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Zusammenfassung

In jüngster Zeit wurden sogenannte Waveletbasen erfolgreich in verschiedenen Ge-
bieten der angewandten Mathematik und ihrer Nachbardisziplinen eingesetzt, so
z.B. in der Signal– und Bildverarbeitung, aber auch bei gewissen Problemstellungen
der Numerik wie etwa der Lösung von Operatorgleichungen.

Die Grundidee bei Wavelets besteht darin, Funktionensysteme zu betrachten,
die sich im Wesentlichen durch Skalierung und Translation einer einzigen Funktion
ergeben. Als besondere Vorteile gegenüber anderen Funktionensystemen haben sich
die folgenden Schlüsseleigenschaften von Wavelets herausgestellt:

• Nach geeigneter Reskalierung bilden Wavelets eine Basis in verschiedenen
wohlbekannten Funktionenräumen;

• Wavelets sind im Ort lokalisiert, im Gegensatz z.B. zum Fouriersystem;

• Wavelets besitzen verschwindende Momente, so dass innere Produkte mit glat-
ten Funktionen verschwinden oder zumindest exponentiell mit wachsender Wa-
veletskala abfallen.

Wir sind in der vorliegenden Arbeit insbesondere an numerischen Anwendungen
interessiert. Hierin können alle der oben genannten Grundeigenschaften von Wa-
velets vorteilhaft ausgenutzt werden. So erlauben Wavelets durch ihre Approxima-
tionseigenschaften und ihre Lokalisierung im Ort die numerische Behandlung von
elliptischen Randwertproblemen, wie z.B. der Poisson–Gleichung, im Rahmen eines
Galerkin–Verfahrens. Im Gegensatz zu anderen Funktionensystemen sind Wavelets
gleichfalls dazu geeignet, die Lösung einer Integralgleichung effektiv zu approxi-
mieren, da aufgrund der verschwindenden Momente die entsprechenden Galerkin-
systeme gut durch dünn besetzte Matrizen angenähert werden können. Weiterhin
gestatten Wavelets den Einsatz einfacher diagonaler Vorkonditionierer.

Um die numerische Simulation realistischer Probleme aus der Praxis überhaupt
rechenbar zu machen, sind adaptive Methoden von besonderem Interesse. Diese
passen die Diskretisierung mittels a posteriori Fehlerschätzern selbststeuernd an
die unbekannte Lösung des Problems an. Seit 25 Jahren haben sich hierbei ad-
aptive Finite–Element–Verfahren in der Praxis bewährt. Allerdings waren deren
theoretische Konvergenzeigenschaften lange Zeit unklar, insbesondere die Frage der
Optimalität. Im Gegensatz dazu haben verschiedene seit den 1990er Jahren ent-
wickelte adaptive Wavelet–Methoden beweisbar optimale Konvergenz– und Komple-
xitätseigenschaften. Insbesondere im Fall symmetrischer elliptischer Probleme und
deren Modifikationen ist der Einsatz von Wavelets mittlerweile gut verstanden.
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Der aktuelle Stand der Forschung im Bereich adaptiver Wavelet–Methoden be-
sitzt allerdings mehrere Schwachpunkte, von denen die folgenden beiden in der vor-
liegenden Arbeit behandelt werden sollen:

(P1) Üblicherweise lebt der betrachtete elliptische Operator auf einem beschränkten
Gebiet oder einer geschlossenen Mannigfaltigkeit, so dass für die Umsetzung
numerischer Wavelet–Verfahren eine entsprechende Wavelet–Konstruktion auf
dem betreffenden Gebiet vonnöten ist. Alle bekannten Ansätze in diesem Be-
reich sind allerdings relativ kompliziert und liefern Wavelet–Systeme von zu-
meist unzureichender numerischer Stabilität. Hierdurch wurde bislang die Ver-
wendung von Wavelet–Verfahren bei realistischen Problemen behindert.

(P2) Bislang ist weitgehend unklar, inwiefern sich adaptive Wavelet–Methoden auch
zur numerischen Lösung nichstationärer Probleme wie z.B. parabolischen An-
fangsrandwertproblemen eignen.

Zur Behebung des Problems (P1) diskutieren wir in dieser Arbeit den Einsatz so-
genannter Wavelet–Frames. Hierbei handelt es sich um eine natürliche Verallgemei-
nerung des Begriffs der Rieszbasis, welcher üblicherweise einer Waveletbasis zu Grun-
de liegt. Um die Charakterisierung von Funktionenräumen auch im Fall von Frames
sicher zu stellen, führen wir die Teilklasse der Gelfand–Frames ein. Diese erlauben es,
in Analogie zu Wavelet–Rieszbasen, durch einfache Reskalierung des Gesamtsystems
Frames in verschiedenen Funktionenräumen zu bilden. Um nun auf dem betrachteten
beschränkten Gebiet geeignete (Gelfand–)Frames zu konstruieren, betrachten wir in
Teil I eine überlappende Zerlegung des Gesamtgebiets in durch den Einheitswürfel
parametrisierte Teilgebiete. Durch die Vereinigung geeignet gelifteter Referenzbasen
auf dem Kubus erhält man auf einfache Weise einen globalen Wavelet–Frame. Die
Grundeigenschaften der Refererenz–Waveletbasis wie Lokalität, Regularität und ver-
schwindende Momente bleiben dabei erhalten. Allerdings ist der entstehende Frame
redundant, d.h. die Entwicklungskoeffizienten einer gegebenen Funktion bezüglich
des Frames sind nicht eindeutig. Zum Nachweis der Gelfand–Frame–Bedingung grei-
fen wir auf die neuartige Theorie lokalisierter Frames zurück. In Teil II diskutieren
wir den Einsatz von Gelfand–Frames bei der Diskretisierung elliptischer Operator-
gleichungen. Analog zur Vorgehensweise bei Waveletbasen gestatten auch Frames
eine äquivalente Darstellung der ursprünglichen Operatorgleichung in Framekoordi-
naten. Durch die Redundanz des Frames besitzt die biinfinite Systemmatrix hierbei
einen nichttrivialen Kern, was den Einsatz von Galerkin–Methoden zunächst ver-
hindert. Allerdings ist es stattdessen möglich, wohlbekannte lineare Iterationsver-
fahren auf den unendlich–dimensionalen Fall zu übertragen. Um ein implementier-
bares Verfahren zu erhalten, müssen dabei alle unendlich–dimensionalen Vektoren
und Matrizen sowie deren Kombinationen durch hinreichend genaue endliche Ap-
proximationen ersetzt werden. Dieses ist in der Tat möglich unter Zuhilfenahme
der Kompressionseigenschaften der verwendeten Wavelets und Wavelet–Frames. So
kann zum Beispiel die adaptive Anwendung der biinfiniten Systemmatrix auf endli-
che Vektoren mit optimaler Komplexität durchgeführt werden. Ferner stehen für die
Koeffizientendarstellung einer Iterierten implementierbare Thresholding–Routinen
zur Verfügung. Durch die geeignete Kopplung dieser numerischen Grundbausteine
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geben wir eine auf Frames basierte inexakte Richardson–Iteration an und analysie-
ren deren Konvergenz– und Komplexitätseigenschaften. Die theoretischen Ergebnis-
se werden durch ausgewählte numerische Testrechnungen illustriert.

Für Problem (P2) geben wir schließlich in Teil III eine gangbare Strategie an. Wir
befassen wir uns hier mit der Entwicklung adaptiver Wavelet–Methoden für lineare
parabolische Gleichungen, wobei als Modellproblem die Wärmeleitungsgleichung mit
einem Quellterm betrachtet wird. Inspiriert durch bereits etablierte Ansätze im Be-
reich Finiter Elemente geschieht die Diskretisierung des Gesamtproblems mit einem
zweischrittigen Schema, der horizontalen Linienmethode. Zunächst wird mit Hilfe
eines geeigneten Zeitintegrationsverfahrens das parabolische Anfangsrandwertpro-
blem auf eine Folge elliptischer Probleme zurückgeführt. In dieser Arbeit betrachten
wir hierzu linear–implizite Verfahren vom Rosenbrock–Typ. Die Ortsdiskretisierung
der elliptischen Teilprobleme wird dann mit wohlbekannten adaptiven Wavelet–
Methoden durchgeführt. Durch eine geeignete Kopplung der Zeitschrittweitensteue-
rung mit den Parametern des elliptischen Lösers erhalten wir ein voll adaptives
Wavelet–Verfahren. Die Optimalität zumindest der Inkrementroutine kann gezeigt
werden. Anhand numerischer Beispiele studieren wir zum Schluss die Eigenschaften
des adaptiven Verfahrens.
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Introduction

In recent years, wavelet bases have been successfully utilized for the solution of var-
ious problems in applied mathematics. Not only have they become a well–accepted
tool in signal and image processing, wavelets have also been used in numerical anal-
ysis, especially for the treatment of elliptic operator equations.

From an abstract point of view, almost all wavelet bases share the fundamental
idea to consider systems of functions generated by the dyadic dilates and integer
translates of a single function like, e.g.,

ψj,k(x) = 2j/2ψ(2jx− k), j, k ∈ Z,

which corresponds to a classical wavelet basis on the real line [66]. The particular
advantages of wavelets are based upon their strong analytical properties. Among
others, the following three features have emerged as the most important ones:

• Wavelet bases allow for the characterization of various smoothness classes,
e.g., Sobolev, Hölder or Besov spaces, by weighted sequence norms of the
corresponding wavelet coefficient arrays;

• Wavelets are localized in space in contrast to, e.g., the Fourier system;

• Wavelets have cancellation properties, meaning that the inner product between
a smooth function and a wavelet either vanishes or decays exponentially as the
scale of the wavelet increases.

In numerical applications, these key properties of wavelets can be exploited to a
considerable extent. First of all, besides other systems of functions such as, e.g.,
finite elements, the density in classical smoothness spaces renders wavelets suitable
for the discretization of elliptic boundary value problems like the Poisson equation
on a bounded domain Ω in Rd

−∆u = f in Ω, u = 0 on ∂Ω.

By the spatial locality, the representation of differential operators with respect to a
wavelet basis is at least quasi–sparse, i.e., the corresponding stiffness matrices in a
wavelet–Galerkin discretization can be approximated well by finite sparse matrices.
Fortunately, quasi–sparse representations in wavelet coordinates also hold for large
classes of integral operators. This is in fact due to the cancellation properties of
wavelets. Moreover, as a consequence of the equivalence between smoothness norms
and weighted sequence norms of wavelet expansion coefficients, one obtains simple
diagonal preconditioning strategies for the Galerkin system [55].

1



2 INTRODUCTION

For the efficient numerical simulation of realistic problems from technical ap-
plications, adaptive approximation methods with a highly nonuniform spatial dis-
cretization are mandatory in order to keep the number of unknowns at a reasonable
size. The core ingredient of most adaptive algorithms is an appropriate coupling
of a posteriori error estimators and adaptive space refinement strategies in order
to obtain reliable approximations of the unknown solution within prescribed error
tolerances. For more than 25 years, adaptive finite element methods have been suc-
cessfully used in practical applications. However, a full theoretical comprehension
of their convergence properties, even for second–order elliptic problems, remained
an open question for quite a long time [119]. In order to compare different adap-
tive schemes, it is a particular task to confirm that the method under consideration
attains the best possible rate of convergence for the given input data. Concerning
adaptive finite element discretizations of elliptic boundary value problems, optimal
convergence rates for special refinement strategies and a relevant class of right–hand
sides have been shown only recently [14, 135].

Since the late 1990s, particular interest has also been drawn to the analysis of
adaptive discretization schemes based on wavelets. Contrary to finite element meth-
ods, the convergence properties of adaptive wavelet algorithms for a large range of
problems have been apparent right from the start. By exploiting the analytic prop-
erties of wavelet bases, it was possible to design adaptive wavelet methods with guar-
anteed convergence for stationary symmetric elliptic problems, see [39, 46]. Shortly
afterwards, it turned out that a specific variant of this approach is asymptotically
optimal [33]. By this we mean that the number of unknowns needed to approximate
the unknown solution up to a prescribed target accuracy asymptotically scales with
the rate of the best N–term approximation as the target accuracy goes to zero. The
applicability of the aforesaid class of wavelet methods to practical problems has been
demonstrated by various numerical experiments in [7].

The motivations for this thesis arise from several deficiencies in the currently
known theory and applications of adaptive wavelet methods. We shall explain these
by looking at the status quo in this research area. By now, the application of wavelet
methods to the adaptive numerical solution of operator equations is mainly guided by
the following accepted principles. On the basis of the norm equivalences for wavelet
bases, the original operator equation between Sobolev spaces can be rewritten as an
equivalent discrete system over the wavelet coefficient sequence space. Add to this,
a wavelet expansion of the current residual gives rise to reliable a posteriori error
estimators. Coming from this initial point, there are two major strategies to derive
adaptive wavelet schemes.

(I) Firstly, one may consider adaptive wavelet–Galerkin methods which implement
an updating strategy that is steered by the large residual coefficients, leading
to the algorithms considered in [33, 39, 46]. The computation of approximate
residuals is feasible by exploiting the matrix compression properties of wavelet
bases.

(II) A second approach, propagated in [34], is focused on the generalization of well–
known iterative methods for finite–dimensional linear systems to the infinite–
dimensional case. An approximate descent iteration of Richardson type was
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studied in [34, 82], where an asymptotically optimal method was obtained by
carefully choosing the accuracies of the numerical subroutines. By their nature,
descent iterations of the aforementioned type have generalizations towards
nonsymmetric and nonstationary elliptic equations, but we will not go into
further details here.

Both approaches share a critical bottleneck which we formulate as the first out of
two major problems to be addressed in this thesis:

(P1) Usually, the elliptic operator under consideration is defined on a bounded do-
main or on a closed manifold, so that a construction of a suitable wavelet basis
on this domain is needed. By now, there exist several constructions such as,
e.g., [25, 26, 40, 62, 63, 95, 106, 136]. None of them, however, seems to be fully
satisfactory in the sense that, besides the relevant positive virtues, these bases
do not exhibit reasonable quantitative stability properties. Moreover, the con-
structions in the aforementioned references are all based on non–overlapping
domain decomposition techniques, most of them requiring certain matching
conditions on the parametric mappings. In practical situations, these may
be difficult to satisfy. Finally, the handling of the overall wavelet basis in a
computer program is quite subtle due to the complicated support geometry of
the wavelets. By reason of this bottleneck, the potential of adaptive wavelet
schemes has not been fully exploited in practice so far.

As a second motivation for this work, we would like to mention the following point:

(P2) So far, almost all known adaptive wavelet methods are designed to work for
linear and nonlinear stationary problems. However, in many practical appli-
cations also time–dependent equations play an important role like, e.g., in
heat conduction problems. It is then the question whether convergent adap-
tive wavelet methods can also be constructed for nonstationary problems and
how the analytical properties of wavelets can be exploited in such a numeri-
cal scheme. Due to the close relationship to elliptic problems, a restriction of
the problem class to linear boundary value problems of parabolic type seems
advisable first.

This thesis will hence be focused on possible modifications and extensions of the
aforementioned wavelet methods in order to provide possible solutions to both prob-
lems (P1) and (P2). In the sequel, we shall explain our targets in more detail.

Adaptive Frame Methods for Elliptic Equations

In order to solve problem (P1), one may consider an overlapping decomposition of
the underlying domain Ω ⊂ Rd into a union of smooth parametric images of the
reference domain � = (0, 1)d. The construction of a wavelet–like system on Ω then
reduces to the lifting of a wavelet basis on the reference domain to the subdomains
of Ω, followed by an aggregation of the local bases into a global system of functions
[133]. Due to the overlap of the subdomains, one will not end up with a wavelet
basis but with a redundant system of functions, a so–called (wavelet) frame. The
concept of frames in a Hilbert space H has been introduced in [73], see also [29] for



4 INTRODUCTION

details. Compared with the case of wavelet bases, the construction of wavelet frames
on bounded domains is drastically simplified. This is of particular importance when
it comes to the realization of frame algorithms in computer software. Moreover, the
approximation and cancellation properties of the reference wavelet basis on the cube
immediately transfer to the global wavelet frame. For a systematical treatment of
the arising principal questions when using frames instead of wavelet bases, let us
formulate the following first task:

(T1) Given a polygonal domain Ω ⊂ Rd, provide a simple construction of wavelet
frames Ψ = {ψλ}λ∈J in L2(Ω). Preferably, the frames should be able to
characterize those function spaces required for the numerical discretization of
linear elliptic operator equations.

On the other hand, due to the redundancy, the frame expansion coefficients of a
given function are not unique, which has to be taken into account in numerical
applications. To state an important consequence, adaptive frame–Galerkin approx-
imations in the spirit of the aforementioned class (I) of adaptive wavelet methods
prohibit themselves due to the fact that the corresponding Galerkin systems can
be arbitrarily badly conditioned. Consequently, adaptive frame methods have to be
either derived from the infinite–dimensional iterative schemes (II) or they need to
be redesigned from scratch. It is most straightforward to consider the former class
of methods for a start. As a second task to be addressed in this thesis, we therefore
note the following program:

(T2) Generalize the ideas used for the wavelet discretization of elliptic operator
equations to the case of frames. Analyze the mapping properties of the origi-
nal elliptic operator in frame coordinates. Finally, formulate an approximate
descent iteration that is guaranteed to converge in the case of a stationary
symmetric elliptic problem. Similar to the algorithms using wavelet bases, the
adaptive frame algorithm should be asymptotically optimal.

Adaptive Wavelet Methods for Parabolic Equations

As a second major topic of this thesis, we will address problem (P2), the application
of adaptive wavelet methods to the numerical solution of linear parabolic boundary
value problems. These can be written in the form of an abstract initial value problem
in a Hilbert space H

u′(t) = Au(t) + f(t), t ∈ [0, T ], u(0) = u0,

where A : D(A) ⊂ H → H is a sectorial operator and u : [0, T ] → H is the unknown
solution. By the theory of analytic semigroups, the existence of a temporally smooth
solution u is guaranteed, at least after an initial transient phase. In order to develop
an adaptive wavelet scheme for the approximation of u, one may look at ideas
developed in a finite element setting. In fact, based on the findings in [130, 131],
adaptive wavelet methods for linear parabolic problems have been developed in
the recent thesis [103]. The considerations in loc. cit. exploit the fact that the
solution operators both for homogeneous and for inhomogeneous parabolic equations
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have a contour integral representation that allows for the construction of suitable
adaptive quadrature rules. Though the results presented in [103] look promising, it is
unclear at the moment whether the semigroup approach can be generalized to more
complicated parabolic problems and we shall therefore choose another approach
here.

Due to the initial value problem structure of the parabolic equation, it is a natural
question whether some well–known techniques from the numerical discretization of
ordinary initial value problems carry over also to the Banach or Hilbert space–valued
case. In fact, for linear parabolic equations in a Hilbert space, implicit Runge–Kutta
semidiscretizations in time have been studied and successfully applied in [17, 18, 19,
20], where the spatial discretization was done with finite elements. However, the
Runge–Kutta approach is somewhat taylored to the treatment of linear problems.
For a more general class of nonlinear problems, a Runge–Kutta semidiscretization
in time will pose a number of quite expensive additional nonlinear equations per
time step. So, despite the fact that we will not cover the discretization of truly
nonlinear parabolic problems in this thesis, we argue in favor of a slightly different
temporal discretization here. Precisely, we will focus on an S–stage linearly implicit
semidiscretization in time, posing a system of s linear operator equations per time
step. An error analysis for the unperturbed infinite–dimensional setting was firstly
developed in [114], whereas the additional perturbation analysis in the case of a
spatial approximation with finite elements can be found in [107, 108].

In this thesis, we are interested in the case where the spatial discretization uses
wavelet bases. The analysis of wavelet methods for parabolic equations instead of,
e.g., finite element methods, is done for several reasons which may justify in our
opinion the higher computational work compared to finite elements. Firstly, due to
the norm equivalences of a wavelet basis, an efficient preconditioning of the stage
equations for a large range of time stepsizes will not be an issue for wavelet methods.
Secondly, since we are going to solve the stage equations adaptively with well–known
wavelet algorithms, we can rely on their optimal convergence and complexity be-
havior, drastically simplifying the analysis of the overall scheme. Moreover, using
a fixed wavelet basis makes the linear combination of intermediate solutions from
different stages painless. In a finite element discretization, one would have to inter-
polate between different grids (“mesh transfer”) which might cause some technical
difficulties. Summing up, we fix the work program concerning the application of
wavelet methods to parabolic problems as the following task:

(T3) Develop a framework for adaptive wavelet discretizations of linear parabolic
equations based on the aforementioned ideas. Analyze the convergence and
computational complexity properties of the corresponding algorithms.

Layout

The thesis is structured as follows. In a preliminary Chapter 0, we shall briefly
comment on the range of problems which the presented numerical schemes apply to.
The remaining core of the thesis is then organized into three parts in accordance
with the tasks (T1)-(T3) that have been listed above.



6 INTRODUCTION

In Part I, we shall be concerned with task (T1), namely the construction of suit-
able wavelet frames on a polygonal domain Ω ⊂ Rd. The fundamental properties of
wavelet bases are collected in Chapter 1. Among these are the Riesz stability and in
particular the ability of characterizing various function spaces via weighted sequence
norms of the wavelet coefficient arrays. We will also address the cancellation proper-
ties which will play a role in compressibility and localization arguments. In Chapter
2, we show then how to generalize the concept of wavelet Riesz bases with norm
equivalences towards a frame setting. We shall end up with a subclass of frames, the
so–called Gelfand frames. Inspired by the construction in [133], we will consider an
overlapping domain decomposition of Ω into a union of smooth parametric images
of the reference domain � = (0, 1)d. By an appropriate lifting of a wavelet basis
on the reference domain to the subdomains of Ω, and taking a union of these lifted
bases, we obtain a global frame. Due to their nature, we refer to such frames as
aggregated wavelet frames. In order to verify the Gelfand frame property for the
constructed systems, we shall exploit the recently developed machinery of localized
frames [77, 87, 89] to a considerable extent. The results presented in Chapter 2 have
been published in [51, Ch. 6].

After the construction of suitable wavelet frames on the domain Ω, we will inves-
tigate the application of frames to the numerical discretization of elliptic operator
equations in Part II, according to task (T2). In Chapter 3, the mapping properties
of the elliptic operators under consideration are briefly reviewed. We recall results
from both classical and non–classical regularity theory for the Poisson equation on
Lipschitz and polygonal domains. For the theoretical analysis of adaptive wavelet
methods, the smoothness of the target object in a specific scale of Besov spaces will
be of particular interest. Chapter 4 is devoted to well–known results for linear and
nonlinear wavelet approximation of a given function. In particular, it is recalled how
the error of best approximation is related to the regularity properties of the target
object. Moreover, we show how the compression properties of wavelet bases can
be exploited to provide the building blocks of an adaptive wavelet scheme. Essen-
tially, these consist of adaptive thresholding routines and the adaptive application of
elliptic operators in wavelet coordinates. We also give two generic examples how im-
plementable nonlinear wavelet approximation methods look like in practice. Based
on the findings from the case of wavelet Riesz bases, we shall see in Chapter 5 that
the fundamental subroutines of adaptive wavelet methods are also available in the
case of frames. In order to obtain adaptive frame algorithms, we shall firstly be
concerned with the mapping properties of the elliptic operator in frame coordinates.
In fact, due to the redundancy of a frame, the biinfinite system matrix in a frame
discretization has a nontrivial kernel. We shall show that this is not a problem for
an exact infinite–dimensional Richardson iteration. It will turn out that an approx-
imate version of the abstract scheme is indeed convergent, which can be achieved
by judiciously choosing the tolerances of the numerical subroutines. However, since
the iteration does produce kernel components of the current iterands, these have to
be taken into account in the complexity analysis of the overall scheme. As a com-
plement to the theoretical analysis, we shall give numerical examples in one and two
spatial dimensions in order to validate the convergence and complexity properties
of the adaptive frame schemes. The theoretical results of Chapter 5 can be found
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in [51].
Part III of this thesis is devoted to task (T3), the construction and numerical im-

plementation of adaptive wavelet methods for the discretization of linear parabolic
problems. In Chapter 6, we collect the basic properties of the linear parabolic prob-
lems under consideration. By using the theory of analytic semigroups, it is shown
that the existence of a temporally smooth solution is guaranteed for a large class of
problems. We address both the temporal and the spatial regularity properties of the
unknown solution. By using results from the case of elliptic equations, it is possible
to verify a high spatial Besov regularity also for the solutions of linear parabolic
problems. Chapter 7 is devoted to the wavelet discretization of nonstationary prob-
lems. Based on the ideas mentioned above we shall employ a semidiscretization in
time first. We briefly recall several details on the class of linearly–implicit integra-
tors, in particular concerning convergence properties and the problem of local error
estimation. In a second step, we perform a spatial discretization with wavelet Riesz
bases. It will turn out that for a large range of stepsizes, the stage equations can
be diagonally preconditioned quite efficiently due to the norm equivalences of the
underlying wavelet basis. Moreover, by using the building blocks of adaptive wavelet
schemes mentioned in Chapter 4, an adaptive increment algorithm can be specified
that is asymptotically optimal. Finally, in Chapter 8, we present various numerical
examples in one and two spatial dimensions in order to study the convergence and
complexity behavior of the discussed wavelet schemes in practical situations.



8 INTRODUCTION



Chapter 0

Range of Problems

In this preliminary chapter, we will comment on the class of operator equations
which the presented analysis applies to. Despite the fact that many of the results
addressed in the sequel also extend to the case of integral operators, we shall confine
the setting to that of elliptic and parabolic boundary value problems on a bounded
domain Ω ⊂ Rd in either one or two spatial dimensions. The boundary of Ω is
assumed to be piecewise linear, i.e., we are dealing with polygonal domains.

For both the elliptic and the parabolic equations we are interested in, we will
consider a formally self–adjoint differential operator of order 2t = 2 in divergence
form

A(x, ∂) =
∑

|α|,|β|≤1

(−1)|α|∂α(aα,β(x)∂
β), x ∈ Ω, (0.0.1)

where the coefficients aα,β are assumed to be bounded and symmetric, aα,β = aβ,α.
Concerning elliptic equations, we are particularly interested in the numerical solution
of boundary value problems with homogeneous Dirichlet boundary conditions and
a right–hand side f

A(x, ∂)u(x) = f(x) in Ω,
u(x) = 0 on ∂Ω.

(0.0.2)

The most prominent example is the Poisson equation

−∆u = f in Ω, u|∂Ω = 0, (0.0.3)

which arises, e.g., in electrostatics, mechanical engineering and theoretical physics.
The Poisson equation (0.0.3) will be the model problem in our numerical experiments
of Chapter 5.

The corresponding bilinear form in a variational formulation of the boundary
value problem (0.0.2) is given by

a(v, w) =
∑

|α|,|β|≤1

∫

Ω

aα,β(x)(∂
αv)(x)(∂βw)(x) dx, v, w ∈ H1

0 (Ω). (0.0.4)

Here H1
0 (Ω) denotes the usual Sobolev space with first order boundary conditions.

For the Poisson equation (0.0.3), we obtain the bilinear form

a(v, w) =

∫

Ω

∇v(x)∇w(x) dx, v, w ∈ H1
0 (Ω). (0.0.5)

9
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In order to ensure that the weak formulation of (0.0.2) is well–posed, we will have to
make further assumptions on a. For a closed subspaceH of the Sobolev spaceH t(Ω),
we shall only consider those bilinear forms a : H ×H → C that are continuous

∣∣a(v, w)
∣∣ ≤ C0‖v‖H‖w‖H , v, w ∈ H, (0.0.6)

and H–elliptic in the sense that a is symmetric positive definite and

a(v, v) & ‖v‖2
H , v ∈ H. (0.0.7)

Obviously, under assumption (0.0.6), the linear functional a(v, ·) is continuous in H
for any fixed v ∈ H. Therefore, given any Hilbert space (V, ‖ · ‖V ) in which H →֒ V
is densely and continuously embedded, we can assume that a(v, ·) ∈ V ′, where V ′

is the normed dual of V . As a consequence, a induces an operator A : H → H ′ by
setting

〈Av,w〉H′×H := a(v, w), v, w ∈ H. (0.0.8)

Here 〈·, ·〉H′×H refers to the duality pairing of H and H ′. In the special case of the
Poisson equation (0.0.3), the corresponding operator A shall also be referred to as
the (negative) Dirichlet Laplacian A = −∆D

Ω over Ω.
Combining (0.0.6) with the ellipticity condition (0.0.7), one readily infers that

the variational problem
a(u, v) = f(v), v ∈ H (0.0.9)

has a unique solution u ∈ H which depends continuously on f ∈ H ′,

‖u‖H . ‖f‖H′ . (0.0.10)

In other words, the operator equation

Au = f (0.0.11)

is well–posed. This implication is also known as the Lax–Milgram theorem [92, 105],
and it is equivalent to saying that the operator A : H → H ′ is boundedly invertible,

‖Au‖H′ h ‖u‖H , u ∈ H. (0.0.12)

Due to (0.0.7), the solution space H can also be equipped with the energy norm

‖v‖a := a(v, v)1/2, v ∈ H. (0.0.13)

Remark 0.1. It should be noted that the restriction to symmetric bilinear forms a
is done to guarantee convergence of those adaptive algorithms that are considered in
the numerical experiments of Chapters 5 and 7. For the existence and uniqueness
of a solution u to the variational problem (0.0.9), symmetry of the bilinear form a
is not needed in general.

Other examples covered by the assumptions on the bilinear form a are the
Helmholtz equation (A = −γ∆ + I, 2t = 2) and the biharmonic equation (A = ∆2,
2t = 4) over a bounded domain Ω ⊂ Rd. Moreover, this setting also covers operators
of zero or negative order such as boundary integral equations over a closed manifold
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Ω ⊂ Rd. Typical elliptic operators in this context are the single or double layer
potential and the hypersingular operator. We refer to [55, 129] for further details.
However, in this thesis we tacitly restrict the discussion to the case of elliptic differ-
ential operators of order 2t = 2, although a more general operator order 2t is used
in some of the referenced results.

The class of parabolic problems we are interested in is given by the temporally
homogeneous initial–boundary value problem

∂
∂t
u(t, x) = A(x, ∂)u(t, x) + f(t, x) in (0, T ] × Ω,
u(t, x) = 0 on (0, T ] × ∂Ω,
u(0, x) = u0(x) in Ω.

(0.0.14)

Here f : [0, T ]×Ω → R is a suitable driving term. As the most prominent example,
we mention the heat equation

∂
∂t
u(t, x) = ∆u(t, x) + f(t, x) in (0, T ] × Ω,
u(t, x) = 0 on (0, T ] × ∂Ω,
u(0, x) = u0(x) in Ω.

(0.0.15)

The heat equation models diffusive processes in an isotropic and homogeneous
medium, with applications, e.g., in physics, biology, mathematical finance and im-
age processing. For the numerical experiments in Chapter 8, we will choose (0.0.15)
as a model problem.

As we shall see in Chapter 6, the well–posedness of the parabolic problem (0.0.14)
is again connected to the mapping properties of the differential operator A(x, ∂) from
(0.0.1), the induced bilinear form a and the corresponding operator A : H → H ′.
By the continuous embedding H →֒ H ′, the operator A will be viewed also as a
linear unbounded operator from (H, ‖ · ‖H′) ⊂ H ′ onto H ′. More generally, for any
intermediate Hilbert space (V, ‖ · ‖V ) such that H →֒ V →֒ H ′, we will denote by

AV := A|D(A;V ) : D(A;V ) ⊂ V → V (0.0.16)

the part of A in V , where

D(A;V ) := A−1V = {u ∈ H : Au ∈ V } (0.0.17)

is the domain of A in V . If the space V is fixed, we shall simply write A instead
of AV , which is justified since both operators coincide on D(A;V ). In particular,
the interpretation of A acting on an intermediate space V will be used later in a
Gelfand triple situation H →֒ V →֒ H ′ with continuous and dense embeddings,
where the intermediate pivot space V is identified with its normed dual V ′ via the
Riesz mapping. Consequently, by the density of V ≃ V ′ in H ′, we can assume that
D(A;V ) is dense in H. Moreover, whenever A : D(A;V ) ⊂ V → V is a closed
operator, we can equip D(A;V ) with the graph norm

‖x‖D(A;V ) := ‖x‖V + ‖Ax‖V , x ∈ D(A;V ), (0.0.18)

under whichD(A;V ) is a Hilbert space. To simplify matters, we shall also abbreviate
D(A) := D(A;V ) if V is the intermediate space of a Gelfand triple.
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With these notational preparations and under the assumption that A : D(A) ⊂
V → V is a sectorial operator, see Chapter 6 for the concrete definitions, the
parabolic problem (0.0.14) may then be considered as an abstract initial value prob-
lem

u′(t) = Au(t) + f(t), t ∈ (0, T ], u(0) = u0, (0.0.19)

for a Hilbert space–valued variable u : [0, T ] → V . Let us remain a bit vague at the
moment concerning the defining properties of what shall be considered a solution of
(0.0.19). It will be convenient to write a solution u of (0.0.19) as a superposition
u = v + w, where v solves the homogeneous problem

v′(t) = Av(t), t ∈ (0, T ], v(0) = u0 (0.0.20)

and w solves the inhomogeneous problem

w′(t) = Aw(t) + f(t), t ∈ (0, T ], w(0) = 0. (0.0.21)
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Chapter 1

Wavelet Bases

This chapter is concerned with a brief overview about the basic properties and the
construction of those wavelet bases that can be utilized in the numerical treatment
of operator equations in a bounded domain Ω in Rd. The results and strategies
presented in this chapter are well–known in wavelet theory and can be found in
basic textbooks [32, 143] or in the literature cited below.

To be precise, in Section 1.1, we will review the definition and some fundamental
properties of wavelet–like Riesz bases. In Section 1.2, we show how it is possible
to characterize various fundamental smoothness classes by the decay properties of
the wavelet coefficients. Section 1.3 is devoted to the collection of some wavelet
constructions on bounded domains that shall be used in the numerical examples
later on.

1.1 Wavelet Riesz Bases

In the following, we consider a separable Hilbert space V with inner product 〈·, ·〉V
and induced norm ‖v‖V := 〈v, v〉1/2V . Moreover, we shall use a fixed countable, totally
ordered index set J . For any such index set and p > 0, let ℓp(J ) be the space of
all complex–valued sequences v = (vλ)λ∈J over J such that ‖v‖pℓp :=

∑
λ∈J |vλ|p

is finite. Since J is fixed, we can abbreviate ℓp := ℓp(J ) in the following without
possible confusion.

We shall firstly consider systems Ψ = {ψλ}λ∈J ⊂ V that form a Riesz basis for
V , i.e., any f ∈ V has a unique expansion with coefficient array c = (cλ)λ∈J

f = c⊤Ψ =
∑

λ∈J
cλψλ (1.1.1)

such that the following norm equivalence holds:

cV ‖c‖ℓ2 ≤ ‖f‖V ≤ CV ‖c‖ℓ2 . (1.1.2)

Here cV , CV ≥ 0 are called the Riesz constants.
Due to the estimate (1.1.2), the coefficient functionals cλ = cλ(f) in the expansion

(1.1.1) are bounded on V . Hence, by the Riesz representation theorem for linear
bounded functionals on a Hilbert space, there exists a unique family of dual functions

15



16 CHAPTER 1. WAVELET BASES

Ψ̃ = {ψ̃λ} ⊂ V , such that cλ = cλ(f) = 〈f, ψ̃λ〉V . Moreover, it is ‖cλ‖V ′ = ‖ψλ‖V ,
where V ′ is the normed dual of V and ‖g‖V ′ := sup‖f‖V =1 |g(f)| for all g ∈ V ′. As

a consequence of duality, the sets Ψ and Ψ̃ are biorthogonal, i.e., the relation

〈Ψ, Ψ̃〉V = I (1.1.3)

holds. This dual collection Ψ̃ is also a Riesz basis for V , with the Riesz constants
C−1
V and c−1

V .
Note that in (1.1.3) and henceforth, we shall use the convenient shorthand no-

tation
〈Θ,Φ〉 :=

(
〈θ, φ〉

)
θ∈Θ,φ∈Φ

(1.1.4)

for any finite or infinite collection of functions Θ,Φ ⊂ V and for any bilinear form
〈·, ·〉 on V ×V . This abbreviation will also be used for one–element sets Θ = {θ}, so
that the row vectors 〈θ,Φ〉 := 〈{θ},Φ〉 and the column vectors 〈Θ, φ〉 := 〈Θ, {φ}〉
can be used without any confusion.

By the above argument, we see that biorthogonality of a system {Ψ, Ψ̃} is nec-
essary for the Riesz basis property to hold. But there is no equivalence, as a coun-
terexample in [54, Section 3] shows. Consequently, additional structural properties
of {Ψ, Ψ̃} are needed that imply the Riesz stability. Here we are especially interested
in the subclass of wavelet Riesz bases where the global index set J is decomposed
as

J =
⋃

j≥j0

Jj, Jj :=
{
λ ∈ J : |λ| = j

}
, j ≥ j0, (1.1.5)

with j = |λ| ∈ Z being the level or scale of a given index λ ∈ J and j0 being some
coarsest level. Alternatively, we can also write J as the limit of the index sets of all
wavelet indices up to the level j

J j :=
{
λ ∈ J : |λ| ≤ j

}
, j ≥ j0. (1.1.6)

Besides the level j, a wavelet index λ will encode several further pieces of information
on a single wavelet ψλ, e.g., the spatial location. In practice, λ will therefore almost
always be some multiindex. We refer the reader to Section 1.3 for concrete examples.

For the following arguments, given any finite or infinite index set Λ ⊂ J , we will
denote by

ΨΛ := {ψλ : λ ∈ Λ} (1.1.7)

the set of wavelets indexed by Λ and

SΛ = closV ΨΛ (1.1.8)

shall be the V –closed span of them. Then, given a biorthogonal wavelet system
{Ψ, Ψ̃}, the most commonly used general strategy for the verification of the Riesz
basis property (1.1.2) utilizes further properties of the nested sequence of closed
spaces

S := (Sj)j≥j0 , Sj := SJ j . (1.1.9)

We will have to require specific approximation as well as regularity properties of the
subspaces Sj, as becomes visible in the following fundamental theorem on basis–free
Riesz stability:
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Theorem 1.1 ([54, Th. 3.2]). Assume that Q = (Qj)j≥j0 is a sequence of uniformly
bounded projectors Qj : V → Sj, such that

QlQj = Ql, l ≤ j. (1.1.10)

Let S̃ = {S̃j} be the ranges of the sequence of adjoints Q′ = (Q′
j)j≥j0. More-

over, suppose that there exists a family of uniformly bounded subadditive functionals
ω(·, t) : V → R0

+, t > 0, such that limt→0+ ω(f, t) = 0 for each f ∈ V and that the
pair of estimates

inf
v∈Vj

‖f − v‖V . ω(f, 2−j), f ∈ V, (1.1.11)

and
ω(vj, t) .

(
min{1, t2j}

)γ‖vj‖V , vj ∈ Vj, (1.1.12)

holds for V = S and V = S̃ with some γ, γ̃ > 0, respectively. Then we have the
norm equivalence

‖ · ‖V h NQ(·) h NQ′(·), v ∈ V, (1.1.13)

where

NQ(v) :=
(∑

j≥j0

‖(Qj −Qj−1)v‖2
V

)1/2

, v ∈ V (1.1.14)

and

NQ′(v) :=
(∑

j≥j0

‖(Q′
j −Q′

j−1)v‖2
V

)1/2

, v ∈ V, (1.1.15)

with Qj0−1 := Q′
j0−1 := 0.

Estimates of the type (1.1.11) are also called direct or Jackson type estimates
with respect to the modulus ω. They measure the approximation power of the
underlying nested sequence of spaces Sj as j → ∞. Conversely, estimates like
(1.1.12) describe smoothness properties of the spaces Sj and are called inverse or
Bernstein type inequalities.

Given a concrete biorthogonal wavelet system {Ψ, Ψ̃}, the original Riesz condi-
tion (1.1.2) is connected with the basis–free estimate (1.1.13) by the specific choice

Qjv := 〈v, Ψ̃J j〉ΨJ j , j ≥ j0. (1.1.16)

Note that this operator Qj : V → Sj is indeed a projector by the biorthogonality
relation (1.1.3), and the idempotence condition (1.1.10) in Theorem 1.1 is automat-
ically fulfilled. The adjoint of Qj is given as

Q′
jv = 〈v,ΨJ j〉Ψ̃J j , j ≥ j0, (1.1.17)

and the property (1.1.10) guarantees that also the ranges S ′
j = Ran(Q′

j) are nested
[46, 54].

In a concrete situation, we are therefore left to verify the sufficient conditions for
the Riesz basis property in Theorem 1.1, more precisely the uniform boundedness of
the operators Qj and the validity of specific Jackson and Bernstein inequalities. In
Section 1.3, we shall discuss how this is done in the case of various classical wavelet
constructions. Before that, in Section 1.2, we will explain why Theorem 1.1 bears an
even higher potential towards the simultaneous characterization of further function
spaces besides V .
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1.2 Characterization of Function Spaces

For the proof of the Riesz stability of Ψ in V , Theorem 1.1 required only that
the Jackson inequality (1.1.11) and the Bernstein inequality (1.1.12) hold for some
potentially small values γ, γ̃ > 0. However, for many wavelet constructions we
may expect that these exponents are indeed of a significant size. If, moreover, the
modulus ω is chosen to be equivalent to the seminorm of some interesting subspace
H ⊂ V , then the techniques employed in Theorem 1.1 also allow for an equivalent
description of H based on the decay property of wavelet coefficients.

In the following, we shall hence review the definition of some classical function
spaces and show how they can be characterized by weighted sequence norms of
wavelet expansions. We confine the discussion to function spaces over a bounded
Lipschitz domain Ω ⊂ Rd.

For p ∈ (0,∞], Lp(Ω) := Lp(Ω; dt) shall be the space of all Lebesgue–measurable
functions f : Ω → C, such that the (quasi–)norm

‖f‖Lp(Ω) :=





(∫

Ω

∣∣f(x)
∣∣p dx

)1/p

, p <∞
ess sup x∈Ω

∣∣f(x)
∣∣ , p = ∞

(1.2.1)

is finite. Analogously, Lp(Ω;µ) shall be the Lp space related to the measure µ. For
p ≥ 1, the Lp spaces are Banach spaces, whereas for p < 1, they are only quasi–
Banach spaces, since the triangle inequality will hold only up to a constant. The
most important special case is p = 2, where L2(Ω) is a Hilbert space with the inner
product

〈v, w〉L2(Ω) :=

∫

Ω

v(x)w(x) dx (1.2.2)

and ‖v‖2
L2(Ω) = 〈v, v〉L2(Ω). For a fixed domain Ω, we shall also use the abbreviation

〈·, ·〉 := 〈·, ·〉L2(Ω) in the sequel.
Given a positive integer m ∈ N, the Sobolev space Wm(Lp(Ω)) is defined as the

space of all functions f ∈ Lp(Ω) with weak partial derivatives ∂αf in Lp(Ω) for all
multiindices α ∈ Nd

0 with |α| = α1 + · · · + αd = m and

|f |Wm(Lp(Ω)) :=
( ∑

|α|=m
‖∂αf‖pLp(Ω)

)1/p

. (1.2.3)

Under the norm ‖ · ‖Wm(Lp(Ω)) = ‖ · ‖Lp(Ω) + | · |Wm(Lp(Ω)), W
m(Lp(Ω)) is a Banach

space. The most important special case is again p = 2, where we get the Hilbert
space Hm(Ω) := Wm(L2(Ω)).

For fractional smoothness exponents s ∈ (0,m), the corresponding Sobolev
spacesHs(Ω) can be introduced via the real interpolation method, see [1, 10, 11, 139].
To this end, given a pair of continuously and densely embedded Banach spaces
Y →֒ X, one introduces the corresponding Peetre K–functional

K(f, t) := K(f, t;X,Y ) := inf
g∈Y

‖f − g‖X + t‖g‖Y , (1.2.4)

being continuous, non–decreasing and concave with respect to the t variable. Then,
for parameters θ ∈ (0, 1) and 1 ≤ q ≤ ∞, an intermediate Banach space [X,Y ]θ,q is
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given by the set of all functions f ∈ X such that

‖f‖[X,Y ]θ,q
:= ‖t−θK(f, t))q‖Lq(0,∞;dt/t) (1.2.5)

is finite. If X,Y are Hilbert spaces, then so ist [X,Y ]θ,q. Hence the L2–Sobolev
space for a general smoothness parameter can be defined as

Hs(Ω) := [L2(Ω), Hm(Ω)]s/m,2, s ∈ (0,m), (1.2.6)

which coincides with the definition of Sobolev spaces for integer smoothness when
s ∈ N. For s < 0, we define Hs(Ω) := (H−s

0 (Ω))′ by duality.
Moreover, we shall also be concerned with the Besov spaces Bs

q(Lp(Ω)) which
arise as interpolation spaces between Lp(Ω) and Wm(Lp(Ω)) [1, 69, 140]. For a
more concrete definition of the corresponding Besov norm, one may use the r–th Lp
modulus of smoothness

ωr(f, t)Lp(Ω) := sup
‖h‖≤t

‖∆r
hf‖Lp(Ωrh), t > 0. (1.2.7)

Here, ∆r
h is the r–th forward difference operator

∆0
hf := f, ∆1

hf := f(· + h) − f, ∆k+1
h := ∆1

h∆
k
h, (1.2.8)

and the admissible sets Ωh are given by

Ωh :=
{
x ∈ Ω : x+ th ∈ Ω, t ∈ [0, 1]

}
, h ∈ Rd. (1.2.9)

Then, for parameters s > 0 and p, q ∈ (0,∞], one can introduce the Besov spaces

Bs
q

(
Lp(Ω)

)
:=
{
f ∈ Lp(Ω) : |f |Bs

q(Lp(Ω)) <∞
}
, (1.2.10)

where for r := ⌊s⌋ + 1 the Besov semi–(quasi–)norm is defined as

|f |Bs
q(Lp(Ω)) :=





(∫ ∞

0

(
t−sωr(f, t)Lp(Ω)

)q
dt/t

)1/q

, 0 < q <∞
sup
t≥0

t−sωr(f, t)Lp(Ω) , q = ∞
, (1.2.11)

and ‖ · ‖Bs
q(Lp(Ω)) := ‖ · ‖Lp(Ω) + | · |Bs

q(Lp(Ω)) is the corresponding (quasi–)norm.

Using equivalence results between ωr(f, 2
−j)Lp(Ω) and K(f, 2−rj;Lp(Ω),W r(Lp(Ω))),

cf. [101], it can be shown that Besov spaces are indeed interpolation spaces:

Bs
q(Lp(Ω)) = [Lp(Ω),W r(Lp(Ω))]s/r,q, s ∈ (0, r). (1.2.12)

By the monotonicity of the modulus ωr, a Besov space can also be endowed with
the equivalent seminorm

∥∥(2sjωr(f, 2−j)Lp(Ω))j≥0

∥∥
ℓq(N)

h |f |Bs
q(Lp(Ω)). (1.2.13)

Hence, for the L2–modulus of smoothness ω = ωr(·, t)L2(Ω) which fulfills all the
properties of a modulus as needed in Theorem 1.1, one can prove that Hs(Ω) h

Bs
2(L2(Ω)) for 0 < s < r, see [70]. Using this equivalence, one obtains the following

result on the characterization of Sobolev spaces which generalizes Theorem 1.1 in
the case V = L2(Ω).
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Theorem 1.2 ([55, Th. 5.8]). In the situation of Theorem 1.1 for V = L2(Ω),
assume that the direct estimate (1.1.11) holds in the form

inf
v∈Vj

‖f − v‖L2(Ω) . 2−sj‖f‖Hs(Ω), f ∈ Hs(Ω), 0 ≤ s ≤ mV , (1.2.14)

and that the inverse estimate (1.1.12) holds in the form

‖vj‖Hs(Ω) . 2sj‖vj‖L2(Ω), vj ∈ Vj, s < γV , (1.2.15)

for both scales of spaces V ∈ {S, S̃}, where 0 < γ := min{γS ,mS} and 0 < γ̃ :=
min{γS̃ ,mS̃}, respectively. Then we have the norm equivalence

‖f‖Hs(Ω) h
( ∞∑

j=0

22sj‖(Qj −Qj−1)f‖2
L2(Ω)

)1/2

, s ∈ (−γ̃, γ). (1.2.16)

Using again the special projectors Qj from (1.1.16), we can restate (1.2.16) in
terms of coefficient sequence norms as

‖f‖Hs(Ω) h
( ∞∑

j=0

22sj
∑

|λ|=j
|〈f, ψ̃λ〉|2

)1/2

, s ∈ (−γ̃, γ). (1.2.17)

For the application of wavelet methods to the numerical solution of boundary
value problems, it may be necessary that the corresponding boundary conditions
are incorporated in the primal approximating spaces Sj. As a consequence, we can
expect the direct estimate (1.2.14) to hold only on a proper subspace Hs ⊂ Hs(Ω).
Then, at least for s > −1

2
, the characterization results (1.2.16) and (1.2.17) can still

be verified. For s ≤ −1
2
, the situation is more complicated, in particular concerning

wavelet bases on nontrivial bounded domains, see [55] for an extensive discussion.
It should be noted, however, that there are at least two situations where one

definitely needs a characterization of the Hs subspaces with negative orders s ≤ −1
2
.

Firstly, those spaces may arise in the discretization of boundary integral operators
like the single layer potential operator, and we refer to [129] for further details.
Moreover, given some f ∈ Hs(Ω) with s ≥ 0, we may need that the sequence of
projections (Q′

jf)j≥j0 onto S̃j converges to f in L2 with a rate higher than 1
2
.

For those cases where one is also interested in a characterization of the Hs

spaces with s ≤ −1
2
, the dual basis has to be chosen appropriately. More precisely,

the spaces S̃j have to fulfill complementary boundary conditions, meaning that S̃j
(1.2.14) has to hold on a range of full Sobolev spaces H s̃(Ω). Specific well–known
wavelet constructions in this category from [61, 63, 126] are discussed in Section 1.3.

For a single wavelet f = ψλ, the norm equivalence (1.2.17) implies that we can
control higher order smoothness norms of ψλ, since

‖ψλ‖Hs(Ω) h 2sj‖ψλ‖L2(Ω) h 2sj, λ ∈ J . (1.2.18)

Hence, given any subspace H →֒ L2(Ω) with equivalent norm ‖ · ‖H h ‖ · ‖Hs(Ω) for
some s > 0, we can infer from (1.2.17) that the inequality

cH‖Dsv‖ℓ2 ≤ ‖v‖H ≤ CH‖Dsv‖ℓ2 , v = v⊤Ψ ∈ H, (1.2.19)



1.3. WAVELET BASES ON BOUNDED DOMAINS 21

holds, where cH , CH ≥ 0 are some constants and D is the diagonal matrix

(D)λ,λ := 2|λ|, λ ∈ J . (1.2.20)

In other words, the diagonally rescaled basis D−sΨ is a Riesz basis in H. Up to a
constant, in (1.2.19) one may also replace the matrix Ds by the diagonal matrix DH

which consists of the H–norms of the single wavelets

(DH)λ,λ := ‖ψλ‖H , λ ∈ J . (1.2.21)

By duality, one infers that every v ∈ H ′ has an expansion v = ṽ⊤Ψ̃ with ṽ = 〈v,Ψ〉⊤,
so that

‖v‖H′ h ‖D−sṽ‖ℓ2 . (1.2.22)

It is one of the crucial merits of wavelet bases that just by a diagonal rescaling, a
wide range of Sobolev spaces including the L2 case can be characterized. This is not
possible, e.g., for other kinds of Riesz bases.

It should be noted that the characterization results from Theorems 1.1 and 1.2
have straightforward generalizations towards the case of reflexive Banach spaces
like Lp(Ω) for 1 < p < ∞. Using the characterization (1.2.13) and a given L2–
biorthogonal wavelet basis with polynomial approximation order m > s and of
sufficiently high regularity, we can again employ the special projectors Qj from
(1.1.16) to derive the characterization

‖f‖Bs
q(Lp(Ω)) h

(∑

j≥j0

2jq(s+d(1/2−1/p))
(∑

|λ|=j
|〈f, ψ̃λ〉|p

)q/p)1/q

. (1.2.23)

This equivalence can be shown to hold also for the case p, q < 1 given that Bs
q(Lp(Ω))

is embedded in L1(Ω), see [32], which is of particular importance in connection with
nonlinear approximation. In particular, we shall be interested in characterizing the
approximation spaces for best N–term approximation in H t. As we will see in
Section 4.1, these are exactly the Besov spaces Bsd+t

τ (Lτ (Ω)), where τ and s are
related via τ = (s + 1/2)−1. Inserting this special case into (1.2.23) yields the
important equivalence

‖f‖Bsd+t
τ (Lτ (Ω)) h

(∑

j≥j0

2jτt
∑

|λ|=j
|〈f, ψ̃λ〉|τ

)1/τ

= ‖Dt〈f, Ψ̃〉⊤‖ℓτ , (1.2.24)

where Dt〈f, Ψ̃〉⊤ are exactly the expansion coefficients of f with respect to a Riesz
basis D−tΨ in H t.

1.3 Wavelet Bases on Bounded Domains

1.3.1 General Construction Principles

As already indicated in Section 1.1, wavelet bases in a Hilbert space V are typically
constructed with the aid of a multiresolution analysis. By this we mean a system
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S = (Sj)j≥j0 of linear, closed and nested subspaces that is asymptotically dense in
V ,

closV

∞⋃

j=j0

Sj = V. (1.3.1)

The concept of a multiresolution analysis was originally introduced in a shift–
invariant setting [116, 118]. There, the spaces Sj consist of functions on Ω = Rd, Sj
is closed under integer translation f 7→ f(· − k), k ∈ Zd, and the consecutive spaces
Sj and Sj+1 are related by dilation, i.e., f ∈ Sj if and only if f(2·) ∈ Sj+1. Due to
Ω = Rd, the powerful tool of the Fourier transform may then be exploited for the
construction of wavelet bases, see [37, 65, 66, 117, 118] for classical examples.

However, the setting of bounded domains Ω we are interested in clearly inhibits
shift–invariance and the use of Fourier transform techniques. Nevertheless, some
basic principles from classical wavelet theory still carry over to wavelet constructions
for more general domain geometries. In the following, we will outline the basic
steps for the design of a biorthogonal wavelet basis over a bounded domain Ω, as
propagated, e.g., in [32, 59, 61]. Moreover, we assume from now on that V = L2(Ω),
which is sufficient for all cases of practical interest.

In a first step, one identifies stable generator bases Φj = {φj,k : k ∈ ∆j} of the
spaces Sj, so that

Sj = S(Φj) = closL2(Ω) Φj, j ≥ j0 (1.3.2)

and likewise S̃j = S(Φ̃j), with a system of dual generators Φ̃j = {φ̃j,k : k ∈ ∆j}. In
view of the later steps of the construction, we will have to require that the stability
of the primal generators Φj holds uniformly in j

‖c‖ℓ2(∆j) h ‖c⊤Φj‖L2(Ω), c ∈ ℓ2(∆j), j ≥ j0. (1.3.3)

In a shift–invariant setting, ∆j = Zd is an infinite set and one would typically assume
that the space S0 is spanned by the integer translates φ0,k = φ(· − k) of a single
function φ,

S0 = closL2(Ω) span{φ(· − k) : k ∈ Zd}. (1.3.4)

Then the additional requirement (1.3.3) is automatically fulfilled for all j ∈ Z when-
ever one has stability in V0, since in the shift–invariant setting, Sj is spanned by the
integer translates

φj,k(x) = 2−jd/2φ(2jx− k), k ∈ Zd, x ∈ Rd (1.3.5)

and an application of the transformation rule for y = 2jx traces back the ℓ2–stability
of Φj in Vj to that of Φ0 in V0.

On a bounded domain Ω, however, the index sets ∆j will be finite and of increas-
ing cardinality, as j tends to infinity. Moreover, Φj will not consist of the integer
translates of a single function alone, so that the uniform stability (1.3.3) of Φj indeed
has to be proved separately, see [54, 59]. A sufficient criterion for (1.3.3) to hold is
the uniform boundedness of ‖φj,k‖L2(Ω) and ‖φ̃j,k‖L2(Ω) in combination with uniform
locality of the primal and dual generators, i.e., for a fixed constant C <∞ we have

#{supp �j,k ∩ supp �j,k′ 6= ∅} ≤ C, diam �j,k . 2−j, (1.3.6)
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where �j,k is the smallest cube containing the supports of φj,k and φ̃j,k, respectively.
The locality assumption is useful anyway in view of the numerical realization, and
it can in turn be assured by some structural properties of the abstract nestedness
condition, which shall be discussed next.

The inclusion Sj ⊂ Sj+1 connects the generators of two consecutive approximat-
ing spaces by the so–called two–scale or refinement relation

Φj = M⊤
j,0Φj+1, j ≥ j0. (1.3.7)

Here Mj,0 ∈ R|∆j+1|×|∆j | is a matrix holding in its k–th column the expansion coef-
ficients of φj,k with respect to the generators on the finer scale j + 1. Since also the
spaces S̃j are nested, the corresponding dual refinement matrices shall be denoted
analogously by M̃j,0.

In a shift–invariant setting, the generator φ fulfills a special refinement equation
of the form

φ(x) =
∑

k∈Z

akφ(2x− k), x ∈ Rd (1.3.8)

with refinement coefficients ak ∈ R. For most of the practically relevant cases,
one may assume that φ is compactly supported and that only finitely many ak are
nonzero. Hence Mj,0 is a quasi–banded biinfinite matrix with entries (Mj,0)k,l =
2−1/2ak−2l. Since the size and the entries of Mj,0 are independent of the current
refinement level in the shift–invariant case, Mj,0 is then called stationary.

For wavelet constructions on a bounded domain Ω, the structure of the refinement
matrices Mj,0 will be more complicated. There, we can still hope that Mj,0 is quasi–
stationary, meaning that only the matrix dimensions change with j but, away from
some level–independent corner blocks, Mj,0 is still quasi–banded. This has the
consequence that the interior generators will again be given as the dyadic dilates
and translates of a single function, analogous to the shift–invariant case. From the
quasi–bandedness of Mj,0, we can hence easily infer the uniform stability (1.3.3) of
the generators Φj. Moreover, quasi–stationary matrices Mj,0 are uniformly sparse.
By this we mean that the number of nonzero entries per row and column of these
matrices remains uniformly bounded in j, which is useful in numerical computations.
In Figure 1.1, the nonzero pattern of Mj,0 is visualized, for the special case of a
wavelet basis on the unit interval.

Moreover, the systems Φj and Φ̃j shall be connected by the biorthogonality con-
dition

〈Φj, Φ̃j〉 = I, j ≥ j0. (1.3.9)

This relation has several important consequences. By (1.3.3) and (1.3.9), also the
stability of the dual system Φ̃j will hold uniformly in j. Moreover, concerning
the refinement matrices Mj,0 and M̃j,0, the biorthogonality condition implies that
M⊤

j,0M̃j,0 = I and we can introduce projectors Qj and Q̃j onto the spaces Sj and S̃j
via

Qjf := 〈f, Φ̃j〉Φj, Q′
jf := 〈f,Φj〉Φ̃j, f ∈ L2(Ω). (1.3.10)

Note that Q′
j is the L2–adjoint of Qj and these projectors will of course coincide

with the projectors Qj, Q
′
j from (1.1.16) and (1.1.17). The uniform stability (1.3.3)
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Figure 1.1: Nonzero pattern of the primal refinement matrix Mj,0 for the spline
wavelet basis on Ω = (0, 1) from [126] with m = 3, m̃ = 3, j = 3 and free boundary
conditions.

of Φj corresponds to the uniform boundedness of the projectors Qj, as needed in
Theorem 1.1.

For the proof of the Riesz stability as well as for the characterization of function
spaces, we need in particular specific approximation properties of the spaces Sj,
S̃j. To guarantee these, one will try to construct the generator bases Φj and Φ̃j

in such a way that they admit the reproduction of polynomials of order m and m̃,
respectively,

Pm−1 ⊂ Sj, Pm̃−1 ⊂ S̃j, j ≥ j0. (1.3.11)

Here Pk denotes the set of all polynomials with total degree less or equal than
k. In a shift–invariant setting, the inclusions (1.3.11) are meant in the sense of
pointwise convergence. It can be shown that under the biorthogonality, stability
and locality assumptions stated so far, the reproduction of polynomials (1.3.11)
implies the validity of a Jackson estimate (1.2.14) for the values mS = m, mS̃ = m̃,
respectively, see [55]. In the case that Dirichlet boundary conditions of some order
have to be incorporated into the primal multiresolution spaces Sj, the inclusion
Pm−1 ⊂ Sj is usually relaxed to merely hold in the interior of Ω, up to a boundary
layer of thickness c2−j.

Concerning the validity of the Bernstein estimate (1.2.15), we only note that
due to the quasi–stationary refinement matrices, it is sufficient to verify that the
generators Φj and Φ̃j have a corresponding L2–Sobolev regularity of order γS and
γS̃ , respectively, and we refer to [53] for the relevant proofs.

In the next step of constructing a wavelet basis over Ω, we have to pick some
algebraic complement spaces Wj, W̃j such that

Sj+1 = Sj ⊕Wj, S̃j+1 = S̃j ⊕ W̃j, j ≥ j0. (1.3.12)

Moreover, the complement spaces should be biorthogonal in the sense that

Wj ⊥ S̃j, W̃j ⊥ Sj, j ≥ j0, (1.3.13)
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which determines Wj and W̃j uniquely. Then, due to the nestedness of the spaces
Sj and S̃j, the operators Qj −Qj−1 and Q′

j −Q′
j−1 are projectors onto Wj and W̃j,

respectively.
Analogous to the generator sets Φj that span the spaces Sj, one then tries to

find stable wavelet bases Ψ̌j = {ψ̌j,k : k ∈ ∇j} for the spaces Wj = S(Ψ̌j). Again
we assume here that the systems Ψ̌j are uniformly stable

‖c‖ℓ2(∇j) h ‖c⊤Ψ̌j‖, c ∈ ℓ2(∇j), j ≥ j0. (1.3.14)

In view of the nestedness Wj ⊂ Sj+1, we can then express the wavelets on the level
j with respect to the generator basis of the next higher scale

Ψ̌j = M̌⊤
j,1Φj+1, j ≥ j0, (1.3.15)

where M̌j,1 ∈ R|∆j+1|×|∇j |. Moreover, it turns out that the construction of uniformly
stable complement bases Ψ̌j is equivalent to completing the refinement matrices Mj,0

to invertible mappings

M̌j = (Mj,0, M̌j,1) : ℓ2(∆j) ⊕ ℓ2(∇j) → ℓ2(∆j+1), (1.3.16)

where the operator norms of M̌j and of the inverse Ǧj := M̌−1
j stay uniformly

bounded in j. This construction principle is known as the method of stable comple-
tion [28]. It is useful to block also Ǧj with

Ǧj =

(
M̃⊤

j,0

Ǧ⊤
j,1

)
, (1.3.17)

where Ǧj,1 contains in its columns the expansion coefficients of some dual wavelet

basis ˜̌Ψj for W̃j with respect to Φ̃j+1. The invertibility of M̌j then implies the matrix
equation

I = M̌jǦj = Mj,0M̃
⊤
j,0 + M̌j,1Ǧ

⊤
j,1. (1.3.18)

It should be noted that (1.3.18) is not uniquely solvable. In particular, it is not a
priorily clear whether there exist biorthogonal wavelet bases, i.e., whether one may
find special wavelet bases Ψj = M⊤

j,1Φj+1, Ψ̃j = M̃⊤
j,1Φ̃j+1 that satisfy

〈Ψj, Ψ̃j〉 = I (1.3.19)

and that are moreover also uniformly locally supported. The delicate problem here
is that one has to determine a sparse matrix Mj of the above form such that its
inverse Gj is also sparse, which is nontrivial. It could be shown in [28] how the
solution space of (1.3.18) may be parametrized by a family of linear transformations
as soon as one initial stable completion M̌j,1 is known. In the latter case, equation
(1.3.18) has exactly one biorthogonal solution

Mj,1 = (I − Mj,0M̃
⊤
j,0)M̌j,1, (1.3.20)

and the corresponding dual block in Gj can be computed as

M̃⊤
j,1 := G⊤

j,1 = (I + M̃⊤
j,0M̌j,1)Ǧ

⊤
j,1. (1.3.21)
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Moreover, if the initial stable completion is uniformly locally supported, then this
also holds for the biorthogonal completion (1.3.20). By (1.3.19), we can infer the
matrix equation M⊤

j,1M̃j,1 = I.
The overall wavelet Riesz basis Ψ is obtained by aggregating the single comple-

ment bases Ψj and the generators Φj0 from the coarsest level. In order to write
this down in the most convenient way, we will use multiindices λ = (j, e, k) with an
additional type parameter e ∈ {0, 1}, and we set

ψ(j,0,k) := φj,k, k ∈ ∆j, ψ(j,1,k) := ψj,k, k ∈ ∇j. (1.3.22)

The overall wavelet index set J is then given by

J := {j0} × {0} × ∆j0 ∪
⋃

j≥j0

{j} × {1} × ∇j, (1.3.23)

so that we can define Ψ := {ψλ}λ∈J . Analogous abbreviations shall be used for the
dual wavelets ψ̃λ. For each λ = (j, e, k) ∈ J , we denote by |λ| = j the corresponding
scale and by e(λ) = e the type.

1.3.2 Cancellation Properties

In case that the dual generator bases Φ̃j can reproduce polynomials of order m̃ as
in (1.3.11), then we infer from the biorthogonality relation (1.3.13) that the primal
wavelets have vanishing moments of order m̃,

〈xi, ψλ〉 = 0, 0 ≤ i ≤ m̃− 1, λ ∈ J , e(λ) 6= 0. (1.3.24)

Analogously, the dual wavelets will have vanishing moments of order m if Φj re-
produces polynomials of order m. As a consequence of (1.3.24), we can derive a
so–called cancellation property of order m̃. By this we mean that inner products
of ψλ with smooth functions decay exponentially fast as the scale j = |λ| tends to
infinity as

∣∣〈f, ψλ〉
∣∣ . 2−|λ|( d

2
+m̃)|f |W m̃(L∞(suppψλ)), λ ∈ J , e(λ) 6= 0. (1.3.25)

In the more general case that the dual multiresolution spaces S̃j are only accurate of
order m̃, meaning that the Jackson inequality (1.2.14) is valid for mS̃ = m̃ without
using polynomial exactness arguments, we can still expect that (1.3.25) holds.

The annihilation of polynomials by wavelets can be exploited in the localization
theory of frames which is discussed in Chapter 2. Moreover, vanishing moment or
cancellation properties play a crucial role in matrix compression and in the adaptive
application of certain differential and integral operators in wavelet representation,
as we shall see in Chapter 4.

1.3.3 Wavelet Constructions on the Interval

After having sketched the abstract strategy of wavelet constructions on bounded
domains, we shall now specify concrete examples for the special case of the unit
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interval Ω = (0, 1). In view of the application of these bases in the numerical
treatment of operator equations, some obstructions arise which shall be listed first.

On the one hand, we are particularly interested in those biorthogonal wavelet
bases that admit the incorporation of Dirichlet boundary conditions into the pri-
mal multiresolution spaces Sj, while the dual spaces S̃j should fulfill complementary
boundary conditions, if possible. The bases should be able to characterize the appro-
priate scales of Sobolev and Besov spaces that are needed in the numerical examples.
Moreover, at least the primal wavelets ψλ and their derivatives should be accessible
analytically, making arbitrary point evaluations and quadrature cheap.

These requirements already exclude various classical wavelet constructions on
the interval. Just to state some examples, periodic wavelet bases are useless for our
purpose since they do not fulfill the appropriate boundary conditions nor do they
reproduce the correct set of polynomials. In orthogonal wavelet constructions like
[38], the primal wavelets are only given implicitly which makes them difficult to han-
dle numerically. Moreover it is neither possible to increase the number of vanishing
moments of the primal wavelets independent from the order of accuracy, nor can
any orthogonal wavelet construction realize complementary boundary conditions.
For the same reasons, the orthogonal spline multiwavelet bases from [71, 72] cannot
be used. Though the latter constructions look interesting for their relatively high
order of accuracy, their numerical realization seems not easy. Other biorthogonal
multiwavelet bases on the interval were constructed in [56], where the primal gen-
erators are the cubic Hermite interpolatory splines. Here it is not fully clear at the
moment whether also complementary boundary conditions can be realized with the
primal and dual generators. Further constructions one may look at use so–called
prewavelets. There, the complement spaces Wj are mutually orthogonal with re-
spect to the L2 or another energy inner product, drastically simplifying the stability
analysis. The construction of prewavelets is relatively easy, see, e.g., [30, 100], but
the dual wavelets are often not explicitly known and they are globally supported.
In the case that the prewavelet spaces Wj are chosen orthogonal with respect to an-
other inner product than that of L2, the dual generators and wavelets may moreover
have only a low Sobolev regularity and they mey even fail to belong to L2, as is the
case for the dual prewavelet basis from [100]. Especially from the viewpoint of tight
Riesz bounds, also the construction of spline wavelets on the interval in [15] looks
quite interesting, though the corresponding dual generators are unknown so far.

In principle, the interval bases we shall consider in this thesis are based on the
constructions in [59, 61, 126]. There, the primal generators φj,k live in a spline space
of order m with respect to some knot sequence {tjk}k ⊂ [0, 1]. In the interior of the
domain Ω = (0, 1), the primal generators in the mentioned constructions coincide
with dilates and translates of cardinal B–splines of order m, up to a factor. As a
consequence of the embedding into spline spaces, the critical L2–Sobolev regularity
of the primal multiresolution spaces is given by m− 1

2
.

For the verification of the polynomial exactness of order m, some modifications
of the generators at the boundaries are necessary. Either one uses specific linear
combinations of restricted cardinal B–splines [59, 61] or one resorts to B–splines
related to the Schoenberg knot sequence [126] with m–fold boundary knots,

tjk = min
{
1,max{0, 2−jk}

}
, k = −m+ 1, . . . , 2j +m− 1, (1.3.26)
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where the corresponding B–splines of order m are defined as

Bj
k,m(x) := (tjk+m − tjk)[t

j
k, . . . , t

j
k+m]t(t− x)m−1

+ . (1.3.27)

Here (x)+ := max{0, x} and [t0, . . . , tk]t denotes the divided difference operator
corresponding to the knots ti acting in the t variable. In the construction of [126],
the primal spline generators of order m are then simply defined as φj,k := 2j/2Bj

k,m.
Examples of these generators in the case m = 3 can be found in Figure 1.2.
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Figure 1.2: Primal spline generators φj,k from [126] with m = 3, j = 3 and homoge-
neous Dirichlet boundary conditions.

In any of the mentioned spline wavelet constructions, the primal refinement
matrices Mj,0 can be computed by simply solving some triangular systems of linear
equations, see [59, 126] for details.

The recent approach from [126] seems favorable for several reasons. Firstly, the
primal multiresolution spaces Sj coincide with the full spline spaces related to the

knot sequences {tjk}2j+m−1
k=−m+1, which is not always the case for the construction in

[59]. Moreover, the incorporation of homogeneous Dirichlet boundary conditions of
some order into the primal multiresolution spaces is easily done by omitting the
corresponding number of boundary knots. Point evaluation of the primal generators
and their derivatives is painless since B–splines fulfill numerous recurrence relations
that allow for fast and stable evaluation algorithms [67]. Add to this, using only B–
splines as primal generators drastically simplifies the computation of supports and
singular supports in [126] compared with the constructions in [59]. Finally, choosing
the shortest possible supports of the boundary generators seems to have a favorable
impact on the L2–Riesz constants of the wavelet system.

In order to realize complementary boundary conditions for the multiresolution
spaces Sj and S̃j, the dual generators φ̃j,k are chosen to be exact of the full order m̃
and to be biorthogonal to the primal generators. Since the concrete construction is
quite subtle, we refer the reader to [59, 61, 126] for the technical details. Let us only
note that the dual refinement matrices M̃j,0 can again be set up by solving several
triangular systems, see [59, 126] for examples. Generally speaking, in all known
biorthogonal spline wavelet constructions on the interval, the dual generators are
given as linear combinations of some dual scaling functions from the shift–invariant
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construction [37]. As a consequence, also the critical L2–Sobolev regularity of the
dual generators is known and can be computed with well–known algorithms1 [99],
see Table 1.1 for various example values.

m m̃ ν2(φ̃)
2 2 0.44076544507035
2 4 1.17513151026734
2 6 1.79313390050964
3 3 0.17513151026735
3 5 0.79313390050989
3 7 1.34408387241967
3 9 1.86201980785003
4 6 0.34408387241950
4 8 0.86201980784985
4 10 1.36282957312823

Table 1.1: Critical L2–Sobolev regularity of some dual scaling functions from [37].

Some specific dual generators from [126] are given in Figure 1.3. However, it
should be noted that at least in the numerical discretization of elliptic operator
equations with wavelets, the dual generators and wavelets are never needed explic-
itly. There they merely serve to ensure the corresponding number m̃ of vanishing
moments for the primal wavelets ψλ and to establish an appropriate negative lower
bound −γ̃ in (1.2.16).

Concerning the construction of the primal wavelets, the approaches [59, 62, 63,
126] utilize the method of stable completion, as introduced in the previous subsec-
tion. In [59] it has been shown how an initial stable completion can immediately
be derived from a specific factorization of Mj,0. After performing the biorthogo-
nalization step (1.3.20), the interior wavelets coincide with those presented in [37],
whereas the boundary wavelets look more complicated. However, the factorization
algorithm used in [59] does not automatically lead to the maximal number of interior
wavelets. This is of particular importance since the Riesz constants of the overall
wavelet basis crucially depend on the shape of the boundary functions. Moreover,
due to the small supports of the interior wavelets, the sparsity of stiffness matrices
is potentially higher. In [126], a refined algorithm was developed that produces the
optimal number of interior wavelets. Figure 1.4 shows some primal wavelets from
the latter construction.

From the viewpoint of numerical stability, in particular concerning tight L2–
and Hs–Riesz bounds, the wavelet bases from [126] clearly outperform those of
the original construction in [59, 63]. It should be mentioned that in [9], the latter
wavelet bases have been substantially stabilized by orthogonalizing the boundary
wavelets with respect to some energy inner product. However, a comparison with
the benchmark values in [58] reveals that the Riesz constants as well as the spectral

1A software package for the estimation of critical Sobolev exponents of (multi)wavelets
can be found on the website http://www.mathematik.uni-marburg.de/∼dahlke/ag-numerik/

research/software.
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properties of stiffness matrices from a wavelet–Galerkin discretization of elliptic dif-
ferential equations are still favorable in [126], as long as the spline order is restricted
to low values m ≤ 3. As indicated by the recent construction [15], future research
in the direction of high order biorthogonal spline wavelets on the interval remains
potentially fruitful.
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Figure 1.3: Some dual spline generators φ̃j,k from [126] with m = 3, m̃ = 5, j = 4
and complementary boundary conditions.
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Figure 1.4: Some primal spline wavelets ψj,k from [126] with m = 3, m̃ = 3, j = 3
and complementary boundary conditions.
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1.3.4 Wavelet Constructions on Polygonal Domains

On more general domains Ω ⊂ Rd with d ≥ 2, there are several possible wavelet
constructions available, most of them being based on domain decomposition ideas.
The domain Ω under consideration is then subdivided into a disjoint union of M
parametric images of the unit cube � = (0, 1)d

Ω =
M⋃

i=1

Ωi, Ωi := κi(�), i = 1, . . . ,M, (1.3.28)

where the subpatches Ωi only meet along lower–dimensional surfaces and the charts
κi are assumed to be sufficiently smooth. Examples of wavelet constructions based
on the decomposition (1.3.28) can be found in [24, 25, 26, 40, 62, 63, 95, 136]. In
this thesis, we shall mainly focus on the construction of composite wavelet bases in
[62] and we will hence recall some basic features thereof in the sequel.

Any of the constructions for quadriliteral decompositions of Ω utilizes an aux-
iliary wavelet basis Ψ� = {ψ�

λ }λ∈J� on the unit cube � with dual basis Ψ̃� and
full polynomial exactness of order m and m̃, respectively. Such a basis Ψ� can be
derived by a d–fold tensor product of the corresponding interval bases introduced in
the previous subsection. In order to obtain a convenient notation, we shall use the
wavelet index sets

J � :=
{
(j0,0,k) : ki ∈ ∆j, 1 ≤ i ≤ d

}

∪
{
(j, e,k) : j ≥ j0,0 6= e ∈ {0, 1}d, ki ∈ ∇j,ei

, 1 ≤ i ≤ d
}
,

(1.3.29)

where ∇j,e are the admissible translation parameters k for interval generators or
wavelets on the level j

∇j,e :=

{
∆j, e = 0

∇j, e = 1
. (1.3.30)

Then the tensor product wavelets are simply given by

ψ�

λ (x) :=
d∏

i=1

ψ(j,ei,ki)(xi), x ∈ �, λ = (j, e,k) ∈ J �. (1.3.31)

For the construction of a global composite wavelet basis Ψ over Ω as introduced in
[62], the principal design pattern of stable completion can be used again. In a first
step, a globally continuous biorthogonal system of generators is constructed that
span global multiresolution spaces Sj, S̃j ⊂ L2(Ω). This can be done by glueing
together the local primal and dual generator bases appropriately across the lower–
dimensional interfaces between adjacent subpatches, see [9, 62, 102] for the technical
details. As a consequence of this construction, the global Sobolev regularity of
the primal and dual composite generators is limited by 3

2
, whereas their patchwise

regularity may be significantly higher. It must be noted that the glueing procedure
requires further properties from the interval wavelet bases. More precisely, exactly
one primal and one dual interval generator is allowed to have a nonzero point value
at x ∈ {0, 1}, respectively. This assumption is fulfilled by special variants of the
constructions [59, 62], but unfortunately not for any of the spline wavelet bases from
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[126]. There, more than one of the dual generators on the level j does not vanish at
a given endpoint of the interval. Consequently, we will use the wavelet bases from
[59, 62] for the numerical experiments on the L–shaped domain, where we employ
the stabilization techniques from [9] already mentioned in the last subsection.

An example of a primal composite spline generator on the L–shaped domain
Ω = (−1, 1)2 \ [0, 1)2, based in an interval basis from [126], can be found in Figure
1.5.
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Figure 1.5: A primal composite generator on the L–shaped domain with level |λ| = 3,
belonging to the interface between two adjacent subpatches. The interval basis is
taken from [9, 62] with parameters m = m̃ = 2.

Given the biorthogonal system of generators, an initial stable completion for
some complement spaces Wj can then be constructed from the lifted local wavelet
bases, and a final biorthogonalization step of the form (1.3.20) yields the global
wavelet system Ψ. For the intricate technical details, we refer the reader to [62]. Let
us only remark that the global wavelets ψλ have a local decomposition in the lifted
auxiliary bases

ψλ|Ωi
(x) =

∑

µ∈I(λ,i)

cµ,iψ
�

µ (κ−1
i (x)), x ∈ Ωi, (1.3.32)

where I(λ, i) is a suitable set of indices from J �. Examples of primal composite
wavelets on the L–shaped domain can be found in Figure 1.6.

Despite the fact that the dual composite wavelets are also globally continuous,
the lower bound −γ̃ in the range of Sobolev spaces that can be characterized with
a given composite wavelet basis is larger than −1

2
. This is due to the fact that the

construction in [62] uses a modified L2–inner product that differs from the natural
one. However, for the numerical treatment of second order differential equations,
this limited range is not a principal issue.
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Figure 1.6: Primal composite wavelets ψλ on the L–shaped domain with |λ| = 3 and
m = m̃ = 2, using the interval basis from [9, 62]. The upper wavelet is of the type
e = (1, 0) and it belongs to the subpatch Ω1 = (−1, 0) × (0, 1). The lower wavelet
is of the type e = (0, 1) and it belongs to the interface {0} × (−1, 0) between two
adjacent subpatches.
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Chapter 2

Frames

This chapter is concerned with the definition and the construction of frames on a
bounded domain Ω in Rd. We are particularly interested in those classes of frames
that are suitable for the numerical discretization of elliptic operator equations. Un-
less otherwise specified, the results from this chapter can be found in [51].

In Section 2.1, we review the classical definition and properties of frames in a
Hilbert space. It is shown how to reformulate the concept of wavelet Riesz bases
with norm equivalences in a frame setting, resulting in the definition of Gelfand
frames. Section 2.2 is devoted to the construction of specific wavelet Gelfand frames
on a polygonal domain that may be used in the numerical treatment of second order
elliptic operator equations. For the verification of the Gelfand frame property, we
shall exploit the machinery of localized frames to a considerable extent.

2.1 Hilbert and Gelfand Frames

In the following, we will introduce the concept of classical Hilbert as well as Gelfand
frames in a separable Hilbert space V . The corresponding inner product shall be
denoted by 〈·, ·〉V , with induced norm ‖v‖V := 〈v, v〉1/2V .

2.1.1 Basic Frame Theory

Let us assume that J is a countable index set. As usual, a system Ψ = {ψλ}λ∈J ⊂ V
is called a Hilbert frame or simply a frame for V , if there exist frame bounds A,B > 0
such that the following condition holds:

A‖f‖2
V ≤

∑

λ∈J

∣∣〈f, ψλ〉V
∣∣2 ≤ B‖f‖2

V , f ∈ V. (2.1.1)

In the sequel, let us recall some further fundamental properties of frames that im-
mediately follow from their very definition. The corresponding proofs can be found
in the basic textbook [29].

First of all, it can be shown that any Riesz basis Ψ for V with Riesz constants
cV , CV is also a frame for V , with frame constants A = c2V and B = C2

V , see [29].
Conversely, any frame Ψ for V is automatically dense, as it is the case for Riesz bases.
However, the frame condition (2.1.1) does not imply that the elements of Ψ are

37
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linearly independent. Thus the coefficient array of an element f ∈ closV span Ψ may
not necessarily be unique, rendering the concept of frames a proper generalization
of the Riesz basis concept.

Any frame Ψ with frame bounds A,B readily induces several fundamental oper-
ators. Firstly the frame operator

S : V → V, f 7→
∑

λ∈J
〈f, ψλ〉V ψλ (2.1.2)

is well–defined and bounded with ‖S‖L(V ) ≤ B, and the series Sf converges uncon-
ditionally. Moreover, S is self–adjoint, positive and boundedly invertible with

A〈f, f〉V ≤ 〈Sf, f〉V ≤ B〈f, f〉V , f ∈ V. (2.1.3)

S can be written as a composition of the analysis operator

F : V → ℓ2, Ff := 〈f,Ψ〉⊤V (2.1.4)

and its ℓ2–adjoint
F ∗ : ℓ2 → V, F ∗c := c⊤Ψ, (2.1.5)

the synthesis operator. F is a bounded injective mapping with ‖F‖L(ℓ2,V ) ≤
√
B and

closed range Ran(F ) = closV Ran(F ), whereas F ∗ is bounded and onto. In fact, the
latter two conditions on F ∗ are equivalent to Ψ being a frame.

As a consequence of the orthogonal decomposition

ℓ2 = Ran(F ) ⊕ Ker(F ∗), (2.1.6)

a given frame Ψ for V is a Riesz basis if and only if Ran(F ) = V , which in turn is
equivalent to KerF ∗ = {0}. The orthogonal projection of ℓ2 onto RanF is given by
the operator

Q := F (F ∗F )−1F ∗ : ℓ2 → ℓ2. (2.1.7)

The system Ψ̃ = {ψ̃λ}λ∈J with ψ̃λ := S−1ψλ is again a frame for V , with frame
bounds B−1 and A−1. Ψ̃ is also called the canonical dual frame. The analysis and
synthesis operators of Ψ̃ are given by

F̃ = F (F ∗F )−1 = FS−1, F̃ ∗ = (F ∗F )−1F ∗ = S−1F ∗, (2.1.8)

and S−1 : V → V is the frame operator for Ψ̃. From the bounded invertibility of
S we infer that any f ∈ V can be reconstructed by the unconditionally convergent
expansions

f = S−1Sf =
∑

λ∈J
〈f, ψλ〉V S−1ψλ = SS−1f =

∑

λ∈J
〈f, S−1ψλ〉V ψλ. (2.1.9)

For a frame Ψ, in the nontrivial case of KerF ∗ 6= {0}, the coefficient functionals
{cλ}λ∈J ⊂ V ′ in a representation

f =
∑

λ∈J
cλ(f)ψλ, f ∈ V, (2.1.10)
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may not be unique. Hence there may well exist other non–canonical dual frames
Ξ = {ξλ}λ∈J which also fulfill a reconstruction equation of the form

f =
∑

λ∈J
〈f, ψλ〉V ξλ =

∑

λ∈J
〈f, ξλ〉V ψλ, f ∈ V. (2.1.11)

However then, the analogous operator to Q from (2.1.7)

PΞ : ℓ2 → ℓ2, PΞc :=
(∑

µ∈J
〈c⊤Ψ, ξµ〉〈ξµ, ψλ〉

)
λ∈J

(2.1.12)

is only a projector onto RanF and not orthogonal.

2.1.2 Gelfand Frames

As we have seen in Chapter 1, wavelet Riesz bases Ψ are almost always constructed
in L2(Ω) first. Then in a second step, utilizing approximation and smoothness prop-
erties of the corresponding approximating spaces Sj and S̃j, it is shown that appro-
priately rescaled versions of the system Ψ are also Riesz bases in other smoothness
spaces.

It is now our aim to generalize this very strategy towards the case of frames.
Namely, we shall introduce a special class of frames in a Hilbert space V that, when
rescaling the frame elements appropriately, gives rise to a frame for another Hilbert
space H. We will have to investigate whether the expansion (2.1.9) also converges
in other topologies than in that of V .

To this end, we shall recall first a powerful concept from [86, 89]. Given a separa-
ble and reflexive Banach space B with normed dual B′, a system G = {gθ}θ∈Θ ⊂ B′

with associated Banach sequence space b is called a Banach frame for B, if the
coefficient operator

G : B → b, f 7→ 〈f,G〉⊤B×B′ (2.1.13)

is bounded with the norm equivalence

‖Gf‖b h ‖f‖B, f ∈ B, (2.1.14)

and there exists a bounded left–inverse R : b→ B of G, the so–called reconstruction
operator. In fact, the concept of Banach frames generalizes that of Hilbert frames,
as is easily shown in the following lemma.

Lemma 2.1. Any frame Ψ = {ψλ}λ∈J for a separable Hilbert space V is also a
Banach frame for V , with associated sequence space ℓ2 = ℓ2(J ).

Proof. Given a frame Ψ for V , let G := Ψ̃ ⊂ V be the canonical dual frame.
Identifying V and V ′ via the Riesz map, we can assume that G = {〈·, ψ̃λ〉V }λ∈J ⊂ V ′.
The operator G from (2.1.13) then turns out to be the dual analysis operator F̃ from
(2.1.8), so that we can choose the reconstruction operator R = F ∗, which is a left–
inverse of F̃ .
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For the discretization of elliptic operator equations, we will have to work with
expansions both in the Hilbert space V and in a densely embedded Banach space
B →֒ V . More precisely, we shall work in a Gelfand triple situation (B, V,B′) where

B ⊂ V ≃ V ′ ⊂ B′, (2.1.15)

and we assume explicitly that the right inclusion is also dense. In particular, this
holds if B is also a Hilbert space.

A special class of frames tailored to this Gelfand frame situation has been intro-
duced in [51]. Namely, a given frame Ψ for V with canonical dual frame Ψ̃ is called
a Gelfand frame for the Gelfand triple (B, V,B′), if Ψ ⊂ B, Ψ̃ ⊂ B′ and there exists
a Gelfand triple

(
b, ℓ2(J ), b′

)
of sequence spaces such that

F ∗ : b→ B, F ∗c = c⊤Ψ and F̃ : B → b, F̃ f =
(
〈f, ψ̃λ〉B×B′

)
λ∈J (2.1.16)

are bounded operators. By duality arguments in the Gelfand triple (B, V,B′), we
can infer from the identity F̃ ∗F = F ∗F̃ = idV that for a Gelfand frame Ψ, also the
operators

F̃ ∗ : b′ → B′, F̃ ∗c = c⊤Ψ̃ and F : B′ → b′, Ff =
(
〈f, ψλ〉B′×B

)
λ∈J (2.1.17)

are bounded, cf. [92]. For a visualization of the various mappings in a Gelfand
frame, we refer the reader to Figure 2.1.

B �

� //

F̃
��

V �

� // B′

F
��

b �

� //

F ∗
OO

ℓ2 �

� // b′
F̃ ∗

OO

Figure 2.1: Mapping diagram for a Gelfand frame Ψ

The next result clarifies the relations between Gelfand and Banach frames:

Proposition 2.2. If Ψ is a Gelfand frame for (B, V,B′) with the Gelfand triple
of sequence spaces (b, ℓ2(J ), b′), then Ψ̃ and Ψ are Banach frames for B and B′,
respectively.

Proof. We only show that Ψ̃ is a Banach frame for B, since the second claim follows
by an analogous argument. By definition of a Gelfand frame, it is Ψ̃ ⊂ B′, and the
coefficient operator G : B → b is given by Gf = F̃ f = 〈f, Ψ̃〉⊤B×B′. Since Ψ̃ is the

canonical dual of Ψ, we have by (2.1.9) the representation f = 〈f, Ψ̃〉V Ψ for each
f ∈ V , with convergence in V . But for f ∈ B, we have 〈f, ψ̃λ〉V = 〈f, ψ̃λ〉B×B′ by the
definition of the dual pairing. Since, moreover, F ∗F̃ f ∈ B by the boundedness of
F ∗ and F̃ , the series

∑
λ∈J 〈f, ψ̃λ〉B×B′ψλ = F ∗F̃ f = f also converges in B. Finally,

this yields the injectivity of G = F̃

‖f‖B =
∥∥∥
∑

λ∈J
〈f, ψ̃λ〉B×B′ψλ

∥∥∥
B

= ‖F ∗F̃ f‖B . ‖F̃ f‖b . ‖f‖B.

A bounded reconstruction operator R is of course given by F ∗ : b→ B.
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In the original definition of Gelfand frames, the sequence spaces b and ℓ2 are
completely unrelated, up to the dense and continuous embedding b →֒ ℓ2. This is
mainly due to the fact that b is in general an arbitrary Banach sequence space and
therefore structurally different from the Hilbert space ℓ2. However, in applications
we may assume that b has more stringent structural properties. As an example,
when it comes to frame discretizations of elliptic differential operators as in Chapter
5, the role of b will be played by a weighted ℓ2 space. In view of these situations,
for any strictly positive diagonal matrix W = diag(wλ)λ∈J > 0 and 1 < p <∞, let
us introduce the weighted ℓp spaces

ℓp,W := {c : ‖c‖ℓp,W
:= ‖Wc‖ℓp <∞}. (2.1.18)

Then we can immediately relate ℓ2,W and ℓ2 by an isomorphism

ϕW : ℓ2,W → ℓ2, ϕWc = Wc (2.1.19)

with structurally identical dual mapping

ϕ∗
W

: ℓ2 → ℓ2,W−1 , ϕ∗
W

c = Wc. (2.1.20)

Both mappings ϕW and ϕ∗
W

have operator norm 1 in the respective topologies.
Given that the abstract sequence space b in the Gelfand frame definition is in fact
such a weighted ℓ2 space, we can strengthen Proposition 2.2 substantially in the
following way:

Proposition 2.3. Let H be a Hilbert space and Ψ = {ψλ}λ∈J be a Gelfand frame
for (H,V,H ′) with the Gelfand triple of sequence spaces (ℓ2,W, ℓ2, ℓ2,W−1), where
w : J → R+ is a strictly positive weight function. Then the systems W−1Ψ =
{w−1

λ ψλ}λ∈J and WΨ̃ = {wλψ̃λ}λ∈J are (Hilbert) frames for H and H ′, respectively.

Proof. We only prove that W−1Ψ is a Hilbert frame in H, since the other claim
follows by analogy.

Firstly, Ψ being a Gelfand frame for (H,V,H ′), we know that the operator
F ∗ : ℓ2,W → H, F ∗c = c⊤Ψ, is bounded. The composition T := F ∗ϕ−1

W
: ℓ2 → H,

being the synthesis operator of the system W−1Ψ ⊂ H, is also bounded, so that
W−1Ψ is a Bessel system in H which is equivalent to the validity of the upper frame
bound, see also [29].

Concerning the lower frame bound, we utilize from Proposition 2.2 that (Ψ̃, ℓ2,W)
is a Banach frame for H, with bounded reconstruction operator R = F ∗ : ℓ2,W → H.
Since F ∗ is onto, this is also the case for the bounded operator T := F ∗ϕ−1

W
: ℓ2 → H

already considered above. Hence, for the bounded pseudoinverse T † = ϕWF̃ : H →
ℓ2, we have f = TT †f , so that the lower frame bound follows from

‖f‖4
H =

∣∣〈TT †f, f〉H
∣∣2

=
∣∣∣
∑

λ∈J

〈
(T †f)λw

−1
λ ψλ, f

〉
H

∣∣∣
2

≤
∑

µ∈J

∣∣(T †f)µ
∣∣2∑

λ∈J

∣∣〈f, w−1
λ ψλ〉H

∣∣2

≤ ‖T †‖2
L(H,ℓ2)‖f‖2

H

∑

λ∈J

∣∣〈f, w−1
λ ψλ〉H

∣∣2.
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Remark 2.4. Proposition 2.3 also sheds some light on the slightly different settings
in [51, 133]. In both papers, frames are considered for the numerical discretization
of an elliptic operator equation Au = f with an isomorphism A : H → H ′.

In [133], a frame Ψ for H is used without explicitly requiring that a rescaled ver-
sion of Ψ is also an L2–frame. Moreover, the energy space H is implicitly identified
with its normed dual H ′ via the Riesz mapping. For the numerical approximation
of u in H, this setting is sufficient since a frame Ψ for H is automatically H–
dense. The assumptions then cover also the case where the underlying frame is not
of wavelet type, cf. [123, 124].

Conversely, the more restricted setting of Gelfand frames in [51], as introduced
in this section, conforms to the well–known constructions of wavelet Riesz bases.
The results in loc. cit. make use of localization arguments that require the canonical
dual frame Ψ̃ to be contained and to be stable in L2, see Section 2.2. Moreover, it is
assumed there to have a Gelfand triple setting where the middle space L2 is identified
with its normed dual.

2.2 Aggregated Gelfand Frames

2.2.1 General Idea

Assume that the domain Ω ⊂ Rd can be written as an overlapping union of M
patches Ωi, 1 ≤ i ≤M

Ω =
M⋃

i=1

Ωi, (2.2.1)

where each subpatch is the image of the unit cube � := (0, 1)d under a suitable
parametrization Ωi = κi(�). We assume that the parametrizations κi are Ck–
diffeomorphisms and that

| detDκi(x)| h 1, x ∈ �. (2.2.2)

We can hence assume that the locality estimate

#{x ∈ � : κi(x) = y for some i} ≤M (2.2.3)

holds uniformly in y ∈ Ω. Clearly, the set of admissible domains Ω is restricted
by raising these regularity conditions. Essentially, the boundary of Ω has to be
piecewise smooth enough. But since the particularly attractive case of polyhedral
domains is still covered, these assumptions on the parametrizations κi are valid for
the boundary value problems under consideration.

Let us assume furthermore that we have a reference frame Ψ� = {ψµ}µ∈J� ⊂
L2(�). Then, one can lift the system Ψ� to Ωi by setting

ψi,µ :=
ψ�
µ

(
κ−1
i (·)

)
∣∣ detDκi

(
κ−1
i (·)

)
|1/2 . (2.2.4)



2.2. AGGREGATED GELFAND FRAMES 43

Note that the denominator is chosen in such a way that ‖ψi,µ‖L2(Ω) = ‖ψ�
µ ‖L2(�).

Analogously, we also lift the dual frame elements to Ωi:

ψ̃i,µ :=
ψ̃�
µ

(
κ−1
i (·)

)
∣∣ detDκi

(
κ−1
i (·)

)
|1/2 . (2.2.5)

It is immediate to see that both the Hilbert and the Gelfand frame properties transfer
to the lifted systems on Ωi:

Lemma 2.5. Let Ψ� be a Gelfand frame in (Hs
0(�), L2(�), H−s(�)) for the Gelfand

triple of sequence spaces (ℓ2,Ds(J �), ℓ2(J �), ℓ2,D−s(J �)). Then the system Ψ(i) :=
{ψi,µ : µ ∈ J �} as defined in (2.2.4) is a Gelfand frame in (Hs

0(Ωi), L2(Ωi), H
−s(Ωi))

for the Gelfand triple of sequence spaces (ℓ2,Ds(J �), ℓ2(J �), ℓ2,D−s(J �)). Moreover,

the canonical dual frame elements of Ψ(i) are exactly the lifted reference duals Ψ̃(i) :=
{ψ̃λ}λ∈J� from (2.2.5).

Proof. For f ∈ L2(Ωi), (2.2.2) and a transformation of coordinates imply

‖f‖2
L2(Ωi)

h
∥∥f(·)| detDκi(κ

−1
i (·))|1/2

∥∥2

L2(Ωi)
h
∥∥f ◦ κi(·)| detDκi(·)|1/2

∥∥2

L2(�)
.

Inserting the frame condition for Ψ� in L2(�), we get the frame condition for Ψ(i)

in L2(Ωi)

‖f‖2
L2(Ωi)

h
∑

µ∈J�

∣∣∣
〈
f ◦ κi(·)| detDκi(·)|1/2, ψ�

µ

〉
L2(�)

∣∣∣
2

=
∑

µ∈J�

∣∣〈f, ψi,µ〉L2(Ωi)

∣∣2.

(2.2.6)
Let S� and S(i) be the frame operators for Ψ� and Ψ(i), respectively. Then for
µ ∈ J � and y = κi(x) ∈ Ωi, it follows that

S(i)ψ̃i,µ(y) =
∑

ν∈J�

〈ψ̃i,µ, ψi,ν〉L2(Ωi)ψi,ν(y)

= | detDκi(x)|−1/2
∑

ν∈J�

〈ψ̃�

µ , ψ
�

ν 〉L2(�)ψ
�

ν (x)

= | detDκi(x)|−1/2S�ψ̃�

µ (x)

= | detDκi(x)|−1/2ψ�

µ (x)

= ψi,µ(y),

so that ψ̃i,µ is the canonical dual frame element corresponding to ψi,µ. For a sequence
c ∈ ℓ2,Ds(J �), it follows by (2.2.2), the chain rule for Sobolev norms and (2.2.4)
that
∥∥∥
∑

µ∈J�

cµψi,µ

∥∥∥
Hs(Ωi)

.
∥∥∥
∑

µ∈J�

cµψi,µ ◦ κi
∥∥∥
Hs(�)

=
∥∥∥| detDκi(·)|−1/2

∑

µ∈J�

cµψ
�

µ

∥∥∥
Hs(�)

.

Hence an application of the product rule for Sobolev norms gives
∥∥∥
∑

µ∈J�

cµψi,µ

∥∥∥
Hs(Ωi)

.
∥∥∥
∑

µ∈J�

cµψ
�

µ

∥∥∥
Hs(�)

. ‖c‖ℓ2,Ds (J�),
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so the operator (F (i))∗ : ℓ2,Ds(J �) → Hs
0(Ωi), (F (i))∗c = c⊤Ψ(i) is bounded. More-

over, knowing the canonical dual elements of Ψ(i), it is for an f ∈ Hs
0(Ωi)

∑

µ∈J�

|〈f, ψ̃i,µ〉Hs
0(Ωi)×H−s(Ωi)|2 =

∑

µ∈J�

∣∣∣
〈
f ◦ κi(·)| detDκi(·)|1/2, ψ̃�

µ

〉
Hs

0(�)×H−s(�)

∣∣∣
2

.
∥∥f ◦ κi(·)| detDκi(·)|1/2

∥∥
Hs(�)

. ‖f ◦ κi‖Hs(�)

. ‖f‖Hs(Ωi),

so the operator F̃ (i) : Hs
0(Ωi) → ℓ2,Ds(J �), F̃ (i)f = (〈f, ψ̃i,µ〉Hs

0(Ωi)×H−s(Ωi))µ∈J� is
bounded, which yields the claim.

Remark 2.6. The reader might ask whether we may also omit the denominator in
the definition (2.2.4) of ψi,µ. As becomes visible in the proof of Lemma 2.5, this
variant still gives an L2 frame and it is maybe more convenient from the computa-
tional point of view, as soon as a nontrivial chart is involved. However, the norms
of ‖ψi,µ‖L2(Ωi) will in general be different from ‖ψ�

µ ‖L2(�). Moreover, the lifted dual

reference frame Ψ̃(i) then no longer coincides with the canonical dual of the lifted
primal reference frame Ψ(i).

Our goal is now to construct a Gelfand frame Ψ over the domain Ω, by aggre-
gating the local Gelfand frames in the most simple way. To this end, we define the
index set

J :=
M⋃

i=1

{i} × J �, (2.2.7)

and, for each λ = (i, µ) ∈ J , we set |λ| := |µ|. In the following, we will consider the
aggregated system

Ψ := {ψλ}λ∈J , ψ(i,µ) := Eiψi,µ, for (i, µ) ∈ J , (2.2.8)

where, for each subpatch Ωi, Ei : Ωi → Ω denotes the extension by zero. Note
that, by definition of the Sobolev spaces with homogeneous boundary conditions,
the operators Ei are bounded with norm 1 from Hs

0(Ωi) to Hs
0(Ω) for any s ≥ 0.

First of all, it is immediate to see the Hilbert frame property of Ψ.

Lemma 2.7. The system Ψ is a Hilbert frame in L2(Ω).

Proof. For f ∈ L2(Ω), the frame condition for Ψ follows by summing (2.2.6) up over
i and using the trivial equivalence

‖f‖2
L2(Ω) ≤

M∑

i=1

‖f‖2
L2(Ωi)

≤M‖f‖2
L2(Ω).

Remark 2.8. In [133], it was shown that the system Ψ is a Hilbert frame in Hs
0(Ω),

using a specific partition of unity subordinate to the overlapping covering of Ω. How-
ever, not all domains of the form (2.2.1) admit the partition of unity arguments in
[133], especially not the L–shaped domain. Therefore, alternative proofs for the
Hilbert and Gelfand frame properties of Ψ are necessary.
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The next goal would be, of course, to clarify under which conditions the frame
Ψ can also be a Gelfand frame in (Hs

0(Ω), L2(Ω), H−s(Ω)). However, as one has to
check the boundedness of the operator

F̃ : Hs
0(Ω) → ℓ2,Ds(J ), f 7→

(
〈f, ψ̃λ〉

)
λ∈J (2.2.9)

it turns out, here one needs more information about the global canonical dual Ψ̃ =
{ψ̃λ}λ∈J of Ψ. Our main tool for gaining knowledge about the canonical dual frame
will be based on the theory of localized frames which shall be sketched in the next
subsection.

2.2.2 Localization of Frames

To ensure that the system Ψ is a Gelfand frame, there are several possible sufficient
conditions. One of them is based on the concept of localized frames. Generally
speaking, two frames F = {fθ}θ∈Θ and G = {gθ′}θ′∈Θ for a Hilbert space V are
called localized to each other, if the entries 〈fθ, gθ′〉V of their cross–Gramian matrix
exhibit some decay in the term ρ(θ, θ′), where

ρ : Θ × Θ → R0
+

is an appropriate distance function on the ordered index set Θ. In the original
definition of localized frames in [88, 89], the special case Θ = Z and the metric
ρ(θ, θ′) = |θ − θ′| were considered. However, many of the results and ideas readily
transfer also to more complicated index sets and more general distance functions.
The essential properties of ρ shall be discussed in the following.

Typically, localized frames exhibit either polynomial or exponential decay esti-
mates in the index distance ρ(θ, θ′). Here we are particularly interested in decay
estimates of Lemarié type where the Gramian matrix is in the Lemarié class. Under
the assumption that the index set Θ admits a scale mapping of the form Θ ∋ θ 7→
|θ| ∈ Z≥j0 , then, for fixed parameters β, σ > 0 and a function ρ : Θ × Θ → R0

+, the
Lemarié class Aσ,β = Aσ,β,ρ is the set of all matrices B = (bθ,θ′)θ,θ′∈Θ, such that

|bθ,θ′ | ≤ cB2−||θ|−|θ′||(1 + ρ(θ, θ′))−β, θ, θ′ ∈ J (2.2.10)

holds for a constant cB which only depends on B. It is of particular importance
that the right–hand side in (2.2.10) can be transformed into a special exponential
term with respect to another distance function ̺ : Θ × Θ → R0

+

2−||θ|−|ξ||σ(1 + ρ(θ, ξ)
)−β

= e−σ(||θ|−|ξ|| log 2+ β
σ

log(1+ρ(θ,ξ))) =: e−σ̺(θ,ξ). (2.2.11)

For many cases of interest, ̺ fulfills the axioms of a metric, at least in a generalized
sense. Therefore we call ̺ a Lemarié metric in the sequel. The validity of a gener-
alized triangle inequality will turn out to be of particular importance when dealing
with products of matrices from Aσ,β, see Lemma 2.11 and Theorem 2.12 below for
details.

However, it should be noted that there are important examples where ̺ and
its generating distance function ρ are not a metric. More precisely, as we will see
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in Chapter 4, the Lemarié class Aσ,β contains matrices that arise in the wavelet
discretization of local and non–local elliptic operators A : H → H ′, where the
energy space H is a closed subspace of H t(Ω) and ρ = δ is given by

δ(λ, λ′) := 2min{|λ|,|λ′|} dist(suppψλ, suppψλ′), λ, λ′ ∈ J . (2.2.12)

But neither δ nor the corresponding Lemarié distance

̺δ(λ, λ
′) := 2−||λ|−|λ′||σ(1 + δ(λ, λ′)

)−β
(2.2.13)

are a metric, since the triangle inequality does not hold.
Unfortunately, for the introduction of an appropriate localization concept for

wavelet frames over bounded domains, a slight generalization of the aforementioned
setting has to be made. In that case, the underlying wavelet index sets are no longer
isomorphic in general, at least not for those indices belonging to the coarsest level.
One possibility to cope with this situation is to use more than one Lemarié metric
at the same time.

A generalized Lemarié metric for the pair of countable index sets (Θ,Ξ) is a
tuple of functions

̺ = (̺Θ1×Θ2)Θ1,Θ2∈{Θ,Ξ} (2.2.14)

where
̺Θ1×Θ2 : Θ1 × Θ2 → R0

+, Θ1,Θ2 ∈ {Θ,Ξ} (2.2.15)

and the following three conditions hold:

̺Θ1×Θ1(ξ, ξ) . 1, Θ1 ∈ {Θ,Ξ}, ξ ∈ Θ1, (2.2.16a)

̺Θ×Ξ(θ, ξ) = ̺Ξ×Θ(ξ, θ), θ ∈ Θ, ξ ∈ Ξ, (2.2.16b)

̺Θ1×Θ3(θ1, θ3) ≤ ̺Θ1×Θ2(θ1, θ2) + ̺Θ2×Θ3(θ2, θ3), Θi ∈ {Θ,Ξ}, θi ∈ Θi. (2.2.16c)

Remark 2.9. In [51, 113], instead of (2.2.16c) a generalized triangle inequality with
an additional parameter w0 > 0

̺Θ1×Θ3(θ1, θ3) ≤ ̺Θ1×Θ2(θ1, θ2) + w0̺Θ2×Θ3(θ2, θ3) (2.2.17)

was used. However, as it will turn out in the course of this section, all the relevant
Lemarié metrics will fulfill (2.2.17) with w0 = 1, so that this generalization seems
unnecessary.

Using a generalized Lemarié metric, it is straightforward to introduce the cor-
responding localization concept. Given two frames F = {fθ}θ∈Θ and G = {gξ}ξ∈Ξ

for the Hilbert space H and a Lemarié metric ̺, we say that F is ̺–exponentially
localized with respect to G (or simply exponentially localized once ̺ is fixed) if there
exists some α > 0, such that the following decay estimate holds:

∣∣〈fθ, gξ〉H
∣∣ . e−α̺Θ×Ξ(θ,ξ) for all θ ∈ Θ, ξ ∈ Ξ. (2.2.18)

In such a case we write F ∼exp G. A frame F such that F ∼exp F , is called
intrinsically ̺–exponentially localized.
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Remark 2.10. Due to the assumption (2.2.16b), the relation ∼exp is symmetric in
the sense that the roles of Θ and Ξ can be interchanged.

Given a generalized Lemarié metric ̺ for the pair (Θ,Ξ), we define the class of
all matrices with a ̺–exponential decay rate α > 0 as

Aα(Θ,Ξ) :=
{
M = (mθ,ξ)θ∈Θ,ξ∈Ξ : |mθ,ξ| ≤ cMe−α̺Θ×Ξ(θ,ξ), θ ∈ Θ, ξ ∈ Ξ

}
. (2.2.19)

The definition of Aα(Θ,Ξ) conforms to (2.2.10) and shall be used to analyze the
behavior of matrices with Lemarié–like decay under matrix multiplication and in-
version. It turns out, that under an additional condition on the matrices

Eγ(Θ,Ξ) := (e−γ̺Θ×Ξ(θ,ξ))θ∈Θ,ξ∈Ξ, γ > 0 (2.2.20)

which resembles the row sum criterion from the Schur lemma, a multiplication of two
matrices with a Lemarié–like off–diagonal decay yields again a matrix with nearly
the same decay rate. The following lemma is a slight generalization of a lemma from
[113, section 5] and [97, Proposition 1]:

Lemma 2.11. Let ̺ be a generalized Lemarié metric for the pair (Θ,Ξ). Further-
more, assume that D > 0, E ∈ (0, D) and F := D−E. If, for a choice Θi ∈ {Θ,Ξ},
1 ≤ i ≤ 3, it is

SF :=
∥∥EF (Θ2,Θ3)

∥∥
∞ = sup

θ2∈Θ2

∑

θ3∈Θ3

e−F̺Θ2×Θ3
(θ2,θ3) <∞, (2.2.21)

then the matrix product

A := EE(Θ1,Θ3)ED(Θ3,Θ2)

fulfills the off–diagonal decay estimate

|aθ1,θ2| ≤ SF e−E̺Θ1×Θ2
(θ1,θ2), for all θ1 ∈ Θ1, θ2 ∈ Θ2. (2.2.22)

If, moreover,

S ′
F :=

∥∥EF (Θ1,Θ3)
∥∥
∞ = sup

θ1∈Θ1

∑

θ3∈Θ3

e−F̺Θ1×Θ3
(θ1,θ3) <∞, (2.2.23)

then an analogous estimate holds for reversed roles of E and D

∣∣(ED(Θ1,Θ3)EE(Θ3,Θ2)
)
θ1,θ2

∣∣ ≤ S ′
F e−E̺Θ1×Θ2

(θ1,θ2), for all θ1 ∈ Θ1, θ2 ∈ Θ2.

If Θ1 = Θ2 = Θ3, then powers ED(Θ1,Θ1)
n =: (a

(n)
θ1,θ2

) have the off–diagonal decay

|a(n)
θ1,θ2

| ≤ Sn−1
F e−E̺Θ1×Θ1

(θ1,θ2), for all θ1, θ2 ∈ Θ1. (2.2.24)
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Proof. In [113, Section 5], only the special case Θ = Ξ was considered, but the proof
also works in the general setting. Using (2.2.16c) and (2.2.21), a direct calculation
yields (2.2.22):

|aθ1,θ2 | =
∑

θ3∈Θ3

e−E̺Θ1×Θ3
(θ1,θ3)e−D̺Θ2×Θ3

(θ2,θ3)

≤
∑

θ3∈Θ3

e−E(̺Θ1×Θ2
(θ1,θ2)−̺Θ2×Θ3

(θ2,θ3))e−D̺Θ2×Θ3
(θ2,θ3)

= e−E̺Θ1×Θ2
(θ1,θ2)

∑

θ3∈Θ3

e−(D−E)̺Θ2×Θ3
(θ2,θ3)

≤ SF e−E̺Θ1×Θ2
(θ1,θ2).

For interchanged roles of D and E and A = ED(Θ1,Θ3)EE(Θ3,Θ2), one calculates
analogously

|aθ1,θ2 | =
∑

θ3∈Θ3

e−D̺Θ1×Θ3
(θ1,θ3)e−E̺Θ2×Θ3

(θ2,θ3)

≤
∑

θ3∈Θ3

e−D̺Θ1×Θ3
(θ1,θ3)e−E(̺Θ1×Θ3

(θ1,θ3)−̺Θ1×Θ2
(θ1,θ2))

= e−E̺Θ1×Θ2
(θ1,θ2)

∑

θ3∈Θ3

e−(D−E)̺Θ1×Θ3
(θ1,θ3)

≤ S ′
F e−E̺Θ1×Θ2

(θ1,θ2).

(2.2.24) follows by induction.

Under the same additional condition (2.2.21), the matrix class of Lemarié–like
decay for Θ = Ξ is nearly inverse–closed. This was shown in [113, Théorème 5] for
the classical Lemarié metric and can be transferred to the generalized case:

Theorem 2.12. Assume that ̺ is a generalized Lemarié metric for the pair (Θ,Θ),
with D > 0, E ∈ (0, D), F := D−E and (2.2.21) holds. Let M = (mθ,ξ)θ,ξ∈Θ be an
automorphism of ℓ2(Θ) with

A‖c‖ℓ2(Θ) ≤ ‖Mc‖ℓ2(Θ) ≤ B‖c‖ℓ2(Θ) (2.2.25)

and the off–diagonal decay estimate

|mθ,ξ| ≤ Ce−D̺Θ×Θ(θ,ξ) (2.2.26)

for some constants A,B,C > 0. Then the inverse M−1 =: (pθ,ξ)θ,ξ∈Θ has exponential
off–diagonal decay as well:

|pθ,ξ| ≤ C1e
−D1̺Θ×Θ(θ,ξ) (2.2.27)

for some C1 > 0 and

D1 = min

{
E

2
,−
⌊

E

2 log
((

eD̺0 + C
B

)
SF
)
⌋

log

(
1 − A

B

)}
, (2.2.28)

where ̺0 ≥ 0 is the constant from (2.2.16a).
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Proof. In [113, Théorème 5], only the case ̺0 = 0 was considered, but the proof for
̺0 > 0 is completely analogous. Without loss of generality, assume that M is positive
self–adjoint, otherwise use M−1 = M∗(MM∗)−1 and Lemma 2.11. By (2.2.25), the
spectrum σ(M) is contained in [A,B], i.e., σ(S) ⊂ [0, 1 − A

B
] for S := I − 1

B
M.

Moreover, ‖S‖ ≤ 1 − A
B

=: q < 1, so that the Neumann series M−1 = 1
B

∑∞
n=0 Sn

can be used to estimate |pθ,ξ| by the entries of Sn =: (s
(n)
θ,ξ )θ,ξ∈Θ. For large n, we use

|s(n)
θ,ξ | ≤ ‖Sn‖ ≤ qn. For small n, we choose a number E ∈ (0, D). By (2.2.26) and

the definition of S, we have

|s(1)
θ,ξ | ≤ δθ,ξ +

C

B
e−D̺Θ×Θ(θ,ξ) ≤

(
eD̺0 +

C

B

)
e−D̺Θ×Θ(θ,ξ),

so that by Lemma 2.11, for F := D − E,

|s(n)
θ,ξ | ≤

(
eD̺0 +

C

B

)n (
(e−D̺Θ×Θ(ζ,ξ))ζ,ξ∈Θ

)n
θ,ξ

≤
(
eD̺0 +

C

B

)n
Sn−1
F e−E̺Θ×Θ(θ,ξ).

Hence for any n0 ∈ N it follows that

|pθ,ξ| ≤ 1

B

(
δθ,ξ +

( n0∑

n=1

(
eD̺0 +

C

B

)n
Sn−1
F

)
e−E̺Θ×Θ(θ,ξ)

)
+

1

B

∞∑

n=n0+1

qn

≤ 1

B

(
eE̺0 +

n0∑

n=1

(
eD̺0 +

C

B

)n
Sn−1
F

)
e−E̺Θ×Θ(θ,ξ) +

qn0+1

B(1 − q)

≤ eE̺0

B

(
1 +

n0∑

n=1

(
eD̺0 +

C

B

)n
Sn−1
F

)
e−E̺Θ×Θ(θ,ξ) +

( 1

A
− 1

B

)(
1 − A

B

)n0

.

Since

1 = eD̺0e−D̺0 ≤ eD̺0e−F̺0 ≤ eD̺0SF ,

we can estimate

|pθ,ξ| ≤ e(D+E)̺0

B

( n0∑

n=0

(
eD̺0 +

C

B

)n
SnF

)
e−E̺Θ×Θ(θ,ξ) +

( 1

A
− 1

B

)(
1 − A

B

)n0

=
e(D+E)̺0

(
(eD̺0 + C

B
)n0+1Sn0+1

F − 1
)

B
(
(eD̺0 + C

B
)SF − 1

) e−E̺Θ×Θ(θ,ξ) +
( 1

A
− 1

B

)(
1 − A

B

)n0

≤ C1

((
eD̺0 +

C

B

)n0

Sn0
F e−E̺Θ×Θ(θ,ξ) +

(
1 − A

B

)n0
)
,

where

C1 := max

{
e(D+E)̺0

(
eD̺0 + C

B

)
SF

B
(
(eD̺0 + C

B
)SF − 1

) , 1

A
− 1

B

}
.

Now we choose

n0 :=

⌊
E

2 log
(
(eD̺0 + C

B
)SF
)ρΘ×Θ(θ, ξ)

⌋
≥ 0,



50 CHAPTER 2. FRAMES

so that (2.2.28) follows by

(
eD̺0 +

C

B

)n0

Sn0
F e−E̺Θ×Θ(θ,ξ) +

(
1 − A

B

)n0

= en0 log((eD̺0+ C
B )SF )−E̺Θ×Θ(θ,ξ) + en0 log(1−A

B )

≤ e−D1̺Θ×Θ(θ,ξ).

In the next subsection, we will also need the following result for frames that are
localized to a Riesz basis. It is a slight generalization of results already presented
in [41, 89].

Theorem 2.13. Assume that ̺ is a generalized Lemarié metric for the pair (Θ,Ξ).
Let F = {fθ}θ∈Θ be a frame in H with canonical dual frame F̃ = {f̃θ}θ∈Θ and
G = {gξ}ξ∈Ξ be a Riesz basis for H with dual basis G̃ = {g̃ξ}ξ∈Ξ, such that F is
̺–exponentially localized to G̃,

∣∣〈fθ, g̃ξ〉
∣∣ . e−α̺Θ,Ξ(θ,ξ), θ ∈ Θ, ξ ∈ Ξ, (2.2.29)

for some α > 0. Moreover, assume that
∥∥Eγ(Θ,Ξ)

∥∥ <∞ and
∥∥Eγ(Ξ,Ξ)

∥∥ <∞ hold
for all 0 < γ0 < γ < α, where α > 2γ0. Then there exists δ ∈ (0, α

2
− γ0), such that

∣∣〈f̃θ, gξ〉
∣∣ . e−δ̺Θ,Ξ(θ,ξ), θ ∈ Θ, ξ ∈ Ξ. (2.2.30)

Proof. Consider the isomorphism

G̃ : H → ℓ2(Θ), G̃f :=
(
〈f, g̃ξ〉

)
ξ∈Ξ

,

its adjoint
G̃∗ : ℓ2(Θ) → H, G̃∗c = c⊤G̃

and the operator T := G̃SG̃∗ : ℓ2(Ξ) → ℓ2(Ξ), where

S : H → H, Sf :=
∑

θ∈Θ

〈f, fθ〉fθ

is the frame operator associated with F . T is an automorphism of ℓ2(Ξ) with

Tξ1,ξ2 = 〈eξ1 ,Teξ2〉ℓ2(Ξ) =
∑

ξ∈Ξ

〈g̃ξ2 , fξ〉〈fξ, g̃ξ1〉.

Moreover, since by assumption
∥∥Eγ(Ξ,Θ)

∥∥
∞ <∞ for 0 < γ0 < γ < α, Lemma 2.11

yields the componentwise estimate

|T| ≤ Eα−γ(Ξ,Θ)Eα(Θ,Ξ) ≤
∥∥Eγ(Ξ,Θ)

∥∥
∞Eα−γ(Ξ,Ξ).

Since
∥∥Eα−γ(Ξ,Ξ)

∥∥
∞ < ∞ holds for 0 < γ0 < α − γ, an application of Theorem

2.12 with D = α− γ, γ0 < F < α− γ and E = D−F = α− γ−F ∈ (0, α− γ− γ0)
guarantees the existence of a 0 < δ ≤ E

2
< α−γ−γ0

2
, such that |T−1| . Eδ(Ξ,Ξ).
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Since by a straightforward computation, it is

〈fθ, g̃ξ〉 = 〈SS−1fθ, g̃ξ〉 =
〈∑

µ∈Θ

〈S−1fθ, fµ〉fµ, g̃ξ
〉

=
∑

µ∈Θ

〈S−1fθ, fµ〉〈fµ, g̃ξ〉 =
∑

µ∈Θ

〈f̃θ, fµ〉〈fµ, g̃ξ〉

=
∑

µ∈Θ

(∑

ν∈Ξ

〈f̃θ, gν〉〈g̃ν , fµ〉
)
〈fµ, g̃ξ〉

= (AT)θ,ξ,

where
A :=

(
〈f̃θ, gξ〉

)
θ∈Θ,ξ∈Ξ

=
(∑

µ∈Θ

〈fθ, g̃µ〉(T−1)µ,ξ

)
θ∈Θ,ξ∈Ξ

,

another application of Lemma 2.11 yields

|A| . Eα(Θ,Ξ)|T−1| . Eα(Θ,Ξ)Eδ(Ξ,Ξ) ≤ ‖Eα−δ(Θ,Ξ)‖∞Eδ(Θ,Ξ).

Here we have used that

α− δ > α− α− γ − γ0

2
=
α+ γ + γ0

2
> γ0,

so that ‖Eα−δ(Θ,Ξ)‖∞ <∞ by assumption.

Remark 2.14. In order to obtain a strong localization of F̃ against the Riesz basis
G, it is obvious that one needs α ≫ 2γ0 in Theorem 2.13.

2.2.3 Proof of the Gelfand Frame Property

As already discussed in Subsection 2.2.1, our aim is to show that the aggregated
system Ψ = {ψλ}λ∈J from (2.2.8) is not only a frame in L2(Ω), but also a Gelfand
frame for some Gelfand triple (Hs

0(Ω), L2(Ω), H−s(Ω)). In this subsection, we will
see how the concept of localized frames may come into play as one possible tool to
do so.

First of all, we shall define an appropriate Lemarié metric for the pair of index
sets (J ,J ), mimicing the distance function (2.2.13) to some extent. For parameters
β, σ > 0 and all λ = (i, j, e,k), λ′ = (i′, j′, e′,k′) ∈ J , let us define the function

̺1(λ, λ
′) :=

β

σ
log
(
1 + 2min{j,j′}∥∥κi(2−jk) − κi′(2

−j′k′)
∥∥
)

+ |j − j′| log 2 +
9β

2σ
log 2,

(2.2.31)

i.e., for α > 0 we have

e−α̺1(λ,λ′) = 2−9αβ/(2σ)
(
1 + 2min{j,j′}∥∥κi(2−jk) − κi′(2

−j′k′)
∥∥
)−αβ/σ

2−α|j−j
′|.

(2.2.32)
Note that the wavelet type parameters e, e′ do not enter the definition of ̺1(λ, λ

′).
Essentially, this is due to the fact that the supports of ψλ and ψλ′ only weakly
depend on the wavelet type.

For the further analysis, we will need the following lemma, see [79]:
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Lemma 2.15. On the real upper half plane Hd := Rd × R+, define the function

̺P(y,y′) := Artanhϑ =
1

2
log

1 + ϑ

1 − ϑ
, y,y′ ∈ Hd (2.2.33)

where

ϑ := ϑ(y,y′) :=
‖y − y′‖
‖y − y′‖ ∈ [0, 1) (2.2.34)

and y := (x,−t) for y = (x, t) ∈ H. Then (Hd, ̺P) is a metric space.

Remark 2.16. The metric ̺P on Hd is a straightforward generalization of the
Poincaré metric δP on the complex upper half plane H := {z ∈ C : Im z > 0}

δP(z1, z2) := Artanh
∣∣∣z2 − z1

z2 − z1

∣∣∣, z1, z2 ∈ H (2.2.35)

to the real upper half plane Hd. The distance function δP is indeed a metric on the
Poincaré half plane H, since it is the composition δP(z1, z2) = δh(ϕ(z1), ϕ(z2)) of the
hyperbolic metric δh in the open unit disc D := {z ∈ C : |z| < 1}

δh(z1, z2) = inf
γ:[0,1]→D,

γ(0)=z1,γ(1)=z2

∫ 1

0

∣∣γ′(t)
∣∣

1 −
∣∣γ(t)

∣∣2 dt = Artanh
∣∣∣ z2 − z1

1 − z1z2

∣∣∣, z1, z2 ∈ D

and the Möbius transformation ϕ : H → D, ϕ(z) = iz+1
z+i

, see [76, 111] for details.

Using Lemma 2.15, the generalized Lemarié metric axioms can be checked easily:

Lemma 2.17. For σ > 0 and 0 < β < 2σ, the tuple ̺ = (̺1) is a generalized
Lemarié metric for the tuple of index sets (J ,J ).

Proof. Property (2.2.16a) follows from ̺1(λ, λ) = 9β
2σ

log 2, (2.2.16b) is trivial. For
the triangle inequality (2.2.16c), we will use an analogous argument as in [79], which
is based on the metric (2.2.33) on the upper half plane Hd+1. Like in [79], one
observes that

(
1 + ϑ

1 − ϑ

)1/2

=
1 + ϑ

2

( |t′ + t|2
t′t

)1/2(
1 +

‖x′ − x‖2

|t′ + t|2
)1/2

. (2.2.36)

We have the equivalence

1

2

(
1 + ϑ

1 − ϑ

)1/2

≤ max

{√
t′

t
,

√
t

t′

)(
1 +

‖x′ − x‖
max{t, t′}

}
≤

√
32

(
1 + ϑ

1 − ϑ

)1/2

,

(2.2.37)
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since by (2.2.34) and (2.2.36)

1 + ϑ

1 − ϑ
=

(1 + ϑ)2

4

( |t′ + t|2
t′t

)(
1 +

‖x′ − x‖2

|t′ + t|2
)

≤
(t′
t

+ 2 +
t

t′

)(
1 +

‖x′ − x‖
|t′ + t|

)2

≤ 4 max
{t′
t
,
t

t′

}(
1 +

‖x′ − x‖
max{t, t′}

)2

= 4
(

max
{√t′

t
,

√
t

t′

})2
(

1 +
‖x′ − x‖
max{t, t′}

)2

≤ 16(1 + ϑ)2
(√t′

t
+

√
t

t′

)2
(

1 +
‖x′ − x‖
|t′ + t|

)2

≤ 32(1 + ϑ)2

(
t′

t
+ 2 +

t

t′

)(
1 +

‖x′ − x‖2

|t′ + t|2
)

= 128
1 + ϑ

1 − ϑ
.

In the following, we use (2.2.37) at (x, t) =
(
κi(2

−jk), 2−j
)
. Since (2.2.31) yields

̺1

(
(i, j,k), (i′, j′,k′)

)

=
β

σ
log
(
1 + 2min{j,j′}∥∥κi(2−jk) − κi′(2

−j′k′)
∥∥
)

+ |j − j′| log 2 +
9β

2σ
log 2

=
β

σ
log
(
2|j−j

′|(σ/β−1/2)2|j−j
′|/2
(
1 +

∥∥κi(2−jk) − κi′(2
−j′k′)

∥∥
max{2−j, 2−j′}

))
+

9β

2σ
log 2,

(2.2.37) and the metric properties of ̺P imply for β < 2σ

̺1

(
(i, j,k), (i′′, j′′,k′′)

)

=
β

σ
log
(
2|j−j

′′|(σ/β−1/2)2|j−j
′′|/2
(
1 +

∥∥κi(2−jk) − κi′′(2
−j′′k′′)

∥∥
max{2−j, 2−j′′}

))
+

9β

2σ
log 2

≤ β

σ
log
(√

32
(1 + ϑ

(
(x, t), (x′′, t′′)

)

1 − ϑ
(
(x, t), (x′′, t′′)

)
)1/2)

+ |j − j′′|
(

1 − β

2σ

)
log 2 +

9β

2σ
log 2

≤ β

σ
̺P

(
(κi(2

−jk), 2−j), (κi′(2
−j′k′), 2−j

′

)
)

+ |j − j′|
(

1 − β

2σ

)
log 2

+
β

σ
̺P

(
(κi′(2

−j′k′), 2−j
′

), (κi′′(2
−j′′k′′), 2−j

′′

)
)

+ |j′ − j′′|
(

1 − β

2σ

)
log 2 +

7β

σ
log 2

≤ β

σ
log
(
2|j−j

′|/2
(
1 +

∥∥κi(2−jk) − κi′(2
−j′k′)

∥∥
max{2−j, 2−j′}

))
+ |j − j′|

(
1 − β

2σ

)
log 2

+
β

σ
log
(
2|j

′−j′′|/2
(
1 +

∥∥κi′(2−j′k′) − κi′′(2
−j′′k′′)

∥∥
max{2−j′ , 2−j′′}

))
+ |j′ − j′′|

(
1 − β

2σ

)
log 2

+
9β

σ
log 2

= ̺1

(
(i, j,k), (i′, j′,k′)

)
+ ̺1

(
(i′, j′,k′), (i′′, j′′,k′′)

)
.
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Since, in the following, we will frequently use Lemma 2.11 and Theorem 2.12,
we have to clarify first for which range of γ > 0 the condition (2.2.21) holds. Using
a Riemann–type argument, observe that for λ ∈ J , j′ ≥ j0 and any r > d, we can
assume that the estimates

∑

|λ′|=j′

(
1 + 2min{j,j′}∥∥κi(2−jk) − κi′(2

−j′k′)
∥∥
)−r

. 2−j
′

∫

Rd

(
1 + 2min{j,j′}‖x‖

)−r
dx

and therefore, by estimating the integral expression further, also

∑

|λ′|=j′

(
1 + 2min{j,j′}∥∥κi(2−jk) − κi′(2

−j′k′)
∥∥
)−r

. 2dmax{0,j′−j} (2.2.38)

hold, where the constants involved only depend on r. As an immediate consequence,
we get the following lemma:

Lemma 2.18. For the generalized Lemarié metric ̺ = (̺1) with parameters σ > 0
and 0 < β < 2σ, it is ‖Eγ‖∞ <∞ for all γ > max{σd

β
, d}.

Proof. Note that for 0 < β < 2σ, ̺ is indeed a Lemarié metric by Lemma 2.17.
Since βγ

σ
> d, (2.2.38) yields

∑

|λ′|=j′

(
1 + 2min{j,j′}∥∥κi(2−jk) − κi′(2

−j′k′)
∥∥
)−βγ/σ

. 2dmax{0,j′−j}

and therefore

∑

λ′∈J
e−γ̺1(λ,λ′)

= 2−9βγ/(2σ)
∑

j′≥j0

2−γ|j
′−j|

∑

|λ′|=j′

(
1 + 2min{j,j′}∥∥κi(2−jk) − κi′(2

−j′k′)
∥∥
)−βγ/σ

.
∑

j′≥j0

2−γ|j
′−j|+dmax{0,j′−j}

≤
∑

j′≥j0

2−(γ−d)|j′−j|.

Since γ > d by assumption, the latter sum can be estimated uniformly in λ by

∑

j′≥j0

2−(γ−d)|j′−j| =
∑

j′≥j0
j′≤j

2−(γ−d)(j−j′) +
∑

j′≥j0
j′>j

2−(γ−d)(j′−j)

≤ 2
∑

j′′≥0

2−(γ−d)j′′

=
2

1 − 2d−γ
=: Cγ <∞,

so that ‖Eγ‖∞ ≤ Cγ <∞.
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Remark 2.19. (i) The result of Lemma 2.18 resembles much that of [89, Lemma
2.1]. There, the special case ̺1(λ, λ

′) = log
(
1 + ‖λ − λ′‖

)
for a relatively

separated subset J ⊂ Rd was considered, with ‖Eγ‖∞ <∞ for γ > d. In fact,
it is possible to exchange the integral argument (2.2.38) in Lemma 2.18 by the
techniques from [89], resulting in an estimate of the form

∑

|λ′|=j′

(
1 + 2min{j,j′}∥∥κi(2−jk) − κi′(2

−j′k′)
∥∥
)−r

. 2rmax{0,j′−j} (2.2.39)

for all r > d, which is weaker than (2.2.38) but still sufficient to prove the
boundedness of ‖Eγ‖∞ in the range γ > max{σd

β
, d}. However, we shall need

the stronger estimate (2.2.38) later on.

(ii) Since in the Lemarié metric case, the range for boundedness of ‖Eγ‖∞ depends
on the choice of β and σ and not only on the global constant d, we will have
to keep track of this dependence when it comes to any application of Lemma
2.11.

For the further discussion, note that any sequence c ∈ ℓp(J ) can be uniquely re-

sorted as an M–tuple c = (c(1), . . . , c(M)) ∈ ℓp(J �)M with c(i,µ) = c
(i)
µ and equivalent

norms

‖c‖ℓp(J ) h ‖(c(1), . . . , c(M))‖ℓp(J�)M :=
M∑

i=1

‖c(i)‖ℓp(J�).

Since the entries of the diagonal matrix D = (δλ,λ′2
|λ|)λ,λ′∈J do not depend on

the patch numbers, this resorting can also be applied in the situation of weighted
sequence spaces. So, with a slight abuse of notation concerning a double use of D

as a matrix both over J and J �, we also have the equivalence

‖c‖ℓp,Ds (J ) h
∥∥(c(1), . . . , c(M))

∥∥
ℓp,Ds (J�)M :=

M∑

i=1

‖c(i)‖ℓp,Ds (J�), (2.2.40)

where the constants involved do not depend on s ≥ 0.

With this notation, matrices with ̺–exponential decay yield bounded operators
on weighted ℓp spaces:

Lemma 2.20. For parameters β, σ > 0, let ̺1 : J × J → R0
+ be given by (2.2.31).

Then, for γ > max{σd
β
, d}, the matrix Eγ := Eγ(J ,J ) = (e−γ̺1(λ,λ′))λ,λ′∈J is a

bounded operator from ℓp,Ds(J ) to ℓp,Ds(J ) for all p ∈ [1,∞] and for any s ∈
(0, γ − d).

Proof. Similar to the proof of the Schur lemma, we prove the boundedness of Eγ on
ℓ1,Ds(J ) and on ℓ∞,Ds(J ), and then conclude by interpolation of weighted sequence
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spaces, see [11] for details. For the boundedness on ℓ1,Ds(J ), we compute

‖Eγc‖ℓ1,Ds (J )

≤
∑

λ,λ′∈J
e−γ̺1(λ,λ′)|cλ′ |2sj

=
∑

λ,λ′∈J
2−γ|j−j

′|2sj
(
1 + 2min{j,j′}∥∥κi(2−jk) − κi′(2

−j′k′)
∥∥
)−βγ/σ

|cλ′ |

=
∑

j,j′≥j0

2−γ|j−j
′|2sj

∑

|λ′|=j′
|cλ′ |

∑

|λ|=j

(
1 + 2min{j,j′}∥∥κi(2−jk) − κi′(2

−j′k′)
∥∥
)−βγ/σ

.

Since for fixed λ′ ∈ J and j ≥ j0, the estimate (2.2.38) yields

∑

|λ|=j

(
1 + 2min{j,j′}∥∥κi(2−jk) − κi′(2

−j′k′)
∥∥
)−βγ/σ

. 2dmax{0,j−j′},

with a constant independent from λ′ and j, we get

‖Eγc‖ℓ1,Ds (J ) .
∑

j,j′≥j0

2−γ|j−j
′|2sj2dmax{0,j−j′}

∑

|λ′|=j′
|cλ′|

≤
∑

j,j′≥j0

2−(γ−d)|j−j′|2sj
∑

|λ′|=j′
|cλ′|

≤
∑

j′≥j0

2sj
′
∑

|λ′|=j′
|cλ′|

∑

j≥j0

2−(γ−d−s)|j−j′|

. ‖c‖ℓ1,Ds (J ),

where we have used the assumption that s < γ − d. For the boundedness of Eγ on
ℓ∞,Ds(J ), observe that

‖Eγc‖ℓ∞,Ds (J )

≤ sup
λ∈J

∑

λ′∈J
e−γ̺1(λ,λ′)|cλ′|2sj

= sup
j≥j0

∑

j′≥j0

2−γ|j−j
′|2sj sup

|λ|=j

∑

|λ′|=j′

(
1 + 2min{j,j′}∥∥κi(2−jk) − κi′(2

−j′k′)
∥∥
)−βγ/σ

|cλ′|.

Using again the estimate (2.2.38) yields

sup
|λ|=j

∑

|λ′|=j′

(
1 + 2min{j,j′}∥∥κi(2−jk) − κi′(2

−j′k′)
∥∥
)−βγ/σ

|cλ′ | . 2dmax{0,j′−j} sup
|λ′|=j′

|cλ′|

and hence

‖Eγc‖ℓ∞,Ds (J ) . sup
j≥j0

∑

j′≥j0

2−γ|j−j
′|2sj2dmax{0,j′−j} sup

|λ′|=j′
|cλ′|

≤ sup
j≥j0

∑

j′≥j0

2−(γ−d−s)|j−j′|‖c‖ℓ∞,Ds (J )

. ‖c‖ℓ∞,Ds (J ),

which proves the claim. Note that here, in contrast to Lemma 2.18, we did not have
to use any further restriction on the Lemarié metric parameter β > 0.
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Theorem 2.21. Let ̺ = (̺1) be the generalized Lemarié metric from (2.2.31) for
the parameters σ > 0 and 0 < β < 2σ. Moreover, assume that α > max{σd

β
, d} and,

for s ∈ (0, α−d), assume that Ψ� is a Gelfand frame in (Hs
0(�), L2(�), H−s(�)) for

the Gelfand triple of sequence spaces (ℓ2,Ds(J �), ℓ2(J �), ℓ2,D−s(J �)). Furthermore,

assume that Ψ is localized against its global canonical dual Ψ̃

∣∣〈ψλ, ψ̃λ′〉
∣∣ . e−α̺1(λ,λ′), λ, λ′ ∈ J . (2.2.41)

If, additionally, the overlapping decomposition (2.2.1) of Ω satisfies the estimate

‖u‖Hs(Ω) h inf
ui∈Hs

0(Ωi)

u=
PM

i=1 Eiui

M∑

i=1

‖ui‖Hs(Ωi) (2.2.42)

uniformly in u ∈ Hs
0(Ω), then Ψ is a Gelfand frame for

(
Hs

0(Ω), L2(Ω), H−s(Ω)
)

with respect to the Gelfand triple of sequence spaces (ℓ2,Ds(J ), ℓ2(J ), ℓ2,D−s(J )).

Proof. Ψ is a Hilbert frame by Lemma 2.7. From Lemma 2.5, we know that the
local systems Ψ(i) are Hilbert frames in L2(Ωi) with canonical dual Ψ̃(i), and they
are Gelfand frames for (Hs

0(Ωi), L2(Ωi), H
−s(Ωi)) for the Gelfand triple of sequence

spaces (ℓ2,Ds(J �), ℓ2(J �), ℓ2,D−s(J �)). Hence, the corresponding Gelfand frame
operators

F̃ (i) : Hs
0(Ωi) → ℓ2,Ds(J �), g 7→ 〈g, Ψ̃(i)〉⊤Hs

0(Ωi)×H−s(Ωi)
(2.2.43)

and

(F (i))∗ : ℓ2,Ds(J �) → Hs
0(Ωi), c 7→ c⊤Ψ(i) (2.2.44)

are bounded. As an immediate consequence, without using further assumptions,
one can show the boundedness of F ∗. In fact, for any sequence c ∈ ℓ2,Ds(J ), the
representation

F ∗c =
M∑

i=1

∑

µ∈J�

c(i)µ ψ(i,µ) =
M∑

i=1

Ei(F
(i))∗c(i),

the continuity of Ei and (F (i))∗, and (2.2.40) imply

‖F ∗c‖Hs(Ω) ≤
M∑

i=1

∥∥(F (i))∗c(i)
∥∥
Hs(Ωi)

.

M∑

i=1

‖c(i)‖ℓ2,Ds (J�) h ‖c‖ℓ2,Ds (J ).

Next we prove the boundedness of F̃ : Hs
0(Ωi) → ℓ2,Ds(J ), for 1 ≤ i ≤ M . Given

some u ∈ Hs
0(Ω), by assumption (2.2.42), we can assume the existence of functions

ui ∈ Hs
0(Ωi) with u =

∑M
i=1Eiui, such that the estimate ‖u‖Hs(Ω) & ‖ui‖Hs(Ωi) holds

uniformly in u. Hence (2.2.43) yields

‖u‖Hs(Ω) &

M∑

i=1

‖ui‖Hs(Ωi) &

M∑

i=1

‖F̃ (i)ui‖ℓ2,Ds (J�). (2.2.45)
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Using the expansion of the global dual frame elements in the local dual bases

ψ̃λ|Ωi
= E∗

i ψ̃λ =
∑

µ∈J�

〈E∗
i ψ̃λ, ψi,µ〉L2(Ωi)ψ̃i,µ,

one computes the identity

〈u, ψ̃λ〉 =
M∑

i=1

〈ui, E∗
i ψ̃λ〉L2(Ωi) =

M∑

i=1

∑

µ∈J�

〈ui, ψ̃i,µ〉L2(Ωi)〈ψ(i,µ), ψ̃λ〉.

The matrix G = (〈ψ̃λ, ψ(i,µ)〉)λ,(i,µ)∈J fulfills |G| . Eα(J ,J ), so that G is bounded
on ℓ2,Ds(J ) by Lemma 2.20. Hence we have

∥∥∥
(
〈u, ψ̃λ〉

)
λ∈J

∥∥∥
ℓ2,Ds (J )

.
∥∥∥
(
〈ui, ψ̃i,µ〉L2(Ωi)

)
(i,µ)∈J

∥∥∥
ℓ2,Ds (J )

h

M∑

i=1

‖F̃ (i)ui‖ℓ2,Ds (J�),

so that (2.2.45) yields the claim.

Remark 2.22. (i) In [51], a smooth partition of unity Σ := {σi}1≤i≤M subor-
dinate to the overlapping decomposition (2.2.1) of Ω was used to prove the
Gelfand frame property of Ψ. Unfortunately, for many interesting domains
Ω, like the L–shaped domain, such a partition of unity does not exist. How-
ever, given such a partition of unity Σ := {σi}1≤i≤M with σiu ∈ Hs

0(Ωi) and
‖σiu‖Hs(Ωi) . ‖u‖Hs(Ω) for s ∈ (0, α−d), it is trivial to see that (2.2.42) indeed
holds.

(ii) For the L–shaped domain

Ω = (−1, 1)2 \ [0, 1)2 = (−1, 0) × (−1, 1) ∪ (−1, 1) × (−1, 0)

and s = 1, the condition (2.2.42) has been verified in [52]. Namely, for a
smooth function φ : [0, 3π

2
] → R0

+ with φ(θ) = 1 for θ ≤ π
2

and φ(θ) = 0 for
θ ≥ π, one can split H1

0 (Ω) ∋ u = u1 + u2 with u1(x, y) = u(x, y)φ(θ(x, y)),
where (r(x, y), θ(x, y)) are the polar coordinates of (x, y) ∈ Ω with respect to the
reentrant corner. It is ui ∈ H1

0 (Ωi) and one can easily show that ‖ui‖H1(Ωi) .

‖u‖H1(Ω), utilizing the Lipschitz domain property of Ω.

(iii) The condition (2.2.42) corresponds to a so–called stable space splitting of
H1

0 (Ω), see [122, 123]. Such decompositions of a given Hilbert space play a
crucial role in domain decomposition techniques.

It remains to show how the exponential localization (2.2.41) of Ψ against its

global canonical dual Ψ̃ can be realized in practice. For this purpose, we will use
another localization argument. Assume that Ψ�,◦ := {ψ�,◦

µ }µ∈J�,◦ is a template

wavelet basis on the unit cube, with index set J �,◦. We may choose Ψ� = Ψ�,◦

both to be a wavelet basis, but since we want to leave open the possibility to choose
a genuine wavelet frame Ψ� from the very start of the construction, or to work
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with two different wavelet bases, let us distinguish between the two systems in the
following.

Given the overlapping covering C = {Ωi}1≤i≤M of Ω, we assume that we can
construct a non–overlapping auxiliary covering C◦ = {Ω◦

i }1≤i≤M ′ with diffeomor-
phisms κ◦i : � → Ω◦

i . Then we can define an associated aggregated system Ψ◦ :=
{E◦

i ψ
◦
i,µ}(i,µ)∈J ◦ , where J ◦ is constructed in the same way as J and

ψ◦
i,µ :=

ψ�,◦
µ

(
(κ◦i )

−1(·)
)

∣∣ detDκ◦i
(
(κ◦i )

−1(·)
)
|1/2 . (2.2.46)

By construction, Ψ◦ is a Riesz basis in L2(Ω) with the same global Sobolev regularity
as Ψ�,◦.

It turns out that the localization property (2.2.41) is in fact fulfilled by the
canonical dual of Ψ for any aggregated wavelet frame constructed in this way, as
long as β, σ > 0 are appropriately chosen and Ψ is localized to the Riesz basis Ψ◦:

Proposition 2.23. Let Ψ and Ψ◦ be constructed as above and consider the function
̺1 from (2.2.31) for the fixed parameters σ > 0 and 0 < β < 2σ. If, for some
α > 2 max{σd

β
, d}, it is

∣∣〈ψλ, ψ◦
λ′〉
∣∣ . e−α̺2(λ,λ′), λ ∈ J , λ′ ∈ J ◦ (2.2.47)

where ̺2 : J × J ◦ → R0
+ is defined by

̺2(λ, λ
′) :=

β

σ
log
(
1 + 2min{j,j′}∥∥κi(2−jk) − κ◦i′(2

−j′k′)
∥∥
)

+ |j − j′| log 2 +
9β

2σ
log 2,

(2.2.48)

completely analogous to (2.2.31), then there exists δ ∈ (0, σ
2
−max{σd

β
, d}), such that

∣∣〈ψλ, ψ̃λ′〉
∣∣ . e−δ̺1(λ,λ′), λ, λ′ ∈ J . (2.2.49)

Proof. Using an analogous proof as in Lemma 2.17, it is straightforward to see that
the triple ̺ = (̺1, ̺2, ̺3), where

̺3(λ, λ
′) :=

β

σ
log
(
1 + 2min{j,j′}∥∥κ◦i (2−jk) − κ◦i′(2

−j′k′)
∥∥
)

+ |j − j′| log 2 +
9β

2σ
log 2,

is a generalized Lemarié metric for the pair of index sets (J ,J ◦). Moreover, we can
assume that a corresponding version of Lemma 2.18 also holds for ̺, i.e., we have
‖Eγ(J ,J ◦)‖∞ <∞ and ‖Eγ(J ◦,J ◦)‖∞ <∞ for all γ > max{σd

β
, d}.

Expanding the global canonical dual elements ψ̃λ in the dual reference Riesz
basis Ψ̃◦ = {ψ̃◦

λ}λ∈J ◦ , we get

〈ψλ, ψ̃λ′′〉 =
∑

λ′∈J ◦

〈ψλ, ψ◦
λ′〉〈ψ̃◦

λ′ , ψ̃λ′′〉. (2.2.50)
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By (2.2.47), it is
∣∣〈Ψ,Ψ◦〉⊤

∣∣ . Eα(J ,J ◦), and the norms ‖Eγ(J ,J ◦)‖∞ and
‖Eγ(J ◦,J ◦)‖∞ stay bounded for all γ ∈ (max{σd

β
, d}, α). So Theorem 2.13 implies

the existence of γ ∈ (0, α
2
− max{σd

β
, d}) with

∣∣〈Ψ̃◦, Ψ̃〉⊤
∣∣ . Eδ(J ◦,J ). Since more-

over α − δ > α
2

+ max{σd
β
, d} > max{σd

β
, d}, we know that

∥∥Eα−δ(J ,J ◦)
∥∥
∞ < ∞,

so that Lemma 2.11 finally yields (2.2.49):

∣∣〈Ψ, Ψ̃〉⊤
∣∣ .

∣∣Eα(J ,J ◦)Eδ(J ◦,J )
∣∣ .

∥∥Eα−δ(J ,J ◦)
∥∥
∞Eδ(J ,J ).

It turns out that condition (2.2.47) can be fulfilled quite easily by choosing an
appropriate pair of reference wavelet frames Ψ, Ψ◦. Here we will exploit the fact
that for all known constructions of wavelet bases and frames on the unit cube �, the
supports of ψ�

(j,e,k) and ψ�,◦
(j′,e′,k′) are essentially localized at the dyadic grid points

2−jk and 2−j
′

k′, respectively:

sup
x∈supp(ψ�

j,e,k
)

‖x − 2−jk‖ . 2−j, (j, e,k) ∈ J �, (2.2.51)

sup
x∈supp(ψ�,◦

j,e,k
)

‖x − 2−jk‖ . 2−j, (j, e,k) ∈ J �,◦. (2.2.52)

(2.2.51) and (2.2.52) indeed hold for the constructions from [59, 61]. Since the local
parametrizations κi and κ◦i′ are sufficiently smooth, it immediately follows that also

sup
x∈suppψ(i,j,e,k)

∥∥x − κi(2
−jk)

∥∥
Rd . 2−j, (i, j, e,k) ∈ J (2.2.53)

and

sup
x∈suppψ◦

(i′,j′,e′,k′)

∥∥x − κ◦i′(2
−j′k′)

∥∥
Rd . 2−j

′

, (i, j, e,k) ∈ J ◦. (2.2.54)

Then, raising some vanishing moment conditions on the reference systems Ψ� and
Ψ�,◦ is sufficient to guarantee (2.2.47):

Theorem 2.24. Assume that, for N ∈ N with N ≥ α > 0, the systems Ψ�,Ψ�,◦ ⊂
Hα(�) fulfill the following moment conditions:

∫

�

xβψ�

(j,e,k)(x) dx = 0, |β| < N, (j, e,k) ∈ J �, e 6= 0, (2.2.55)
∫

�

xβψ�,◦
(j′,e′,k′)(x) dx = 0, |β| < N, (j′, e′,k′) ∈ J �, e′ 6= 0. (2.2.56)

Then, lifting Ψ� and Ψ�,◦ as in (2.2.4) and (2.2.46), Ψ is exponentially ̺–localized
to Ψ◦, i.e., there exists a constant C > 0, only depending on global parameters, such
that ∣∣〈ψλ, ψ◦

λ′〉
∣∣ ≤ Ce−α̺2(λ,λ′), λ ∈ J , λ′ ∈ J ◦, (2.2.57)

where ̺2 is given by (2.2.48), for the parameters σ > 0 and 0 < β < 2σ.
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Proof. First of all, assume that j′ ≥ j. Using (2.2.56) and the Cauchy–Schwarz
inequality, we get for λ = (i, j, e,k) and λ′ = (i′, j′, e′,k′) with e, e′ 6= 0
∣∣〈ψλ, ψ◦

λ′〉
∣∣ =

∣∣〈ψλ, ψ◦
λ′〉L2(suppψ◦

λ′
)

∣∣

=

∣∣∣∣∣

∫

suppψ�,◦

(j′,e′,k′)

ψλ(κ
◦
i′(x))ψ�,◦

(j′,e′,k′)(x)| detDκ◦i′(x)|1/2 dx

∣∣∣∣∣

=

∣∣∣∣∣

∫

suppψ�,◦

(j′,e′,k′)

(
ψλ(κ

◦
i′(x))| detDκ◦i′(x)|1/2 − P (x)

)
ψ�,◦

(j′,e′,k′)(x) dx

∣∣∣∣∣

.
∥∥(ψλ ◦ κ◦i′)| detDκ◦i′(·)|1/2 − P

∥∥
L2(suppψ�,◦

(j′,e′,k′)
)
,

where P is an arbitrary polynomial of total degree strictly less than N . Then a
Whitney–type estimate yields

∣∣〈ψλ, ψ◦
λ′〉
∣∣ . 2−αj

′
∣∣(ψλ ◦ κ◦i′)| detDκ◦i′(·)|1/2

∣∣
Hα(suppψ�,◦

(j′,e′,k′)
)

. 2−αj
′‖ψλ ◦ κ◦i′‖Hα(suppψ�,◦

(j′,e′,k′)
)

. 2−αj
′‖ψλ‖Hα(Ωi)

. 2−α(j′−j).

In the other case j′ ≤ j, one can show in a completely analogous way
∣∣〈ψλ, ψ◦

λ′〉
∣∣ =

∣∣〈ψ◦
λ′ , ψλ〉L2(suppψλ)

∣∣

=

∣∣∣∣∣

∫

suppψ�

(j,e,k)

ψ◦
λ′(κi(x))ψ�

(j,e,k)(x)| detDκi(x)|1/2 dx

∣∣∣∣∣

=

∣∣∣∣∣

∫

suppψ�

(j,e,k)

(
ψ◦
λ′(κi(x))| detDκi(x)|1/2 − P (x)

)
ψ�

(j,e,k)(x) dx

∣∣∣∣∣

.
∥∥(ψ◦

λ′ ◦ κi)| detDκi(·)|1/2 − P
∥∥
L2(suppψ�

(j,e,k)
)
,

so that
∣∣〈ψλ, ψ◦

λ′〉
∣∣ . 2−α|j−j

′|. Now let us analyze the situations where the integrals
〈ψλ, ψ◦

λ′〉 can be nontrivial at all. By (2.2.53) and (2.2.54), a necessary condition for
suppψλ ∩ suppψ◦

λ′ having nontrivial measure is
∥∥κi(2−jk) − κ◦i′(2

−j′k′)
∥∥ . 2−min{j,j′},

i.e., (
1 + 2min{j,j′}∥∥κi(2−jk) − κ◦i′(2

−j′k′)
∥∥
)−r

& 2−r, (2.2.58)

for any r > 0 desired, where the constant involved does not depend on the concrete
value of r. We choose r := αβ/σ, so that (2.2.58) yields the claim

∣∣〈ψλ, ψ◦
λ′〉
∣∣ .

(
1 + 2min{j,j′}∥∥κi(2−jk) − κ◦i′(2

−j′k′)
∥∥
)−αβ/σ

2−α|j−j
′|

h e−α̺2(λ,λ′).
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Part II

Discretization of Elliptic Problems

63





Chapter 3

Regularity Theory for Elliptic

Boundary Value Problems

In the succeeding chapters, we will be interested in the numerical solution of the
elliptic operator equation (0.0.11). Since the approximability of the variational
solution u depends on its smoothness properties, we will collect some results from
the regularity theory of second–order elliptic boundary value problems on a bounded
domain Ω ⊂ Rd in this chapter.

In the classical regularity theory, the verification of smoothness properties for
u requires that the boundary ∂Ω has a sufficiently high Hölder regularity. Under
the latter assumption, it can be shown that the Sobolev regularity of the unknown
solution u is essentially determined by the smoothness of the right–hand side f , as
the following special case of [92, Th. 9.1.16] for second–order equations shows.

Theorem 3.1. Assume that Ω ∈ C1+δ for some δ ≥ 0 and let the bilinear form a
from (0.0.4) be H1–elliptic. Moreover, let s ≥ 0 satisfy s 6= 1

2
and 0 ≤ s ≤ δ if

δ ∈ N, and 0 ≤ s < δ otherwise. Concerning the coefficients aα,β, we assume that

∂γaα,β ∈ L∞(Ω), |γ| ≤ max{0, δ + |β| − 1}

in the case δ ∈ N, and that

aα,β ∈
{
Cδ+|β|−1(Ω), |β| > 0

L∞(Ω), |β| = 0

holds if δ /∈ N. Then, for a right–hand side f ∈ H−1+s(Ω), the variational solution
u of (0.0.9) belongs to H1+s(Ω) ∩H1

0 (Ω), and it is

|u|H1+s(Ω) . |f |H−1+s(Ω) + |u|H1(Ω). (3.0.1)

Consequently, for the Poisson equation (0.0.3), we may expect that u is contained
in H1+s(Ω) whenever f ∈ H−1+s(Ω) and the domain is in C1+s′ for some s′ ≥ s.
Analogous smoothing results are known for convex domains Ω, where for f ∈ L2(Ω)
it follows that u ∈ H2(Ω), see [104].

Unfortunately, the domains used in practical computations are often only piece-
wise smooth and have reentrant corners spoiling convexity. As an example we men-
tion the L–shaped domain Ω = (−1, 1)2 \ [0, 1)2 that shall be used in the numerical

65
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experiments of Chapters 5 and 8. In the case of such a nonsmooth domain the
above mentioned classical regularity results do no longer apply. For polygonal or,
more generally, for Lipschitz domains, the solution operator A−1 generally maps
L2(Ω) onto a larger space than H2(Ω)∩H1

0 (Ω) which also comprises functions with
singularities.

We shall from now on assume that the operator under consideration is the neg-
ative Dirichlet Laplacian A = −∆ induced by the bilinear form (0.0.5). Then, for
the case of Lipschitz domains, the following two important regularity theorems were
proved in [98].

Theorem 3.2 (H3/2–Theorem). Let Ω ⊂ Rd be a bounded Lipschitz domain. If f ∈
L2(Ω) and u is the weak solution of the Poisson equation (0.0.3), then u ∈ H3/2(Ω).

Theorem 3.3. For each α > 3
2
, there exists a bounded Lipschitz domain Ω ⊂ Rd

and a right–hand side f ∈ C∞(Ω), such that the weak solution u of (0.0.3) does not
belong to Hα(Ω).

As a consequence of Theorem 3.2, we can infer the continuous embedding

D(A;L2(Ω)) →֒ H3/2(Ω) ∩H1
0 (Ω), (3.0.2)

and the solution operator

A−1 : L2(Ω) → H3/2(Ω) ∩H1
0 (Ω)

of the Poisson problem (0.0.3) with right–hand side f ∈ L2(Ω) is bounded, see also
[103, Corollary 1.25]. Conversely, Theorem 3.3 implies that the embedding (3.0.2)
is sharp. Hence, for an arbitrary Lipschitz domain Ω and f ∈ L2(Ω), we cannot
conclude higher Sobolev regularity of the weak solution than u ∈ H3/2(Ω)∩H1

0 (Ω).
Then the question arises whether u does have a higher regularity in other scales

of smoothness spaces, namely, in the scale of Besov spaces. Results in this direction
are referred to as non–classical regularity theory. In [43, 48], the following theorem
was proved for the case of Lipschitz domains.

Theorem 3.4 ([43, Th. 3.1.6(a)]). Let Ω ⊂ Rd be a bounded Lipschitz domain.
Then there exists an ǫ ∈ (0, 1) only depending on the Lipschitz character of Ω, such
that whenever u is the weak solution of the Poisson equation (0.0.3) for a right–hand
side

f ∈ Bµ−2
p (Lp(Ω)), µ ≥ 1 +

1

p
, 1 < p ≤ 2 + ǫ, (3.0.3)

we know that

u ∈ Bα
τ (Lτ (Ω)), 0 < α < min

{ d

d− 1

(
1 +

1

p

)
, µ
}
, τ =

(α
d

+
1

p

)−1

. (3.0.4)

In a slightly weaker form, a theorem of this type has also been proved in [48,
Theorem 4.1]. By an interpolation argument, one can easily infer the following
regularity result for u in the special scale of Besov spacesBsd+1

τ (Lτ (Ω)), τ = (s+1
2
)−1,

see [45]. These particular spaces play a crucial role when it comes to nonlinear
approximation in H1(Ω), see also Section 4.1.
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Corollary 3.5. Let Ω ⊂ Rd be a bounded Lipschitz domain and assume that f ∈
H−1+µ(Ω) for some µ ≥ 1. Then the weak solution u of the Poisson equation (0.0.3)
fulfills

u ∈ Bα
τ (Lτ (Ω)), 1 < α < min

{ d

2(d− 1)
,
µ+ 1

3

}
+ 1, τ =

(α− 1

d
+

1

2

)−1

.

(3.0.5)

Hence for a sufficiently smooth right–hand side f , we may expect that u has
a significantly higher regularity in the scale of Besov spaces Bsd+1

τ (Lτ (Ω)), τ =
(s+ 1

2
)−1, than in the scale of Sobolev spaces Hs(Ω).

Remark 3.6. It is a convenient mnemonic to visualize regularity results like Corol-
lary 3.5 in an s–1

p
diagram, also referred to as a DeVore–Triebel diagram. Each

point (s, 1
p
)⊤ in the plane corresponds to a Besov space Bs

q(Lp(Ω)). Real interpola-
tion and embeddings between two Besov spaces then have a graphical counterpart,
just by connecting the two respective points in the diagram. As an example, the
Sobolev embedding theorem corresponds to a line with slope 1

d
, d being the space

dimension of the underlying domain. A graphical “proof” of Corollary 3.5 can be
found in Figure 3.1.

1
2

Bsd+1
τ (Lτ ), τ = (s+ 1

2
)−1

s

1
p

1

3
2

H3/2

H1

min{ 3d
2(d−1)

, µ+ 1}

Bsd
τ (Lτ ), τ = (s+ 1

2
)−1µ− 1

min{ d
2(d−1)

, µ+1
3
} + 1

Hµ−1

Figure 3.1: DeVore–Triebel diagram for Corollary 3.5

For the case the case that the right–hand side f is not contained in L2(Ω), one
may apply the following variant of a well–known theorem from Jerison and Kenig
[98], see also [43, 45]:

Theorem 3.7. Let Ω ⊂ Rd be a bounded Lipschitz domain and assume that f ∈
Hµ−1(Ω) for some µ > −1

2
. Then the weak solution u of the Poisson equation (0.0.3)

fulfills

u ∈ Bα
τ (Lτ (Ω)), 0 < α < min

{ 3d

2(d− 1)
, µ+ 1

}
, τ =

(α
d

+
1

2

)−1

. (3.0.6)
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There are even stronger results if the underlying domain Ω is polygonal. We
will confine the discussion to the case of spatial dimension d = 2. Concerning the
geometrical features of Ω, we shall use in the sequel the following notation as in
[55, 85]. We denote the segments of ∂Ω by Γj, j = 1, . . . , N , where Γj are open
and numbered in positive orientation. Sj shall be the endpoint of Γj, with ωj being
the measure of the interior angle at Sj. We shall also need following singularity
functions Sj,1, given in local polar coordinates (rj, θj) in the vicinity of the corner
Sj:

Sj,1(rj, θj) := η(rj)r
π/ωj

j sin
(πθj
ωj

)
. (3.0.7)

Here η : R0
+ → R+ is a suitable cutoff function, being 1 in a neighborhood of 0 and

going to zero fast enough to ensure that the supports of the N singularity functions
Sj,1 do not mutually intersect.

Using this notation, regularity results for solutions of the Poisson equation in
the case of polygonal domains are mainly based on the following theorem from [85].

Theorem 3.8. Let Ω ⊂ R2 be open, bounded and polygonal. Then, given a right–
hand side f ∈ L2(Ω), the variational solution u to the Poisson equation (0.0.3)
decomposes into a regular part uR ∈ H2(Ω) ∩H1

0 (Ω) and a singular part

u− uR = uS =
∑

ωj>π

cjSj,1, (3.0.8)

with the singularity functions Sj,1 from (3.0.7).

By the specific decay property of Sj,1 in the vicinity of the corner Sj, it is
Sj,1 ∈ Hs(Ω) for s < min{1 + π/ωj, 2}, see also [85, Th. 1.2.18]. Consequently,
since we may assume to have at least one reentrant corner in a nonconvex polygonal
domain Ω, uS is contained in Hs(Ω) only for

s < min{1 + π/ωj : ωj > π} (3.0.9)

which may be close to 3
2

if the angle ωj of the reentrant corner is big. In contrast to
the limited Sobolev regularity of uS, it was shown in [44] that uS has an arbitrary
high regularity in a specific scale of Besov spaces.

Theorem 3.9 ([44, Th. 2.3]). For the corner singularity functions Sj,1, it holds that
Sj,1 ∈ Bα

τ

(
Lτ (Ω)

)
for all α > 0, where τ = (α

2
+ 1

2
)−1.

As a consequence, by interpolation between the Besov spaces H3/2+ǫ(Ω) =

B
3/2+ǫ
2 (L2(Ω)) and Bα

τ (Lτ (Ω)), it is uS ∈ Bα
τ (Lτ ) for all α > 0 and τ = (α−1

2
+ 1

2
)−1,

see [44, Theorem 2.4]. The overall Besov regularity of u for a right–hand side
f ∈ L2(Ω) is hence only limited by the Besov regularity of the regular part uR.

For right–hand sides f of higher regularity than L2, it is possible to expand the
variational solution u of (0.0.3) into additional higher order singularity functions,
see [85, Ch. 2.7].
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Theorem 3.10. Let Ω ⊂ R2 be open, bounded and polygonal. Then, given a right–
hand side f ∈ H−1+s(Ω) for s ≥ 0, the variational solution u to the Poisson equation
(0.0.3) decomposes into a regular part uR ∈ H1+s(Ω) ∩H1

0 (Ω) and a singular part

u− uR = uS =
N∑

j=1

∑

0<mπ/ωj<s+1

cj,mSj,m, (3.0.10)

where the singularity functions Sj,m are defined as

Sj,m(rj, θj) :=




η(rj)r

mπ/ωj

j sin
(
mπθj

ωj

)
, mπ/ωj /∈ Z

η(rj)r
mπ/ωj

j

(
log rj sin

(
mπθj

ωj

)
+ θj sin

(
mπθj

ωj

))
, otherwise

.

(3.0.11)

Then, analogously to the situation of Theorem 3.9, also here it can be shown
that uS has limited Sobolev regularity, whereas the functions Sj,m are in Bα

τ (Lτ (Ω)),
τ = (α

2
+ 1

2
)−1, for all α > 0, see [44].

It should be noted that the above mentioned regularity results for the Poisson
equation immediately carry over to the Helmholtz equation

(γI + A)u = f in Ω, u|∂Ω = 0, (3.0.12)

where γ > 0 and A = −∆ is again the Dirichlet Laplacian. Problems of this type
will appear in the time discretization of the heat equation in Chapter 7. In order
to derive regularity estimates for the weak solution u of (3.0.12), we can apply the
resolvent equation

(λI − A)−1 − (µI − A)−1 = (µ− λ)(λI − A)−1(µI − A)−1, λ, µ ∈ ρ(A) (3.0.13)

for the special case λ = 0 and µ = −γ, where A : D(A;V ) ⊂ V → V , which gives
the decomposition

(γI + A)−1 = A−1(I − γ(γI + A)−1). (3.0.14)

Consequently, for a right–hand side f , the weak solution u to the Helmholtz equation
(3.0.12) can then be interpreted as the weak solution of the Poisson equation with
a modified right–hand side f̃ = (I − γ(γI + A)−1)f . Since (γI + A)−1 maps at
least into H1(Ω), we have that f̃ ∈ Hmin{1,s}(Ω) whenever f ∈ Hs(Ω), so that for
a significant range of right–hand sides, we can derive analogous Besov regularity
results also for the Helmholtz equation (3.0.12).
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Chapter 4

Wavelet Discretization

This chapter deals with some well–known concepts and algorithms for the numerical
treatment of elliptic operator equations by means of wavelet methods.

Since we are particularly interested in the approximation of the unknown solution
u up to a prescribed target accuracy ε > 0, we shall review the basic elements
of nonlinear approximation theory in Section 4.1. It will turn out that for those
operator equations we are interested in, the most important approximation methods
to study are best or near–best N–term approximations. Given a Riesz basis for
the energy space, we can resort to the problem of computing approximate N–term
approximations in ℓ2, which is discussed in Section 4.2. Section 4.3 provides a brief
review of the fundamental properties of elliptic operators in wavelet coordinates. In
the sequel, we will address the numerical realization of the three building blocks
for adaptive wavelet schemes: adaptive thresholding (Section 4.4), routines for the
approximation of right–hand sides (Section 4.5) and the approximate application of
biinfinite compressible matrices to finite vectors (Section 4.6).

4.1 Nonlinear Approximation

Let (X, ‖·‖X) be a normed linear space, v ∈ X and assume that we are dealing with
the numerical approximation of v within some prescribed tolerance ε > 0, using
only finite many basis functions from a set Ψ = {ψλ}λ∈J ⊂ X. It is then obvious
that for decreasing tolerances ε, the number of active basis elements as well as the
associated computational work and storage requirements will in general increase.
Consequently, one will be interested in those algorithms where the balance between
the accuracy and the associated computational cost is somewhat optimal. In the
following, we shall explain in which sense optimality is meant here.

Any approximation of v will be chosen from some subspace S ⊂ X. Essentially,
there are two different approximation strategies here. Either S is taken to be a
linear space, e.g., the linear span

SN = span{ψλk
, 1 ≤ k ≤ N}

of N wavelets. This leads to so–called linear approximation methods. Or we let
the algorithm choose the approximations from a nonlinear set, which is referred to

71
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as nonlinear approximation. A prominent example of a nonlinear approximation
method arises if S is chosen to be the union

ΣN =
⋃

#Λ≤N
S(Λ)

of all linear combinations from Ψ with at most N nontrivial coefficients, where S(Λ)
is defined as in (1.1.8). This approach is called N–term approximation. Obviously,
ΣN is not a linear space since the sum of two elements x, y ∈ ΣN might have 2N
nontrivial coefficients in general. Both for linear and for nonlinear approximation
approximation, we can then define the error of best approximation

distX(v, S) := inf
w∈S

‖v − w‖X (4.1.1)

and ask for which elements v ∈ X a specific decay rate of distX(v, S) may be
expected as N tends to infinity, [32, 45, 69].

More precisely, for any Banach space X and a sequence T = (Tn)n≥0 of nested
and asymptotically dense subsets Tn ⊂ X, one introduces the approximation space
As
q(X) related to T by

As
q(X) :=

{
f ∈ X : |f |As

q(X) <∞
}
, (4.1.2)

where s > 0, 0 < q ≤ ∞, and

|f |As
q(X) :=

{(∑∞
n=0(n

s distX(f, Tn))
q 1
n

)1/q
, 0 < q <∞

supn≥0 n
s distX(f, Tn) , q = ∞

. (4.1.3)

As
q(X) is a Banach space for q ≥ 1 and a quasi–Banach space for q < 1, with quasi–

norm ‖ · ‖As
q(X) := ‖ · ‖X + | · |As

q(X). Because of the monotonicity of the sequence
(distX(f, Tn))n≥0, we also have the equivalence

|f |As
q(X) h

{(∑∞
n=0(2

ns distX(f, T2n))q
)1/q

, 0 < q <∞
supn≥0 2ns distX(f, T2n) , q = ∞

, (4.1.4)

which is sometimes more convenient to work with. Varying the parameters s or q,
we obtain dense and continuous embeddings [70]

As1
q1

(X) →֒ As2
q2

(X), if s1 > s2 or (s1 = s2, q1 > q2). (4.1.5)

Under appropriate conditions on the sequence T of approximating spaces, it can be
shown that As

q(X) coincides with more classical function spaces. This is possible
mainly due to the following theorem which identifies As

q(X) as an interpolation
space, see [32] for a proof:

Theorem 4.1. Let Y →֒ X be two densely and continously embedded Banach spaces.
Moreover, assume that T = (Tn)n≥0 is a sequence of nested subspaces of Y such that
for some m > 0, we have a Jackson–type estimate

distX(f, Tn) . 2−mn‖f‖Y , f ∈ Y (4.1.6)
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and a Bernstein–type estimate

‖f‖Y . 2mn‖f‖X , f ∈ Tn. (4.1.7)

Then, for 0 < s < m, we have the norm equivalence

‖(2nsK(f, 2−mn))n≥0‖ℓq(N) h ‖f‖X + ‖(2ns distX(f, Tn))n≥0‖ℓq(N), (4.1.8)

where K(f, ·) is the K–functional from (1.2.4), and hence [X,Y ]s/m,q = As
q(X).

For the concrete situations we are interested in, namely the approximation within
a Sobolev space, we can immediately draw the following two conclusions, see also
[31, 32, 69]:

Corollary 4.2. Under appropriate approximation and regularity properties of the
underlying wavelet basis Ψ, we have the following facts about approximation in X =
H t(Ω):

(i) For linear approximation in H t(Ω), the corresponding approximation space for
q = 2 is given as As

2(H
t(Ω)) = Hsd+t(Ω).

(ii) For N–term approximation with the spaces Tn = Σn, the corresponding ap-
proximation space for q = 2 is given as As

2(H
t(Ω)) = Bsd+t

τ (Lτ (Ω)), where τ
and s are related via τ = (s+ 1

2
)−1.

Hsd+t

1
2

s

t H t

sd+ t
Bsd+t
τ (Lτ ), τ = (s+ 1

2
)−1

1
τ

1
p

Figure 4.1: Approximation spaces in Corollary 4.2

Since any linear subspace T with dimT = N is contained in the set ΣN , best
N–term approximation can be used as the ultimate benchmark for both linear and
nonlinear approximation methods. This is why we shall strive to realize at least an
approximate best N–term approximations in the following. Although Hsd+t(Ω) =
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Bsd+t
2 (L2(Ω)) is not embedded into Bsd+t

τ (Lτ (Ω)) for τ ≤ 2, it turns out that in
many cases of practical interest, the target object v may have a significantly higher
smoothness in the Besov scale Bsd+τ

τ (Lτ ) than in the Sobolev scale Hsd+t for other
reasons. We have already discussed some examples in Chapter 3. In this case,
nonlinear approximation method pay off most because the rate of best N–term
approximation in H t is higher than the approximation rate of, e.g., a uniform space
refinement.

4.2 Best N–Term Approximation in ℓ2

Having a Riesz basis Ψ = {ψλ}λ∈J for the function space X at hand, any approxi-
mation of an element v ∈ X is by definition equivalent to an approximation of the
corresponding coefficient sequence v in ℓ2. In this section, we therefore resort to
nonlinear approximation results in ℓ2 and show how they are related to the results
of the previous section.

Let us assume that we want to approximate a given vector v = (vλ)λ∈J ∈ ℓ2 by
another vector vε up to a given target accuracy ε > 0. Then the most economical
such approximation would of course be the vector vN , defined by replacing all but
the N largest coefficients in modulus of vλ by zero, with N = N(ε,v) being the
smallest integer such that

‖v − vN‖ℓ2 ≤ ε. (4.2.1)

Such a vector vN is called a best N–term approximation, since vN attains the mini-
mal error of all N–term approximations in ℓ2

σN(v) := inf
{
‖v − wN‖ℓ2 : # suppwn ≤ N

}
. (4.2.2)

We are particularly interested in those subclasses of ℓ2, where the error of best
N–term approximation decays with a specific rate s > 0

σN(v) . N−s, (4.2.3)

so that we can bound the number of significant coefficients in vN by N . ε−1/s. Es-
sentially, these spaces correspond to the special approximation spaces As := As

∞(ℓ2)
from (4.1.2), endowed with the equivalent (quasi–)norm

‖v‖As := sup
N≥0

(N + 1)sσN(v), σ0(v) := ‖v‖ℓ2 . (4.2.4)

It turns out that the abstract set As coincides with the weak ℓτ spaces [70]

ℓwτ :=
{
v ∈ ℓ2 : |v|ℓwτ := sup

n≥1
n1/τ |γn(v)| <∞

}
, 0 < τ < 2. (4.2.5)

Here, for any v ∈ ℓ2 and n ∈ N, we denote by γn(v) the n–th largest coefficient in
modulus of v. The expression | · |ℓwτ is a quasi–seminorm on ℓwτ , since the triangle
inequality only holds up to a τ–dependent constant

|v + w|ℓwτ ≤ C̃1(τ)
(
|v|ℓwτ + |w|ℓwτ

)
, v,w ∈ ℓwτ . (4.2.6)
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In addition, we set ‖v‖ℓwτ := ‖v‖ℓ2 + |v|ℓwτ . The continuous and dense embeddings

ℓτ →֒ ℓwτ →֒ ℓτ+δ, 0 < δ ≤ 2 − τ, (4.2.7)

are the reason for which ℓwτ is called weak ℓτ space. The connection between As and
ℓwτ is clarified in the following theorem from [33, 69]:

Theorem 4.3. For s > 0 and τ = (s + 1
2
)−1, the spaces As and ℓwτ coincide with

equivalent norms ‖ · ‖As h ‖ · ‖ℓwτ :

|v|ℓwτ h sup
N≥1

N sσN(v), v ∈ ℓwτ . (4.2.8)

Especially, v ∈ ℓwτ implies that σN(v) ≤ CN−s, where the constant C only depends
on τ as τ tends to zero.

The following example shows how well the so far stated results fit together when
it comes to nonlinear approximation in a Sobolev space and an appropriate wavelet
Riesz basis is used:

Example 4.4. Assume that H is a closed subspace of H t(Ω) and that v ∈ H shall
be approximated with a best N–term approximation in H t(Ω). Moreover, assume
that {Ψ, Ψ̃} is a wavelet Riesz basis in L2(Ω) such that D−tΨ is also a Riesz basis in
H. Let us denote by v := D−t〈v, Ψ̃〉⊤ ∈ ℓ2 the coefficient sequence of v with respect
to D−tΨ. From Corollary 4.2 we know that the approximation space for best N–
term approximation in H t(Ω) is As

2(H
t(Ω)) = Bsd+t

τ (Lτ (Ω)) with τ = (s+ 1
2
)−1, as

long as the underlying approximating spaces fulfill the appropriate direct and inverse
estimates. For the particularly interesting special case of spline wavelet bases with
approximation order m ≥ sd+ t, this is indeed the case, see [33, 55, 134].

Then, by (1.2.24), we have that v ∈ Bsd+t
τ (Lτ (Ω)) is equivalent to v ∈ ℓτ . Since

ℓτ →֒ ℓwτ = As by (4.2.7) and Theorem 4.3, we finally get the implication

v ∈ Bsd+t
τ (Lτ (Ω)), τ =

(
s+

1

2

)−1

⇒ σN(v) . N−s, N ∈ N. (4.2.9)

In practical computations, where the target quantity v is only implicitly given,
we cannot expect the exact rearrangement γN(v) to be known. Then it is easier to
aim at the development of algorithms that compute an approximate or near best
N–term approximation wN , by which we mean that # suppwN ≤ N and

‖v − wN‖ℓ2 ≤ CσN(v), (4.2.10)

where C ≥ 1 is a uniform constant. In the estimates for the computational com-
plexity of such an algorithm, the best N–term approximation vN may then serve
as a benchmark. To explain this in more detail, note that the approximation of an
element v ∈ As = ℓwτ up to accuracy ε needs at most N h ε−1/s degrees of freedom.
Hence we get the lower bound ε−1/s for the computational complexity to determine
any v from the unit ball from As within accuracy ε. Therefore it is natural to call
an algorithm asymptotically optimal if it realizes ε−1/s also as an upper complexity
bound, see [35]. More precisely, we call an algorithm s∗–optimal, if for any v from
the unit ball in As, s < s∗, and a given target accuracy ε, the algorithm yields an
approximation vε with ‖v − vε‖ℓ2 ≤ ε and the number of nontrivial coefficients in
vε as well as the number of arithmetic operations and storage locations to compute
vε stay proportional to ε−1/s.



76 CHAPTER 4. WAVELET DISCRETIZATION

4.3 Elliptic Operators in Wavelet Coordinates

For the numerical solution of the original operator equation (0.0.11), we shall of
course utilize some wavelet Riesz basis D−tΨ in the energy space H as ansatz and
test functions. Doing so, it is well–known that the original operator equation (0.0.11)
can be reformulated as an equivalent biinfinite matrix equation

Au = f , (4.3.1)

where u = u⊤D−tΨ, f = D−t〈f,Ψ〉⊤ and A = D−t〈AΨ,Ψ〉⊤D−t is the diagonally
preconditioned stiffness matrix. This guiding principle has already been observed
and propagated in a variety of early papers in wavelet theory, see, e.g., [13, 57, 60].

As a composition of the operator A and the Riesz maps, A : ℓ2 → ℓ2 is boundedly
invertible, which in turn implies the existence of constants c1, c2 ≥ 0, such that

c1‖v‖ℓ2 ≤ ‖Av‖ℓ2 ≤ c2‖v‖ℓ2 , v ∈ ℓ2. (4.3.2)

Consequently, the spectral condition number of A is bounded by

κ(A) = ‖A‖L(ℓ2)‖A−1‖L(ℓ2) ≤ c2c
−1
1 . (4.3.3)

In the case of A = (aλ,λ′)λ,λ′∈J being positive definite, results of the type (4.3.3)
carry over also to submatrices AΛ := (aλ,λ′)λ,λ′∈Λ, with a set Λ ⊂ J of active wavelet
coefficients. Here we have the estimates

‖AΛ‖L(ℓ2(Λ)) ≤ ‖A‖L(ℓ2), ‖A−1
Λ ‖L(ℓ2(Λ)) ≤ ‖A−1‖L(ℓ2). (4.3.4)

Consequently, also the condition numbers of the submatrices AΛ stay uniformly
bounded by

κ(AΛ) ≤ κ(A) ≤ c2c
−1
1 . (4.3.5)

In the sequel, we shall need the discrete energy norm

‖v‖A := 〈v,Av〉ℓ2 (4.3.6)

which, in view on the assumptions on A is also equivalent to the H–norm:

‖v‖H h ‖v‖a h ‖v‖ℓ2 h ‖v‖A, v = v⊤D−tΨ. (4.3.7)

4.4 Building Block 1: Adaptive Thresholding

In the numerical algorithms of the succeeding chapters, we will have to compute best
or near best N–term approximations of a given finitely supported vector v in linear
time, i.e., with at most a multiple of # suppv operations. Since the computation of
the exact best N–term approximation vN would require the sorting all elements of
v by their modulus, such a direct approach would need asymptotically a constant
times # suppv log(# suppv) arithmetic operations and therefore precludes itself.
However, in [6, 133] it has been shown that a complete sorting of the entries of v is
not necessary when it suffices to compute an approximate best N–term approxima-
tion ṽN , i.e., ‖v − ṽN‖ℓ2 ≤ Cε. Using approximate sorting techniques like binary
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binning or bucket sort algorithms [42], the additional log-factor in the complexity
estimate can in fact be avoided. There, one uses the alternative characterization of
ℓwτ

ℓwτ =
{
v ∈ ℓ2 : #{λ : 2−j ≥ |vλ| > 2−(j+1)} . 2jτ , j ∈ Z

}
(4.4.1)

and one aims at regrouping the entries of v according to the corresponding equiva-
lence classes (bins) of dyadic orders of magnitude

Vi =
{

(λ, vλ) : 2−(i+1) <
|vλ|
‖v‖ℓ2

≤ 2−i
}
. (4.4.2)

This approximate sorting can be performed in linear time. Reformulated as a nu-
merical procedure COARSE, the computation of an approximate best N–term
approximation for a given finitely supported v looks as follows, see also [133]:

Algorithm 4.5. COARSE[v, ε] → vε:

• q := ⌈log((# suppv)1/2‖v‖ℓ2/ε)⌉

• Regroup the elements of v into the sets V0, . . . , Vq, where vλ ∈ Vi if and only
if 2−(i+1)‖v‖ℓ2 < |vλ| ≤ 2−i‖v‖ℓ2, 0 ≤ i < q. Possible remaining elements are
put into the set Vq.

• Create vε by successively extracting elements from V0 and when it is empty
from V1 and so forth, until ‖v − vε‖ℓ2 ≤ ε.

It should be noted that it is possible to implement the COARSE algorithm
without actually constructing the bins Vi, see [6]. Of course, this does only affect
the constant in the complexity estimate. The following properties of COARSE can
be shown [133]:

Proposition 4.6. Let v be finitely supported and vε := COARSE[v, ε]. Then
we have ‖v − vε‖ℓ2 ≤ ε and vε has at most # suppvε . inf{N : σN(v) ≤ ε}
significant entries. Moreover, the number of arithmetic operations and storage
locations needed to compute vε is bounded by a constant multiple of # suppv +
max{log(ε−1‖v‖ℓ2), 1} . ε−1/s|v|1/sℓwτ

.

The routine COARSE is frequently used in adaptive algorithms in order to
ensure asymptotic optimality. This is mainly due to the following fact [33, 133]:

Proposition 4.7. Let θ < 1/3 be fixed, τ ∈ (0, 2) and τ = (s+ 1
2
)−1. Then, for any

ε > 0, v ∈ ℓwτ , and a finitely supported approximation w ∈ ℓ2 with ‖v − w‖ℓ2 ≤ θε,
the output w := COARSE[w, (1 − θ)ε] fulfills ‖v − w‖ℓ2 ≤ ε and the number of
significant entries in w is bounded by

# suppw . ε−1/s|v|1/sℓwτ
. (4.4.3)

As a consequence, there is a constant C̃2(τ), only depending on τ , such that

|w|ℓwτ ≤ C̃2(τ)|v|ℓwτ . (4.4.4)
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However, it should be noted that there are so far also adaptive wavelet algorithms
the convergence of which does not require any coarsening of the iterands, see [82].

For the proof of many complexity estimates for adaptive algorithms in ℓ2, includ-
ing Proposition 4.7 and the results presented in Chapter 7, one needs the following
important perturbation result for sequences from ℓwτ . The proof can be found in
[133].

Lemma 4.8 ([33, Lemma 4.11],[133, Proposition 3.4]). Let τ ∈ (0, 2) with τ =
(s + 1/2)−1. Then, for v ∈ ℓwτ and any finitely supported z ∈ ℓ2, we have the
estimate

|z|ℓwτ . |v|ℓwτ + (# supp z)s‖v − z‖ℓ2 . (4.4.5)

4.5 Building Block 2: Approximate Input Data

For the design of an adaptive scheme, one always has to assume that the input data
that determine the problem under consideration are accessible in a specific sense.
Concerning the class of elliptic operator equations (0.0.11) we are interested in, we
shall assume that the right–hand side f ∈ H ′ or, equivalently, its infinite wavelet
expansion coefficients f = D−t〈f,Ψ〉⊤ are completely known. By this we mean that
we are able to compute approximate wavelet expansions of f in the dual basis up
to any given accuracy. More strictly speaking, we require that for any ε > 0, there
exists a computable, finitely supported array fε ∈ ℓ2(J ) such that

‖f − fε‖ℓ2 ≤ ε. (4.5.1)

Since we know that the dual wavelet basis DtΨ̃ is dense in H ′, this first assumption
is not critical. However, in view of the pending complexity analysis of the adaptive
algorithm, it is of course also necessary that the computation of an approximate
right–hand side is done in the most economical way. To this end, we shall firstly
consider only those exact right–hand sides f that are contained in some Lorentz
sequence space ℓwτ , τ = (s + 1

2
)−1, s < s∗. By the wavelet characterization results

from Section 1.2, this assumption is equivalent to saying that f has a specific Besov
regularity.

Concerning the approximate right–hand sides, we will then require that fε realize
approximate best N–term approximations of the exact infinite right–hand side f ,
i.e.,

# supp fε . |f |1/sℓwτ
ε−1/s. (4.5.2)

Moreover, the associated computational work should stay proportional to the size
# supp fε of the input data. In the sequel, the computation of approximate right–
hand sides will be referred to as the numerical subroutine

RHS[t, ε] → fε. (4.5.3)

The assumptions on RHS can be justified in practice by using a priori information
on the singular and the smooth parts of the right–hand side f . A possible realization
may also consist of a projection of f onto a fine multiresolution space Ṽj, followed
by a thresholding step with the COARSE routine from Section 4.4.
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4.6 Building Block 3: Adaptive Matrix–Vector

Multiplication

4.6.1 Decay Estimates

In order to design an adaptive wavelet scheme for the approximate solution of (4.3.1),
it turns out to be of crucial importance that in many cases, the entries of the
biinfinite system matrix A exhibit a fast off–diagonal decay. Therefore, just by
dropping matrix entries that are small in modulus, A may be approximated well by
a sparse matrix with only a finite number of entries per row and column.

As the most important example, consider the case where H is a closed subspace
of the Sobolev space H t(Ω). There, for a large class of local and non–local elliptic
operators A : H → H ′, the stiffness matrix of an appropriate wavelet discretization
exhibits decay estimates of the form

2−(|λ′|+|λ|)t|〈Aψλ′ , ψλ〉| . 2−||λ|−|λ′||σ(1 + δ(λ, λ′))−β, λ, λ′ ∈ J , (4.6.1)

where σ > d/2, β > d and δ is given by (2.2.12).
Estimates of the form (4.6.1) are known to hold as soon as the underlying primal

wavelet basis Ψ is sufficiently smooth and the wavelets ψλ have adequate cancellation
properties [33, 129]. In particular, let us mention the discussion in [55, 134]. There,
under the assumptions that A is bounded from H t+s to H−t+s for |s| ≤ τ and that
Ψ admits the characterization (1.2.16) of Sobolev spaces Hs for s ∈ (−γ̃, γ), it was
shown that (4.6.1) holds for σ = min{τ, γ − t, t + m̃}. The value of β is greater or
equal to d + 2m̃ + 2t in the case of integral operators, and β can even be chosen
arbitrarily large in the case of differential operators.

In view of the estimate (4.6.1), we introduce for parameters σ, β > 0 the class of
matrices Aσ,β = Aσ,β,δ, comprising all matrices B = (bλ,λ′)λ,λ′∈J , such that

|bλ,λ′ | ≤ cB2−||λ|−|λ′||σ(1 + δ(λ, λ′))−β, λ, λ′ ∈ J (4.6.2)

holds for a constant cB which only depends on B. A matrix B is called quasi–sparse,
if it is B ∈ Aσ,β for some σ > d/2 and β > d. By an application of the Schur Lemma,
it can be shown that any quasi–sparse matrix B is bounded on ℓ2, which has not
been explicitly required in the definition. We refer to [33, Prop. 3.3] for a proof.

Moreover, as it turns out, quasi–sparse matrices are especially interesting from
the computational point of view, since they can be approximated well by sparse
matrices with only finite many nonzero entries per row and per column. To explain
this in more detail, we call a bounded operator A ∈ L(ℓ2) s

∗–compressible, when
for each j ∈ N there exists an infinite matrix Aj with at most αj2

j nontrivial
entries in each row and column with

∑
j∈N

αj < ∞, such that for any s < s∗, we

have ‖A − Aj‖L(ℓ2) ≤ Cj and
∑

j∈N
Cj2

js is summable. Whenever one of these

matrices Aj is applied to a vector with at most n = 2j significant entries, then the
corresponding number of arithmetical operations is bounded by a constant multiple
of n. More generally, it can be shown that a given s∗–compressible matrix B maps
ℓwτ boundedly onto itself, where τ = (s + 1

2
)−1 and 0 ≤ s < s∗, see [33, Prop. 3.8]

for a proof.
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It remains to verify whether and for which concrete value of s∗ a given quasi–
sparse stiffness matrix A from the wavelet discretization (4.3.1) can be expected to
be s∗–compressible. This question has been addressed and answered positively in a
series of papers [7, 33, 47, 55, 129, 134], at various levels of generality. Especially
for the case of spline wavelet bases, the attainable value for s∗ turns out to be
significantly high. The most comprehensive results in this direction can be found
in [134], where for spline wavelets of order m and a large class of differential and
integral operators of order t, s∗–compressibility of A could be established for a value
s∗ > m−t

d
. This lower bound is of particular importance in view of Example 4.4,

since m−t
d

is exactly the maximal convergence rate of the bestN–term approximation
with these wavelet bases, only assuming that u ∈ Bsd+t

τ (Lτ (Ω)). Having this in
mind, it is desirable not to spoil the decay properties of the current iterand by
approximate multiplications with A that are unavoidable in nearly every adaptive
wavelet algorithm.

Remark 4.9. By the concrete construction given in Section 2.2, analogous com-
pressibility results immediately transfer to the case of aggregated wavelet frames. In
fact, the smooth lifting of the reference wavelet basis on � = (0, 1)d to the domain
Ω preserves both the cancellation properties and the local regularity of the frame el-
ements. Consequently, the building blocks of adaptive wavelet schemes, as discussed
in this chapter, are also available for discretizations based on spline wavelet frames.

4.6.2 Approximate Application of Compressible Matrices

Having an s∗–compressible matrix A at hand one will of course be interested in al-
gorithms that realize the approximate application of A to finitely supported vectors
v within a given target accuracy, where the associated computational work stays
proportional to the length of the input parameter. In [33], it has been possible to
design a numerical routine APPLY the output of which approximates the exact
matrix–vector product Av with the desired tolerance and that has linear compu-
tational complexity, up to sorting operations. Analogous to the already mentioned
routine COARSE, binning and approximate sorting strategies may be used to
eliminate these sorting costs and to obtain an asymptotically optimal algorithm.
Consequently, we shall work with the following refined variant of APPLY from
[133]:

Algorithm 4.10. APPLY[A,v, ε] → wε:

• q := ⌈log((# suppv)1/2‖v‖ℓ2‖A‖L(ℓ2)2/ε)⌉
• Regroup the elements of v into the sets V0, . . . , Vq, where vλ ∈ Vi if and only

if 2−(i+1)‖v‖ℓ2 < |vλ| ≤ 2−i‖v‖ℓ2, 0 ≤ i < q. Possible remaining elements are
put into the set Vq.

• For k = 0, 1, . . ., generate vectors v[k] by subsequently extracting 2k − ⌊2k−1⌋
elements from

⋃
i Vi, starting from V0 and when it is empty continuing with V1

and so forth, until for some k = l either
⋃
i Vi becomes empty or

‖A‖L(ℓ2)

∥∥∥v −
l∑

k=0

v[k]

∥∥∥
ℓ2
≤ ε/2. (4.6.3)
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In both cases, v[l] may contain less than 2l − ⌊2l−1⌋ elements.

• Compute the smallest j ≥ l such that

l∑

k=0

Cj−k‖v[k]‖ℓ2 ≤ ε/2. (4.6.4)

• For 0 ≤ k ≤ l, compute the non–zero entries in the matrices Aj−k which have
a column index in common with one of the entries of v[k] and compute

wε :=
l∑

k=0

Aj−kv[k]. (4.6.5)

The asymptotic optimality of APPLY has been shown in [133, Prop. 3.8]:

Proposition 4.11. Let A be s∗–compressible and v be finitely supported. Then, for
the output wε := APPLY[A,v, ε], we have ‖Av − wε‖ℓ2 ≤ ε and wε has at most

# suppwε . ε−1/s|v|1/sℓwτ
significant entries. Moreover, the number of arithmetic

operations and storage locations needed to compute wε is bounded by a constant
multiple of ε−1/s|v|1/sℓwτ

+ # suppv.

4.7 Examples

In this section, we briefly address those adaptive algorithms that shall be used in
the numerical examples. The design of most adaptive wavelet algorithms follows a
general paradigm from [33, 34] which essentially comprises the following steps:

1. Using an appropriate wavelet Riesz basis, reformulate the original operator
equation (0.0.11) as an equivalent problem over some sequence space ℓ2.

2. Establish a convergent approximation scheme in the full space ℓ2 that works
with infinite vectors, the exact right–hand side f and exact matrix–vector
multiplications.

3. Then, derive an implementable variant of this algorithm, replacing all infinite–
dimensional quantities by finitely supported and computable ones. In partic-
ular, one has to work with an inexact right–hand side f ≈ f , approximate
matrix–vector operations, and appropriately matched tolerances for the sub-
routines like APPLY, RHS or COARSE. The algorithm should provide an
approximation of the unknown solution up to a given target accuracy ε. Many
known algorithms contain an outer loop over a geometrically decreasing se-
quence of tolerances ε(i) → ε which facilitates the convergence and complexity
analysis, but this is not necessary in general.

4. Finally, if possible, establish an optimal convergence rate of this implementable
algorithm and give complexity estimates. Preferably, the convergence rate
should match the rate of the best N–term approximation, and the associ-
ated computational work should behave at most linearly in the number of
unknowns.
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In the sequel, we will abbreviate adaptive solvers of the aforementioned type by
the subroutine SOLVE. The defining properties of SOLVE shall be collected in a
generic theorem:

Theorem 4.12. Let B be s∗–compressible and assume that for s ∈ (0, s∗), τ =
(s+ 1/2)−1, the system

Bx = y, (4.7.1)

(4.7.1) has a solution x ∈ ℓwτ . Then the numerical routine SOLVE[B,y, ε] → xε
produces a finitely supported xε so that

‖x − xε‖ℓ2 ≤ ε. (4.7.2)

Moreover, the number of nontrivial entries in xε is bounded by

# suppxε ≤ C|x|1/sℓwτ
ε−1/s, (4.7.3)

and the number of arithmetic operations to compute xε is also at most a multiple of
# suppxε.

4.7.1 A Richardson Iteration

The most straightforward method to establish an ℓ2–convergent numerical scheme
for the operator equation (4.3.1) is a Richardson iteration

u(0) := 0, u(n+1) := u(n) + ω(f − Au(n)), n = 0, 1, . . . (4.7.4)

with a relaxation parameter ω ∈ R. For the convergence of (4.7.4), we require
‖ · ‖ to be an equivalent norm on ℓ2 such that for the associated operator norm
‖M‖ := sup‖v‖=1 ‖Mv‖, it holds that

ρ := ‖I − ωA‖ < 1. (4.7.5)

It is a well–known fact from the theory of iterative methods that under (4.7.5), the
iteration (4.7.4) will exhibit linear convergence in ℓ2 to the exact solution u with an
error reduction per step by the factor ρ

‖u(n+1) − u‖ ≤ ρ‖u(n) − u‖. (4.7.6)

Moreover, in case of convergence, the exact solution u has the Neumann series
representation

u = ω(ωA)−1f = ω
∞∑

n=0

(I − ωA)nf . (4.7.7)

For the special case of A being symmetric and positive definite with extremal eigen-
values 0 < λmin ≤ λmax = ‖A‖L(ℓ2), a sufficient criterion for (4.7.5) to hold is that

0 < ω <
2

λmax

. (4.7.8)
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The optimal relaxation parameter ω̂ which minimizes the error reduction factor
ρ(ω) = ‖I − ωA‖L(ℓ2) can be computed as

ω̂ =
2

λmin + λmax

(4.7.9)

with

ρ(ω̂) =
λmax − λmin

λmax + λmin

=
κ(A) − 1

κ(A) + 1
. (4.7.10)

However, it should be emphasized that in order to get convergence of the Richardson
iteration (4.7.4), the system matrix A neither has to be symmetric nor definite.

In [34], for the case of a discretization based on wavelet Riesz bases, an imple-
mentable variant of the Richardson iteration (4.7.4) was studied. It could be shown
in loc. cit. that the approximate iteration converges with optimal order and that
the associated computational work stays proportional to the support sizes of the
iterands. Since in Chapter 5, we shall discuss a variant of this Richardson iteration
that also works in the case of a frame discretization, we will omit further details on
the numerical realization of (4.7.4) here.

4.7.2 The CDD1 Algorithm

In the numerical treatment of parabolic problems in Chapter 7, we will make use of
the algorithm from [33], which requires the matrix A to be symmetric and positive
definite. The algorithm introduced in loc. cit. is based on Galerkin approximations
uΛ, where for a given finite index set Λ ⊂ J , one defines uΛ ∈ SΛ to be the solution
of the projected problem

a(uΛ, v) = 〈f, v〉H′×H , v ∈ SΛ. (4.7.11)

By the Céa lemma [92], the Galerkin approximation uΛ is quasi–optimal, since we
have

‖u− uΛ‖H ≤ C inf
v∈SΛ

‖u− v‖H (4.7.12)

with a constant C only depending on Ω. Hence uΛ converges to u as soon as the
spaces SΛ are chosen arbitrarily dense in H.

Given a target accuracy ε > 0, the primary task of any adaptive wavelet–Galerkin
scheme is then to compute a finite index set Λε ⊂ J , such that the target accuracy
is realized

‖u− uΛε
‖H ≤ ε. (4.7.13)

Most probably, an algorithm for the computation of Λε will be of iterative form.
Given an initial guess Λ0 ⊂ J , e.g., Λ0 = ∅, the iteration loop decomposes into the
following three basic steps:

1. Compute the Galerkin approximation uΛj
.

2. Estimate the error ‖u − uΛj
‖ in some norm, using reliable a posteriori error

estimators.
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3. If necessary, refine the set of active wavelet coefficients Λj → Λj+1, increase
the iteration depth j and continue with step 1.

Of course steps 2 and 3 are the most intricate ones. In [46], it was shown how to
realize a reliable and implementable a posteriori error estimator based on a wavelet
expansion of the current residual

rΛ := f − AuΛ = A(u− uΛ) ∈ H ′. (4.7.14)

Since A : H → H ′ is boundedly invertible, the current error in ‖ · ‖H is equivalent
to the H ′–norm of the residual

‖u− uΛ‖H h ‖rΛ‖H′ . (4.7.15)

Consequently, given a wavelet Riesz basis DtΨ̃ for H ′, we can plug in a wavelet
expansion of the residual

rΛ =
∑

λ∈J
2−t|λ|〈rΛ, ψλ〉ψ̃λ, (4.7.16)

which gives the norm equivalence

‖u− uΛ‖H h
( ∑

λ∈J\Λ
2−2t|λ|∣∣〈rΛ, ψλ〉

∣∣2
)1/2

. (4.7.17)

Here we have used that by Galerkin orthogonality, those wavelet coordinates of rΛ
that refer to Λ are zero and can therefore be neglected. As a consequence of (4.7.17),
the quantities

δλ := 2−t|λ||〈rΛ, ψλ〉| = 2−t|λ|
∣∣∣〈f, ψλ〉 −

∑

λ′∈J\Λ
〈Aψλ, ψλ′〉

∣∣∣ (4.7.18)

may serve as error indicators where to refine the set Λ. Note that the series in
(4.7.18) is still infinite, so that δλ has yet to be replaced by a computable quan-
tity. However, it has been shown in [46] that the wavelet coefficients of rΛ decay
sufficiently fast to allow for such an approximation.

Moreover, one still has to guarantee convergence of the scheme, which concerns
step 3 of the aforementioned iteration. Given an index set Λ and a Galerkin ap-
proximation uΛ, the question is how to find a new index set Λ̂, such that the error
decreases geometrically in the discrete energy norm

‖uΛ̂ − u‖A ≤ q‖uΛ − u‖A, (4.7.19)

which, due to the symmetry of A, is equivalent to the saturation property

‖uΛ̂ − uΛ‖A ≥
√

1 − q2‖uΛ − u‖A. (4.7.20)

But since the latter norm is equivalent to the norm ‖rΛ‖ℓ2 of the discrete residual,
where rΛ = r⊤ΛDtΨ̃, it suffices that the new index set Λ̂ covers the most significant
entries of rΛ. In [46], it has been shown how to compute an approximate residual
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rΛ|Λ̂ having its nontrivial entries contained in a simultaneously computed index set

Λ̂ and
‖rΛ|Λ̂‖ℓ2 ≥ η‖rΛ‖ℓ2 (4.7.21)

for a given parameter η ∈ (0, 1). Plugging the computation of an approximate
residual into step 3 of the global iteration, the saturation property (4.7.20) and
hence the convergence of the overall scheme could be verified in [46].

Unfortunately, it is not guaranteed by this argument that the growth rate of
the chosen index sets Λj in [46] is the most economic one. In view of the results
on best N–term approximation from the previous section, the ultimate goal would
be to realize the same convergence order as the best N–term approximation. More
precisely, one will be interested in such a Galerkin scheme that realizes the estimate

‖u − uΛj
‖ ≤ C‖u‖1/s

ℓwτ
(#Λj)

−s, (4.7.22)

as j tends to infinity. Essentially, one has to control the growth rate #Λj+1/#Λj

from one index set Λj to the next finer one. In [33], it was shown how the itera-
tion from [46] can be made optimal, just by interleaving the refinement steps with
coarsening steps that ensure the approximation rate of the best N–term approxi-
mation. The concrete algorithm in loc. cit. uses the procedure COARSE that was
introduced in Section 4.2.

First numerical tests of the CDD1 algorithm were initially published in [8] which
is also the basis for the concrete implementation employed in this thesis. Experi-
ments concerning a simplified version of the scheme have been published in [39].
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Chapter 5

Frame Discretization

This chapter is concerned with the design of adaptive frame algorithms for the
numerical solution of the operator equation (0.0.11), where we will work essentially
with the setting introduced in Chapter 3. The results presented in this Chapter are
based on the analysis in [51].

Inspired by the techniques from [33], in Section 5.1 we give the principal argument
that the original operator equation can be again reformulated as a matrix equation
in the sequence space ℓ2. A series representation of the exact solution immediately
induces a Richardson iteration for the discrete system which shall be discussed in
Section 5.2. As the exact algorithm involves infinite matrices and vectors, we derive
an implementable version thereof and prove its convergence and optimal compu-
tational complexity under some technical assumptions. For the verification of the
asserted convergence and complexity results, we shall give some numerical examples
in Section 5.3.

5.1 Principal Ideas

By a construction as laid out in Chapter 2, we may assume from now on that
we have a Gelfand frame Ψ = {ψλ} for the Gelfand triple (H,L2(Ω), H ′), with a
corresponding Gelfand triple of sequence spaces (ℓ2,Dt , ℓ2, ℓ2,D−t). Consequently, we
know that the sequence spaces are isomorphic with isomorphisms ϕDt and ϕ∗

Dt from
(2.1.19) and (2.1.20), respectively. With a slight abuse of notation, we can therefore
abbreviate both mappings ϕDt and ϕ∗

Dt by Dt in the sequel, and their inverses are
given by D−t. A visualization of the situation can be found in Figure 5.1.

H �

� //

A
%%

F̃
��

L2(Ω) �

� // H ′

F
��

ℓ2,Dt �

�

Dt
//

F ∗
OO

ℓ2 �

�

Dt
// ℓ2,D−t

F̃ ∗

OO

Figure 5.1: Mappings in a Gelfand frame discretization of Au = f .

87
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Then it is easily shown that the original operator equation can be reformulated
as an equivalent biinfinite system in frame coordinates.

Lemma 5.1. Under the assumptions on A, the operator

A := D−tFAF ∗D−t = D−t〈AΨ,Ψ〉⊤D−t (5.1.1)

is a bounded operator from ℓ2 to ℓ2. Moreover A = A∗ and it is boundedly invertible
on its range Ran(A) = Ran(D−tF ).

Proof. Since A is a composition of bounded operators D−t : ℓ2 → ℓ2,Dt , F ∗ : ℓ2,Dt →
H A : H → H, F : H ′ → ℓ2,D−t and D−t : ℓ2,D−t → ℓ2, A is a bounded operator
from ℓ2 to ℓ2. Moreover, from the decomposition (5.1.1) it is clear that

Ker(A) = Ker(F ∗D−t), Ran(A) = Ran(D−tF ). (5.1.2)

Since A is symmetric, we have A = A∗ and the orthogonal decomposition

ℓ2 = Ker(F ∗D−t) ⊕ Ran(D−tF ). (5.1.3)

Therefore
A|Ran(A) : Ran(A) → Ran(A) (5.1.4)

is boundedly invertible.

In analogy to the result (4.7.7), we can again derive a series representation of
the unique solution Qu of Au = f in Ran(A):

Theorem 5.2. Let A satisfy the ellipticity assumptions. Denote

f := D−tFf (5.1.5)

and A as in (5.1.1). Then the solution u of (0.0.11) can be computed by

u = F ∗D−tQu (5.1.6)

where u solves

Qu = ω

∞∑

n=0

(I − ωA)nf , (5.1.7)

with 0 < ω < 2/λmax and λmax = ‖A‖L(ℓ2). Here Q : ℓ2 → Ran(A) is the orthogonal
projection onto Ran(A).

Proof. Like in Proposition 2.2, we have the expansion u =
∑

λ∈J 〈u, ψ̃λ〉V ψλ in V .

Since Ψ is a Gelfand frame, F ∗F̃ : H → H is bounded and implies u = F ∗F̃ u =∑
λ∈J 〈u, ψ̃λ〉H×H′ψλ with convergence in H. By Proposition 2.2 and the Banach

frame properties of Ψ, (0.0.11) is equivalent to the system of equations

∑

λ′∈J
〈u, 2t|λ′|ψ̃λ′〉H×H′2−t(|λ

′|+|λ|)〈Aψλ′ , ψλ〉H′×H = 2−t|λ|〈f, ψλ〉H′×H , λ ∈ J .

(5.1.8)
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Denote u := DtF̃ u and f , A as in (5.1.5) and (5.1.1), respectively. Then (5.1.8) can
be rewritten as

Au = f . (5.1.9)

For all v ∈ ℓ2

〈Av,v〉ℓ2 = 〈D−tFAF ∗D−tv,v〉ℓ2 = 〈AF ∗D−tv, F ∗D−tv〉H′×H .

Therefore, since A is positive, A is positive semi–definite. Let us denote λmax :=
‖A‖L(ℓ2) and λ+

min := ‖(A|Ran(A))
−1‖−1

L(ℓ2). For 0 < ω < 2/λmax, one can consider the
operator

B := ω
∞∑

n=0

(I − ωA)n. (5.1.10)

Since ρ := ‖I − ωA|Ran(A)‖L(ℓ2) = max{ωλmax − 1, 1 − ωλ+
min} < 1, with minimum

at ω∗ = 2/(λmax + λ+
min), one has that B is a well–defined bounded operator on

Ran(A). Moreover, it is also clear that

B ◦ A|Ran(A) = A ◦ B|Ran(A) = idRan(A) . (5.1.11)

Since A(I − Q) = 0,

Au = AQu = f . (5.1.12)

Therefore Qu ∈ Ran(A) is the unique solution of (5.1.9) in Ran(A) and we infer
from (5.1.11) that

Qu = Bf . (5.1.13)

By construction

〈f, ψλ〉H′×H = 〈F̃ ∗Ff, ψλ〉H′×H

= 〈F̃ ∗Dtf , ψλ〉H′×H

= 〈F̃ ∗DtAQu, ψλ〉H′×H

= 〈AF ∗D−tQu, ψλ〉H′×H , λ ∈ J ,

so that u = F ∗D−tQu solves (0.0.11).

5.2 An Approximate Richardson Iteration

5.2.1 The Algorithm

As a consequence of the series representation (5.1.7), the exact Richardson iteration

u(0) := 0, u(n+1) := u(n) + ω(f − Au(n)), n = 0, 1, . . . (5.2.1)

will converge in ℓ2 to the vector Qu, as long as the relaxation parameter is appropri-
ately chosen according to 0 < ω < 2/λmax. It is noteable that by f ,u(0) ∈ Ran(A),
the exact iterands u(n) are also contained in Ran(A) and hence ℓ2–orthogonal to
Ker(A).
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Of course, the Richardson iteration (5.2.1) cannot be implemented from infi-
nite vectors. Instead, we have to replace the ingredients by finite–dimensional ap-
proximations. We require the existence of the numerical routines COARSE and
APPLY, as introduced in Sections 4.4 and 4.6. Moreover, for the handling of ap-
proximate right–hand sides, we assume that we have access to a third numerical
routine RHS[f , ε] → fε, as specified in Section 4.5. As mentioned in Remark 4.9,
these assumptions on the numerical subroutines can indeed be assumed to hold for
appropriate aggregated spline wavelet frames.

Having these three numerical routines at hand, it is straightforward to derive
the following algorithm from the ideal iteration (5.2.1):

Algorithm 5.3. SOLVE[A, f , ε] → uε:
Let θ < 1/3 and K ∈ N be fixed such that 3ρK < θ.
i := 0, v(0) := 0, ε0 := ‖(A|Ran(A))

−1‖L(ℓ2)‖f‖ℓ2
While εi > ε do

i := i+ 1
εi := 3ρKεi−1/θ
f (i) := RHS[f , θεi

6ωK
]

v(i,0) := v(i−1)

For j = 1, ..., K do
v(i,j) := v(i,j−1) − ω(APPLY[A,v(i,j−1), θεi

6ωK
] − f (i))

od
v(i) := COARSE[v(i,K), (1 − θ)εi]

od
uε := v(i).

Note that here, deviating somewhat from the notation in (5.2.1), we denote by
v(i) the result after applying K approximate Richardson iterations at a time to
v(i−1).

5.2.2 Convergence and Complexity Analysis of SOLVE

Concerning the convergence of the frame algorithm SOLVE, one can show the
following theorem, see [51, 133]:

Theorem 5.4. In the situation of Theorem 5.2, let u ∈ ℓ2 be a solution of (5.1.9).
Then SOLVE[A, f , ε] produces finitely supported vectors v(i,K),v(i) such that

∥∥Q(u − v(i))
∥∥
ℓ2
≤ εi, i ≥ 0. (5.2.2)

In particular, one has

‖u− F ∗D−tuε‖H ≤ ‖F ∗‖L(ℓ2,Dt ,H)ε. (5.2.3)

Moreover, it holds that

∥∥Qu − (id−Q)v(i−1) − v(i,K)
∥∥
ℓ2
≤ 2θεi

3
, i ≥ 1. (5.2.4)
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Proof. The proof is essentially analogous to that of [133, Prop. 2.1]. For i = 0,
(5.1.7) and (5.1.13) yield

∥∥Q(u − v(0))
∥∥
ℓ2

= ‖Qu‖ℓ2 = ‖Bf‖ℓ2 ≤ ε0.

Now take i ≥ 1 and let
∥∥Q(u− v(i−1))

∥∥
ℓ2
≤ εi−1 hold. We show (5.2.4) first. When

exactly performing one damped Richardson iteration (5.2.1), from, say, some vector
w(i) to w(i+1), equations (5.1.9) and (5.1.12) yield

Qu − w(i+1) = Qu − w(i) + ω(Aw(i) − f) = (I − ωA)(Qu − w(i)). (5.2.5)

So, by induction, the exact application of K damped Richardson iterations at a time
would result in

Qu − w(i+K) = (I − ωA)K(Qu − w(i)). (5.2.6)

But the loop of Algorithm 5.3 performs K perturbed Richardson iterations v(i,j),
starting from v(i,0) = v(i−1). By construction, the stepwise error does not exceed

∥∥v(i,j) − v(i,j−1) + ω(Av(i,j−1) − f)
∥∥
ℓ2
≤ ω

(
θεi

6ωK
+

θεi
6ωK

)
=
θεi
3K

,

so that after K steps we end up in

∥∥Qu − v(i,K) − (I − ωA)K(Qu − v(i−1))
∥∥
ℓ2
≤ K

θεi
3K

=
θεi
3
. (5.2.7)

It is straightforward to compute the identity

(I − ωA)K(Qu − v(i−1)) = (I − ωA)KQ(u − v(i−1)) − (I − Q)v(i−1). (5.2.8)

But due to the specific choice of the relaxation parameter ω in Theorem 5.2, we get

∥∥(I − ωA)KQ(u − v(i−1))
∥∥
ℓ2
≤ ρK

∥∥Q(u − v(i−1))
∥∥
ℓ2
≤ ρKεi−1 =

θεi
3
, (5.2.9)

which, together with (5.2.8), yields (5.2.4). Now, by using (5.2.4) and the definition
of COARSE, one has

‖Qu + (I − Q)v(i−1) − v(i)‖ℓ2 ≤ ‖Qu + (I − Q)v(i−1) − v(i,K)
∥∥
ℓ2

+‖v(i,K) − v(i)‖ℓ2 ≤
2θ

3
εi + (1 − θ)εi ≤ εi.

Then (5.2.2) follows by

‖Q(u − v(i))‖2
ℓ2

≤ ‖Q(u − v(i))‖2
ℓ2

+ ‖(I − Q)(v(i−1) − v(i))‖2
ℓ2

= ‖Q(u − v(i)) + (I − Q)(v(i−1) − v(i))‖2
ℓ2

= ‖Qu + (I − Q)v(i−1) − v(i)‖2
ℓ2
.

Since Ker(F ∗D−t) = Ker(A) = Ker(Q), we finally verify

‖u− F ∗D−tuε‖H =
∥∥F ∗D−t(Qu − uε)

∥∥
H

=
∥∥F ∗D−tQ(u − uε)

∥∥
H

≤ ‖F ∗‖L(ℓ2,Dt ,H)

∥∥Q(u − uε)
∥∥
ℓ2

≤ ‖F ∗‖L(ℓ2,Dt ,H)ε.
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Remark 5.5. In the proof of Theorem 5.4, contrary to [51, Th. 4.3], we have
explicitly used that the isomorphism Dt : ℓ2,Dt → ℓ2 and its ℓ2–adjoint have operator
norm 1. This simplification can be made in all cases of practical interest.

Since Algorithm 5.3 essentially follows the ideas from the case of Riesz bases [34],
the question is whether one can show optimality also for frame discretizations. For
this purpose, one has to analyze the support sizes of the approximate iterands u(n)

in more detail. Ideally, in order to match the convergence rate s of the best N–term
approximation, # suppu(n) should grow at most like ε−1/s|u|1/sℓwτ

, τ = (s+ 1
2
)−1, as ε

tends to zero.
The delicate point for the complexity analysis of frame discretizations is that one

can no longer expect the sequence of iterands u(n) to stay bounded in ℓwτ . This is
essentially due to the fact that the inexact applications of A and the approximate
right–hand sides used in the algorithm cause the iterands u(n) to leave the space
Ran(A) and to have a significant share in Ker(A). During the iteration, these kernel
components in u(n) might not be damped out by subsequent Richardson iterations,
so that the errors are not summable in ℓwτ . Of course, the kernel components in
u(n) are only visible as additional degrees of freedom in the discrete version of the
algorithm. Any application of F ∗, e.g., in a postprocessing step, will cancel them
out.

To cope with this situation, additional conditions on the underlying wavelet
frame seem to be inevitable at the moment. In [133], sufficient conditions were given
that guarantee optimality of Algorithm 5.3. To state the corresponding result, recall
the constants C̃1(τ) and C̃2(τ) from (4.2.6) and (4.4.4), respectively.

Theorem 5.6 ([133, Th. 3.12]). For some s∗ > 0, assume that A is s∗–compressible,
f is s∗–optimal, and that for some s ∈ (0, s∗), τ = (s + 1

2
)−1, the system Au = f

has a solution u ∈ ℓwτ . Moreover, assume that there exists an š ∈ (s, s∗) such that
with τ̌ = (š + 1

2
)−1, the operator Q is bounded on ℓwτ̌ . Then, if the parameter K in

SOLVE is sufficiently large, e.g.,

3ρK < θmin
{
1, (C̃1(τ̌)C̃2(τ̌)|I − Q|L(ℓwτ̌ ))

s/(š−s)}, (5.2.10)

then for all ε > 0, the output uε := SOLVE[A, f , ε] has at most # suppuε .

ε−1/s|u|1/sℓwτ
nontrivial entries and the number of arithmetic operations needed to com-

pute uε stays bounded by at most a multiple of # suppuε.

Some remarks concerning the assumptions in Theorem 5.6 are in order here. First
of all, it is required that the discrete operator equation (5.1.9) has a solution u ∈ ℓwτ .
If D−tΨ is a Riesz basis in H, then regularity estimates of the form u ∈ Bsd+t

τ (Lτ (Ω))
with τ = (s + 1

2
)−1 are equivalent to u = 〈u,DtΨ̃〉⊤ ∈ ℓτ , where DtΨ̃ is the dual

Riesz basis in H ′. As a consequence, we immediately get u ∈ ℓwτ without further
assumptions on the wavelet basis.

In the case of frames, the existence of solutions u ∈ ℓwτ is nontrivial. In general,
the decay of the expansion coefficients 〈u, ψ̃λ〉 with respect to the canonical dual Ψ̃
will only be sufficiently fast if Ψ̃ is smooth and if it has an appropriate number of
vanishing moments. For wavelet frames over a bounded domain Ω, unfortunately,
regularity and cancellation properties of the canonical dual are in general unknown.
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In order to verify decay properties of some expansion coefficient array u, it is con-
venient to resort to non–canonical dual frames Ξ = {ξλ}λ∈J the properties of which
are explicitly known. In the shift–invariant setting, the problem of characterizing
function spaces by decay properties of non–canonical dual frame coefficients has
been studied recently in [22, 23, 75]. Moreover, this very strategy is followed in [50],
see also [133, Sec. 4.4], where for the special case of H = H1

0 (Ω) over the L–shaped
domain

Ω = (−1, 1)2 \ [0, 1)2 = (−1, 1) × (−1, 0) ∪ (−1, 0) × (−1, 1), (5.2.11)

an appropriate aggregated wavelet frame Ψ = Ψ(1) ∪ Ψ(2) is considered. In this
situation, a non–canonical dual frame is easily given by weighting the local canonical
duals Ψ̃(i) with the partition of unity φ1 = φ ◦ θ and φ2 = 1 − φ1 from part (ii) of
Remark 2.22,

ξ(i,µ) := φiψ̃(i,µ), (i, µ) ∈ J , (5.2.12)

since any v ∈ L2(Ω) can be decomposed into

v = φ1v + φ2v =
∑

λ=(i,µ)∈J
〈φiv, ψ̃λ〉ψλ =

∑

λ=(i,µ)∈J
〈v, φiψ̃λ〉ψλ =

∑

λ∈J
〈v, ξλ〉ψλ.

Moreover, it has been shown in [52] that for any u ∈ H1
0 (Ω), it is φiu ∈ H1

0 (Ωi)
with ‖φiu‖H1(Ω) h ‖u‖H1(Ω). Hence one may expect that the cancellation properties

of the local canonical dual systems Ψ̃(i) imply the desired decay properties of the
non–canonical expansion coefficients. In this context, let us only summarize some
special results from [50] in the following lemma:

Lemma 5.7. Assume, as above, that Ω is the L–shaped domain (5.2.11) and that
Ψ is a wavelet Gelfand frame for (H1

0 (Ω), L2(Ω), H−1(Ω)). Moreover, let u = S1,1

be the singularity function (3.0.7) belonging to the reentrant corner at the origin.
Then it is φiu ∈ B2s+1

τ (Lτ (Ω)) for all s > 0, τ = (s + 1
2
)−1. As a consequence,

there exists s∗ > 0, only depending on the properties of the template wavelet basis
Ψ� and its dual Ψ̃�, such that for any s ∈ (0, s∗), the expansion coefficient array
u := 〈u,DΞ〉⊤H×H′ is contained in ℓwτ , τ = (s+ 1

2
)−1.

The second technical assumption in Theorem 5.6 is the boundedness of the pro-
jector Q on some ℓwτ̌ . For the special case that H = L2(Ω), the wavelet bases making
up the aggregated frame are L2(Ω)-orthonormal, and some damping is applied to
the wavelets near the interior boundaries, it could be shown in [133] that Q is in-
deed bounded on ℓwτ . However, the general proof of the boundedness assumption
is a difficult open problem. Its validity can only indirectly verified by the results
of numerical experiments, see Section 5.3. According to [133, Remark 3.13], the
boundedness of Q on ℓwτ for all s ∈ (0, s∗) is almost a necessary requirement for the
scheme to behave optimally.

Remark 5.8. In the case of time–frequency localized Gabor frames, the boundedness
assumption on Q could be rigorously proved in Theorem 7.1 of [51], see also [49]
for the construction of optimal adaptive algorithms in the superordinate class of
polynomially localized frames.
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We conclude this section with a final remark on possible variants of the discussed
Richardson iteration.

Remark 5.9. Since in the case of frames, a wrong choice of the relaxation parameter
α potentially spoils the convergence and/or optimality of the overall Richardson iter-
ation, it is reasonable to investigate alternative iterative schemes. A straightforward
generalization of (5.2.1) is the steepest descent scheme

u(0) = 0, u(n+1) = u(n) +
〈r(n), r(n)〉
〈r(n),Ar(n)〉r

(n), r(n) = f − Au(n), n ≥ 0. (5.2.13)

There, the user is released from an appropriate choice of the damping parameter,
at the price of a slightly more expensive iteration step. The exact steepest descent
iteration has the same error reduction factor q = κ(A)−1

κ(A)+1
as the Richardson iteration

with optimal damping parameter α∗, so that approximate versions of both schemes
should exhibit comparable convergence results. Adaptive steepest descent iterations in
the case of wavelet Riesz bases have been investigated in [27, 64], whereas the recent
paper [52] studies the case of frames. In [52], an asymptotically optimal variant of
(5.2.13) could be derived where the convergence and complexity estimates rely on the
same assumptions as in Theorem 5.6.

One may also think of an adaptive version of the conjugate gradient iteration
for symmetric positive definite systems. However, first numerical experiments using
wavelet frame discretizations indicate that such a method does not really pay com-
pared to the simpler steepest descent scheme. A similar observation has also been
made in [64] for the case of wavelet bases.

5.3 Numerical Experiments

For the verification of the convergence and complexity of the SOLVE algorithm,
we choose some test examples where adaptive schemes pay off most, i.e., where the
exact solution has a significantly higher regularity in the Besov scale rather than in
the Sobolev scale. Essentially, the following one– and two–dimensional benchmark
examples are identical to those considered in [52].

5.3.1 1D Experiments

As a test example in one space dimension, we consider the variational formulation
of the Poisson equation on the unit interval Ω = (0, 1)

−u′′ = f in Ω, u(0) = u(1) = 0. (5.3.1)

The operator A = − d2

dx2 has order 2t = 2. In order to obtain an exact solution u
that has limited Sobolev regularity, we choose as a right–hand side the functional
f(v) := 4v(1

2
) +

∫ 1

0
g(x)v(x) dx, where

g(x) = −9π2 sin(3πx) − 4.
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Then u is given by the superposition

u(x) = − sin(3πx) +

{
2x2, x ∈ [0, 1

2
)

2(1 − x)2 x ∈ [1
2
, 1]

,

see Figure 5.2.
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Exact Solution

Figure 5.2: Exact solution u (solid line) for the one–dimensional test example being
the sum of the dashed and dash–dotted functions.

On the one hand, u is contained in Hs(Ω) ∩H1
0 (Ω) only for s < 3

2
. This means

that linear methods can only converge with limited order. On the other hand, since
u is continuous and piecewise smooth, it can be shown that u ∈ Bs

τ (Lτ (Ω)) for any
s > 0, τ = (s + 1

2
)−1. By interpolation between H1+ε(Ω) and Bs

τ (Lτ (Ω)), we can
derive that u ∈ B2s+1

τ (Lτ (Ω)) for any s > 0, τ = (s+ 1
2
)−1.

Consequently, the error of best N–term wavelet approximation of u in H1(Ω) has
a decay rate s that is only limited by the properties of the underlying wavelet system.
By the above discussion, we can derive that for an aggregated spline wavelet Gelfand
frame Ψ for (H1

0 (Ω), L2(Ω), H−1(Ω)) with order of exactness m, there exists an
expansion u = F ∗D−1u with coefficient array u ∈ ℓwτ for any s < m−1, τ = (s+ 1

2
)−1.

As an overlapping domain decomposition we choose Ω = Ω1 ∪ Ω2, where Ω1 =
(0, 0.7) and Ω2 = (0.3, 1). Associated to this decomposition we construct a ag-
gregated wavelet Gelfand frame according to Section 2.2, where we use all frame
elements up to the scale |λ| ≤ jmax = 12. We consider the cases of piecewise linear
(m = 2) and piecewise quadratic (m = 3) template wavelet bases Ψ� from [126],
with m̃ = m vanishing moments. Consequently, the optimal rates of convergence
for adaptive frame schemes are bounded by s < m− 1 ∈ {1, 2}.

We have tested the algorithm SOLVE with the relaxation parameters α = 0.57
for m = m̃ = 2 and α = 0.4 for m = m̃ = 3. It should be noted that for these
parameters α, the algorithm yielded the optimal convergence behavior, but we do
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Figure 5.3: Convergence histories of SOLVE for the one–dimensional test example,
using piecewise linear frame elements (m = m̃ = 2).
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Figure 5.4: Convergence histories of SOLVE for the one–dimensional test example,
using piecewise quadratic frame elements (m = m̃ = 3).

not claim here that this choice of parameters matches the theoretically optimal
relaxation parameter α∗ = 2/(λmax + λ+

min). In fact, the latter constant may be
difficult to estimate since the lowest eigenvalue λ+

min of A|Ran(A) is hardly available in
the case of frames. We refer to [142] for several case studies concerning the spectral
behavior of A|Ran(A) and finite portions thereof in the case that the aggregated
wavelet frame construction utilizes the wavelet bases from [61]. The remaining
parameters in SOLVE are chosen to yield the quantitatively optimal response of
the algorithm.

Generally speaking, the one–dimensional numerical experiments confirm the ex-
pected convergence rates and the asserted optimal complexity of SOLVE. In Figures
5.3 and 5.4, we plot the degrees of freedom # suppu(n) and the CPU time against
the ℓ2 norm of the residuals r(n). After an initialization phase, both the support
sizes of the iterands and the associated computational work behave as predicted
by the theory. Due to some caching strategies involved in the implementation, the
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graph of the CPU time attains the optimal slope not until some lower tolerance is
reached.

Remark 5.10. It should be noted that the concrete implementation of SOLVE used
for the numerical experiments is not identical to Algorithm 5.3. This is due to the
fact that the various parameters in SOLVE had been chosen to fulfill the worst case
estimates of the error analysis of Theorem 5.4. An optimized parameter choice may
then improve the quantitative response of the numerical scheme considerably.

5.3.2 2D Experiments

In two spatial dimensions, we again consider the variational formulation of the Pois-
son equation

−∆u = f in Ω, u|∂Ω = 0. (5.3.2)

The test problem is chosen in such a way that the application of adaptive algorithms
pays off most, as it is the case for polygonal domains with reentrant corners. To
this end, we choose Ω to be the L–shaped domain Ω = (−1, 1)2 \ [0, 1)2. In a first
test example, u = S1,1 shall be the singularity function (3.0.7) corresponding to the
reentrant corner at the origin. The solution u and the corresponding right–hand
side f = −∆u ∈ L2(Ω) are shown together in Figure 5.5.

It has already been stated in Chapter 3 that u ∈ Hs(Ω) only for s < 5
3
, but it is

contained in every Besov space B2s+1
τ (Lτ (Ω)), where s > 0 and τ = (s + 1

2
)−1, see

Theorem 3.9. Consequently, the attainable convergence rate of a uniform refinement
strategy is in general smaller than that of adaptive schemes.

As an overlapping domain decomposition we choose Ω = Ω1 ∪ Ω2, where Ω1 =
(−1, 0) × (−1, 1) and Ω2 = (−1, 1) × (−1, 0), parametrized by the corresponding
affine bijections κi : � → Ωi. Again Ψ shall be an aggregated wavelet Gelfand
frame constructed as in Section 2.2, where we use all frame elements up to the scale
|λ| ≤ jmax = 7. The underlying template wavelet basis Ψ� on the unit square � is a
tensor product of piecewise quadratic (m = 3) interval wavelet bases from [126] with
m̃ = 3 vanishing moments. As a consequence, the optimal rate of H1–convergence
for an adaptive frame scheme is bounded by s < s∗ = (3−1)/2 = 1, whereas uniform
refinement strategies would only converge with a rate of at most (5

3
− 1)/2 = 1

3
.

We have tested the algorithm SOLVE with the relaxation parameter α = 0.24,
and again the remaining parameters are chosen to obtain the quantitatively optimal
response of the algorithm. Figure 5.6 shows the asymptotic behavior of the degrees
of freedom # suppu(n) and the CPU time against the ℓ2 norm of the residuals
r(n). Similar to the one–dimensional case, we observe that the numerical algorithm
realizes the expected convergence rate s = 1 and the computational work behaves
linearly in the number of unknowns as predicted by Theorem 5.6.

In the first test example, it has become visible that the adaptive frame algorithm
does indeed recover singularities that are caused by the geometry of the underlying
domain Ω. As a complement, we have also tested SOLVE in a situation where the
singularity is induced by a nonsmooth right–hand side. Similar to the numerical
experiments in [7], we fix a point x0 from the interior of Ω and mimic the point eval-



98 CHAPTER 5. FRAME DISCRETIZATION

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1

−60

−40

−20

0

20

40

60

80

100

Figure 5.5: Exact solution (top) and right–hand side (bottom) for the first two–
dimensional test example.

uation functional v 7→ v(x0) ∈ H−1−ǫ(Ω), ǫ > 0, by setting the wavelet coefficients

〈f, ψλ〉H−1(Ω)×H1
0 (Ω) := ψλ(x0), λ ∈ J . (5.3.3)

We shall see in a moment that this coefficient array indeed gives rise to an element
f ∈ H−1(Ω). In the numerical example, we choose the point x0 := (−0.6,−0.6),
and an approximation of the corresponding exact solution u ∈ H1

0 (Ω) on a fine scale
is given in Figure 5.7.

First of all, the coefficients (5.3.3) are well–defined since the elements of the
primal wavelet basis are globally continuous. By the multiresolution principles em-
ployed in the construction of Ψ, the point values |ψλ(x0)| scale like 2|λ|/2 as the level
|λ| tends to infinity. Hence, for any ǫ > 0, we can infer from the uniform locality of
the wavelet system that

∑

λ∈J
2−|λ|(1+ǫ)||〈f, ψλ〉|2 =

∑

j≥j0

2−j(1+ǫ)
∑

λ:|λ|=j,
x0∈supp(ψλ)

|ψλ(x0)|2 .
∑

j≥j0

2−j(1+ǫ)2j <∞.
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Figure 5.6: Convergence histories of SOLVE for the first two–dimensional test
example, using piecewise quadratic frame elements (m = m̃ = 3).
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Figure 5.7: Exact solution for the second two–dimensional test example.

By an application of the Sobolev norm equivalence (1.2.16) and the density of Ψ,
we see that f extends to an element of H−1/2−ǫ(Ω) →֒ H−1(Ω).

As regards the regularity properties of u, the conditions for Corollary 3.5 are
not fulfilled since the right–hand side f is not contained in L2(Ω). By Theorem 3.7,
applied in the case µ = 1

2
− ǫ and ǫ > 0, we can only infer that u ∈ Bα

τ (Lτ (Ω)) for all
0 < α < 3

2
and τ = (α

2
+ 1

p
)−1. Despite the fact that this is not the scale of best N–

term approximation inH1, we may still hope to observe a distinct convergence rate in
a numerical experiment. In fact, the residual errors then drop at a convergence rate
of 1, at least for moderate tolerances, see Figure 5.8. For low target accuracies, the
convergence gets more indetermined. Due to the restriction to all frame elements
below a certain level jmax, an additional spatial error has been introduced which
affects the numerical results much earlier than in the first test example. For low
target accuracies, the measured residuals do no longer correspond to the true ones.
Nevertheless, we again see that the computational work scales linearly in the number
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of degrees of freedom.

1.5 2 2.5 3 3.5 4 4.5
−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

1

1

log
10

(N)

lo
g 10

 o
f r

es
id

ua
l n

or
m

(a) N against ℓ2 residual norms

1.5 2 2.5 3 3.5 4
−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

1

1

log
10

 of CPU time (s)

lo
g 10

 o
f r

es
id

ua
l n

or
m

(b) CPU time (s) against ℓ2 residual norms

Figure 5.8: Convergence histories of SOLVE for the second two–dimensional test
example, using piecewise quadratic frame elements (m = m̃ = 3).
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Chapter 6

Linear Parabolic Problems

This chapter is focused on the theoretical background of the parabolic problems
under consideration, in particular concerning existence, uniqueness and regularity
properties of the corresponding solution.

In Section 6.1, we review the theory of analytic semigroups. It turns out that a
solution v of the homogeneous problem (0.0.20) always exists, given as the orbit of
the initial value u0 under the action of an analytic semigroup {etA}t≥0. The tempo-
ral regularity of v hinges on the regularity of u0, measured in the scale of fractional
domains D(Aα) of A. Section 6.2 will then be centered around the solution of the
inhomogeneous problem (0.0.21). We collect the basic properties of the inhomoge-
neous solution part w which is given as a convolution of the forcing term f with
the semigroup {etA}t≥0. Since (0.0.21) does not always hold in the sense of strong
differentiability, we have to introduce the concept of a mild solution. Finally, in
Section 6.3 we discuss the spatial reguarity properties of u(t).

6.1 Analytic Semigroups

In this section, we are concerned with the construction of a solution v of the homo-
geneous initial value problem (0.0.20). We are especially interested in the case where
the differential equation v′(t) = Av(t) holds in the sense of strong differentiability.
It turns out that under a sectoriality condition on A, such a v can be defined using
the theory of analytic semigroups. For a more detailed survey of the topic we refer
to the textbooks [2, 115, 125, 138].

6.1.1 Properties of Sectorial Operators

Let us start with the definition of sectorial operators. Given a Banach space X, a
linear, densely defined operator A : D(A) ⊂ X → X is called sectorial, if there are
constants z0 ∈ R, ω0 ∈ (π

2
, π) and M > 0, such that the resolvent set ρ(A) contains

the open sector

Σz0,ω0 :=
{
z ∈ C \ {z0} : | arg(z − z0)| < ω0

}
, (6.1.1)

103
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and the resolvent operator R(λ,A) := (λI − A)−1 of A is bounded in norm by

∥∥R(z, A)
∥∥
L(X)

≤ M

|z − z0|
, z ∈ Σz0,ω0 . (6.1.2)

Note that in contrast to other definitions of sectoriality that can be found in the
literature, we explicitly added the density of D(A) since we will work with densely
defined operators A only. In general, sectorial operators do not need to be densely
defined, see [115] for details.

C

Σz0,ω0

z0
σ(A)

γ

ω

ω0

Figure 6.1: Spectral location for a sectorial operator A.

Since the resolvent set of a sectorial operator A is not empty, A is necessarily
closed. As a consequence, the space Y := D(A) ⊂ X, equipped with the graph
norm

‖x‖Y := ‖x‖X + ‖Ax‖X , x ∈ Y, (6.1.3)

is a Banach space.
As is visualized in Figure 6.1, the spectrum σ(A) of a sectorial operator A is also

contained in a sector

Σ = C \ Σz0,ω0 =
{
z ∈ C : | arg(z − z0)| ≥ ω0

}
∪ {z0}.

Hence, by the holomorphic functional calculus, it is possible to define the opera-
tor f(A) for a large class of holomorphic functions defined on Σ. Two prominent
examples for the function f shall be discussed in the following. Firstly, the entire
function f(z) = etz leads to the analytic semigroup etA. Secondly, the function
f(z) = (−z)−α for α > 0, being holomorphic on C \ R+, will be used to define the
fractional powers (−A)−α of operators A with spectrum σ(A) in the left half plane
of C.

For t > 0, the operator exponential etA : X → X of a sectorial operator A is
given by means of the Dunford integral

etA :=
1

2πi

∫

γ

etzR(z, A) dz, t > 0. (6.1.4)
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Here, see again Figure 6.1, γ can be any curve of the form

γ =
{
z ∈ C : | arg(z−z0)| = ω, |z−z0| ≥ r

}
∪
{
z ∈ C : | arg(z−z0)| ≤ ω, |z−z0| = r

}

(6.1.5)
for r > 0 and ω ∈ (π

2
, ω0), oriented counterclockwise. For the basic definition and

properties of the Banach space–valued integral (6.1.4), we refer the reader to the
textbooks [74, 138].

Note that the definition of etA is independent of the concrete choice of r and
ω, since the mapping z 7→ etzR(z, A) ∈ L(X) is holomorphic in the sector Σz0,ω0 .
By the definition of the Dunford integral, the integral etA converges in the uniform
operator topology over X, and hence etA ∈ L(X). As a complement, we set

e0Ax := x, x ∈ X, (6.1.6)

i.e., e0 = idX . Then, for a sectorial operator A : D(A) → X, the family {etA}t≥0 ⊂
L(X) is called the analytic semigroup generated by A in X.

Generally speaking, a family of linear operators {T (t)}t≥0 ⊂ L(X) is said to be
a semigroup, if T (0) = I and T (t + s) = T (t)T (s) for s, t ≥ 0. The semigroup
law of {etA}t≥0 as well as some other basic properties are collected in the following
theorem, see [115, Proposition 2.1.1]:

Theorem 6.1. Let {etA}t≥0 be the analytic semigroup generated by the sectorial
operator A : D(A) → X. Then the following assertions are valid:

(i) For each x ∈ X, k ∈ N and t > 0, it is etAx ∈ D(Ak). If x ∈ D(Ak), then
AketAx = etAAkx holds for t ≥ 0.

(ii) The semigroup law etAesA = e(t+s)A holds, for all s, t ≥ 0.

(iii) There are constants Mk > 0 for k = 0, 1, . . ., such that

∥∥tk(A− z0I)
ketA

∥∥
L(X)

≤Mke
z0t, k ∈ N0, t > 0. (6.1.7)

In particular, for any ǫ > 0 and k ∈ N, there is a constant Ck,ǫ > 0, such that

∥∥tkAketA
∥∥
L(X)

≤ Ck,ǫe
(z0+ǫ)t, k ∈ N, t > 0. (6.1.8)

(iv) The mapping t 7→ etA belongs to C∞((0,∞);L(X)
)

and it is dk

dtk
etA = AketA

for all t > 0. Moreover, it has an analytic extension into the sector Σ0,ω0−π/2.

If the spectrum σ(A) is contained in the left half plane — as is the case for
negative self–adjoint operators — the constant z0 will be negative. Then, as a
consequence of the estimate (6.1.7) for k = 0, we have exponential decay of the
norms ‖etAv‖X for v ∈ X and t → ∞. The effect of (6.1.7) for arbitrary k ∈ N0 is
also known as parabolic smoothing.

As becomes visible in part (iv) of Theorem 6.1, the mapping

v : [0, T ] → X, v(t) := etAu0 (6.1.9)
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fulfills the differential equation v′(t) = Av(t) in the sense of strong differentiability
for all t > 0. Moreover, we have of course that v(0) = u0 ∈ X. Functions with these
properties shall be given a special name to in the sequel. Namely, for a given forcing
term f ∈ C

(
[0, T ];X

)
and u0 ∈ X, we call a function u : [0, T ] → X a classical

solution of (0.0.19), if u ∈ C1
(
(0, T ];X

)
∩C
(
(0, T ];D(A)

)
∩C
(
[0, T ];X

)
, u(0) = u0,

and u′(t) = Au(t) + f(t) holds for all t ∈ (0, T ].
The additional smoothness conditions for v from (6.1.9) can be verified by an

application of the following theorem about the behavior of an analytic semigroup at
t = 0, see [115, Proposition 2.1.4]:

Theorem 6.2. Let {etA}t≥0 be the analytic semigroup generated by the sectorial
operator A : D(A) → X. Then the following assertions are valid:

(i) For all x ∈ X, it is limt→0+ etAx = x.

(ii) For all x ∈ X and t ≥ 0, the integral
∫ t
0

esAx ds belongs to D(A) and

A

∫ t

0

esAx ds = etAx− x. (6.1.10)

If, additionally, the function s 7→ AesAx belongs to L1([0, t];X), then it is

etA − x =

∫ t

0

AesAx ds. (6.1.11)

(iii) For all x ∈ D(A), it is limt→0+(etAx− x)/t = Ax.

(iv) For all x ∈ D(A), it is limt→0+AetAx = Ax.

Corollary 6.3. For all u0 ∈ X, the mapping v from (6.1.9) is the classical solution
of the homogeneous problem (0.0.20).

Proof. The existence of v′ = Av(t) for all t > 0 has been verified in Theorem 6.1.
Moreover, the continuity of v′ : (0, T ] → X follows from part (iv) of Theorem 6.2.
For a fixed t > 0, we have w := etAu0 ∈ D(A) by part (i) of Theorem 6.1. Given
s ≥ t, it is then

‖v(s) − v(t)‖D(A) = ‖Ae(s−t)Aw − Aw‖X + ‖e(s−t)Aw − w‖X

which converges to zero as s → t by parts (i) and (iii) of Theorem 6.2. Hence v is
continuous at t as a mapping into D(A) and as a mapping into X. The continuity
of v : [0, T ] → X at t = 0 follows from part (i) of Theorem 6.2.

A slightly stronger solution concept covers situations where u is also differentiable
at t = 0. More precisely, for a given forcing term f ∈ C

(
[0, T ];X

)
and u0 ∈ X, we

call a function u : [0, T ] → X a strict solution of (0.0.19), if u ∈ C1
(
[0, T ];X

)
∩

C
(
[0, T ];D(A)

)
, u(0) = u0, and u′(t) = Au(t) + f(t) holds for all t ∈ [0, T ].

Then one can immediately draw the following conclusion:

Corollary 6.4. For all u0 ∈ D(A), the mapping v from (6.1.9) is the strict solution
of the homogeneous problem (0.0.20).
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Proof. By part (iii) of Theorem 6.2, we know that v : [0, T ] → X is also differentiable
at t = 0 with

v′(0) = lim
t→0+

(v(t) − v(0))/t = Au0 = Av(0),

and part (iv) of Theorem 6.2 guarantees that v′(t) = Av(t) ∈ X is continuous at
t = 0. Analogously, we can infer the continuity of v : [0, T ] → D(A) at t = 0.

It becomes clear that the global temporal regularity of v is completely determined
by the smoothness of the initial value u0. This observation is also imminent when
considering the initial values to be in the domain of higher powers of A:

Corollary 6.5. Assume that u0 ∈ D(Ak) for k ∈ N. Then the mapping v from
(6.1.9) is contained in Ck

(
[0, T ];X

)
∩ Ck−1

(
[0, T ];D(A)

)
.

Proof. We proceed by induction over k. The case k = 1 has been considered in
Corollary 6.4. Assume then that the claim holds for k and let u0 ∈ D(Ak+1).
Setting w0 := Au0 ∈ D(Ak), we know by induction hypothesis that w(t) := etAw0 is
the strict solution of

w′(t) = Aw(t), w(0) = w0,

with w ∈ Ck
(
[0, T ];X

)
∩ Ck−1

(
[0, T ];D(A)

)
. Since

v′(t) = AetAu0 = etAAu0 = etAw0 = w(t)

holds for all t ≥ 0 due to part (i) of Theorem 6.1, the claim follows.

We will discuss this general principle in more detail in Subsection 6.1.3.

6.1.2 Examples: Sectorial Operators Given by a Form

In order to translate the abstract definition of sectorial operators and analytic semi-
groups into a more concrete setting, one may consider the special case of sectorial
operators A : D(A) ⊂ X → X that are realizations of elliptic operators, as discussed
in Chapter 0. This approach is also known as the form method, see [4, 105].

To this end, let H →֒ X be continuously and densely embedded Hilbert spaces.
Moreover, assume that a : H ×H → C is a sesquilinear form that is continuous in
the sense of (0.0.6) and coercive, i.e., the G̊arding–type inequality

Re a(v, v) + C1‖v‖2
X ≥ C2‖v‖2

H , v ∈ H, (6.1.12)

holds with constants C1 ∈ R, C2 > 0. Note that these assumptions are indeed
fulfilled in the situation sketched in Chapter 0. Then one can associate a linear,
potentially unbounded operator A : D(A) ⊂ H → X to a by the setting

D(A) :=
{
v ∈ H : ∃w =: Av ∈ X such that a(v, ϕ) = 〈w,ϕ〉X , ϕ ∈ H

}
. (6.1.13)

Since H is dense in X, the operator A is well–defined on D(A). If X happens to
coincide with H ′, then it is D(A) = H and the definition of A in (6.1.13) coincides
with (0.0.8), up to the sign. In most cases, however, X will be chosen to be an
intermediate pivot space between H and H ′. This is preferably done in such a way
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that X is identified with its normed dual X ′ so that H →֒ X →֒ H ′ yields a Gelfand
triple.

Under the aforementioned assumptions on the sesquilinear form a, it can be
shown that the negative operator −A : D(A) ⊂ X → X is indeed sectorial, cf. [138,
Section 2]:

Lemma 6.6. Let a : H × H → C be continuous and coercive. Moreover, let V be
a Hilbert space in which H is continuously and densely embedded and consider the
Gelfand triple H →֒ V →֒ H ′. Then, for both choices X ∈ {V,H ′}, the corresponding
operator −A : D(A) ⊂ X → X is sectorial, with parameters z0 = C1 and some
ω0 ∈ (π

2
, π].

Example 6.7. For X ∈
{
H−1(Ω), L2(Ω)

}
and H = H1

0 (Ω), we can define the
symmetric bilinear form

a(v, w) =

∫

Ω

∇v(x)∇w(x) dx, v, w ∈ H. (6.1.14)

It is known that on H, a is bounded and coercive with

a(v, v) ≥ C2‖v‖2
H1(Ω), v ∈ H1

0 (Ω) (6.1.15)

for a constant C2 > 0. As already mentioned in Chapter 0, the sectorial operator
associated with a is called the Dirichlet Laplacian −A = ∆D

Ω. In the case X =
H−1(Ω), it is D(A) = H1

0 (Ω). For X = L2(Ω), as laid out in Chapter 3, one can
show that D(A) = H2(Ω) ∩H1

0 (Ω) only if Ω is convex or has a sufficiently smooth
boundary ∂Ω. For arbitrary Lipschitz or polygonal domains Ω, D(A) is strictly
larger and no immediate identification with Sobolev or Besov spaces is known. The
domains of higher powers of A are discussed in Section 6.3.

It is also possible to consider the bilinear form (6.1.14) on the full space H1(Ω)
or other closed subspaces thereof, leading to the Neumann Laplacian operators.
However, in this thesis we shall restrict the discussion to the case of full Dirichlet
boundary conditions.

6.1.3 Fractional Powers of Sectorial Operators

As we have seen in Subsection 6.1.1, the temporal regularity of v(t) = etAu0 at
t = 0 strongly depends on the regularity of the initial value u0, measured in the
scale of spaces D(Ak) →֒ X, k ∈ N. It is possible to refine this observation by the
introduction of intermediate spaces between D(Ak) and X.

One reasonable choice are of course the real interpolation spaces [X,D(Ak)]θ,q,
see [11] or Section 1.2. These spaces would fit well into the setting of elliptic oper-
ator equations where one considers Sobolev and Besov spaces that are also interpo-
lation spaces. However, it turns out that interpolation spaces are not always fully
compabible with the mapping properties of the analytic semigroup. More natural
intermediate spaces are given by the domains of fractional powers of −A that shall
be introduced in the sequel.
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As already stated above, for a sectorial operator A with a spectrum σ(A) con-
tained in the open left half plane {z ∈ C : Re z < 0}, we have 0 ∈ ρ(A) and hence
z0 < 0 (6.1.1). Then we can employ the holomorphic functional calculus to define
the negative fractional powers

(−A)−α :=
1

2πi

∫

γ

(−z)−αR(z, A) dz, α > 0. (6.1.16)

Here the integration path γ is chosen as in (6.1.5), avoiding the positive real axis.
The convergence of (6.1.16) in L(X) is guaranteed by the resolvent bound estimate
(6.1.2). An equivalent representation of (−A)−α is

(−A)−α =
1

Γ(α)

∫ ∞

0

tα−1etA dt, (6.1.17)

with the Euler Γ function

Γ(x) =

∫ ∞

0

e−xttx−1 dt, x > 0, (6.1.18)

see [115]. Note that for α = 1, the definition of (−A)−1 from (6.1.16) coincides with
the inverse R(0, A), since the resolvent of any sectorial operator A has the integral
representation [115, Lemma 2.1.6]

R(z, A) =

∫ ∞

0

e−tzetA dt, Re z > z0. (6.1.19)

Moreover, due to the fact that (−A)−α(−A)−β = (−A)−(α+β), the operator (−A)−α

is a bijection onto its range Ran((−A)−α, see [115, Lemma 2.2.13]. As a consequence,

the inverse (−A)α :=
(
(−A)−α

)−1
is well–defined as an unbounded operator from

D
(
(−A)α

)
:= Ran

(
(−A)−α) ⊂ X to X, and we set (−A)0 := idX . For α > 0, the

operator (−A)α is closed, and we can equip D
(
(−A)α

)
with the norm ‖(−A)α · ‖X

under which it is a Banach space. If α ≥ β > 0, then D
(
(−A)α

)
→֒ D

(
(−A)β

)
. For

integer values of α = k, the spaces D((−A)α) coincide with the domains D(Ak) of
the corresponding power of A.

Theorem 6.8 ([125, Th. 2.6.13]). Let A be the infinitesimal generator of an analytic
semigroup etA, such that 0 ∈ ρ(A). Then:

(i) etA : X → D
(
(−A)α

)
for all t > 0 and α ≥ 0.

(ii) For every α ∈ R and x ∈ D
(
(−A)α)

)
, we have etA(−A)αx = (−A)αetAx.

(iii) For all t > 0 and α ∈ R, the operator (−A)αetA is bounded with

‖(−A)αetA‖L(X) ≤Mαt
−αeβt, (6.1.20)

where β > sup{Re z : z ∈ σ(A)}.

(iv) If 0 < α ≤ 1 and x ∈ D
(
(−A)α

)
, then it is

‖etAx− x‖X ≤ Cαt
α‖(−A)αx‖X . (6.1.21)
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As a consequence of (6.1.21), we can expect that the solution v of the homo-
geneous problem is at least in Cα([0, T ];X) ∩ Cα−1([0, T ];D(A)) whenever u0 ∈
D((−A)α). Further details on the behavior of etA in interpolation spaces can be
found in [115, Section 2.2].

For 0 < α < 1, the interpolation spaces [X,D(A)]θ,q and the domains of fractional
powers (−A)α are related. In [115, 139], it is shown that

[
X,D(A)

]
α,1

→֒ D
(
(−A)α

)
→֒
[
X,D(A)

]
α,∞. (6.1.22)

These embeddings are not sharp in general. As a complement to (6.1.22), for some
special cases including self–adjoint negative definite operators A on a Hilbert space,
one has the equivalence

D
(
(−A)α

)
≃
[
X,D(A)

]
α,2
. (6.1.23)

6.2 Mild Solutions of Inhomogeneous Problems

In this section we will review the construction of a solution to the inhomogeneous
problem (0.0.21). It is well–known that the existence of classical or strict solutions
with strong temporal differentiability is not guaranteed for an arbitrary forcing term
f . Under the integrability assumption f ∈ L1([0, T ];X), we can at least define a
solution candidate by the variation of constants formula

u(t) = etAu0 +

∫ t

0

e(t−s)Af(s) ds, t ≥ 0. (6.2.1)

The function u from (6.2.1) is called the mild solution of (0.0.19). This definition
is motivated by the fact that for f ∈ L1([0, T ];X) ∩ C

(
(0, T ];X) and u0 ∈ X, the

classical solution u of (0.0.19) also matches formula (6.2.1), see [115, Prop. 4.1.2]
for a proof. Hence classical solutions are also mild. Moreover, it is known that mild
solutions solve (0.0.19) in an integral sense:

Proposition 6.9 ([115, Prop. 4.1.5]). Assume that f ∈ L1([0, T ];X), u0 ∈ X
and let u be the mild solution (6.2.1) to (0.0.19). Then for every t ∈ [0, T ], it is∫ t

0
u(s) ds ∈ D(A) and we have the identity

u(t) − u0 = A

∫ t

0

u(s) ds+

∫ t

0

f(s) ds, t ∈ [0, T ]. (6.2.2)

Unfortunately, for arbitrary integrable forcing terms f , the mild solution (6.2.1)
might not be a classical or even strict one. Necessary and sufficient conditions for a
mild solution to be classical or strict are collected in the following lemma, see [115]
for a proof:

Lemma 6.10. Let f ∈ L1([0, T ];X) ∩ C
(
(0, T ];X

)
, u0 ∈ X and u be the mild

solution (6.2.1). Then the following conditions are equivalent:

(i) u is a classical solution of (0.0.19).
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(ii) u ∈ C
(
(0, T ];D(A)

)

(iii) u ∈ C1
(
(0, T ];X

)

If in addition f ∈ C
(
[0, T ];X

)
, then the following conditions are equivalent:

(i) u is a strict solution of (0.0.19).

(ii) u ∈ C
(
[0, T ];D(A)

)

(iii) u ∈ C1
(
[0, T ];X

)

In particular, if the right–hand side f is only in L1([0, T ];X), we do not know
whether u maps into the space D(A) for t > 0. However, under the slightly stronger
condition f ∈ L2([0, T ];X), this is indeed the case, see [103, 112]:

Theorem 6.11. Let A be sectorial with z0 < 0, u0 = 0 and f ∈ L2([0, T ];X). Then
we have u ∈ L2

(
[0, T ];D(A)

)
∩ H1([0, T ];X), where u is the mild solution u from

(6.2.1).

The additional condition on the square integrability of f that ensures the spatial
regularity u(t) ∈ D(A) is not crucial, since we will have to raise further regularity
assumptions on f anyway to guarantee also temporal smoothness of u.

Since the homogeneous solution part has already been discussed in Section 6.1,
we can restrict the discussion of temporal regularity to the mild solution

w(t) =

∫ t

0

e(t−s)Af(s) ds, t ≥ 0 (6.2.3)

of the inhomogeneous problem (0.0.21). It is immediate by the convolution structure
of (6.2.3) that any temporal smoothness assumption on f like boundedness or Hölder
regularity should carry over to analogous properties of w. Let us mention at least
two well–known results in this direction:

Theorem 6.12 ([115, Prop. 4.2.1]). Let f ∈ L∞([0, T ];X). Then, for every α ∈
(0, 1), it is w ∈ Cα([0, T ];X) ∩ C([0, T ]; [X,D(A)]α,1). More precisely, it is w ∈
C1−α([0, T ]; [X,D(A)]α,1) and the estimate

‖w‖C1−α([0,T ];[X,D(A)]α,1) ≤ C‖f‖L∞([0,T ];X) (6.2.4)

holds with C independent from f .

Theorem 6.13 ([125, Th. 3.5]). Let f ∈ Cα([0, T ];X). Then the following state-
ments hold true:

(i) For every δ > 0, it is Aw,w′ ∈ Cα([δ, T ];X).

(ii) We have Aw,w′ ∈ C([0, T ];X).

(iii) If f(0) = 0, then Aw,w′ ∈ Cα([0, T ];X).

So, loosely speaking, we can expect that at least after an initial transient phase,
the temporal smoothness of the solution u to the parabolic problem (0.0.19) is
completely determined by that of the driving term f .
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6.3 Spatial Regularity

It remains to collect the relevant spatial regularity properties of the solution u of
(0.0.19). As we have already seen in the previous sections, the homogeneous solution
part v(t) is contained in the spacesD(Ak), whereas a nontrivial forcing term f causes
the inhomogeneous solution part w to map into D(A). Hence in the sequel, we shall
be engaged in the characterization of the spaces D(Ak) in terms of Sobolev or Besov
spaces, where A is a more concrete elliptic operator. To simplify the discussion, we
will assume that A = ∆D

Ω is the Dirichlet Laplacian operator over some bounded
domain Ω in Rd, i.e., −A is induced by the bilinear form a from (6.1.14).

In view of the numerical experiments, we will restrict the setting to the case
of polygonal domains Ω in one or two spatial dimensions. Concerning the domain
D(A), we can hence utilize the regularity results for the Poisson equation that were
recalled in Chapter 3. Generally speaking, the situation in two space dimensions
is substantially different than in the one–dimensional case, as soon as the domain
Ω has a nonsmooth boundary. Here the solution u exhibits a higher regularity in
the scale of Besov spaces than in the classical Sobolev scale. Consequently, we shall
treat the two situations separately.

6.3.1 The 1D Case

In the one–dimensional case Ω = (0, 1), a full orthonormal system of eigenfunctions
for the Dirichlet Laplacian A = ∆D

Ω = d
dx2 is known. To be precise, we have the

L2–normalized eigenfunctions

vk(x) =
√

2 sin(kπx), x ∈ (0, 1), k ∈ N0 (6.3.1)

and the corresponding eigenvalues

λk = −k2π2, k ∈ N0. (6.3.2)

By the Spectral Mapping Theorem for sectorial operators A : D(A) ⊂ X → X on a
Banach space X, see, e.g., Corollary 2.3.7 of [115], we know that

σ(etA) \ {0} = etσ(A), t > 0. (6.3.3)

As a consequence, since A = ∆D
Ω is negative selfadjoint with σ(A) = {λk}k∈N0 , we

can derive the series expansion for any ϕ ∈ L2(0, 1)

etAϕ =
∑

k∈N

etλk〈ϕ, vk〉L2(0,1)vk, t ≥ 0. (6.3.4)

In order to analyze the smoothing properties of etA, it is straightforward to explicitly
estimate the higher derivatives

( d

dx

)ℓ
vk(x) =

{√
2(−1)m(kπ)ℓ sin(kπx) , ℓ = 2m√
2(−1)m(kπ)ℓ cos(kπx) , ℓ = 2m+ 1

,
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which gives ∥∥∥∥
( d

dx

)ℓ
vk

∥∥∥∥
L∞(0,1)

. (kπ)ℓ (6.3.5)

and hence ‖etAϕ‖W ℓ(L∞(0,1)) <∞ for any ℓ ∈ N and all t > 0. Due to Theorem 6.1,
we also know that etAϕ ∈ D(A) →֒ H1

0 (0, 1) fulfills the Dirichlet boundary conditions
for all ϕ ∈ L2(0, 1) and t > 0. Alternatively, we can also iterate Theorem 3.1 to
derive that D(Ak) = H1+2k(0, 1) ∩ H1

0 (0, 1) which also implies etAϕ ∈ Hℓ(0, 1) for
all ℓ ∈ N and all t > 0. Summing up, the solution v(t) = etAu0 of the homogeneous
problem (0.0.20) fulfills v(t) ∈ Hs(0, 1) ∩H1

0 (0, 1) for any desired s ≥ 0, even if the
initial value u0 is only in L2(0, 1).

For a nontrivial forcing term f , the mild solution u of the initial value problem
(0.0.19) will be given by the convolution integral (6.2.1). From the discussion of
Section 6.2, we know that the inhomogeneous solution part w from (6.2.3) can be
expected to map intoD(A), since f will in general not fulfill the boundary conditions.
For the Dirichlet Laplacian operator, it is known that the space D(A) coincides with
H2(0, 1) ∩H1

0 (0, 1), since the underlying domain Ω = (0, 1) is convex [104].

As a consequence, the superposition u = v + w can be expected to have spatial
H2 regularity. In view of the numerical experiments, this means that for a numerical
approximation of u(t) for fixed t, algorithms based on a uniform space refinement
should exhibit the same convergence rates as nonlinear approximation schemes, as
long as u(t) does not happen to have a Besov smoothness Bs+1

τ (Lτ (0, 1)) with s
strictly larger than 1 for other reasons, where τ = (s+ 1

2
)−1.

6.3.2 The 2D Case

For an arbitrary two–dimensional domain Ω, we cannot expect to have a full or-
thonormal eigensystem for the Dirichlet Laplacian at our disposal. Just to state an
important example, the eigenfunctions and eigenvalues of the Dirichlet Laplacian
on the L–shaped domain are only known numerically, see [12, 78] for details. Con-
sequently, the spatial regularity analysis of the solution u will be substantially more
delicate than in the univariate case.

As we have seen in Chapter 3, the characterization of D(A) and more classical
smoothness spaces like Sobolev or Besov spaces hinges on the regularity of the
boundary ∂Ω. This general fact also holds true when considering the domains of
higher powers of A. If ∂Ω is C∞, we may again simply iterate Theorem 3.1 to obtain
D(Ak) = H1+2k(Ω)∩H1

0 (Ω) and hence arbitrary high Sobolev smoothness of u(t) for
t > 0. For domains with a Cα boundary, α ≥ 1, we can still derive D(Ak) →֒ Hs(Ω)
for s = min{1 + 2k, α} from Theorem 3.1.

For the polygonal and non–convex domains Ω we are interested in, however, the
L2 Sobolev exponent of the functions in D(Ak) will be limited by some value s < 2
by Theorems 3.3 and 3.8. In that case, we have already seen in Chapter 3 that
the Besov regularity of functions from D(A) is substantially higher, and we refer to
the relevant Theorems 3.4 and 3.9 here. For the Besov regularity analysis of the
domains of higher powers D(Ak) = D(Ak;L2(Ω)), to the author’s knowledge there is
no general result available in the literature. Only for the special case k = 2, one may



114 CHAPTER 6. LINEAR PARABOLIC PROBLEMS

iterate the above mentioned theorems twice to obtain, e.g., the following regularity
result for the Dirichlet Laplacian on a Lipschitz domain.

Lemma 6.14. Let Ω ⊂ Rd be a bounded Lipschitz domain and let A = ∆D
Ω be

the Dirichlet Laplacian over Ω. Then for all 1 < p ≤ 2, we have the continuous
embedding

D(A2) →֒ Bα
τ (Lτ (Ω)), 0 < α < min

{7

2
,

d

d− 1

(
1 +

1

p

)}
, τ =

(α
d

+
1

p

)−1

,

(6.3.6)
where the embedding constant depends on α and p.

Proof. Given some u ∈ D(A2), it is A2u = f for some f ∈ L2(Ω). Hence, for
v := Au ∈ D(A), we know from Theorem 3.2 and the boundedness of Ω that

v ∈ H3/2(Ω) →֒ B
3/2
p (Lp(Ω)) for all 1 < p ≤ 2. Inserting v as a right–hand side

into Theorem 3.4 with µ = 3
2

+ 2 = 7
2
≥ 2 > 1 + 1

p
, we get that u ∈ Bα

τ (Lτ (Ω)),

τ = (α
d

+ 1
p
)−1, for the asserted range 0 < α < min{ d

d−1
(1 + 1

p
), 7

2
}.

Remark 6.15. In Lemma 1.27 of [103] it is claimed that (6.3.6) holds for the larger
range 0 < α < min{7

2
, 2d
d−1

}. This is only possible if the metric parameter p is
simultaneously chosen arbitrarily close to 1. Here we are particularly interested in
the case that d = 2 and p = 2 is fixed, where we obtain the embedding D(A2) →֒
Bα
τ (Lτ (Ω)) for α < 3, τ = (α

2
+ 1

2
)−1.

An analogous result to Lemma 6.14 can be derived for the special case of polyg-
onal domains Ω in R2. Here one may use the expansion of u ∈ D(A2) into higher
order singularity functions as in Theorem 3.10.

Lemma 6.16. Let Ω ⊂ R2 be a bounded polygonal domain and let A = ∆D
Ω be the

Dirichlet Laplacian over Ω. Then we have the continuous embedding

D(A2) →֒ Bα
τ (Lτ (Ω)), 0 < α < min

{
3+

π

ωj
: ωj > π

}
, τ =

(α
2

+
1

2

)−1

. (6.3.7)

Proof. For u ∈ D(A2), it is A2u = f for some f ∈ L2(Ω). Hence, for v := Au ∈
D(A), Theorem 3.8 gives that v ∈ Hs(Ω), s < š := min{1 + π/ωj : ωj > π}. We
insert v as a right–hand side into Theorem 3.10 and obtain that the regular part uR

of u is contained in H š+2(Ω) →֒ B š+2
τ̌ (Lτ̌ (Ω)) for all τ̌ ≤ 2. The singular part uS is

contained in all Besov spaces Bα
τ (Lτ (Ω)), τ = (α

2
+ 1

2
)−1, α > 0, see [44]. The claim

follows from the superposition u = uR + uS.

Remark 6.17. The argument in the proof of Lemma 6.16 is not sufficient to improve
(6.3.7) in the case of u ∈ D(Ak) for k ≥ 3. This is due to the fact that Au = v ∈
D(Ak−1) is contained in Hs(Ω) only for s < min{1 + π/ωj : ωj > π}.

Based on Theorem 3.8, it is also possible to derive analogous decomposition
results for the solution u of the heat equation over a bounded polygonal domain:
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Theorem 6.18 ([85, Th. 5.2.1]). Let Ω ⊂ R2 be bounded, open and polygonal
domain, and let A = ∆D

Ω be the Dirichlet Laplacian over Ω. Moreover, for u0 ∈ D(A)
and f ∈ L2

(
R+;L2(Ω)

)
, assume that u is the solution of (0.0.19). Then there exists

uR ∈ L2

(
R+;H2(Ω)

)
with u′R ∈ L2

(
R+;L2(Ω)

)
, and functions ϕj ∈ H(1−π/ωj)/2(R+),

such that u can be decomposed into

u(t) = uR(t) +
∑

ωj>π

gj(t)Sj,1. (6.3.8)

Here gj(t) = gj(t, rj, θj) is the convolution product on the positive halfline

gj(t, rj, θj) := (Ej(·, rj, θj) ∗ ϕj)(t) =

∫ t

0

Ej(s, rj, θj)ϕj(t− s) ds, (6.3.9)

and Ej(t) = Ej(t, rj, θj) =
rj

2
√
πt3

e−r
2
j /(4t) is given in polar coordinates (rj, θj) with

respect to the corner Sj.

Summing up the spatial regularity results in two space dimensions, we can ex-
pect the local exact solution u(t) of the heat equation to have a significant higher
regularity in the scale of Besov spaces B2s+1

τ (Lτ (Ω)), τ = (s + 1
2
)−1, than in the

Sobolev scale. Consequently adaptive strategies for the spatial approximation of
u(t) should pay off compared to algorithms based on a uniform space refinement, as
soon as the underlying domain is non–convex and has a non–smooth boundary.
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Chapter 7

Wavelet Discretization of

Parabolic Problems

In this chapter, we turn to the development of an adaptive, wavelet–based numerical
scheme for the linear parabolic equation (0.0.19). As already mentioned in the
introduction, we shall follow Rothe’s method which is also known as the horizontal
method of lines. Doing so, the discretization is performed in two major steps. Firstly,
we consider a semidiscretization in time, where we will employ an S–stage linearly
implicit scheme. This approach is discussed in more detail in Section 7.1. We shall
end up with an orbit of approximations u(n) ∈ L2(Ω) at intermediate times tn that
are implicitly given via the S elliptic stage equations. In a finite element context,
this very approach has already been propagated in [107, 108].

For the realization of the increment u(n) 7→ u(n+1) and the spatial discretization
of the stage equations, we will then employ the adaptive wavelet schemes introduced
in Chapter 4 as a black box solver. In Section 7.2, we derive an adaptive increment
algorithm and analyze its convergence and computational complexity properties.

7.1 Linearly Implicit Semidiscretization in Time

We shall now be concerned with the semidiscretization in time for the mild solution
u ∈ C([0, T ];V ) of the linear parabolic problem (0.0.19). In order to obtain a con-
venient notation and for potential generalizations of the discussed scheme towards
nonlinear problems, we will consider (0.0.19) in the generalized form

u′(t) = F
(
t, u(t)

)
, t ∈ (0, T ], u(0) = u0, (7.1.1)

where F : [0, T ] ×H → H ′ is given as

F (t, v) = Av + f(t), t ∈ [0, T ], v ∈ H. (7.1.2)

Hence we have ∂vF (t, v) = A and ∂tF (t, v) = f ′(t). In view of the specific spa-
tial discretization in Section 7.2, we assume that the sectorial operator A under
consideration is induced by a symmetric bilinear form.

117
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7.1.1 ROW–Methods

As already stated in the introduction of this chapter, we consider an S–stage linearly
implicit method for the semidiscretization in time. By this we mean an iteration of
the form

u(n+1) = u(n) + h

S∑

i=1

biki (7.1.3)

with the stage equations

(I−hγi,iJ)ki = F
(
tn+αih, u

(n) +h
i−1∑

j=1

αi,jkj

)
+hJ

i−1∑

j=1

γi,jkj +hγig, i = 1, . . . , S,

(7.1.4)
where we set

αi :=
i−1∑

j=1

αi,j, γi :=
i∑

j=1

γi,j. (7.1.5)

The operator I − hγi,iJ in (7.1.4) has to be understood as a boundedly invertible
operator from H to H ′, with the equality (7.1.4) in the sense of H ′. Such a scheme
is also known as a method of Rosenbrock type, see [94, 137] for details. All the
quantities h, J , ki and g in (7.1.4) do of course depend on the time step number n,
but we drop the index n here for readability. The coefficients bi, αi,j and γi,j have
to be suitably chosen according to the desired properties of the Rosenbrock method.
We will turn to this question in the next subsection.

As a special case of (7.1.4), a Rosenbrock–Wanner method or ROW–method
results if one chooses the exact derivatives J = ∂vF (tn, u

(n)) and g = ∂tF (tn, u
(n)).

In this thesis, we will confine the setting to these ROW–type methods.

Remark 7.1. The specific choice of J and g in a ROW–method is not needed to
derive a convergent time discretization, cf. [94]. In the larger class of W–methods,
J is allowed to be an mere approximation to the exact Jacobian ∂vF (tn, u

(n)). More-
over, one often chooses γi = 0 there, so that g does not even enter the algorithm.
This is done at the cost of additional order conditions and a more complicated sta-
bility analysis. Using W–methods, the system matrix in a discretization of (7.1.4)
can be thinned out further, which may also be of interest in a wavelet setting. The
particular analysis of wavelet–based W–methods is still in its infancy [5] and goes
beyond the scope of this thesis.

Example 7.2. The most simple Rosenbrock method is the linearly implicit Euler
method, where u(n+1) = u(n) + hk1 and (I − hJ)k1 = F (tn, u

(n)), see [21, 94]. For
the schemes used in the numerical experiments, we refer to Table 8.1.

In the sequel, we will only consider Rosenbrock schemes with coincident diago-
nal entries γi,i = γ > 0. This is not a critical limitation since almost all popular
Rosenbrock schemes in the literature have this property. The matching of the diag-
onal entries γi,i can be exploited in practical realizations of the increment (7.1.3),
see Section 7.2, since then also the operators I − hγi,iJ of the S stage equations
coincide.
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By definition, the practical realization of a Rosenbrock method only requires
the successive solution of S linear operator equations per time step. Fortunately,
iterative Newton methods as needed in Runge–Kutta methods are not necessary here
since the Jacobian of the right-hand side F is worked into the integration formula
of a Rosenbrock scheme. In practice, a Rosenbrock scheme will be implemented
in a slightly different way than given by (7.1.4). Introducing the variable ui :=
h
∑i

j=1 γi,jkj, the additional application of the operator J in the right–hand side of
(7.1.4) can be avoided by rewriting (7.1.4) as

(
1

hγi,i
I − J

)
ui = F

(
tn + αih, u

(n) +
i−1∑

j=1

ai,juj

)
+

i−1∑

j=1

ci,j
h
uj + hγig, i = 1, . . . , S,

(7.1.6)
and

u(n+1) = u(n) +
S∑

i=1

miui (7.1.7)

where we have used the coefficients

Γ = (γi,j)
S
i,j=1, (7.1.8)

(ai,j)
S
i,j=1 = (αi,j)

S
i,j=1Γ

−1, (7.1.9)

(ci,j)
S
i,j=1 = diag(γ−1

1,1 , . . . , γ
−1
S,S) − Γ−1, (7.1.10)

(m1, . . . ,mS)
⊤ = (b1, . . . , bS)

⊤Γ−1. (7.1.11)

For the special case of a linear parabolic problem (0.0.19), the stage equations to
be solved can then be recast as follows:
(

1

hγi,i
I − J

)
ui = A

(
u(n)+

i−1∑

j=1

ai,juj

)
+f(tn+αih)+

i−1∑

j=1

ci,j
h
uj+hγig, i = 1, . . . , S,

(7.1.12)
where J ≈ A and g ≈ f ′(tn) as above.

7.1.2 Convergence Results

When applied to an initial value problem (7.1.1) for ordinary differential equations,
i.e., for a finite–dimensional space H, the Rosenbrock method realizes a (classical)
convergence order p ∈ N if the global error behaves like

en := u(n) − u(tn) = O(hp), h→ 0 (7.1.13)

uniformly over [0, T ], with hn = tn+1−tn ≤ h. Estimates of this type can be expected
to hold for sufficiently regular right–hand sides F whenever the coefficients of the
Rosenbrock scheme satisfy the corresponding algebraic order conditions [94, 137].

For the convergence analysis of the scheme (7.1.4) applied to partial differential
equations, one needs further stability properties of the Rosenbrock method under
consideration. In order to obtain sufficient convergence criteria, one considers the
associated stability function

R(z) = 1 + zb⊤(I − zB)⊤1, (7.1.14)
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of the Rosenbrock method, where b = (bi)
S
i=1, B = (βi,j)1≤j≤i≤S, βi,j = αi,j + γi,j,

αi,i = 0 and 1 = (1, . . . , 1)⊤. Essentially, R is the increment function in

u(1) = R(λh)u0 (7.1.15)

when applying one step with stepsize h of the iteration (7.1.3) to the one–dimensional
Dahlquist model problem

u′(t) = λu(t), u(0) = u0. (7.1.16)

Consequently, R(z) is a rational approximation to the exponential function ez. A
convergence order p in (7.1.13) corresponds to the relationship ez −R(z) = O(zp+1)
as z tends to zero.

Then, a Rosenbrock method with stability function R is called A(θ)–stable, if
|R(z)| ≤ 1 for all z ∈ C with | arg(z)| ≥ π − θ. If, additionally, the limit value
|R(∞)| is strictly smaller than 1, the method is called strongly A(θ)–stable. Stiff
components in the solution will be damped out rapidly if the method is L–stable,
i.e., R(∞) = 0.

For applications in partial differential equations, it turns out that the classical
integer convergence order p of a given Rosenbrock method can no longer be achieved
in general. In the case of low classical orders p ≤ 2, convergence results for ordinary
differential equations indeed carry over also to the infinite–dimensional case. Under
the assumption that the stage equations are solved exactly, the following result
concerning the temporal convergence of Rosenbrock methods was proved in [114]:

Theorem 7.3. For θ > π − ω0, where ω0 is given by the sectoriality condition
(6.1.1), consider a strongly A(θ)–stable Rosenbrock method of order p ≥ 2. Suppose
that (7.1.1) has a unique solution u with temporal derivatives u′′ ∈ L2([0, T ];H) and
u′′′ ∈ L2([0, T ];H ′). Then, for sufficiently small time step sizes h ≤ h0, there exists
a unique numerical solution un, 0 ≤ nh ≤ T , with the error bound

(
h

N∑

n=0

‖en‖2
H

)1/2

+ max
0≤n≤N

‖en‖V . h2
(∫ T

0

‖u′′(t)‖2
H dt+

∫ T

0

‖u′′′(t)‖2
H′ dt

)1/2

.

(7.1.17)

In contrast to Theorem 7.3, for arbitrary Rosenbrock methods with a higher
classical order p ≥ 3 one is in general faced with a phenomenon called order reduc-
tion. Here, in the application of the scheme to an initial value problem for partial
differential equations, one might observe a fractional order p′ ∈ [0, p] of convergence.
The attainable value of p′ is influenced by the spatial regularity of the solution u,
measured in the scale of spaces D(Aα). This is due to the fact that higher powers of
the unbounded operator A are present in the local truncation error. Order reduction
effects were observed first in the application of Runge–Kutta methods to partial dif-
ferential equations in [96, 120, 128]. For the application of Rosenbrock methods to
linear parabolic problems, we refer the reader to [121]. In Theorem 2 from loc. cit.,
sufficient conditions were derived under which a higher order of convergence p′ ≥ 3
may be expected:



7.1. LINEARLY IMPLICIT SEMIDISCRETIZATION IN TIME 121

Theorem 7.4. For θ > π−ω0 and a given A(θ)–stable Rosenbrock method of order
p with stability function R and |R(∞)| 6= 1, define the rational functions

W2(z) :=
b⊤(I − zB)−1(α2 − 2B21)

1 −R(z)
, (7.1.18)

Wk(z) :=
b⊤(I − zB)−1(αk − kBαk−1)

1 −R(z)
, k ≥ 3, (7.1.19)

and let q ∈ N be the maximal integer such that

Wk(z) = 0, 2 ≤ k ≤ q, for all z with | arg(z)| ≥ π − ω, (7.1.20)

or q = 1 if (7.1.20) is empty. Here we set αk := (αki )i=1,...,S, ω ∈ (θ, π − ω0) is
fixed and ω0 is given by the sectoriality condition (6.1.1). Then, for a given linear
parabolic problem (0.0.19), the Rosenbrock method is stable and for a discretization
with constant stepsizes, the global error behaves like

‖u(nh) − un‖L2 = O(hp
′

), p′ = min{p, q + 2 + ν}, (7.1.21)

where ν is given by

ν := sup{ν ∈ R : f (j)(t) ∈ D(Aν) for t ∈ [0, T ], 0 ≤ j ≤ p}. (7.1.22)

It has already been observed in [120] that for the heat equation ut = uxx + g(t)
on the unit interval with homogeneous Dirichlet boundary conditions, the order of
L2–convergence of an A(θ)–stable Rosenbrock is bounded from below by

p′ ≥ min{p, 3.25}. (7.1.23)

More generally, since it is always q ≥ 1 in Theorem 7.4, we should observe a nu-
merical order of convergence of at least p′ ≥ min{p, 3} also in the two–dimensional
case. Hence for the numerical examples discussed in Chapter 8, order reduction
phenomena will only affect fourth order schemes.

Remark 7.5. In the case of nonlinear problems, the problem of order reduction
for Rosenbrock methods is more severe. For nonlinear parabolic equations with ho-
mogeneous Dirichlet boundary conditions, the numerical order of convergence of an
arbitrary strongly A(θ)–stable Rosenbrock scheme in general drops down to a value
p′ = 2 + β with β = 3

4
− ǫ and arbitrarily small ǫ > 0. For Neumann or inhomoge-

neous boundary conditions, p′ may attain even smaller values, see [114] for details.
Fortunately, it is possible to construct special Rosenbrock methods that fulfill the
conditions (7.1.20) at least for q = 2 and lead to schemes of full convergence order
3 independent of the spatial regularity, see [3, 109] for some recent results.

7.1.3 Stepsize Control

As already mentioned, we are interested in the adaptive solution of the parabolic
problem (0.0.19), i.e., we are looking for approximations u(n) ≈ u(tn), such that the
discretization error ‖u(n) − u(tn)‖V at intermediate points tn ∈ [0, T ] stays below
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some prescribed tolerance ε. By the nature of the analytic problem (0.0.19), see
also Chapter 6, a constant temporal stepsize h is of course not the most economic
choice to do so. At least for times t close to 0 and in situations where the driving
term f is not smooth at t, it is advisable to choose small values of h in order to
track the behavior of the exact solution correctly. In regions where f and u are
temporally smooth, larger time step sizes may be used. Generally speaking, the
current value of h should be as small as possible to ensure the desired accuracy but
also sufficiently large to avoid unnecessary computational cost. As a consequence, we
have to employ an a posteriori temporal error estimator to control the current value
of h. Moreover, since the iteration (7.1.3) takes place in a Hilbert space, it cannot be
implemented exactly and we have to take additional spatial errors ũ(n+1)−u(n+1) into
account. However, under the assumption that the spatial discretization is also done
adaptively, we can interpret the spatial perturbation as a controllable additional
error of the temporal discretization so that the step size selection will be nearly
independent from the actual spatial discretization.

Ideally, an adaptive algorithm for non–stationary problems should be based on
an a posteriori estimator for the global discretization error. However, the control of
global errors is a difficult problem that has not been solved in full generality so far,
even in the case of ordinary initial value problems. In recent years, the estimation of
the global discretization error via adjoint problems has gained popularity, see [110],
yet the practical advantages over the classical approach of local error estimation
still have to be verified. The traditional approach does not try to control the global
temporal discretization error but resorts to estimators for the local truncation error
at tn

δh(tn) := Φtn,tn+h(u(tn)) − u(tn + h), (7.1.24)

where Φtn,tn+h : V → V is the increment mapping of the given Rosenbrock scheme
at time tn with stepsize h. For the global error at t = tn+1 = tn + hn, we have the
decomposition

en+1 = u(n+1) − u(tn+1) = Φtn,tn+hn(u(n)) − Φtn,tn+hn(u(tn)) + δhn
(tn), (7.1.25)

i.e., en+1 comprises the local error at time tn and the difference between the current
Rosenbrock step Φtn,tn+hn(u(n)) and the virtual step Φtn,tn+hn(u(tn)) with starting
point u(tn). For stable one–step methods, the latter term can be understood as
a propagated error term from the previous step. Of course, the propagation of
local errors is a potential problem for algorithms based on local error estimation.
Especially in the case of badly conditioned initial value problems, a global error
control is indispensable.

Taking a suitable norm |||·||| in (7.1.25), one obtains estimates of the form

|||en+1||| ≤ |||en||| +
∣∣∣∣∣∣δhn

(tn)
∣∣∣∣∣∣ ≤ |||e0||| +

n∑

k=0

∣∣∣∣∣∣δhk
(tk)
∣∣∣∣∣∣. (7.1.26)

In practical computations, the norm |||·||| will typically be a combination of absolute
and relative norms that involves also a scaling of the solution components, see [93,
107]. An accepted choice of |||·||| is to use a weighted root mean square norm. The
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corresponding discrete variant in the wavelet coefficient space reads as

|||dk||| :=

(
1

# suppdk

∑

λ∈suppdk

|dλ,k|2
|wλ|2

)1/2

, (7.1.27)

where the wavelet coefficient array dk belongs to the current L2 error estimate
δk = d⊤

k Ψ ≈ δhk
(tk). Here we use the weights wλ := ATOL+RTOL·max{|c(n)

λ |, |c(n+1)
λ |},

and u(n) = (c(n))⊤Ψ with c(n) = (c
(n)
λ )λ∈J . The parameters ATOL and RTOL are chosen

according to the desired target accuracy ε.
Estimators for the local discretization error δhn

(tn) can be either based on an
embedded lower order scheme or on extrapolation techniques, see [93, 94]. It has
turned out that a local error estimation based on extrapolation techniques is slightly
more expensive but exhibits a better performance for very low tolerances. For
applications to partial differential equations, only moderate accuracy requirements
are present. In this case, embedding strategies yield comparable results and thus are
our method of choice. In principle, the error estimator is then given by a suitable
norm of the difference u(n+1) − û(n+1), where û(n+1) is an alternative increment of
order less or equal to p− 1 corresponding to a different coefficient set b̂ = (b̂i)

S
i=1 in

(7.1.3). The computation of û(n+1) causes no additional cost since the same stage
solutions ki are considered as for u(n+1). Concerning the concrete step size algorithm,
we follow [107] and use an improved version of the standard step size controller from
[93] as propagated by Gustafsson et al. [90, 91].

7.2 Spatial Discretization with Wavelet Methods

Since the iteration (7.1.3) cannot be implemented numerically, we will address the
numerical approximation of all the ingredients by finite–dimensional counterparts
in this section. Precisely, we have to find approximate, computable iterands ũ(n+1),
such that the additional error ũ(n+1)−u(n+1) introduced by the spatial discretization
stays below some given tolerance ε when measured in an appropriate norm. Hence
this perturbation of the virtual orbit {u(n)}n≥0 can be interpreted as a controllable
additional error of the temporal discretization. The accumulation of local pertur-
bations in the course of the iteration is then an issue for the stepsize controller.
In order not to spoil the convergence behavior of the unperturbed iterands u(n) in
(7.1.17), we will demand that ũ(n+1)−u(n+1) stays small in the topology of H, which
results in the requirement

‖ũ(n+1) − u(n+1)‖H ≤ ε (7.2.1)

for the numerical scheme, where ε > 0 is the desired target accuracy. Since the exact
iterands u(n) in (7.1.3) are contained in H →֒ V , we shall utilize an appropriate
wavelet basis for these spaces. Precisely, we will make the following assumption:

(W) We assume that Ψ = {ψλ}λ∈J is a wavelet Riesz basis in V with dual basis
Ψ̃ = {ψ̃λ}λ∈J , so that the rescaled version D−1

0 Ψ is also a Riesz basis in H,
where (D0)λ,λ := |〈Aψλ, ψλ〉|1/2 is the energy norm of ψλ.
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As discussed in Chapter 1, it is indeed possible to construct such a wavelet basis on
a bounded polygonal domain Ω ⊂ Rd. Unless otherwise stated, all sequence spaces
ℓp and ℓwτ in this section refer to the overall wavelet index set J .

7.2.1 Properties of the Exact Increment

For the following analysis, let u(n) := 〈u(n), Ψ̃〉⊤ ∈ ℓ2,D0 be the primal wavelet
coefficient array of the exact iterand u(n) = (D0u

(n))⊤D−1
0 Ψ ∈ H →֒ V . Before we

discuss how to ensure the error estimate (7.2.1), let us first analyze the algebraic
operations needed to compute the exact increment coefficients u(n+1).

Observe that by (7.1.7), the exact increment u(n+1) differs from u(n) by a linear
combination of the exact solutions ui of the S stage equations (7.1.12). The operators
involved in (7.1.12) take the form

Bα := αI − A, α ≥ 0, (7.2.2)

where α = (hγi,i)
−1 for the i–th stage equation. By the estimate

〈B0v, v〉 ≤ 〈Bαv, v〉 = α〈v, v〉V + 〈B0v, v〉 ≤ (Cα+ 1)〈B0v, v〉, v ∈ H,

we see that the energy norms ‖v‖Bα
:= |〈Bαv, v〉|1/2 differ from ‖v‖B0 h ‖v‖H only

by an α–dependent constant:

‖v‖B0 ≤ ‖v‖Bα
≤ (Cα+ 1)1/2‖v‖B0 , v ∈ H. (7.2.3)

As a consequence, we can state the following lemma:

Lemma 7.6. Let Assumption (W) hold and define

(Dα)λ,λ := ‖ψλ‖Bα
, λ ∈ J . (7.2.4)

Then the system D−1
α Ψ is a Riesz basis in the energy space (H, ‖ · ‖Bα

), with Riesz
constants independent from α ≥ 0:

‖c‖ℓ2 h ‖c⊤D−1
α Ψ‖Bα

, c ∈ ℓ2. (7.2.5)

Proof. Using Assumption (W), we can compute

‖c⊤D−1
α Ψ‖2

Bα
= α‖c⊤D−1

α Ψ‖2
V + ‖c⊤D−1

α Ψ‖2
B0

h α‖D−1
α c‖2

ℓ2
+ ‖D−1

α D0c‖2
ℓ2

=
∑

λ∈J

α+ ‖ψλ‖2
B0

‖ψλ‖2
Bα

|cλ|2

for all sequences c ∈ ℓ2, with constants independent from α. Since ‖ψλ‖V h 1 by
Assumption (W), the claim (7.2.5) immediately follows from the estimate

α+ ‖ψλ‖2
B0

‖ψλ‖2
Bα

h
α‖ψλ‖2

V + ‖ψλ‖2
B0

‖ψλ‖2
Bα

= 1.
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Remark 7.7. It is also possible to use an α–dependent diagonal scaling matrix D̃α

of the form (D̃α)λ,λ := α + 2|λ|t, which again results in a Riesz basis D̃−1
α Ψ for

(H, ‖ · ‖Bα
). However, in practical computations a diagonal scaling involving the

energy norm generally yields tighter Riesz bounds than a scaling with D̃α.

Lemma 7.6 ensures that we can use the Riesz basis D−1
α Ψ, α = (hγi,i)

−1 as test
functions in a variational formulation of (7.1.12). Abbreviating the exact right–hand
side of (7.1.12) by

ri,h := A
(
u(n) +

i−1∑

j=1

ai,juj

)
+ f(tn + αih) +

i−1∑

j=1

ci,j
h
uj + hγif

′(tn), (7.2.6)

we get the system of equations

〈Bαui,D
−1
α Ψ〉⊤ = 〈ri,h,D−1

α Ψ〉⊤. (7.2.7)

Inserting a wavelet representation of ui = (Dαui)
⊤D−1

α Ψ into the variational formu-
lation (7.2.7), we end up with the biinfinite linear system in ℓ2

D−1
α 〈BαΨ,Ψ〉⊤D−1

α Dαui = D−1
α 〈ri,h,Ψ〉⊤. (7.2.8)

As a consequence of the uniform Riesz basis property (7.2.5), the spectral condition
numbers of the diagonally preconditioned system matrices

Bα := D−1
α 〈BαΨ,Ψ〉⊤D−1

α (7.2.9)

should stay uniformly bounded for varying values of α ≥ 0. Results of this type
have already been addressed in [7, 33, 55].

For a quantitative study of κ2(Bα) in the case of the quadratic spline wavelet
bases on the interval from [126], we refer the reader to Figure 7.1. For the range of
parameters 0 ≤ α ≤ 104, which is sufficient for the numerical experiments, the spec-
tral condition numbers κ2(Bα) stay below 20, outperforming the stabilized interval
bases from [9].

In Figure 7.2, we plot the spectral condition numbers of Bα in the case of a
linear spline composite wavelet basis on the L–shaped domain Ω as constructed
in [62], where we have applied the stabilization of the wavelets as in [9]. Also
in the two–dimensional case, the diagonal preconditioning with Dα suppresses the
condition numbers below 70 for the desired range of α values. We note that the
concrete values for κ2(Bα) we obtained for the composite basis on the L–shaped
domain are comparable to the values reported in [9] for the case of interval bases.
Moreover, they are significantly lower than the condition numbers of the L–domain
bases constructed in [102].

The operators Bα being a linear combination of −A and the identity operator,
we may assume for the considered class of operators A that the biinfinite stiffness
matrices Bα are s∗–compressible with s∗ > m−t

d
, see [134] for details. Here we recall

that, like in Chapter 1, m is the polynomial approximation order of the wavelet
basis Ψ, 2t is the order of A and d the spatial dimension of Ω. The compressibility
assumption indeed holds in the case that A = ∆D

Ω is the Dirichlet Laplacian operator,
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Figure 7.1: Spectral condition numbers κ2(Bα) for varying values of α and the
wavelet bases on Ω = (0, 1) from [126], where m = m̃ = 3.

i.e., for the treatment of the heat equation over the domain Ω ⊂ Rd, As a consequence
of the s∗–compressibility, Bα can be well approximated by sparse matrices, which is
exploited in the next subsection.

In the sequel, we abbreviate with G := 〈Ψ,Ψ〉⊤ the Gramian matrix of the
wavelet basis Ψ in V . Then, by (7.2.6), the exact discrete right–hand side of the
i–th stage equation

ri,h := D−1
α 〈ri,h,Ψ〉⊤, α = (hγi,i)

−1, (7.2.10)

decomposes into the sum

ri,h = − D−1
α D0B0

(
D0u

(n) + D0D
−1
α

i−1∑

j=1

ai,jDαuj

)
+ D−1

α 〈f(tn + αih),Ψ〉⊤

+ D−1
α GD−1

α

i−1∑

j=1

ci,j
h

Dαuj + hγiD
−1
α 〈f ′(tn),Ψ〉⊤.

(7.2.11)

Note that under the assumption γi,i = γ for i = 1, . . . , S, which holds true for each
of the Rosenbrock schemes considered, we can use the same diagonal preconditioner
D−1
α for each of the s stage solutions ui belonging to the same time step. Hence no

intermediate rescaling is needed.

7.2.2 An Approximate Increment Algorithm

Of course we cannot hope to know the exact values of ri,h in practice, since the
right–hand side involves evaluations of the driving terms and, in particular, biin-
finite matrix–vector products for i > 1. Moreover, it will not be possible to solve
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Figure 7.2: Spectral condition numbers κ2(Bα) for varying values of α and a com-
posite wavelet basis on the L–shaped domain Ω, where m = m̃ = 2.

the system (7.2.8) exactly. In this subsection, we therefore discuss the adaptive
approximation ũ(n+1) of the exact increment u(n+1). Using the Riesz basis property
(1.2.19), the requirement (7.2.1) is fulfilled if we can ensure that

‖ũ(n+1) − u(n+1)‖ℓ2,D0
≤ C−1

H ε. (7.2.12)

By the structure of the iteration (7.1.7), we essentially have to set up and to solve the
S discrete stage equations (7.2.8) with specific tolerances depending on the target
accuracy ε for the current time step. Since the right–hand side of the i–th stage
equation involves the previous inexact stage solutions, we have to consider the effect
of error propagation in a realization of the increment function.

Due to the fact that the involved operators Bα are s∗–compressible, we can utilize
the existence of adaptive numerical solvers for biinfinite systems like (7.2.8), e.g.,
those discussed in Chapter 4. Since Bα is symmetric and positive definite, we argue
against a Richardson–type iteration here and we opt for the more sophisticated
CDD1 algorithm from [7, 33] instead. We abbreviate calls to the adaptive solver by
the subroutine SOLVE, see also Theorem 4.12.

For the approximate evaluation of the driving term f we have to require the
existence of a numerical routine

RHSF[t, ε] → ft,ε, (7.2.13)

so that for s < s∗ it holds that

∥∥D−1
0 〈f(t),Ψ〉⊤ − ft,ε

∥∥
ℓ2
≤ ε, (7.2.14)

# supp ft,ε . |D−1
0 〈f(t),Ψ〉⊤|1/sℓwτ

ε−1/s (7.2.15)
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and the number or arithmetic operations to compute ft,ε is bounded by a multiple
of # supp ft,ε. Analogously, we assume to have a routine

RHSFP[t, ε] → f ′t,ε (7.2.16)

which approximates the coefficients D−1
0 〈f ′(t),Ψ〉⊤ in ℓ2 with

∥∥D−1
0 〈f ′(t),Ψ〉⊤ − f ′t,ε

∥∥
ℓ2
≤ ε, (7.2.17)

# supp f ′t,ε . |D−1
0 〈f ′(t),Ψ〉⊤|1/sℓwτ

ε−1/s (7.2.18)

and the computation of f ′t,ε takes only a constant times # supp f ′t,ε arithmetic oper-
ations

Having the three routines SOLVE, RHSF and RHSFP at hand, we are now
in the position to specify the increment algorithm for the special case of ROW–
methods, where J = A and g = f ′(tn) in (7.1.12):

Algorithm 7.8. ROW INCREMENT[D0u
(n), h, ε] → D0ũ

(n+1):
Let θ < 1/3 be fixed.

C := 2‖B−1
α ‖maxi,j

(
‖B0‖|ai,j| + ‖G‖ |ci,j |

hmin

)

η1 := ε(|m1| + C
∑S

i=2 |mi|
∑i−1

j=1(1 + C)i−1)−1

ε1 := θη1/4
ε1,1 := ε1,2 := θη1(4‖B−1

α ‖)−1

ε1,4 := θη1(4T |γ1|‖B−1
α ‖)−1

s1,1 := APPLY[B0,D0u
(n), ε1,1]

s1,2 := RHSF[tn + α1h, ε1,2]
s1,4 := RHSFP[tn, ε1,4]
r̃1,h := −D−1

α D0s1,1 + D−1
α D0s1,2 + hγ1D

−1
α D0s1,4

D̃αu1 := SOLVE[Bα, r̃1,h, ε1]
For i = 2, . . . , S do

εi := θC(5‖B−1
α ‖)−1

∑i−1
j=1 ηj

εi,1 := εi,2 := εi,3 := θC(5‖B−1
α ‖)−1

∑i−1
j=1 ηj

εi,4 := θC(5T |γi|‖B−1
α ‖)−1

∑i−1
j=1 ηj

si,1 := APPLY[B0,D0u
(n) + D0D

−1
α

∑i−1
j=1 ai,jD̃αuj, εi,1]

si,2 := RHSF[tn + αih, εi,2]

si,3 := APPLY[G,D−1
α

∑i−1
j=1

ci,j
h

D̃αuj, εi,3]
si,4 := RHSFP[tn, εi,4]
r̃i,h := −D−1

α D0si,1 + D−1
α D0si,2 + D−1

α si,3 + hγiD
−1
α D0si,4

D̃αui := SOLVE[Bα, r̃i,h, εi]

ηi := εi + ‖B−1
α ‖
(
εi,1 + εi,2 + εi,3 + Tγiεi,4 +

∑i−1
j=1

(
‖B0‖|ai,j| + ‖G‖ |ci,j |

h

)
ηj
)

od
D0ǔ

(n+1) := D0u
(n) + D0D

−1
α

∑S
i=1miD̃αui, (1 − θ)ε

D0ũ
(n+1) := COARSE

[
D0ǔ

(n+1), (1 − θ)ε
]

The goal of this subsection is then to analyze the convergence and complexity
properties of the algorithm ROW INCREMENT, as formulated in the following
theorem:
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Theorem 7.9. Under the assumptions on the operator A stated above and for a
given ROW–method, the routine ROW INCREMENT outputs a finitely supported
vector D0ũ

(n+1), such that

‖D0u
(n+1) − D0ũ

(n+1)‖ℓ2 ≤ ε. (7.2.19)

Moreover, we have

# suppD0ũ
(n+1) . |D0u

(n+1)|1/sℓwτ
ε−1/s, (7.2.20)

and the number of arithmetic operations needed to compute D0ũ
(n+1) is bounded by

a constant multiple of C̃1/sε−1/s, where

C̃ := max
{
|D0u

(n)|ℓwτ , |D−1
0 〈f ′(tn),Ψ〉⊤|ℓwτ , max

1≤i≤S
|D−1

0 〈f(tn + αih),Ψ〉⊤|ℓwτ
}
.

(7.2.21)

Before proving Theorem 7.9, let us first state a simple lemma about the bound-
edness of specific diagonal matrices like D−1

α and D−1
α D0 on ℓτ and ℓwτ spaces:

Lemma 7.10. Let C = diag(cλ)λ∈J be a diagonal matrix, such that |cλ| ≤ 1 for all
λ ∈ J . Then C is bounded both on ℓτ for τ > 0 and on ℓwτ for 0 < τ < 2, with
‖C‖L(ℓτ ) ≤ 1 and ‖C‖L(ℓwτ ) ≤ 1.

Proof of Lemma 7.10. The boundedness of C on ℓτ with norm less or equal to 1
is trivial. In order to prove the boundedness of C on ℓwτ , let γn(v) = vin and
γn(Cv) = cjnvjn be the n–th largest coefficients in modulus of v ∈ ℓ2 and Cv ∈ ℓ2,
respectively. By definition, the indices in as well as the jn are pairwise different.
Then it is sufficient to show that

|cjnvjn| ≤ |vin|, n ≥ 1. (7.2.22)

For n = 1, this is trivial since |cj1vj1| ≤ |vj1| ≤ |vi1|. Now assume that (7.2.22) holds
for all n < m. If it were |cjmvjm| > |vim|, then we could infer that

|vjn| ≥ |cjnvjn| ≥ |cjmvjm| > |vim|, n = 1, . . . ,m,

and hence that j1, . . . , jm ∈ {i1, . . . , im−1}, which is obviously a contradiction to the
indices jn being pairwise distinct.

Proof of Theorem 7.9. For the proof of the estimate (7.2.19), recall the following
basic fact about the solution of linear operator equations with a perturbed right–
hand side. Namely, if Bx = y and Bx̃ = ỹ, then we can estimate

‖x̃ − x‖ℓ2 ≤ ‖B−1‖L(ℓ2)‖ỹ − y‖ℓ2 . (7.2.23)

As a consequence, the ℓ2 error for x̃ε = SOLVE[B, ỹ, ε] is bounded by

‖x̃ε − x‖ℓ2 ≤ ε+ ‖B−1‖L(ℓ2)‖ỹ − y‖ℓ2 . (7.2.24)
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Applying (7.2.24) to the approximate solution D̃αu1 of the first stage equation in
the algorithm ROW INCREMENT, we get the estimate

‖D̃αu1 − Dαu1‖ℓ2 ≤ ε1 + ‖B−1
α ‖‖r̃1,h − r1,h‖ℓ2

≤ ε1 + ‖B−1
α ‖
(
ε1,1 + ε1,2 + T |γ1|ε1,4

)

= θη1.

Now assume that we are in the i–th for loop of the algorithm, i ≥ 2, and the previous
stage equations have been solved with accuracies θηj, j < i. Then we can estimate
in a completely analogous way

‖r̃i,h − ri,h‖ℓ2 ≤
∥∥D−1

α D0(B0(D0u
(n) + D0D

−1
α

∑i−1
j=1 ai,jDαuj) − si,1)

∥∥
ℓ2

+
∥∥D−1

α D0(D
−1〈f(tn + αih),Ψ〉⊤ − si,2)

∥∥
ℓ2

+
∥∥D−1

α (GD−1
α

∑i−1
j=1

ci,j
h

Dαuj − si,3)
∥∥
ℓ2

+h|γi|
∥∥D−1

α D0(D
−1
0 〈f ′(tn),Ψ〉⊤ − si,4)

∥∥
ℓ2

≤ εi,1 + εi,2 + εi,3 + T |γi|εi,4
+
∥∥D−1

α D0B0D0D
−1
α

∑i−1
j=1 ai,j(D̃αuj − Dαuj)

∥∥
ℓ2

+
∥∥D−1

α GD−1
α

∑i−1
j=1

ci,j
h

(D̃αuj − Dαuj)
∥∥
ℓ2

≤ εi,1 + εi,2 + εi,3 + T |γi|εi,4 + θ
∑i−1

j=1(‖B0‖|ai,j| + ‖G‖ |ci,j |
h

)ηj,

so that
‖D̃αui − Dαui‖ℓ2 ≤ εi + ‖B−1

α ‖‖r̃i,h − ri,h‖ℓ2 ≤ θηi.

For the stages i ≥ 2, the tolerances εi and εi,ν have been chosen in such a way that
ηi ≤ C

∑i−1
j=1 ηj. By induction, one can hence prove the estimate ηi ≤ C(1+C)i−2η1

for i ≥ 2. Inserting the accuracies of the approximate stage solutions D̃αui into the
final approximate increment shows that

‖D0ǔ
(n+1) − D0u

(n+1)‖ℓ2 ≤ ‖D0D
−1
α

∑S
i=1mi(D̃αui − Dαui)‖ℓ2

≤ ∑S
i=1 |mi|‖D̃αui − Dαui)‖ℓ2

≤ θ
∑S

i=1 |mi|ηi
≤ θ

(
|m1| + C

∑S
i=2 |mi|

∑i−1
j=1(1 + C)i−1

)
η1

= θε.

Since we have ‖D0ũ
(n+1) − D0ǔ

(n+1)‖ℓ2 ≤ (1 − θ)ε by the choice of parameters and
by the properties of the COARSE routine, the convergence claim (7.2.19) follows.

For the complexity estimate (7.2.20), observe first that the various tolerances are
chosen in such a way that εi, εi,ν & ε. Hence, in order to prove (7.2.20), it suffices to
control the ℓwτ seminorms of the corresponding vector input parameters in the calls
to the subroutines APPLY, RHSF, RHSFP and SOLVE. In fact, for the first
stage equation, the compressibility of B0 implies that

# supp s1,1 . |B0D0u
(n)|1/sℓwτ

ε
−1/s
1,1 . |B0D0u

(n)|1/sℓwτ
ε−1/s ≤ C̃1/sε−1/s,
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which by Lemma 4.8 yields |s1,1|ℓwτ . |B0D0u
(n)|ℓwτ . |D0u

(n)|ℓwτ ≤ C̃. Using the
properties of APPLY, we infer that the number of arithmetic operations to compute
s1,1 is bounded by a multiple of # supp s1,1 . C̃1/sε−1/s. By the assumptions on the
routine RHSF, it is

# supp s1,2 . |D−1
0 〈f(tn + α1h),Ψ〉⊤|1/sℓwτ

ε
−1/s
1,2 ≤ C̃1/sε−1/s,

so that again Lemma 4.8 implies |s1,2|ℓwτ . C̃ and the number of arithmetic opera-

tions to compute s1,2 is at most a multiple of # supp s1,2 . C̃1/sε−1/s. An analogous
argument for s1,4 yields that finally

# supp r̃1,h ≤ # supp s1,1 + # supp s1,2 + # supp s1,4 . C̃1/sε−1/s,

so that |r̃1,h|ℓwτ . C̃ by Lemma 4.8, and r̃1,h is computable with at most a multiple

of C̃1/sε−1/s arithmetic operations. As an output of SOLVE, the first approximate

stage solution D̃αu1 fulfills the estimate

# supp D̃αu1 . |B−1
α r̃1,h|1/sℓwτ

ε
−1/s
1 . C̃1/sε−1/s,

and hence |D̃αu1|ℓwτ . C̃ by Lemma 4.8, the number of arithmetic operations to

compute D̃αu1 being bounded by a constant times C̃1/sε−1/s.
Now assume that we are in the i–th for loop, i ≥ 2, and the previous stages have

been computed with # supp D̃αuj . C̃1/sε−1/s and |D̃αuj|ℓwτ . C̃. Then we can
infer that also

|D0u
(n) + D0D

−1
α

∑i−1
j=1 ai,jD̃αuj|ℓwτ . C̃,

and D0u
(n) +D0D

−1
α

∑i−1
j=1 ai,jD̃αuj can be computed with at most a constant times

C̃1/sε−1/s operations. By the properties of APPLY and the compressibility of B0,
we know that

# supp si,1 .
∣∣B0(D0u

(n) + D0D
−1
α

∑i−1
j=1 ai,jD̃αuj)

∣∣1/s
ℓwτ
ε
−1/s
i,1 . C̃1/sε−1/s,

so that Lemma 4.8 yields |si,1|ℓwτ . C̃. Moreover, the number of arithmetic op-

erations to compute si,1 is bounded by a multiple of # supp si,1 . C̃1/sε−1/s. An
analogous argument for the Gramian G shows that

# supp si,3 . |GD−1
α

∑i−1
j=1

ci,j
h

D̃αuj|1/sℓwτ
ε
−1/s
i,3 . C̃1/sε−1/s,

with |si,3|ℓwτ . C̃ and the number of arithmetic operations to compute si,3 being

bounded by a constant times # supp si,3 . C̃1/sε−1/s. Using again the assumptions
on RHSF and on RHSFP like in the first stage equation, we end up with an ap-
proximate i–th right–hand side r̃i,h with |r̃i,h|ℓwτ . C̃. By the properties of SOLVE,
we can deduce that

# supp D̃αui . |B−1
α r̃i,h|1/sℓwτ

ε
−1/s
i . C̃1/sε−1/s,

and hence |D̃αui|ℓwτ . C̃ by Lemma 4.8. The number of arithmetic operations to

compute D̃αui is bounded by at most a multiple of C̃1/sε−1/s.
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The final claim (7.2.20) follows by the properties of the COARSE routine.
Namely, knowing that ‖D0ǔ

(n+1) − D0u
(n+1)‖ℓ2 ≤ θε from the convergence proof,

we can invoke (4.4.3) to infer that

# suppD0ũ
(n+1) . |D0u

(n+1)|1/sℓwτ
ε−1/s.

By the preceding arguments, the computation of D0ũ
(n+1) involves only a constant

times C̃1/sε−1/s arithmetic operations. The proof is complete.

Remark 7.11. In practice, of course, one will not implement Algorithm 7.8 exactly
as it is printed here. This is mainly due to the fact that the worst case estimates done
in the convergence proof are very pessimistic, which may result in a bad quantitative
response of the algorithm. Instead, in the numerical experiments of Chapter 8,
we set most of the constants in the algorithm to reasonable values and rely on the
fact that ROW INCREMENT will still yield approximations with ‖D0ũ

(n+1) −
D0u

(n+1)‖ℓ2 ≤ C ′ε, with a moderate constant C ′. This approach is common in
adaptive wavelet methods, see also [7, 52, 103].



Chapter 8

Numerical Experiments

This chapter is devoted to the numerical validation of the convergence and complex-
ity results for the adaptive wavelet schemes introduced in Chapter 7. In particular,
we shall study the temporal and spatial convergence for several one– and two–
dimensional examples. We will also address auxiliary algorithms that are used in
the course of the experiments.

8.1 Design of the Experiments

In the experiments, we shall study homogeneous and inhomogeneous parabolic prob-
lems of the form (0.0.20) and (0.0.21), respectively. The setting will be restricted to
that of the heat equation, i.e., A = ∆D

Ω is the Dirichlet Laplacian operator over the
domain Ω. We consider test cases on the time interval [0, 1] where the initial value
and the driving term f are either smooth or non–smooth. Here spatial smooth-
ness is measured in the scale of spaces D(Ak). The test examples are consecutively
numbered, and a rough overview of them is given in Table 8.1. More details are
addressed in the following subsections.

d Ω u0 f nr.

1 (0, 1) smooth 0 1
non–smooth 2

0 temp. and spatially smooth, tensor prod. 3
temp. smooth, spatially non–smooth 4

temp. and spatially non–smooth 5
smooth temp. and spatially smooth, no tensor prod. 6

2 L–domain 0 temp. and spatially smooth 7
temp. and spatially non–smooth 8

Table 8.1: Survey of the parabolic test examples.

133
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8.1.1 1D Examples

Homogeneous Problems

For a homogeneous parabolic problem (0.0.20), we know from the previous discussion
that the exact solution u(t) is given by the semigroup action u(t) = etAu0 on the
initial value u0. Hence, for Ω = (0, 1), a reference solution u(t) at time t > 0 can
be computed via the series expansion (6.3.4). We shall essentially use the same
test examples as in [130]. More precisely, we will consider both a smooth and a
nonsmooth initial value u0 with ‖u0‖L2(0,1) = 1.

In the test example 1, we choose the initial value

u0(x) =

√
2

5

(
sin(πx) + 2 sin(2πx)

)
, x ∈ (0, 1), (8.1.1)

so that u0 and hence u(t) are non–symmetric as functions in the spatial variable.
We have u0 ∈ D(Ak) for any power k ∈ N since u0 is a finite linear combination
of eigenfunctions of the Dirichlet Laplacian A = d2

dx2 . Consequently, the solution u
has an arbitrarily large temporal smoothness, both as a mapping into L2(Ω) and
into D(A). Moreover, in the sine series expansion of u0 and in (6.3.4), all but two
entries are zero, so that the reference solution u(t) is a finite sine sum and can
hence be evaluated up to machine precision in a stable way by the Goertzel–Reinsch
algorithm, see [68] for details. A plot of u0 and of the corresponding solution u is
given in Figure 8.1.
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Figure 8.1: Test example 1: Initial value u0 (left) and the corresponding reference
solution u (right).

In the test example 2, we would like to choose the non–smooth initial value

u0(x) =
√

2χ[ 1
4
, 3
4
)(x), x ∈ (0, 1). (8.1.2)

Here it is only u0 ∈ H1/2−ǫ(0, 1) for all ǫ > 0, so that u0 /∈ D(A). However, u0 is
contained in the domain of certain fractional powers of A. Since A is self–adjoint
and D(A) = H2(Ω) ∩H1

0 (Ω), we can infer from (6.1.23) that

D(As) = [L2(Ω), H2(Ω) ∩H1
0 (Ω)]s,2, s ∈ (0, 1). (8.1.3)
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This scale of spaces has been studied, e.g., in [80]. For s < 1
4
, it was proved in

loc. cit. that D(As) = H2s(Ω), so that u0 ∈ D(A1/4−ǫ) for all ǫ > 0. The latter
fact can also be derived by analytically computing the expansion coefficients with
respect to the orthonormal eigenfunctions {vk}k∈N from (6.3.1)

〈u0, vk〉L2(0,1) =
4

kπ
sin(kπ/2) sin(kπ/4), k ∈ N, (8.1.4)

and by using the Picard criterion

D(As) =
{
f ∈ L2(0, 1) :

∑

k∈N

λ2s
k |〈f, vk〉L2(0,1)|2 <∞

}
, s > 0. (8.1.5)

Since the sine series expansion (6.3.4) of u0 and of the corresponding solution u
involves infinitely many nontrivial terms, we cannot evaluate the reference solution
at time t with machine precision. Instead, we truncate the sine series expansion of
u0 at a fixed maximal index K and compute an approximate initial value

ũ0 = ũ0(·;K) =
∑

0≤k≤K
〈u0, vk〉vk.

From (8.1.4), we infer that ‖ũ0 − u0‖L2(0,1) = O(K−1/2) as K tends to infinity. In
the numerical experiments, we choose the truncation parameter K = 20000, which
amounts to ‖ũ0 − u0‖L2(0,1) ≤ 10−2. Temporal and spatial errors are computed
against the solution u corresponding to the truncated initial value ũ0 which shall
hence be also denoted by u0 in the sequel. A plot of u0 and of the corresponding
solution u can be seen in Figure 8.2. It becomes visible that the non–smooth initial
value u0 is smoothed rapidly by the semigroup at the beginning of the time interval.
Since the initial value u0 is non–smooth, the corresponding solution u has a limited
temporal Hölder smoothness due to Theorem 6.8, which will be of importance for
the numerical experiments.
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Figure 8.2: Test example 2: Initial value u0 (left) and the corresponding reference
solution u (right).
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Inhomogeneous Problems

We consider inhomogeneous 1D problems of the form (0.0.21), i.e., we choose u0 =
0 and several driving terms f of different temporal and spatial smoothness each.
Consequently, the exact solution u is given as the convolution integral (6.2.1). For
the special case that f(s) ≡ f0 is temporally constant, u has the series expansion

u(t) =

∫ t

0

e(t−s)Af(s) ds =
∑

k∈N

〈f0, vk〉
∫ t

0

e−(t−s)k2π2

vk ds =
∑

k∈N

1 − e−k
2π2t

k2π2
〈f0, vk〉vk.

(8.1.6)
The test example 3 shall be of this type, where we consider the driving term

f(t, x) = π2 sin(πx), t ∈ [0, 1], x ∈ Ω, (8.1.7)

which is a multiple of the eigenfunction v1 and corresponds to the exact solution

u(t, x) = (1 − e−π
2t) sin(πx), t ∈ [0, 1], x ∈ Ω. (8.1.8)

f is arbitrarily smooth both in time and in space. Note that part (iii) of Theorem
6.13 is not applicable since f(0) 6= 0. Nevertheless, u is also temporally and spatially
smooth by definition. A plot of the driving term f and the corresponding solution
u can be found in Figure 8.3.
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Figure 8.3: Test example 3: Driving term f (left) and the corresponding reference
solution u (right).

In the test example 4, we choose the driving term

f(t, x) = 1, t ≥ 0, x ∈ Ω. (8.1.9)

Although f is arbitrarily smooth in time, the function f(t, ·) = f0 does not fulfill
the spatial boundary conditions. More precisely, since f0 is (piecewise) constant, we
only have f0 ∈ D(A1/4−ǫ) for all ǫ > 0 similar to the initial value u0 in test example
2. Consequently, the exact solution u(t, ·) at t is only contained in D(A5/4−ǫ). By
Theorem 6.12, we derive no more temporal regularity of u than u ∈ Cα([0, T ];L2)
for all 0 < α < 1. We can compute u by the series expansion 8.1.6, truncated at
some maximal eigenvalue, see also Figure 8.4.
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Figure 8.4: Test example 4: Driving term f (left) and the corresponding reference
solution u (right).

In order to derive an example where f is non–smooth both in time and space,
we consider driving terms of the form f(t) = χ[0,a)(t)f0, so that it is only f ∈
H1/2−ǫ(0, T ;L2(Ω)) for all ǫ > 0. There, analogously to (8.1.6), the exact solution u
can again be computed as a series

u(t) =
∑

k∈N

min{1, e−k2π2(t−a)} − e−k
2π2t

k2π2
〈f0, vk〉vk, t ≥ 0. (8.1.10)

As test example 5, we choose a right–hand side of the aforementioned type

f(t, x) =
√

2χ[0, 1
2
)(t)χ[ 1

4
, 3
4
)(x), t ∈ [0, 1], x ∈ Ω. (8.1.11)

For fixed t ∈ [0, 1], we have f(t, ·) ∈ D(A1/4−ǫ) for all ǫ > 0, and t 7→ f(t, ·) has a
discontinuity at t = 1

2
. A plot of f and the corresponding solution u can be found

in Figure 8.5.
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Figure 8.5: Test example 5: Driving term f (left) and the corresponding reference
solution u (right).

Finally, as test example 6, we choose the exact solution u in such a way that f
can not be written as a tensor product of two univariate functions. Precisely, we
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assume that u is a moving Gaussian

u(t, x) = e−300(x−0.6+0.2t)2 , t ∈ [0, 1], x ∈ Ω, (8.1.12)

so that u(t, ·) fulfills the homogeneous boundary conditions at least numerically.
The driving term is chosen as f(t, x) = ut(t, x) − uxx(t, x). We note that for the
given solution u, the driving term f has a nontrivial temporal derivative, in contrast
to the other one–dimensional examples. A plot of f and the corresponding solution
u is given in Figure 8.6.
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Figure 8.6: Test example 6: Driving term f (left) and the corresponding reference
solution u (right).

8.1.2 2D Examples

Concerning the numerical examples on the L–shaped domain Ω = (−1, 1)2 \ [0, 1)2,
we shall only study inhomogeneous problems of the form (0.0.20), where u0 = 0.
This is mainly due to the fact that a complete eigensystem for the Dirichlet Laplacian
is not available in this situation, making the computation of reference solutions for
homogeneous parabolic problems difficult.

The test example 7 is chosen in analogy to example 3, where the driving term

f(t, x, y) = 2π2 sin(πx) sin(πy), t ∈ [0, 1], (x, y)⊤ ∈ Ω (8.1.13)

is temporally constant. f is spatially smooth with f(t, ·, ·) ∈ D(Ak) for all k ∈ N

since f(t, ·, ·) is an eigenfunction of the Dirichlet Laplacian ∆D
Ω. The exact solution

u is the tensor product

u(t, x, y) = (1 − e−2π2t) sin(πx) sin(πy), t ∈ [0, 1], (x, y)⊤ ∈ Ω (8.1.14)

which is also temporally and spatially smooth. In Figure 8.7, we give a plot of u at
the time t = 1.

Finally, test example 8 shall be designed in such a way that the reference solution
u is neither temporally nor spatially smooth. We choose the function

u(t, x, y) = t3/4r2/3 sin
( 2θ

3π

)
(1 − x2)(1 − y2), t ∈ [0, 1], (x, y)⊤ ∈ Ω, (8.1.15)
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Figure 8.7: Test example 7: Reference solution u(t, x, y) at t = 1

which has also been used in the experiments of [83]. Here (r, θ) = (
√
x2 + y2, arctan y

x
)

are the polar coordinates with respect to the reentrant corner at (x, y)⊤ = (0, 0)⊤.
Note that u has a temporal singularity at t = 0 and a spatial singularity at the
origin. Precisely, u(t, ·, ·) is contained only in H5/3(Ω) due to the behavior at
the reentrant corner. Contrary to that, we have u(t, ·, ·) ∈ B2s+1

τ (Lτ (Ω)) for all
s ≥ 0, τ = (s + 1

2
)−1, since u is the pointwise product of the analytic function

(x, y)⊤ 7→ (1− x2)(1− y2) and a function of arbitrary high Besov regularity. Figure
8.8 shows a plot of u at the time t = 1. The right–hand side is chosen according
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Figure 8.8: Test example 8: Reference solution u(t, x, y) at t = 1

to f(t, x, y) = ut(t, x, y) − ∆u(t, x, y) which has a nontrivial temporal derivative,
similar to the driving term in example 6. Both functions f and ft are unbounded
for t→ 0 and they do no longer fulfill the spatial Dirichlet boundary conditions.
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8.1.3 More Details on the Temporal Discretization

For the temporal discretization, we select several appropriate ROW–methods with
different number of stages S and different orders of consistency p. The concrete
choice of methods is guided by the suggestions from [108]. All of the schemes are
both A(π/2)– and L–stable, and they are listed in Table 8.2.

name reference S p further properties

ROS2 [16] 2 2
ROWDA3 [127] 3 3 index 1 DAEs
ROS3Pw [3] 3 3 index 1, PDEs, W–method
RODASP [132] 6 4 index 1 DAEs, PDEs, stiffly accurate

Table 8.2: Survey of the ROW methods used in the numerical experiments.

The ROS2 time integrator from [16] is one of the two possible second–order
ROW–schemes with two stages that are also L–stable. Note that in [103], the
alternative variant was used as a second order L–stable benchmark solver. However,
the ROS2 solver may have better stability properties since its stability function R(z)
is positive for all z ≤ 0, which is not the case for the alternative second order scheme.
We point at the discussion in Section 3.2 of [16] here.

As a principal third–order scheme, we choose the three–stage solver ROWDA3
from [127]. Although it has not been specifically designed for applications in par-
tial differential equations, the scheme generally performs well in the case of linear
parabolic equations with homogeneous Dirichlet boundary conditions due to Theo-
rem 7.4. In test example 6 we shall see that steep gradients of the exact solution
may lead to inferior convergence behaviour of ROWDA3 for small stepsizes. Hence,
for comparison, we add results for the more sophisticated third–order integrator
ROS3Pw from [3] in this case. The latter scheme fulfills additional stability prop-
erties that make it suitable also for the case of W–methods where J and g are only
approximations of A and f ′(tn), respectively. Apart from the schemes ROWDA3
and ROS3Pw, we have tested further third–order methods, e.g., ROS3P [109] or
ROSI2PW [3]. However, for the class of linear parabolic problems we are inter-
ested in, the corresponding numerical results do not differ significantly from those
obtained with the chosen. This is essentially due to the fact that the order reduc-
tion for ROW methods applied to discretizations of linear homogeneous Dirichlet
problems is not as severe as it would be the case for inhomogeneous or Neumann
problems. When it comes to applications of ROW–methods to nonlinear parabolic
problems, specially tailored schemes like ROS3P would be preferable.

The fourth–order integrator RODASP developed in [132] complements the choice
of Rosenbrock methods. The scheme is specifically designed for the application to
PDEs, i.e, it fulfills the additional algebraic order conditions from Theorem 7.4.
Since the RODASP scheme is quite expensive due to the high number of stages, we
have used it only for the one–dimensional examples.
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8.2 Temporal Convergence for Constant Stepsizes

In a first step, we verify the temporal convergence results stated in Subsection
7.1.2 for the one–dimensional problems 1 to 6 and the special case of a wavelet
discretization in space. In a finite element context, computations of this type have
been done in [107]. We redo the same steps in order to verify the integrity of the
implementation.

For the validation of the asserted temporal convergence orders in one space di-
mension, we apply the mentioned ROW methods with a constant temporal stepsize
h to the test examples 1 to 6 on the time interval [0, T ]. Due to the parabolic
smoothing, the exact solution of a homogeneous problem decays exponentially fast
to zero. Therefore, we set the value of T in the numerical experiments to T = 0.1
for the problems 1 and 2, and to T = 1 in the inhomogeneous problems 3 to 6. In
order to suppress the additional spatial discretization error to an insignificant level,
we use a maximal refinement level jmax = 15 and quadratic spline wavelet bases
(m = m̃ = 3) on the interval from [126]. Since the exact solutions u are known in
each testcase, we can explicitly compute the L2 errors

eh := max
k=0,...,T/h

‖u(kh) − u(k)‖L2(Ω) (8.2.1)

for a constant temporal stepsize h by applying a suitable quadrature rule. Under
the assumption that the discretization error behaves like eh = chp, the values

pnum := log2

eh
eh/2

(8.2.2)

may serve as numerical estimators of the temporal convergence order p.

8.2.1 Homogeneous Problems

ROS2 ROWDA3 RODASP
h eh pnum eh pnum eh pnum

2−2 8.65e−2 5.57e− 3 2.83e− 4
2−3 3.94e−2 1.13 8.07e− 4 2.79 1.69e− 5 4.06
2−4 1.50e−2 1.39 1.12e− 4 2.85 1.04e− 6 4.02
2−5 4.92e−3 1.61 1.49e− 5 2.91 6.48e− 8 4.01
2−6 1.44e−3 1.77 1.93e− 6 2.95 4.06e− 9 4.00
2−7 3.92e−4 1.88 2.46e− 7 2.97 2.72e−10 3.90
2−8 1.03e−4 1.93 3.10e− 8 2.99
2−9 2.63e−5 1.97 3.89e− 9 2.99
2−10 6.64e−6 1.98 4.87e−10 3.00

Table 8.3: Test example 1: L2 convergence for constant stepsizes

In Table 8.3, we report the results for the test example 1. The predicted conver-
gence rates for homogeneous problems with a smooth initial value u0 can be observed
for all of the three time integrators considered. Of course the order estimator (8.2.2)
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fails for very small values of h since then, the spatial truncation error dominates the
temporal error and the assumption eh = chp is no longer valid. For this reason, we
omit some of the results for RODASP.

In test example 2, we expect a limitation of the numerical convergence rates
due to the non–smooth initial value u0. As stated above, the exact solution u
is contained only in C0.25−ǫ([0, T ];L2). Table 8.4 reveals that all time integrators
yield approximations with eh h h0.25 only which matches the regularity of u. For
very small stepsizes h ≤ 2−9, the spatial discretization error spoils the observable
convergence orders for all time integrators, since the chosen maximal discretization
level jmax = 15 is not sufficient to approximate the non–smooth functions u0 and
u(t, ·) for t ≈ 0 with an L2 error smaller than 10−2.

ROS2 ROWDA3 RODASP
h eh pnum eh pnum eh pnum

2−2 5.62e−2 3.26e−2 3.55e−2
2−3 4.84e−2 0.22 2.75e−2 0.24 2.98e−2 0.25
2−4 4.03e−2 0.26 2.31e−2 0.25 2.50e−2 0.25
2−5 3.39e−2 0.25 1.94e−2 0.25 2.09e−2 0.26
2−6 2.85e−2 0.25 1.62e−2 0.26 1.71e−2 0.29
2−7 2.39e−2 0.25 1.34e−2 0.28 1.31e−2 0.38
2−8 2.00e−2 0.26 1.05e−2 0.35 8.26e−3 0.67
2−9 1.65e−2 0.28 7.06e−3 0.57 2.81e−3 1.55
2−10 1.28e−2 0.36 2.84e−3 1.31 2.69e−3 0.07

Table 8.4: Test example 2: L2 convergence for constant stepsizes

8.2.2 Inhomogeneous Problems

For the inhomogeneous test problem 3, having a smooth right–hand side, the theo-
retical considerations from Subsection 8.1.1 predict the classical convergence orders
2, 3 and 4 for all of the considered time integrators. This can be validated numeri-
cally, see Table 8.5.

ROS2 ROWDA3 RODASP
h eh pnum eh pnum eh pnum

2−2 1.21e−1 3.53e− 2 6.41e− 3
2−3 8.57e−2 0.50 8.00e− 3 2.14 5.50e− 4 3.54
2−4 4.07e−2 1.07 1.16e− 3 2.78 3.22e− 5 4.09
2−5 1.64e−2 1.31 1.68e− 4 2.79 2.01e− 6 4.00
2−6 5.64e−3 1.54 2.26e− 5 2.89 1.25e− 7 4.01
2−7 1.71e−3 1.72 2.95e− 6 2.94 7.82e− 9 4.00
2−8 4.74e−4 1.84 3.77e− 7 2.97 5.03e−10 3.96
2−9 1.25e−4 1.92 4.77e− 8 2.98
2−10 3.22e−5 1.96 6.00e− 9 2.99

Table 8.5: Test example 3: L2 convergence for constant stepsizes
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In the test examples 4 and 5, the driving term f and the corresponding solution u
are at least spatially non–smooth. In both cases, f is only mapping into D(A1/4−ǫ),
so that the solution u(t, ·) at t is only contained in D(A5/4−ǫ). By Theorem 6.12, we
have at least that u ∈ Cα([0, T ];L2) for all 0 < α < 1, so that a convergence rate
greater or equal to 1 can be expected in both examples. The results for example
4 are given in Table 8.6. Obviously, all of the considered schemes exhibit the L2

convergence rate eh h h1.25, in accordance with the theory.

ROS2 ROWDA3 RODASP
h eh pnum eh pnum eh pnum

2−2 1.56e−02 4.56e−03 1.01e−03
2−3 1.11e−02 0.50 1.12e−03 2.03 5.16e−04 0.97
2−4 5.25e−03 1.07 4.35e−04 1.36 2.58e−04 1.00
2−5 2.12e−03 1.31 2.27e−04 0.94 1.02e−04 1.33
2−6 7.28e−04 1.54 9.24e−05 1.30 4.34e−05 1.24
2−7 2.45e−04 1.57 3.89e−05 1.25 1.82e−05 1.25
2−8 1.08e−04 1.19 1.63e−05 1.25 7.66e−06 1.25
2−9 4.49e−05 1.26 6.87e−06 1.25 3.22e−06 1.25
2−10 1.89e−05 1.25 2.89e−06 1.25 1.35e−06 1.25

Table 8.6: Test example 4: L2 convergence for constant stepsizes

ROS2 ROWDA3 RODASP
h eh pnum eh pnum eh pnum

2−2 2.69e−02 4.56e−03 2.59e−02
2−3 2.01e−02 0.42 1.12e−03 2.03 1.46e−02 0.82
2−4 1.44e−02 0.48 4.35e−04 1.36 7.85e−03 0.90
2−5 9.49e−03 0.60 2.27e−04 0.94 4.09e−03 0.94
2−6 5.69e−03 0.74 9.24e−05 1.30 2.10e−03 0.96
2−7 3.18e−03 0.84 3.89e−05 1.25 1.07e−03 0.97
2−8 1.70e−03 0.90 1.63e−05 1.25 5.42e−04 0.98
2−9 8.89e−04 0.94 6.88e−06 1.25 2.73e−04 0.99
2−10 4.57e−04 0.96 2.91e−06 1.24 1.37e−04 0.99

Table 8.7: Test example 5: L2 convergence for constant stepsizes

The results for example 5, as given in Table 8.7, are comparable to those for ex-
ample 4. Here the driving term f has a discontinuity at t = 1

2
, so that u has a limited

temporal Hölder smoothness. We observe the minimally expected convergence rates
of pnum = 1 for the schemes ROS2 and RODASP, whereas the third–order integrator
ROWDA3 exhibits a slightly better performance pnum = 1.25. Add to the better
convergence rate, the attained minimal error for ROWDA3 is much smaller when
compared to the schemes ROS2 and even RODASP. This effect can be explained as
follows. For a given time step tn with stepsize h, a Rosenbrock scheme evaluates
the right–hand side at the points tn+αih. In both integrators ROS2 and RODASP,
there is at least one coefficient αi = 1. More precisely, we have (αi)

2
i=1 = (0, 1)

for ROS2 and (αi)
6
i=1 = (0, 0.75, 0.21, 0.63, 1, 1) for RODASP. So for the particular
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choice of equidistant dyadic stepsizes, both schemes will evaluate f at the disconti-
nuity t = 1

2
not only when tn = 1

2
but also in the case tn+h = 1

2
. The latter situation

is more severe since for small stepsizes, we end up with a steep numerical slope of
f despite the fact that f ′ = 0. This effect can not happen for ROWDA3, where we
have (αi)

3
i=1 = (0, 0.7, 0.7). Here a point evaluation of f at t = 1

2
only occurs at the

beginning of a time step, which does not have such dramatical consequences.
In the test example 6, both the driving term f and the exact solution u are

temporally and spatially smooth, so that we should observe the classical integer
convergence orders in the numerical experiments. As seen in Table 8.8, the second
order scheme ROS2 indeed converges with a rate pnum ≥ 2, as expected. For the
higher order schemes, however, the numerical rates slightly deviate from the theo-
retical ones. The ROWDA3 integrator shows the rate 3 for moderate stepsizes h
only, but for small stepsizes the rate decreases to values close to 2. Analogously,
the classical fourth order of RODASP is reduced to pnum > 3. We suspect that the
slower convergence in both cases stems from the fact that the temporal derivatives of
f are highly oscillatory in space so that the approximate evaluation of the coefficient
array 〈f ′(tn),Ψ〉⊤ leads to additional spatial errors per increment step that are no
longer negligible. Hence in test example 6, ROW–methods behave like W–methods
where additional order conditions have to be fulfilled to sustain the classical conver-
gence orders. As a complement, we thus add computational results for the scheme
ROS3Pw in Table 8.8. Here the classical order p = 3 can indeed be observed in
practice. We have also made test computations with other nonseparable driving
terms f the temporal derivatives of which were less oscillating. In these cases the
scheme ROWDA3 also shows a third–order convergence.

ROS2 ROWDA3 ROS3Pw RODASP
h eh pnum eh pnum eh pnum eh pnum

2−2 1.10e−01 3.01e−02 4.29e−02 1.61e−05
2−3 2.96e−02 1.90 3.99e−03 2.91 3.91e−03 3.46 1.60e−06 3.33
2−4 7.43e−03 1.99 5.14e−04 2.96 5.07e−04 2.95 2.06e−07 2.96
2−5 1.81e−03 2.03 8.49e−05 2.60 6.43e−05 2.98 2.92e−08 2.82
2−6 4.29e−04 2.08 2.35e−05 1.85 8.13e−06 2.98 3.99e−09 2.87
2−7 9.66e−05 2.15 7.36e−06 1.68 1.03e−06 2.98 4.86e−10 3.04
2−8 2.02e−05 2.26 2.04e−06 1.85 1.29e−07 2.99 5.04e−11 3.27
2−9 4.20e−06 2.26 4.84e−07 2.08 1.58e−08 3.03 4.93e−12 3.35
2−10 1.34e−06 1.65 1.05e−07 2.20 2.15e−09 2.88 1.72e−12 1.52

Table 8.8: Test example 6: L2 convergence for constant stepsizes
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8.3 Adaptive Discretization in Time

Concerning the numerical results with non–constant time step sizes h, we shall
distinguish the cases of a full and of an adaptive spatial discretization.

8.3.1 Full Spatial Discretization

In order to check the performance of the stepsize controller, we collect some nu-
merical results for the one–dimensional cases 1 to 6. As in Section 8.2, we use a
quadratic spline wavelet basis (m = m̃ = 3) on the interval from [126], and the
spatial discretization is done using all wavelets up to the maximal refinement level
jmax = 15. For tolerances TOL from 2−6 to 2−25, an adaptive time discretization was
applied to the test problems, where we solved each elliptic subproblem by a single
Galerkin projection onto the space Vjmax+1 of active wavelets.

Since for an adaptive discretization in time with the considered one–step meth-
ods, there is no general proof of the attainable convergence order available, we shall
only report the numerical results in graphical form in the following. In the case of
equidistant stepsizes, the number of time steps N is proportional to h−1. Conse-
quently, using an adaptive stepsize controller, we hope that the L2 accuracy

max
n

‖u(tn) − u(n)‖L2(Ω) (8.3.1)

behaves like a constant times N−pnum , where pnum may coincide or not with the
classical order p of the corresponding ROW–method. For each of the test examples,
we give a plot of the required number of time steps against the resulting L2 accuracy.
Secondly, we compare this L2 error with the CPU time needed to compute the
approximations. Due to the fixed spatial discretization, the computational work per
time step is uniform, so that both curves should only differ by a vertical shift. Hence
the slopes are only measured in the respective left diagram.
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Figure 8.9: Test example 1: L2 convergence for a time–adaptive discretization.

The results for example 1 can be found in Figure 8.9. It is clearly visible that
all integrators show the respective classical integer convergence orders p ∈ {2, 3, 4},
similar to the case of constant stepsizes.
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In the second test example, recall that we observed a severe order reduction
for equidistant stepsizes due to the Hölder singularity of u : [0, T ] → L2(Ω) at the
origin. For an adaptive discretization in time, this is no longer the case. Instead, we
can measure numerical rates of convergence pnum of approximately 1.75, 2.75 and
3.75 for the integrators under consideration, see Figure 8.10.
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Figure 8.10: Test example 2: L2 convergence for a time–adaptive discretization.
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Figure 8.11: Test example 3: L2 convergence for a time–adaptive discretization.

In Figure 8.11, we report the convergence results for test example 3. As in
the case of constant stepsizes, we can observe the classical convergence orders
p ∈ {2, 3, 4} also for an adaptive discretization in time. Surprisingly, the fourth–
order scheme RODASP even shows a higher numerical convergence rate pnum of
approximately 6.

In test example 4, where the spatial regularity of f and u was very low, we have
observed a severely limited convergence rate in the case of equidistant stepsizes, see
Section 8.2. For an adaptive choice of h, the temporal convergence rate considerably
improves and we can again observe at least the classical rates, see Figure 8.12. Again
the scheme RODASP performs very well, with a rate pnum ≈ 5.
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Figure 8.12: Test example 4: L2 convergence for a time–adaptive discretization.
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Figure 8.13: Test example 5: L2 convergence for a time–adaptive discretization.

The test example 5 had been chosen in such a way that f has a discontinuity
at t = 1

2
and f(t) is discontinuous in space for t < 1

2
, leading to a suboptimal con-

vergence behavior of the considered ROW–methods. The corresponding numerical
results are presented in Figure 8.13. For the schemes ROS2 and ROWDA3, we can
observe a rate pnum ≈ 1.75 although it should be noted that the third–order method
ROWDA3 behaves rather irregular in this test example. For RODASP, the classical
rate 4 is attained. Summing up, the convergence rates for an adaptive discretiza-
tion in time clearly outperform the results from the case of constant stepsizes. It
becomes clear that example 5 is one of the problems where temporal adaptivity
really pays off. This becomes even more apparent when comparing the associated
computational work for adaptive and nonadaptive time integration, see Figure 8.21.

Finally, we present the results for test example 6 in Figure 8.14. It is visible
that the schemes ROS2 and RODASP show at least the classical convergence rates
p ∈ {2, 4}, respectively. The second–order scheme ROS2 performs even better, with
pnum ≈ 2.25. In analogy to the results for constant stepsizes, however, the scheme
ROWDA3 did not yield satisfactory results. We observed a numerical rate strictly
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less than 2. In contrast to ROWDA3, the scheme ROS3Pw worked perfectly also in
the case of adaptive stepsizes, with pnum ≈ 3.
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Figure 8.14: Test example 6: L2 convergence for a time–adaptive discretization.

8.3.2 Fully Adaptive Discretization

We now turn to the numerical results for a fully adaptive discretization in time and
space. Both to the one– and to the two–dimensional test examples, we have applied
an adaptive time discretization for tolerances TOL from 2−6 to 2−20.

1D Results

On the interval, we choose again the quadratic spline wavelet basis (m = m̃ = 3)
on the interval from [126]. The spatial discretization is done adaptively, where we
restrict the wavelet basis to all wavelets with |λ| ≤ jmax = 12. Of course this
approach somehow contradicts a fully adaptive setting, but for the moment this was
the most feasible approach concerning the software implementation. Future versions
of the code should make use of tree structured wavelet index sets where the artificial
limitation can be avoided.

Figure 8.15 shows the convergence and complexity results for test example 1.
Similar to the case of a full spatial discretization, the number of time steps N for
a given accuracy ε behaves like N h ε−1/p, for p ∈ {2, 3, 4}, respectively. Concern-
ing the asymptotic behaviour of the computational work, we observe slightly better
rates of approximately 2.25, 3.25 and 5.25. This is due to the fact that for homoge-
neous problems, the computational work for time steps tn close to 0 is substantially
higher than for later time steps due to the parabolic smoothing, which results in a
decreasing complexity per step as tn tends to T . Consequently, an adaptive spatial
discretization really pays off compared to a uniform one in the case of homogeneous
problems.

In the computations for test example 2, see Figure 8.16, we can see that the
schemes ROS2 and ROWDA3 exhibit a slightly worse convergence behavior com-
pared with a full spatial discretization. In both cases, the measured rates are about
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Figure 8.15: Test example 1: L2 convergence for a fully adaptive discretization.
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Figure 8.16: Test example 2: L2 convergence for a fully adaptive discretization.

0.25 smaller for a fully adaptive approximation. This may be explained by the addi-
tional truncation error when using only wavelets with a level |λ| ≤ 12 in the spatially
adaptive experiments compared with |λ| ≤ 15 for the spatially nonadaptive case.
The integrator RODASP shows a fourth order convergence which is better than in
the spatially non–adaptive experiments. Concerning the computational work, we
again observe for each scheme that the asymptotic rate of the CPU time is better
than the corresponding rate of timesteps N . The chosen integrators show complex-
ity rates of 2, 3.5 and approximately 4, respectively, outperforming the complexity
behavior in the case of a full spatial discretization. For example 2, we hence note
that the additional spatial adaptivity indeed helps, although this is not yet visible
when only considering the number of time steps.

For test example 3, we do not expect an improvement of the convergence and
complexity behavior compared to a non–adaptive setting since the solution u is
uniformly smooth both in time and space. The numerical results are given in Figure
8.17. In fact, we can observe rates of 2 for ROS2 and 3 for ROWDA3, as in the
non–adaptive discretizations. The scheme RODASP shows a convergence of order
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Figure 8.17: Test example 3: L2 convergence for a fully adaptive discretization.

6 before the spatial discretization error begins to dominate the overall scheme. The
complexity plot clearly shows that the computational work behaves like ε−1/p, where
p ∈ {2, 3, 4} are the classical convergence orders of the considered ROW–methods.
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Figure 8.18: Test example 4: L2 convergence for a fully adaptive discretization.

For example 4, the convergence and complexity plots look a bit irregular, see
Figure 8.18. For low and moderate tolerances, the schemes ROS2 and ROWDA3
exhibit a convergence order 2 and 3, respectively, similar to the spatially non–
adaptive discretization. For small tolerances, we still have convergence but the
measured accuracies do not allow for a reliable order estimation. Also the scheme
RODASP shows a fourth order convergence for low tolerances, with an oscillating
behavior for smaller values of TOL as for the lower–order schemes. The complexity
curves look very similar, up to a vertical shift.

Concerning the results for example 5, the schemes ROS2 and RODASP have
a convergence behavior that is at least as good as in the non–adaptive case. In
Figure 8.19, we can observe a numerical rate of approximately 1.75 for ROS2 and
even 6 for RODASP. The integrator ROWDA3 behaves more irregular. Here, for
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Figure 8.19: Test example 5: L2 convergence for a fully adaptive discretization.

low tolerances, a rate pnum ≈ 3 is obtained, whereas the results become oscillating
for lower values of TOL. It seems that the embedded error estimator in ROWDA3 is
not as reliable as the ones of the other ROW–methods, since we used the identical
stepsize controller for all integrations. The computational work shows a comparable
asymptotic behaviour as TOL decreases.

Due to the good convergence behavior of adaptive methods in test example 5, we
have also compared the absolute computational complexity of the three presented
methods of different degrees of adaptivity in Figure 8.21. We clearly observe the
different complexity rates of nonadaptive methods on the one hand and temporally
adaptive schemes on the other hand. The breakeven point between temporally
adaptive and nonadaptive schemes is reached already at a moderate tolerance, in
particular for ROS2 and RODASP. However, due to the fact that the solution of the
full 1D Galerkin system is comparatively cheap, spatial adaptivity does not really
pay off yet in terms of CPU time.
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Figure 8.20: Test example 6: L2 convergence for a fully adaptive discretization.

Finally, the results for the test example 6 are shown in Figure 8.20. The number
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of time steps N shows the same asymptotic behavior as in the case of a full spatial
discretization. For the schemes ROS2 and RODASP, we observe a rate of 2.25 and
4, respectively. Moreover, the third–order scheme ROWDA3 does again not perform
well, we measure an inferior rate of approximately 1.75. This is not the case for the
integrator ROS3Pw which we already considered as a benchmark scheme in the case
of equidistant stepsizes. Here we observe a high convergence rate of approximately
3.5. The computational complexity of ROS2 and RODASP attains the integer rates
2 and 4, respectively, whereas the third order schemes perform at an approximate
slope 2.5. Compared to a full spatial discretization, the computational cost for the
elliptic subproblems in the fully adaptive scheme seems to grow as tn tends to T ,
which is presumably due to error propagation.
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Figure 8.21: Test example 5: computational work diagram for nonadaptive (dash–
dotted lines), time–adaptive (dotted lines) and fully adaptive (solid lines) discretiza-
tions.
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2D Results

Finally, we present some numerical examples for a fully adaptive discretization of
the test problems 7 and 8 on the L–shaped domain Ω = (−1, 1)2 \ [0, 1)2. As a
wavelet basis, we choose a linear spline composite basis (m = m̃ = 2), where the
internal 1D wavelet basis is taken from [62] with the stabilization of the wavelets as
proposed in [9]. Similar to the one–dimensional tests, the spatial discretization uses
a subset of the overall wavelet basis up to a maximal refinement level of jmax = 5,
i.e., the spatial approximations are contained in the multiresolution space V6. This
restriction will clearly have an effect on the adaptive solutions of the stage equations,
but due to the large number of time steps (approximately 100) for small tolerances
TOL, we decided to constrain the elliptic solver in such a way to keep the runtime of
the code under a reasonable size. For a nonadaptive Galerkin solver, as used in the
one–dimensional examples or in the experiments of [103], it is possible to choose a
higher maximal refinement level since the computational work per time step stays
relatively small as long as the stiffness matrices are precomputed.

As already stated above, we shall only use second and third–order ROW-methods
for the numerical experiments. This is due to the fact that the high number of 6
stages for RODASP leads to a considerable computational work.

0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
−3

−2.8

−2.6

−2.4

−2.2

−2

−1.8

−1.6

−1.4

−1.2

−1
test example 7: number of time steps vs. accuracy

log
10

 N

lo
g 10

 o
f L

2 e
rr

or

1

2

1

3

ROS2
ROWDA3

(a) #time steps against L2 error

3.8 4 4.2 4.4 4.6 4.8 5
−3

−2.8

−2.6

−2.4

−2.2

−2

−1.8

−1.6

−1.4

−1.2

−1
test example 7: cpu time vs. accuracy

log
10

 of CPU time

lo
g 10

 o
f L

2 e
rr

or

1

2

1

3

ROS2
ROWDA3

(b) CPU time (s) against L2 error

Figure 8.22: Test example 7: L2 convergence for a fully adaptive discretization.

In Figure 8.22, we report the numerical results for the test example 7. Here
the driving term f and the solution u are temporally and spatially smooth. For the
second–order scheme ROS2, the number of time steps for the adaptive discretization
behaves like ε−1/2, as it would be the case for equidistant time steps. The scheme
ROWDA3, however, does not yield satisfactory results. For low tolerances, the
number of time steps increases like ε−1/3, but the spatial discretization errors become
dominant quickly as the tolerances decrease. The complexity plots show the same
behavior. We observe a rate of 2 for ROS2, whereas ROWDA3 exhibits a complexity
rate of approximately 3 as long as the tolerances are low.

The results for example 8 are given in Figure 8.23. Here the temporal singularity
at t = 0 and the spatial corner singularity affect the numerical convergence rate of
ROS2. We observe a number of time steps N increasing like ε−1/1.25. In comparison,
similar to the example 7, the ROWDA3 scheme shows a rate of 3 first, but the overall
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Figure 8.23: Test example 8: L2 convergence for a fully adaptive discretization.

convergence is quickly deteriorated by the spatial discretization errors. Concerning
the computational complexity, it is clearly visible that the elliptic subproblems for
the integrator ROS2 become less expensive as tn reaches T , which leads in a com-
plexity rate of approximately 2. Obviously, spatial adaptivity is helpful for problems
of type 8, see also the findings in [83]. Finally, the scheme ROWDA3 quickly reaches
the lowest possible accuracy at an initial rate of approximately 3. Moreover, the
CPU times behave like ε−1/2 for small tolerances.



Concluding Remarks

In this thesis, we have studied several extensions to the current state of research in
adaptive wavelet methods. For a systematic classification of the results, we shall
revisit the guiding tasks (T1)–(T3) that were formulated in the introduction.

First of all, in order to circumvent the potentially complicated construction of
numerically stable wavelet bases on a bounded polygonal domain Ω ⊂ Rd, we were
concerned with the alternative concept of wavelet frames, according to task (T1).
For the discretization of elliptic operator equations with frames, it has turned out
that the class of wavelet Gelfand frames is a particular convenient one, see Section
2.1. Gelfand frames are numerically stable systems in L2 that allow for the charac-
terization of Sobolev and Besov spaces just by an appropriate rescaling, completely
similar to the case for wavelet Riesz bases. The latter are, in fact, a subclass of
Gelfand frames. After the theoretical specification of this convenient frame concept,
we were able to show that there are indeed practical constructions of Gelfand frames
on domains with a nontrivial geometry. Inspired by [133], we have studied overlap-
ping domain decompositions of Ω into subpatches that are parametric images of the
cube. This approach immediately induces aggregated wavelet frames, taking the
union of appropriately lifted reference bases. Although it has been straightforward
to verify that the overall system is an L2 frame, the proof of the Gelfand frame
property and hence also that of the characterization of function spaces required the
application and nontrivial extension of the localization theory of frames, see Section
2.2. By their construction, aggregated wavelet frames retain the locality, regularity
and cancellation properties of the reference basis, which can be exploited in numer-
ical applications. Besides their analytic properties, it is most important that the
construction of aggregated wavelet frames is simple, having a positive influence on
the corresponding computer code. Whereas the numerical implementation of, say,
the composite wavelet bases from [62] is a rather painful task, aggregated wavelet
frames are available as soon as the appropriate parametric mappings and a well–
conditioned reference basis on the cube is implemented. As a consequence, we can
say that problem (T1) has been solved to the full extent.

After the construction of suitable wavelet frames on a polygonal domain, we have
discussed their application to elliptic operator equations. First of all, in Section 5.1,
the equivalent reformulation of the original operator equation in wavelet Gelfand
frame coordinates was given. Unlike the case of Riesz bases, here we are confronted
with a singular system matrix, which results from the redundancy of the underlying
frame. For the design of convergent adaptive frame methods, the singularity of the
system matrix is not an issue. As the most striking adaptive method, we were able
to specify an approximative descent iteration of Richardson type that is guaranteed
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to converge for symmetric stationary elliptic problems, see Section 5.2, The kernel
of the biinfinite stiffness matrix indeed comes into play in the complexity analysis of
the overall scheme. Due to the fact that the iterands in the adaptive Richardson al-
gorithm are no longer contained in the respective Krylov spaces, kernel components
may accumulate during the iteration. However, under a technical assumption which
can be proven to hold in special cases, optimality of the adaptive frame algorithm
can be established. Finally, in Section 5.3, we have tested the adaptive Richardson
iteration in several numerical examples in one and two space dimensions, validat-
ing the claimed convergence and complexity properties of the overall algorithm. Of
course, as already stated in Section 5.3, the quantitative results of adaptive frame
schemes may be improved by looking at alternative variants like approximate steep-
est descent schemes, see [52]. Summing up, also the aspects of task (T2) have been
addressed completely. As a consequence, instead of constructing stable wavelet bases
the potential advantages of which are wasted by their complicated implementation,
we therefore recommend the use of suitable wavelet Gelfand frames as one possible
alternative.

As another major topic, we have addressed the application of wavelet meth-
ods to the adaptive numerical solution of linear parabolic problems. According to
task (T3), we have studied a well–established two–step strategy which consists in
a semidiscretization in time and a successive spatial discretization. In contrast to
the prototypical schemes from [107], we have employed wavelet methods for the
spatial approximation. The analytic properties of wavelet bases such as the char-
acterization of function spaces can be utilized in the numerical algorithm. By an
appropriate coupling of a linearly implicit time integrator with well–known adaptive
wavelet algorithms for the elliptic subproblems, we obtained a fully adaptive numer-
ical scheme. An adaptive increment algorithm has been specified in Section 7.2 and
its convergence and complexity properties have been analyzed. The convergence of
the global algorithm, though, relies on the convergence of the stepsize controller,
since spatial errors are interpreted as additional temporal errors in the iteration.
Finally, we have presented several numerical examples in one and two space dimen-
sions that support the theoretical analysis. In all, we regard the task (T3) as solved,
though quantitative improvements of the current implementation are still necessary
to fully exploit the advantages of the proposed adaptive method.

In any of the three discussed topics, there are future perspectives of the presented
results. Firstly, the theoretical properties of the considered frame construction are
not fully settled at the moment. As an example, the characterization of the full
Besov scale by aggregated wavelet frame coefficients is an open problem, compared
to the case of wavelet bases. Current investigations show that there is space for
improvement [50]. Moreover, the proof of the Gelfand frame property may be dras-
tically simplified by using more a priori knowledge on the reference wavelet basis
and on the particular parametrization of the domain.

Secondly, the consideration of an overlapping domain decomposition may be fur-
ther exploited by using alternative approximation methods than biinfinite linear it-
erative schemes, as already mentioned in the introduction. An apparent perspective
is the development of overlapping domain decomposition algorithms using wavelet
frames, similar to methods known from finite element methods. First numerical
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tests with additive and multiplicative Schwarz iterations in a current thesis [141]
have shown that methods of this type are superior to all known frame algorithms,
at least quantitatively. Of course, it would be interesting to compare this particular
kind of frame schemes also with non–overlapping domain decomposition techniques.
Both alternatives have the important feature that they are highly parallelizable,
which is of ultimate importance when considering realistic problems from technical
applications. Furthermore, of course, the range of problems which the considered
frame schemes apply to may be extended. By their similarity to wavelet bases, ag-
gregated wavelet frames should allow also for the treatment of nonsymmetric and
indefinite problems, in the spirit of [34, 47, 81]. Moreover, a particularly interesting
open field is the extension of frame methods to nonlinear problems.

Concerning the application of wavelet methods to parabolic problems, there are
several possibilities to enhance both the global method but also its building blocks.
To begin with the latter, a natural question is whether it is possible to replace the
internal wavelet methods by a frame algorithm, possibly also one of the aforemen-
tioned domain decomposition schemes. From the theoretical point of view, this
does not seem to be a problem. We expect a considerable quantitative improvement
by the use of frame methods due to the simpler numerical implementation. Fur-
thermore, the class of considered time integrators may be exchanged by alternative
ones. We have mentioned in Remark 7.1 that, in view of the matrix compression
properties of wavelet bases and frames, also W–methods that use inexact Jacobians
may be of interest. Alternatively, it is also an interesting prospect to substitute
the Rosenbrock methods by an appropriate multistep integrator [84], circumventing
the problem of order reduction. Finally, it should be noted that we have explicitly
considered a class of algorithms that permits the generalization towards nonlinear
parabolic problems. For a corresponding numerical realization, one essentially needs
algorithms to evaluate nonlinear expressions of wavelet expansions. Potential stud-
ies into the direction of nonlinear parabolic problems may rely here on the adaptive
evaluation methods presented in [6, 36].
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[41] E. Cordero and K. Gröchenig, Localization of frames II, Appl. Comput. Har-
mon. Anal. 17 (2004), no. 1, 29–47.



166 BIBLIOGRAPHY

[42] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
algorithms, second ed., MIT Press and McGraw–Hill, 2001.

[43] S. Dahlke, Wavelets: Construction principles and applications to the numerical
treatment of operator equations, Shaker, Aachen, 1997.

[44] , Besov regularity for elliptic boundary value problems on polygonal
domains, Applied Mathematics Letters 12 (1999), 31–38.

[45] S. Dahlke, W. Dahmen, and R. DeVore, Nonlinear approximation and adaptive
techniques for solving elliptic operator equations, Multiscale Wavelet Methods
for Partial Differential Equations (W. Dahmen, A. Kurdila, and P. Oswald,
eds.), Academic Press, San Diego, 1997, pp. 237–283.

[46] S. Dahlke, W. Dahmen, R. Hochmuth, and R. Schneider, Stable multiscale
bases and local error estimation for elliptic problems, Appl. Numer. Math. 23

(1997), 21–48.

[47] S. Dahlke, W. Dahmen, and K. Urban, Adaptive wavelet methods for sad-
dle point problems — Optimal convergence rates, SIAM J. Numer. Anal. 40

(2002), no. 4, 1230–1262.

[48] S. Dahlke and R. DeVore, Besov regularity for elliptic boundary value problems,
Commun. Partial Differ. Equations 22 (1997), no. 1&2, 1–16.

[49] S. Dahlke, M. Fornasier, and K.-H. Gröchenig, Optimal adaptive computations
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[86] K.-H. Gröchenig, Describing functions: Atomic decompositions versus frames,
Monatsh. Math. 112 (1991), no. 1, 1–42.

[87] , Localization of frames, GROUP 24: Physical and Mathematical
Aspects of Symmetries (Bristol) (J.-P. Gazeau, R. Kerner, J.-P. Antoine,
S. Metens, and J.-Y. Thibon, eds.), IOP Publishing, 2003, to appear.

[88] , Localized frames are finite unions of Riesz sequences, Adv. Comput.
Math. 18 (2003), no. 2-4, 149–157.

[89] , Localization of frames, Banach frames, and the invertibility of the
frame operator, J. Fourier Anal. Appl. 10 (2004), no. 2, 105–132.

[90] K. Gustafsson, Control of error and convergence in ODE solvers, Ph.D. thesis,
Department of Automatic Control, Lund Institute of Technology, Sweden,
1992.

[91] K. Gustafsson, M. Lundh, and G. Söderlind, A PI stepsize control for the
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no. 5, 461–476.

[98] D. Jerison and C.E. Kenig, The inhomogeneous Dirichlet problem in Lipschitz
domains, J. Funct. Anal. 130 (1995), no. 1, 161–219.

[99] R. Q. Jia and Q. T. Jiang, Spectral analysis of the transition operator and its
applications to smoothness analysis of wavelets, SIAM J. Matrix Anal. Appl.
24 (2003), no. 4, 1071–1109.

[100] R. Q. Jia and S. T. Liu, Wavelet bases of Hermite cubic splines on the interval,
Adv. Comput. Math. 25 (2006), no. 1–3, 23–29.



170 BIBLIOGRAPHY

[101] H. Johnen and K. Scherer, On the equivalence of the K–functional and moduli
of continuity and some applications, Constr. Theory Funct. several Variables,
Proc. Conf. Oberwolfach 1976, Lect.Notes Math., vol. 571, Springer, 1977,
pp. 119–140.

[102] M. Jürgens, Adaptive Wavelet–Verfahren auf allgemeinen Gebieten, Diplomar-
beit, RWTH Aachen, 2001.

[103] , A semigroup approach to the numerical solution of parabolic differen-
tial equations, Ph.D. thesis, RWTH Aachen, 2005.

[104] J. Kadlec, On the regularity of the solution of the Poisson problem on a domain
with boundary locally similar to the boundary of a convex open set, Czech.
Math. J. 14 (1964), no. 89, 386–393.

[105] T. Kato, Perturbation theory for linear operator equations, second ed.,
Grundlehren der mathematischen Wissenschaften, vol. 132, Springer, 1976.

[106] A. Kunoth and J. Sahner, Wavelets on manifolds: An optimized construction,
Math. Comput. 75 (2006), no. 255, 1319–1349.

[107] J. Lang, Adaptive multilevel solution of nonlinear parabolic PDE systems. The-
ory, algorithm, and applications, Preprint SC 99–20, Konrad–Zuse–Zentrum
für Informationstechnik Berlin, 1999.

[108] , Adaptive multilevel solution of nonlinear parabolic PDE systems. The-
ory, algorithm, and applications, Lecture Notes in Computational Science and
Engineering, vol. 16, Springer, Berlin, 2001.

[109] J. Lang and J.G. Verwer, ROS3P — An accurate third-order Rosenbrock solver
designed for parabolic problems, BIT 41 (2001), 731–738.

[110] , On global error estimation and control for initial value problems,
Preprint MAS–E0531, Centrum voor Wiskunde en Informatica, Amsterdam,
2005.

[111] S. Lang, Introduction to complex hyperbolic spaces, Springer, New York, 1987.

[112] I. Lasiecka, Unified theory for abstract parabolic boundary problems — a semi-
group approach, Appl. Math. Optimization 6 (1980), 287–333.
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