed from parasitism (Bu�er area is too
small). This situation leads to temporary overexploitation of the resource and to strongly
�uctuating population sizes.
Overexploitation can be strong enough that too few host ants (as resource for Maculinea
caterpillars) are left for following Maculinea generations to survive. The population goes
extinct. For that reason, sites with an extremely dense host plant coverage are unsuitable
for Maculinea populations.

Clumped host plants: If host plants are clumped, only the border of a plant patch can be
used as reproductive area by Maculinea. Because of limited dispersal distance (budding
range �) ants from the bu�er zone cannot reach further into the patch. Therefore, the
inner area of a plant patch is a sink for Maculinea (host plants for oviposition, but no
host ants for further rearing 4th instar larvae).
For this reason, suitable habitat is e�ectively restricted to only a part of the site. This
leads to smaller Maculinea populations than on sites with a comparable amount of
heterogeneously distributed host plants. Strength of the clumping-e�ect depends on
dispersal distance of host ants. In general, dispersal distance is short. Therefore clump-
ing of host plants can have a noticeable negative e�ect on persistence of Maculinea
populations.

To make assessment of suitability of host plant distributions easier, we develop a spatial
index. This landscape index evaluates whether host plants belong to the reproductive or the
sink area. Included into the calculation of the index is an assessment, how good a host plant
can be reached by colonising host ants.
We test power of the index with the Macumodel for a large amount of scenarios. The PVA
based test includes population dynamical processes and therefore requirements of the system
on the host plant distribution. Except for very low host plant densities, for which the absolute
number of host plants is the most important factor, results of the index are good. High index
values are a clear indication for suitable host plant distributions.
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Main results of the thesis in short

� A method for population viability analysis (PVA) of interacting-species systems is de-
veloped.

� A method for landscape analysis is developed, which includes species behaviour (i.e.
population ecological processes) into the assessment of spatial structures.

� In the Maculinea system, two di�erent types of host parasite cycles occur. Behaviour of
the system depends on momentary population sizes.

� In multi-species systems a bottleneck-e�ect can occur, because the colonising popula-
tion and habitat conditions need time to adapt to each other. The colonising species
in�uences its new environment.

� Rules of thumb and a spatial index for suitability of spatial host plant distributions, to
support Maculinea populations, are derived.
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Zusammenfassung

Die Analyse raumzeitlicher Populationsdynamiken interagierender Arten ist auf Grund der
Vielzahl verteilt auftretender Prozesse schwierig. Dennoch hängt die Entwicklung von Maÿ-
nahmen zum Schutz von Artengemeinschaften vom Verständnis der Dynamiken ab.
In dieser Arbeit wird ein Konzept zur Untersuchung komplexer Mehrartensysteme entworfen.
Es orientiert sich an einer zentralen Aufgabe des Naturschutzes: der Erhaltung vorhandener
Arten in einem Lebensraum. Ein hierarchisches Vorgehen erlaubt auf grober Aggregations-
stufe Szenarien zu erkennen, die einer Artengemeinschaft gefährlich werden können. Durch
schrittweise Verringerung der Aggregation wird untersucht, welche Mechanismen die Gefähr-
dung hervorrufen.
Diesem Konzept folgend analysieren wir E�ekte raumzeitlicher Wirtsverteilung und Artinter-
aktion auf die Überlebenschance von Maculineapopulationen auf isolierten Habitat�ächen.
Parasitische Schmetterlinge der Gattung Maculinea (Ameisenbläulinge) haben einen interes-
santen Lebenszyklus. Im Sommer legen die adulten (erwachsenen) Weibchen nach der Paarung
Eier auf artspezi�sche Eiablagep�anzen. Die sich entwickelnden jungen Raupen bleiben wäh-
rend der ersten Häutungsstadien exklusiv auf diesem ersten Wirt (im folgenden Wirtsp�anze),
den sie aber nicht wesentlich beeinträchtigen. Zu Beginn des vierten Häutungsstadiums wer-
den die P�anzen verlassen. Am Boden angekommen, verharren die Larven in der Nähe ihrer
Wirtsp�anze. Sie warten darauf, von Wirtsameisen der Gattung Myrmica gefunden, adoptiert
und mit ins Ameisennest genommen zu werden. Nicht adoptierte Larven sterben. Im Nest,
leben die Larven als Parasiten der Ameisen. Es gibt zwei typische Lebensweisen: so genannte
Kuckucksarten lassen sich von Arbeiterameisen füttern, wovon zwar die Schmetterlingslar-
ven pro�tieren, die Ameisenbrut im Nest wird aber vernachlässigt und in ihrer Entwicklung
beeinträchtigt. So genannte räuberische Maculineaarten fressen direkt an der vorhandenen
Ameisenbrut. Der Parasitismus kann so stark sein, dass Ameisen ihre parasitierten Nester auf-
gegeben. Die Maculinealarven überwintern, verpuppen sich und verlassen erst als entwickelte
adulte Schmetterlinge das Ameisennest.
Auf Grund der räumlichen Verteilung der Wirtsp�anzen ist eine räumliche Verteilung der
Maculineaeier vorgegeben. Diese führt zu räumlich verteiltem Parasitismus an Wirtsameisen.
Daher kann eine selbstorganisierte Strukturierung der Wirtsameisennester auf einer Maculi-
nea�äche erwartet werden.
Die Strukturbildung hängt vom Dispersal (Ausbreitung) der interagierenden Arten ab. Es
wird gemeinhin angenommen, dass adulte Maculinea Schmetterlinge jede Wirtsp�anze auf
einer Habitat�äche erreichen können. Von den Wirtsp�anzen ist bekannt, dass sich ihre räum-
liche Verteilung nur sehr langsam über viele Generationen hinweg ändert. Sie wirken für das
Maculinea-System ortsfest. Die Wirtsameisen haben einen kleinen Fouragierradius von etwa
2-3m um das Nest, in dem sie Nahrung suchen und auch Maculinea Larven �nden können.
Auf einer gröÿeren, dennoch lokal begrenzten Skala verläuft der Prozess der Nestneugründung.
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Dabei verlässt ein Teil der Arbeiterameisen sein Nest und besiedelt einen geeigneten leeren
Nistplatz. Dieser Vorgang wird budding (engl. Sprossung) genannt.

Methodik

Um unsere Analyse durchzuführen konstruieren wir ein räumlich-explizites regelbasiertes Si-
mulationsmodell für ein generelles Maculineasystem. Im Modell werden E�ekte räumlich ver-
teilter Artinteraktionen betont, um deren Ein�uss auf die Persistenz einer Maculineapopula-
tion möglichst deutlich beobachten zu können. Obschon stark abstrahiert, bleibt das entstan-
dene so genannte Macu-Modell naturnah. Denn unser Modellaufbau basiert auf dem bereits
existierenden HCET-Modell für die Art Maculinea rebeli, dessen Ergebnisse mehrfach an Feld-
beobachtungen getestet wurden (Hochberg et al., 1992, 1994; Elmes et al., 1996; Clarke et al.,
1997, 1998; Thomas et al., 1998a). Im Unterschied zum HCET-Modell berücksichtigt das
Macu-Modell keine Konkurrenz zwischen verschiedenen Wirtsameisen, und die innerspezi�-
sche Konkurrenz von Maculinealarven auf Wirtsp�anzen is unterdrückt. Im Gegenzug ist der
Ausbreitungsmechanismus für Wirtsameisen �exibilisiert worden. Dadurch werden Nestgrün-
dungen in gröÿerer Entfernung vom Ursprungsnest als im HCET-Modell möglich. Mit diesen
Änderungen wurde das Modell auf die Untersuchung von E�ekten räumlicher Wirtsverteilung
und parasitischer Interaktion zugeschnitten. Durch Modellvergleich mit dem HCET-Modell
ist es möglich, die Ergebnisse des Macu-Modells für ein natürliches System einzuschätzen.
Um den Ein�uss verschiedener raumrelevanter Parameter auf die Entwicklung einer Maculinea-
Population zu testen, werden Szenarien erzeugt, die dem Macu-Modell als Parametersatz
übergeben werden können. Ein Szenarium besteht aus einer räumlichen Wirtsp�anzenvertei-
lung, einer räumlichen Anfangsameisenverteilung und einem Parameter budding-range �, der
die Wahrscheinlichkeitsverteilung der Entfernungen zwischen einem Ursprungsnest und einem
neu zu gründenden Nest charakterisiert. Jedes Szenarium stellt eine Kon�guration von Wirten
in einem Maculinea-Habitat dar. Die räumlichen Verteilungen werden durch verschiedene un-
terschiedlich stochastische Punktprozesse erzeugt. Klumpungen der Wirte auf verschiedenen
Skalen sind realisiert.
Die Szenarien ermöglichen die Untersuchung der E�ekte verschiedener räumlicher Wirtsver-
teilungen auf die Populationsdynamik einer Maculineapopulation. Uns interessiert, wie die
Szenarien die Persistenz (Überlebenschance) einer Maculinea Population beein�ussen.
Vergleichende Populations-Überlebens-Analysen (PVA) sind eine Standardmethode für Ein-
Art-Systeme. Das Maculinea-System ist aber ein Mehr-Arten-System. Für diese von ihren
Dynamiken her deutlich komplexeren Systeme gibt es bisher keine standardisierte Vorgehens-
weise.
Mit Hilfe von Literaturrecherche und Beobachtungen an einfachen Modellen und am kom-
plexen Macu-Modell gelingt eine phänomenologische Beschreibung der zeitlichen Verteilung
von Aussterbeereignissen von Populationen in einer breiten Klasse von Systemen interagie-
render Arten. Diese Verteilungen lassen sich in ihrem Langzeitverhalten mit einer von Wissel
& Stöcker (1991); Stephan (1992); Stelter et al. (1997); Frank et al. (2002); Grimm & Wis-
sel (2004) für Ein-Art-Systeme vorgeschlagenen Methode analysieren. Die dabei auftretenden
Persistenzmaÿe sind die intrinsische mittlere Lebensdauer tm, die die Chancen für Persistenz
einer etablierten Population anzeigt und Koe�zient c1, der die Chance für das Erreichen des
etablierten Zustands charakterisiert. Alternativ kann c1 als ein Indikator für unterschiedliches
Aussterberisiko während einer transienten Anfangsphase (z.B. nach Neubesiedelung einer Ha-
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bitat�äche) und der etablierten Phase interpretiert werden. Die Persistenzmaÿe tm und c1
können in ihrer Bedeutung vom Ein-Art-System auf interagierende Arten übertragen werden.
Damit wird nach unserem Wissen zum ersten Mal eine PVA-Methode vorgeschlagen, die für
verschiedene Artengemeinschaften eingesetzt werden kann. Analytisch und in numerischen
Simulationen wird gezeigt, dass diese Methode, selbst unter kritischen statistischen Bedingun-
gen, qualitativ richtige Ergebnisse liefert (Robustheit).
Diese letzte Eigenschaft erlaubt eine neuartige breitangelegte PVA-Analyse, um e�zient die
E�ekte vieler Szenarien testen zu können. Sie ist insbesondere essentiell, wenn der E�ekt
räumlicher Strukturen analysiert werden soll, denn die Methode ermöglicht es, hochdimen-
sionale Parameterräume zumindest ausschnittsweise zu scannen. Dadurch kann man sich mit
vergleichsweise geringem Aufwand einen Überblick verscha�en, wie die Persistenz durch un-
terschiedliche Parameter beein�usst wird. Man zielt auf die möglichst vollständige Erfassung
aller auftretender E�ekte ab.
Mit Hilfe dieser breitangelegten PVA entwickeln wir eine Methode zur Landschaftsanalyse in
Mehrartensystemen. Dabei werden unterschiedliche mögliche Landschaftsstrukturen auf de-
ren Eignung zum Erhalt von Artengemeinschaften geprüft. Die Habitateignung wird durch
die Persistenz der Arten gemessen. Folglich wird die Dynamik des Artensystems in die Be-
wertung der Landschaften mit einbezogen. Habitateignung ist ein Maÿ, das die Ansprüche der
Artengemeinschaft an die Landschaft einbezieht.
Es bleibt die Frage, warum eine komplexe Landschaftsstruktur die Bedürfnisse einer Arten-
gemeinschaft besser befriedigt als eine andere. Zur Klärung greift man auf Methodik der
Landschaftsökologie zurück: man bestimmt geometrische (raumstatistische) Eigenschaften der
Landschaften � gemessen als Landschaftsindizes. Zeigt sich, dass ein Index Landschaftsstruk-
turen ähnlich bewertet wie die Habitateignung, kann man erwarten, dass der Index gerade
die Eigenschaften der Landschaft erfasst, die für das Überleben einer Artengemeinschaft re-
levant sind. Ein solcher Index fördert unser Verständnis des ökologischen Systems und seiner
Interaktion mit Landschaftsstrukturen. Er kann genutzt werden, um P�egemaÿnahmen für
den Naturschutz zu entwickeln.
Interessant können aber auch einzelne Landschaften sein, die, obwohl vom Index gleich bewer-
tet, sich in ihrer Habitateignung unterscheiden. In einem solchen Fall erfasst der Index nicht
alle relevanten räumlichen Strukturen der Landschaft. Hier ist es sinnvoll, die inkonsistent
bewerteten Landschaften einer genaueren Analyse zu unterziehen. Dadurch lassen sich Grün-
de �nden, warum die Population mit den verschiedenen Landschaftsmustern unterschiedlich
zurecht kommt. Diese Vorgehensweise erlaubt es, aufwändige Raumanalysen auf Landschaften
zu beschränken, welche die Populationsdynamik unterschiedlich beein�ussen � bei denen man
also Unterschiede in der räumlichen Struktur erwarten kann.
Der Analyse in dieser Arbeit unterliegen zwei Prinzipien:

� Sie ist hierarchisch strukturiert. Das bedeutet, man untersucht Dynamiken des System
auf unterschiedlichen Aggregationsstufen. Eine hohe Aggregation (wie zum Beispiel Per-
sistenz) ermöglicht Überblicksstudien. Details werden implizit wahrgenommen. Schritt-
weise Reduktion der Aggregation gibt den Blick frei auf Details, bis hin zur vollen
Komplexität der raumzeitlichen Dynamik.

� Die Analyse ist e�ektorientiert. Auf diese Weise entscheidet man, ob es sich lohnt, die
Aggregationsstufe zu verringern. Erkennt man bereits in einer hohen Aggregationsstufe,
wie ein Faktor das System beein�usst, ist eine detaillierte Untersuchung nicht mehr
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nötig. Sich bei der Analyse an den E�ekten zu orientieren hilft, den Analyseaufwand zu
beschränken, indem man sich auf die wesentlichen Faktoren konzentriert.

Zur Bestimmung des Ein�usses raumzeitlicher Artinteraktionen auf die Persistenz von Macu-
linea führen wir eine PVA-gestützte Landschaftsanalyse durch. Ortsfeste Wirtsp�anzenvertei-
lung und Anfangsameisenverteilung auf einer Fläche werden dabei als Landschaft betrachtet.
In Detailuntersuchungen der raumzeitlichen Dynamik wird analysiert, wie lokale Interaktionen
von Maculinea mit seinen Wirten die Entwicklung der Schmetterlingspopulation beein�ussen.

Resultate

Populationsdynamik

Das Macu-Modell zeigt quasi-zyklisch schwankende Populationsgröÿen von Maculinea Schmet-
terlingen und Myrmica-Ameisen, hervorgerufen durch die Wirts-Parasit-Interaktion der beiden
Spezies. Lokale Interaktionen sind in allen Gebieten mit Wirtsp�anzen synchronisiert, da adul-
te Schmetterlinge ohne Einschränkung die gesamte Fläche über�iegen und jede Wirtsp�anze
zur Eiablage nutzen können.
Man beobachtet in Simulationsläufen, dass sich die räumliche Verteilung der Wirtsameisen
der Parasitierung durch Maculinea Schmetterlinge anpasst. Gebiete ohne Wirtsp�anzen, das
sind nicht parasitierbare Gebiete, sind komplett von Wirtsameisen besiedelt. In Gebieten mit
Wirtsp�anzen (parasitierbare Gebiete) ist die mittlere Ameisendichte geringer. Ameisennester
zeigen Dynamik, werden aufgegeben und frei gewordene Nistplätze werden wiederbesiedelt.
Durch die räumliche Trennung parasitierbarer und nicht-parasitierbarer Bereiche und durch
die lokale Ausbreitung von Wirtsameisen (budding range �), teilt sich eine Maculinea�äche in
Bereiche unterschiedlicher Funktion für die Entwicklung der Schmetterlingspopulation ein:

Senken: In Bereichen mit homogener Wirtsp�anzenbedeckung halten sichWirtsameisen kaum
auf. Diese Bereiche bilden Senken für Maculinea. Abgelegte Eier sind verloren, da die
sich entwickelnden Larven nicht von Wirtsameisen adoptiert werden.

reproduktiver Bereich: In Bereichen mit heterogener P�anzenverteilung kann Maculinea
erfolgreich reproduzieren. Der reproduktive Bereich beschränkt sich auf die direkte Nach-
barschaft von Wirtsp�anzen (mindestens eine P�anze im Fouragierradius der Ameisen).
Dort können adulte Schmetterlinge Eier ablegen. Die Larven wachsen in den vorhanden
Ameisennestern auf. Werden Wirtsnester durch intensive Parasitierung zerstört, können
umliegende nicht parasitierbare Nester die parasitierbaren Gebiete wiederbesiedeln.

Pu�er: Die nicht parasitierbaren Gebiete im Bereich heterogener P�anzenverteilung kann
man als Speicher der Ameisenresource des Schmetterlings ansehen. Die Nester in diesem
Bereich haben keine Wirtsp�anzen im Fouragierbereich. Doch gibt es Wirtsp�anzen
innerhalb des Ausbreitungsgebiets. Kolonisierende Ameisen aus Nestern des Pufferbe-
reichs bilden neue Nester im reproduktiven Bereich. Die kolonisierenden Ameisen fehlen
in den Pu�ernestern. Die Nester werden jedoch selten so klein, dass sie aufgegeben
werden. Daher ist der Pu�erbereich immer dicht mit Ameisennestern besiedelt.

nicht beitragender Bereich: Ameisennester, die nicht einmal im Ausbreitungsgebiet Wirts-
p�anzen haben, tragen nicht zur Maculineaentwicklung bei. Nestgröÿen liegen im Bereich
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der Kapazität. Im Macu-Modell können diese Nester keine neuen Nistplätze kolonisieren,
da keine leeren Plätze im Ausbreitungsgebiet vorhanden sind.

Folglich entscheidet nicht alleine die Anzahl vorhandener Wirtsp�anzen über die Entwicklung
von Maculineapopulationen, sondern auch wie gut die Bereiche der Wirtsp�anzen durch Wirt-
sameisen besiedelt werden können.
Innerhalb eines Zyklus des parasitären Systems sieht die Dynamik folgendermaÿen aus: viele
Maculinea Schmetterlinge überweiden die vorhandene Ameisenresource im reproduktiven Be-
reich. Dadurch sinken beide, Schmetterlingspopulation und Ameisenpopulation. In der Folge
muss die kleine Maculineapopulation eine Phase überstehen, in der nur wenige kleine Amei-
sennester im reproduktiven Bereich vorhanden sind, bevor die Ameisenpopulation im repro-
duktiven Bereich wieder ausreichend angewachsen ist.
Wir �nden zwei verschiedene Mechanismen, die das Anwachsen der Maculineapopulation bei
kleiner Populationsgröÿe limitiern:

1. Es gibt genügend Ameisennester im reproduktiven Bereich, aber diese sind zu klein, um
eine ausreichende Menge adulter Schmetterlinge hervorzubringen.

2. Es gibt zu wenige Ameisennester, so dass schon zu viele Maculinea Eier verloren ge-
hen, weil sie auf Wirtsp�anzen abgelegt werden, bei denen sich kein Ameisennest im
Fouragierradius be�ndet.

Die beiden Mechanismen führen zu unterschiedlicher Dynamik des Systems. Im ersten Fall
ist eine Selbsterholung der Ameisen im reproduktiven Bereich durch Nestwachstum möglich.
Kolonisierende Ameisen aus dem Pu�erbereich wirken unterstützend. Hingegen ist im zweiten
Fall der Pu�er essentiell. Die Ameisennester im reproduktiven Bereich sind für gewöhnlich zu
klein um zu kolonisieren. Daher können sie den Mangel an Nestern im reproduktiven Bereich
nicht selbst ausgleichen. Dies geschieht erst durch den Pu�er.
Man �ndet im zweiten Fall längere Wirts-Parasit-Zyklen mit gröÿeren Amplituden als im ers-
ten Fall. Es wird gezeigt, dass die Zeitverzögerung die durch den Mangel an Nestern entsteht
zu Grenzzyklen führt, während die Zyklen im anderen Fall als Störungen des Gleichgewichts
stochastisch angeregt werden. Die Dynamik des zweiten Falls tritt ein, wenn eine kritische
Schwelle der Ameisendichte im Bereich der Wirtsp�anzen unterschritten wird. Die Wahr-
scheinlichkeit dafür nimmt mit der Wirtsp�anzendichte zu. Die Interaktion der deterministi-
schen Dynamik und einzelne Zufallsereignisse entscheiden, welchem der beiden Dynamiktypen
das System gerade unterliegt. Uns ist solches Verhalten von Populationssystemen bisher nicht
bekannt.

Aussterbeverhalten in Mehrartensystemen

Das Aussterberisiko einer Population ist auf Grund demographischer E�ekte erhöht, wenn die
Population nur aus wenigen Individuen besteht. Dieser generelle Satz bewahrheitet sich auch
bei der phänomenologischen Untersuchung des Aussterbeverhaltens einer Klasse generischer
Systeme interagierender Arten.
Betrachtet man die Verteilung der Aussterbezeiten7 von interagierenden Populationen �n-
det man, verglichen mit Aussterbezeitenverteilungen von Ein-Art-Systemen, Gemeinsamkeiten
und Unterschiede. Zunächst die Gemeinsamkeiten: man erkennt in beiden Verteilungen, dass

7Verteilung der Zeiten, nach denen die eine der interagierenden Populationen ausstirbt.



200 ZUSAMMENFASSUNG

sich das Aussterberisiko zwischen einer anfänglichen transienten und einer späteren etablierten
Phase unterscheiden kann. In der späteren Phase des etablierten Zustands kann Aussterben,
auf groÿer Zeitskala, als Markov-Prozess beschrieben werden. Auf Grund dieser Gemeinsam-
keit im Aussterbeverhalten wird analytisch gezeigt, dass die oben erwähnte PVA-Methode
auch zur Analyse der bisher nicht berücksichtigten Mehr-Arten-Systeme eingesetzt werden
kann.
Die Unterschiede zwischen den beiden Systemen können dennoch gravierende Auswirkungen
auf die Persistenz von Populationen haben. Man �ndet zum Beispiel, dass sich determinis-
tische Zyklen in der Individuenzahl einer Population auf deren momentanes Aussterberisiko
auswirken können. Es ist möglich, dass beim Durchlaufen des Maximums der Populationsgröÿe
praktisch kein Aussterberisiko besteht, während beim Durchlaufen des Minimums, nur wenige
Generationen später, das Risiko drastische Ausmaÿe annimmt. In einem solchen Fall können
momentane Populationsgröÿenschätzungen zu einer falschen Bewertung des Aussterberisikos
einer Population führen.
In Systemen interagierender Arten kann das Aussterberisiko während der transienten Anfangs-
phase (z.B. nach Besiedlung einer Fläche durch eine neue Art) eine kritische Rolle spielen. In
Simulationen des Macu-Modells wird beobachtet, dass sich das System erst nach etlichen (bis
zu 50) Generationen im etablierten Zustand be�ndet.
In diesem Zusammenhang wird auch eine neue Art des Bottleneck-E�ekts8 gefunden. Dieser
drückt sich in PVA als eine bimodale Verteilung der Aussterbezeiten aus. Entweder die Popu-
lation stirbt mit erheblichem Risiko während der ersten 20 Generationen aus, oder sie überlebt
bis zur maximalen Simulationsdauer von 5000 Generationen. Der Bottleneck-E�ekt entsteht
durch Interaktion des Schmetterlings mit seinen Wirten. Prinzipiell sind alle wesentlichen äu-
ÿeren Komponenten für eine Langzeitpersistenz des Schmetterlings gegeben (erkennbar am
Überleben während 5000 Generationen). Jedoch durchlaufen die Populationen einen anfäng-
lichen Anpassungsprozess. Dieser verändert die räumliche Verteilung der Wirtsameisen. Erst
danach ist Persistenz des Schmetterlings ermöglicht. E�ektiv könnte man sagen, dass Ma-
culinea während der transienten Phase in der Lage ist, äuÿere Bedingungen (die räumliche
Verteilung seiner Wirte) an seine Bedürfnisse anzupassen.

Ein�uss der Wirtsverteilung auf das Überleben von Maculinea Populationen

Im Maculinea-System �ndet man alle eben genannten möglichen Aussterbeverhalten abhängig
von der Wahl des Szenariums. Im folgenden wird der Ein�uss der Szenarien (also der räumli-
chen Verteilung der Wirte) auf die Persistenz von Maculinea beschrieben.
Bei der Untersuchung der Populationsdynamik stellt man fest, dass sich Myrmica Wirts-
ameisen in ihrer räumlichen Verteilung an die parasitierenden Schmetterlinge anpassen. Dies
hat zur Folge, dass in etablierten Maculineasystemen kein Ein�uss der Anfangswirtsameisen-
verteilung9 auf die Persistenz einer Maculineapopulation gefunden wird. Die Verteilung der
Wirtsp�anzen hingegen zeigt einen wesentlichen E�ekt. Diese ortsfeste Wirtsp�anzenvertei-
lung gliedert die Habitat�äche räumlich. Man kann die Wirtsp�anzenverteilung als Land-
schaftsstruktur des lokalen Maculineasystems betrachten.
In diesem Sinne lassen sich Faustregeln für geeignete P�anzenverteilungen formulieren. In der
Regel ist eine heterogene Wirtsp�anzenverteilung mittlerer Dichte gut für das Überleben von

8Bottleneck-E�ekt: Populationen durchlaufen nach Besiedlung einer Fläche eine Phase akuter Aussterbe-
gefahr, obwohl die äuÿeren Bedingungen prinzipiell für die Art geeignet wären

9z.B. der Ameisenverteilung vor einer Besiedlung der Fläche durch Maculinea
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Maculineapopulationen geeignet. Problematisch für den Erhalt von Maculinea sind:

Sehr geringe P�anzendichten: Geringe P�anzendichten limitieren die Gröÿe einer Macu-
lineapopulation und machen sie anfällig für demographische E�ekte. Dennoch �ndet
man, dass etablierte Maculineapopulationen überraschend gut auch mit wenigen Wirts-
p�anzen zurecht kommen.
Zur Neubesiedlung sind solche Flächen aber nur geeignet, wenn Myrmica Ameisen in
hoher Dichte vorkommen.

Sehr hohe P�anzendichten: Ist die Wirtsp�anzendichte auf einer Fläche zu hoch, können
Myrmica Ameisen �ächendeckend von Maculinea parasitiert werden. Der Ameisenpo-
pulation bleibt nur wenig Raum, um sich ungestört vom Parasitismus entwickeln zu
können (der Pu�erbereich des Systems ist zu klein). Dies führt zu zeitweiliger Über-
weidung der Resource und damit zu stark schwankenden Populationsgröÿen. Maculinea
kann die Ameisenpopulation derartig zerstören, dass folgenden Maculineagenerationen
nicht ausreichend Resource zur Verfügung steht. Die Population stirbt aus. Daher sind
Flächen mit extrem dichter Wirtsp�anzenbedeckung für Maculinea völlig ungeeignet.

Lokal dicht stehende Wirtsp�anzen (Klumpung): Sind die P�anzen lokal dicht geklumpt,
wird nur der Rand eines P�anzenpatches zur erfolgreichen Reproduktion von Maculinea
genutzt. Auf Grund limitierter Ausbreitungsdistanz (budding range �) kann nur dieser
äuÿere so genannte reproduktive Bereich durch nichtparasitierte kolonisierende Myrmica
Ameisen aus dem Pu�ergebiet erreicht werden. Im reproduktiven Bereich können Amei-
sennester, die wegen zu starker Parasitierung zerstört wurden, durch Nestneugründung
von Ameisen aus dem Pu�erbereich ersetzt werden. Im Zentrum eines P�anzenpatches,
dem sogenannten Senkenbereich sind hingegen keine Wirtsameisennester vorhanden.
Dies führt zu einer e�ektiven Verkleinerung des nutzbaren Habitats und daher zu klei-
neren Populationen als auf Flächen, auf denen die P�anzen heterogen verteilt stehen.
Die Stärke des E�ekts hängt von der Ausbreitungsdistanz der Wirtsameisenart ab. Die-
se ist im allgemeinen klein. Daher kann Klumpung von Wirtsp�anzen einen deutlichen
negativen E�ekt auf die Persistenz von Maculineapopulationen haben.

Zur Beurteilung der Eignung einer P�anzenverteilung für die Persistenz einer Maculineapo-
pulation auf einer Fläche, wird ein räumlicher Index entwickelt. Dieser Landschaftsindex be-
wertet, wie viele P�anzen im reproduktiven Bereich oder im Senkenbereich liegen. In die
Berechnung wird einbezogen, wie gut eine P�anze von kolonisierenden Wirtsameisen erreicht
werden kann.
Die Aussagekraft des Index wurde mit dem Macu-Modell für eine groÿe Zahl von Szenarien
getestet. Der PVA gestützte Indextest bezieht populationsdynamische Prozesse und daher die
Bedürfnisse des Systems in die Bewertung des statistischen Raummaÿes mit ein.
Auÿer für sehr geringe Wirtsp�anzendichten, bei denen die Absolutzahl der P�anzen die we-
sentliche Bewertungsgröÿe darstellt, zeigt der Index für alle anderen Szenarien sehr gute Er-
gebnisse. Hohe Indexwerte sind ein sicheres Zeichen für eine geeignete Wirtsp�anzenverteilung.

Kurz gefasst die wichtigsten Ergebnisse der Arbeit

� Eine Methode zur Populations-Überlebens-Analyse (PVA) von Mehrartensystemen wird
bereitgestellt.
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� Eine Methode zur Landschaftsanalyse wird entwickelt, mit der Artverhalten (d.h. po-
pulationsökologische Prozesse) in die Bewertung von Raumstrukturen einbezogen werden
können.

� Im Maculinea-System werden zwei dynamisch verschiedene Wirts-Parasit-Zyklen beob-
achtet, die je nach momentanen Populationsgröÿen das Systemverhalten bestimmen.

� In Mehrartensystemen kann ein Bottleneck-E�ekt auftreten, weil sich kolonisierende
Population und äuÿere Umgebung erst an einander anpassen müssen � die kolonisierende
Art nimmt Ein�uss auf die neue Umgebung.

� Faustregeln und ein Index zur Bewertung der Eignung räumlicher Wirtsp�anzenver-
teilungen für die Erhaltung von Maculinea Populationen auf Habitat�ächen werden ent-
wickelt.
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Appendix A

Population viability analysis

A.1 Analytical calculation of the measures of persistence for

stochastic systems with a cyclic �uctuating probability dis-

tribution of population sizes

A.1.1 Calculation of the regression line parameters

This lengthy calculation is necessary to show that the limit of the �t parameters for high time
horizons TH (maximum time taken into account for calculation of the persistence measures
tm and c1) lead to constant values. As a byproduct the exact values for c1 and tm can be
presented. The formulas for the regression line parameters slope a and intersection b are

a =

NP
i=1

(xi � �x)(yi � �y)

NP
i=1

(xi � �x)2

b = �y � a�x

where (xi; yi) denotes data point i, �x and �y denote respective mean values and N is the num-
ber of data points in the analysis (Zeidler et al., 1996). We set N = TH the time horizon
for the calculation, x = t and y = � ln(1 � P0(t)). Due to the mathematical structure of x,
simpli�cations can be done:
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�t =
1

TH

THX
t=1

t =
1

2
(TH + 1)

THX
i=1

(ti � �t)2 =
1

12
(TH � 1)TH(TH + 1)

NX
i=1

(xi � �x)(yi � �y) =

THX
i=1

xiyi + xi�y � �xyi � �x�y

=

THX
i=1

xiyi + �y

THX
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xi � �x

THX
i=1

yi � �x�y

THX
i=1

1

=

THX
i=1

xiyi � �x

THX
i=1

yi + TH �x�y � TH �x�y

=

THX
i=1

xiyi � TH �x�y

The values for �y and
THP
i=1

xiyi can be calculated applying the separation of time scales eqn. 3.6,

where an integer division is symbolised by � in front of a quotient:
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We use the same technique of splitting sums for the calculation of
THP
i=1

xiyi. The result is
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All results are derived and tested with software Mathematica (Wolfram, 1988) for two di�erent
population dynamic functions N(t) and for di�erent parameters. We could not �nd any
inconsistencies
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A.1.2 Regression line parameters for in�nite time horizon (TH !1)

An evaluation of the �t parameters a and b for TH !1 is possible. We get

lim
TH!1

a = �
1

TP
ln(

Tini+TPY
i=Tini+1

)

lim
TH!1

b = �
1

TP
f(

TP�1X
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) + TP ln(
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j=1

)g

+
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2TP
ln(

Tini+TPY
j=Tini+1

)

which are both independent of TH . This means that with increasing time horizon TH , param-
eters a and b approach constant values. Hence, these parameters are well de�ned for all types
of models described by eqn. 3.3.
The result for lim

TH!1
b can be simpli�ed using identity
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which can be shown as follows
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We receive a description of lim
TH!1

b, which does not include summations over time
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(A.1)
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A.1.3 Measures of persistence tm and c1

We use de�nitions for the persistence measures, which are given in Grimm & Wissel (2004)

tm =
1

a

c1 = e�b

to calculate them from �t parameters slope a and intersection b of the regression line. In
analytical calculations, in contrast to numerical simulations, we can calculate exact values for
the persistence measures for an in�nite time horizon. An example that persistence measures
evaluated from simulation studies with limit time horizon TH are su�ciently exact, is shown
in ch. 3.4.1. Formula for tm is given in eqn. 3.9 without further calculations. The result for c1
in eqn. 3.9 is received from inserting the sum free form eqn. A.1 and performing some algebraic
transformations.
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