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Zusammenfassung

Einleitung

Sedimentation bezeichnet die Ablagerung von Teilchen in einer Fliissigkeit unter dem
Einfluss einer duferen Kraft, wie etwa der Schwerkraft oder der Zentrifugalkraft. Se-
dimentation spielt in einer Vielzahl von natiirlichen und industriellen Prozessen eine
wesentliche Rolle [20]. Oberflichenstruktur und Teilchengréofe sind dabei fiir die jeweili-
gen Prozesse sehr verschieden. Wesentliche Eigenschaften der Sedimentation sind jedoch
von der Teilchenbeschaffenheit unabhéngig. Zur Untersuchung dieser wird in der expe-
rimentellen Physik {iberwiegend die Sedimentation von Glaskugeln in einem Behélter

studiert.

Experimentelle Messungen zeigen, dass die Sinkgeschwindigkeit von der Teilchenkon-
zentration abhéngt. Diese Messungen konnen sehr gut theoretisch beschrieben werden |7,
18, 23, 58]. Im Gegensatz dazu stehen experimentelle Messungen der Geschwindigkeits-
fluktuationen im krassen Widerspruch zu theoretischen Vorhersagen und numerischen
Simulationen. Basierend auf der zeitunabhingigen Stokesgleichung haben Caflisch und
Luke [14] theoretisch gezeigt, dass die Geschwindigkeitsfluktuationen einer Teilchensus-
pension bei homogener Verteilung der Teilchen proportional zur Gréfse des Behilters
ist: Die Stromung, welche durch ein Teilchen erzeugt wird, fallt antiproportional zum
Abstand vom Teilchen ab. Bei einer homogenen Teilchenverteilung befinden sich in einer
Kugelschale mit Dicke dr im Abstand r von einem vorgegebenen Punkt r?dr Teilchen.
Die Geschwindigkeitsfluktuation am vorgegeben Punkt ist proportional zum Quadrat
der Strémungsgeschwindigkeit, also proportional zu 1/r%. Damit trigt jede Kugelscha-
le unabhingig vom Abstand zur Fluktuation bei. Das Integral iiber alle Kugelschalen
fiihrt dazu, dass die Fluktuation der Geschwindigkeit am vorgegeben Punkt divergiert,

beziehungsweise linear von der Grofe des Behilters abhédngt.

Die Abhédngigkeit der Geschwindigkeitsfluktuationen von der Behéltergrofe wird
durch numerische Simulationen bestétigt [17, 25, 26, 27, 28|. Entgegen der theoreti-
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schen Vorhersage wird im Experiment keine solche Divergenz beobachtet [21, 48, 60,
61]. Experimente zeigen, dass die Fluktuationen unabhingig von der Behéltergrofe sind
und im Wesentlichen durch den gegenseitigen Abstand der Teilchen bestimmt werden.
Umfassende theoretische Untersuchungen haben, um eine Erklarung der Diskrepanz be-
miiht, den Einflufs der Behilterwand und Inhomogenititen der Teilchenkonzentration
untersucht. Die Diskrepanz ist dennoch nicht geklart.

Samtliche theoretische und numerische Untersuchungen beschreiben die Stromung
zwischen den Teilchen durch die zeitunabhéngige Stokesgleichung. In dieser Arbeit wird
untersucht, was sich &ndert, wenn man diese Vereinfachung aufgibt und die Strémung
zwischen den Teilchen durch die zeitabhéingige Stokesgleichung beschreibt, wenn man

also die interne zeitliche Entwicklung des Strémungsfeldes mit einbezieht.

Stromung um eine oszillierende Kugel

Der Unterschied zwischen der Stromung, welche man aus der zeitunabhingigen Stokes-
gleichung und der zeitabhingigen Stokesgleichung erhilt, wurde in Kapitel 2 am Bei-
spiel einer Kugel untersucht, welche eine oszillatorische Bewegung entlang einer Achse
vollfiihrt. Beide Losungen wurden 1851 von George G. Stokes in seinem wegweisenden
Artikel publiziert [65].

Insbesondere die zeitunabhéngige Losung wird iiblicherweise als erste Niaherung der
Stromung um ein Teilchen verwendet. Sie hingt nur von der instantanen Geschwindig-
keit der Kugel relativ zum ruhenden Fluid ab. Die Vortizitdt nimmt instantan einen
Gleichgewichtszustand an. Auch fiir beliebig hohe Frequenzen wird eine Anderung der
Geschwindigkeit der Kugel sofort bis in jede erdenkliche Entfernung auf die Stromung
iibertragen. Das Geschwindigkeitsfeld des Fluids fallt antiproportional zum Abstand ab.

Im Gegensatz dazu reagiert die Stromung als Losung der zeitabhingigen Stokesglei-
chung nur in Entfernungen instantan, welche klein sind gegeniiber \/1//7, wobei v und
w die kinematische Viskositdat des Fluids und die Frequenz der Oszillation bezeichnen.
Fiir diese Entfernungen fillt die Stromung mit dem Abstand r wie 1/r ab. Fiir Abstén-
de, welche grof gegen \/m sind, fallt die Stromung starker ab. Der Hintergrund fiir
diese beiden Bereiche ist die Diffusion der Vortizitat. Wihrend die Vortizitdt nahe der
Kugel beinahe im Gleichgewicht ist, reicht die Periodendauer der Oszillation nicht fiir
eine Diffusion der Vortizitat zu Abstdnden grofer als \/V/icu Fiir grofse Absténde bleibt
eine Potenzialstromung iibrig, welche von der Verdringung der Fliissigkeit durch die

Verschiebung der Kugel herriihrt und wie 1/73 abfllt. Die zeitabhingige und die zeitu-
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nabhéingige Beschreibung sind gleich, wenn die Vortizitdt in einem stationdren Zustand
ist.

Die Unterschiede der beiden Lésungen werden deutlich, wenn man die Menge an
Fluid betrachtet, welche durch die Kugel bewegt wird. Zu diesem Zweck legt man einen
Querschnitt durch die Kugel und berechnet den Massenstrom, der durch diesen Quer-
schnitt flielt. Bei der zeitunabhingigen Stromung stellt man fest, dass eine unendliche
Menge des Fluids durch diesen Querschnitt in Richtung der Kugelbewegung transpor-
tiert wird. Bei der zeitabhingigen Betrachtung hingegen wird genau die Menge an Fluid
in negativer Bewegungsrichtung der Kugel transportiert, welche von der Kugel verdrangt
wird, unabhéngig von Frequenz und Viskositét!

Eine dhnliche Argumentation wie fiir die oszillierende Kugel gilt auch fiir eine Ku-
gel, die aus der Ruhe heraus instantan eine konstante Geschwindigkeit annimmt. Die
Stromung breitet sich dhnlich einer Diffusionsfront aus. Diese von Basset [4| gefundene
Losung wird in Kapitel 3 diskutiert, einhergehend mit einer Losung der zeitabhidngigen

Stokesgleichung fiir beliebige Geschwindigkeiten der Kugel.

Geschwindigkeitsfluktuationen von Teilchensuspensionen

In Kapitel 4 wird schlieflich auf das Problem der divergenten Geschwindigkeitsfluktua-
tionen bei der Sedimentation eingegangen. Die Regularisierung der Fluktuationen wird
an einem verwandten Problem transparenter. Die Fluktuationen des Konzentrationsfel-
des, welches von einer homogenen Verteilung von Quellen erzeugt wird, werden unter-
sucht. Wenn sich der Beitrag einer Quelle zum Konzentrationsfeld instantan der Quelle
anpasst, erhélt man, dhnlich zur zeitunabhingigen Stokesstromung um eine Kugel, einen
Abfall des Konzentrationsfeldes mit dem Abstand r wie 1/r. Die Fluktuationen des Kon-
zentrationsfeldes fallen ab wie 1/72. Die Integration iiber die homogene Verteilung fiihrt
auf das Ergebnis von Caflisch und Luke [14|. Wenn man hingegen die vollstindige Lo-
sung des Konzentrationsfeldes in Betracht zieht, dann sind die Fluktuationen regulér.
Dies riihrt daher, dass aufgrund der endlichen Reichweite der Diffusion die Fluktuatio-
nen des Konzentrationsfeldes ab einem endlichen Abstand wesentlich stiarker abfallen
als 1/r%.

Die Argumentation fiir Teilchensuspensionen erfolgt analog. Man stellt fest, dass die
Fluktuationen in der zeitabhéngigen Beschreibung endlich sind. Des Weiteren wird durch
eine Abschatzung festgestellt, dass die Geschwindigkeitsfluktuationen vom Quadrat des

Abstandes der Teilchen voneinander abhingt, in Ubereinstimmung mit experimentellen
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Messungen [60].
Diese Arbeit zeigt, dass die zeitabhingige Behandlung der Stromung eine wesentliche
Rolle fiir die Sedimentation von Teilchen spielt, und legt die Grundlagen fiir nachfolgende

Untersuchungen.
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Chapter 1
Introduction

Solid particles, suspended in a fluid and subject to an external force, such as gravity,
settle if the density of the particles is higher than the density of the fluid. This process,
which separates fluid and particles, is called sedimentation. It is important for a variety
of processes in nature and industry |20].

While naturally occuring particles come in a variety of shapes with smooth and rough
surfaces, many of the fundamental issues of the sedimentation process can be studied
with spherical particles. Experimentally, this situation can be realized, for instance,
for glass beads which settle in a vessel. For these systems, theoretical predictions and
experiments agree about the average settling rate of the particles, which depends on the
concentration of the particles in the fluid, e.g. [7, 18, 23, 58].

In contrast, there is much controversy about the fluctuations of the particle veloc-
ities. Available theories assume that the flow past a particle obeys the steady Stokes
equation, i.e. the flow is proportional to the instantaneous particle velocity and decays
as 1/distance from the particle. Caflisch and Luke [14] pointed out that due to these
long-range hydrodynamic interactions, the fluctuations diverge for a homogeneous distri-
bution of particles: At a distance r from a particle, the fluctuations of the flow produced
by that particle decay as the velocity squared, i.e. as 1/r% Since a spherical shell at
distance r and of width dr contains r2dr particles, all shells contribute equally to the
fluctuations and the integral over all shells diverges with the volume of the vessel. While
numerical simulations confirm the divergence, e.g. |17, 25, 26, 27, 28|, it is in marked
contrast to experiments |21, 48, 60, 61] which show that the flow is correlated on a finite
length and that correlation length and fluctuations are finite and independent of the
vessel size. To uncover the discrepancy between simulations and experiments, a number

of theoretical studies have looked at effects of the wall [13], vertical stratification of
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the sediment [44] or particle concentration fluctuations [32, 45]. However, no conclusive
explanation of the discrepancies has emerged.

Such a discrepancy between simulation and experiment is also known from another
system: Wu and Libchaber [70] study the flow produced by a flock of self-propelled
bacteria in a soap film. They immerse neutrally buoyant particles in the flow and
observe that the drift of the particles corresponds to an uncorrelated random walk on
large time scales, and to a positively correlated random walk on short time scales. This
indicates that there is a correlation of the flow on small length scales, such that the
drift of the particle is uniform at short times, whereas the flow is uncorrelated over large
distances, such that the particle motion corresponds to an uncorrelated random walk.
Again, in contrast to the experiment, simulations [22] show correlations also on large
length scales.

All theories and simulations above, for sedimentation and for the bacterial bath,
assume that the flow past the particles is steady Stokes flow. This assumption is believed
to be fairly robust [13|. In this work, the assumption is dropped and the flow is assumed
to be unsteady Stokes flow, i.e. the temporal evolution of the velocity field is taken into
account. How does unsteady Stokes flow differ from steady Stokes flow? The differences
between steady and unsteady flow are known since the equations were formulated. In
his seminal 1851 article [65], which is most of all famous for the equations which describe
the steady flow around a steadily moving sphere, Stokes also provided the equations for
the time-dependent flow past a sphere whose center of mass is in oscillatory motion.
However, the consequences of the differences between the two cases and in particular
their implications for sediment fluctuations have not been studied. As we will show
here, taking the time-dependence into account goes a long way towards resolving many
of the puzzles.

The outline of the thesis is as follows. The properties of the time-dependent flow
past a sphere in oscillatory motion are reexamined in chapter 2 and compared to steady
Stokes flow. The solution for the flow past a sphere, whose center of mass is in arbitrary
motion, given by Basset [4], Boussinesq [10, 11] and Oseen [52], is reexamined in chapter
3. Then, in chapter 4, for a suspension of particles and a related diffusion problem the
arguments of Caflisch and Luke [14] are reconsidered with time-dependence taken into

account for the flow.



Chapter 2
Oscillatory Stokes flow

In 1851, George Gabriel Stokes (see figure 2.1), Professor of Mathematics at the Univer-
sity of Cambridge, published an article entitled "On the Effect of the Internal Friction
of Fluids on the Motion of Pendulums" [65]. In it he decribes how in the limit of low ve-
locities, where terms which are linear in the velocity dominate, the viscous flow around
a sphere affects the motion of a spherical pendulum. Stokes found the force on a sphere
to be proportional to sphere radius and velocity. He was thus able to explain experi-
mentally measured deviations of a pendulum’s motion from the inviscid prediction.

In his article, Stokes gives solutions for the flow past a sphere, whose center of mass
oscillates unidirectionally, and for the flow past a steadily moving sphere and calculates
the friction force in both cases. The latter solution is widely used in science and usually
the first approximation for the flow produced by a slowly moving particle in a viscous
liquid: The flow around a sphere decays as 1/distance. For the related problem of a
cylinder, Stokes found that the linear equations do not provide a steady solution and

concluded thus that the assumption of a steady solution at all is not necessarily valid:

We have evidently a right to conceive a sphere or infinite cylinder to
exist at rest in an infinite mass of fluid also at rest, to suppose the sphere
or cylinder to be then moved with a uniform velocity V, and to propose
for determination the motion of the fluid at the end of the time ¢. But we
have no right to assume that the motion approaches a permanent state as ¢
increases indefinitely. We may follow either of two courses. We may proceed
to solve the general problem in which the sphere or cylinder is supposed to
move from rest, and then examine what results we obtain by supposing ¢

to increase indefinitely, or else we may assume for trial that the motion is
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Figure 2.1: Sir George Gabriel Stokes (1819-1903), from [63].

steady, and proceed to inquire whether we can satisfy all the conditions of the
problem on this supposition. The former course would have the disadvantage
of requiring a complicated analysis for the sake of obtaining a comparatively
simple result, and it is even possible that the solution of the problem might
baffle us altogether; but if we adopt the latter course, we must not forget

that the equations with which we work are only provisional. p. 54 from [65]

Later in his article, Stokes gives the equations for the time-dependent flow produced
by the motion of an infinitely extended plane. The plane is oriented vertically and
located at = = 0. Starting from rest at ¢ = 0, the plane moves vertically at constant
velocity Ue,. We are interested in the profile of the vertical velocity in z-direction, i.e.

perpendicular to the flow direction. For x > 0, the flow is then found to be

u(z,t) =Ue, - erfc ( (2.1)

T
v 41/15) 7
where

erfe(€) = % /5 T e e (2.2)

is the complementary error function. For & — 0, erfc(€) is erfc(0) = 1. The largest
value for the integral kernel is at ( = £. The complementary error function becomes
exponentially small as £ > 1: The maximum value of the integrand is exp(—&?). Since

the kernel is decaying rapidly with (, the kernel contributes over a finite range of { to



the integral and erfc(x) becomes exponentially small. For £ — oo, the value for erfc(¢)
becomes equal to 0.

Therefore, the solution for all times satisfies the boundary conditions: The velocity
of the fluid is equal to the velocity of the wall at x = 0 and the velocity of the fluid
vanishes at infinity. In the limit # — oo or v — oo, the argument z/v/4vt in the
complementary error function becomes equal to unity and one finds that the velocity of
the fluid becomes equal to the velocity of the plane, which is the stationary state of the

flow, i.e.

u(z,t) =Ue, for o < Vvt (2.3)

However physically for any finite v and ¢, no matter how large, this is limited to finite
distances 2 < \/4vt since there was no time yet for the flow to diffuse to larger distances.

Thus for a prescribed distance from the wall z, for £ — oo the flow becomes stationary
and the velocity of the fluid equals the velocity prescibed by the wall. Even as z — oo,
for each prescribed value of z, after a sufficiently long time elapsed, the flow is stationary.

However, for a prescribed distance ¢, the stationary flow is always restricted to
x < v/4vt. The flow drops down for larger distances from the wall and in the limit
x — oo the velocity of the fluid becomes equal to zero, which is the boundary condition
at infinity. Thus as t — o0, for each prescribed value of ¢, at a sufficiently large distance
from the wall the flow drops down to zero.

It is hence important, wether first ¢ diverges for prescribed x and then x — oo, or
wether first x diverges at a fixed time ¢ and then ¢ — oo. The limits ¢ — oo and ¢t — o
do not commute!

In the case of the plane, it is obvious that for a prescribed time ¢ a stationary solu-
tion is only found at finite distances, since that solution does not satisfy the boundary
conditions at infinity. Similar results are found for the time-dependent flow around a
cylinder [46]. In contrast, the steady flow around a sphere, derived by Stokes [65], does
satisfy the boundary conditions and the limitations are a priori not obvious. The valid-
ity of steady Stokes flow past a sphere in oscillatory motion will be investigated in this
chapter and compared to time-dependent Stokes flow.

In the remainder of the chapter, for low velocities the magnitudes of the various
terms in the more general Navier-Stokes equations are compared. Then, for the flow
past a sphere whose center of mass is in oscillatory motion, and for the flow past a
steadily moving sphere, Stokes’ equations for the flow are reexamined and compared.

This is followed by an investigation of the advective term in the Navier-Stokes equation.
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A correction to the Stokes equation is found to investigate the restrictions of the time-
dependent Stokes equation. Finally, for time-dependent Stokes flow the response of a

sphere to a harmonic force is investigated.

2.1 Scaling of Navier-Stokes

For velocities below the speed of sound, the flow of an incompressible Newtonian fluid
is described by the Navier-Stokes equation

%u +(u-V)u=-Vp+rvViu (2.4)

and the incompressibility condition, which is V - u = 0. Here, u is the velocity of the
fluid at a time ¢, v is the kinematic viscosity and p the kinematic pressure of the fluid,

which is defined as the dynamic pressure P divided by the fluid density p, i.e. p = P/p.

2.1.1 Common scale transformation of the Navier-Stokes equa-
tion

The usual estimate of the size of the different terms in (2.4) uses a characteristic length
scale L of the boundary’s geometry (such as the gap width of a channel or the size of
an object in the flow) and the typical velocity scale U, as introduced by the boundary
conditions. Then the typical scale of time for changes in the flow field is fixed to be L/U.
The term with the partial time-derivative and the advective term both scale like U?/L,
whereas the viscous term scales as vU/L?. Based on a scaling which is proportional to
the viscosity, the pressure p scales as vU/L. The Reynolds number Re measures the

size of the nonlinear term compared to the viscous term. With this

U?/L UL
Re = = — 2.5
¢ vU/L? v’ (2:5)
the equations of motion in the absence of a volume force become
Re (Opu+ (u-V)u) = —Vp + V. (2.6)

If Re becomes small, the nonlinear term can be neglected compared to the viscous term.
Since the time-derivative term is also multiplied by Re, the usual conclusion is that for

sufficiently small Re the steady Stokes equation can be used, which is

0= —Vp+ Vu. (2.7)
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One of the consequences is that there is no longer an internal time-scale in the flow. The
flow responds instantaneously to a temporal change of the boundaries. If the boundaries
are at rest, the flow is at rest as well, whereas a sudden change of the boundaries is
transported immediately throughout the whole fluid to any distance. However, for fast
changes in time, despite of small Re the factor J; is large enough to make the product

of both significant, i.e. one has to keep this time-dependance.

2.1.2 Viscous length scales

The velocity scale U is prescribed by the boundary conditions. For problems where
an external frequency w is prescribed, a diffusional length scale L, = m may be
constructed in terms of the kinematic viscosity and the frequency. It is roughly the
distance, up to which viscous flow spreads over one oscillation period. With this internal
length scale L, as a scaling length, the advective term in equation 2.4 is of the order
U?/L,, i.e. Uzm. The viscous term scales as vU/L? = wU and is thus of the same
order as the partial time-derivative term. With this estimate of the magnitudes of the
various terms, the ratio between advective and either the viscous or the time-derivative
term, defined in the usual way as the Reyolds number, is given as a viscosity based

Reynolds number
_uvL, U

v N

In terms of the amplitude D of the oscillatory motion, such that the typical velocity

Re, (2.8)

scale is U = wD, the Reynolds number may also be written as

Re, = — 2.9
ew=1 (29)

i.e. the ratio between the oscillation amplitude and the viscous length. Even if this
Reynolds number is small, due to this estimate the partial time-derivative term in the
Navier Stokes equation is still of order unity. Then in the limit of Re, — 0, the equation

for the flow becomes a time-dependent Stokes equation

%u = -Vp+vV’u. (2.10)

It still contains time dependence on the viscous scale, but no nonlinear advection. Note
that for the estimate of the various terms, an external frequency w, an internal length
scale L, = \/y/iu) and the velocity prescribed at the boundaries U have been used. This
gives rise to a time-derivative term and a viscous term that scale alike. It is expected
to be valid, if the external scales, like for example D, are small in comparison with the

viscous scale L,,.
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2.1.3 Length scale of the body

It is not clear a priori if the advective term really scales as U?L~!. The introduction
of scaling variables does not alter the real magnitudes of the terms and they might get
large. An alternative scaling may be introduced in terms of the geometric length L of
the object in case, the velocity U and the prescribed frequency w. The time-derivative
term scales as wU, the advective term scales as U?/L and the magnitude of the viscous
term is given by vU/L?. Hence, the ratio of the time-derivative term and the viscous
term is given by wl?/v, whereas the Reynolds number, defined as usual as the ratio of
advective and viscous term, is the external Reynolds number

o U?/L UL

vU/L? v’

(2.11)

Thus, the Reynolds number may be small and w still large, such that the time-derivative

is again nonnegligible, i.e.

waGtu + Re(u-V)u= —Vp+ V?u. (2.12)
The ratio of time-derivative and viscous term, wL?/v, measures the time that the flow
needs to diffuse a distance L, i.e. L?/v, compared to the oscillation period w™.

Another comparison of interest which leads to the same result is the ratio of L to
the viscous diffusion length L, = \/1//7, both squared.

Thus, three different estimates of the magnitudes in the Navier-Stokes equations can
be discussed, all scaling differently. But if the Reynolds number is always defined as the
ratio of the nonlinear and the viscous term, it is always defined as velocity scale times
length scale divided by viscosity v. Its value then also depends on the respectively
chosen U and L. The consequence is that depending on the way the Navier-Stokes
equation is nondimensionalized, the limit of the corresponding Re — 0 gives rise to
different equations. Thus one has to distinguish carefully between the scaling of the

terms, to nondimensionalize them, and the actual size of the terms.

2.2 Reference frames

For the flow around a sphere, the reference frame is chosen most conveniently such that
the sphere is at rest in the origin. This requires the transformation from the laboratory

frame, where the fluid is at rest at infinity, to the reference frame of the sphere with the
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fluid at rest at the surface of the sphere. For a Galilei transformation, the terms of the

Navier-Stokes equation

0
ETad +(v-V)v=-Vp+vViv (2.13)

are preserved. The flow v(y,t) describes the velocity of the fluid at position y and
time t. Partial and advective time-derivative on the left-hand side represent the time-
derivative along the track of a particle. The Navier-Stokes equation describes the force
per unit mass on a fluid parcel in a Newtonian liquid.
To demonstrate the Galilei invariance [35], transform the original coordinates y to
new coordinates x such that
x=y — X(1). (2.14)

with a time-dependent translation X(¢). The new velocity is given by
u(x,t) = v(y,t) = V() (2.15)

where V(t) = dX(t)/dt. Assume X(t) to describe the center of mass for a spherical
particle in the fluid. If the Navier Stokes equation is transformed from the laboratory
reference frame to the reference frame of the sphere, v is the velocity in the laboratory
reference frame and u is the one in the reference frame of the sphere; y and x are the
spatial coordinates, respectively. In terms of the new velocity u(x, t), the time-derivative

term is given by

ov(y,t) = oy —X(1),t)+ V(1)
= du(x,t) — (V(t)- Vu(x,t) + V(t). (2.16)

The advective term (v - Vy)v is found to be
(V- Vy)v=(u-Vyu+ (V(t) - Vy)u. (2.17)

Thus, the term (V(¢) - Vx)u cancels out and in the new coordinates the Navier-Stokes
equation reads

P , d
_ . = — - — . 2.1
5T (u-V)u Vp + vVu dtv(t> (2.18)

where V is the gradient with respect to the coordinates x. The new term on the right
hand side is due to the acceleration of the new reference frame relative to the old one.
It may be absorbed into the pressure term. When transformed into a new reference

frame, velocities and coordinates in the Navier-Stokes equation are substituted by the



12 CHAPTER 2. OSCILLATORY STOKES FLOW

new variables. Thus the terms of the Navier-Stokes equation are left invariant with
respect to an arbitrary Galilei transformation.

If the unsteady Stokes equation (2.10) is transformed to a reference frame moving
with velocity V(t), e.g. from the laboratory reference frame to the reference frame of

the sphere, the new equation is

. av
ou—(V(t)-V)u=-Vp+vViu - - (2.19)

On the other hand, if the time-dependent Stokes equation is solved in the reference

frame of the sphere, one finds for the flow in the laboratory reference frame
ov+ (V(t)-V)v=—-Vp+vViv. (2.20)

Thus, the time-dependent Stokes equation is not Galilei invariant. The analytical solu-
tion of a specific problem depends therefore on the reference frame chosen for the Stokes
equation. The difference of the solutions is small, if the advective term is small, i.e. if the
unsteady Stokes equation is valid. Presuming that the linearization of the Navier-Stokes
equation is valid, it does therefore not matter, if the unsteady Stokes equation is solved

in the reference frame of the sphere or in the laboratory reference frame.

2.3 Stokes’ solutions

2.3.1 Stream function and boundary conditions

Consider a sphere moving uniaxially at velocity V(t)e, in a fluid which is at rest for
r — oo. The produced flow is then conveniently solved in the reference frame of the
sphere in spherical coordinates, see figure 2.2. The flow is azimuthaly invariant (in
¢-direction) and two-dimensional in the r-f-plane. This allows to describe the flow in
terms of a scalar stream function ¢(r,6,¢). The advantage of the description of the
flow by the stream function is that the solution is automatically divergence free. The
meaning of the stream function is the following: constant values of the stream function
give rise to contours, which represent the instantaneous streamlines of the flow, i.e. the
momentary direction of the fluid velocity.

For spherical coordinates the velocity is given by u = V x [¢/(rsinf)ey] (see e.g.
[6]). The flow can also be described in terms of a vector potential A = Agey, such

that u = V x A. This is then related to the stream function as Ay = ¢/(rsinf). The
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Figure 2.2: Spherical (r, 0, ¢) and cartesian (z, y, z) coordinates in the reference frame
of the sphere. The fluid at infinity is moving with velocity —V'(t)e,, indicated by the

grey arrows.

velocity components of the flow are given by
1 1

= a d - - B,1). 2.21
Y 2 sing 0y an o rsin 6 ¥ (221)
At infinity, the boundary conditions for the flow are
r = *Vt . 9

" (t) - cos for 7 — oo. (2.22)

upg = V(t)-sinf
and at r =R

u=0 and  wy=0. (2.23)

The former boundary conditions are satisfied by the free flow in polar coordinates, with
stream function
1
Voo = *§V(t)7“2 sin? 0. (2.24)

The latter boundary conditions yield
()= =0 and Y(r,0)] = = 0. (2.25)

The transformation of the flow from the reference frame of the sphere u back to the
laboratory reference frame v = u + V(t)e, corresponds to the subtraction of the free

flow term (2.24) from the stream function.

2.3.2 Steady flow past a sphere

One of the simplest solutions of the Stokes equation is that for the flow past a steadily

moving sphere, see e.g. [6]. For the sphere moving in x-direction at constant velocity



14 CHAPTER 2. OSCILLATORY STOKES FLOW

V(t) = U, in terms of the stream function ¢ (r,#), the steady Stokes equation (2.7)

Y

becomes
E*E%)(r,0) =0 (2.26)
where )
i 1
B = g+ 220 g, (,—amz)) . (2.27)
r2 sin 6
In the reference frame of the sphere, the solution for %) is
Ur? UR?/3r R 9
o SUNELAY IR 2 2.2
¢[2+4(R r>]8m9 (2.28)

Remarkable, and the source of many difficulties, is the slow 1/distance decay of the flow

induced by the sphere, viz.

3UR R?
u, = —Ucosf+ Sl <1 - ﬁ) cos 0 (2.29)
. 3UR R%*\ |
Uy = USln9 — ZT (1 + ﬁ) Sin 9 (230)

One of the consequences of the slow decay is that the sphere carries an infinite amount

of fluid with it, as will be discussed in section 2.4.

2.3.3 Unsteady flow past an oscillating sphere
Unsteady Stokes equation

For the unsteady case, equation (2.10) becomes
o2 1
E*(E?— ~8,) 4 =0. (2.31)
v

Since the operators E? and E? — v~ 19, commute, equation (2.31) may be separated into

two second-order equations. Hence, the flow is composed of the solutions of
o 1
E— =0, )¢y =0 (2.32)
v

and
E*) = 0. (2.33)

Equation (2.32) is a diffusion equation with its physical origin in the diffusion of vorticity:

taking the curl of equation (2.10), one obtains for the vorticity w =V X u

Ow = vViw. (2.34)
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For the two-dimensional flow the only component for the vorticity is in ¢-direction and

is related to v via
E*y)

rsind’

Wy = (235)

Inserting this into the diffusion equation for the vorticity (2.34) leads to equation (2.32).

The following consideration shows the origin of the flow field associated with (2.33).
A velocity potential ® with u = V®, which due to the incompressibility V- u = 0
satisfies V2® = 0, is related to the components of a potential flow via' u, = 9,® and
ug = Op®/r. Substituting these expressions into (2.21), the equations relating the flow

to the stream function, one obtains the relationships
Opp = —0p® -sinf  and  pyp = r*- 0, P - sinb. (2.36)

Hence equation (2.33) expressed in terms of ® reads —sinf - 9,y® + sinf - 95, = 0,
which is fullfilled identically. By relating the stream function to a velocity potential, it
has been shown that equation (2.33) is fullfilled identically. Therefore, the associated
flow is a potential flow.

This represents the character of the unsteady Stokes equation: in addition to the
vorticity diffusion flow there is a potential flow and for the Stokes flow past an obstacle,

both contribute.

Oscillating sphere

The oscillating sphere moves in z-direction with velocity V (t) = Re(U expiwt) where
Re(z) denotes the real part of . For convenience and since the time-dependent Stokes
equation is linear, the flow is solved for a complex valued velocity of the sphere V() =
U exp iwt, but only the real part of the complex valued stream function contributes for
the flow. Hence, the time-derivative becomes 0; = iw. For r — oo, the flow becomes
a free flow and the stream function becomes o, = —U expiwt - r?sin® §/2, cf. equation

(2.24). This suggests an ansatz
Y = Fy(r) - expiwt - sin® 6. (2.37)

Fy(r) is then decomposed as Fy(r) = fo(r) + go(r), where from equations (2.32) and
(2.33) respectively

(-5 -2) ft =0 (2:38)

72 v

!Note that the potential flow may involve a singularity at r = 0. However, for a sphere of finite

radius, this singular point is not part of the fluid domain.
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and
(63 — %) go(r) = 0. (2.39)

The solution for the first equation is obtained as fo(r) = exp (—xr) - (1 + (kr)7")

with the dispersion relation iw/v = k2

. Two complex solutions exist, which are given
by k = +4/iw/v. Since k is a complex number, the solutions are oscillating and as
a function of r either growing or decaying exponentially. Considering the boundary
conditions at infinity, only negative real parts for the exponential function, i.e. positive
real parts for x, have a valid contribution to the stream function. The square roots v/i

are chosen such that in terms of k = /w/v

ke'™/*  for w>0

. 2.40
ke~im/4 for w < 0. ( )

v =ik {
When positive and negative frequencies are used, it is important to distinguish « for the
two cases. Since only the real part of the solution contributes to the stream function, w

is restricted without loss of generality to positive values. Thus one finds

folr) = A ek (1 + \/;kr> (2.41)

where /i = exp(im/4) and A is an arbitrary complex constant to be determined from

the boundary conditions.

The potential flow contribution may be decomposed into two terms

with the two arbitrary constants C' and D. gd(r) is a potential doublet, i.e. the potential
flow due to a source and a sink placed at an infinitesimal distance from the origin: The
velocity potential for a source of strength C/47 is given by ® = —C'/r. A source and
a sink aligned at an infinitesimal distance from the origin along # = 0, which is in -
direction, is obtained by differentiation with respect to x, such that the doublet potential
is given by ®¢ = —Cxz/r® = —C cosf/r?. Up to a scaling factor, both gd(r) and ®¢ lead
to the same flow field for the doublet, which is

B 2C cos 0

B C'sin6
r3 N '

r3

and Ug (2.45)

Uy



2.3. STOKES’ SOLUTIONS 17

From the composition as a source and a sink at an infinitesimal distance, the doublet
term is an instantaneous potential flow originating from the fluid that is instantaneously
displaced by the sphere.

The second term gg(r) is the free flow resulting from the reference frame transfor-
mation. This term vanishes in the laboratory reference frame where the fluid is at rest
at infinity.

The stream function which describes the time-dependent Stokes flow past a sphere

in oscillatory motion is finally given by

U(r,0,t) = Fy(r) exp(iwt) sin® § (2.46)
and
Fo(r) = fo(r) +g3(r) + g3 (r) (2.47)
folr) = g?.%@”.eﬂk(rm (2.48)
) = S;U:%.l—%\ﬂk}jk—;iszQB (2,49
gi(r) = U; (2.50)

The flow in polar coordinates is obtained as

1

u(r,0,t) = = Sineﬁgw(r, 0,t) (2.51)
1
UQ(T,Q,t) = —maﬂﬁ(ﬁ@,t% (252)

cf. equation (2.21).

The range of the diffusional flow, equation (2.48), is finite and of order k~', since
it is exponentially damped. In addition, due to the complex argument, the exponential
function fo(r) is oscillating with a wave length k~!. To get an impression of the corre-
sponding stream function, figure 2.3(a) shows the stream function cosrsin? 6, which is,
apart from a radial modification due to the omitted prefactor, the same as fo(r) - sin® 6.
It turns out that the periodic radial part of the stream function is represented as con-
centrical, equally distanced clockwise and counter clockwise rotating vortex rings.

The doublet term stream function gd(r)sin® 6, with gd(r) from equation (2.43) falls
of as 1/r3 for r — oc. Figure 2.3(b) shows the streamlines for ¢ = sin 62 /r. The related
stream function is composed of a source and a sink at an infinitesimal distance from

x = 0. The flow shows a vortex ring, i.e. the section through the axisymmetric flow
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a) b)
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Figure 2.3: Streamlines for functions (a): sin#?cosr and (b): sin6?/r. Blue color for
positive values of the stream function, whereas red contours represent negative values.

Black color for zero stream function.

in figure 2.3 displays a vortex at # = 7/2 and at § = 37/2, located at an infinitesimal
distance from the origin.

The flow of the vorticity diffusion singularity becomes a potential doublet at the
center?: from equation (2.41) one obtains in the limit fo(r) — A/\ikr as r — 0.

For kr — oo (i.e. either k large, such that the frequency is large or the viscosity
is small, or r much larger than the extension of the vorticity diffusion flow k'), the
length scale of the vorticity flow is small compared to the distance from the sphere.
Hence, far away from the sphere, diffusional flow is damped exponentially and the only
remaining flow is potential flow. Assuming that A~' is much smaller than the sphere
radius, there is a thin layer of vorticity flow around the sphere, followed by the potential
flow region, which decays as 1/r3. To leading order in this case, from the equations

above, the stream function is found to be

3

Y =Ue“". % -sin?0 + O(k™1). (2.53)

This is the flow which results from the instantaneous displacement of fluid by the sphere.
The leading order term is usually reffered to as irrotational flow past a sphere (which
corresponds to potential flow) |6].
Assuming kr to be small, i.e. either k small, such that the frequency is small or the

viscosity is large, or  much smaller than the extension of vorticity diffusion k', Fy(r)

2Figure 2.3 does not show this behaviour, since the radial dependence of fo(r) has been omitted.
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may be expanded into a Taylor series and one obtains

2 2
—UTT 4 Uf (3—T - 5) 1+ O(kr), (2.54)

Fo(r) = R 7

which is exactly the solution for the steadily moving sphere, equation (2.28).

At distances small compared to k!, the vorticity field responds instantaneously and
the flow becomes approximately steady Stokes flow. Thus, steady Stokes flow is an ap-
propriate approximation of the flow close to the sphere. The range of the approximation
is determined by the diffusion length \/m and is large when the viscosity is large. In
contrast, vorticity is hardly diffused to distances large compared to \/1//7 Vorticity is
cut off exponentially and the only flow remaining at large distances is potential flow,
decaying as 1/r®. For large values for the frequency w, the steady range may be very
small.

The unsteady Stokes equation has similarities to a diffusion equation. If vorticity
is diffused to a stationary state, the flow obeys steady Stokes equation. However, the
range for the steady Stokes equation to be valid is set by the viscous diffusion length,
much similar to the start-up problem for the wall from the beginning of the chapter. For
the oscillating sphere, vorticity is diffused up to a finite distance, given by k™1 = \/v/w.
Below this distance, the flow is steady and decaying as 1/r, whereas no vorticity diffuses
to distances large compared to that and the flow is potential flow and decays more rapid,

as 1/r3.

2.3.4 Flow field

Figure 2.4 shows the sphere oscillating at X (¢t) = —D - sinwt for different times. The
various panels show the steady Stokes solution in the lower half —2 < y < 0 and the
unsteady solution in the upper half 0 < y < 2. Exceptions are panels (a) and (i), which
respectively show the unsteady and the steady solution over the full domain. From these
two panels, it is obvious that the flow is symmetrical with respect to the z-axis, which
is due to the f-symmetry of sin? 0, i.e. () = ¢ (—0).

The time-dependent solution is qualitatively different from the steady solution. First,
from figure 2.4, the time-dependent flow shows vortices, which are periodically shed
at the sphere surface. Time-dependent flow is the transport of vorticity, such that
a change of the sphere velocity is transported at finite speed away from the sphere
surface. Therefore, the flow velocity along the z-axis may have alternating sign as

one follows the axis. In panels (d) and (h), the flow is non-uniform along the z-axis.
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Figure 2.4: For comparison of time-dependent and steady Stokes flow, in panels b to
h the lower half of each picture —2 < y < 0 shows the steady flow in the laboratory
reference frame, whereas the upper half 0 < y < 2 shows the time-dependent flow
around the sphere in oscillatory motion. Panel a shows the unsteady solution over the
full range, whereas panel i shows steady Stokes flow. The color represents the absolute
value of the fluid velocity. The instantaneous position of the sphere at a time ¢ is given
by X(t) = —D -sinwt. The panels show the flow over one full period of time at times
ty = 21w 0/8 =0, t, = 27rw™ - 1/8, ..., t; = 2nw™! - 8/8, such that in ¢ and g, at
te =mw '/2 and ¢, = 3mw~'/2, the sphere is at rest at its left and right turning point,
respectively. Parameters are R = 0.1, D = 0.005, w = 20 and v = 10.
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For the steady solution, this is not the case, since this is a Taylor expansion and the
fluid velocity changes instantaneously when the sphere velocity is changed. Steady and
unsteady solution match at r = R for distances r — R < k! =~ 0.7, which clearly
displays the valid range of the steady Stokes solution, as was obtained analytically in
subsection 2.3.3. This shows that in a finite range vorticity spreads quickly, the fluid
responds instantaneously and the flow is steady Stokes flow. Diffusion limits vorticity
to distances from the sphere below k1. For distances larger than that, the fluid does
not respond instantaneously. This bound, which separates steady and time-dependent
Stokes flow, has been obtained before from the equations.

Unsteady flow drops off more rapid with the distance than the steady flow, which is
due to the 1/r® decay from the potential doublet term compared to the 1/r decay from
the steady flow. Moreover, whereas the steady solution assumes a trivial shape at the
turning points of the sphere X = £D, i.e. when the sphere is instantaneously at rest in
panels (¢) and (g), the unsteady solution still displays flow, since boundary information

is spreading diffusively rather than instantaneously.

117777~
Vit

Figure 2.5: Same as figure 2.4, but for R = 0.5.
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Figure 2.5 shows the flow around an oscillating sphere of radius R = 0.5. Qualita-
tively, the figure is much the same as figure 2.4, but the flow is extended over a wider
region. This shows that the flow which is produced by large spheres is stronger than
that produced by small spheres, even though the fluid velocities are equal at the sphere
surface; note the prefactors of equations (2.48) and (2.49).

From equations (2.19) and (2.20), and figures 2.4 and 2.5, there is an interpretation
of the meaning of small Reynolds number, of negligible advective terms: A cross section
of the flow in the reference frame of the sphere shows two vortices which are symmetrical
about the z-axis, i.e. the flow is a ring vortex. Hence, when transforming back into the
laboratory reference frame, the vortices are advected, such that they oscillate back and
forth. This is the effect of the advection term in equation (2.20). On the other hand,
if the flow is calculated in the laboratory refrence frame and then transformed to the
sphere reference frame, then the vortices are oscillating back and forth in the reference
frame of the sphere. If the difference between these two velocity fields vanishes, the
time-dependent Stokes equation is valid. A condition for that is the restriction to small
oscillation amplitudes. If D becomes small compared to k!, the displacement of the
vortices in z-direction becomes small and the time-dependent Stokes limit becomes valid.
In figures 2.4 and 2.5, kD ~ 7 - 1073, such that this should be valid.

This shows what has been found with scaling estimates in section 2.1.2: For an
oscillation amplitude D the Reynolds number, as defined in equation (2.8), is given by
wDL,/v = D/L, = kD. Hence a condition for the advective term to be small is that
the oscillation amplitude is small compared to the length scale of the vortices L, = k™!,
such that kD < 1. Also, this is a statement about the validity of the time-dependent
Stokes equation for large oscillation amplitudes: the amplitude may be arbitrary large,
even larger than the sphere radius. Time-dependent Stokes flow will yet be valid if the
viscous length scale is even larger, such that kD < 1. This has been already noted by
Stokes |65].

2.4 Flux for steady and unsteady flow

In the laboratory reference frame, the flux produced by the sphere across the plane

x = 0, which is at § = /2, is calculated as

jz|9:7r/2 = 2”'/1% Uz|9:7r/27"d7°

— or. /: [V (£) = o(r)y_ ] rdr (2.55)
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Figure 2.6: Integrand 27r - v, of equation (2.55) for R = .5 (a) and R = .1 (b). The
green line shows the flux for the sphere at maximum velocity, whereas the blue line
corresponds to a turning point of the sphere. The area of the black rectangles equal
the flux produced by the sphere. Note the arrow pointing to the rectangle for figure
(a), where R = 0.1. Black dashed lines are for orientation the zero line and r = R.
Oscillation frequency and amplitude are set to w = 20 and D = 0.005. Viscosity is set
to v = 10.

with v, the z-component of the flow in the laboratory frame and u, in the reference
frame of the sphere. Note that uy at 7/2 is pointing in negative x-direction. For steady

Stokes flow, from equation (2.30) we get for the flux of a sphere, which moves at velocity

U
2
Jelonye = 277/ SUR (1 + R—) dr

_ (2.56)
Hence the flux is diverging for steady Stokes flow.
For the oscillating sphere, V' (t) = U exp(iwt) and we get for the flux
. iw > d
ielowse = =2 [ 2o+ gf) - dr
= 27t (f0+g0‘
= —mR*. Uexp(iwt). (2.57)

Thus, while steady Stokes flow drives an infinite amount of fluid, time-dependent Stokes
flow drives exactly the amount of fluid, which is displaced instantaneously by the sphere.
The total flux of fluid and particle is equal to zero, independent of frequency and vis-
cosity!

Figure 2.6 shows the integrand of equation (2.55). The area of the black rectangles
equal the flux that is produced by the sphere. The vortices, which are presented in
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figures 2.4 and 2.5, transport fluid in both directions, corresponding to positive and
negative values of the integrand. The total amount of fluid that is moved may be huge,
but the net flux has a value, which exactly balances the black rectangle area mR?V (t)
at each point of time and therefore may be small, as is the case in figure 2.6(b).

The dashed green curves show the integrand for the steady Stokes solution: since

I at large distances, the integrand approaches a constant value, obtained from

Up X T
the first term of equation (2.56). Therefore, the integral given by the area below the
dashed green curve is divergent.

The steady Stokes solution is valid up to distances m from the sphere. For
larger distances, the time-dependent equations have to be used for the flow. The steady
Stokes range extends to infinity as v diverges. However, for the flux produced by the
sphere it has been shown that the limits ¥ — 0o and r — oo do not commute: If v is
extended to infinity, the flow is described by steady Stokes flow at any distance and the
flux diverges. Thus, false results may be obtained when steady Stokes flow is used to
calculate quantities which require the flow at infinity! In contrast, if first the integral for
the flux is evaluated for distances from the sphere up to infinity, one takes into account
that the flow does not obey the steady Stokes equation at distances larger then /v /w,

which regularizes the flux. Then the flux is finite even for infinite values of v.

2.5 Correction of the unsteady Stokes flow

N. Riley [59] addressed a correction of the Stokes solution for the flow past a sphere
in oscillatory motion by taking into account the advective term in the Navier-Stokes

equation. The various terms of the Navier-Stokes equation
ou+ (u-Viu=-Vp+rViu (2.58)

are rescaled as follows: Time is rescaled as t = wt (such that ¢ is nondimensional).
Velocity is rescaled with the velocity U which is prescribed by the boundaries, i.e.
u = u/U. Length is rescaled with the sphere radius, [ = [/R. Then in terms of the
Reynolds number

Re = —, (2.59)

the Navier-Stokes equation becomes

A0:t+ Re(a- V)a = —Vp + V2, (2.60)
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where \? = wR?/v. This scaling procedure corresponds to the estimate of the various
terms in subsection 2.1.3. For convenience, the tilde is droped for @1, V, p and 7 in the

following part.

One finds different equations depending on how Re and A? scale relative to each
other. Following Ockendon [49] or Riley [59], if Re < A%, the flow is expanded as
u = ug + Reu;. The flow related to ug is unsteady Stokes flow, such that ug satisfies

(2.10) and the first order correction to it satisfies

Ny + (ug - Vug = —Vp + V2uy, (2.61)

together with the incompressibility condition V-u; = 0. Apart from the time-derivative
term, this is the equation that has been used also by Whitehead [69] in order to improve
the steady Stokes solution for the flow past a sphere. He found that the iterated solution
is not regular as r approaches infinity. This failure is known as Whitehead’s paradox.
In contrast, the flow iterated here is not steady Stokes flow, but time-dependent Stokes
flow. For that the correction becomes regular again (see Appendix A for the details of

the analysis)!

If A < Re, such that the time-derivative term is much smaller than the advective

term, the appropriate expansion for the flow is u = ug + \?u;. Mei |38 finds

Re(ug-V)u, = —Vpy + Vug (2.62)
oy + Re[(ug - V)uy + (up - Viug] = —Vp; + Vu,. (2.63)

The first equation is the Oseen equation for the steady flow past the sphere. The second
equation is a time-dependent perturbation of the Oseen equation. The meaning of
this decomposition of u is as follows: For finite Reynolds numbers and low frequencies
advection becomes important in the range where the fluid responds instantaneously,

whereas away from the sphere, the flow is damped diffusively.

The complete solution of equation (2.61) was given by Noriyoshi Dohara [19]. In
the remainder of this section, the investigation will be restricted to Reynolds numbers
Re < A%, such that the advective term is much smaller than the time-derivative term
and the decomposition of the flow gives rise to a correction of the unsteady Stokes

solution.
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2.5.1 Perturbation series

Using equations (2.21) to relate the axialsymmetrical flow u to the stream function ),

in physical units the Navier-Stokes equation (2.4) is given by

2l N L (BB
B (vE* —0,) v = — o T Ev-L). (2.64)
where L is defined as
cos 0 1
L= @8“/’ ; Tsin980¢' (2.65)

As the Navier-Stokes equation, this equation is nonlinear.
For ¢ = 1o+ and ¥4 /109 = O(Re), one obtains the time-dependent Stokes equation
for 1)y, equation (2.31), and 1)y is to be determined from the next order equation, which

1S

T 2,/
E*(vE? — 0)), = % (% + 2 B - L¢g> (2.66)

where 1§ denotes the real part of the complex valued solution that has been found in
subsection 2.3.3. Since 1) is harmonic, the terms on the right hand side involve terms of
the order sin®wt and cos®wt, which may be decomposed into steady terms of frequency

0 and such of frequency 2w. Thus 1; is given by the real part of
Vi (r,0,t) = io(r,0) + V12(r,0) - exp 2iwt. (2.67)

The correction to the flow past a sphere in oscillatory motion is composed of a steady
flow and a response of the fluid of frequency 2w.

To rewrite the terms on the left hand side of equation (2.66), note that because of
the differential equations for fo(r) and go(r), (2.38) and (2.39)

E*o(r,0,t) = Efo(r) - exp iwt - sin” 6. (2.68)
v

Then the right hand side of equation (2.66) is equal to

2w sin® § cos 6 » ot (2

S {Re (ethO(r)) -Im (em <; - &) fo(r)ﬂ (2.69)
where Re(z) and Im(x) denote the real and imaginary part of . The term in square

brackets can be decomposed in terms of the frequencies, such that it equals

2R (2= 0.) ) - 5Ro) (2= 00 folr) - ] (2.70)
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where fy(r) is the complex conjugate of fy(r). The angular part separates for

Yio(r,0) = Fip(r) - sin® 6 cos 6 (2.71)
Y1a(r,0) = Fio(r) - sin® 0 cosd. (2.72)

The angular dependence is giving rise to ordinary differential equations for Fio and Fi,
6 6 iw 2 -
2 2
(ar T2> (37, 7“2> Fro(r) v2r2 [FO(T) (; &n) fo(T)} (2.73)
and

(-5 -2 (2 5) Fut) =5 [R0) (2-0) 6] @79
r v r vir r

which have to be solved in order to find the solution for u;. The details of this solution

are given in appendix A.

A cross section of the stream function shows two vortices above the sphere and
two vortices below the sphere, cf. figure 2.7. This corresponds to two counter rotating
ring vortices. The z-axis is a symmetry axis, as before, but in addition, there is an
antisymmetrical axis along § = 7/2. The simple angular dependence of ¢; can only give
rise to a small angular correction to the unsteady Stokes solution, which restricts the
oscillation amplitudes to values which are small compared to the length of the structures
of the flow, i.e. D < k1. This highlights the restriction of the unsteady Stokes equation
from section 2.2 and relates it to the scaling arguments in subsection 2.1.2.

From the homogeneous solutions of equation (2.73) it is found that the steady stream-
ing decays as 1/r% lower than the potential streaming of the unsteady Stokes solution,
which decays as 1/r®. The magnitude of the steady streaming relative to the time-
dependent Stokes flow depends on the Reynolds number, such that for small Re it
overtakes the potential flow at distances which are orders of magnitude larger than the

sphere radius.

2.5.2 Velocity field of the correction

The equations for the solution of the flow are Whitehead’s equations [69]. He tried to
find an improved solution for the steady Stokes flow and found that the iterated solution
is not regular at large distances, which is known as Whitehead’s paradox. In contrast
to his solution, the flow here is regular. The difference for the integration of the full
time-dependent Stokes flow instead of the steady flow is that the advective term of the

former is cut-off exponentially whereas the latter is algebraic. Therefore for the former
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the integral is finite, whereas it diverges for the latter. Details of the equations are given
in Appendix A.

Considering the perturbation flow, figure 2.7 shows v (r,6,t), more precisely the
real and imaginary part of the spatial parts. The flow displays the same symmetry as
the nonlinear term. The real and imaginary part indicate that vortices are shedded
in directions § = /4 and 6§ = 37w /4 with frequency 2w: a time series of snapshots
would show the real and imaginary part of ¢ (r, 6, ¢) in an alternating sequence. Thus,
the vortices there would appear to be spreading. These travelling vortices add to the
vortices of the time-dependent Stokes flow and therefore the total flow looks like the
time-dependent flow, but with the positions of the vortices slightly corrected. At this
point, the advective term displays its meaning: the vortices are not exactly located at
0 = /2, as suggested by the time-dependent Stokes flow, but are displaced slightly to
the left and to the right. If this displacement is small compared to the structures of
the flow, then the advective term will be small as well. Figure 2.7 shows that the flow
is largest inside a finite range of width &=! around the sphere. If this range is large
compared to the displacement of the sphere, which is of order D, the advective terms
will be small.

At the front and rear of the sphere, the correction term seems to be large. This
is related to the pushing and pulling of the fluid at the rear and front: Since vortices
are spread at the rear periodically, there will be regions of positive and negative flow
in z-direction, which produces high velocity gradients in this region. At the upper and
lower surface of the sphere, gradients of the velocity are perpendicular to the flow and
advective terms are small. The largest value of the correction of time-dependent Stokes
flow is found close to the sphere in axis of motion.

In figure 2.8 at each position the rms fluctuations of the correction and the time-
dependent Stokes flow are compared to each other. At about § = m/4 and 37/4,
the relative magnitude is lowest. The vortices related to v1(r,6,t) are found in this
direction. Since at their centers the flow is at rest, cf. figure 2.7, the relative correction
in this direction is small.

In panel (a), two dark spots to the left and the right of the sphere appear. This
shows again the velocity gradients at the leading and trailing edge of the sphere. Panels
(b) and (c) show large relative amplitudes at a finite range around the sphere. In panel
(¢), the boundary of this range seems to be well separated from the rest. This is because
the particular solution for the perturbation involves terms, which are exponential with

an argument 7 (details in appendix A). Therefore, at distances large compared to k!
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-10 0 10

Figure 2.8: Comparison of the rms velocity fluctuations of the correction to the unsteady
Stokes mean speed of the flow. (a) R = 0.5, (b) R = 0.1 and (¢) R = 0.01 and w = 20,
v =10, D = 0.005. Note that the zero is suppressed in each case.
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these terms must be small and the perturbation necessarily drops down.

Asymptotically as r — oo, the relative value seems to decrease for panels (b) and (c),
while for (a) it seems to increase. Since the correction decays more weakly than the time-
dependent Stokes flow, for all three of them the amplitudes diverge at large distances.
This happens however in these cases at distances which are orders of magnitudes larger
than the range of the figure and is thus not visible here.

In this section, the validity of the time-dependent solution has been checked with
an expansion similar to that which has been used by Whitehead. In contrast to his
solution, the first-order expansion of the time-dependent Stokes flow is regular at large
distances. The correction to the steady Stokes flow is composed of a steady streaming
and a streaming of frequency 2w. The flow is composed of two counter rotating ring
vortices and symmetrical about the z-axis and 6 = 7/2. It has further been confirmed
that unsteady Stokes is valid, if D < /v/w, i.e. the oscillation amplitude is much
smaller than the viscous diffusion length. The comparison of the perturbative solutions
to the time-dependent Stokes flow has shown, that the largest correction is found at

leading and trailing edge of the sphere.

2.6 Equations of motion for the sphere

For the sphere to move oscillatory, an external force F(Y) has to be applied to satisfy
the equation of motion. In addition to F*) the flow causes a backreaction onto the
sphere, such that

mgV = FE) 4 p(fuid) (2.75)

with mg being the mass of the sphere and F(1d) the force from the flow.

The famous result in the case of steady flow around a sphere moving at constant
velocity V is

FD — _6ruR.V (2.76)

where 1 = pv is the dynamic viscosity of the fluid. The viscous drag F@d) ig a friction
force and counterbalances F(°*V)

For the uniaxially oscillating sphere, one gets [65] for the component of the force in
the direction of the motion

pliid) _ ? Ciw + 67uR - (1 + \ﬁkR)} et (2.77)

The mass of the fluid that is displaced by the sphere is denoted myp = 4wpR3/3. The

first term on the right hand side is a consequence of the potential doublet streaming and
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represents the force due to the instantaneous displacement of fluid by the sphere. This
so-called added mass term is obtained also by considering only potential flow around the
sphere [30, 66]. Why does the added-mass term not appear in the steady expression for
the force? The added mass term represents the instantaneous acceleration of fluid due to
a change of the sphere velocity. If the sphere moves steadily, there is still potential flow,
but no instantaneous acceleration is related to it and the corresponding term therefore
equal to zero. The force for steady flow has its only contribution from viscous gradients.

The modification of the viscous drag represents the impact of the vorticity that has
been produced at earlier times and is acting back onto the sphere with a time-shift (note
the complex valued prefactor).

Next, the velocity response of a sphere to an oscillatory force is studied. For a
unidirectional force F = Fjexp(iwt)e,, the velocity amplitude U of the sphere in -

direction is given by the equation
1
(ms n §mp> iU = Fy — 6muR (14 VikR) U, (2.78)
i.e.

U — F0/67T/.LR
L+ VikR+2 (2 + 1) - ik?R?

(2.79)

The nominator Uy = Fy/6mpuR is obtained as a response amplitude in the case v — oo,
which is £ = 0. This value corresponds to the balance of steady viscous drag and driving
force.

The absolute value of U and the phase shift ¢ between force and velocity are shown
in figure 2.9. Negative phase shift means that the velocity of the sphere lags behind
the force. For small k& (small in the sense that kR < 1, where R is kept fixed), the

square-root behaviour dominates. The response amplitude is

U="0,- (1 - %) (2.80)

and the phase shift ¢ = —kR/v/2. Hence, the smaller k or equivalently the larger the
structures of the flow, the smaller is the phase shift between the amplitude and the force.
For k£ = 0, which for fixed v is w = 0, steady viscous drag and driving force balance.
This is the limit of a steadily moving sphere.

It is remarkable that the velocity response and the phase vary with the kinematic
viscosity as \/1/7 Even if the viscosity is large, the difference to the steady Stokes case

might be considerable.
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0'% 20 40 0 20 40

Figure 2.9: Velocity response amplitude U in terms of Uy (a) and phase ¢ in terms of 7
(b) as predicted from the time-dependent Stokes equation plotted against k* = w/v for
ps = p and R = 0.5. Dashed lines show predictions of steady Stokes.

For comparison, the result for the response without the history and the added mass

term term, i.e.
U= % (2.81)
9 p

is shown in figure 2.9 by dashed lines. It is clearly visible in all plots that the response
predicted by steady Stokes is in contrast to the time-dependent prediction. In particular
for small kR, the response is not linear in k. The difference between the two comes from
the fact that for finite k the time-dependent force differs from the steady force.

Experiments have been performed by Abbad and Souhar [1, 2] to investigate the
response of a particle to an oscillatory force at small Reynolds numbers. A fluid tank
is adjusted on a vertically oscillating table. Therefore it is possible to impose a pseudo
forces on the sphere which causes the sphere to oscillate in the tank. In addition, the
sphere settles due to gravity. Gravitational motion and oscillation are treated separately.
Steady motion coincides with the expression for the steady force. The oscillation is
found in remarkable agreement with the time-dependent Stokes force. This shows that
the motion may be interpreted as a linear composition of steady and oscillatory motion,
which represents the linear character of the unsteady Stokes equation. The results for
the oscillation are shown in figure 2.10. § = W/R is the penetration depth of the
vorticity, normalized to R. For the parameter range of the figure, w was varied from
about 4Hz (for ¢ = 2.5) to 20Hz (for = 1). Note that the oscillation amplitude D was
fixed to approximately 5mm. Therefore as w is increased (i.e. k is increased and 0 is
lowered), the amplitude is increased as well and vice versa.

In this section, the equations of motion for the harmonically forced sphere have been
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Figures 7a and 8a from [1] (with the friendly permission of the author).

Figure 2.10: Velocity response amplitude Uy, (a) and phase shift a (b) for the velocity
response of a sphere to an oscillating force. The experiments were done with a teflon
sphere of radius 2.5mm in glycerin with a kinematic viscosity of 69 - 1075m?/s. p =

1.257g/cm? and pg/p = 1.75. Uy, is the free fall velocity of the sphere.
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formulated. Experimental measurements have shown that excellent agreement is found
with the prediction from time-dependent Stokes flow, whereas the results are in striking
contrast to the steady Stokes prediction. Note that these results are restricted to small
Reynolds numbers. If the Reynolds number is finite, corrections of the force of the order

of the Reynolds number become important [33, 37, 51].

2.7 Conclusions

It has been shown that the exclusion of the advective term in the Navier-Stokes equation,
as eventually suggested by scaling arguments, does not a priori allow the exclusion of
the partial time-derivative term. In contrary, taking into account time-dependence in
the Stokes equation has a considerable effect on the flow: For a sphere in oscillatory
motion, the flow is steady only inside a finite range r < \/1//7 (with v the kinematic
viscosity and w the oscillation frequency), where vorticity is in its diffusion equlibrium.
Since vorticity is exponentially damped, it is hardly diffused beyond this range, such
that the unsteady flow differs remarkably from the steady Stokes flow.

For the calculation of flow properties, it is important to question, whether for the
distances in case vorticity diffusion is in steady state or not. For properties also involving
the flow at large distances, the full time-dependent flow has to be taken into account, as
has been exemplified here for the flux that is transported by the sphere: It is divergent
for steady flow and equals the negative flux of the sphere for the time-dependent flow.

The validity range of the time-dependent Stokes equation has been found to be
limited to small oscillation amplitudes D, such that the sphere is always inside the range
of the viscous length m For oscillation amplitudes larger than that, advective terms
get large and the neglection of the nonlinear term is no longer valid. Then, the steady

and unsteady Stokes equation are both not valid.
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Chapter 3
Flow past a sphere in arbitary motion

Stokes |65] gave an expression for the flow past a sphere, which moves at constant velocity
V in a viscous fluid. This gives rise to an expression for the drag F, that is exerted on
the sphere, F = 6mr RV with p the dynamic viscosity of the fluid and R the radius of
the sphere. Due to their simplicity, these expressions for flow and drag are often used
also for a sphere in unsteady motion. Two implicit assumptions are made thereby: First,
the sphere and the drag depend instantaneously on each other, F(¢) o« V(¢). Secondly,
the flow u(¢) and the velocity of the sphere depend instantaneously on each other and
if 7 denotes the distance to the sphere, the flow decays as 1/r, i.e. u(t) o< V(t)/r.

The solution of the time-depedent Stokes equation for the flow past a sphere, whose
center of mass is moving in one direction with arbitrary velocity, is known since Boussi-
nesq [10, 11|. He obtained expressions for the flow and for the force, which the fluid
exerts on the sphere. Basset [4], apparantly unaware of these works, obtained the same
expression. He solved the flow for the sphere starting from rest and moving at constant
velocity. By integrating this solution over the derivative of the sphere velocity, i.e. by
adding up the solution for an infinitesimal change of the sphere velocity at each point of
time, he found the solution for the flow past a sphere in uniaxial motion. The expression
for the force, which is exerted by the viscous fluid on the sphere, is accounted to Basset
[4, 5], Boussinesq [10, 11, 12] and Oseen [53] and sometimes called the BBO-equation.
The calculation is based on the solution of the time-dependent Stokes equation and
therefore in contrast to the expression from steady Stokes flow; force and flow involve
not only the instantaneous velocity of the sphere at time ¢, but also contributions from
the sphere velocity at former times ¢ < ¢. Computation of the flow and the equation of
motion for an unsteadily moving sphere from the time-dependent Stokes equation gives

results, which differ from the results that one obtains from the steady Stokes approach.

37
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Experiments [1, 2, 31, 43] confirm these differences.

If in addition to the flow, which is caused by the sphere, there is an external flow
field (e.g. a sphere that moves in turbulent flow), Maxey and Riley [35] computed an
expression for the force, which is exerted on the sphere in this case. Their calculation
assumes that the sphere follows the fluid so closely, that the induced perturbation of
the flow by the sphere may be described by the unsteady Stokes equation.

In addition to time-dependence, the steady expressions miss out finite Reynolds
number contributions to the force. When the Oseen equations (2.63) are used to take
into account the advective term in the Navier-Stokes equation, corrections of order
Reynolds number are found for the viscous drag on a steadily moving sphere at low
Reynolds numbers (e.g. [52, 57]). The Oseen equations were also applied to obtain
a correction to the BBO-equation at low Reynolds numbers by Lovalenti and Brady
[33, 34|. Several attempts have been made to find easier, semi-empirical expressions for
these equations. Reviews of these works have been given by Michaelides [41, 42].

Here, in order to show the deviation of time-dependent Stokes flow from steady
Stokes flow, based on time-dependent Stokes flow, i.e. with the advective terms in the
Navier-Stokes equation neglected, the equations for the flow and the viscous drag are
reexamined. The equations for the flow are given in section 3.1. Then, the transition to
steady Stokes flow is shown in section 3.2 for a sphere, which is at rest for time ¢ < 0
and moves at constant velocity for ¢ > 0. Section 3.3 recaptures the equation of motion

for the sphere. The solution for a sedimenting sphere is reviewed in section 3.4.

3.1 Time-dependent Stokes flow

3.1.1 Unidirectionally moving sphere

General equations for the flow around a sphere which moves unidirectionally at arbitrary
velocity are obtained by expanding the motion of the sphere into Fourier components,
calculating the flow for each frequency, and finally integrating over all frequencies to
recover the motion of the sphere. The velocity of a sphere V (¢) may be expanded into

Fourier components V (w) such that

+oo . .
V(t) = / V(W) duw. (3.1)
The inverse expression for V(w) is then given by
~ 1 +o0 )
Viw) = — / V(t)e~tdt. (3.2)
21 J-o
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For a single Fourier component the flow has been solved already in chapter 2. For
the sphere moving at velocity V (w)(expiwt) in z-direction, we found that the Fourier

amplitude z@(r, 0,w) of the stream function satisfies

<% - E2> E2(r, 0,w) = 0 (3.3)
with E? defined as " ,
N ~ ¢in N
¥ = o2+ 500, (@aﬁz;) . (3.4)

The solution is 1(r, 6, w) = V(w)F(r,w) sin? @ and F(r,w) = f(r,w)+ ja(r, w) + g (r, w).

The single contributions to F(r,w) are

A 3R 14+ xkr _,
b —k(r—R)
f(r,w) 5 o C (3.5)
3R 1+ kR+K*R?/3
: = 20 3.6
ulrw) = 2B LR (36)
. r
gr(r,w) = 5 (3.7)

in terms of kK = \/m For w < 0, the phase of  is chosen as —7/4, whereas it is 7/4
for w > 0, cf. equation (2.40). This ensures that the solution is regular for r — oo, since
then f(r, w) in equation (3.5) is damped instead of growing exponentially.

The flow for a sphere moving at arbitrary velocity V (¢) is found by inverse Fourier

transformation of F(r, w). In the inverse Fourier integral

Firt)= [ T (W) E(r, )t do, (3.8)

—00

substitute V(w) by the corresponding expression in terms of V(t), given by equation
(3.2). Then the integral equals

1 +o00 +o00 (1) 7
Firt)= o [ "t { | dwe 0k, w)} V(). (3.9)
21 J - —00

The harmonic stream function involves a singularity at w = 0 and the path for the
Fourier integral has to be layed around that singularity. The argument ¢ — ¢’ is positive,
since the flow at a time ¢ does not involve the velocity of the sphere at times ¢’ later than
t. The integral has to be layed such around the singularity that the integral vanishes
for negative values of ¢ —t’. The upper bound of the outer integral changes from ¢’ = oo
to t' =t.

Carrying out the transformation, one finds

U, 60,1) = sin?0 - [ AV F(rt— ) (3.10)
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and F(r,7) in terms of

F(r,7) = f(r,7)+g%r,7) + ¢'( (3.11)
flr,7) = _?[ ;@ = + e1fc< )] (3.12)
drr) = —%5(7). (3.14)

0(t) is the Dirac delta function and ©(t) the Heaviside step function. For the definition
of the complementary error function erfc(x), see equation (2.2).

Note that the potential doublet g¢(r,7) decays as 1/r3, independent of the sphere
motion. This is a result of the differential equation for potential flow (2.33), which does
not involve a time-derivative term and describes a instantaneous reaction of the fluid to
volume displacement.

F(r,t) is the radial part of the stream function for a sphere moved at a velocity
V(t) = 0(t). Basset’s expression [4] for the time-dependent Stokes flow past a sphere is
an integration of infinitesimal changes of the velocity; it involves V'(¢) instead of V' (¢')
and is obtained by a partial integration from the Greens function given above.

Apart from Bassets expression, the expressions for time-dependent Stokes flow past
a sphere in arbitrary motion, (3.10) to (3.14), are found in literature. Ockendon [49]
obtained an expression for the time-dependent flow at large distances from the sphere.
Similar expressions for the solution of the time-dependent Stokes equation in the labo-
ratory reference frame were found for instance by Asmolov 3] and Shu et al. [62]. All
these expressions coincide with the expressions above when adapted to the notation that

is used here.

3.1.2 Three-dimensional motion of the sphere

Consider a sphere moving at arbitrary velocity V(¢). The contribution of the z-component
of the velocity V,(t) to the flow may be obtained as follows: H,(r,t) denotes the integral
of equation (3.10) with V(') substituted by V,(t'), i.e

Ho(r,t) = /_t AV 0) (3.15)

Then, transforming the radial and azimuthal component of the flow to cartesian coordi-

nates (cf. figure 2.2) and substituting § and ¢ by the corresponding expressions in terms
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of z, y and z, one finds the flow given by

Uy ) x? . x? —r?
u | =3 v H,(r,t)— o YT 70y Hy(r, t) (3.16)
Uy 2T 2T

with r = /22 + y? + 22 being the distance to the center of the sphere. If the other
components H,(r,t) and H,(r,t) are defined analogously, in component wise notation

the flow u;(x,t) becomes

wi(x,t) — Tig{@jrarHj(r, t)+x7ﬁff (2H,(r,t) — 0, H,(r, t))} (3.17)
R 72 3R >
i) = (5 =5 ) v+ 5 [Camie- 0.

v (R (r—R)* v r—R
I T T —eorf | —— 3.18
[ WT(T ‘ >+Tel <\/4y7)] (3.18)

with the Einstein sum convention for the sum over j and d;; denoting the Kronecker
delta. Note that the integration variable in the definition of H;(r,t) has changed from
t' to 7 =t —t. Equations (3.17) and (3.18) give the complete solution for the time-

dependent flow past a sphere, which moves with arbitrary velocity in all three directions.

3.2 Steady Stokes limit

Consider a sphere at rest for times ¢ < 0 and moving with constant velocity V; for times
t > 0, as investigated by Basset |4]. Here, the transient from zero fluid velocity to steady
Stokes flow is investigated.

First, to obtain the stream function for constant sphere velocity from equation (3.10),

equations (3.12) to (3.14) have to be integrated over time. Then an integration yields

L 2 _p2 —
Vo/o fr,m)dr = _31% [l/t+R 5 A ]erfc <ﬂ>

2r

3RV, vt (r — R)?
S R)\/;eXp <4yt > (3.19)

t t 3
vo/ g, rydr = Bt <ut+2R,/”—) Ly (3.20)
0 2r T 2r

t 2
Vo/ gr(r,7)dr = —%VO. (3.21)
0

These expressions are equal to the ones that have been found by Basset [4]. If t becomes

large, the argument in the exponential and the complementary error function gets small
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and the corresponding Taylor expansions may be used, for the latter

erfc(z) =1 — %x + O(x%). (3.22)

7

Then with r fixed, in the limit ¢ — oo one finds

r? R_,2<3T R)
R T

t
VO/ F(r1) = —Vo +
0

s+ (3.23)

which is the steady Stokes stream function, equation (2.28). Note that for any finite ¢
and v, no matter how large, the expansion is only valid, if the distance r is such that
(r — R)/v/4vt < 1. Therefore, if distances are large and the condition is not fullfilled,
the expansion fails. Then the time-dependent flow has to be used.

Figure 3.1 shows a sphere that started to move to the right from rest with constant
velocity. At the surface of the sphere, the fluid moves with the sphere, whereas the fluid
is at rest at large distances. The flow shows vortices, which are perpendicular to the

direction of motion, much similar to the flow past a sphere in oscillatory motion. Figure

1.0
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0.0

11020000
22 dsad

Figure 3.1: Flow after a time ¢ = 1 past a sphere, which started from rest at ¢ = 0 to
move with constant velocity Vi, = 1. The sphere is moving in positive xz-direction, which
is to the right. The flow is shown in the laboratory reference frame and the snapshot
is shown with the sphere in the center. The color shows the magnitued of the flow.

Parameters: R = 0.5, v = 1.

3.2 shows the flow past the same sphere at later times. The flow is shown in laboratory

reference frame, such that the flow is at rest at infinity'. As the sphere moves, the

!Note that the position of the z-axis is shifted in each panel with the sphere, such that the sphere

is again seated in the origin.
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vortices spread diffusively to larger distances. This is similar to the spreading of the
vortices, when the sphere moves oscillatory, cf. figures 2.4 and 2.5, but there, vortices
are generated periodically, whereas here the vortices are generated only once, when the

sphere starts to move, and then are diffusing.
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Figure 3.2: The flow for the sphere from figure 3.1 is shown at later times t = 2, 3, 5,
10, 15 and 20.

After a time ¢, the diffusion of the flow and the vortices spread to distances of order
V/vt. The flow is almost in steady state for r < v/, whereas at larger distances there is
sparse vorticity yet. Hence at a given time ¢, the flow obeys the steady Stokes equation
for distances smaller than v/»t. In the limit » — oo, this distance gets large, approaching
infinity. However, for each finite v and ¢, the validity of the steady Stokes equation is
limited to distances r < v/Vt.
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Another view is the following: at a distance r, there is little vorticity for times
t < r?/v, whereas at times larger than that, vorticity approaches its local equilibrium
value. Hence, for fixed distance r, the flow nearly obeys the steady Stokes equation after
times of order r?/v. As v — oc, the time for the validity of the steady Stokes solution
approaches zero. But for any finite v and distance r, the flow needs a time r2/v for the
diffusion and the steady Stokes limit is not valid for times shorter than that.

At large times, the advective term becomes dominant: The neglection of the advec-
tive term is satisfied, if the displacement of the sphere is smaller than the extension
of the flow, i.e. the scale of vorticity diffusion. Advective terms become important if
the sphere advances faster than the diffusion front. In chapter 2, the displacement of
the sphere is the oscillation amplitude, whereas the diffusion length is £~ = |/v/w.
Thus the condition there for the advective term to be small is obtained as kD < 1.
Here, the sphere displacement is given by V¢, whereas the diffusion length is /v¢. Both
equal at a time ¢t = v/V?2. For smaller times, the flow obeys the time-dependent Stokes
equations, whereas at larger times, advective terms are nonnegligible and the flow differs

from time-dependent Stokes flow.

3.3 Equation of motion for the sphere

For a steadily moving sphere, forced by a constant force F; and moving at velocity V; in

a viscous liquid, the force balance of F; and the viscous drag due to the flow is given by
0= F, — 6muRV;. (3.24)

The expression for the viscous drag has been given by Stokes |65]. This equation is
obtained under the assumption, that vorticity has had enough time to spread to its
equilibrium value and the flow obeys the steady Stokes equation. For steady Stokes
flow, the equation of motion for a sphere in a viscous fluid, forced by an external force
Fi(t), is given by

ms LVilt) = 1) — 6ruRVi(0) (3.25)

with mg the mass of the sphere. The assumption for this equation is similar to that
for equation (3.24): for distances of the order of the sphere radius vorticity diffuses
instantaneously to its equilibrium value and the viscous drag instantaneously adjusts to
the motion of the sphere.

The time-dependent equation of motion may be obtained from the inverse Fourier

transformation of the expression for a single Fourier component, equation (2.78). In the
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textbook by Landau and Lifshitz [30] the steps are relegated to the exercises: exercises
§24.5 and §24.7 lead to equation (3.26). As given by Boussinesq, Basset and Oseen, the

equation of motion is

ms Vi) = F) — Eme L

dt 2 dt
R tdVi(r)/dr
—6mRu | Vi(t dr| .
i ,u[ ()+\/7ry to Vt—T T]

mp 1s the mass of a fluid parcel, whose volume is equal to that of the sphere, i.e. the

(3.26)

ratio mg/mp is given as the ratio of the two densities. Maxey and Riley [35] gave
an expression for the motion of a sphere, forced by an external force F;(t) to move
in an external flow. They assume that the sphere follows so closely the flow that the
perturbation of the flow, which is induced by the sphere, may be described by the time-
dependent Stokes equation. Thus, if the turbulent flow is set to zero, one recovers the
equation of motion given above.

In equation (3.26) the uniform Stokes force, the third term on the right hand side, and
the added mass term, the second term, are familiar from the oscillatory moving sphere.
The last term finally is the Basset integral term. It has the following meaning: part
of the flow produced by the sphere obeys a diffusion equation, namely that of vorticity
diffusion. At a given distance, the flow does not follow the sphere instantaneously, as
explained in section 3.2. Therefore, not only the momentary velocity of the sphere, but
also all flow created formerly at 7 < ¢ has to be taken into account. The drag from
that flow, the Basset integral term in equation (3.26), is obtained by an integral over
the velocity at former times.

In contrast, in the equation of motion as obtained from the steady Stokes equation,
the flow at earlier times does not have an effect on the motion of the sphere, since the

flow adjusts instantaneously to the motion of the sphere.

3.4 Gravitational startup

Consider a sphere at rest for times ¢ < 0 to be subject to a constant and unidirectional
force F' at times t > 0. The sphere starts to accelerate at ¢ = 0 until it assumes
an equilibrium velocity Vo = F/(6muR). In terms of V and the Stokes time 7¢ =
2R%ps/(9vp), the equation of motion, obtained from the steady Stokes drag, equation
(3.25), is given by

75 - V() + V(t) = Vg (3.27)
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and the solution is
V() =Vy- (1—e7), (3.28)

i.e. the velocity of the sphere approaches its equilibrium value after a time of the order
of the Stokes time 7g. Taking the effects of the fluid into account via the steady Stokes
drag, the sphere is found to accelerate until driving force and steady Stokes drag balance.

The equation of motion for the unsteady Stokes solution is given in terms of 7g =

7s(1+ p/2ps) by P
Fo V) v+ 2 [ T - vi (3.29)

with 7r = R?/v being the time that vorticity needs to diffuse to a distance comparable

to the radius of the sphere R. The equilbrium assumed by the sphere after the transient
process is the same for the steady drag equation (3.27) and the BBO-equation (3.29)
and equals Vy = F/6muR, since the Basset integral term involves the derivative of
the velocity with an integral kernel 1//t — 7 diverging for 7 — ¢ slow enough to be
integrable.

This integrodifferential equation has been solved for the unsteady start-up problem

by Villat [67]. Abel’s theorem implies that

F(t) :/Otds\‘//% — /Otdr\f% AV - V(0).  (3.30)

This allows to rewrite the equation as a second order ordinary differential equation
8, 40, 66],

7~'§V+(27~'5*TR)V+V:%(1* %) (331)

The transformation may also be obtained by fractional calculus methods [15, 16]. Equa-
tion (3.31) is the differential equation that will be solved to obtain the solution for the
start-up problem. It also allows an asymptotic analysis: Assuming the sphere close to
its equilibrium velocity, V (t) = Vo — 6V (t) where 6V (t) is small compared to Vy, 6V (t)

may be expanded into a series ¢~ /2, +3/2, ... and V(t) found to be

V(t)=V,- (1 - Jth) +O@t3/3). (3.32)

Remarkably, the Stokes time 7¢ does not contribute to this asymptotic solution and in
fact, if 75 is set to zero in equation (3.29) from the beginning, the same asymptotic limit
is found. This shows that unsteady transient behaviour is happening as a balance of
driving force, Basset history and Stokes force, i.e. the transient behaviour is determined

by the slowly diffusing flow, with an algebraic 1/v/t-decay!
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This is in contrast to the result that is obtained, when history forces are excluded,
(3.28). Taking the flow into account as steady flow leads to an exponential transient,
where the time-dependent Stokes solution decays as l/ﬂ, much slower than exponential!

The full solution of equation (3.31) is found as follows: the characteristic equation
>+ 2bp + 1/72 = 0 (where b = (275 — Tx)/275?) has solutions p,q = —b 4 /b> — 1/72
such that p + ¢ = —2b and pq = 1/7¢. This gives rise to homogenous solutions

ViR =er and V(1) = e, (3-33)

By the method of variation of coefficients, the solution is then obtained as

V(t) = Vp- {1 RAT (epteii;/ﬁ - eqtei%‘/q_t)] . (3.34)

s P—4
A partial integration of erfc(£) leads to an expansion for large arguments (see for instance

[66]), which is given by

orfe(¢) = % /:Oe’@dq

€ oo o€

2

= ﬁ [¥ ~ ) Q—CQdC} (3.35)
Note that in (3.34) not only the complementary error function erfc(,/pt), but also the
exponential term exp(pt) enters, such that the product is algebraic again. This leads
then to the large time transient expansion, which has been obtained directly from the

differential equation above, see (3.32).
The properties of the sedimenting velocity are not obvious, since the argument in the
error function may assume complex values with real positive part. Therefore oscillations
can not a priori be excluded. For falling spheres Belmonte et al. [8] prooved that the

sedimenting sphere in a viscous fluid indeed monotoneously approaches the steady state.

Figure 3.3 shows the start-up process for a sphere moving under the action of a
constant force for variing density. Clearly, in figure 3.3(a) the exponential function of
equation (3.27) strongly dampens the transient. The damping coefficient depends on the
density of the sphere. Figure 3.3(b) shows the same data in a double logarithmic plot.
The unsteady transients are shown to live for a much longer time, decaying algebraically.
After times large compared to 7g, they approach a unit transient, given by equation
(3.32), which does not depend on the density of the sphere. This shows again that for
a given force the density of the sphere does not have an influence on the asymptotic

transient behaviour.
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Figure 3.3: 0V (t) = Vy — V/(¢) from the startup process of the sedimenting sphere for
sphere density pg = .1 (blue), 1 (green) and 10 (red). The value of the force is chosen
such that Vj; = 1. Dashed lines show the steady Stokes solutions, given by equation

3.27. (b) shows unsteady solutions, obtained numerically with a backward differencing
method [36] from equation (3.29). Parameters are R =1, v = 1.
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There are several ranges of the transient: At first, the Stokes time is dominant, if it
is large; in figure 3.3(b), the red curve does not decay before times ¢ ~ 75. Next, the
long transient behaviour is determined by the Basset history term and proportional to
R, see equation (3.32). The Basset term is living for a long time. If it is small, the
steady Stokes equilibrium finally is obtained. The flow expansion in terms of small R
in section 3.5 from finite sphere radius to the Stokeslet flow corresponds for the motion
of the particle to the assumption that the transient is damped sufficiently, not due to

an observation at large times but due to sufficiently small sphere radii.

Mordant and Pinton [43]| have studied the sinking velocity of a settling sphere at
Reynolds numbers from 40 up to 7000. The sphere followed the algebraic prediction
from the time-dependent Stokes equation for small times when velocity and Reynolds
number were small. The sphere deviated from the unsteady Stokes behaviour for high
Reynolds numbers. Then advective terms become dominant and the transient is again
damped stronger than 1/v/f [1, 24, 43].

3.5 Unsteady Stokeslet

In section 2.3, the solution of the time-dependent Stokes equation has been found for
the flow past a sphere, whose center of mass is in oscillatory motion. The force which is
acting from the fluid onto that sphere has been calculated in section 2.6. The equations
have been used in sections 3.1 and 3.3 to obtain the flow past a sphere, if the center
of mass is in arbitrary motion, and the force which is acting from the fluid on that
sphere. Approximations of these equations are obtained, if at distances of the order of
the sphere radius R the fluid responds instantaneously to the motion of the sphere, i.e.
if at these distances the flow obeys the steady Stokes equation, and if the flow becomes
time-dependent only at distances which are large compared to R. The approximations
are given here both for the oscillatory motion and for the arbitrary motion of the sphere’s
center of mass. The equations which are given here generalize the steady Stokeslet, i.e.
the steady Stokes response of the fluid to a point-like force, to the unsteady Stokeslet,
which is the unsteady Stokes response of the fluid to a time-dependent point-like force
[56].
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3.5.1 Oscillatory motion of the center of mass

For the center of mass of the sphere moving at a velocity U exp(iwt), if the viscous
length £~ = /v/w is much larger than R, i.e. if kR < 1, the stream function, given by
equations (2.37) and (2.47) to (2.50) may be expanded in terms of kR and one obtains

| 3U (1 1+vikr =\ Ur?
b(r,0,t) = e sin? 0 { <Zk2 - JF@;{“E”) - 27"] +O(kR).  (3.36)

This is the approximation for the stream function, which describes the flow in the
reference frame of the sphere. Note that part of the potential flow, in particular the
term related to the mass displacement of the sphere, the last term in equation (3.13),
vanishes in the Stokeslet limit.

In consistence with the equations for the flow, the force has to be expanded as well

and one obtains for the component in motion direction
F(t) = 6mpuRU™". (3.37)

The flow responds instantaneously close to the sphere. Therefore, also the force responds
instantaneously. Equation (3.37) is obtained in the limit of zero Stokes time, i.e. zero
mass of the sphere. Thus, in addition to R — 0 the Stokeslet approximation requires
the ratio of sphere and fluid density to be finite.

Analogous to the considerations of subsection 3.1.2, the flow is transformed to carte-
sian coordinates and to the laboratory reference frame. As a next step, from the flow
past a sphere, whose center of mass oscillates in one direction, the flow past a sphere,
whose center of mass oscillates in all three directions is obtained as a superposition of
the three components. Then, for the velocity of the sphere given by V(¢) = U exp(iwt),

we obtain for the flow in the laboratory reference frame

3R | . - da;(t)ox;(t -
wi(x,t) = o {A(m“)éij + B(/@T)M Vet (3.38)
r r
- B e 1
A(kr) = e o g (3.39)
- 343 2p2 3
B(kr) = —e™ + an —L_ T4 55 (3.40)
K21 k2T

with £ = \/iw/v, 0x(t) = x — X(t) and r = |6x(t)|, where X(¢) is the instantaneous

position of the sphere.
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3.5.2 Arbitrary motion of the center of mass

If the center of mass of the sphere is moving at velocity V(¢), from section 3.1 the

approximated solution for the flow is found as

3 o]
wi(x,t) = 2—];/0 drV;(t —7)

Sieve)- o)+ 200 a0 - e (3.1

72

(note that the integration over ¢ has been replaced by an integration over 7 =t — t)

where
£ = \/ZV_T (3.42)
Q) = erle) ~ ——te (3.4
Q') = % 20t (3.44)

The error function erf(§) is defined as

orf(€) = ;7? /0 e (3.45)

and is related to the complementary error function erfc(§), cf. (2.2), via
2 00 .
ext(€) + erfe(€) = — /0 e Cd¢ = 1. (3.46)
The relation for the velocity of the sphere and the force, that pulls the sphere, is
F(t) = 6mpRV (t), (3.47)

cf. equation (3.37). This gives rise to a different interpretation of the flow: an external
force pulls the sphere through the fluid. The fluid reacts instantaneously close to the
sphere, such that the viscous drag from the fluid balances the external force. In the
limit R — 0, the force can be interpreted as a point-like source of the flow. For the
time-dependent Stokes equation in the laboratory reference frame with the force as a

source term, one finds [55, 56]
F(t
ov=-Vp+vViv+ %5(){ — X(1)). (3.48)

However, due to one major difference, the equations above are not a solution of this

equation: The time-dependent Stokes equation has been solved in the sphere reference
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frame and then transformed to the laboratory reference frame, cf. section 2.2. Since
the time-dependent Stokes equation is not (alilei invariant, when transformed to the
laboratory reference frame, an additional advective term appears, which makes sure that

the flow is advected with the particle. Then, the corresponding equations is
2, F(t)

For a particle with vanishing radius, which is draged through a viscous fluid, this equa-

tion describes the flow with the force as a source of the flow.

3.6 Conclusions

The flow produced by a sphere, which is initially at rest and then moves at constant
velocity, develops as a diffusion front due to diffusion of vorticity. At a prescribed
distance from the sphere, the flow is potential flow before vorticity is diffused to that
distance. Potential flow is the mass transport of the fluid due to the instantaneous
displacement of the sphere. Vorticity is diffused to distances r at a time 7?/v after
the start of the sphere, and is in a stationary state for times greater than that. The
steady Stokes equation describes the stationary state of the flow and is thus valid at a
prescribed distance r from the particle for times larger than r2/v.

On the other hand, for a given time ¢, vorticity has diffused to distances v/vt. At
distances larger than that, the flow is still potential flow, since no vorticity diffused
to these distances yet, whereas for smaller distances, vorticity is approximately in a
stationary state and the steady Stokes equation applies.

The validity of the steady Stokes equation is limited for a given distance r to times
larger than 72/ and for a given time ¢ to distances smaller than \/vt. This generalizes
the results from chapter 2. For the sphere in oscillatory motion, vorticity is limited to
distances below ,/v/w and for the start-up it is limited to distances below /vt. Only
below these distances, the steady Stokes equation gives a valid description of the flow.

The motion of a sphere, which is initially at rest and then forced by a constant force,
involves several time scales. At the beginning, the sphere is at rest and accelerated
until the drag from the viscous fluid and the driving force balance. The time scale
for this beginning process, which is the Stokes time, is the same for the steady Stokes
consideration and the BBO-description. For the steady Stokes consideration, on a time
scale of the order of the Stokes time, the velocity of the sphere assumes its equilibrium

value rather quickly, exponentially fast.
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This is different for the BBO-consideration: Viscous drag and driving force balance,
but force and flow are time-dependent and the viscous drag is restricted by diffusion
of vorticity and approaches the asymptotic value rather slowly. At a time ¢, vorticity
has diffused to a distance v/vt. Since gradients of the flow are involved in the drag, the
inverse distance 1/y/vt enters the flow. The transient is found to decay as UyR/+/mut
with Uy the equilibrium velocity and R the sphere radius. Thus the velocity of the
sphere approaches its equilibrium value algebraically as 1/4/¢, much slower than for the
steady consideration!

When the sphere radius R is such, that the flow is approximately steady at distances
from the sphere of order R, the flow can be approximated and expanded in terms of R.

Then, the force can be interpreted as a point-like momentum source of the flow.
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Chapter 4
Fluctuations in particle suspensions

Caflisch and Luke [14] describe a problem occuring in the sedimentation of particles.
The steady Stokes flow past a sphere decays as 1/distance. In an independent particle
approximation, the velocity field of the fluid in the middle of a suspension is a superpo-
sition of all particle fields. The number of particles in a shell of radius r» and width dr
increases like r2dr and since the variance of the velocity fluctuations is proportional to
the velocity of the fluid squared, i.e. proportional to 1/r2, each shell contributes equally
to the fluctuations and at each point the fluctuations diverge with the volume.

Simulations confirm this divergence [17, 25, 27, 28|. Unfortunately, this is in contrast
to experimental investigations. Nicolai and Guazzelli [48] vary the size of the fluid vessel
and find that the fluctuations do not depend on the vessel size. Other experiments
[21, 60, 61] show moreover that the fluctuations scale linearly with the interparticle
distance. These results have been found with the particle concentration such that the
interparticle separation does not exceed the width of the vessel.

The discrepancy of experimental and theoretical results has led to studies on the
impact of the wall [13] on the fluctuations. Experimentally, the fluctuations become
independent of the interparticle distance only if the interparticle separation exceeds the
width of the vessel, i.e. at low values of the particle concentration [9].

Renormalization group methods have been used to investigate particle concentration
fluctuations and their influence on the fluid velocity fluctuations [32]. The theoretical
results agree qualitatively with experimental measurements.

However, all theoretical studies rely on the description of the flow by the steady
Stokes equation. Here, we show that the fluctations are regularized for a homogeneous
distribution of particles when the time-dependent Stokes equation is used for the de-

scription of the flow.

35
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For steady Stokes flow, a particle of velocity V (¢) produces a velocity field which de-
cays as V/(t)/r, independent of the particle’s frequency. Therefore, particles oscillating
at high frequencies have the same long-range flow as particles oscillating at low frequen-
cies. However, we have seen in chapter 2 that the fluid responds instantaneously to the
motion of each particle only up to a finite distance from the particle. For viscosity v and
frequency w, the field is cut-off at a distance of order \/1//7 This distance decreases
with increasing w. The flow decays as 1/r® at distances large compared to that. For
particles which oscillate at high frequencies, the flow obeys the steady Stokes equation
only very close to the particle. For larger distances, the calculations from chapter 2
show that the flow drops off more rapidly. Therefore, the reasoning of Caflisch and Luke
[14] has to be reconsidered taking into account time-dependence of the Stokes equation.

Before treating the case of suspended particles, an analogous diffusional problem will
be investigated in section 4.1 to highlight the differences between the calculation of the
fluctuations with and without time-dependence. Then, in section 4.2, for a suspension
of point-like particles the velocity fluctuations will be investigated for time-dependent

Stokes flow.

4.1 Diffusion with random sources

The fluid velocity produced by a particle has been found in chapters 2 and 3 to respond
instantaneously to the motion of the particle only at finite distances from the particle.
There, the flow is described by the steady Stokes equation. Steady and unsteady Stokes
flow has two contributions: One is potential flow, which results from the instantaneous
displacement of fluid by the sphere, and the other one is vorticity driven flow. When
advective terms are neglected, the vorticity field obeys a diffusion equation. Close to
the particle, the vorticity field adapts instantaneously to the motion of the particle and
is in an instantaneous equilibrium state. However, this equilibrium is limited to finite
distances from the particle. At larger distances vorticity is not in an equilbrium state
and time-dependence becomes important. Then, for an appropriate description of the
flow, the more general time-dependent Stokes equation has to be used.

The drop-off of the flow at large distances due to time-dependence of vorticity dif-
fusion suggests to investigate the fluctuations of a concentration field, which obeys a
diffusion equation. The impact of the drop-off of the field on the fluctuations will be-
come more transparent for the diffusional concentration field than for the unsteady

Stokes flow.
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Suppose a localized source, which is set, to emit a substance continuously in time.
Suppose further that the substance spreads diffusively, such that the concentration field
of the substance obeys a diffusion equation. Close to the source, the concentration field
responds instantaneously to the source and decays as 1/distance. This is much similar
to the steady Stokes response of a fluid to the motion of a particle in the fluid. Further
away, the diffusively spreading concentration field does not respond instantaneously and
decays more rapidly.

The fluctuations of the concentration field at a prescribed point are given by the
square of the local concentration difference to the local time mean value. Close to a
particle, the contribution of that particle to the fluctuations is as 1/r? with distance
r. If one calculates the concentration fluctuations for a homogenous distribution of
sources and sinks and does not take into account, that at large distances the drop-off
of the concentration field is more rapid than 1/r, one obtains that the fluctuations
diverge, similar to the divergence described by Caflisch and Luke [14] for sedimentation
of particles. The regularization of the fluctuations by the cut-off of the concentration

field at large distances is investigated in this section.

4.1.1 Greens functions for the diffusion equation

Consider the concentration field ¢(r,t) for a substance that spreads diffusively with a
diffusion constant D from a source of strength ¢(¢) localized at rq. The field obeys the
diffusion equation

Oc=D [VQC +q(t)d(r — ro)] . (4.1)

The scaling of the source with the diffusion constant helps in the limit D — oo, such
that the source and the diffusion term scale alike. Dividing the equation by D, the
time-derivative term on the left hand side becomes proportional to 1/D and hence
subdominant compared to the terms on the right hand side. One might, therefore,
expect that for large D the concentration follows the steady equation. We have seen in
the previous chapters that vorticity diffusion does not reach to large distances and as a
consequence the flow differs from steady Stokes flow. To test this for the concentration

field, we use the well-known complete time-dependent solution of (4.1).
First, for constant source ¢(t) = qo, the steady solution of equation (4.1) is given by

0

(r) = 1=, (4.2)

which shows the same slow 1/r-decay as the steadily moving sphere. Then, for the case
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Figure 4.1: G(r,7) from equation (4.4) at r = 1 plotted as a function of 7 for D = 4.0
(blue), 1.0 (green) and 0.25 (red).

of an arbitrary source, the time-dependent solution for the concentration field is given
by

t
c(r,t) = / Gt — )q(t))dt’ (4.3)
with the kernel ,
D _ 2
G(r,7) = | eone 7 for 7 >0 (4.4)
0 for T<0

Figure 4.1 shows the kernel, given by equation (4.4) as a function of time for various
diffusion constants D and fixed r. As 7 — oo, the kernel approaches zero because of the
prefactor 1/\/@ Thus, for large times 7, large values for D dampen the kernel. This
becomes visible in figure 4.1: As 7 — oc, the function values for the red curve (D = 0.25)
are higher than for the green curve (D = 1.0) and for the blue curve (D = 4.0).

As 7 — 0, the argument in the exponential function in equation (4.4) becomes —oo
and the exponential function dampens the kernel down to zero. Until the argument
becomes of order one, a time of order r?/(4D) elapses. At 7py = r?/(6D), the kernel

assumes its maximum value, which is

3\%2 D

G(r,my) = e73/? <%) x (4.5)
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Therefore, as D is increased to infinity, the maximum value of the kernel is increased to
infinity, whereas the time for the kernel to approach its maximum value is decreased to
zero. The kernel becomes narrower and steeper.

The areas under the curves are constant: substituting 7 by & = r/v/4D7, the integral

becomes
o0

2 1
e S de =

_m.

00 1
/0 G(r,7)dr = —27r3/27“/0 (4.6)

The time integral over the kernel is independent of D! As D — oo, the kernel approaches
a O-function. The remarkable features are that even though the kernel approaches a
delta-function with the singularity at 7 = 0, the value for the kernel is equal to zero at
7 = 0 and the kernel is not symmetrical about its maximum!

The decay of the kernel as 7 — oo indicates that the significant contribution of ¢(t)
to the kernel is from a finite range of 7. An effective time-width of the kernel can be
estimated as follows: The height of the kernel is given by equation (4.5). The effective
width of the kernel A7 times the height G(r, 7ar) is equal the area of the kernel, which
is 1/(47mr), cf. equation (4.6). Then the width A7 is

2 2
e [Tl
AT =e tiD 1.08D. (4.7)

Thus if the source ¢(t) is smooth on a time scale 72/D, then the values of ¢(t), which
contribute to the concentration field, are roughly constant over the time range which is
relevant for the kernel and up to distances r the concentration field adjusts instanta-
neously to the source.

In the limit D — oo, the concentration field responds instantaneously, if ¢(t) is
smooth on evanescent time scales. One then obtains

e(ryt) = 353 (4.8)

This suggests that in the limit D — oo, the concentration field adjusts instantaneously
at any distance. However, for any finite D, no matter how large, the instantaneous
range of the concentration field is limitted to finite distances. The limits D — oo and
r — oo do not commute!

For any distance r, the concentration field only responds instantaneously, if the
source is smooth on time scales 72/D. If on the other hand ¢(#) is smooth on time scales
T, then the concentration field responds instantaneously only up to distances v/ DT,

whereas it differs from the instantaneous field for distances larger than that.
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Figure 4.2: Oscillation amplitudes for the concentration fields which are measured at
distances r (obtained from equation 4.9), plotted as a function of r. Frequencies w = 0.1
(black), 1 (blue), 10 (green) and 100 (red). Diffusion constant D = 1.

This becomes explicit for the time-dependent concentration field for a source ¢(t) =
qoexpiwt (such that the source is actually a source and a sink, alternating in time).
This is

c(r,t) = f%efﬂkr-ﬁ-iwt (4.9)

where k = \/m is the damping rate of the exponential function and also the inverse
wave length of the oscillation of the concentration field at a fixed distance from the
source. Here, k plays the same role as the damping rate k = \/1//7 of the vorticity
driven flow past a sphere in oscillatory motion, cf. subsection 2.3.3. The square root v/
is selected such that the exponential function vanishes in the limit » — oo, cf. equation
(2.40).

For the concentration field given by equation (4.9), the concentration, which is mea-
sured as a function of time at a prescribed distance from the source, is oscillating. Figure
4.2 shows the oscillation amplitude of the local concentration as a function of the dis-
tance, where it is measured, for various oscillation frequencies. Clearly, the extension
of the instantaneous concentration field depends on the frequency. For a prescribed fre-
quency, the source is smooth on a time scale T' = w~!. Referring to the discussion above,
the concentration field is assumed instantaneously for distances from the source up to
VDT = m For larger distances, the source is not smooth on time scales 7?/D.
As a consequence then, the time scale of the oscillation is smaller than the time scale

of the integral in equation (4.3). Therefore, if the integral over the source is performed
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to obtain the concentration field, part of the integral cancels out. The field does not
decay as the instantaneous field, but from equation (4.9) decays exponentially, much
more radid. If the distance is prescribed, the concentration field is the instantaneous
one for frequencies w < D/r?. For larger frequencies, the rapid oscillation dampens the

concentration field.

If the source is inactive for ¢ < 0 and then starts to supply material at a strength

qo, the time-dependent solution is

c(r,t) = f%erfc (V%Dt) (4.10)

where the complementary error function is defined as
2 0 —¢2
erfe(€) = 7/ =< dC. (4.11)
T Je

For & — 0, erfc(§) is erfc(0) = 1. For £ > 1, erfc(¢) becomes exponentially small, cf. the

introdution of chapter 2. For £ — oo, erfc(£) becomes equal to 0.

Figure 4.3 shows equation 4.10 as a function of the radius for various times. For fixed
time ¢, if r < V/4Dt, the argument of the complementary error function in equation
(4.10) is small and since erfc(0) — 1, in figure 4.3 all three curves meet the stationary
solution ¢o/(47r). Hence, for each time, there is a finite range where the concentration
field is nearly stationary. Similarly, for fixed distance and ¢ > 4D /r% one finds again
that r/v/4Dt < 1 and c(r,t) becomes stationary, i.e. at each distance from the source, if
one waits for a sufficiently long time, the concentration field approaches a steady value.
Thus, the concentration field is a diffusional front emerging from the source: It is in
a stationary state for r < V4Dt and exponentially small for distances r > v/4Dt. As
time is increased, cf. figure 4.3, the front spreads to larger distances, but for any finite
D and t, the cut-off for the stationary state is at a finite distance from the source. For

distances larger than y/4Dt, the concentration field is not in a stationary state.

It has been shown, that the concentration field, which is produced by a source that is
smooth on time scales T, responds instantaneously only up to distances \/Di/T As the
distance is increased beyond this range, the concentration field decays much stronger
than the instantaneous concentration field. In the following part, the fluctuations of the

concentration field are calculated, taken into account this cut-off.
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Figure 4.3: Concentration field for a source, which starts emitting at a time ¢ = 0 plotted
as a function of r, obtained from equation (4.10). The curves show the concentration
field at times ¢t = 0.01 (black), 0.1 (blue), 1 (green) and 10 (red). ¢o = 1 and D = 1.

(a) and (b) show the same curves plotted on linear and double logarithmic scales.
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4.1.2 Fluctuations

The concentration field, which is generated by many sources a = 1, ..., N of strength

¢ (t) at positions r,, is given by
t
c(r,t) =3 / G = ral,t — )g @ (F)dt". (4.12)

If the sources are constant and active for a time ¢, each contributes a field that drops
off like 1/r for distances below r, = v/Dt. Since they drop off exponentially for larger
distances, r; is the greatest distance to which they can contribute. For a uniform distri-
bution of sources, the number of particles for a shell of radius r and width dr is given
by 4nr?dr. If all particles up to a distance 7, are taken into account, one finds, that the
overall concentration field is proportional to [ 4mrdr oc r2. Since r; = V/Dt, the increase
of the concentration field with time is as ¢. If, instead, the sources are positive and
negative, such that there are sources and sinks, the average concentration field may be
kept at a constant mean value ¢(r) = (c(r,t)),, positive or negative. The average (...),
is a time mean and defined as

(e )} = Jim / " byt (4.13)

T—o0

The next question is about the fluctuations of the concentration field. They are
given by the time mean square of the deviation of the concentration field from the local
mean concentration, {[c(r,t) — ¢(r)]*);. If the mean value of the concentration is zero,

the fluctuations are given by
¢ ¢
(el =% [ at [ av
Oé,ﬁ —00 —0o0
G(|r —raf st —)G(|r — rgl,t — ") {d @ ()P (t").. (4.14)
For independent particles
(@)D ()1 = Sasld ()@ (1)) (4.15)

If, in the independent particle approximation, ¢(r,t) is approximated by the instanta-
neous response in the limit D — oo, such that G(|r—r;|, 7) is substituted by §(7)/(47r),
then

(@) () (¢
<C(7”,t)2>t=2<q( (g (¢ )>t (4.16)

At|r — 1,|)?
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the fluctuations decay as 1/r? from each source. If the fluctuations are then integrated
over the volume, assuming that the sources are homogeneously distributed, each shell of
radius r and width dr contributes equally, such that the integral over all shells diverges.

For the instantaneous response, for every particle all frequencies contribute an instan-
taneously responding concentration field, such that the concentration at any distance
displays the same time-dependence as the source and decays as 1/distance. Caflisch and
Luke [14] described the divergence for the fluctuations of steady Stokes flow for sedi-
menting particles and the problem is exactly analogous to the diffusion problem above.
The substitution of G(r,7) by the steady limit is not valid at all distances, such that
distant shells contribute less. It will be shown now that fluctuations are finite when the

concentration field ¢(r,t) is treated time-dependent.

Fluctuations in terms of the Greens function

The concentration field of a single source ¢(t) is given by

2

0 D 2
elryt) = .[m D2 q(t')dt’. (4.17)

Consider ¢(t) to be composed of a finite number of harmonically oscillating sources with

Fourier amplitudes ¢, and equally spaced frequencies, w, = nwmin. Then

N
g(t) = D Gue™". (4.18)
n=—N
The largest frequency in the system is Wy = Wmax = NwWmin and the smallest frequency
iS Wi = Wmin- Figure 4.4 shows an example. For each n, a value between 0 and oo is
assigned to |g,|, with a Gaussian probability. The phase of ¢, is arbitrary between —m
and 7. Panel (a) shows the absolute values of §,. The histogram in panel (b) shows
the distribution of the absolute values. Note that the source is normalized such that
(a(t)?) = L.

In figure 4.5, the concentration field of that source is shown at various distances from
the source. Panel (a) shows the source itself. From subsection 4.1.1, if ¢(¢) is smooth on
a length scale T', the concentration field is the instantaneous one for distances smaller
than v/DT. The source is smooth on a time scale 1/Wmax, prescribed by the highest
frequency in the system. Thus, the cut-off distance for the concentration field in this
case is at 7 =~ 0.3. In panel (b), at a distance r = 0.1, the normalized concentration

field 47re(r,t) is equal to the source strength itself. Clearly, in the other panels, the
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Figure 4.4: Randomly assigned Fourier amplitudes for frequencies w,, = nwmin, n = — N,

..., N. The probabilities for the Fourier amplitudes are Gaussian. (a) shows |G|, (b)

shows the distribution for |G,|. The phase of §, is random between —7 and 7 and
(@) =1.

distances are above the cut-off distance 0.3 and the concentration fields differ from the
instantaneous one.

The amplitude of the normalized concentration field drops from (c) to (d) approx-
imately from a value 0.5 to a value 0.2. From (d) to (e), the concentration field drops
from 0.2 to 0.1. The ratios of the amplitudes of 47rc(r, t) correspond respectively to the

inverse ratios of the distances, such that

e(r,t) 3 (4.19)
From (e) to (f) the concentration field amplitude drops by a factor of 20, more rapid.
Furthermore, in panels (c¢) to (e) the shape of the concentration field is similar, but
smoothed out with the distance. The concentration field is deformed and smooth on a
length scale of order of the periodicity for the signal in panel (f).

The drop off as 1/r? becomes transparent in a simplified picture. The kernel of the
integral in equation (4.17) is of finite width, which is of order ¢; = 7?/D, cf. subsection
4.1.1. Furthermore, at times 7 = 0 there is no contribution to the integral yet, whereas
it rises quickly to be at a maximum at time 7 = r?/(6D) = t;/6. For an estimation, the

kernel is roughly approximated by a constant kernel of the same area, but finite width

ti; i.e.
0 for T <1;/6
GO(r7)={ F for /6 <7 < Tt/6 (4.20)

0 for Tt; /6 < T
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Figure 4.5: (a): source from figure 4.4 as a function of time, plottet over ¢/T, where
T = 27 /Wiy is the periodicity of the source. (b) to (f): concentration field as a function
of time at distances r, where r = 0.1 (b), 2 (¢), 5 (d), 10 (e) and 50 (f). (b) to (f):
concentration field at distances r where 7 = 0.1, 2, 5, 10 and 50. Parameters are D = 0.1,
Wmin = 0.001, N = 1000.
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Moreover, due to the construction of the Fourier coefficients in figure 4.4, there is no
distinguished frequency dependence. All frequencies contribute equally. Thus, there is
no correlation on time scales larger than 1/wp.,. Constant amplitudes of the Fourier
coefficients means random fluctuation of the source [29]. The source changes its value
ramdomly at intervals At, which are given in terms of the the largest frequency in the
system, i.e. Al o< 1/wmax. The kernel width contains n = wpar?/D steps and the
sum over the randomly changing source is of order y/n. The integral hence is given
by \/nAt/t; and since t; = nAt, one obtains for the concentration field at a distance

7> /D /wWnax

0 1 1 D
c(r, 1) z/o GO (r, 1)t — 7)dr ey —\— (4.21)

i.e. the concentration field decays as 1/r2. The result is recovered that has been obtained

from the amplitudes in figure 4.5.

At distances larger than /D /wpyin, which is larger than 10 in figure 4.5, the source is
periodic. Therefore, due to the harmonic solution of the diffusion equation of subsection
4.1.1, the concentration field decays exponentially. This finally explains the rapid decay
in figure 4.5 from panel (e) to panel (f).

The black curve (D = 0.1) in figure 4.6(a) shows the fluctuations of the concentration
field, calculated for the example above. The fluctuations are given as the square of the
concentration field. The three ranges from the consideration above become explicit
graphically: From the figure, at small distances the fluctuations decay as

2 (a(t)*):
(c(r,t)%), = () (4.22)

Graphically, at a distance r =~ 0.3 there is a cut-off. The crossover is from the simple
analysis above also at /D /wpay = 0.3, which fits to the graphically determined value.
From this distance on, the concentration field deviates from the instantaneous response
and decays more rapid. The investigation of the concentration field in terms of the
simplified kernel has shown that the fluctuations decay as

D

420 a4

(e(r,t)*) o (4.23)

The 1/r*-dependence of the fluctuations is recovered from figure 4.6. A further cut-off is
found graphically at » & 20. There, the signal from the source becomes periodic and the

concentration field cut-off exponentially. From the analysis, the the exponential range

starts at r &~ /D /wpin = 10,
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Figure 4.6: (a): Fluctuations for the random source from figure 4.4 as a function of the
distance for D = 0.1 (black), D = 1 (blue), D = 10 (green) and D = 100 (red) The
dot-dashed line shows the fluctuations as obtained from an instantaneously responding
concentration field. The dashed line shows a 1/ri-decay. The vertical dotted lines
indicate the distances which correspond to figures 4.10(b) to 4.10(f) (there D = 0.1).
(b): Same as (a) for wy, as before, but N = 106,
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The beginning of the cut-off for the instantaneous field depends on the highest fre-
qUency wmax, whereas the beginning of the exponential decay of the fluctutations de-
pendes on the lowest frequency wpi,. Thus, as the number of Fourier components is
increased, as in figure 4.6(b) to 105, the range where the source may be treated as ran-
domly fluctuating gets wider, i.e. it starts at v/10-3D end ends at v/103D. Thus for
6 decades of frequencies, one obtains the 1/ri-range of the fluctuations to be extended
graphically over 3 decades for the distance.

An integral of the expression for the fluctuations obtained from the instantaneous
concentration field for a homogeneous distribution of particles is found to diverge, since
the fluctuations decay as slow as 1/r%. Instead, if the source is smooth on a time scale
T, the cut-off of the instantaneous concentration field at a distance /DT leads to a
stronger decay of the fluctuations, as D/r? for a randomly fluctuating source. This

regularizes the fluctuations at large distances.

Fluctuations in Fourier space

It is also of some value to analyse the fluctuations in frequency space. As in the last part,
we assume that the w, are equidistantly spaced, w,, = nwpin with a lowest frequency

Wmin and a highest frequency wy = wmax. Then, the local concentration is given by

N
c(ryt) = Z eiw"th(r)g}n (4.24)
n=—N
R e*K/nT
Gu(r) = - (4.25)

with k, = \/iw,/D. The function G,(r) is the harmonic solution of the diffusion
equation, see equation (4.9).
The temporal correlation function (q(¢)q(t 4+ dt)); becomes in terms of the Fourier

coefficients ¢,

N
(gt +6t)e = D |Gale™” (4.26)
n=—N
and the fluctuations become
N 2
()= 3 |Gu(r)] 1dal* (4.27)

n=—N
Suppose that the amplitudes in Fourier space all have the same value |G,|? and the

correlation function {¢(¢)?), = Q. Then from equation 4.26, the amplitude is

il = 5% (4.28)
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The three ranges, that have been identified above, may be identified as follows:
first, as before the smallest time scale is given by 1/wy,.x and therefore for distances
7 < \/D/wnax, the exponential function in equation (4.25) becomes approximately one.
Then, the fluctuations are given by

Q

(c(r.t)?); = (47r)?"

This is the equation for the fluctuations up to distances, where the concentration field

(4.29)

is instantaneous, which we had before in equation 4.22
Next, if the distance r from the source is larger than /D /wmay, but smaller than
\/ D /Wmin, then high frequencies are cut-off exponentially, whereas low frequencies still
contribute the instantaneously responding field. All frequencies above D /r? are cut off.
Below D/r% a number of roughly D/(r*wm..) out of N frequencies contribute. Then
the fluctuations are )
)= EP (4.30)

16T 2w
Thus, what has been found as a result of a randomly emitting source in terms of the

Greens function may be alternatively interpreted as a cut-off in frequency space.

For distances larger than (/D /wpyin, only the lowest frequency contributes, but it is
exponentially suppressed.

The investigations of the fluctuations in terms of the Greens function and in Fourier
space of course both lead to the same results. Whereas in terms of the Greens function,
the emphasis is on a finite extension of the kernel in time, in Fourier space the suppression
of frequencies at large distances is pronounced.

If T’ denotes the number of sources per volume and the fluctuation of each source is
equal to Q%, then all sources up to a distance 7, = \/ D /wmax contribute as 1/7"2 to the
fluctuations, whereas all particles further away contribute as 1/r* (if the low-frequency
cut-off is not taken into account). Then for a homogeneous distribution of sources one
finds that the fluctutions at each point

4mr?

(2(x, 1)) = Q°T { /O h el

((x, ) = %‘;Fw wfax' (4.32)

Note that both integrals contribute equally to this value of the fluctuations!

©  4mr?D
+/ Ldr} (4.31)

162w maxr?

are finite, namely

The results show that there is a high frequency regularization of the concentration
fluctuations due to the time dependence in the equations. FKEstimates based on the

instantaneous time-independent fields miss out this averaging and give divergent results.
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4.2 Particle suspensions

In section 4.1, the concentration field obeys a diffusion equation and thus does not
respond instantaneously at any distance. Thus the concentration field is cut-off at a
finite distance from the source. This has been shown to regularize the fluctuations of
the concentration field.

The flow past a particle is steady Stokes flow, if vorticity responds instantaneously
to the motion of the particle. Since vorticity also obeys a diffusion equation, at a
certain distance from the particle the fluid does not respond instantaneously and deviates
significantly from steady Stokes flow. Then the time-dependent Stokes equation has to
be used, as has been shown in chapters 2 and 3. For a suspension of particles, it will be
shown here that the cut-off of the steady Stokes flow regularizes the velocity fluctuations.

An expression for the fluctuations will be derived for a suspension of homogeneously
distributed, independently moving particles. The expression will be compared to exper-

imental findings.

4.2.1 Greens functions for unsteady Stokes flow

Consider the flow of a particle, located at position X(¢) and moving at a velocity V() =
dX/dt in the limit of low Reynolds numbers, such that the time-dependent Stokes
equation applies. Here, we calculate the flow in the reference frame of the particle.

Then the time-dependent Stokes equation
ou = —Vp+vViu (4.33)

has to be solved with boundary conditions at infinity and at the surface of the sphere.
The transformation of the time-dependent Stokes equation from the reference frame of
the sphere to the laboratory reference frame produces an advective term, cf. section 2.2.

Then the flow in the laboratory reference obeys
(0, +V(t)-V)u=—-Vp+rvViu. (4.34)

Close to the sphere surface, the flow past the sphere is steady Stokes flow, i.e. responds
instantaneously to the motion of the sphere. Diffusion of vorticity limits the reach of the
steady Stokes equation to finite distances. If the reach is much larger than the sphere
radius R, an approximate solution for the flow is obtained, see section 3.5. In this limit,

the viscous drag responds instantaneously to the external force F(¢), which forces the
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sphere to move. In terms of the force per unit viscosity q(t) = F(¢)/u
q(t) = 6mRV (t). (4.35)

Scaling the force with 1/u helps in the limit ;1 — oo, since then for a prescribed velocity
of the particle q(t) is still finite, whereas F(¢) diverges. The force may be interpreted
as a source of momentum (cf. section 3.5) and with this interpretation one obtains for

the time-dependent Stokes equation in this limit
0+ V(1) - V)u=—Vp+v [Vu+q(t)i(x - X(1)] . (4.36)

This equation is analogous to the diffusion equation (4.1): For the time-dependent
Stokes equation, the force corresponds to the source term in the diffusion equation. As
a response to the source the flow corresponds to the concentration field in section 4.1.

Similar than for the concentration field, the limit v — oo suggests that the time-
derivative and the advective term on the left hand side become subdominant. The
assuption then is that the flow is described by the steady Stokes equation. It has been
shown in the preceeding chapters for various cases that this assumption fails at large
distances.

If the particle is forced steadily for an infinite amount of time, i.e. q(tf) = qq is

constant, the steady solution for the flow is given by
ui(%) = G} (0x(1)) a0, (4.37)

(0x(t) = x — X(t)) in terms of the Oseen tensor [56]

s 1 197
G(y) = {% +2 y]} (4.38)

4 87r 72

(where r = |y|). The Einstein sum convention is used for the sum over the index j and
qo,; denotes the j-th component of qo. The decay of the flow is as 1/distance, as the
decay of the steady concentration field (4.2).

In section 3.5 the solution to equation (4.36) for an arbitrary time-dependent force
is given by

wi(x, t) = /O Gy (0x(t), Ty (t — 7). (4.39)

where

Gis(3,7) = s |(667(6) = 9(€)0 + (30(€) — £/(€) 22 (4.40)

A3 r2
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and
£ = \/;"TT (4.41)
o) = erf(&)\;fegz (1.42)
Q) = %52652- (4.43)

Since the flow is solved in the particle reference frame, the flow only depends on the
instantaneous distance from the particle 0x(¢) = x — X(t). The history of the particle is
taken solely into account by the integration of the force over time. The solution (4.39)
of the time-dependent Stokes equation, which describes the flow past a single particle,
is the analogon to the solution of the diffusion equation for the concentration field,
equation (4.3).

Figure 4.7 shows the Greens function, given by equation (4.40) as a function of
time for various viscosities v and fixed distance r: For an impulsive force at ¢ = 0,
q(t) = e,0(t), panel (b) and (c) show the flow at the points e, and e,, (cf. panel (a)),

respectively given by

1% 14
L) and et = =

(£2'(§) = )- (4.44)

Ug(€y, t)

The negative sign in panel (c) at 7 = 0 comes from the ring vortex that is shedded at
the center of the force y = 0 and passes through the observation point. This ring vortex
is visible also for the start of a sphere, section 3.2.

Remarkably and in contrast to the kernel function from subsection 4.1.1, at 7 = 0
there is a signal from the flow. The displacement causes an instantaneous response
of the fluid! The response at 7 = 0 is due to potential flow: The contributions to
©0(&) = f(€) + g¥(&), deduced from equations (3.12) and (3.13), are given by

o = — %5652—1—@"&:(5) (4.45)

g = 1. (4.46)

Note that the complementary error function erfc(€) and the constant value of the poten-
tial flow stream function add up to the error function erf(¢) for ¢(£) in equation (4.42).
Thus, the vorticity driven part f(£) of the stream function does not cause an instanta-
neous response (7 = 0, i.e. £ = r/\/4vT — oo and f(£) = 0). A finite contribution at

7 = 0 from g%(7) is remaining. The flow past the particle in the absence of the vorticity
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Figure 4.7: The sphere moves at velocity V(t) = §(¢), indicated in panel (a). (b) and
(c) show the observed flow at e, and e, for different values of the viscosity: v = 0.25

(black), 0.5 (blue), 1.0 (green) and 2.0 (red).
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driven flow, i.e. the potential flow contribution, is

V . .
Gy, 7) = s {—% +3 p (4.47)

The superscript d indicates the origin of the tensor, the potential doublet. The flow due
the potential doublet is decaying as 1/r®, as for the oscillating sphere in section 2.3.

As the distance r diverges, & diverges as well. The value for £ diverges in two limits:
In the limit of vanishing time and prescribed distance and in the limit of diverging
distance for fixed time. This is related to the spreading of vorticity as a diffusion front:
For large values of &, f(&) is suppressed exponentially and rises suddenly as & gets of
order one. Therefore, for a fixed time 7, the diffusion front is at v/4v7 and for distances
r < V/4vt, the value which is assumed by f(£) is f(0) = 1. For r > Vdvr, f(€) is
exponentially small. On the other hand, if the distance r is prescribed, vorticity needs
a time r2/(4v) to spread diffusively to distances of order r. There is little vorticity at
times ¢ < 7?/(4v), whereas at times t > r?/(4v) asymptotically £ — 0 and f(§) — 1.

The difference to the concentration field in subsection 4.1.1 is the composition of
time-dependent Stokes flow of vorticity driven flow and potential flow. Whereas the first
spreads as a diffusion front and at large distances decays exponentially with distance,
the latter responds instantaneous to the motion of the particle and decays more weakly
as 1/r3.

For large values of v, there is a strong response at small times, which decays quickly,
whereas for smaller values of v the response is weaker and smoothed out in time. The
areas under the curves are constant: The integration of Gy;(y,7) from 7 = 0 to oo is
conveniently done in terms of & = r/v/4vr. With dr = —d¢ - r2/(2v€?),

oo oo d
[TGeo=1 ma  [TTedo - (4.48)

such that the integral of both arguments of the Greens function tensor (3¢ — £¢')/&3
and (¢’ — ) /€3 is equal to one. Then, the Oseen tensor is obtained,

| Goly. i =G ). (4.49)

For v — oo the signal of the fluid gets narrower and steeper, as the signal from
the kernel in subsection 4.1.1. Therefore, the time-dependence of the flow approaches a
d-function in the limit ¥ — oo, similar to the diffusion kernel. In the limit v — oo the
fluid responds instantaneously to the force, which drives the particle and the flow obeys

the steady Stokes equation.



76 CHAPTER 4. FLUCTUATIONS IN PARTICLE SUSPENSIONS

As deduced from figure 4.7, the kernel is extended over a finite width of 7. For small
viscosities, the extension is over a large width, whereas for large viscosities, the kernel
becomes narrow. The width of the kernel is estimated here.

For the two terms which appear in the kernel, which are {¢'(&) — p(£) and 3p(&) —
&P/ (€) from equation (4.40), the maximum values are found at £ = 1 and & = 0,
respectively. For each of the terms, the integral over time equals r?/(2r). The maximum

values are given respectively by

(&'(6) — 80(5))|§:1
(Bp(§) — €' (E))le=o

These values, both of order 1, are independent of r and v. If the width of the kernel is

et —erf(1) = 0.4 (4.50)

“ 5l

(4.51)

estimated as in subsection 4.1.1, one obtains for both terms a width of order AT = 72/,
as before for the concentration field kernel. To be more precisely, the width is given
approximately as 1.2r% /v and 0.2r? /v, respectively, but for the purpose of this analysis,
the scaling as 7?/v is more relevant than the exact prefactors, as long as these are of
order one.

The arguments from subsection 4.1.1 apply. The finite width of the kernel implies a
cut-off of the instantaneous velocity field. For a prescribed distance r, the fluid responds
instantaneously to the force, if the force is smooth on a time-scale 7?/v. For the force
being not smooth on such a time scale, the contribution of ¢(f) to equation (4.39) is
not constant and the flow deviates from steady Stokes flow. On the other hand, if the
source is smooth on a time-scale T', the fluid responds instantaneously up to distances
VUT. Further out, the flow deviates from steady Stokes flow.

For the problem of the sphere starting at ¢ = 0 with constant velocity V', the solu-
tion has been given in chapter 3. In terms of the Stokeslet approximation, the time-
integration of the Greens tensor is most conveniently done in terms of £&. Then for
& = |0x|/v/4vt, the integration yields for the startup problem, where the particle is

forced with constant force ¢;(t) = go; from ¢ = 0 on,

Uz(t) = /Ot Gij((SX, T)qOﬂ'dT (452)
(. L
= % [A(ft)%' + B(&)%] Go,j (4.53)
. —&
A&) = \6/7—(& +1-— <1 + 2%3) erf(&) (4.54)

N e
B&) = 1- % _ <1 _ 2%) erf(&,). (4.55)
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Figure 4.8 shows the flow produced by a localized sphere, which is initially at rest and
then starts to move in z-direction with unit velocity. The flow at e, shown in figure
4.8(a), which is the functions plotted in figure 4.7(b) integrated over time, shows a
monotoneous rise of the flow for small times. Instead, the flow at ey, i.e. the functions
in figure 4.7(c) integrated over time, still displays a change from negative to positive
values due to the vortex which passes the observation point. Due to the finite value
of the Greens tensor at 7 = 0 (cf. to figure 4.7), i.e. due to potential flow, both at e,
and e, the flow rises as ¢ for small times smaller than r?/(4v). From the integration
of Gf(y, ) from equation (4.47) over time or by expansion of A(kr) and B(kr) from
above, one obtains for the potential flow at small times, in the absence of the vorticity
driven flow u; = G¥,(6x(t),)qo; and
vt

473

ng (Y7 t) =

{—5”- + 3%%} .

. (4.56)
The difference to the start-up concentration field (4.10) of subsection 4.1.1, where the
whole concentration field is exponentially supressed until at a distance r a time of order
r?/(4v) elapsed, is the potential flow contribution, which is not related to a diffusion
equation and behaves differently.

At a time of order 72?/(4v), vorticity driven flow spreads diffusively past the obser-
vation point and the flow rises to its stationary state. Figures (a) and (b) show that
this happens on a time scale which varies as 1/v. The integral of G;;(y, ) over 7 is the
Oseen tensor, cf. equation (4.49). In figure 4.8 at the points e, and e,, the flow assumes

the values

xT xT

1 1
uP(e,) = — ~0.080 and  u¥(e,) = —— =~ 0.040. (4.57)
4 8

Figure (c) shows the difference of the fluid velocity to the stationary value at the point
e,. The stationary flow is approached as 1/v/¢, remarkably slow! This clearly represents
the diffusive spreading of the time-dependent flow.

For the oscillating sphere, as we have seen in chapter 2, the extension of the in-
stantaneously responding flow depends on the frequency. Consider the sphere forced

oscillatory, i.e. ¢;(t) = ¢; exp(iwt). Then the flow is given by
U (X7 t) = ét] (6Xa w)djeth (458)

with k = y/iw/v and

~

L T; A Vil
Gij(y,w) = - A(kr)d;; + B(kr) sz (4.59)
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Figure 4.8: Flow produced by a sphere, which is at rest for ¢ < 0 and moves at unit
velocity for ¢t > 0, given by equation (4.53). (a) shows the z-component at position
X = €, plotted as a function of time. (b) shows the z-component at position x = e,.
(c) shows (47)~' — u,(e,), the deviation of the flow in figure (a) from the asymptotic
value. Viscosities v = 0.25 (black), 0.5 (blue), 1 (green) and 2 (red).
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A 1+ kr+r*r? . 1

A(rr) o) e - (4.60)
. 34 3kr+r*r* 3
B(IQT) = *Te + m (461)

(r = |y). For aprescribed frequency w, the force is smooth on a time scale 1/w, such that,
with the arguments above, up to distances m the fluid responds instantaneously to
the momentum source. This is similar to the oscillatory source of subsection 4.1.1. From
equations (4.60) and (4.61), the flow may be expanded in terms of xkr and one obtains
the Oseen tensor. Thus the results from chapter 2 are recovered: Up to distances /v /w,
the flow is steady Stokes flow. Further away than \/1//7 from the particle, vorticity is
suppressed exponentially and the remaining flow is potential flow, decaying as 1/r3.

For a prescribed distance r, the fluid responds instantaneously to the force for fre-
quencies up to v/r?, whereas vorticity driven flow is exponentially small and the flow
deviates from steady Stokes flow for larger frequencies.

Vorticity spreads diffusively and the arguments from subsection 4.1.1 apply here as
well. If the force is smooth on a time scale T', diffusive spreading is limited to distances
below v/»T. Much similar to the results obtained for the concentration field in subsection
4.1.1, the flow differs from steady Stokes flow at larger distances, but then it is dominated
by potential low, which decays as 1/r®, more rapid than the instantaneous response. In
the next subsection, the fluctuations of time-dependent Stokes flow for a suspension of

particles will be calculated.

4.2.2 Fluctuations

Many particles at positions x(®)(#) (where « is the index that counts the particles),

which are forced by q(® (), generate a flow, which is given by
(x, 1) Z / 5 (0x (), 1) i (t = 1)t (4.62)

with 0x(®(t) = x — x(*)(¢) and Gy;(y, ) defined in equation (4.40).

For a sediment, gravity drives the particles and hydrodynamic interaction gives rise
to fluctuations of the particle velocities. The details of this process are far from clear.
Comprehensive investigation has to be done to understand this process. The regular-
ization of the velocity fluctuations can be understood seperately for a suspension of
particles with zero mean velocity for each particle. Then, if the particles are homoge-

neously distributed and move randomly in all directions, the time mean of the flow at a
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fixed position vanishes. The fluctuation of the fluid velocity at a fixed position is given

as the absolute value of the flow squared,

(ua(x, D)us (%, £)); = % /O S /0 <
(Giy(5x @ (1), )Gir (5x O (1), ") g, (¢ = )g” (¢ = 7)), (4.63)

with the time mean (...); as defined in equation (4.13). The Einstein sum convention is
again used for the sum over 4, 7 and k.

The components of the tensor G;;(6x(*)(¢), 7) are nonlinear functions of the position
(relative to each particle) 6x@(¢) = x — x(®(¢): In equation (4.40), G;;(y,T) depends
on r = |y| directly and via ¢(&).

For the determination of the velocity fluctuations, we approximate the instantaneous
position of the particle in the kernel by the mean position of the particle, i.e. 6x(®) (t) is
substituted by 6x(@) = (6x(®)()),. To obtain the restrictions of this analysis, the kernel

is expanded into a Taylor series, i.e.

Gij ((5X(0‘) (t),7) = (6@ T)

+ Gij(y, )

Gi .
d
dy

- (0x(t) — ox(@) . (4.64)
y=0x(@)

To estimate the size of the derivative term, consider the harmonic solution Gij(y),
equation (4.59). It involves r explicitely and products kr where k = W Thus the
gradient term involves inverse lengths 1/r and k. The difference of the particle from
its mean position is of the order of the oscillation amplitude D). Then, for the gradient
of the tensor to be small compared to the first term on the right hand side of equation
(4.64),

D
— <1, (4.65)
-

\/gp < 1. (4.66)

The first condition states that the expansion is valid only at distances from the particle

and

larger than D. The latter condition has been obtained in chapter 2 as a condition for

the validity of the time-dependent Stokes equation. The amplitude of the oscillation D

has to be small compared to m, the cut-off distance of the steady Stokes solution.
In the following part, we assume that these two conditions are satisfied and approx-

imate the position of the particle in the kernel by its mean position. Then the velocity
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fluctuations for a suspension of particles are approximately given by

(ws(x, )us(x, £))y = ; /O T /0 Tt

Gy (0%, 1) Gap (0xP, 1) g\ (8 — ) (t — ")) (4.67)

Velocity fluctuations of the fluid are investigated in the following part for a randomly

moving particle.

Fluctuations in terms of the Greens function

The flow of a single particle at X(¢) is given by

wi(x, 1) = /O G (ex(t), T)g;(t — T)dr (4.68)

(0x(t) = x — X(t)) with the integral kernel given by equation (4.40). Similar as for
the source in subsection 4.1.2, the force which acts on the particle is supposed to be

composed of oscillatory forces,

N
q](t): Z (jjmezwnt. (469)
n=—N

The frequencies are assumed equally spaced, with a minimum value for the frequency
Wmin and a maximum value for the frequency wpax, such that w, = nwmn, n = —N, ...,
N, as before. Figure 4.9 shows an example. The components of the force are random.
For each frequency and each component the Fourier amplitude is chosen between 0 and
oo with a Gaussian probability and a random phase. Subsequently, the amplitudes of
each component are normalized, (g;(¢)?); = 1. Panel (a) shows the absolute values for
the Fourier amplitudes ¢, ,. Similar distributions are obtained for ¢, , and ¢.,. The
distribution of the values is shown for the three components in panels (b) to (d).
Figure 4.10 shows the flow produced by that paticle. The paramters are chosen
as in subsection 4.1.2 to compare the fluctuations of the concentration field to the
fluctuations of the fluid velocity. The z-component of the force is shown in panel (a)
and 47mru,(re,,t) is shown at various distances r from the particle in panels (b) to
(f). At distances, which are smaller than the distance given by the largest frequency,
v/(Nwp) (approximimately 0.3 for the example of figure 4.10), the time window of the
kernel in equation (4.68) is small and G;;(y,7) may be replaced by the Oseen tensor.

The flow field responds instantaneously to the force, i.e. the force and the normalized
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Figure 4.9: Randomly assigned Fourier amplitudes for frequencies w, = nwyin, n =

- (b)

distribution for |, .|, (c¢) distribution for |§,,|, (d) distribution for |g,.|. For each

—N, ..., N. The probabilities for the Fourier amplitudes are Gaussian. (a) |G

amplitude ¢, ;, the phase is random between —7 and 7 and each force component is

normalized such that (¢7(t)), = 1.
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Figure 4.10: (a): z-component of the force from figure 4.9 as a function of time, plotted
over t/T', where T' = 270 /win is the period of the force. (b) to (f): z-component of the
flow as observed at distances r along the z-axis, where r = 0.1 (b), 2 (c), 5 (d), 10 (e)
and 50 (f). Parameters are v = 0.1, wy,;, = 0.001, N = 1000.
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flow coincide for distance r = 0.1, which is panel (b). Thus, the signal from the particle

is instantaneously transmitted to 0.le,, i.e.

% (t)
ug(reg, t) = - (4.70)

Note that g,(t) and ¢,(¢) are different from zero, but do not contribute to wu, along the
Z-axis.

As the distance is increased, from panel (c) to panel (d) the flow drops roughly from
0.5 to 0.2. Then from panel (d) to panel (e) the flow drop from 0.2 to 0.1. The ratios
0.5/0.2 and 0.2/0.1 corresponds to the inverse ratio of the distances, 5/2 and 10/5.
Thus, as has been obtained already for the concentration field of subsection 4.1.2, at
distances from the particle larger than y/v/wpay, the flow drops as 1/r% A reasoning
similar to that of subsection 4.1.2 applies: Since the Fourier amplitudes are distributed
homogeneously in frequency space, the force may be treated as randomly fluctuating,
changing its value after a time At = 1/wy.,. The integral of the randomly fluctuating
force over a time width r#/v is of order r/,/Wmaxv. Taking into account the prefactor

v/(4mr3) of equation (4.40), for the magnitude of the flow, one obtains
V V/Wmax
/7. (4.71)

This is the same scaling as for the concentration field.
Further away from the particle, at distances larger than /v /wpy, the vorticity driven

contribution to the flow is suppressed exponentially. This corresponds in the example

Uz (re,, t)

above for r > 10. The remaining potential flow decays as 1/r®, as was shown in sub-
section 4.2.1. From panel (e) to panel (f), the drop of the magnitude of 47ru,(re,,t) is
indeed by a factor of more than 10, considerably larger than the ratio of the magnitudes,
which is 5.

As in subsection 4.1.2, depending on the distance, the flow responds instantaneously
to the force and the magnitude of the flow drops as 1/r for distances up to \/v/wmpax. For
larger distances, up to \/v/wmin, the flow drops as 1/r?. The time width of the kernel
is large in this range, such that the force can be treated as randomly fluctuating. For
distances larger than r > /v /Wy, the time width of the kernel exceeds the period of the
particle and the flow decays as 1/r®. Remarkably, in this range the flow is not smooth,
as the concentration field above, but it clearly does not show the time-dependence that
is prescribed by the force. The flow at large distances will be investigated further in the

next part, when the fluctuations are calculated in frequency space.
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The black line in figure 4.11(a) shows the fluctuations for the example from figure
4.9, for v = 0.1, 1, 10 and 100. The three ranges, which have been identified above,
are represented there. The black line shows the velocity fluctuations for v = 0.1. The
squares correspond to the fluctuations for the distances in panels (b) to (f) from figure
4.10. Graphically, up to a distance of about 0.1, the flow responds instantaneously
and the velocity fluctuations decay as 1/r2. The transition to the v/r* decay is from
the analytical estimates at 0.3, which fits well with the graphically determined value
0.1. The next range, the v/r*-decay, is graphically up to distances of roughly 20. The
analytical estimate for the transition to the 1/r%decay is 10.

As v is increased, the 1/r? range is extended over a wider range. As v — oo, the
fluid responds instantaneously to the motion of the particle up to infinite distances and
the fluctuations decay as 1/r? everywhere. This is the steady Stokes limit, which gives
rise to the divergence of the velocity fluctuations that has been pointed out by Caflisch
and Luke [14]. For any finite v, the velocity fluctuations of a single particle are cut off
at a finite distance, which regularizes the fluctuations for a homogeneous distribution.

The transitions of three ranges are at \/1//wmax and at /v/wmi,. Hence, if the number
of frequencies is increased, the v/ri-range gets extended. This is shown in panel(b) of
figure 4.11, where 2 - 10° frequencies are used. The range is extended therefore over
three orders of magnitude. Note that compared to figure 4.6, the transitions between
the three ranges seem to be extended over a wider range. We have seen in the previous
subsection, that the time width estimates for the two contributions to the Greens tensor
differ by a factor of 6. Hence also the transition region is expected to be extended over
at least that factor, which is half an order of magnitude.

The fluctuations of the concentration field of section 4.1 and of the time-dependent
Stokes flow here are similar. The results differ at large distances, where the flow decays
as 1/r3, whereas the concentration field decays exponentially. Next, the fluctuations

will be investigated in frequency space.

Fluctuations in Fourier space

For the force as composed in equation (4.69), the flow is given by

ui(Xa t) = Zeiwntén,ij((sx(t))dn,j (472)

where in terms of k, = \/iw, /v (cf. equation (2.40))

- 1. . .
Ghij(y,w) = —[A(’{nr)(sij“‘B(/fn"")yly (4.73)

4qr 72
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Figure 4.11: (a): Fluctuations for the randomly moving particle from figure 4.9 along
the z-axis as a function of the distance for viscosities » = 0.1 (black), v = 1 (blue),
v = 10 (green) and v = 100 (red) The dot-dashed line shows the fluctuations as obtained
from steady Stokes flow. The dashed line shows a 1/r?-decay and the dotted line shows
a 1/r%decay. The squares indicate the points of the curve, which are obtained from

figures 4.10(b) to 4.10(f) (there v = 0.1). (b): Same as (a) but N = 10°.
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i 1+ kor + k2r% | 1

A(kpr) = TG gy (4.74)
. 343k, + K22 3

B(knr) = — poR e + Rt (4.75)

In terms of the Fourier coefficients ¢, ; the time correlation function is
(GO a(t +68))e =D GnjGnpe . (4.76)
Then for the fluctuations one obtains
(e, 1)) = 32 G is(B)G it (FX) - (4.77)

For simplicity, we assume that the components of the force are uncorrelated. Further-

more the force fluctuation is assumed to be the same in all three directions, such that

(2;(O)a(t))e = Qdjk- (4.78)
Then with equation (4.76), if g;,, is constant for all n,

L a
il = | o5 (479)

which corresponds to equation (4.28), the source amplitudes for the diffusion problem.

With this assumption for the Fourier amplitudes, the fluctuations become

(Julse. 1)) = 3% 3 |Gy 30 (1.50)
From equation (4.73) one obtains
Q 1 - . A
(lu(x, t)[?); = N e En: {2 An(mnr)\2 + | An(kar) + Bn(/inr)ﬂ . (4.81)

This expression serves as a starting point for the discussion of the three limits, that have
been found above.
In the limit kyr — 0, i.e. if 7 < \/V/Wmax, Gnij(y) becomes the Oseen tensor
Ggfzj(y) Then A, (knr) = Bp(knr) = 1/2 and one finds for the fluctuations
3Q

(uC ) = 3553 (4.82)

This is the expression for the fluctuations if the flow is described by the steady Stokes

equation, i.e. if the fluid is assumed to respond instantaneously to the force. The validity
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of this expression is limited to distances r < /v /wmax, Which is consistent with the result
that has been obtained above.

If r > /v/wWmax, but 7 < /v/wmin, the contribution from vorticity to G’m](y)
is damped exponentially and the flow is potential flow for all frequencies w, > v/r?,
whereas roughly the fluid responds instantaneously for all frequencies w,, < v/r?. Taking
only into account the low frequencies and the instantaneous response of the fluid and

neglecting contributions from potential flow, one obtains for the fluctuations

3vQ

322w axr?

(lu(x, )% (4.83)
Contributions to fluctuations from potential flow are of order v?/(wr®) and small com-
pared to the expression for the fluctuations above. To be more explicit, they are small
for distances r < \/v/wmin, which is the outer bound of the range that is considered
here.

Finally, for r > /v/wmi, the vorticity driven contribution to the flow is damped

exponentially for each frequency. Then from equations (4.74) and (4.75) one obtains

A 1
An(knr) = ~ (4.84)
A 3
and the fluctuations are
3y2 N Q
A, = . 4.86
(GOP)e = 355 3 3 (486)

This shows that at large distances not all frequencies contribute equally to the velocity
field. High frequencies contribute less than low frequencies and in figure 4.10 low fre-
quencies are responsible for the global shape of the velocity field, whereas it is rough at
small time scales due to high frequency contributions.

The sum

Y s= (4.87)

2
n=1 n

allows to approximate equation (4.86), if the number of frequencies in the system is
large. Then

_ e

~ 16w?, N16

min

(u(x 1)) ((1+O(WN™)). (4.88)

The decay is proportional to v and to 1/r.
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The fluctuations for the potential flow have been found with the radius of the sphere
neglected. When this is taken into account, A, = —R?/(3r2) and B, = R?/r®. Then

from equation (4.81)

. QR*
O = 25—
(D) = 2
The Stokeslet flow fluctuations, equation (4.86), dominate the fluctuations as given in
equation (4.89), if

(4.89)

4/ V2
WowWnN .

R< (4.90)

The expression for the velocity fluctuations obtained from the flow in frequency
space and in real space coincide. Similar than for the concentration field of section
4.1, three ranges and an expression for each range have been found for the decay of
the fluctuations. First, for distances lower than \/v/wmay, prescribed by the largest
frequency of the force, the fluid responds instantaneously to the motion of the particles
and one obtains that the fluctuations decay as 1/r2. For distances larger than that, but
smaller than /v /wpy, which is prescribed by the lowest frequency in the system, the
fluctuations decay as v/r*. For distances larger than /v /wm, the decay is as v2/r5.

4.2.3 Comparison to experimental findings
Correlations

Experiments |21, 60, 61| show for sedimentation of particles that the flow is organized in
swirls. The size of the swirls depends on the interparticle distance. For a volume ratio
¢ of particle volume to fluid volume, the interparticle distance is of order D;, = R¢~'/3,
where R is the radius of a single (spherical) particle. The correlation length of the flow,
the size of the swirls, is found experimentally to be about 10R¢ /3.

The linear dependence of the correlation length on the interparticle distance in ex-
periments can be explained from the considerations of subsection 4.2.1: Each particle is
subject to the flow of all other particles. Consider a particle moving oscillatory with a
frequency w. Then the flow decays weakly, as 1/r, up to distances \/y/iw It decays more
rapidly at distances larger than that. Hydrodynamic interaction is strongest inside a
range r < \/v/w. When the interparticle distance exceeds \/1//7, the particle does not

drive other particles. As a consequence, the frequency is not maintained in the system!.

'To be more explicit, few particles are driven strongly at small distances, whereas a large number
of particles is driven weakly at large distances. Taking the number of driven particles into account,

hydrodynamic interaction is most efficient at distances of order y/v/w. Then, if the interparticle
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Thus the interparticle distance D;, prescribes a maximum value for the frequencies in
the system, which is Wy, z//Dfp. The maximum frequency determines the size of the
structures in the flow. As a consequence, the correlation length of the flow is of the

order of the interparticle distance.

Fluctuations

With the results for the velocity fluctuations from subsection 4.2.2, an expression is
obtained for a homogeneous distribution of particles as follows: At a fixed point, the
fluid responds instantaneously to the motion of all particles inside a sphere with a radius
of order D;,, since this is the cut-off distance of the steady Stokes flow, prescribed by the
largest frequency in the system. In this range, the velocity fluctuations decay as 1/r2.
The fluctuations due to the flow from particles at larger distances decay as v/(wmaxr?),
as obtained in subsection 4.2.2. Let I" denote the number of particles per unit volume.
Then in terms of the fluctuation of the force (|q(¢)|?); which drives each particle (4.35),
the fluctuations are given as the sum of the integrals over both ranges (when the low-

frequency cut-off at large distances is neglected), i.e.

Dip  Agryr? oo Amrrly } (1.91)

(02 = a0 | [ 5+

—dr
Iy, 3272 wWiaxr?

Since the maximum frequency in the system depends on the interparticle distance as

Wax = v/ D}, one finds that the fluctuations at each point are given by

'D

(e, D) = — 2 (a(t)) (1.9

The particle force (per unit viscosity) is q(t) = 67RV () (cf. equation (4.35)). The
driving force of a sediment is gravity. Thus as an estimate, the deviation of the particle
velocity from its mean value Vj is assumed to be of the same order as the sedimentation

velocity

_ 2R%(ps —p)g

Vs
9pv

(4.93)

with the acceleration due to gravity on earth g and the fluid and particle density p and

ps, respectively. With this estimate,

(lu(x,1)[*); = 97T R* D, V. (4.94)

distance exceeds \/v/w, hydrodynamic interaction is not efficient.



4.3. CONCLUSIONS 91

Note that the volume occupied by a single particle is equal to Dfp. Therefore

1

' —.
D},

(4.95)

Furthermore note that the ratio ¢ of the volume occupied by all particles to the volume

occupied by the fluid is (for low values of ¢) given by

R3
O X —. (4.96)
D},
Then the velocity fluctuations are
(u(x, 8)]%), o V26™?. (4.97)

This is the dependence of the fluctuations on the volume ratio which has been measured
experimentally [21, 60, 61]. Segré et al. [61] obtain this scaling for the fluctuations by an
estimate based on the assumption that the motion of a particle is a random walk with
a mean free distance which is of the order of the correlation length. This corresponds
to the estimate of the velocity fluctuations for a single particle from subsection 4.2.2.

Levine et al. [32] calculate the impact of particle concentration fluctuations on the
velocity fluctuations. Based on steady Stokes flow, but based on a diffusion equation
for the particle concentration, they also obtain this scaling of the velocity fluctuations.
Simulations and theories which do not take into account diffusional processes do not
find such a dependence [13, 17, 28]!

The correlation length of the flow and the velocity fluctuations have been estimated
here for a suspension of particles. The dependence of the velocity fluctuations on the
particle concentration is in agreement with experimental measurements. One assump-
tion has been made here which remains to be verified: The difference of the particle

velocity to the sedimentation velocity is of the order of the sedimentation velocity.

4.3 Conclusions

In the first part, the concentration field due to an emitting source has been investigated.
The concentration field obeys a diffusion equation and responds instantaneously to the
source close to the source. Then the fluctuations of the concentration field are finite. If
the time-dependence is left out, then the fluctuations of the concentration field diverge.

For a suspension of independent particles, the fluctuations of the flow diverge with

the volume of the fluid if the steady Stokes equation is used to describe the flow, as has
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been pointed out by Caflisch and Luke [14]. Steady Stokes flow is obtained with the
assumption that vorticity responds instantaneously to the motion of a particle. Vorticity
obeys a diffusion equation and as a consequence, analogous to the diffusion equation for
the concentration field, the flow does not respond instantaneously at large distances from
the particle. It has been shown that for time-dependent Stokes flow the fluctuations are
finite and do not diverge with the volume. The estimate for the fluctuations agrees with

experimental findings.



Chapter 5
Conclusions

The situation which usually is called steady Stokes flow assumes that the velocity field
around a sphere instantaneously assumes the velocity field around a sphere that has
moved with the same instantaneous velocity steadily for an infinite amount of time.
As was shown in section 2, this assumption poses restrictions on the rate of change
of the particle velocity which become more stringent the further away one is from the
sphere. The validity of steady Stokes flow is limited by diffusion of vorticity and the
flow responds instantaneously to the motion of the sphere only up to a distance VT,
where T is the period of modulation. The flow differs significantly from steady Stokes
flow at larger distances. This has been shown for a sphere in oscillatory motion with

oscillation frequency w, ie. T = w™ !,

and for a sphere which started from rest; then T
is the time which has elapsed since the start of the sphere.

The differences between steady and unsteady Stokes flow show up quite strikingly in
the amount of fluid displaced by the sphere: in the case of the steady flow, this is infinite,
whereas in the case of the unsteady flow it is finite for all w. This shows rather clearly
the differences between the limits ¢ — co and » — oo, which cannot be interchanged.

In order to see the effects of a time-dependent solution rather more clearly and
not clouded by technicalities, we consider the situation of diffusional spreading from
localized, sat fluctuating sources. For a homogeneous distribution of sources it has been
shown that the fluctuations of the concentration field are finite if the full time-dependent
equation is used for the concentration field. In contrast, if the concentration field is
approximated by the quasisteady concentration field, the fluctuations diverge. The
concentration field model suggests new experiments to check time-dependence effects.

Caflisch and Luke [14] point out that velocity fluctuations for a suspension of particles

diverge. This is in agreement with numerical simulations which are based on steady
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Stokes flow [28]. Here, we show that the fluctuations are finite if the flow around the
particles is described by the time-dependent Stokes equation. Thus, the fluctuations
in numerical simulations should change significantly, when time-dependence is taken
into account. Then, comparison to experiments possibly uncovers the hitherto existing
discrepancy between experiment and simulation.

The fluctuations are regularized essentially due to the cut-off of the steady Stokes
flow velocity field. For an oscillating particle, if the frequency is so large that the flow is
cut-off below the interparticle distance, the oscillation of the particle cannot be carried
over to other particles and is suppressed in the system. Assuming that the interparticle
distance sets an upper limit on the frequencies of the particle motion in the system, we
have found that the difference of the particle velocity to its mean value scales linearly
with the interparticle distance. This scaling is in agreement with experiments [60].

Experiments measure time correlations [48] and distance correlations |21, 60] of the
velocity fluctuations. These measurements show that particle velocities are correlated at
finite distances and times. In section 4.2, the motion of a particle has been prescribed
such that the motion is smooth at small time scales and uncorrelated at large time
scales. These features should also be reflected in the temporal and spatial correlation
functions of the particle velocities. A theoretical investigation of these correlation func-
tions for time-dependent Stokes flow would enable a comparison to the experimental
measurements.

The ideas here for a suspension of particles may be transferred also to bacteria herds.
A new starting point to understand the experiments by Wu and Libchaber [70] involves
an extension of the expressions for the flow of self-propelled organisms, which are based
on steady Stokes flow |54, 64, 68|, to expressions which are based on time-dependent
Stokes flow. Then, a numerical simulation of a flock of particles may yield results which
agree with the experiment.

It is clearly shown that the time-dependence of Stokes flow is important for the
dynamics of a particle suspension. This thesis initiates further investigations on particle

suspensions and related problems, which take into account time-dependent Stokes flow.
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Correction to unsteady Stokes

In the following part, the analytical details for the calculation of the perturbation from
section 2.5 are shown. First, the nonlinear terms are rewritten as a series of terms
K"r™exp(—#kr). Subsequently, the particular and homogeneous solutions of equations
(2.73) and (2.74) are found.

A.1 Nonlinear Terms

For the inhomogenity of equation (2.73), only the real part contributes. In contrast
to Fia(r), the homogenous solutions for Fio(r) are real and in equation (2.73) purely
imaginary terms on the right hand side may be omitted. Then, with x = v/ik = \/m,
for the inhomogenity, the right hand side of equation (2.73), one finds

4 v

2p2 + K373
1 3 3
_ —k(r—R) 1 iR 72R2 3) . ( )
e (( HRRARR/3) - 5 g+t

1 3 3
— (1 4+ — 4+ — Al
+3/1R ( + KT + Ii27“2>>:| (A1)

(note that & only appears in the first exponential function, whereas otherwise x appears

instead) and the right hand side of equation (2.74) equals

VPR [ (L, 4 63
4 v K2r2 w33 g4t KOS
1 3 3

—e "R ((1 + KR+ K*R*/3) - (

)
1 3 3
" 3kR (1 * KT + K272 ﬂ ’ (4.2)
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The 1/kR terms stem from the product of the diffusion equation solution fy(r) with the
free flow gg(r) and therefore are, including the prefactor, linear in the sphere radius,
whereas the other terms involve squares of the diffusion flow fy(r) and doublet flow
g&(r) and are of order R%. Note moreover that the oscillation amplitude solely appears
in terms of U in the prefactor. All restrictions involving U may be discussed from the

prefactor.

A.2 Solution

In the following part, first the homogenous solutions of equations (2.73) and (2.74) are
shown. Then particular solutions are found with the method of variation of constants.
The full solution is found by a superposition of both such that the boundary conditions
are fullfilled.

A.2.1 Homogenous solution

The homogenous solutions of equation (2.73) are given by

Voi(r) = 7° (A.3)
Vp(r) = r° (A4)
Vos(r) = =1 (A.5)
Vou(r) = r? (A.6)
For the homogeneous solutions of equation (2.74) one obtains
Uy (r) = e V2R, <2/;?7°2 + \/ﬁlm + ;) (A7)
Uo(r) = etVEO—R), ( L 1y l) (A.8)
262r2 \2kr 3
Uos(r) = 7° (A.9)
Uou(r) = r 2 (A.10)

A.2.2 Particular solution

Equations (A.1) and (A.2) are composed of terms which involve x"r" exp(—v(r — R))

for various n and v = r, v/2k and 2x. Hence if {7 and {27 satisfy the equations

6 . 6 n
(83 — —‘> (8f — ﬁ) 3050’7)(7‘) = Khe T (r—R) (A.11)
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6
(02— —2n®) (2 - )@gm ) = whprem =R, (A.12)
the particular contribution to the solutions Fio(r) and Fi»(r) in equations (2.73) and

(2.74) are composed of terms {7 (r) and {27 (r).

The particular solutions are found by variation of constants as

(n,’y) ZA(%’Y) \IIOZ ) (A13)
P
o (r ZA () ()W (). (A.14)
where the AZ(-?”Y)(T) are
APy — L gz A5
o1 (r) +7O (r) (A.15)
A(()Qﬁ)(?”) = 5 B ’7)(7«) (A.16)
ARy = 4 L B3 (1) (A.17)
03 3053 '
n, 1 n
AT () = e - B0+ (1) (A.18)
n 9v2 1 n—27—/2n
Ay = T2 g
1 1
77_3(71—1,77\/5:@)(7,) + §B(n77\/5’f)(7«)} (A.19)
n 9f 1 n— K
AGY() = +—= 8 13 {QB( B r)
1
_B(nfl,'wrﬁn) _B(n,’y+\/§n) A9
+ )+ 3 (r) (4.20)
n 1 n—
Agg’”(r) = 3 - B2 () (A.21)
n, 1 n
A( ’Y)( ) = = . B( +3:’Y)(T) (A.22)

in terms of the integral functions
B (r) = — / e VER) L gmim . g (A.23)

The particular solution of equations (2.73) and (2.74) is given by a sum of 9010 7)( )
and %7 (r), one for each term in equations (A.1) and (A.2). Then, the homogenous
solutions with decaying velocity fields, in particular Woz(r) and Woy(r) for Fi(r) and
Uy (r) and Way(r) for Fio(r), are added such that the boundary conditions

FIO(T)|T:R = 0 and F{O(T)‘T:R = O (A24)
Fia(r),=r =0 and Fly(r),=r =0 (A.25)
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are fullfilled.
For the computation of the integral functions, the following recursive relations may
be found: For n > 0

NN

KT

B () = — e =R L B g1 (1 (A.26)
Y Y
whereas for n < —1
knrn+l vy
B®@M(p) = —(r=R) 4 T ph+ly)(p) A27
()= e e B (A.27)
The cases n = 0 and n = —1 are given by
—(r—R)
By = S (A.28)
/‘}/
YR
B(_L’Y)(T) — —e_El('}/T) (A29)
K
where
Jore) efzt
Ei(z) = / at= (A.30)
1

is the exponential integral.

The flow obtained here is regular. The particular solution is obtained in terms of the
exponential integrals B (r), which are finite and thus contribute to a regular flow,
see subsection 2.5.1. The homogeneous solutions are regular as well, such that the flow
is regular. Whitehead [69] has solved the same equations in order to get an improved
solution for steady Stokes flow. He found that the solution is diverging as it approaches
infinity. This does not happen here, since the solution that is integrated is the full time-
dependent Stokes solution, which does not decay as 1/r but drops down exponentially
with the distance'. Solving the equations with the full time-dependent solution instead

of the steady Stokes solution regularizes the first order correction.

!The potential flow solution decays as 1/r® but the advective term, which is integrated for the

particular solution, is cut off exponentially, since it does not involve the potential flow solution squared.
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