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Erschienen im Logos Verlag, Berlin

ISBN 978-3-8325-1489-1



Acknowledgements

First of all, I would like to express my gratitude to my referees, Prof. Dr. Stephan
Dahlke, Prof. Dr. Peter Maaß, and Prof. Dr. Gabriele Steidl, for their willingness
to wade through this thesis which surely contains some notational obstacles and
much to often the prefix “multi”. Moreover, Stephan did not only supervise this
thesis but also spent many hours on discussing the various problems I stumbled
into. Without him, this work would neither have attained its content nor its final
shape. In addition, special thanks go to my colleagues at the AG Numerik/Wavelet
Analysis for a very nice atmosphere and for enlightening though not necessarily
mathematical discussions. In particular, I am indebted to Thorsten Raasch who
did not only play a crucial role in the beginning of my time in Marburg but has
always been inclined to share the blessings of his impressive mnemonic capability
as well. I would like to thank OStD Winfried Damm who taught me that doing
mathematics means more than just shuffling some symbols and therefore raised
my interest in mathematics. Furthermore, I want to express my gratitude to
Prof. Dr. Joachim Ohser who encouraged me to do this doctorate and, by the way,
changed my view of applied mathematics to a great extent. I also feel grateful
to the Deutsche Forschungsgemeinschaft which has supported my whole stay in
Marburg by means of the Grants Da 360/4–(1–3).

Finally, I wish to thank my parents for encouraging and supporting all my
endeavors, and last but not least, of course, my very special thanks go to Sandra
for her great patience and the emotional support without which this project would
never have been completed.

v



vi



Zusammenfassung

Wavelets sind spezielle Basen des L2(R), die durch dyadische Dilatation und
ganzzahlige Translation einer einzigen Funktion, des sogenannten Mutterwavelets,
entstehen. Der große Vorteil von Waveletbasen ist, dass sie eine skalenweise
Approximation von quadratintegrablen Funktionen zulassen, wobei jeder Skalen-
übergang als Detailgewinn interpretiert werden kann. Daher haben sich Wavelets
innerhalb der letzten zwei Jahrzehnte zu einem wertvollen Hilfsmittel sowohl in der
angewandten als auch in der reinen Mathematik entwickelt. So bilden Wavelets
beispielsweise einen festen Bestandteil des JPEG2000-Standards zur Bilddaten-
kompression, werden aber gleichzeitig auch in der Approximationstheorie zur Cha-
rakterisierung verschiedener Funktionenräume genutzt.

Heutzutage werden Wavelets im Allgemeinen mittels einer sogenannten Mul-
tiskalenanalyse konstruiert. Diese wiederum wird von einer einzelnen quadratin-
tegrablen Funktion erzeugt, der Skalierungsfunktion. Da nahezu sämtliche Eigen-
schaften eines Wavelets von diesem Generator abhängen, wurde und wird die
Konstruktion dieser Skalierungsfunktionen in der Literatur eingehend behandelt.
Dabei stellt sich heraus, dass das klassische Waveletkonzept einigen Beschrän-
kungen unterliegt. Es lässt sich beispielsweise zeigen, dass keine kompakt ge-
tragene interpolierende Skalierungsfunktion mit orthogonalen Translaten existiert,
welche gleichzeitig stetig ist. Diese Eigenschaften sind jedoch inbesondere für An-
wendungszwecke sehr erstrebenswert. So erlaubt die Orthogonalität eines Genera-
tors die Konstruktion einer orthogonalen Waveletbasis, während die Interpolation-
seigenschaft zu einem Shannon-artigen Abtasttheorem führt, welches die Berech-
nung der Waveletentwicklung einer Funktion maßgeblich erleichtert.

Ein möglicher Ansatz zur Umgehung dieser Einschränkungen ist der Versuch,
die obigen Forderungen etwas abzuschwächen. So verzichtet man häufig auf Or-
thogonalität zugunsten einer schwächeren Biothogonalitätsbedingung, d.h., anstel-
le einer orthogonalen Skalierungsfunktion betrachtet man zwei zueinander duale
Skalierungsfunktionen, welche zu biorthogonalen Waveletbasen führen. Jedoch
birgt auch dieses Konzept einige Nachteile. Es zeigt sich in vielen Konstruktionen,
die diesen Ansatz verfolgen, dass für gewöhnlich starke Eigenschaften des primalen
Generators mit schwachen Eigenschaften des dualen Generators einhergehen.
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Aus diesem Grund befassen wir uns in der vorliegenden Arbeit mit Multi-
wavelets, einer Verallgemeinerung des klassischen Waveletkonzeptes, welche deut-
lich mehr Spielraum zur Konstruktion übrig lässt. Multiwaveletbasen werden, im
Gegensatz zur ihren klassischen Verwandten, nicht nur von einem einzelnen son-
dern von mehreren Mutterwavelets erzeugt, die für gewöhnlich in einem Vektor an-
geordnet werden. Wie skalare Wavelets werden auch Multiwavelets zumeist mittels
einer Multiskalenanalyse konstruiert, welche ihrerseits von einer vektorwertigen
Funktion, dem Skalierungsvektor, generiert wird. Unser Hauptziel in dieser Arbeit
ist die Konstruktion eben solcher Skalierungsvektoren und der dazugehörigen Mul-
tiwavelets in sowohl einer, als auch in mehreren Veränderlichen. Ein besonderes
Augenmerk liegt dabei auf der Konstruktion interpolierender Skalierungsvektoren.

Für unseren multivariaten Ansatz verwenden wir das Konzept allgemeiner Ska-
lierungsmatrizen, das eine natürliche Erweiterung des klassischen dyadischen Di-
latationprinzips darstellt. Allerdings zeigt sich, dass der multivariate skalare Fall
nahezu die gleichen Einschränkungen wie sein univariates Gegenstück aufweist.
Aus diesem Grunde bietet sich hier ebenfalls der Übergang zu Multiwavelets an.
Jedoch stellt die Konstruktion multivariater Multiwavelets eine gewisse Heraus-
forderung dar, da bisher, im Gegensatz zum univariaten Fall, nicht bekannt ist, ob
für jeden Skalierungsvektor ein zugehöriges Multiwavelet gefunden werden kann.
Alles in allem lassen sich die Ziele dieser Arbeit in den folgenden grundlegenden
Fragestellungen zusammenfassen:

(T1) Welches Potenzial steckt in dem vektorwertigen Ansatz? Lassen sich die
Beschränkungen des skalaren Falles damit beheben?

(T2) Existieren Multiwavelets für jeden interpolierenden Skalierungsvektor? Gibt
es vielleicht eine Art kanonisches Multiwavelet?

(T3) Sind diese Konzepte auch in der Anwendung von Nutzen?

Nach einer kurzen Diskussion des klassischen Waveletkonzeptes in Kapitel 2
und einer Einführung der grundlegenden Begriffe in Kapitel 3, welches insbeson-
dere die Definition eines neuartigen Interpolationsbegriffes für Skalierungsvektoren
in mehreren Veränderlichen beinhaltet, wenden wir uns der Beantwortung der
obigen Fragen zu. Dafür entwickeln wir in Kapitel 4 zuerst einen systematis-
chen Ansatz zur Konstruktion orthogonaler interpolierender Skalierungsvektoren
in einer Veränderlichen, welche einen kompaktem Träger besitzen. Der resul-
tierende Algorithmus erlaubt nicht nur die zur Zeit führenden Ergebnisse aus
[109] zu reproduzieren, sondern gleichzeitig noch weitere Skalierungsvektoren zu
konstruieren, die bei ansonsten gleichen Eigenschaften eine höhere Regularität
aufweisen. Des Weiteren dient uns dieser univariate Zugang als eine Art Schablone
für die Konstruktionsmethoden in den folgenden Kapiteln. So erweitern wir diesen
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Ansatz in Kapitel 5 zu einen Algorithmus für die Konstruktion kompakt getragener
orthogonaler interpolierender Skalierungsvektoren in mehreren Veränderlichen für
Skalierungsmatrizen mit Determinante ±2. Neben der expliziten Konstruktion
einiger bivariater Beispiele entwickeln wir dort eine Regel, mit Hilfe derer sich
problemlos geeignete Multiwavelets angeben lassen. In Kapitel 6 untersuchen
wir den biorthogonalen Fall unter Hinzunahme verschiedener Symmetriebedingun-
gen. Die Hauptergebnisse dieses Abschnittes lassen sich wie folgt zusammenfassen.
Zuerst leiten wir einen Algorithmus zur Konstruktion biorthogonaler Paare kom-
pakt getragener symmetrischer Skalierungsvektoren in mehreren Veränderlichen
her, wobei die primalen Funktionen interpolieren. Außerdem zeigen wir, dass zu
jedem dieser Paare in einer kanonischen Weise Multiwavelets konstruiert werden
können. Abschließend geben wir einige bivariate Beispiele an. Im letzten Kapitel
dieser Arbeit untersuchen wir die Anwendbarkeit der konstruierten Multiwavelets.
Dabei beschränken wir uns auf das Gebiet der Bilddatenkompression, welches eine
Standardanwendung für Wavelets darstellt.

Die Ergebnisse dieser Arbeit lassen sich in den folgenden Antworten auf die
Fragen (T1)–(T3) zusammenfassen:

(T1) Sowohl der univariate Ansatz in Kapitel 4 als auch dessen multivariates Anal-
ogon in Kapitel 5 führen zu interpolierenden Skalierungsvektoren, welche
neben einem kompakten Träger auch orthogonale Translate besitzen. Ferner
sind die meisten der dort konstruierten Beispiele mindestens stetig oder sogar
stetig differenzierbar, was im skalaren Fall nicht erreicht werden kann. Des
Weiteren bieten die in Kapitel 6 konstruierten biorthogonalen Skalierungs-
vektoren ebenfalls einen Vorteil gegenüber ihren skalaren Verwandten. So
besitzen insbesondere die dualen Skalierungsvektoren eine im Vergleich zum
skalaren Fall deutlich gesteigerte Glattheit bei ansonsten identischen Eigen-
schaften. Diese Ergebnisse zeigen, dass das Multiwaveletkonzept wesentliche
Vorteile gegenüber dem skalaren Fall bietet.

(T2) Zusätzlich zu jedem der oben genannten Algorithmen zur Konstruktion in-
terpolierender Skalierungsvektoren entwickeln wir Methoden zur Konstruk-
tion der dazugehörigen Multiwavelets. Im orthogonalen Fall, d.h. in den
Kapiteln 4 und 5, besteht diese Methode aus einer einfachen Regel, die es
erlaubt, geeignete Multiwavelets sofort anzugeben. Für den allgemeineren
biorthogonalen Fall leiten wir in Kapitel 6 ein Verfahren her, welches für jedes
Paar biorthogonaler Skalierungsvektoren mit kompaktem Träger ein Paar
zugehöriger kanonischer Multiwavelets liefert, sofern der primale Skalierungs-
vektor unsere Interpolationsbedingung erfüllt.

(T3) Zuerst zeigen wir in Kapitel 7, dass interpolierende Skalierungsvektoren und
die dazugehörigen Multiwavelets prinzipiell für die Anwendnung geeignet
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sind, da sie eine weitere wesentliche Approximationseigenschaft seitens ihrer
Filter besitzen. Außerdem weisen die in Kapitel 7 erzielten Kompression-
sergebnisse darauf hin, dass unsere Multiwavelets auch für diese spezielle
Anwendung nützlich sind. Allerdings hängen die Ergebnisse der multivari-
aten Multiwavelets vom Zusammenspiel der Bild- und Waveletcharakteris-
tiken ab. Unsere univariten Multiwavelets hingegen liefern uneingeschränkt
gute Resultate.
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“First, Catch Your Hare . . . ”

Hannah Glasse, The Art of Cookery Made Plain and Easy (1747)
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Chapter 1

Introduction

Within the last two decades, wavelet analysis has become a very powerful tool in
applied mathematics. Wavelet algorithms have been successfully applied in signal
analysis and compression as well as in numerical analysis, geophysics, meteorol-
ogy and in many other fields. Moreover, due to their strong analytical features,
wavelets can be utilized in pure mathematics as well. For example, their abil-
ity to characterize certain function spaces has made wavelets an esteemed tool in
approximation theory.

Similar to the wide range of applications, also the roots of wavelet theory can
be found in various mathematical fields. Some of the most renown predecessors
of wavelets are the time-frequency atoms introduced by Gabor in [48] along with
the windowed Fourier transform. There, modulated and translated wave func-
tions, typically Gaussians, are used to measure time-localized frequency contents
of signals or functions. However, due to the fixed support of the Gabor atoms, the
provided time resolution is fixed as well. For this reason, in the early 1980’s the
geophysicist Morlet proposed to utilize scaling instead of modulation, i.e., to use
atoms of the form

a−1ψ
(x− b

a

)
, a > 0, b ∈ R,

where ψ is a suitable wave function or wavelet. By choosing small scaling parame-
ters a, one obtains an arbitrarily high resolution in time or space, respectively, and
therefore wavelets can be used as a kind of mathematical microscope. Together
with the results of Grossmann, Morlet’s approach climaxed in the invention of the
continuous wavelet transform, cf. [54]. Although this continuous transform has
proven to be proficient in various applications, from the numerical point of view
it is often more desirable to deal with a discrete transform. Hence, as a matter of
course, the question arised how to discretize this continuous wavelet setting. The
first results in this direction were obtained in [38]. There, it was shown that for a
proper choice of the wavelet ψ and some parameters a0 > 1 and b0 > 0, a sampling

1



2 Chapter 1. Introduction

of the form

a
j/2
0 ψ

(
aj

0x− b0k
)
, j, k ∈ Z,

generates a frame, i.e., a system which provides a stable decomposition of functions
in L2(R). Moreover, later on it turned out that the atoms obtained by such a
sampling can even constitute an orthonormal basis of L2(R). These results along
with aspects of several other fields like, e.g., signal processing and operator theory,
crystallized in the notion of multiresolution analyses introduced by Mallat and
Meyer in [87, 91]. Although there exist some earlier constructions of wavelet
bases, cf. [55, 89, 115], the concept of multiresolution analyses has been the first
systematical approach to the construction of wavelets. Since the advent of this
concept, the literature on wavelets has dramatically increased such that nowadays
there is an enormous number of papers on this topic. Hence, it is impossible to
give a complete list of references. Instead, we refer to the well-known textbooks
[23, 37, 86, 88, 91, 118] and the just published compilation [66] which contains a
fine selection of the fundamental papers in wavelet theory.

Mostly, the interest has centered around the dyadic wavelet case, i. e., a function
or signal is analyzed by the dyadic dilates and integer translates of one mother
wavelet ψ such that the 2j/2ψ(2j ·−k), j, k ∈ Z, constitute an orthonormal basis of
L2(R). Hence, one obtains a multiscale representation of functions in L2(R) with
respect to the scale j. The underlying multiresolution analysis is generated by one
single function ϕ called the scaling function which satisfies a so-called refinement
equation

ϕ(x) =
∑

β∈Z
aβϕ(2x− β) for almost all x ∈ R (1.1)

with a mask (aβ)β∈Z. This generator plays a fundamental role in the construction
of wavelets, since almost all properties of wavelets are inherited from the scaling
function ϕ. For application purposes, one is usually interested in good decay
properties of ϕ. Hence, compactly supported scaling functions are appreciated
most. Furthermore, it is often convenient to use interpolating scaling functions,
i.e., ϕ is at least continuous and satisfies

ϕ(β) = δ0,β for all β ∈ Z. (1.2)

The main benefit of interpolating scaling functions is that they provide a Shannon–
like sampling theorem which facilitates the computation of the wavelet decomposi-
tion of a function, cf. Section 3.1.2 for details. However, then it turns out that the
classical wavelet setting is somewhat restricted. It has been shown in Chapter 6 of
[37], see also [120], that the Haar function, i.e., the characteristic function of the
unit interval, is the only compactly supported scalar generator of a multiresolution
analysis which is orthonormal and satisfies (1.2). Moreover, as proven in Chapter
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8 of [37], there exists only one compactly supported scaling function which is sym-
metric — again, it is the Haar function. Hence, the scalar setting fails to provide
certain desirable properties simultaneously.

To bypass this lack of flexibility, several approaches have been proposed. One
possibility is to switch over to the already above mentioned weaker concept of
wavelet frames, i.e., the dilates and translates of one or more mother wavelets do
no longer constitute an orthonormal basis but a redundant system which provides
a stable decomposition of functions in L2(R), see [17] and the references therein
for details. Nevertheless, in many applications the strong basis properties are very
desirable. Then, another possible way to increase flexibility is to use biorthogonal
wavelet bases. Instead of one orthonormal wavelet basis, one employs a dual pair
of stable wavelet bases which are biorthogonal. However, as we will see later
on, also this setting bears some limitations. Another very promising approach to
overcome the above restrictions is to use multiwavelets. These appear as a natural
generalization of the scalar wavelet setting, and thus they can either constitute
orthonormal or biorthogonal bases of L2(Rd). Instead of one mother wavelet, one
considers several mother wavelets which are organized in vectors. Hence, one often
refers to this setting as the vector setting.

The notion of multiwavelets goes back to the early to mid-1990’s. The synony-
mously used terms r–vector multiresolution analysis and multiresolution analysis
of multiplicity r > 1 have been introduced rather independently in [5, 39, 51, 67],
and the first orthonormal multiwavelet bases have been constructed there. As in
the scalar case, vector multiresolution analyses are usually obtained by means of
a generator, a vector valued function called scaling vector which satisfies a re-
finement equation similar to (1.1) with a matrix valued mask, cf. Section 3.1.1.
The potential of the vector approach has become evident with the construction
of continuous symmetric scaling vectors with compact support in [49]. Thence-
forth, multiwavelets have evolved into a field of current mathematical research, cf.
[26, 94, 99, 111, 114] and the references therein. Furthermore, in [109] the notion
of interpolating or cardinal scaling vectors has been introduced by means of an
interpolation property similar to Equation (1.2). In addition, interpolating scaling
vectors with compact support have been constructed there which are continuous
or, moreover, continuously diferentiable. Yet again, the limitations of the scalar
setting are overcome by the vector approach.

All the generalizations discussed so far aim at increasing the flexibility of the
classical wavelet setting. Hence, they all focus on systems which allow a stable
decomposition of functions in L2(R). On the other hand, in many applications
multivariate functions occur. Therefore, almost since the advent of wavelet theory,
there have been attempts to generalize the univariate wavelet concept to multiple
dimensions. A straightforward approach is a one-to-one translation of the univari-
ate setting to functions in L2(Rd), i.e., one searches for bases of L2(R) which are
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generated by dyadic dilates and integer translates of some mother wavelets. How-
ever, then it turns out that a multiresolution analysis approach necessarily leads
to 2d−1 mother wavelets. As a consequence, the multiscale decomposition of func-
tions in L2(Rd) becomes somewhat coarse, since for each scale j there is a huge
number of distinct basis functions. One possibility to bypass this problem is to use
a more general notion of scaling, i.e., to utilize expanding integer scaling matrices.
It has been shown in [24, 90] that the number of mother wavelets corresponding
to a multiresolution analysis with scaling matrix M is | det(M) − 1|. Therefore,
choosing a scaling matrix with determinant ±2 allows the construction of wavelet
bases generated by one single mother wavelet only. Another advantage of scaling
matrices is that, in contrast to a uniform dilation parameter, they can possess
certain rotation or reflection properties, and thus the corresponding wavelets can
show distinct directional features on each scale.

Nevertheless, also for the multivariate setting, scalar wavelets show some re-
strictions. For example, one can show that for the case | det (M)| = 2 there exists
no compactly supported orthonormal generator of a multiresolution analysis which
is continuous and satisfies an interpolation condition similar to (1.2) simultane-
ously, cf. Theorem 5.1.4 in the present work. Therefore, in the past research
focused mainly on the biorthogonal case, see, e.g., [30, 31, 42, 43, 62, 63, 76, 101]
and the references therein. However, all these approaches have in common that
strong properties of the primal wavelets are accompanied by weak properties of the
dual wavelets, i.e., a smooth primal wavelet with decent support corresponding to
an interpolating scaling function usually leads to dual wavelets with either poor
regularity properties or a huge support size. Thus, once again, multiwavelets seem
to provide an adequate setting to overcome these restrictions. As a consequence,
in recent years, the field of multivariate multiwavelets and scaling vectors has been
extensively studied, see, e.g., [47, 52, 75, 76, 78, 96, 103] and the survey articles
[12, 18]. Of course, this list can not be exhaustive.

Current constructions of multivariate scaling vectors are frequently settled in
the context of stationary vector subdivision. Subdivision schemes evolved from the
field of computer-aided geometrical design almost at the same time as wavelets ap-
peared, and both concepts profited vastly from mutual influences, see [14, 34] for
a survey on this topic. In particular, interpolating generators of multiresolution
analyses have been important to both fields since they lead to interpolatory subdi-
vision schemes. Hence, it is not surprising that the initial notion of interpolating
scaling vectors in higher dimensions stems from the subdivision context. In [20]
and in [28] first concepts of interpolatory vector subdivision schemes have been
introduced which are closely related to interpolating scaling vectors. Furthermore,
multivariate scaling vectors wich satisfy a Hermite interpolation condition have
been obtained in [64]. However, since all these approaches aim at designing vector
subdivision schemes, the problem of constructing some corresponding multiwavelet
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bases has not been addressed.
In the present work, we tackle the problem of constructing interpolating scaling

vectors in Rd from a more wavelet-related point of view. Motivated by the results
of Selesnick in [109], we propose an interpolation property for multivariate scaling
vectors which can be considered as a natural extension of its scalar counterpart
(1.2). Furthermore, it turns out that our interpolation condition does perfectly
fit into both notions of interpolatory vector subdivision schemes introduced in
[20, 28]. Nevertheless, the main aim of this work is the construction of multivari-
ate interpolating scaling vectors in the wavelet context. Therefore, we intend to
address the following fundamental topics:

(T1) Does the vector approach provide enough flexibility to overcome the restric-
tions of the scalar setting? To which extent can the vector setting be ex-
ploited?

(T2) Can we always find multiwavelets corresponding to interpolating scaling vec-
tors? Do there exist any canonical multiwavelets?

(T3) Are these concepts suitable for application purposes?

Since we want to fathom the potential of the vector setting, our construction
principle has to be very systematical. Hence, we do not only want to obtain some
good results but find optimal ones in sets of scaling vectors with similar properties.
Therefore, we choose a bottom-up approach which, when fed with the proper input
data, can lead to any possible scaling vector. Thus, our construction methods
do always contain an optimization part. However, most of the above mentioned
approaches fail to meet our demands, and therefore can not be used as templates for
our construction as we shall now explain. On one hand, many methods simply can
not be generalized to the multivariate vector case. For example, scalar methods
are often based on a factorization of the symbol, i.e., a Laurent series which is
determined by the mask of the scaling function. The more complex algebraic
structure of the vector setting prohibits such an approach. On the other hand,
most construction methods for both the scalar and the vector case do not match
our criteria concerning systematicality. Most of them employ some deep insights or
highly sophisticated tricks which allow to obtain some scaling functions or vectors
with very nice properties. But these results are often somewhat singular or isolated,
i.e., they are in general not embedded into a larger context which makes it hard
to determine whether they are optimal in some sense or not. A good example
for such an approach is the one given by Selesnick in [109]. There, very nice
interpolating scaling vectors with decent additional properties are obtained by
means of a Gröbner bases approach. Nevertheless, we will see in the sequel that
some of the results presented in [109] are not optimal in the sense that there exist
scaling vectors with exactly the same properties but a higher regularity.
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This thesis is organized as follows. In Chapter 2, we briefly recall the classical
univariate scalar wavelet setting to introduce the basic concepts without having to
deal with too much irritating notational complexity. The next chapter is devoted
to the general setting. There, we introduce the notion of multivariate scaling vec-
tors and multiwavelets and state our new interpolation condition. In addition, we
discuss the relation of our setting to the field of interpolatory subdivision schemes.
Then, in Chapter 4, we develop a systematical approach for the construction of
univariate scaling vectors which are interpolating, orthonormal, and compactly
supported simultaneously. This method is intended as a template for the multi-
variate construction methods in the following chapters. Although our approach is
quite different to the one of Selesnick in [109], we partially reproduce the examples
constructed there but, in addition, do also obtain some more regular examples.
Moreover, we put some results stated in [109] on a sound mathematical founda-
tion. The main part of this chapter has already been published in [79]. In Chapter
5, our univariate approach is generalized to the multivariate setting. Hence, we
state an algorithm for the construction of orthonormal interpolating scaling vectors
with compact support for scaling matrices with determinant ±2. This approach is
substantiated by some bivariate examples. Furthermore, we present a surprisingly
simple method to obtain some corresponding multiwavelets with nice additional
properties. These results have been published in [80]. Chapter 6 is devoted to
the construction of multivariate interpolating scaling vectors with compact sup-
port which possess certain symmetry properties. There, we leave the orthonormal
setting and focus on the biorthogonal case. Our main result in this chapter is a
systematic method which does not only lead to biorthogonal pairs of symmetric in-
terpolating scaling vectors but covers the scalar case as well. Moreover, we address
the problem of finding multiwavelets and end up with an algorithm which leads to
canonical multiwavelets corresponding to arbitrary interpolating scaling vectors.
These results have already been summarized in [81]. Finally, in Chapter 7, we
study the suitability of our results for application purposes. As a test application,
we choose image compression, where we compare our scaling vectors with several
well-established wavelets. In the end, our findings lead to the following positive
answers to the questions (T1)–(T3):

(T1) The construction methods derived in Chapters 4 and 5 lead to orthonormal
interpolating scaling vectors with compact support which, in most cases, are
continuous or even continuously differentiable. Moreover, the biorthogonal
scaling vectors obtained in Chapter 6 do always possess better properties
than their scalar relatives in terms of regularity per support size. Thus, all
the restrictions of the scalar setting can be overcome by the vector concept.
Furthermore, our algorithms lead to optimal scaling vectors in the sense that
they possess a maximum smoothness.
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(T2) In Sections 4.3 and 5.3, respectively, we derive a simple but effective trick
which enables us to obtain some multiwavelets corresponding to orthogonal
interpolating scaling vectors in a very effortless way. Additionally, in Section
6.3, we develop a method to compute some multiwavelets for arbitrary dual
pairs of scaling vectors whenever their masks are finitely supported and the
primal scaling vector is interpolating. Since this approach is of a very fun-
damental nature, the obtained multiwavelets can be considered as canonical
ones.

(T3) First of all, we show in Section 7.1.3 that interpolating scaling vectors are
balanced, i.e., they possess an approximation property which is very im-
portant for application purposes. In addition, from the image compression
results obtained in Chapter 7, we observe that the multivariate wavelets and
multiwavelets constructed within this work perform very well at least for a
certain class of images. Moreover, the univariate multiwavelets show very
good results in all cases. Hence, interpolating scaling vectors seem to be
well-suited for application purposes.
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Chapter 2

Appetizer: The Classical Setting

Although this work is mainly concerned with the construction of multiwavelets,
we give a brief introduction to the classical univariate wavelet setting at first. This
enables us to introduce the basic ideas and to motivate our approach while, for
now, sparing the reader the task of wading through complicated technical and
notational details. First of all, we briefly recall the basic definitions of wavelets
and multiresolution analyses and get into some details concerning their construc-
tion. This immediately leads us to the notion of refinability and so-called scaling
functions. Afterwards, we address the question which properties of wavelets are
desirable for application purposes. Finally, we give a short introduction to the
field of stationary subdivision schemes which is closely related to the concept of
refinable functions.

The following survey has been composed from Chapter 5 in [37] and from the
Chapters 1–3 in [118]. For a more detailed discussion we refer to these textbooks.
A comprehensive treatment of stationary subdivision schemes can be found in [14].

2.1 Basic Concept

For simplicity, we we start with the univariate setting. A wavelet is a function
ψ ∈ L2(R) such that the collection

{
2

j
2ψ(2j · −β)

∣∣ j, β ∈ Z}
(2.1)

is an orthonormal basis of L2(R). A very simple example is given by the Haar
wavelet

ψ(x) =





1, 0 ≤ x < 1
2
,

−1, 1
2
≤ x < 1,

0 otherwise.
(2.2)

9
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This very first orthonormal wavelet basis was invented nearly a century ago by
Haar in [55]. Similar bare hands constructions, though more sopisticated, have
been obtained, e.g., by Strömberg in [115] and by Meyer in [89], see also the
textbooks [37, 118].

In [87, 91], Mallat and Meyer introduced the concept of multiresolution analyses
which provides a natural framework for the construction of wavelets. A multires-
olution analysis (MRA) is a sequence (Vj)j∈Z of closed subspaces of L2(R) which
satisfies:

(MRA1) Vj ⊂ Vj+1 for each j ∈ Z,

(MRA2) g(x) ∈ Vj if and only if g(2x) ∈ Vj+1 for each j ∈ Z,

(MRA3)
⋂

j∈Z
Vj = {0},

(MRA4)
⋃

j∈Z
Vj is dense in L2(R), and

(MRA5) there exists ϕ ∈ L2(R) such that {ϕ(x−β) | β ∈ Z} is an orthonormal
basis in V0.

The function ϕ in (MRA5) is called a scaling function or generator of the MRA.
Condition (MRA2) implies that for each j ∈ Z the set {2j/2ϕ(2jx − β) | β ∈ Z}
is an orthonormal basis for Vj. Thus, due to the nestedness (MRA1) of the Vj, ϕ
has to satisfy the refinement equation

ϕ(x) =
∑

β∈Z
aβϕ(2x− β) for almost all x ∈ R, (2.3)

where the mask (aβ)β∈Z is determined by the relation aβ = 2〈ϕ, ϕ(2 · −β)〉. Here,
and in the following, 〈·, ·〉 denotes the usual L2 inner product.

Given a multiresolution analysis, to obtain a wavelet one proceeds as follows.
First of all, for every j ∈ Z define the space Wj to be the orthogonal complement
of Vj in Vj+1. Thus, we have

Vj+1 = Vj ⊕Wj

and

Wj ⊥ Wj′ if j 6= j′.

Therefore, (MRA3) and (MRA4) imply

L2(R) =
⊕
j∈Z

Wj,
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such that L2(R) decomposes into mutually orthogonal subspaces. Furthermore,
the spaces Wj inherit the property (MRA2) from the Vj, i.e., for each j ∈ Z we
have

g ∈Wj if and only if g(2·) ∈ Wj+1. (2.4)

Hence, if we find a function ψ ∈W0 such that {ψ(·−β) | β ∈ Z} is an orthonormal
basis of W0, then for each j ∈ Z the set {2j/2ψ(2j · −β) | β ∈ Z} constitutes an
orthonormal basis for Wj. Since all the Wj are orthogonal, Equation (2.4) implies
that ψ leads to an orthonormal wavelet basis of L2(R). Thus, given an MRA, the
task of finding a wavelet basis reduces to finding an orthonormal basis of W0 which
consist of the integer translates of one single function ψ ∈ W0.

Now assume that we have a wavelet corresponding to an MRA. Since W0 ⊂ V1,
there has to exist a sequence (bβ)β∈Z such that

ψ(x) =
∑

β∈Z
bβϕ(2x− β) for almost all x ∈ R. (2.5)

As a consequence, our task reduces to finding the sequence (bβ)β∈Z. The following
theorem shows that there exists a canonical choice for this sequence. Furthermore,
it ensures the existence of a wavelet corresponding to an MRA. A proof can be
found in Chapter 5.1 in [37].

Theorem 2.1.1. Let (Vj)j∈Z be an MRA, and let ϕ be the corresponding scaling
function with mask (aβ)β∈Z. Then with

bβ := (−1)βa1−β, β ∈ Z, (2.6)

Equation (2.5) defines a wavelet ψ associated to (Vj)j∈Z.

Remark 2.1.2. Of course, the choice (2.6) is not the only possible choice which
leads to an orthonormal wavelet basis of L2(R). However, it is commonly known
that if the generator ϕ has compact support and ψ is desired to have compact
support as well, then the only possible choice is

bβ := (−1)βa1−β+2N

for some N ∈ Z. Thus, Equation (2.5) implies that the wavelet ψ is uniquely
determined up to translation by an integer which does not alter the corresponding
wavelet basis.

Finally, we have to address the problem of how to obtain an MRA. Although
there are some approaches which directly construct the spaces Vj, a more common
practice is to start with the scaling function ϕ. Then it turns out that under certain
more or less mild conditions, a function ϕ that satisfies a refinement equation of the
form (2.3) generates an MRA. This task, i.e., the construction of suitable scaling
functions in a somewhat more general setting, is the main aim of this work. Hence,
we refer to the following chapters for a detailed discussion of this topic.
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2.2 Desirable Properties

The main benefit of wavelets is that they provide a multiscale representation of
functions in L2(R) as follows. Once we are given an orthonormal wavelet basis
associated to the wavelet ψ, every function f ∈ L2(R) has an expansion

f =
∑
j∈Z

∑

β∈Z
dj,β2

j
2ψ(2j · −β) (2.7)

with

dj,β := 2j/2〈f, ψ(2j · −β)〉. (2.8)

Now, restricting this representation to j < J for some J ∈ Z, we obtain an
approximation of f on the scale J , i.e., in the space VJ . Hence, we are enabled to
study approximations of f on different scales which might reveal distinct features
of f .

For application purposes the wavelet expansion of a function is desired to pos-
sess several properties. First of all, in order to be able to compute or, at least,
to approximate the coefficients dj,β, the wavelet ψ should decay reasonably fast.
Thus, a compactly supported wavelet ψ is most desirable. On the other hand, for
almost all application purposes one is compelled to find a finite approximation of
f . Therefore, for a certain class of nice functions, the above representation (2.7)
is desired to be sparse, i.e., many of the coefficients dj,β vanish or are at least very
small in modulus. If the functions f as well as the wavelet ψ are compactly sup-
ported, then for each fixed scale j we obtain a finite number of coefficients dj,β 6= 0
only. Thus, the behaviour of the dj,β for j → ±∞ remains to be controlled. For
j → −∞, this problem can be overcome by switching to the representation

f =
∑

β∈Z
cJ ′,β2

J
2ϕ(2J · −β) +

∑

j≥J ′

∑

β∈Z
dj,β2

j
2ψ(2j · −β) (2.9)

with cJ ′,β := 2J ′/2〈f, ϕ(2J ′ · −β)〉 for some coarsest scale J ′ ∈ Z. If in addition
the scaling function ϕ has compact support, then there are only finitely many
cJ ′,β 6= 0. To obtain control over the dj,β for j → ∞, we first have to specify our
idea of the niceness of a function. Usually, nice functions are assumed to possess
a certain degree of smoothness, e.g., we may think of polynomials or functions
which can be approximated well using polynomials. Then the key property of a
wavelet which leads to a sparse representation of the form (2.9) is a high order of
vanishing moments, i.e., there exists an integer k ≥ 1 such that

∫

R

xnψ(x) dx = 0 for n = 0, . . . , k − 1.
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Assume f is k–times continuously differentiable. For a large j and β ∈ Zd, f has
the Taylor expansion

f(x) = f(2−jβ) + f ′(2−jβ)(x− 2−jβ)

+ . . .+ f (k−1)(2−jβ) (x−2−jβ)k−1

(k−1)!
+ (x− 2−jβ)kR(x)

(2.10)

for x near 2−jβ such that the remainder R is bounded on each compact set. Hence,
if ψ is a compactly supported wavelet with k vanishing moments, we obtain

dj,β =

∫

R

(x− 2−jβ)kR(x)2
j
2ψ(2jx− β) dx

since the first k terms in (2.10) vanish. R is bounded on the support of ψ(2j ·−β),
therefore we have

|dj,β| ≤ C2−j(k−1/2)

∫

R

|x|k|ψ(x)| dx

for some constant C depending on R. Hence, |dj,β| will become small for large j
unless R is very large near 2−jβ. Consequently, the representation (2.9) is likely
to be sparse.

For arbitrary f ∈ L2(Rd) the moral of the story is as follows. Since the wavelet
coefficients (2.8) reflect the local characteristics of f , they are small wherever f
is locally smooth, while singularities of f lead to large wavelet coefficients. Thus,
from the wavelet point of view, nice functions may possess a certain number of
isolated singularities but are smooth ortherwise to yield sparse representations.
Fortunately, many real world signals and images do perfectly fit into this descrip-
tion which is one reason for the present popularity of wavelet algorithms in signal
processing. On the other hand, these observations do also indicate that wavelet
algorithms are unsuitable for nonsmooth functions which possess lots of singular-
ities.

In addition to a certain number of vanishing moments, the wavelet itself is
also desired to possess a certain degree of smoothness. Obviously, to approximate
smooth functions the approximants should be reasonably regular as well. On
the other hand, the regularity of a wavelet coupled with its decay properties has a
strong impact on the vanishing moment order of a wavelet. A proof of the following
theorem can be found in Chapter 3 of [118].

Theorem 2.2.1. Assume ψ is a k–times continuously differentiable wavelet which
satisfies

|ψ(x)| ≤ C

(1 + |x|)α

for some constant C and α > k + 1. Furthermore, assume that all derivatives of
ψ are bounded on R. Then ψ has k vanishing moments.
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Thus, regularity of the wavelet yields some vanishing moments. However, for a
high order of vanishing moments, a wavelet does not necessarily have to be very
smooth. We will see in Chapter 3.2.2 that the order of vanishing moments of a
wavelet is vastly influenced by the approximation properties of the corresponding
MRA, and thus by the properties of the underlying scaling function ϕ.

Besides the vanishing moment order, regularity induces the ability of wavelets
to characterize certain function spaces as well. However, since this is no major
topic of this work, we briefly sketch this ability for the case of Sobolev spaces only.
For an arbitrary s > 0, the Sobolev space Hs(Rd) is defined by

Hs(R) :=

{
f ∈ L2(R)

∣∣∣
∫

R
|f̂(ξ)|2(1 + |ξ|s)2 dξ <∞

}

where f̂ denotes the standard Fourier transform of f . Now, if an MRA is generated
by a k–times continuously differentiable scaling function with compact support,
then for s < k the corresponding wavelet ψ allows the characterization

f ∈ Hs(Rd) if and only if
∑
j∈Z

(1 + 22js)
∑

β∈Z
|dj,β|2 <∞

with the wavelet coefficients dj,β of f as in Equation (2.8). Hence, the Sobolev
regularity of a function can be determined by the decay properties of its wavelet
coefficients. The above characterization property can also be obtained for weaker
requirements on the generator which involve the approximation properties of the
MRA. For a detailed discussion of this topic, we refer to [91].

In practice, for a given function f ∈ L2(R), the vanishing moments of a wavelet
may not suffice to obtain a finite representation of the form (2.9). This problem
can be bypassed by truncating the representation, i.e., by introducing a finest scale
J . Hence, one assumes that f ∈ VJ and thus obtains the representation

f(x) =
∑

β∈Z
cJ,βϕ(2Jx− β), x ∈ R. (2.11)

Nevertheless, in wavelet-related applications one is usually interested in a multi-
scale representation of f . This can be obtained by utilizing the discrete wavelet
transform DWT, i.e., an algorithm with decent properties which allows the effort-
less computation of the wavelet coefficients dj,β for J ′ ≤ j < J . In addition, the
DWT provides the coefficients cJ ′,β for the scaling function on the coarsest level
J ′. We will give a detailed discussion of this topic in Section 7.1.2.

In any case, an efficient algorithm to compute the fine scale coefficients in
(2.11) is needed. To this end, it is very desirable that the scaling function ϕ is
interpolating, i.e., ϕ is continuous and satisfies

ϕ(β) = δ0,β, for all β ∈ Z. (2.12)
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Then, from (2.11) one immediately obtains cJ,β = f(2−Jβ) for f ∈ VJ . Interpolat-
ing scaling functions have various nice properties, e.g., if ϕ is compactly supported,
then (2.12) implies that for arbitrary sequences u := (uβ)β∈Z the mapping

u→
∑

β∈Z
uβϕ(· − β)

is injective, and thus ϕ has linearly independent integer translates. Furthermore,
as we will see later on, for a continuous scaling function with compact support
linear independence implies `p–stability, 1 ≤ p ≤ ∞, i.e., there are constants
0 < C ≤ D <∞ such that

C‖u‖`p ≤
∥∥∥
∑

β∈Z
uβϕ(· − β)

∥∥∥
Lp

≤ D‖u‖`p (2.13)

holds for all u ∈ `p(Z). For application purposes, `p–stability is particularly im-
portant since it ensures that a small perturbation of the coefficient sequence u
results only in a small perturbation of the function

f :=
m−1∑
n=0

∑

β∈Zd

uβϕn(· − β)

and vice versa. Thus, it is indispensable for the existance of numerically stable
algorithms based on the scaling function ϕ. Therefore, a generalized version of the
interpolation condition (2.12) plays a major role throughout this work.

2.3 Extension: Biorthogonality

As we have already stated in the introduction, within the classical orthonormal
wavelet setting one is confronted with some serious limitations. For instance, if
a scaling function has compact support and, in addition, is continuous, then it
can neither be interpolating nor symmetric. A common strategy to bypass these
restrictions is to switch to the biorthogonal setting which has been introduced in
[25]. Instead of one orthonormal bases, one considers a dual pair of stable wavelet

bases, i.e., two Riesz bases associated to the motherwavelets ψ and ψ̃ via (2.1)
which satisfy the biorthogonality condition

〈
ψ, 2j/2ψ̃(2j · −β)

〉
= δ0,jδ0,β (2.14)

for all j, β ∈ Z. Thus, instead of analyzing a function f ∈ L2(R) by means of one
orthonormal wavelet basis, one obtains two expansions of the form (2.7) in terms
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of ψ and ψ̃, respectively. From (2.14) it is clear that the wavelet coeficients are
determined by

dj,β := 2j/2〈f, ψ̃(2j · −β)〉 and d̃j,β := 2j/2〈f, ψ(2j · −β)〉.
Therefore, given a nice function in terms of Section 2.2, the vanishing moments
of the dual wavelet ψ̃ determine the sparsity of the representation with respect to
the primal wavelet ψ and vice versa.

Similar to the orthonormal case, ψ and ψ̃ are usually constructed by means of
two multiresolution analyses (Vj)j∈Z and (Ṽj)j∈Z, respectively. However, for the
biorthogonal case, the classical definition of an MRA has to be modified slightly,
i.e., the requirement (MRA5) is substituted by

(MRA5’) there exists ϕ ∈ L2(R) such that {ϕ(x− β) | β ∈ Z} is a Riesz basis
in V0.

Consequently, the integer translates of the primal generator ϕ and the dual gen-
erator ϕ̃, respectively, do not have to be orthonormal but `2–stable. In addition,
to lead to biorthogonal wavelet bases, these scaling functions have to be biorthog-
onal, i.e., the integer translates of ϕ and ϕ̃ are mutually orthogonal. Then the
corresponding pair of MRA is called dual.

Given a dual pair of MRA, to construct the biorthogonal wavelet bases, one
proceeds similar to the orthonormal case. First of all, for every j ∈ Z one defines
some, in general not orthogonal complement spaces Wj of Vj in Vj+1 and W̃j of Ṽj

in Ṽj+1, respectively. These spaces have to satisfy the additional requirement

Wj ⊥ Ṽj and W̃j ⊥ Vj

such that the two multiresolution analyses are coupled crosswise. As in the or-
thonormal setting, the next step is to find two mother wavelets ψ and ψ̃ such
that their integer translates constitute Riesz bases of W0 and W̃0, respectively.
However, in contrast to the scalar case, showing that the dilates and translates
of these two mother wavelets give rise to biorthogonal wavelet bases is somewhat
more involved. Nevertheless, in [25] the following analogon of Theorem 2.1.1 has
been shown.

Theorem 2.3.1. Let ϕ and ϕ̃ be biorthogonal generators of an MRA with finitely
supported masks a and ã, respectively. Furthermore, let their Fourier transforms
satisfy

|ϕ̂(ω)| ≤ C(1 + |ω|)−1/2−ε and |̂̃ϕ(ω)| ≤ C(1 + |ω|)−1/2−ε

for some C, ε > 0 and almost all ω ∈ R. Then, with

bβ := (−1)βã1−β and b̃β := (−1)βa1−β,
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the functions

ψ :=
∑

β∈Z
bβϕ(2 · −β) and ψ̃ :=

∑

β∈Z
bβϕ̃(2 · −β)

give rise to biorthogonal wavelet bases.

Hence, also for the biorthogonal case there exist some canonical wavelets for a
given pair of generators.

2.4 Stationary Subdivision

Closely related to the theory of multiresolution analyses and scaling functions is
the field of stationary subdivision schemes. In general, subdivision methods are a
class of recursive algorithms which have found widespread use in computer graphics
for computing curves and surfaces. For a detailed discussion of this topic we refer
to the survey article [14].

In the following, we give a brief introduction to the field of stationary subdivi-
sion schemes and their relation to scaling vectors. The starting point of a stationary
subdivision scheme is the subdivision operator Sa associated to a finitely supported
mask or sequence a := (aβ)β∈Z. For an arbirtrary sequence u := (uβ)β∈Z, Sa is the
linear operator defined by the equation

(Sau)α :=
∑

β∈Z
uβaα−2β, α ∈ Z.

The corresponding subdivision scheme is obtained as follows. Assume the sequence
u0 := u represents a polygonal curve Pu, i.e., a piecewise linear function with nodes
β ∈ Z and Pu(β) = uβ. Then, for a given mask a, the associated subdivision
operator Sa defines a rule to obtain the representation u1 := Sau of a polygonal
curve on the denser set of nodes 2−1Z. Consequently, iterating this procedure
yields polygonal curves represented by

un := Saun−1 = Sn
a u, n > 0, (2.15)

with nodes in 2−nZ becoming ever denser. The sequence of operators (Sn
a )n∈Z+

is called a stationary subdivision scheme. The term stationary refers to using the
same mask a in each step of the iteration (2.15). Since a subdivision scheme is
determined by the corresponding subdivision operator, in the following we use
both terms synonymously.

Now, it is natural to ask for the convergence of this scheme. For this reason,
one often assumes that the sequence u is bounded. Thus, the subdivision scheme
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associated to a mask a is said to converge for u ∈ `∞(Z) if there exists a continuous
function fu such that

lim
n→∞

‖(fu(2
−nβ)

)
β∈Z − Sn

a u‖∞ = 0.

The subdivision scheme Sa is convergent if it converges for all u ∈ `∞(Z) and there
exists at least one u such that the limit function satisfies fu 6= 0. Hence, starting
with a polygonal curve represented by u ∈ `∞(Z), a convergent subdivision scheme
provides a method to generate a continuous, in general non-polygonal curve given
by the limit function fu. Note that this curve does not necessarily interpolate the
original points, i.e., fu may or may not satisfy

fu(β) = uβ, β ∈ Z. (2.16)

However, if for all sequences u ∈ `∞(Z) the limit function satisfies (2.16), then the
corresponding subdivision scheme is called interpolatory, cf. [92].

To study the properties of the limit function fu, the following theorem which
connects subdivision schemes with the refinability of functions is very useful. For
a proof we refer to [14].

Theorem 2.4.1. For a finitely supported mask a let the associated subdivision
scheme Sa be convergent. Then there exists a unique continuous function ϕ with
compact support which satisfies the refinement equation (2.3) with the mask a and

∑

β∈Z
ϕ(· − β) = 1.

Moreover, for each u ∈ `∞(Z) the limit function fu satisfies

fu(x) =
∑

β∈Z
uβϕ(x− β), x ∈ R.

If the integer translates of a refinable function ϕ are linearly independent or at
least `∞–stable then also the converse result holds.

Theorem 2.4.2. Let ϕ be a continuous compactly supported function which is
refinable with respect to a finitely supported mask a. Furthermore, let the inte-
ger translates of ϕ be `∞–stable. Then the associated subdivision scheme Sa is
convergent.

It has been shown in [72] that for a continuous function with compact support
`2–stability is equivalent to `p–stability for all 1 ≤ p ≤ ∞. Consequently, since
(MRA5) and (MRA5’), respectively, imply that the integer translates of a scaling
function ϕ are at least `2–stable, we observe that a generator can not only be
used to construct wavelet bases by means of an MRA, but also may give rise to
a convergent stationary subdivision scheme. Moreover, if in addition ϕ is interpo-
lating then the above results show that the corresponding subdivision scheme is
interpolatory.



Chapter 3

Starter: The General Setting

In this chapter, we extend the concepts introduced in the preceding chapter to a
more general setting. This extension is twofold. Motivated by the observation that
in some cases the scalar setting is somewhat restricted, we focus on multiwavelets.
This vector valued approach provides additional flexibility which can be used to
construct wavelets with more or nicer properties as the scalar setting allows. Nev-
ertheless, one still obtains orthonormal or birthogonal bases of L2. On the other
hand, we are interested in multivariate (multi-)wavelets. Therefore, we focus on
the concept of generalized scalings by means of scaling matrices.

This chapter is organized as follows. First of all, we give a brief introduc-
tion to the field of refinable function vectors or scaling vectors. Similar to scaling
functions, these vector valued generators can be used to construct multiwavelets
by means of a generalized multiresolution analysis and, moreover, are closely re-
lated to certain subdivision schemes. Furthermore, we introduce an interpolation
property for this vector setting which, as the key ingredient in all our construc-
tion methods, plays a fundamental role throughout this work. In addition, several
other properties of scaling vectors which are desirable for application purposes are
discussed.

Most of the concepts introduced in this chapter appear as generalizations of
the corresponding terms in the scalar wavelet setting. For a detailed discussion,
see the textbooks [23, 37, 118] and the doctoral thesis [104].

3.1 Interpolating Scaling Vectors

As we have seen in the preceding chapter, one of the most important tools for a
systematic construction of wavelets is the scaling function. Therefore, we start
this section by introducing the more general concept of scaling vectors, i.e., vec-
tors of functions in L2(Rd) which satisfy a refinement equation similar to (2.3).

19
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From the constructional as well as from the application related point of view it is
highly appreciated that scaling functions or vectors are interpolating in the sense
of Equation (2.12). Therefore, we propose an interpolation condition for the vector
setting which appears as a natural extension of its scalar counterpart. In addition,
we discuss in detail how scaling vectors can be used to construct multiwavelets
and shed some light on their relation to a certain class of subdivision schemes.

3.1.1 Refinable Function Vectors

Let Φ := (φ0, . . . , φr−1)
>, r > 0, be a vector of L2(Rd)–functions which satisfies a

matrix refinement equation

Φ(x) =
∑

β∈Zd

AβΦ(Mx− β), Aβ ∈ Rr×r, (3.1)

with the mask A := (Aβ)β∈Zd and a scaling matrix M ∈ Zd×d, then Φ is called
(A,M)–refinable. For conciseness, we call Φ an r–scaling vector if the mask and
the scaling matrix are clear from the context. The scaling matrix M has to be
expanding, i.e., all eigenvalues of M have to be larger than one in modulus, and
as a shorthand notation we use m := | det (M)|. For n, k > 0, the space of all
sequences of real n × k matrices on Zd is denoted by `(Zd)n×k. Thus, we have
A ∈ `(Zd)r×r, and the mask entries are denoted by

Aβ =




a
(0,0)
β · · · a

(0,r−1)
β

...
. . .

...

a
(r−1,0)
β · · · a

(r−1,r−1)
β


 . (3.2)

In many cases, we will consider masks consisting of a finite number of nonvanishing
coefficients only, the corresponding sequence space will be denoted by `0(Zd)r×r.

Applying the Fourier transform component-wise to (3.1) yields

Φ̂(ω) =
1

m
A(e−iM−>ω)Φ̂(M−>ω), ω ∈ Rd, (3.3)

where e−iω is a shorthand notation for (e−iω1 , . . . , e−iωd)>. The symbol A(z) is the
matrix valued Laurent series with entries

ai,j(z) :=
∑

β∈Zd

a
(i,j)
β zβ, z ∈ Td,

and Td :=
{
z ∈ Cd : |zi| = 1, i = 1, . . . , d

}
denotes the d–dimensional torus. All

elements of Td have the form z = e−iω, ω ∈ Rd, thus we have zβ = e−i〈ω,β〉, and for
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ξ ∈ Rd we use the notation zξ := e−i(ω+2πξ). In addition, we define zM := e−iM>ω

such that (zM)β = zMβ and zM
ξ := e−iM>(ω+2πξ).

The transformed refinement equation (3.3) is one of the most important tools

for the construction of scaling vectors. On one hand, it directly implies mΦ̂(0) =

A(1)Φ̂(0), where 1 := (1, . . . , 1)> ∈ Cd. Thus, either Φ̂(0) is an m–eigenvector of

A(1) or we have Φ̂(0) = 0 which is rather undesirable as we will see in the sequel.
On the other hand, iterating (3.3) yields

Φ̂(ω) =
∞∏

j=1

1

m
A(e−iM−j>ω)Φ̂(0) =: P (ω)Φ̂(0),

where, of course, convergence has to be clarified. However, if the infinite product
P (ω) converges then the scaling vector Φ is completely determined by its symbol
or mask, respectively, up to a constant. The following theorem, stated in [11], puts
the above observations on a sound mathematical foundation and provides us with
a sufficient condition for the existence of a compactly supported solution of the
refinement equation (3.1), see also [77].

Theorem 3.1.1. For a mask A ∈ `0(Zd)r×r let A(1) have the eigenvalues λ1 = m,
|λ2|, . . . , |λr| < m, then the following statements hold:

(i) The infinite matrix product P (ω) converges uniformly on compact sets.

(ii) Any m–eigenvector v of A(1) defines a compactly supported distributional

solution Φ of (3.1) via Φ̂(ω) := P (ω)v.

(iii) If Φ is a nontrivial compactly supported distributional solution of (3.1) then

Φ̂(0) is an m–eigenvector of A(1).

Since compact support is crucial for almost all application purposes, we focus on
compactly supported scaling vectors and therefore on masks belonging to `0(Zd)r×r.

Occasionally, we have to decompose a symbol A(z) into its subsymbols as
follows. For a scaling matrix M let R := {ρ0, . . . , ρm−1} denote a complete set of
representatives of Zd/MZd, and for ρ ∈ R let [ρ] denote the corresponding coset.
Thus, Zd decomposes into the disjoint union

Zd =
⋃
ρ∈R

[ρ] =
⋃
ρ∈R

(MZd + ρ),

cf. Prop. 5.5 in [118]. The ith subsymbol Ai(z) of A(z) is defined by

Ai(z) :=
∑

β∈Zd

AMβ+ρi
zβ, 0 ≤ i < m, (3.4)
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such that we have the decomposition

A(z) =
m∑

i=0

∑

β∈Zd

AMβ+ρi
zMβ+ρi =

m∑
i=0

zρiAi(z
M). (3.5)

We close this section with some additional notation. A complete set of rep-
resentatives of Zd/M>Zd shall be denoted by R̃ := {ρ̃0, . . . , ρ̃m−1}. Furthermore,
for the characteristic functions of the cosets [ρ] (and [ρ̃] respectively) we use the

notation 1[ρ](·) (and 1[ρ̃](·)). The sets R and R̃ are connected by the following
lemma on character sums, cf. [22].

Lemma 3.1.2. For ρi, ρj ∈ R and z ∈ Td it holds that

∑

ρ̃∈ eR
zρi

M−>ρ̃
z
−ρj

M−>ρ̃
= m · δi,j.

3.1.2 The Interpolation Property

One central aim of this work is the construction of families of interpolating m–
scaling vectors Φ with compact support, i.e., all components of Φ are at least
continuous and satisfy

φn

(
M−1β

)
= δρn,β for all β ∈ Zd, 0 ≤ n < m. (3.6)

Note that, in contrast to the scalar case, the interpolation condition (and the
length of the scaling vector) is determined by the determinant of the scaling ma-
trix. Nevertheless, it can be considered as a natural generalization of the scalar
interpolation condition (2.12) as follows. First of all, the scalar interpolation con-
dition can be extended to the multivariate setting by simply allowing β ∈ Zd in
Equation (2.12). Now, let ϕ ∈ L2(Rd) be an interpolating scaling function, then
the rule

Φ(x) :=
(
ϕ(Mx− ρ0), . . . , ϕ(Mx− ρm−1)

)>
(3.7)

defines an m–scaling vector which satisfies the interpolation condition (3.6).
One advantage of interpolating scaling vectors is that they give rise to a

Shannon–like sampling theorem as follows. For a compactly supported function
vector Φ ∈ L2(Rd)m let us define the shift-invariant space

S(Φ) :=
{ ∑

β∈Zd

uβΦ(· − β)
∣∣u ∈ `(Zd)1×m

}
.

Since Φ has compact support, only a finite number of Φ(·−β) overlap. This ensures
that for an arbitrary sequence u ∈ `(Zd)1×m the above sum is locally finite, and
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thus S(Φ) is well defined. A direct computation shows that, if Φ is a compactly
supported interpolating m–scaling vector, then for all f ∈ S(Φ) the representation

f(x) =
∑

β∈Zd

m−1∑
i=0

f
(
β +M−1ρi

)
φi(x− β) (3.8)

holds.
Similar to the scalar case, cf. Section 2.2, an immediate consequence of the

interpolation property is (algebraically) linearly independent integer translates, i.e.,
the mapping

u ∈ `(Zd)1×m 7→
∑

β∈Zd

uβΦ(· − β)

is injective whenever Φ has compact support and satisfies (3.6). Furthermore,
it has been shown in [72] that for a continuous m–scaling vector with compact
support linear independence implies `p–stability. For ease of notation, we state
the definition for the case p = 2 only, the general case is defined analogously, cf.
(2.13). A scaling vector is said to have `2–stable integer translates if there exist
constants 0 < C ≤ D <∞ such that

C

m−1∑
n=0

‖u(n)‖2
`2
≤

∥∥∥
m−1∑
n=0

∑

β∈Zd

u
(n)
β φn(· − β)

∥∥∥
2

L2

≤ D

m−1∑
n=0

‖u(n)‖2
`2

(3.9)

holds for all u(0), . . . , u(m−1) ∈ `2(Zd). As in the scalar case, the stability of a
scaling vector Φ is particularly important for the existence of numerically stable
algorithms based on Φ. Moreover, it has been shown in [75] that the stability of
a compactly supported scaling vector Φ has a strong impact on the properties of
the symbol A(z) and on the properties of S(Φ) as follows.

Proposition 3.1.3. Let Φ be a compactly supported `2–stable scaling vector with
mask A ∈ `0(Zd)r×r. Then the following statements hold:

(i) A(1) has a simple eigenvalue m and all other eigenvalues are smaller than
m in modulus.

(ii) S(Φ) contains all constant functions.

Remark 3.1.4. The reader should observe that Proposition 3.1.3 together with
Theorem 3.1.1 imply that a compactly supported `2–stable scaling vector Φ with
finite mask satisfies Φ̂(0) 6= 0.

Another advantage of interpolating scaling vectors is the simple structure of
their masks which considerably reduces the effort concerning their construction.
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Lemma 3.1.5. Let ρk ∈MZd, then the mask of an interpolating m–scaling vector
has to satisfy

a
(i,k)

Mα+ρj−M−1ρk
= δ0,αδi,j for all α ∈ Zd, 0 ≤ i, j < m.

Proof. For each γ ∈ Zd there exists an α ∈ Zd and j ∈ {0, . . . ,m − 1} such that
γ = Mα + ρj. Thus, we have

φi(M
−1γ) = φi(M

−1ρj + α) =
∑

β∈Zd

(
a

(i,0)
β , . . . , a

(i,m−1)
β

)
Φ(ρj +Mα− β).

Since we have assumed that ρk ∈ MZd, the interpolation condition (3.6) yields
Φ(β) = δβ,M−1ρk

ek for all β ∈ Zd, where ek denotes the kth unit vector. Therefore,
we obtain

φi(M
−1γ) = a

(i,k)

Mα+ρj−M−1ρk
.

On the other hand, (3.6) implies φi(M
−1γ) = δ0,αδi,j which completes the proof.

For simplicity of notation, we shall assume ρ0 = 0 ∈ Zd without loss of general-
ity. Then the above lemma implies that the symbol of an interpolating m–scaling
vector has to have the form

A(z) =




zρ0 a(0,1)(z) · · · a(0,m−1)(z)
...

...
. . .

...
zρm−1 a(m−1,1)(z) · · · a(m−1,m−1)(z)


 . (3.10)

For the case m = 2 we can choose R = {0, ρ} and obtain

A(z) =

(
1 a(0)(z)
zρ a(1)(z)

)
. (3.11)

3.1.3 Multiwavelets

Similar to scaling functions, a common motivation for dealing with r–scaling vec-
tors is the construction of r–multiwavelets. These appear as a collection of function

vectors Ψ(n) :=
(
ψ

(n)
0 , . . . , ψ

(n)
r−1

)T

∈ L2(Rd)r, 0 < n < m, for which

{
ψ

(n)
0

(
M j · −β)

, . . . , ψ
(n)
r−1

(
M j · −β) ∣∣∣∣ j ∈ Z, β ∈ Zd, 0 < n < m

}

forms a (Riesz) basis of L2(Rd). Compared to the classical setting introduced in
Section 2.1, this notion of wavelets is much more general. First of all, at least for
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the moment, we drop the very restrictive orthonormal basis property and focus
on stable bases only. However, in the sequel we will come back to stronger basis
properties. Moreover, the above basis is not spanned by the dilates and trans-
lates of one single wavelet only, but by dilated and translated versions of several
functions. This has two reasons. First of all, within the multiwavelet concept one
assumes that all component functions of a multiwavelet conjointly constitute the
corresponding multiwavelet basis. On the other hand, similar to the classical case,
a systematical approach to the construction of multiwavelets is given by means of
a multiresolution analysis. Then, the number of wavelets associated to an MRA
is determined by the determinant of the scaling matrix M as above, see [90] and
[24] for details.

However, the classical definition of an MRA given by Mallat and Meyer in [87,
91], cf. Section 2.1, has to be adapted to our more general setting first. Of course,
this topic has been extensively treated in the literature. For example, MRA with
non-orthogonal scaling functions have been introduced in [25], a generalization of
the MRA concept using scaling matrices can be found in [24, 53, 90], and the
vector case has been extensively studied in [40, 50], see also [74]. Combining these
different approaches, we obtain the following definition. A multiresolution analysis
is a sequence (Vj)j∈Z of closed subspaces of L2(Rd) which satisfies:

(MRA1) Vj ⊂ Vj+1 for each j ∈ Z,

(MRA2) g(x) ∈ Vj if and only if g(Mx) ∈ Vj+1 for each j ∈ Z,

(MRA3)
⋂

j∈Z
Vj = {0},

(MRA4)
⋃

j∈Z
Vj is dense in L2(Rd), and

(MRA5) there exists an `2–stable Φ ∈ L2(Rd)r such that

V0 = span{φi(x− β) | β ∈ Zd, 0 ≤ i < r}.

Now, to obtain some multiwavelets, we first have to find a way to construct a
suitable MRA. As in the scalar case, (MRA1) and (MRA2) imply that the function
vector Φ in (MRA5) satisfies a refinement equation of the form (3.1). Hence, we
have to study under which circumstances a scaling vector generates an MRA.
Let Φ ∈ L2(Rd)r be a stable scaling vector with mask A ∈ `0(Zd) (or, at least,
A ∈ `2(Zd)r×r, i.e., the component sequences of A are square summable). If we
define V0 via (MRA5) and Vj, j ∈ Z, via (MRA2), then the refinement equation
implies (MRA1). Furthermore, it has been shown in [74] that in this case also
the intersection in (MRA3) is trivial. Hence, condition (MRA4) remains to be
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checked. The following theorem provides us with an equivalent condition in terms
of Φ̂, for the proof see Theorem 2.1 and Remark 2.6 in [74].

Theorem 3.1.6. Let Φ ∈ L2(Rd)r be a stable scaling vector, and define Vj, j ∈
Z, via (MRA5) and (MRA2). Furthermore, assume that (MRA1) holds. Then
(MRA4) is satisfied if and only if

Ẑ(Φ) :=
r−1⋂
i=0

⋂
j∈Z

M j{ω ∈ Rd | φ̂i(ω) = 0}

is a set of measure zero.

We immediately obtain the following corollary.

Corollary 3.1.7. Any stable compactly supported scaling vector Φ with finite mask
generates an MRA via (MRA5) and (MRA2).

Proof. As stated above, only (MRA4) has to be checked. We show that for a

stable compactly supported scaling vector Φ with finite mask Ẑ(Φ) = ∅ holds.

Assume there exists an ω0 ∈ Ẑ(Φ), then we have φ̂i(M
−jω0) = 0 for all j ∈ Z

and 0 ≤ i < r. Since M is expanding, the spectral radius spr(M−1) < 1 and
therefore M−jω0 → 0 as j → ∞. Thus, each open set containing 0 also contains
a zero of Φ̂. On the other hand, if Φ is compactly supported then, due to the
Riemann–Lebesgue lemma, Φ̂ is continuous. Furthermore, due to Remark 3.1.4,
we have φ̂i(0) 6= 0 for some 0 ≤ i < r. Therefore, φ̂i is also nonzero in a small

neighborhood of 0 which contradicts the assumption Ẑ(Φ) 6= ∅. Thus, Theorem
3.1.6 implies that (MRA4) holds.

In the sequel, we sketch how to construct multiwavelets given an MRA gen-
erated by an r–scaling vector Φ. For a detailed discussion of this construction
process, see, e.g., [12, 36, 51, 87]. As in the univariate scalar case, let W0 denote
an algebraic complement of V0 in V1 and define Wj := {g(M j·) | g ∈ W0}. Then,
one immediately obtains that Vj+1 = Vj ⊕Wj and consequently, due to (MRA3)
and (MRA4), L2(Rd) =

⊕
j∈Zd Wj. If one finds function vectors Ψ(n) ∈ L2(Rd)r,

0 < n < m, such that the integer translates of the components of all Ψ(n) are a
stable basis of W0, then, by dilation, one obtains a stable multiwavelet basis of
L2(Rd). Since W0 ⊂ V1, each Ψ(n) can be represented as

Ψ(n)(x) =
∑

β∈Zd

B
(n)
β Φ(Mx− β) (3.12)

for some B(n) ∈ `(Zd)r×r. By applying the Fourier transform component wise to
(3.12) one obtains

Ψ̂(n)(ω) =
1

m
B(n)(e−iM−>ω)Φ̂(M−>ω), ω ∈ Rd,
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with the symbol

B(n)(z) :=
∑

β∈Zd

B
(n)
β zβ, z ∈ Td.

Therefore, the task of finding a stable multiwavelet basis can be reduced to con-
structing the symbols B(n)(z). It should be mentioned that, in general, the choice
of the complement space W0 is by no means unique. Hence, there may be several
multiwavelet bases associated to one scaling vector. On the other hand, it is still
an open problem wether there always exists a stable multiwavelet bases associated
to a given MRA or not, cf. [12].

3.1.4 Vector Subdivision

Similar to the univariate scalar case, also to a mask A ∈ `0(Zd)r×r a subdivision
operator SA can be associated, i.e., for a sequence in u ∈ `(Zd)1×r we define

(SAu)α :=
∑

β∈Zd

uβAα−Mβ, α ∈ Zd.

Again, the rule

u0 := u and un := SAun−1 = Sn
Au, n > 0,

defines a stationary vector subdivision scheme.
For the convergence analysis of this scheme, one often considers the space of

1 × r–vector valued sequences with bounded component sequences denoted by
`∞(Zd)1×r. The norm ‖.‖∞ on this space is obtained as the usual product norm,

i.e., for u := (u
(0)
β , . . . , u

(r−1)
β )β∈Zd ∈ `∞(Zd)1×r one has ‖u‖∞ := sup

β∈Zd

max
0≤i<r

|u(i)
β |. A

vector subdivision scheme is said to converge for u ∈ `∞(Zd)1×r if there exists a

continuous vector valued function fu := (f
(0)
u , . . . , f

(r−1)
u ) such that

lim
n→∞

‖(fu(M−nβ))β∈Zd − Sn
Au‖∞ = 0.

As in the classical case, a vector subdivision scheme is called convergent if it
converges for all u ∈ `∞(Zd)1×r and there exists at least one u such that fu 6= 0.

For r = 1 the interpretation of this scheme is pretty similar to the classical case
discussed in Section 2.4. One assumes that the sequence u ∈ `∞(Rd) represents a
polyhedral hypersurface with nodes in Zd. Then the subdivision scheme generates
a sequence of polyhedral hypersurfaces with nodes in M−nZd which converge to
some limiting hypersurface determined by the scalar valued function fu. Thus, by
substituting the scaling parameter 2 by M and allowing β ∈ Zd in Section 2.4,
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all results of the univariate case are carried forward to the multivariate case, cf.
[14, 34].

For the vector case, the corresponding results are somewhat more involved. To
establish the relation between vector subdivision schemes and scaling vectors, we
first have to consider a slightly more general setting. Obviously, the subdivision
operator SA can be applied to matrix valued sequences U ∈ `(Zd)r×r as well
by interpreting each row of U as an input sequence for SA. Hence, if a vector
subdivision scheme is convergent, then it converges for a matrix valued sequence
with rows in `∞(Zd)1×r to a matrix valued limit function. Let Fδ denote the so-
called canonical limit function corresponding to the sequence (δ0,βIr)β∈Zd . It has
been shown in [34], see also [105], that for each u ∈ `∞(Zd)1×r the limit function
fu is determined by the canonical limit function as follows.

Theorem 3.1.8. Let Fδ be the canonical limit function of a convergent stationary
vector subdivision scheme associated to a mask A ∈ `0(Zd)r×r. Then for each
u ∈ `∞(Zd)1×r the limit function fu satisfies

fu =
∑

β∈Zd

uβFδ(· − β).

In addition, the columns of Fδ satisfy the refinement equation (3.1).

Hence, if the vector subdivision scheme converges and there exists a solution
Φ of the refinement equation (3.1) which is unique up to multiplication with a
constant, then Fδ has rank 1. Consequently, the corresponding vector subdivision
scheme is called a rank 1 subdivision scheme. The following converse result was
obtained in [34] as well.

Theorem 3.1.9. Let Φ be a continuous scaling vector with compact support that
corresponds to a mask A ∈ `0(Zd)r×r. Furthermore, let the integer translates of Φ
be linearly independent. Then, the stationary vector subdivision scheme induced by
the subdivision operator SA associated to A is convergent and, moreover, of rank
1.

Remark 3.1.10. The convergence of subdivision schemes can also be studied in
an `p–sense for 1 ≤ p ≤ ∞. Then analog results can be obtained where the
notion of linear independence is substituted by `p–stability. For ease of notation,
we omit a discussion of this more general setting and refer to [34]. Moreover,
since we focus on interpolating scaling vector which consequently possess linearly
independent integer translates and are continuous as well, the above setting does
perfectly fit.
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In contrast to the scalar case, vector subdivision schemes call for a rather more
sophisticated interpretation. One possibility is to assume that the vector valued
starting sequence u ∈ `∞(Zd)1×r represents r polyhedral hypersurfaces which lead
to r distinct hypersurfaces given by the limit function fu. However, as we will see
in the sequel, this interpretation is not suitable for rank 1 subdivision schemes.
Let A ∈ `0(Zd)r×r be a mask which leads to a convergent rank 1 subdivision
scheme. Furthermore, let Φ be a nontrivial column of the corresponding canonical
limit function Fδ. Hence, there exists a vector y ∈ Rr such that Fδ = Φy>. It
immediately follows from Theorem 3.1.8 that for each u ∈ `∞(Zd)1×r the limit
function fu satisfies fu(x) = fu(x)y

>, where fu is given by

fu :=
∑

β∈Zd

uβΦ(· − β).

Thus, although the components of u may be independently chosen, all hypersur-
faces given by fu coincide up to multiplication with a constant. Quite recently, it
has been proposed in [20, 21] that only one component of u, say u(0), represents a
polyhedral hypersurface. The other components u(1), . . . , u(r−1) are considered to
be parameters which form the shape of the limit hypersurface which is given by
the component f

(0)
u of the limit function fu. With this interpretation it is quite

natural to ask wether the subdivision scheme is interpolatory in the sense that

f (0)
u (β) = u

(0)
β ,

i.e., the limit hypersurface contains the vertices of the starting polyhedral hyper-
surface. In [20] it has been shown that under certain mild conditions a stationary
rank 1 vector subdivision scheme associated to a mask A is interpolatory if A
satisfies

a
(i,0)
Mβ = δi,0δ0,β.

Hence, due to Lemma 3.1.5, we observe that an interpolating scaling vector leads
to an interpolatory rank 1 vector subdivision scheme. On the other hand, inter-
polatory subdivision schemes in the above sense do only preserve one component
of the input sequence u. In [28] another approach has been proposed in which
all components of u are preserved, i.e., for each i ∈ {0, . . . , r − 1} there exists an
ι = ι(i) ∈ {0, . . . , r − 1} and an α = α(i) ∈ Zd such that for all u ∈ `∞(Zd)1×r

(SAu)
(ι)
Mβ+α = u

(i)
β .

Thus, the components of u appear as subsequences of some components of SAu.
Then, the corresponding subdivision scheme is called data preserving. A necessary
and sufficient condition is that

a
(j,ι)
Mβ+α = δ0,βδj,i, j = 0, . . . , r − 1,
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holds true for all β ∈ Zd. Again, Lemma 3.1.5 yields that interpolating scal-
ing vectors do also lead to data preserving subdivision schemes with α(i) = ρi

and ι(i) = 0. Moreover, the approach in [28] completely resembles our notion of
interpolating scaling vectors.

3.1.5 The Transition Operator

In addition to the subdivision operator, to each mask A ∈ `0(Zd)r×r another
linear operator can be associated which is closely related to the properties of the
corresponding scaling vector. For a sequence in `0(Zd)r we define the transition
operator TA by

(TAv)α :=
∑

β∈Zd

AMα−βvβ, α ∈ Zd, v ∈ `0(Zd)r.

If we introduce the bilinear form

〈u, v〉 :=
∑

α∈Zd

u−αvα, u ∈ `1×r(Zd), v ∈ `r0(Zd),

then we immediately obtain

〈SAu, v〉 =
∑

α∈Zd

∑

β∈Zd

uβA−α−Mβvα = 〈u, TAv〉.

Consequently, the transition operator TA is the algebraic adjoint of the subdivision
operator SA.

In the literature, the term transition operator has an ambiguous meaning. It
is also used for the operator TA, associated to the symbol A(z), defined by

TAC(z) :=
1

m2

∑

ρ̃∈ eR
A

(
zM−1

ρ̃

)
C

(
zM−1

ρ̃

)
A

(
zM−1

ρ̃

)>
, z ∈ Td,

for all r × r matrices of Laurent polynomials C(z). It was shown in [75] that TA

is a linear operator which, restricted to a certain finite dimensional space H which
is invariant under TA, has the matrix representation

TA|H ∼ (AMα−β)α,β∈K .

Here, A ∈ `0(Zd)r2×r2
is the mask defined by

Aα :=
1

m

∑

β∈Zd

Aβ−α ⊗ Aβ, α ∈ Zd,
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and ⊗ denotes the Kronecker product, i.e., P⊗Q := (pi,jQ)i,j for arbitrary matrices
P and Q. The index set K is given by

K :=

( ∞∑
n=1

M−n supp(A)

)
∩ Zd (3.13)

with supp(A) := {β ∈ Zd |Aβ 6= 0}. Thus, TA|H corresponds to a truncation of
the matrix representation of the transition operator TA with respect to the mask
A ∈ `0(Zd)r2×r2

. The corresponding restricted transition operator will be denoted
by TA,K . Furthermore, it was shown in [75], see also [71], that all eigenfunctions
of TA corresponding to nonzero eigenvalues belong to H. Hence, we have

spec(TA) \ {0} = spec(TA,K) \ {0},
where spec denotes the spectrum of an operator or a matrix. These spectra play
a crucial role in studying the stability and regularity of a scaling vector. We will
come back to this topic in Sections 3.2.1 and 3.2.3, respectively.

Another feature of the transition operator is that it can be used to compute
the function values of a scaling vector on the integers. Let Φ be a continuous
scaling vector with compact support. The refinement equation (3.1) implies that
the sequence (Φ(β))β∈Zd is an 1–eigenvector of TA. Hence, if the eigenvalue 1 of TA

is simple, a corresponding eigenvector determines (Φ(β))β∈Zd up to multiplication
with a constant. Since Φ is compactly supported, we only have to consider the
truncated transition operator TA,K′ , and it has been shown in [61, 75] that the
index set K ′ is determined by

K ′ :=

( ∞∑
n=1

M−n supp(A)

)
∩ Zd,

compare with (3.13). The main problem in implementing this method is the com-
putation of the set K ′, since it is defined by an infinite Minkowski sum. This
obstacle has been overcome in [58], where an iterative algorithm for computing K ′

is given. Of course, this algorithm can be used for computing the set K in (3.13)
as well.

3.2 Desirable Properties

Though our main aim is to construct interpolating scaling vectors with compact
support and some corresponding multiwavelet bases, we also intend to incorporate
several additional properties. First of all, the multiwavelets obtained by our ap-
proach ought to constitute nice L2(Rd)–bases, preferably orthonormal or biorthog-
onal bases. In addition, as we have seen in Section 2.2, for application purposes
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the multiwavelets are desired to possess a high order of vanishing moments as well
as a certain smoothness. These properties are also needed for the characterization
of several function spaces, see, e.g., [46, 85] for details. On the other hand, most
properties of a multiwavelet are inherited from the underlying scaling vector, e.g.,
the minimum number of vanishing moments of a multiwavelet is determined by
the approximation properties of the underlying scaling vector.

For the reader’s convenience we recall the basic definitions and give a short
discussion of these properties in this section. In particular, we place a special
focus on the characteristics of scaling vectors which lead to the desired properties
of the corresponding multiwavelets.

3.2.1 Nice Basis Properties

We have seen in Section 3.1.3 that a compactly supported r–scaling vector Φ =
(φ0, . . . , φr−1)

> with `2–stable integer translates as in (3.9) generates a multiresolu-
tion analysis. As a consequence, Φ may be used to construct a stable multiwavelet
basis. To generate wavelet bases with stronger properties, the scaling vector has
to satisfy some additional conditions.

As in the classical case, the most appreciated form of a multiwavelet basis
is an orthonormal basis. Nevertheless, to obtain some additional constructional
flexibility it is often beneficial to restrict oneself to the slightly weaker concept
of biorthogonal multiwavelet bases. Assume we have two multiwavelets Ψ(n) and
Ψ̃(n) which give rise to stable multiwavelet bases. Furthermore, assume that their
component functions satisfy

〈
ψ

(n)
i ,mj/2ψ̃

(n′)
i′ (M j · −β)

〉
= c · δi,i′δn,n′δ0,jδ0,β (3.14)

for 0 ≤ i, i′ < r, 1 ≤ n, n′ < m, j ∈ Z, β ∈ Zd, and a constant c > 0. Then Ψ(n)

and Ψ̃(n) are called biorthogonal multiwavelets, and the corresponding multiwavelet
bases are called biorthogonal. Hence, orthonormal multiwavelet bases appear as a
special case of this concept via the conditions c = 1 and Ψ(n) = Ψ̃(n) for 1 ≤ n < m.
The main benefit of biorthogonal multiwavelet bases is that for all f ∈ L2(Rd) the
coefficients dj,β,n of the multiwavelet expansion

f =
∞∑

j=−∞

∑

β∈Zd

m−1∑
n=1

d>j,β,nΨ(n)(M j · −β) (3.15)

are given by the inner products

dj,β,n =
mj

c

〈
f, Ψ̃(n)(M j · −β)

〉
, (3.16)
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where 〈f, Ψ̃〉 := (〈f, ψ̃0〉, . . . , 〈f, ψ̃r−1〉)>. Thus, in practice, the expansion of f ∈
L2(Rd) can actually be computed or at least be approximated.

Usually, the starting point for the construction of biorthogonal multiwavelet
bases are biorthogonal scaling vectors. Two r–scaling vectors Φ and Φ̃ are called
biorthogonal or duals of each other if the integer translates of all component func-
tions are mutually orthogonal, i.e.,

〈
φi, φ̃j(· − β)

〉
= c · δi,jδ0,β, 0 ≤ i, j < r, (3.17)

holds for all β ∈ Zd and a constant c > 0. If we have Φ = Φ̃ and c = 1, then Φ is
called orthonormal. A necessary condition for Φ and Φ̃ to be biorthogonal is that
their symbols A(z) and Ã(z) satisfy

∑

ρ̃∈ eR
A(zM−>ρ̃)Ã(zM−>ρ̃)

>
= m2Im. (3.18)

It was shown in [18] that under mild assumptions this condition is also sufficient
as follows.

Theorem 3.2.1. Let Φ and Φ̃ be r–scaling vectors with finitely supported masks
A, Ã ∈ `0(Zd)r×r. Φ and Φ̃ are biorthogonal if and only if the following statements
hold:

(i) A(z) and Ã(z) satisfy (3.18),

(ii) 1 ∈ spec (Ai(1)>) and 1 ∈ spec (Ãi(1)>) for all 0 ≤ i < r,

(iii) A(1) and Ã(1) have a simple eigenvalue m and all other eigenvalues are
smaller than m in modulus, and

(iv) both TA and TeA have a simple eigenvalue 1 and all other eigenvalues are
smaller than 1 in modulus.

As mentioned in Section 3.1.5, the spectra of TA and TeA coincide with the spectra
of the (finite) matrices TA,K and TeA, eK , respectively. Therefore, given the masks

A and Ã, these conditions can easily be checked. For the orthonormal case, i.e.,
Φ̃ = Φ, this theorem has already been proven in [75].

Now, let Φ and Φ̃ satisfy the assumptions of Theorem 3.18, i.e., Φ, Φ̃ ∈ L2(Rd)r

and A, Ã ∈ `0(Zd)r×r. Then the biorthogonality condition (3.17) implies that Φ

and Φ̃ are `2–stable, cf. [19, 22]. Moreover, Theorem 3.1.1 yields that both, Φ as

well as Φ̃, are compactly supported. Consequently, each scaling vector generates
an MRA. If there exist some multiwavelets associated to these MRA, then, as we
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have seen in Section 3.1.3, the task of finding these multiwavelets can be reduced to
finding the corresponding symbols. Moreover, it is commonly known that finding
the symbols of biorthogonal multiwavelets leads to the following matrix extension
problem. Let B(n)(z) denote the symbol of Ψ(n) for 1 ≤ n < m. The modulation
matrix of Φ is defined by

Pm(z) :=
1

m




A(zM−>ρ̃0
) · · · A(zM−>ρ̃m−1

)
B(1)(zM−>ρ̃0

) · · · B(1)(zM−>ρ̃m−1
)

...
...

B(m−1)(zM−>ρ̃0
) · · · B(m−1)(zM−>ρ̃m−1

)


 . (3.19)

For dual multiwavelets Ψ̃(n) with symbols B̃(n)(z), define P̃m(z) analogously. The
following theorem has been shown in [22, 104] for r = 1. The generalization to our
setting is straightforward, see also [12, 34, 74].

Theorem 3.2.2. Let Φ and Φ̃ be a pair of compactly supported biorthogonal scaling
vectors with masks A, Ã ∈ `0(Zd)r×r, and let Ψ(n) and Ψ̃(n), 1 ≤ n < m, be defined

by (3.12) with masks B(n), B̃(n) ∈ `0(Zd)r×r, respectively. Then Ψ(n) and Ψ̃(n) give
rise to biorthogonal multiwavelet bases if and only if

Pm(z)P̃m(z)
>

= Imr (3.20)

for all z ∈ Td.

Hence, the construction of biorthogonal multiwavelet bases can be decomposed
into two steps. First, one has to construct a biorthogonal pair of scaling vectors,
and then one has to solve the above extension problem to obtain the correspond-
ing biorthogonal multiwavelets. In the orthonormal case, the modulation matrix
Pm(z) has to be unitary for almost all z ∈ Td to provide an orthonormal multi-
wavelet basis. In general, Theorem 3.2.2 can be obtained for weaker assumptions
as well. However, in our case the assumptions do perfectly fit.

Unfortunately, we observe that the interpolation property (3.6) and strict or-
thonormality are incompatible, since the constant c in (3.17) is determined by the
length of Φ and m = | det(M)|.
Theorem 3.2.3. Let Φ = (φ0, . . . , φm−1)

> be a compactly supported interpolating

m–scaling vector with finite mask that satisfies (3.17) with Φ̃ = Φ.Then we have

‖φi‖2
L2

=

∫

Rd

φi(x) dx =
1

m
(3.21)

for i ∈ {0, . . . ,m− 1}.
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Proof. For an arbitrary index set Λ ⊂ Zd let us define the function

ΞΛ(x) :=
∑

β∈Λ

m−1∑
i=0

φi(x− β),

and we denote Ξ := ΞZd . Since Φ is compactly supported, there exists a finite
index set Λ̃ such that the identity Ξ(x) = ΞeΛ(x) holds for all x ∈ supp(Φ). Due
to (3.17) we have ‖φi‖L2 =

√
c for i = 0, . . . ,m− 1, thus c−1/2Φ is an orthonormal

scaling vector and we obtain the representation

ΞeΛ(x) =
∑

β∈eΛ

m−1∑
i=0

〈
ΞeΛ, c

−1/2φi(x− β)
〉
c−1/2φi(x− β). (3.22)

Furthermore, since Φ is stable, Proposition 3.1.3 implies that S(Φ) contains the
constant functions. Hence, the sampling property (3.8) yields Ξ ≡ 1. Therefore,
combining (3.8) and (3.22) yields

1 =
1√
c

〈
ΞeΛ,

1√
c
φi

〉
=

1

‖φi‖2
L2

〈
1, φi

〉
.

Thus, we have proven the first identity in (3.21).
By definition, Ξ is periodic, and since Φ is compactly supported, we can expand

Ξ into its Fourier series. A standard result of Fourier analysis shows that the βth
Fourier coefficient ĉΞ(β) of Ξ satisfies

(2π)−d/2ĉΞ(β) =
m−1∑
i=0

φ̂i(2πβ),

see Theorem 5.1 in [107] for details. On the other hand, Ξ ≡ 1 implies ĉΞ(β) = δ0,β

and we obtain

1 =
m−1∑
i=0

∫

Rd

φi(x) dx.

Due to ((3.17)) we have ‖φ0‖L2 = . . . = ‖φm−1‖L2 , and with the first identity in
(3.21) the proof is complete.

Remark 3.2.4. Although it is impossible for a scaling vector Φ to be interpolating
and strictly orthonormal simultaneously, we can switch between these properties
via multiplying Φ by

√
m and 1/

√
m respectively. Thus, in the following, a scaling

vector satisfying (3.6) and (3.17) is called an orthonormal interpolating scaling
vector.
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3.2.2 Approximation Order and Vanishing Moments

For a compactly supported function vector Φ ∈ L2(Rd)r and h > 0, let

Sh(Φ) :=
{
f

( ·
h

)
| f ∈ S(Φ) ∩ L2(Rd)

}

denote the space of all h–dilates of S(Φ) ∩ L2(Rd). Φ (or S(Φ)) is said to provide
approximation order k > 0 if the Jackson–type inequality

inf
g∈Sh(Φ)

‖f − g‖L2 = O(hk), as h→ 0,

holds for all f contained in the Sobolev space Hk(Rd). For an arbitrary s > 0,
Hs(Rd) is defined by

Hs(Rd) :=

{
f ∈ L2(Rd)

∣∣∣
∫

Rd

|f̂(ξ)|2(1 + ‖ξ‖s
2)

2 dξ <∞
}
.

As in the scalar case, the approximation properties of a scaling vector are closely
related to its ability to reproduce polynomials.

A function vector Φ : Rd −→ Cr with compact support is said to provide
accuracy order k + 1, if πd

k ⊂ S(Φ), where πd
k denotes the space of all polynomials

of total degree less or equal than k in Rd. It was shown by Jia, see [69], that if
a compactly supported scaling vector Φ has linear independent integer translates
or is at least stable, then the order of accuracy is equivalent to the approximation
order provided by Φ.

A mask A ∈ `0(Zd)r×r of an r–scaling vector with respect to a scaling matrix
M satisfies the sum rules of order k if there exists a set of vectors {yµ ∈ Rr |µ ∈
Zd

+, |µ| < k} with y0 6= 0 such that

∑
0≤ν≤µ

(−1)|ν|


∑

β∈Zd

(M−1ρ+ β)
ν

ν!
A>ρ+Mβ


 yµ−ν =

∑

|ν|=|µ|
w(µ, ν)yν (3.23)

holds for all µ ∈ Zd
+ with |µ| < k and all ρ ∈ R. Here we use standard multi-index

notation, i.e., |µ| = µ1 + . . .+ µd and µ! = µ1! · · ·µd!. Furthermore, we say ν ≤ µ
if νi ≤ µi for all 0 ≤ i < d, and ν < µ if νi < µi for at least one 0 ≤ i < d. The
numbers w(µ, ν) are uniquely determined by

(M−1x)
µ

µ!
=

∑

|ν|=|µ|
w(µ, ν)

xν

ν!
, for all x ∈ Rd. (3.24)
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Remark 3.2.5. The numbers w(µ, ν) can also be obtained by the equation

w(µ, ν) = Dν (M−1x)
µ

µ!

∣∣∣∣
x=0

where Dν := ∂|ν|
∂x

ν1
1 ···∂x

νd
d

.

Remark 3.2.6. The reader should observe that condition (ii) in Theorem 3.2.1 is

equivalent to the masks A and Ã satisfying the sum rules of order 1.

It was proven in [10, 75] that if the mask of a compactly supported scaling
vector Φ satisfies the sum rules of order k then Φ provides accuracy of order k.
For the univariate case, the sum rules and their correlation with the approximation
order and accuracy order of a scaling vector were studied in [98] and [65]. If the
mask of a compactly supported scaling vector Φ satisfies the sum rules of order
k and, in addition, Φ is stable, then Φ reproduces polynomials of total degree less
than k, i.e., for all µ ∈ Zd

+ with |µ| < k we have

xµ

µ!
=

∑
0≤ν≤µ

∑

β∈Zd

βν

ν!
y>µ−ν

1

JΦKΦ(x− β) (3.25)

with yµ as above and JΦK := ‖Φ̂(0)‖2, see [56, 70] for details.
The reproduction of polynomials by a scaling vector has some impact on the

properties of the corresponding multiwavelets as well. Similar to the univariate
scalar setting, cf. Section 2.2, a function vector Ψ ∈ L2(Rd)r is said to have
vanishing moments of order k, if

〈xµ,Ψ(x)〉 :=
(〈xµ, ψ0(x)〉, . . . , 〈xµ, ψr−1(x)〉

)>
= 0

for all µ ∈ Zd
+ with |µ| < k. Let Ψ(n), Ψ̃(n), 1 ≤ n < m, be biorthogonal multi-

wavelets, and let Φ and Φ̃ be the corresponding biorthogonal scaling vectors. As
an immediate consequence of the biorthogonality relation (3.14) one obtains

〈Φ, Ψ̃(n)(· − β)〉 = 0 = 〈Φ̃,Ψ(n)(· − β)〉
for all β ∈ Zd and 1 ≤ n < m. Therefore, Equation (3.25) implies that the the
sum rule order of the mask of the dual scaling vector provides a lower bound for
the vanishing moment order of the primal multiwavelets. The same relation holds
for the dual multiwavelets and the primal scaling vector. On the other hand, as
we have already seen in Section 2.2, vanishing moments are the key property for
the success of wavelet related algorithms in many applications. For example in
signal/image processing, a high order of vanishing moments leads to very small
coefficients in the wavelet expansion wherever the signal/image is smooth. Thus,
the signal or image can effectively be compressed, see Chapter 7 for a more detailed
discussion of this topic.
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3.2.3 Regularity

In many fields of application, e.g., image analysis or geometric modeling, the regu-
larity or smoothness of a scaling vector has a strong impact on the performance of
the corresponding multiwavelet or subdivision algorithm, respectively. Therefore,
this topic has been extensively studied in recent years, see [15, 16, 26, 59, 71, 73, 93]
and the references therein. In the following, we focus on the approach derived in
[71] which extends the results in [73] to the multivariate setting.

A commonly used measure for the smoothness of a scaling vector Φ ∈ L2(Rd)r

is the critical Sobolev exponent

s(Φ) := sup
{
s
∣∣φi ∈ Hs(Rd) for all i = 1, . . . , r

}
.

For an isotropic scaling matrix M , i.e., M is similar to a diagonal matrix given by
the diagonal (σ0, . . . , σd−1) with |σ0| = · · · = |σd−1|, the critical Sobolev exponent
s(Φ) is closely related to the spectrum of the transition operator TA. The following
theorem has been proven in [71]. We use the notation of Section 3.1.5.

Theorem 3.2.7. Let Φ ∈ L2(Rd)r be a compactly supported solution of (3.1)
with mask A ∈ `0(Zd)r×r and an isotropic scaling matrix M with eigenvalues
σ0, . . . , σd−1. Define σ := (σ0, . . . , σd−1)

> and Λ := spec
(

1
m
A(1)

) \ {1}. Sup-
pose Φ provides accuracy order k, then with

Ek :=
{
λσ−µ, λσ−µ

∣∣λ ∈ Λ, |µ| < k
} ∪ {

σ−µ
∣∣ |µ| < 2k

}

we have
s(Φ) ≥ − logspr (M)

√
spr k, (3.26)

where
spr k := max

{|η|
∣∣ η ∈ spec (TA,K) \ Ek

}
.

If, in addition, Φ is stable then in (3.26) equality holds true.

This theorem shows that the regularity of a scaling vector is closely related
to spectral properties of a large matrix. Hence, conditions for high regularity are
hard to incorporate into a construction process. On the other hand, Theorem 3.2.7
provides us with a handy method for computing the smoothness order of a scaling
vector, given its mask. Therefore, in this work, we will use regularity estimates
obtained by an implementation of the above method as a measure of quality for
the outcome of our construction.

Remark 3.2.8. Throughout this work, we focus on multiwavelets with finitely
supported masks. Hence, Equation (3.12) implies that these multiwavelets possess
the same regularity properties as the underlying scaling vectors.



Chapter 4

Recipe I: The Univariate Case

Before we study interpolating scaling vectors in full generality, it is worth while
to investigate the univariate case in detail. Though it is self-evident that the
multivariate case already contains the univariate case, from the constructional
point of view the univariate setting is somewhat more accessible. This is due to
the fact that some univariate mathematical structures do not carry over to the
multivariate setting, e.g., univariate polynomials can be factorized, multivariate
polynomials in general can not. Hence, the univariate setting provides a wide
variety of mathematical tools which enables us to develop a systematic approach
to the construction of interpolating scaling vectors. On the other hand, we will
see in the sequel that the basic construction principle does not rely on the chosen
dimension. Therefore, although we have to adapt some constructional details, the
univariate approach acts as a template for the multivariate construction methods
in the following chapters.

In this chapter, we focus on the classical case, i.e., we construct orthonormal
interpolating 2–scaling vectors for dyadic scaling (r = M = 2). Since the number
of multiwavelets is determined by the scaling parameter, cf. Section 3.1.3, this
approach enables us to construct orthonormal bases of L2(R) generated by one
single mother multiwavelet consisting of two functions only. Furthermore, the
choice M = 2 helps to maintain the template characteristic of our approach by
keeping the constructional complexity at a bearable level. The following results
have already been published in [79].

4.1 Main Ingredients

We have seen in Section 3.1.1 that under certain mild conditions a scaling vector
is completely determined by its mask or symbol, respectively, up to a constant.
Furthermore, for almost all the properties of scaling vectors introduced in Section

39
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3.2 there exist at least necessary conditions in terms of the symbol. Thus, it
suggests itself to start our construction process by collecting and simplifying these
conditions to design some suitable symbols.

Since we focus on dyadic scaling, the interpolation property (3.6) implies r =

m = 2. Hence, for the set of representatives of Z/2Z we can chooseR = R̃ = {0, 1}.
In addition, we only consider masks of finite support, i.e., A ∈ `0(Zd)2×2. Thus,
Theorem 3.1.1 ensures compact support of the corresponding scaling vectors as
long as the eigenvalue condition spec(A(1)) = {2, λ | |λ| < 2} is satisfied.

4.1.1 Orthonormality

Theorem 3.2.1 tells us that the orthonormality of a scaling vector with finite mask
can be completely characterized in terms of the symbol. In particular, the symbol
A(z) of an orthonormal scaling vector necessarily has to stem from a conjugate
quadrature filter, i.e., A(z) has to satisfy

A(z)A(z)
>

+ A(−z)A(−z)> = 4 I2, z ∈ T. (4.1)

Applying the interpolation condition (3.11), we obtain the following simplification.

Theorem 4.1.1. Let Φ be an interpolating 2-scaling vector with mask A ∈ `0(Z)2×2.
With the notation of Equation (3.11), the symbol A(z) satisfies (4.1) if and only
if the symbol entries a(0)(z) and a(1)(z) satisfy

2 = |a(0)(z)|2 + |a(0)(−z)|2 (4.2)

and
a(1)(z) = ±z2κ+1a(0)(−z), κ ∈ Z, (4.3)

with

a(0)(z) =

Γ0∑

β=γ0

aβz
β, γ0,Γ0 ∈ Z, Γ0 − γ0 odd.

Proof. Let the symbol A(z) satisfy (4.1). Then the interpolation condition (3.11)
leads to

2 = |a(0)(z)|2 + |a(0)(−z)|2 (4.4)

2 = |a(1)(z)|2 + |a(1)(−z)|2 (4.5)

0 = a(0)(z)a(1)(z) + a(0)(−z)a(1)(−z) (4.6)

for all z ∈ T. Since the mask A has finite support, the symbol entries ai(z),
i ∈ {0, 1}, are Laurent polynomials, i. e., there exist γi,Γi ∈ Z with γi ≤ Γi such
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that

ai(z) =

Γi∑

β=γi

a
(i)
β z

β

with a
(i)
Γi
6= 0 and a

(i)
γi 6= 0. Therefore, there exist polynomials ăi(z), ăi(z) with

ai(z) = zγi ăi(z), ai(z
−1) = z−Γi ăi(z), i = 0, 1.

The coefficients of ai(z) are real and z ∈ T, therefore ai(z) = ai(z
−1). Thus (4.4)

is equivalent to

ă(0)(z)ă0(z) + (−1)γ0−Γ0 ă(0)(−z)ă0(−z) = 2zΓ0−γ0 .

Consisting of polynomials only, this equation holds for all z ∈ C. Since the right
hand side is a monomial and ă(0)(0) = a

(0)
γ0 6= 0, we obtain for the greatest common

divisor of ă(0)(z) and ă(0)(−z)
gcd(ă(0)(z), ă(0)(−z)) = 1.

Furthermore, Γ0 − γ0 is odd, because ă
(0)

(0) = a
(0)
Γ0
6= 0 as well.

With the above notation Equation (4.6) is equivalent to

ă(0)(z)ă1(z) = −(−1)γ0−Γ1 ă(0)(−z)ă1(−z),
which also holds for all z ∈ C. Comparing the linear factors of the polynomials
on both sides, we obtain that ă1(z) has to contain the linear factors which are
contained in ă(0)(−z) and which are not contained in ă(0)(z). Therefore, ă1(z) has
to be of the form

ă1(z) =
ă(0)(−z)

gcd(ă(0)(z), ă(0)(−z))p(z) = ă(0)(−z)p(z) (4.7)

with a polynomial p(z). Applying this to (4.6) yields

p(z) = −(−1)γ0−Γ1p(−z)
and by Equation (4.5) there exists an α ∈ Z such that

p(z) = ±zΓ1−γ0+2α+1.

Yet, because of ă1(0) = a
(1)
Γ1
6= 0, Equation (4.7) yields p(z) ≡ ±1 and Γ1 − γ0 is

odd. Therefore a(1)(z) has to be of the form

a(1)(z) = ±zΓ1−γ0a(0)(−z) =: ±z2κ+1a(0)(−z).
On the other hand, if the symbol entry a(0)(z) satisfies (4.2) and a(1)(z) is

defined via (4.3) then a short computation shows that (4.1) is satisfied as well.
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Remark 4.1.2. If a(0)(z) is a (Laurent–) monomial, then due to the above equa-
tions the same holds for a(1)(z) with

a(0)(z) = zα, a(1)(z) = zα+2κ+1, α, κ ∈ Z.
By Theorem 1.2 in [47] the corresponding scaling vector is of Haar–type, i. e., it is
the characteristic function of a self-affine multi-tile. Therefore, this scaling vector
can not even be continuous.

The next step is to find a more applicable version of condition (4.2). First of
all, similar to the construction of the orthonormal Daubechies wavelets in [36] we
represent |a(0)(z)|2, z = e−iω, as a polynomial in sin2 ω

2

|a(0)(e−iω)|2 =: P
(
sin2 ω

2

)
.

Then Equation (4.2) transforms to

2 = P
(
sin2 ω

2

)
+ P

(
1− sin2 ω

2

)
=:

Γ0−γ0∑

β=0

pβ

(
sin2 ω

2

)β

and we obtain pβ = 2δ0,β, β = 0 . . .Γ0 − γ0. A simple computation yields the
following corollary.

Corollary 4.1.3. Let a(0)(z) be a Laurent polynomial defined on the unit circle
via

a(0)(z) :=

Γ0∑

β=γ0

aβz
β, z ∈ T.

Then, with K := Γ0 − γ0, Equation (4.2) is equivalent to

(aγ0 , . . . , aΓ0)Mα



aγ0

...
aΓ0


 = δ0,α for α = 0, . . . ,

⌊
K

2

⌋
, (4.8)

with (K + 1)× (K + 1) matrices

Mα :=

bK/2c∑

β=α

cβ,α

(
0 IK−2β+1

0 0

)

and

cβ,α := 2δ0,α(1−δβ,0)

β−α∑
µ=0

β∑
ν=µ

(
2β

2ν

)(
ν

ν − µ

)
.
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4.1.2 Sum Rules

In this section, we investigate conditions for approximation order and accuracy
of a scaling vector. As we have seen in Section 3.2.2, these characteristics are
determined by the sum rule order of the corresponding mask. On the other hand, in
the scalar case (r = 1) accuracy order is also connected with a specific factorization
of the symbol which can be used for the smoothness analysis of the scaling function.
In [26, 98] it has been shown that this holds for the case r > 1 as well. Let
D denote the differential operator with respect to ω in terms of z = e−iω, i. e.,
DA(e−iω) :=

(
d

dω
A(e−i·)

)
(ω). The following theorem, stated in [98], provides us

with a univariate version of the sum rules and the corresponding factorization.

Theorem 4.1.4. Let Φ be a compactly supported r-scaling vector with linearly
independent integer translates. Then Φ provides approximation order k if and
only if the symbol A(z) of Φ satisfies the following conditions:
The elements of A(z) are Laurent polynomials, and there are vectors ŷµ ∈ Rr, ŷ0 6=
0, µ = 0, . . . , k − 1, such that for µ = 0, . . . , k − 1

µ∑
ν=0

(
µ

ν

)
ŷ>µ−ν(2i)

−ν (DνA) (1) = 21−µŷ>µ ,

µ∑
ν=0

(
µ

ν

)
ŷ>µ−ν(2i)

−ν (DνA) (−1) = 0

(4.9)

holds. Furthermore there exist matrices of Laurent polynomials Cµ(z) for µ =
0, . . . , k − 1, such that A(z) factorizes like

A(z) =
1

2m−1
C0(z

2) · · ·Ck−1(z
2)Ak(z)C

−1
k−1(z) · · ·C−1

0 (z), (4.10)

where Ak(z) is a suitable matrix with Laurent polynomials as entries.

Remark 4.1.5. A straightforward computation shows that the Equations (4.9) are
equivalent to the sum rules (3.23) with yµ = 1

µ!
ŷµ.

In the scalar case, a factorization of the symbol can be profitably used for the
construction of scaling functions even in the multivariate case, cf. [31]. For the
vector setting this subject is somewhat more involved. Since within the factoriza-
tion the entries of all participating matrices are shuffled, the properties of a single
entry of the symbol can hardly be controlled. Thus, it is difficult to incorporate the
conditions for interpolation (3.11) and for orthonormality provided by Theorem
4.1.1 into a construction method based on factorization. Furthermore, it is not
known yet if such a factorization makes sense or at least exists in the multivariate
case. On the other hand, the Equations (4.9), i.e., an equivalent of the sum rules
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in terms of the symbol, are well suited for construction purposes. In the following
theorem we show that the specific form (3.11) of the symbol determines the vectors
ŷµ up to a constant, and therefore leads to remarkable simplifications concerning
the Equations (4.9).

Theorem 4.1.6. Let Φ be a compactly supported interpolating 2-scaling vector
with symbol A(z) as in (3.11). For n ≥ 0 and i ∈ {0, 1} define the functions

d
(n)
i (z) :=





ai(z), if n = 0,

∑
β 6=0

βna
(i,1)
β zβ, else.

Then Φ provides approximation order k if and only if a0(z) and a1(z) are Laurent
polynomials and for µ = 0, . . . , k − 1 the equations

21−µ = (−1)nd
(µ)
0 (1) +

µ∑
ν=0

(
µ

ν

)
(−1)νd

(ν)
1 (1),

0 = (−1)µd
(µ)
0 (−1) +

µ∑
ν=0

(
µ

ν

)
(−1)νd

(ν)
1 (−1)

(4.11)

hold.

Proof. As stated in Section 3.1.2, the interpolation property implies linearly inde-
pendent integer translates, therefore the hypotheses of Theorem 4.1.4 are satisfied.
In the following, we show the equivalence of the sum rules (4.9) and the Equations
(4.11). For µ ≥ 0 the derivatives DµA(z) have the form

DµA(z) =


 0 (−i)µd

(µ)
0 (z)

(−i)µz (−i)µd
(µ)
1 (z)


 .

With ŷµ := (ŷ
(1)
µ , ŷ

(2)
µ )> the first columns of the Equations (4.9) are equivalent to

21−µ ŷ(1)
µ = ŷ(1)

µ +

µ∑
ν=0

(
µ

ν

)
(−2)−ν ŷ

(2)
µ−ν ,

0 = ŷ(1)
µ −

µ∑
ν=0

(
µ

ν

)
(−2)−ν ŷ

(2)
µ−ν .

By induction we obtain

ŷµ = ŷ
(1)
0

(
δ0,µ

2−µ

)
(4.12)
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with some ŷ
(1)
0 6= 0. The second columns of the Equations (4.9) are equivalent to

21−µ ŷ(2)
µ =

µ∑
ν=0

(
µ

ν

)
(2i)−ν

(
(−i)ν ŷ

(1)
µ−νa

(ν)
0 (1) + (−i)ν ŷ

(2)
µ−νa

(ν)
1 (1)

)
,

0 =

µ∑
ν=0

(
µ

ν

)
(2i)−ν

(
(−i)ν ŷ

(1)
µ−νa

(ν)
0 (−1) + (−i)ν ŷ

(2)
µ−νa

(ν)
1 (−1)

)
.

Applying (4.12) we obtain (4.11).

Remark 4.1.7. The corresponding factorization matrices Cµ have the form

Cµ(z) =

(
1

2ŷ
(1)
0

)δ0,µ
(

2 −2

−2z 2

)
, (4.13)

as they are completely determined by the vectors ŷµ, see [98] for details concerning
their construction.

As stated above, linearly independent integer translates of a scaling vector
are implied by the interpolation property. Thus, applying the orthonormality
condition (4.3) to the sum rules (4.11) yields:

Corollary 4.1.8. With the notations and conditions of Theorem 4.1.1 an or-
thonormal interpolating 2-scaling vector Φ provides approximation order k if and
only if for µ = 0, . . . , k − 1 the mask coefficients of the symbol entry a0(z) satisfy

2−µ =
∑

β

(−2β)µa2β −
∑

β

(2(β − κ) + 1)µa2β+1,

2−µ =
∑

β

(−2β − 1)µa2β+1 +
∑

β

(2(β − κ))µa2β.
(4.14)

The eigenvalue properties of A(z) provided by Theorem 3.1.1 are likewise sim-
plified by the specific structure of A(z). To provide a simple eigenvalue 2 for z = 1
the entries of A(z) have to satisfy

a0(1) + a1(1) = 2 (4.15)

which corresponds to the first equation in (4.11) with µ = 0. The second eigenvalue
λ of A(1) is given by

a0(1) = (λ− 1)(λ− a1(1)). (4.16)

Note that the sum rules of order one together with the orthonormality condition
(4.3) already imply that A(1) has the eigenvalues 2 and 0.
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4.2 Explicit Construction

4.2.1 General Method

Based on the results in the preceding section we suggest the following construction
principle for the symbol A(z) of an orthonormal interpolating 2-scaling vector:

1. Start with a first symbol entry a0(z) with an even number of coefficients

a0(z) :=
n+1+α∑

β=−n+α

aβz
β, α ∈ Z,

by choosing the length 2n + 2 of (aβ)β∈Z. Centering the coefficients around
a0 seems to provide the highest regularity, therefore α = 0 is chosen.

2. By Equation (4.3) the second symbol entry a1(z) has to be of the form

a1(z) := ±z2κ+1a0

(−z−1
)
.

It turns out that the choice κ = 0 and a positive sign provide the highest
regularity and the shortest support. Now we have 2n degrees of freedom.

3. Apply the orthonormality condition (4.8) to the coefficient sequence (aβ)β∈Z.
Then we are left with n degrees of freedom.

4. Finally, apply the sum rules (4.14) up to the highest possible order to the
coefficient sequence (aβ)β∈Z.

The steps 3 and 4 of this method yield a system of quadratic and linear equations
in (aβ)−n≤β≤n+1. In most cases, i.e., if n is not too large, this system can be solved
analytically using a symbolic computation tool like Maple or MuPAD. The sym-
bols being constructed in this way correspond to 2-scaling vectors supported on
the interval [−n, n + 1]. However, since the applied conditions are just necessary,
we have to check whether the scaling vectors really possess the desired properties
or not. On the other hand, since the sum rules appear pairwise, the system of
equations may be underdetermined. Moreover, due to the quadratic conditions
involved in our construction method, there might exist several solutions anyway.
Therefore, after solving the system of equations, a screening process has to be em-
ployed which extracts solutions with most appealing properties. For this purpose,
regularity estimation, e.g., by means of the method described in Section 3.2.3, is
an appropriate tool. We will discuss this topic in detail in Section 5.2 for the more
general multivariate case.
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4.2.2 Examples

In the sequel, we present the outcome of our construction for n = 1, . . . , 8. As
stated above, the solutions obtained by our construction are not unique. Therefore,
we focus on those solutions which possess the highest regularity.

The case n = 1:

For the case n = 1, our construction leads to a one-parameter set of 2-scaling
vectors Φα with symbols

Aα(z) =

(
1

√
−α(α− 1)z−1 + α−

√
−α(α− 1)z + (1− α)z2

z (1− α)z−1 +
√
−α(α− 1) + αz −

√
−α(α− 1)z2

)
.

Figure 4.1 shows the critical Sobolev exponent s(Φα). For α ≈ 0.9486 we obtain

0.7 0.75 0.8 0.85 0.9 0.95 1
0.3

0.4

0.5
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0.8

0.9

1

α

s

Figure 4.1: Sobolev exponent s of Φα

an interpolating and orthonormal 2-scaling vector depicted in Figure 4.2(a) which
provides approximation order 1 and is supported on [−1, 2]. The critical Sobolev
exponent of Φ0.9486 is s = 0.9777. For α = 1 we also obtain the Haar generator
interpreted as a scaling vector via (3.7) as is shown in Figure 4.2(b).

The case n > 1:

As stated above, for each fixed input parameter n the outcome of our construction
process is likely to be not unique. In contrast to the case n = 1, it turns our that
for n > 1 we do not obtain a parameter depending family but a discrete set of
solutions. In this example we concentrate on the family Φn of the most regular
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(b) α = 1

Figure 4.2: 2-Scaling vector Φα

elements of these sets. All these Φn depicted in Figure 4.3 are very similar in
shape. The main mass of the scaling vector is concentrated in the interval [−1, 2]
and with increasing n there is just some oscillation added outside this interval.
The coefficient sequences (aβ)β∈Z of the corresponding symbol entries a0(z) are
listed in Appendix A.1. They also reveal this similarity.

n suppΦ approximation order k Sobolev exponent s

2 [-2,3] 2 1.50

3 [-3,4] 3 1.51

4 [-4,5] 3 1.74

5 [-5,6] 4 1.80

6 [-6,7] 4 2.01

7 [-7,8] 5 1.84

8 [-8,9] 5 2.04

Table 4.1: Sobolev regularity and approximation order of Φn

As is shown in Table 4.1, similar to the non-orthonormal case the Sobolev
regularity and the provided approximation order increase with the support length
of Φn. By enlarging the parameter n by one either the critical Sobolev exponent of
Φn or the provided approximation order is alternately increased. In our examples
the approximation order equals bn+1

2
c+ 1. Note that the examples for n = 2 and
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n = 4 were also obtained by Selesnick in [109]. For n = 3 our construction also
yields the corresponding example of Selesnick and, in addition, a scaling vector that
provides a higher Sobolev regularity. Therefore the more regular scaling vector is
depicted in Figure 4.3.

4.3 Multiwavelets

In the scalar case, the construction of wavelets corresponding to orthonormal scal-
ing functions is by now well-understood due to the pioneering work of Daubechies
in [36]. All possible wavelets are related to a canonical wavelet, which is completely
determined by the symbol of the scaling function. In the vector case the situation
is somewhat more involved.

We have seen in Section 3.2.1 that for a compactly supported orthonormal
2–scaling vector Φ, which consequently generates an MRA, the task of finding a
multiwavelet Ψ can be converted into a matrix extension problem. Let A(z) be the
symbol of Φ, then we have to find a symbol B(z) such that the modulation matrix
Pm(z) defined in (3.20) is unitary for all z ∈ T. Unlike the scalar case, there may
exist several unitary extensions, and thus the construction of multiwavelets is by
no means unique.

One possibility to obtain B(z) is to use the results in [82] which provide us
with an effective algorithm for the extension of Pm(z). Another possibility is
to impose some additional conditions on the multiwavelet Ψ or its symbol B(z).
Since our scaling vectors are interpolating, we may choose the multiwavelet Ψ to
be interpolating as well, i. e.,

Ψ
(n

2

)
=

(
δ0,n

δ1,n

)
.

Then our construction leaves us much less freedom in the sense that the symbol
B(z) of Ψ is completely determined by the symbol A(z) of Φ. The following
theorem has already been stated in [109] but without a proof. For the reader’s
convenience we sketch the proof in our setting.

Corollary 4.3.1. The symbol B(z) of an compactly supported interpolating multi-
wavelet corresponding to a compactly supported orthonormal interpolating 2-scaling
vector with symbol A(z) as in Theorem 4.1.1 has to satisfy

B(z) =

(
1 −a0(z)

z −a1(z)

)
, z ∈ T.
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Figure 4.3: 2-Scaling vector Φn for n > 1
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Proof. Due to the interpolation property B(z) has to be of the form

B(z) =

(
1 b0(z)

z b1(z)

)
, z ∈ T,

with Laurent polynomials b0(z), b1(z). The unitarity of Pm(z) leads to

−2 = ai(z)bi(z) + ai(−z)bi(−z)
0 = ai(z)b1−i(z) + ai(−z)b1−i(−z)
2 = |bi(z)|2 + |bi(−z)|2

for i = 0, 1. Following the lines of the proof of Theorem 4.1.1 we obtain

b0(z) = −a0(z) and b1(z) = −a1(z).

Thus, we have two distinct methods to compute interpolating as well as non-
interpolating multiwavelets corresponding to our interpolating scaling vectors. In
Figure 4.4 both multiwavelets corresponding to Φ0.9486 for n = 1 are shown. Note
that they possess the same support properties but are distinct in shape.
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Figure 4.4: Multiwavelets corresponding to Φ0.9486

The non-interpolating and interpolating multiwavelets Ψn corresponding to the
Φn for n > 1 are depicted in Figure 4.5 and Figure 4.6, respectively. Both multi-
wavelet families possess rather similar support properties, but the non-interpola-
ting multiwavelets reveal stronger oscillations. The masks of the non-interpolating
multiwavelets can be found in Appendix A.1. Again, these masks also reveal the
similarity of the multiwavelets shown in Figure 4.5.
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Figure 4.5: Non-interpolating 2-multiwavelet Ψn for n > 1
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Figure 4.6: Interpolating 2-multiwavelet Ψn for n > 1
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Chapter 5

Recipe II: Multivariate
Orthonormal Interpolating
Scaling Vectors

In this chapter, we generalize the approach derived in the preceding chapter to the
multivariate case. In particular, we focus on scaling matrices with | det(M)| = 2
which enables us to obtain a multivariate analog of Theorem 4.1.1. Similar to the
univariate approach, we start by collecting necessary conditions for orthonormality
and approximation order of a scaling vector in terms of its mask or symbol, respec-
tively. This enables us to set up an algorithm for the construction of orthonormal
interpolating scaling vectors with compact support. Since this algorithm involves
solving large nonlinear equation systems, also numerical issues are addressed.

The results within this chapter have already been published in [80].

5.1 Main Ingredients

5.1.1 Orthonormality

As in the univariate case, the symbol A(z) of an orthonormal scaling vector has
to stem from a conjugate quadrature filter, and thus

∑

ρ̃∈ eR
A

(
zM−>ρ̃

)
A

(
zM−>ρ̃

)>
= m2 Ir, (5.1)

cf. Equation (4.1). For the special case of an interpolating 2–scaling vector with
compact support we obtain the following simplified conditions.

55
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Theorem 5.1.1. Let A(z) be the symbol of an interpolating 2–scaling vector with
mask A ∈ `0(Zd)2×2. A(z) satisfies (5.1) if and only if the symbol entries a(0)(z)
and a(1)(z) in (3.11) satisfy

∣∣a(0)(z)
∣∣2 +

∣∣a(0)
(
zM−>ρ̃

)∣∣2 = 2 (5.2)

and
a(1)(z) = ±zαa(0)(zM−>ρ̃) (5.3)

for some α ∈ [ρ] and with R̃ = {0, ρ̃}.
In order to prove Theorem 5.1.1 we first have to state the following lemma.

Lemma 5.1.2. Let p be a Laurent polynomial that satisfies

|p(z)| = 1 for all z ∈ Td. (5.4)

Then p(z) = ±zα for some α ∈ Zd.

Proof. Let (pβ)β ∈ `0(Zd) denote the coefficient sequence of p, and define the
convex polytope K := conv{β ∈ Zd | pβ 6= 0} where conv denotes the convex hull.
A direct computation shows that (5.4) is equivalent to

∑

β∈K∩Zd

pβpβ−γ = δ0,γ, for all γ ∈ Zd. (5.5)

Now assume that p(z) 6= ±zα, then it follows immediately that the set of vertices
E ⊂ Zd of K satisfies |E| > 1. Therefore, for an arbitrarily chosen β0 ∈ E, the
polytopeK ′ := conv(E\{β0}) is nonempty, and we have β0 /∈ K ′. Thus, the Hahn–
Banach Separation Theorem implies that there exists a hyperplane which separates
K ′ from {β0}, i.e., there exist n ∈ Rn and θ ∈ R such that n>x < θ < n>β0 for
all x ∈ K ′. Since each point in K is a convex combination of the vertices in E,
we obtain n>x < n>β0 for all x ∈ K \ {β0}. On the other hand, since K is a
(compact) polytope, there exists a β1 ∈ E \ {β0} such that n>β1 ≤ n>x for all
x ∈ K. Thus, for x ∈ K we obtain

n>(x+ β0 − β1) = n>x− n>β1 + n>β0 ≥ n>β0,

which implies K ∩ (K + β0 − β1) = {β0}. Therefore, with γ := β1 − β0, Equation
(5.5) yields

0 =
∑

β

pβpβ+β0−β1 = pβ1pβ0 .

As a consequence, we obtain pβ0 = 0 or pβ1 = 0 which contradicts the assumption
p(z) 6= ±zα.



5.1 Main Ingredients 57

Now we can prove Theorem 5.1.1.

Proof of Theorem 5.1.1. With the interpolation condition (3.11), Equation (5.1)
is equivalent to the matrix

A(z) :=
1√
2

(
a(0)(z) a(0)

(
zM−>ρ̃

)
a(1)(z) a(1)

(
zM−>ρ̃

)
)

(5.6)

being unitary for all z ∈ Td. Therefore, a(0)(z) has to satisfy (5.2) and we have
| det(A(z))| = 1 for all z ∈ Td. Since | det(A(z))| is a Laurent polynomial, Lemma
5.1.2 implies

det(A(z)) = ±zα

for some α ∈ Zd. By Cramer’s rule we obtain

a(1)(z) = ±zαa(0)
(
zM−>ρ̃

)
(5.7)

and
a(1)

(
zM−>ρ̃

)
= ∓zαa(0)(z). (5.8)

Hence, we have (5.3). It remains to be shown that α ∈ [ρ]. Assume α ∈ [0], then
we have zα

M−>ρ̃
= zα since there exists a β ∈ Zd such that α = Mβ and thus

zMβ
M−>ρ̃

= e−i〈ω+2πM−>ρ̃,Mβ〉

= e−i〈ω,Mβ〉e−i2π〈ρ̃,β〉 = zMβ.

Moreover, Cramer’s rule implies M−>ρ̃ ∈ 1
m
Zd, and consequently

(zM−>ρ̃)M−>ρ̃ = z.

Hence, for α ∈ [0] the Equations (5.7) and (5.8) are incompatible. However,
Lemma 3.1.2 yields zρ

M−>ρ̃
= −zρ which implies zα

M−>ρ̃
= −zα for α ∈ [ρ]. As

a consequence, for α ∈ [ρ] the Equations (5.7) and (5.8) are equivalent. On the
other hand, if (5.2) and (5.3) are satisfied, then A(z) is unitary.

A simple computation yields the following corollary which provides us with the
corresponding conditions in terms of the mask.

Corollary 5.1.3. With the notation a(0)(z) :=
∑

β∈Zd

aβz
β it holds that

(a) condition (5.2) is equivalent to
∑

β∈Zd

aβaβ−Mγ = δ0,γ for all γ ∈ Zd (5.9)

and
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(b) condition (5.3) is equivalent to

a(1)(z) = ±zα
∑

β∈Zd

(−1)1[ρ](β)aβz
−β. (5.10)

Thus, the orthonormality of a scaling vector leads to simple quadratic condi-
tions in terms of the mask. On the other hand, from the constructional point of
view, orthonormality significiantly reduces the number of degrees of freedom by
determining the symbol entry a(1)(z) up to the factor ±zα. This is highly wel-
come, since the size of the equation system involved in the construction process is
considerably reduced.

In the sequel of this section, we give a short proof for the nonexistence of
an orthonormal interpolating scaling function with compact support for scaling
matrices with determinant ±2. Although this fact seems to be commonly known
within the wavelet community, up to the author’s knowledge there is no proof
available in the literature. Hence, for the reader’s convenience, we sketch the
proof in our setting.

Theorem 5.1.4. Let ϕ be a compactly supported (a,M)–refinable function with
orthonormal integer translates and | det(M)| = 2. If ϕ satisfies the interpolation
condition (2.12), then it is of Haar–type, i.e., it is the characteristic funciton of a
self-affine tile and therefore not continuous.

Proof. First of all, due to the orthogonality of ϕ, the refinement equation implies
aβ = m〈ϕ, ϕ(M · −β)〉 for β ∈ Zd. Thus, since ϕ is compactly supported, the
symbol a(z) is a Laurent polynomial. From the interpolaton condition (2.12) we
immediately obtain that

aMβ = δ0,β (5.11)

for all β ∈ Zd. Hence, for the first subsymbol a0(z) of a(z) we obtain a0(z) = 1.
Furthermore, the scalar version of the orthonormality condition (5.1) implies that

4 = |a(z)|2 + |a(zM−>ρ̃)|2, (5.12)

where ρ̃ denotes the usual nontrivial representative of Zd/M>Zd. Using subsymbol
notation, we have a(z) = a0(z

M) + zρa1(z
M) and a(zM−>ρ̃) = a0(z

M)− zρa1(z
M),

cf. Section 3.1.1. Therefore, Equation (5.12) is equivalent to

2 = |a0(z
M)|2 + |a1(z

M)|.

Applying Equation (5.11) we obtain |a1(z
M)| = 1, and thus Lemma 5.1.2 implies

that there exists an α ∈ Zd such that a1(z) = ±zα. Consequently, due to Theorem
1.2 in [47] we obtain that the corresponding scaling function ϕ is of Haar–type.
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5.1.2 Sum Rules

First of all, to obtain an applicable version of the sum rules (3.23), the vectors
yµ, |µ| < k, have to be determined. Fortunately, for interpolating scaling vectors,
they are given explicitely.

Lemma 5.1.5. Let A ∈ `0(Zd)m×m be the mask of an interpolating m–scaling
vector Φ satisfying the sum rules of order k. Then the vectors yµ, |µ| < k, satisfy

yµ = JΦK
(

(M−1ρ0)
µ

µ!
, . . . ,

(M−1ρm−1)
µ

µ!

)>

with JΦK = ‖Φ̂(0)‖2.

Proof. As stated above, the interpolation condition (3.6) implies `p–stability. There-
fore, Equation (3.25) yields

xµ

µ!
=

∑
0≤ν≤µ

∑

β∈Zd

βν

ν!
y>µ−ν

1

JΦKΦ(x− β)

for all µ ∈ Zd
+ with |µ| < k. Since Φ provides accuracy of order k, it holds that

xµ ∈ S(Φ) for |µ| < k, and, due to the sampling property (3.8), we have

xµ

µ!
=

∑

β∈Zd

m−1∑
i=0

(β +M−1ρi)
µ

µ!
φi(x− β).

Since the integer translates of Φ are linearly independent we obtain

1

JΦK
∑

0≤ν≤µ

βν

ν!
y

(i)
µ−ν =

(β +M−1ρi)
µ

µ!

for i = 0, . . . ,m − 1 where y
(i)
µ denotes the ith component of yµ. Induction over

|µ| yields the result.

Though, in general, JΦK is unknown, Lemma 5.1.5 enables us to obtain a simple
and implementable version of the sum rules (3.23). This is due to the fact that the
factor JΦK appears on both sides of the sum rules and therefore can be omitted.

Theorem 5.1.6. Let A ∈ `0(Zd)m×m be the mask of an interpolating m–scaling
vector Φ as in (3.10). The mask A satisfies the sum rules of order k if and only if

m−1∑
j=0

∑

β∈Zd

a
(j,i)
ρ+Mβ

(
M−1(ρj − ρ)− β

)µ
=

(
M−2ρi

)µ

holds for all 1 ≤ i < m, ρ ∈ R and µ ∈ Zd
+ with |µ| < k.
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Proof. Applying Lemma 5.1.5 to the ith component of the vector valued Equation
(3.23) we obtain

∑

|ν|=|µ|
w(µ, ν)JΦK(M

−1ρi)
ν

ν!
=

∑
0≤ν≤µ

(−1)|ν|
∑

β∈Zd

(M−1ρ+ β)
ν

ν!

m−1∑
j=0

a
(j,i)
ρ+MβJΦK

(M−1ρj)
µ−ν

(µ− ν)!

for 0 ≤ i < m. Due to (3.24) this is equivalent to

(M−2ρi)
µ

µ!
=

∑
0≤ν≤µ

(−1)|ν|
∑

β∈Zd

(M−1ρ+ β)
ν

ν!

m−1∑
j=0

a
(j,i)
ρ+Mβ

(M−1ρj)
µ−ν

(µ− ν)!
.

The multivariate binomial theorem yields

(
M−2ρi

)µ
=

m−1∑
j=0

∑

β∈Zd

a
(j,i)
ρ+Mβ

(
M−1(ρj − ρ)− β

)µ
.

This equation holds always true for i = 0, since (3.10) implies a
(j,0)
β = δβ,ρj

. Thus,
the proof is complete.

For an orthonormal interpolating scaling vector with m = 2 we obtain the
following simplification.

Corollary 5.1.7. If we choose a(1)(z) = zρ
∑

β∈Zd

(−1)1[ρ](β)aβz
−β in (5.10), then for

an orthonormal interpolating 2–scaling vector the sum rules are reduced to

(
M−2ρ

)µ
=

∑

β∈Zd

aβ

(−M−1β
)µ
,

(
M−2ρ

)µ
=

∑

β∈Zd

aβ

(
M−1β

)µ
(−1)1[ρ](β)

with R = {0, ρ}.

Proof. For the nontrivial representative ρ ∈ R, Theorem 5.1.6 yields

(
M−2ρ

)µ
=

∑

β∈Zd

aMβ+ρ

(−M−1ρ− β
)µ

+ (−1)1[ρ](−Mβ)a−Mβ(−β)µ.
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Since (−1)1[ρ](−Mβ) = 1, we obtain

(
M−2ρ

)µ
=

∑

β∈Zd

aMβ+ρ

(−M−1(ρ+Mβ)
)µ

+ aMβ

(
M−1(Mβ)

)µ

=
∑

β∈Zd

aβ

(
(−1)1[ρ](β)M−1β

)µ

=
∑

β∈Zd

aβ

(
M−1β

)µ
(−1)|µ|·1[ρ](β).

On the other hand, for the representative 0 ∈ R we have

(
M−2ρ

)µ
=

∑

β∈Zd

aMβ(−β)µ + (−1)1[ρ](ρ−Mβ)aρ−Mβ(M−1ρ− β)µ

=
∑

β∈Zd

aMβ

(−M−1(Mβ)
)µ − aMβ+ρ

(
M−1(ρ+Mβ)

)µ

=
∑

β∈Zd

aβ

(
(−1)1[0](β)M−1β

)µ
(−1)1[ρ](β)

=
∑

β∈Zd

aβ

(
M−1β

)µ
(−1)(1+|µ|)1[ρ](β)+|µ|.

With

(−1)|µ|·1[ρ](β) =

{
(−1)|µ|, if |µ| is even,

(−1)1[ρ](β), else,

and

(−1)(1+|µ|)1[ρ](β)+|µ| =

{
(−1)1[ρ](β), if |µ| is even,

(−1)|µ|, else,

the proof is complete.

Remark 5.1.8. With the above choice, if A ∈ `0(Zd)2×2 satisfies the sum rules of
order 1, we have

A(1) =

(
1 1
1 1

)

and thus A(1) has the eigenvalues 2 and 0. Therefore, Theorem 3.1.1 ensures the
existence and uniqueness of a compactly supported scaling vector corresponding to
A. In addition, condition (iii) of Theorem 3.2.1 is satisfied.
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5.2 Explicit Construction

In this section, we give an explicit construction method for the symbols of or-
thonormal interpolating 2–scaling vectors on Rd with compact support. Since the
construction involves necessary conditions on the mask only, we also explain how
to verify sufficient conditions. To substantiate our approach, several examples for
the case d = 2 are presented.

5.2.1 General Method

Based on the results in the preceding section we suggest the following construction
principle:

1. Choose a scaling matrix M with | det (M)| = 2 and the nontrivial represen-
tative ρ of Zd/MZd such that R = {0, ρ}.

2. Start with the first symbol entry

a(0)(z) =
∑

β∈Λ

aβz
β

by choosing the support Λ ⊂ Zd of (aβ)β∈Λ. It is a common observation that
centering a mask around its zeroth coefficient leads to the most regular gen-
erators. However, no rigorous mathematical justification for this approach
has been found yet. Nevertheless, also in our case we observe that centering
the coefficients around a0 provides the best results, therefore we suggest the
choice of Λ = [−n, n]d ∩ Zd.

3. According to Theorem 5.1.1 and Corollary 5.1.3 the second symbol entry
a(1)(z) has to have the form

a(1)(z) = ±zα
∑

β∈Λ

(−1)1[ρ](β)aβz
−β

with α ∈ [ρ]. Based on our observations we suggest to choose α = ρ and
a positive sign, since this seems to provide the highest regularity and the
smallest support.

4. Apply the orthogonality condition (5.9) to the coefficient sequence (aβ)β∈Λ.
This will consume about one half of the degrees of freedom.

5. Finally, apply the sum rules of Corollary 5.1.7 up to the highest possible
order to the coefficient sequence (aβ)β∈Λ.
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By this method we obtain a system of linear and quadratic equations in the vari-
ables a := (aβ)β∈Λ. Hence, we have to solve a system of the form

F (a) = b, (5.13)

where F is the nonlinear function given by our system of equations and b denotes
the corresponding right hand side. Due to the large number of equations, it is
rather impossible to solve this system analytically. Therefore, a numerical method
has to be applied. Since we know F and its Jacobian F ′ explicitely, we suggest to
formulate the problem (5.13) as a nonlinear least squares problem

‖F (a)− b‖2
2 = min . (5.14)

This problem can be solved with the the Gauß–Newton method, i.e., starting with
a vector ã0 ∈ R|Λ| we have the iteration rule

ãn+1 := ãn − (
F ′(ãn)>F ′(ãn)

)−1
F ′(ãn)F (ãn), (5.15)

see, e.g., [44] or another textbook on numerical analysis for details. We stop
the iteration if the norm of the residual ‖F (a) − b‖2 becomes smaller than some
tolerance ε > 0.

As we have to deal with quadratic equations, the solutions of this system are by
no means unique. So, as a screening process, we suggest to measure/estimate the
regularity of the scaling vectors corresponding to the obtained solutions. This can
be performed by applying an implementation of the method described in Section
3.2.3.

Sufficient Conditions

So far, the conditions on the mask involved in our approach are necessary only.
Therefore, during the construction process, one has to check whether the corre-
sponding scaling vectors actually do possess the desired properties.

If a mask A obtained by our approach satisfies the sum rules of order 1 then,
due to Remark 3.2.6, condition (ii) of Theorem 3.2.1 holds true. Furthermore,
as stated in Remark 5.1.8, condition (iii) of Theorem 3.2.1 is satisfied as well.
Thus, to ensure the orthonormality of the corresponding scaling vector Φ, we
have to check that Φ ∈ L2(Rd)m and that the associated transition operator TA,K

satisfies the eigenvalue condition (iv). These tasks can be regarded as subtasks of
the regularity estimation by means of Theorem 3.2.7. There we already have to
compute the spectrum of TA,K , and s(Φ) > 0 implies Φ ∈ L2(Rd)m.

On the other hand, to ensure that a scaling vector Φ is interpolating, we have
to check that Φ is continuous and satisfies Φ(M−1β) = (δ0,β, δρ,β)> for all β ∈ Zd.
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This can be performed by utilizing the eigenvector trick introduced at the end of
Section 3.1.5. First of all, if s(Φ) > d/2, the Sobolev embedding theorem implies
that Φ is continuous. A straightforward computation shows that (δ0,β, 0)>

β∈Zd is

an eigenvector of TA corresponding to the eigenvalue 1, and thus condition (3.11)
implies that Φ is interpolating.

5.2.2 The Case d = 2

To show the potential of our approach, several examples of interpolating 2–scaling
vectors on R2 are constructed in the sequel. We focus on two of the most popular
scaling matrices with determinant ±2, i.e., the quincunx matrices Mq and Mp,
defined by

Mq :=

(
1 −1
1 1

)
and Mp :=

(
1 1
1 −1

)
.

Both matrices are idempotent and generate the commonly known quincunx lattice,
i.e., MqZ2 = MpZ2 = {(i, j)> ∈ Z2 | i + j is even}. Therefore, the cosets of
Z2/MqZ2 and Z2/MpZ2 coincide and we choose ρ := (0, 1)> in both cases. In
contrast to Mq, the matrix Mp satisfies

M2 = 2Id (5.16)

with d = 2. Usually, scaling matrices satisfying (5.16) are also called box spline
matrices. A box spline is a refinable function defined onRd which can be considered
as a multivariate generalization of classical cardinal B–splines, see [41] for details.
In general, box splines are refinable with respect to dyadic scaling. However, it
has been shown in [29] that for each scaling matrix M satisfying (5.16) there are
box splines which are refinable with respect to M as well.

The next theorem shows that for both matrices the solutions of our equation
systems are closely related.

Theorem 5.2.1. The sequence aq ∈ `0(Z2) satisfies the orthogonality condition
(5.9) and the sum rules of order k in Corollary 5.1.7 with respect to M = Mq if
and only if the sequence ap ∈ `0(Z2), defined by

ap
β := (−1)1[ρ](β)aq

Uβ with U :=

(−1 0
0 1

)
,

satisfies the corresponding conditions with respect to M = Mp.

Proof. Let us show the orthogonality condition first. For γ ∈ Z2 it holds that

∑

β∈Z2

ap
βa

p
β−Mpγ =

∑

β∈Z2

aq
Uβa

q
U(β−Mpγ) =

∑

β∈Z2

aq
βa

q
β−UMpγ.
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Since UMpZ2 = MpZ2 = MqZ2, there exists a γ̃ ∈ Z2 with UMpγ = Mqγ̃.
Therefore, we have ∑

β∈Z2

ap
βa

p
β−Mpγ =

∑

β∈Z2

aq
βa

q
β−Mq γ̃

and with δ0,γ̃ = δ0,γ the orthogonality conditions (5.9) for ap and for aq are equiv-
alent.

On the other hand, for µ ∈ Z2
+ with |µ| < k we have

∑

β∈Z2

ap
β

(−M−1
p β

)µ
=

∑

β∈Z2

aq
Uβ

(−M−1
p β

)µ
(−1)1[ρ](β)

=
∑

β∈Z2

aq
β

(−M−1
p Uβ

)µ
(−1)1[ρ](Uβ).

Using the notation µ := (µ0, µ1)
> it holds that

(−M−1
p Uβ

)µ
=

(
M−>

q β
)µ

= (−1)µ0
(
M−1

q β
)Eµ

with E :=

(
0 1
1 0

)
. With 1[ρ](Uβ) = 1[ρ](β), this leads to

∑

β∈Z2

ap
β

(−M−1
p β

)µ
= (−1)µ0

∑

β∈Z2

aq
β

(
M−1

q β
)Eµ

(−1)1[ρ](β).

Furthermore, it holds that

(
M−2

p ρ
)µ

= (−1)µ0
(
M−2

q ρ
)Eµ

.

Therefore, due to |µ| = |Eµ|, the first part of the sum rules of order k in Corollary
5.1.7 for ap is equivalent to the second part of the sum rules of order k for aq. The
opposite direction can be shown analogously.

Numerical Issues

In the numerical treatment of our equation system we are confronted with two
major problems. The first problem is related to the local convergence of the
Gauß–Newton method. We have to select a sufficiently large set of starting vectors
ã0 ∈ R|Λ| in order to find at least some good solutions. This can be performed
by either uniformly or randomly sampling R|Λ| (or the unit sphere in R|Λ|, as
Equation (5.9) implies ‖(aβ)‖2 = 1). In both cases, for Λ becoming large, we
have to deal with a rapidly increasing amount of starting vectors. For the scaling
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matrix Mq, this difficulty can be eased by the observation that many solutions
which correspond to scaling vectors with a high regularity share the structure

aβ =

{
aEβ, if β ∈MqZ2,

−a−Eβ, else,
with E =

(
0 1
1 0

)
. (5.17)

According to Theorem 5.2.1, a similar structure can be found for Mp. For large
index sets Λ, we focus on these specific structures.

The second problem is to distinguish true solutions from local minima. It
turns out that even if the norm of the residual is close to machine accuracy,
i.e., the smallest floating point number ε0 on a computer such that 1 ± ε0 6= 1,
the corresponding solution may still belong to a local minimum. Therefore, we
test our solutions with a multiple precision implementation of the Gauß–Newton
method. If the norm of the residual can be reduced significiantly below ε0, then we
assume the corresponding solution to be at least reasonable. Obviously, it is rather
unlikely that the multiple precision algorithm ends up with a true solution, thus we
have to choose a lower bound ε for the norm of the residual as a stopping criterion.
In practice, most computers work with standard 64 bit floating point arithmetic
where ε0 ≈ 2.22·10−16, cf. [3]. Hence, ε := 10−25 seems to be an appropriate choice
for the stopping parameter. Nevertheless, for most applications even a larger norm
of the residual may be perfectly fine.

5.2.3 Examples

Starting with an index set Λ = {−n, . . . , n}2 we obtain a sequence of scaling vectors
denoted by Φn with increasing accuracy order and regularity. It turns out that for
both scaling matrices, those solutions of our equation systems which correspond to
the scaling vectors with the highest regularity are linked via Theorem 5.2.1. The
corresponding scaling vectors shall be denoted by Φq

n for dilation with Mq and Φp
n

for dilation with Mp. In Table 5.1 the properties of the constructed examples are
shown, the corresponding masks can be found in Appendix A.2.

For the case n = 0 our solutions are the characteristic functions of the multi–
tiles shown in Figure 5.1. Via the rule (3.7), these scaling vectors coincide with the
characteristic functions of the classical tiles corresponding to the scaling matrices
Mq and Mp, cf. [53]. Both symbols have the form

A(z) =

(
1 1
zρ zρ

)
.

For n ≥ 2 all our solutions have critical Sobolev exponents strictly larger than
one. Therefore, by the Sobolev embedding theorem, all these scaling vectors are at
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n accuracy order s(Φn) ‖residual‖∞
M = Mq

0 1 0.238 < ε
1 1 0.743 < ε
2 2 1.355 < ε
3 3 1.699 < ε
4 3 1.819 < 10−18

5 4 2.002 < 10−22

M = Mp

0 1 0.5 < ε
1 1 0.736 < ε
2 2 1.371 < ε
3 3 1.695 < ε
4 3 1.934 < 10−18

5 4 2.099 < 10−22

Table 5.1: Properties of the Φn

least continuous. Figures 5.2 and 5.3 show the component functions of Φq
2 and Φp

2,
respectively. Furthermore, for n = 5 we obtain an example that is continuously
differentiable. The corresponding functions are graphed in Figures 5.4 and 5.5.
The reader should note that all these scaling vectors are very well localized.

5.3 Multiwavelets

In this section, we will show that also in the multivariate case, our interpolating
scaling vectors lead to (orthonormal) multiwavelet bases in a very simple and
natural way. We focus on the case r = m = 2. Thus, according to Section 3.1.3,
we only have to deal with one multiwavelet Ψ := (ψ0, ψ1)

> with symbol B(z).
Let Φ be a compactly supported orthonormal 2–scaling vector with symbol

A(z) which consequently generates an MRA. As we have seen in Section 3.2.1,
the task of finding a multiwavelet Ψ can be converted into a matrix extension
problem. Thus, we have to find B(z) such that Pm(z) defined in (3.20) is unitary
for all z ∈ Td. Similar to the univariate case, the solution of this problem is by no
means unique. However, if Φ is interpolating and Ψ is interpolating as well, i.e.,
we have

Ψ
(
M−1β

)
=

(
δ0,β

δρ,β

)
for all β ∈ Zd

and for R = {0, ρ}, then the extension problem has a unique solution of the
following form.
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0 1
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−0.5

0.5
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(a) M = Mq

0 0.5 1

0

1

−1

(b) M = Mp

Figure 5.1: (Multi-) tiles corresponding to Φ0

Theorem 5.3.1. Let A(z) be the symbol of a compactly supported orthonormal
interpolating 2–scaling vector Φ. Furthermore, let B(z) be the symbol of an in-
terpolating function vector Ψ defined by (3.12). The matrix Pm(z) in (3.20) is
unitary for all z ∈ Td if and only if

B(z) =

(
1 −a(0)(z)
zρ −a(1)(z)

)
(5.18)

holds with a(0)(z) and a(1)(z) as in (3.11).

Proof. Since Φ and Ψ are interpolating, a direct computation using (3.12) yields
that the symbol B(z) has to have the form

B(z) =

(
1 b(0)(z)
zρ b(1)(z)

)

for some Laurent polynomials b(0)(z) and b(1)(z). Let Pm(z) be unitary, then it
holds that

A(z)B(z)
>

+ A(zM−>ρ̃)B(zM−>ρ̃)
>

= 0. (5.19)

Thus, if we define A(z) as in (5.6) and

B(z) :=
1√
2

(
b(0)(z) b(0)(zM−>ρ̃)
b(1)(z) b(1)(zM−>ρ̃)

)
,
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Figure 5.2: Component functions of Φq
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Figure 5.4: Component functions of Φq
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5



5.3 Multiwavelets 71

then, with zα + zα
M−>ρ̃

= 0 for α ∈ [ρ], Equation (5.19) is equivalent to

A(z)B(z)
>

= −I2. (5.20)

Due to Theorem 5.1.1, we have a(1)(z) = ±zαa(0)(zM−>ρ̃), α ∈ [ρ], and it holds
that det(A(z)) = ∓zα. Applying Cramer’s rule to (5.20), we obtain

b(0)(z) =
−a(1)(zM−>ρ̃)

∓zα
=
zα

M−>ρ̃
a(0)(z)

zα
= −a(0)(z)

and

b(1)(z) =
a(0)(zM−>ρ̃)

∓zα
=
±zαa(1)(z)

∓zα
= −a(1)(z).

Thus B(z) has to have of the form (5.18).
On the other hand, if a symbol B(z) corresponding to a mask (Bβ) ∈ `0(Zd)2×2

satisfies (5.18), it is easy to verify that Pm(z) is unitary for all z ∈ T.

This theorem provides us with a convenient method to construct a multiwavelet
Ψ corresponding to an orthonormal interpolating scaling vector Φ with compact
support. Since the components of Φ are not normalized, the same holds for the
components of Ψ. However, Theorem 3.2.3 implies that

√
2Φ is strictly orthonor-

mal, and thus we obtain the following corollary.

Corollary 5.3.2. Under the assumptions of Theorem 5.3.1 let (5.18) be satisfied.
Then

√
2Ψ gives rise to an orthonormal multiwavelet basis.

Though the component functions of Ψ in 5.3.1 are not normalized, Ψ may be
called an orthonormal interpolating multiwavelet. Some examples of such interpo-
lating multiwavelets are shown in Figures 5.6 and 5.7. These examples correspond
to our scaling vectors Φq

n and Φp
n for n = 2 and n = 5 and are denoted by Ψq

n and
Ψp

n, respectively.
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Ψq
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ψ0 ψ1

Ψq
5

ψ0 ψ1

Figure 5.6: Multiwavelets corresponding to Φq

Ψp
2

ψ0 ψ1

Ψp
5

ψ0 ψ1

Figure 5.7: Multiwavelets corresponding to Φp



Chapter 6

Recipe III: Multivariate
Symmetric Interpolating Scaling
Vectors

In this chapter, our aim is to extend our approach obtained in the previous chap-
ter by incorporating an additional property: symmetry. That means, we intend to
construct interpolating scaling vectors which are symmetric, possess good approx-
imation and regularity properties, and lead to nice multiwavelet bases simultane-
ously. Although we cannot exclude that there may exist multivariate orthonormal
interpolating scaling vectors which are symmetric and possess compact support,
the task of constructing such scaling vectors seems to be somewhat unpromising.
We have seen in the preceding chapters that interpolation plus orthonormality
does only leave a narrow margin for incorporating further properties. So, even
if we manage to construct such all-in-one scaling vectors, to provide reasonable
approximation power their support is likely to grow horribly large. Therefore, we
focus on the biorthogonal case which provides more flexibility.

Similar to the approaches in Chapters 4 and 5, we start our construction by
collecting necessary conditions for the desired properties in terms of the mask
or symbol, respectively. The results obtained in this chapter have already been
published in [81].

6.1 Main Ingredients

The main benefit of interpolating scaling vectors is the sampling property (3.8)
which provides us with a convenient method for obtaining the coefficients of a
function in S(Φ). In general, when applying biorthogonal scaling vectors or func-
tions, one only needs the representation of a function either in terms of the primal

73
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or in terms of the dual generator. Then the corresponding dual pair of filter banks
is used to analyze and synthesize the coefficient sequence. Therefore, we focus on
interpolating scaling vectors on the primal side. Their duals do not necessarily
have to share this property.

6.1.1 Symmetry

In contrast to the univariate case, multivariate functions can possess various sym-
metries. Moreover, since a scaling matrix M can feature several rotation and
reflection properties, the characteristics of M have to be taken into account when
constructing symmetric scaling functions or vectors. The following notion of sym-
metry was stated in [60], see also [57].

A finite set G ⊂ {
U ∈ Zd×d

∣∣ | detU | = 1
}

is called a symmetry group with
respect to M if G forms a group under matrix multiplication and for all U ∈ G
we have MUM−1 ∈ G. Since G is finite, U ∈ G implies M−1UM ∈ G as well. A
function f : Rd → Rd is called G–symmetric with center cf ∈ Rd if for all U ∈ G
and for all x ∈ Rd we have

f(U(x− cf ) + cf ) = f(x),

i.e., for each point x ∈ Rd, shifting the whole space with the center cf towards
the origin, rotating or reflecting by means of U , and shifting back preserves the
value of f . A simple example of such a symmetry group is G = {±Id} which, with
cf := 0, resembles the classical univariate notion of symmetry. However, in the
multivariate setting one is often interested in more complex symmetries and thus
larger symmetry groups. Since all elements of G are integer matrices, the notion
of symmetry can be used for sequences as well. Consequently, a sequence (aβ)β∈Zd

is called G–symmetric with center ca ∈ Rd if

aU(β−ca)+ca = aβ

holds for all U ∈ G and for all β ∈ Zd. Clearly, one has to ensure that for all
U ∈ G it holds that U(β − ca) + ca ∈ Zd.

The requirement MUM−1 ∈ G aims at connecting the symmetry of a refinable
function (vector) with the symmetry of its mask. It is commonly known that in the
scalar case the symmetry properties of the scaling vector and those of its mask are
closely related, cf. [60]. In the vector setting, due to the more complex algebraic
structure of the mask, this relation is somewhat more involved.

Theorem 6.1.1. Let G be a symmetry group with respect to M and let ci ∈ Rd,
0 ≤ i < r, such that Uci − ci ∈ Zd for all U ∈ G. Furthermore, let Φ be an r–
scaling vector with mask A ∈ `0(Zd)r×r as in (3.2). If the component functions φi
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of Φ are G–symmetric with centers ci, then the (a
(i,j)
β )β∈Zd are G–symmetric with

centers Mci − cj.

Proof. For 0 ≤ i < r and x ∈ Rd the refinement equation implies

φi(x) =
r−1∑
j=0

∑

β∈Zd

a
(i,j)
β φj(Mx− β).

For an arbitrary U ∈ G the symmetry of the φj yields

φi(x) =
r−1∑
j=0

∑

β∈Zd

a
(i,j)
β φj(UMx− Uβ − Ucj + cj).

Since U ∈ G, there exists a V ∈ G such that UM = MV , and with Ucj − cj ∈ Zd

we obtain

φi(x) =
r−1∑
j=0

∑

β∈Zd

a
(i,j)

U−1(β+cj)−cj
φj(MV x− β).

On the other hand, we have

φi(x) = φi(V (x− ci) + ci) =
∑

β∈Zd

r−1∑
j=0

a
(i,j)
β φj(MV (x− ci) +Mci − β)

=
∑

β∈Zd

r−1∑
j=0

a
(i,j)
β−MV ci+Mci

φj(MV x− β)

since V ci − ci ∈ Zd. Thus, with UM = MV we obtain

a
(i,j)
β = a

(i,j)
U(β−Mci+cj)+Mci−cj

.

Remark 6.1.2. Assume that an interpolating scaling vector Φ is G–symmetric
with centers ci, 0 ≤ i < m. Then, the interpolation condition (3.6) implies for all
U ∈ G and 0 ≤ i < m

1 = φi(M
−1ρi) = φi(UM

−1ρi − Uci + ci).

Since there exists a V ∈ G with UM−1 = M−1V , it follows that

1 = φi(M
−1(V ρi − VMci +Mci)) = δρi,V ρi−V Mci+Mci

,

and consequently V (ρi − Mci) = ρi − Mci. Hence, we either have ci = M−1ρi

for all 0 ≤ i < m, or all symmetry matrices V ∈ G have at least one eigenvector
corresponding to the eigenvalue 1 in common. The latter case, though being not
impossible, seems to be rather artificial. Therefore, we focus on the first case, i.e.,
Φ is called G–symmetric if we have ci = M−1ρi for 0 ≤ i < m.
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Corollary 6.1.3. Let G be a symmetry group with respect to M and let Φ be a G–
symmetric interpolating m–scaling vector with mask A ∈ `0(Zd)r×r. If U [ρ] = [ρ]

holds for all ρ ∈ R and for all U ∈ G, then the mask entries (a
(i,j)
β )β∈Zd are

G–symmetric with centers ρi −M−1ρj.

Proof. The component functions φi of Φ are G–symmetric with centers ci :=
M−1ρi. It remains to be shown that Uci − ci ∈ Zd holds for all U ∈ G. By defi-
nition of G, for an arbitrary U ∈ G there exists a V ∈ G such that V = MUM−1.
Furthermore, for each α ∈ [ρi] there exists a β ∈ Zd such that α = Mβ + ρi, and
hence we have

V α = VMβ + V ρi = MUβ + V ρi.

Therefore, V [ρi] = [ρi] is equivalent to V ρi ∈ [ρi] which implies that there exists a
β′ ∈ Zd such that V ρi = Mβ′+ ρi or, equivalently, V ρi− ρi = Mβ′ ∈MZd. Thus,
we have MUM−1ρi−ρi ∈MZd which is equivalent to UM−1ρi−M−1ρi ∈ Zd.

Remark 6.1.4. For the case m = | det (M)| = 2 the requirement U [ρ] = [ρ],
ρ ∈ {0, ρ1}, is met for all symmetry groups G. Obviously, U [0] = [0] for all U ∈ G.
Let us assume that also Uρ1 ∈ [0] for some U ∈ G. Hence, there exists a β ∈ Zd

such that Uρ1 = Mβ. By definition of G, U−1 ∈ G and there is a V ∈ G such that
U−1M = MV . It follows that ρ1 = U−1Mβ = MV β ∈ [0]. This contradiction
yields U [ρ1] = [ρ1].

Theorem 6.1.1 shows that a symmetric interpolating scaling vector is com-
pletely determined by a small part of its mask. To exploit this redundancy in our
construction, we have to investigate the properties of finite sets which are invariant
under the action of G. The following results are standard results from the theory
of permutation groups, see, e.g., [13] for details.

A finite set Ω ⊂ Rd is called G–symmetric or a G–space if for all U ∈ G it holds
that UΩ ⊂ Ω. Then, G is a permutation group on Ω via the group action

G × Ω 3 (U, x) → Ux ∈ Ω.

For x ∈ Ω the set Gx := {Ux |U ∈ G} is called the orbit of x. Since two orbits are
either disjoint or equal, one can show that Ω can be decomposed into a disjoint
union of orbits.

Lemma 6.1.5. For each G–space Ω ⊂ Rd there exists a subset Λ ⊂ Ω such that

Ω =
⋃
x∈Λ

Gx,

where the orbits Gx, x ∈ Λ, are mutually disjoint.
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The subgroup Gx := {U ∈ G |Ux = x} of G is called the stabilizer of x. It is
well known that for x ∈ Ω the sets Gx and G/Gx are isomorphic. Let Gx denote a
complete set of representatives of the cosets of G/Gx, then we have the following
lemma.

Lemma 6.1.6. For x ∈ Ω it holds that Gx =
⋃

U∈Gx

{Ux}.

These lemmata enable us to find a decomposition of the support of our masks.

Proposition 6.1.7. Let a(i,j) ∈ `0(Zd), 0 ≤ i, j < m, be G–symmetric with centers
c(i, j) := ρi −M−1ρj. Then there exist finite sets Ωj ⊂ Zd such that Ωj +M−1ρj

is G–symmetric and supp(a(i,j)) ⊂ Ωj + ρi. Furthermore, there exist sets Λj ⊂ Ωj

such that we have the disjoint decomposition

Ωj + ρi =
⋃

β∈Λj+ρi

⋃
U∈Gβ−c(i,j)

{
U(β − c(i, j)) + c(i, j)

}
. (6.1)

Proof. Since each a(i,j) is G–symmetric with center c(i, j) = ρi −M−1ρj, the set
supp(a(i,j))− c(i, j) is a G–space. Therefore, the set

Ω̃j :=
m−1⋃
i=0

(
supp(a(i,j))− c(i, j)

) ⊂ Zd +M−1ρj

also is a G–space. Thus, by Lemma 6.1.5 and Lemma 6.1.6 there exists an Λ̃j ⊂ Ω̃j

such that the disjoint decomposition

Ω̃j =
⋃

x∈eΛj

⋃
U∈Gx

{Ux}

holds. Choosing Ωj := Ω̃j−M−1ρj and Λj := Λ̃j−M−1ρj completes the proof.

6.1.2 Biorthogonality

Let (Φ, Φ̃) be a pair of biorthogonal m–scaling vectors with respect to M . If Φ is
interpolating then, similar to Theorem 5.1.1, the biorthogonality condition (3.18)
is considerably simplified.

Proposition 6.1.8. Let (Φ, Φ̃) be a pair of dual m–scaling vectors with masks

(Aβ), (Ãβ) ∈ `0(Zd)m×m. If Φ is interpolating, then the biorthogonality condition
(3.18) holds if and only if

ã
(j,0)
ρi−Mα +

m−1∑
n=1

∑

β∈Zd

a
(i,n)
β ã

(j,n)
β−Mα = m · δ0,αδi,j, 0 ≤ i, j < m, (6.2)

holds for all α ∈ Zd.
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Proof. For 0 ≤ i, j < m, one component of (3.18) is equivalent to

m2δi,j =
∑

eρ∈ eR

m−1∑
n=0

ai,n(zM−>eρ)ãj,n(zM−>eρ)

=
∑

eρ∈ eR

m−1∑
n=0

∑

α,β∈Zd

a
(i,n)
β ã

(j,n)
β−αz

α
M−>eρ

=
m−1∑
n=0

∑

α,β∈Zd

∑
ρ∈R

a
(i,n)
β ã

(j,n)
β−(Mα+ρ)

∑

eρ∈ eR
zMα+ρ

M−>eρ .

For ρ ∈ R, Lemma 3.1.2 implies that
∑

eρ∈ eR
zMα+ρ

M−>eρ = m · δ0,ρ z
Mα.

Hence, we obtain

m · δi,j =
m−1∑
n=0

∑

α,β∈Zd

a
(i,n)
β ã

(j,n)
β−Mαz

Mα

which is equivalent to

m · δi,jδ0,α =
m−1∑
n=0

∑

β∈Zd

a
(i,n)
β ã

(j,n)
β−Mα, α ∈ Zd.

Applying the interpolation condition (3.10) completes the proof.

Thus, given the mask of a primal interpolating scaling vector, the biorthogonality
condition leads to simple linear conditions on the dual mask.

6.1.3 Sum Rules

Similar to the orthonormal case, before we can incorporate the sum rules (3.23)
into our construction, the vectors yµ have to be determined. Since we assume that
the primal scaling vector Φ is interpolating, we can apply Lemma 5.1.5 and obtain

yµ = JΦK
(

(M−1ρ0)
µ

µ!
, . . . ,

(M−1ρr−1)
µ

µ!

)>
. (6.3)

On the other hand, given a primal scaling vector Φ, the vectors ỹµ corresponding

to a stable dual scaling vector Φ̃ can be obtained by means of Equation (3.25).
The biorthogonality condition (3.17) yields

ỹµ =
c̃

µ!

(
〈xµ,Φ0(x)〉, . . . , 〈xµ,Φm−1(x)〉

)>
=: c̃

〈
xµ

µ!
,Φ(x)

〉
, (6.4)
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where the constant c̃ depends on c in (3.17) and JΦ̃K. Thus, the ỹµ are determined
by the moments of Φ up to a constant. In general, Φ is not given explicitely,
therefore we have to address the problem of computing the moments of Φ. For
the scalar case, it has been shown in [33] that the moments of a scaling function
can be computed iteratively. Due to the more complex algebraic structure of the
vector setting, the generalization of this method is somewhat more involved.

Theorem 6.1.9. Let Φ be an r–scaling vector with mask A ∈ `0(Zd)r×r and let

Φ̃ be a stable dual r–scaling vector which satisfies the sum rules of order k. For
0 < n < k let us define {ν1, . . . , νN} := {µ ∈ Zd

+ | |µ| = n} and

WN :=



w(ν1, ν1) · · · w(ν1, νN)

...
. . .

...
w(νN , ν1) · · · w(νN , νN)


 .

Moreover, for 1 ≤ i ≤ N we use the notation

ṽA(νi) :=
∑

0<κ≤νi

JA(κ)ỹνi−κ with JA(κ) :=
1

m

∑

β∈Zd

βκ

κ!
Aβ.

Then, with PN := IrN − WN ⊗ JA(0) and QN := WN ⊗ Ir, the ỹµ satisfy the
recursion 


ỹν1

...
ỹνN


 = P−1

N QN



ṽA(ν1)

...
ṽA(νN)


 .

Proof. For 1 ≤ i ≤ N , applying the refinement equation to (6.4) we obtain

ỹνi
=

c̃

m

〈
(M−1x)νi

νi!
,
∑

β∈Zd

AβΦ(x− β)

〉
.

Therefore, Equation (3.24) yields

ỹνi
=

c̃

m

〈
N∑

j=1

w(νi, νj)
xνj

νj!
,
∑

β∈Zd

AβΦ(x− β)

〉

=
c̃

m

N∑
j=1

w(νi, νj)
∑

β∈Zd

Aβ

〈
(x+ β)νj

νj!
,Φ(x)

〉

=
c̃

m

N∑
j=1

w(νi, νj)
∑

β∈Zd

Aβ

∑
κ≤νj

βκ

κ!

〈
xνj−κ

(νj − κ)!
,Φ(x)

〉
.
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Consequently, we get

ỹνi
=

N∑
j=1

w(νi, νj)
∑
κ≤νj

JA(κ)ỹνj−κ

which is equivalent to

N∑
j=1

(
δi,jIr − w(νi, νj)JA(0)

)
ỹνj

=
N∑

j=1

w(νi, νj)ṽA(νj).

Thus, we have

PN



ỹν1

...
ỹνN


 = QN



ṽA(ν1)

...
ṽA(νN)


 .

It remains to be shown that PN is invertible or, equivalently, that 1 is not an
eigenvalue of WN ⊗ JA(0). Define gN : Rd → RN via

gN(x) :=

(
xν1

ν1!
, . . . ,

xνN

νN !

)>
,

then Equation (3.24) implies that for x ∈ Rd and n > 0

Wn
NgN(x) = gN(M−nx).

Since M is expanding, M−1 has spectral radius spr(M−1) < 1. For a fixed θ
with spr(M−1) < θ < 1, standard results imply that there exists a constant C,
depending on the norm ‖.‖ only, such that

‖M−nx‖ ≤ C‖x‖θn, x ∈ Rd, n ≥ 0,

cf. Lemma 1.3.3 in [104]. Thus, for large n and x ∈ Rd we obtain |(M−nx)i| < 1,
0 ≤ i < d, and therefore

‖Wn
NgN(x)‖∞ = max

1≤j≤N

∣∣∣∣
(M−nx)νj

νj!

∣∣∣∣ ≤ ‖M−nx‖∞.

As a consequence,
Wn

NgN(x) −→ 0 as n→ 0. (6.5)

It was shown in [106] that for each N–dimensional space of polynomials there
exist nodes x1, . . . , xN such that the corresponding Lagrange interpolation problem
is uniquely solvable. Therefore, since the monomials xνj/νj!, 1 ≤ j ≤ N , form a
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basis of the space of homogeneous polynomials of total degree n, there exist points
x1, . . . , xN ∈ Rd such that the vectors gN(xj), 1 ≤ j ≤ N , i.e., the rows of the
corresponding Vandermonde matrix, are linearly independent. Hence, the set

{
gN(xj)| 1 ≤ j ≤ N

} ∪ {
igN(xj)| 1 ≤ j ≤ N

}

is a basis of CN . Expanding the eigenvectors of WN with respect to this basis and
applying (6.5) implies spr(WN) < 1.

On the other hand, we have seen in Theorem 3.2.1 that the biorthogonality of
Φ and Φ̃ implies spr(A(1)) = m and thus spr(JA(0)) = 1. A direct computation
shows that the eigenvalues of WN ⊗JA(0) are pairwise products of the eigenvalues
of WN and the eigenvalues of JA(0). As a consequence, 1 cannot be an eigenvalue
of WN ⊗ JA(0). Thus, PN is invertible.

Once we are given ỹ0, Theorem 6.1.9 enables us to compute the vectors ỹµ re-

cursively. Since ỹ0 = Φ̂(0), an eigenvector of A(1) corresponding to the eigenvalue
m determines c · ỹ0 for some constant c. This constant appears as a factor on
both sides of the sum rules (3.23), thus we can incorporate the sum rules into our
construction.

6.2 Explicit Construction

In this section, we give an explicit construction method for the masks of symmetric
interpolating scaling vectors on Rd with compact support. In addition, we state an
algorithm for constructing the masks of dual scaling vectors which are symmetric
and compactly supported as well. In contrast to our construction of orthonormal
interpolating scaling vectors in Section 5.2, there are only linear conditions involved
in the following construction process. Therefore, in many cases, we are enabled
to compute both, the primal and some corresponding dual masks analytically. To
substantiate our approach, several examples for the case d = 2 are presented.

6.2.1 General Method

One of the main benefits of the biorthogonal approach is that the construction
process is somewhat decoupled such that the primal and the dual scaling vectors or
their masks, respectively, can be constructed consecutively. As we have seen in the
preceding section, the primal and dual masks are connected by the biorthogonality
condition in Proposition 6.1.8. Furthermore, the sum rules for the dual mask
are determined by the corresponding primal mask by means of Theorem 6.1.9.
Consequently, it suggest itself to construct the masks of the primal scaling vectors
first.
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Similar to the orthonormal case, the first step consists of choosing the basic
parameters, i.e., the scaling matrix M and a complete set of representatives R =
{0, ρ1, . . . , ρm−1} of Zd/MZd. Furthermore, an appropriate symmetry group G has
to be chosen.

Primal Scaling Vectors

Based on the results in the preceding section, we suggest the following construction
principle for symmetric interpolating scaling vectors:

1. To determine the support of the mask A ∈ `0(Zd)m×m, choose the sets Ωj in
Proposition 6.1.7 for 1 ≤ j < m and compute some minimal generating sets
Λj ⊂ Ωj. Thus, we start with m ·∑m−1

j=1 |Λj| degrees of freedom.

2. Choose a proper sum rule order k (i.e. as high as possible) and solve the
system of linear equations given by the sum rules in Theorem 5.1.6 with
respect to the symmetry conditions in Corollary 6.1.3.

3. Find the best solution.

If the sets Λj are not too large, we have to deal with a moderate number of
linear equations only. Hence, the system in step 2 can be solved analytically using
a symbolic computation tool like Maple or MuPAD. In general, this system is
underdetermined and thus we obtain a solution Aϑ which depends on a parameter
vector ϑ ∈ Rt for some t > 0. Therefore, as step 3 of our scheme, we can use these
remaining degrees of freedom to maximize the regularity of the corresponding
scaling vector Φϑ, i.e., we have to maximize the function

F : Rt 3 ϑ −→ s(Φϑ).

As we have seen in Section 3.2.3, computing the critical Sobolev exponent of a
scaling vector is a rather delicate task. Hence, it is pretty unlikely to obtain
any derivative information of the function F . As a consequence, for solving this
unconstrained optimization problem we have to employ methods that are based
on point evaluations only.

One appropriate method is the downhill simplex method introduced by Nelder
and Mead in [95]. It is initialized by t + 1 noncollinear points in Rt which are
taken to be the vertices of a nondegenerate t-dimensional simplex. Essentially,
the downhill simplex method consists of iteratively moving those vertices of the
simplex which belong to the smallest values of F . If after some iteration steps the
function values of all vertices are close to each other, the algorithm stops.

Another method for solving the above optimization problem is the direction
set method stated in [100], see also [4]. Similar to the downhill simplex method,
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it is initialized with t+ 1 vectors ϑ0, τ1, . . . , τt ∈ Rt, but here the vectors τ1, . . . , τt
are direction vectors which should be orthogonal or at least linearly independent.
Then, starting from the point ϑ0

0 := ϑ0 one consecutively solves the problems

F (ϑi
0 + sτi+1) = max, 0 ≤ i ≤ t, (6.6)

where in each step the point ϑi
0 corresponds to the maximum of the preceding

step. Afterwards, one sets ϑ0 := ϑt
0, updates the directions τ1, . . . , τt in a certain

manner, and restarts the process. If, after a complete cycle of line maximizations
(6.6), the gain F (ϑt

0)− F (ϑ0
0) drops below a preassigned tolerance, the algorithm

terminates.

Remark 6.2.1. Our construction scheme can also be used to construct scalar
generators. If a mask satisfies

a
(i,j)
β = a

(0,j)
β−ρi

, 0 ≤ i, j < m, (6.7)

then a direct computation shows that the corresponding scaling vector has to stem
from a scaling function via the embedding (3.7). Thus, incorporating condition
(6.7) into step 2 of our construction leads to scalar generators.

Dual Scaling Vectors

Given the mask of a symmetric interpolating scaling vector, the mask of a dual
scaling vector can be obtained as follows:

1. For 0 ≤ i < m choose the symmetry center ci of φ̃i. Due to the biorthogo-
nality of Φ and Φ̃, the choice ci = M−1ρi suggests itself.

2. Determine the support of Ã ∈ `0(Zd)m×m by choosing Ω̃j, 0 ≤ j < m, and

compute some minimal generating sets Λ̃j ⊂ Ω̃j corresponding to Proposition

6.1.7. Thus, we have m ·∑m−1
j=0 |Λ̃j| degrees of freedom.

3. Apply the biorthogonality condition (6.2) to the coefficient sequence (Ãβ)β∈Zd

with respect to the symmetry conditions in Theorem 6.1.1.

4. Choose a proper sum rule order k̃ and compute the vectors ỹµ, |µ| < k̃, by
Theorem 6.1.9.

5. Apply the sum rules of order k̃ to the coefficient sequence Ã with respect to
the symmetry conditions in Theorem 6.1.1.

6. Find the best solution.



84 Chapter 6. Symmetric Biorthogonal Systems

Again, for sets Λ̃j of moderate size we have to deal with a system of linear equations
that can be solved analytically. In most cases, also this system is underdetermined
and hence the remaining degrees of freedom can be used to maximize the regularity
of the corresponding dual scaling vector by utilizing one of the methods stated
above. If the primal scaling vector stems from a scalar function, incorporating
condition (6.7) for the dual mask into steps 3–5 allows the construction of scalar
duals.

Since the number of vanishing moments of the primal multiwavelets is deter-
mined by the accuracy of the dual scaling vector, cf. Section 3.2.2, the sum rule
order k̃ in step 4 should be at least as large as k.

Numerical Issues

In order to apply the above construction schemes proficiently, some comments
about numerical or technical details are required. First of all, we have to decide
which of the two optimization methods should be prefered. Although it is com-
monly known that the direction set method almost surely converges faster than the
downhill simplex method, in our setting we do not always share this observation.
For a small number of parameters (t ≤ 3), the direction set method indeed seems to
converge faster. However, for larger t, the downhill simplex method almost always
performs better than the direction set method. We assume that this observation is
due to the fact that the initialization of the downhill simplex method is somewhat
more amenable. Since we can roughly estimate the order of magnitude of the en-
tries of θ, we can choose reasonable vertices for the starting simplex. Although we
can also choose a reasonable starting point for the direction set method, a proper
choice of directions is somewhat more involved. In spite of these observations, it
is commonly known that for high-dimensional problems both algorithms converge
rather slowly.

On the other hand, both methods converge locally, i.e., they lead to local
maxima only. Therefore, for a given problem, we suggest to apply either of these
methods repeatedly with distinct initialization parameters. Moreover, especially
for large t, it may pay to use both methods alternatingly with mutually adapted
parameters. Nevertheless, in contrast to our construction of orthonormal scaling
vectors in Section 5.2, each fixed ϑ ∈ Rt corresponds to an exact solution of our
system of equations and therefore leads to a scaling vector Φϑ. Consequently, being
stuck in a local maximum is not too serious. Apart from suboptimal regularity
results, this does not spoil the applicability of the corresponding scaling vector.

Another problem we have to address is the influence of the primal solution on
the outcome of the dual construction process. As we have seen above, most of the
conditions involved in the construction of dual scaling vectors are determined by
the mask of the primal scaling vector. Since the parameter vector ϑ of the primal
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solution is obtained numerically, its entries usually are floating point numbers of
which a symbolic representation is not known. Hence, trying to solve the dual
system of equations with a symbolic computation tool is likely to fail. Therefore,
to facilitate the dual construction process, we suggest to postprocess the primal
solution. In particular, we observe that approximating the parameters ϑ by ratio-
nal numbers such that the divisor is a (small) power of 2 leads to good results. Of
course, one has to assure that the regularity of the primal scaling vector does not
deteriorate too much.

Sufficient Conditions

Similar to our approach in the preceding chapter, the conditions on the mask
involved in our construction method are necessary only. Therefore, during the
construction process, one again has to check whether the corresponding scaling
vectors actually do possess the desired properties. This can be performed analo-
gously to the orthonormal setting, cf. Section 5.2.

To ensure biorthogonality, one first has to check that A(1) and Ã(1) satisfy
condition (iii) of Theorem 3.2.1. As in the orthormal setting, condition (iv) and

Φ, Φ̃ ∈ L2(Rd)m can be verified as a byproduct of the regularity estimation.

Checking the interpolation property of the primal scaling vector has already
been discussed in Section 5.2.

6.2.2 Examples

For all our examples, we observe that introducing the additional condition

m−1∑
j=0

∑

β∈Zd

a
(i,j)
β = m (6.8)

or, equivalently, ỹ0 = (1, . . . , 1)> in step 2 of the primal construction process
considerably improves the outcome of the dual process. The reason for this may
be twofold. First of all, we have seen in Section 6.1.3 that, once given ỹ0, the
vectors ỹµ for the dual sum rules can be computed recursively. Therefore, similar
to the postprocessing of the primal solutions stated above, a nice vector ỹ0 may
lead to more amenable conditions. On the other hand, ỹ0 = (1, . . . , 1)> implies that
the primal scaling vector is balanced of order 1, see Section 7.1.3 for details. This
might have a positive influence on the properties of the dual solution. Apart from
that, we observe that the regularity of scaling vector corresponding to the primal
solution becomes only marginally lower by introducing the additional condition
(6.8).
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Moreover, in all our examples it turns out that if the choice of Λ1 and k yields
the mask of a primal scaling vector, then also a mask satisfying condition (6.7)
can be obtained. Hence, we obtain vector valued primal solution and, in addition,
scalar primal solutions which possess similar support properties and provide the
same approximation order. For simplicity of notation, we consider the scalar solu-
tions as scaling vectors via the embedding (3.7). The most relevant masks of the
obtained examples can be found in Appendix A.3.

Example 1

In our first example, we construct interpolating scaling vectors in L2(R2)2 for the
well–known quincunx matrix

Mq =

(
1 −1
1 1

)

which has already been introduced in Section 5.2.2. We choose the nontrivial
representative ρ1 = (0, 1)>, and it can be shown that

G :=

{
±I,±

(
0 −1
1 0

)
,±

(
1 0
0 −1

)}

forms a proper symmetry group. Since the set Ω1 has to be G–symmetric with
respect to −M−1ρ1 = −(1/2, 1/2)>, we choose Ω1 := [−n, n− 1]2 ∩ Z2 and Λ1 :=
{(β0, β1)

> ∈ Ω1 | 0 ≤ β1 ≤ β0} for some n ∈ N.

n sum rule s(Φ)
order Φsc

n Φv
n Φ∞

n

1 2 1.578 1.662
2 4 2.628 2.637 2.748
3 6 3.338 3.664 3.714
4 8 4.238 4.553 4.735

Table 6.1: Properties of the Φn for Mq

Table 6.1 shows the properties of the outcome of our construction for n =
1, . . . , 4. We use the notation Φ∞

n for the best solutions and Φv
n for the vector

valued solutions satisfying (6.8). The embedded scalar solutions are denoted by
Φsc

n . For n = 1 the solutions Φsc
1 and Φv

1 coincide, they correspond to the well
known Laplace symbol, see [24] for details. In addition to Φsc

2 we obtain a scalar
solution Φsc∗

2 with Sobolev regularity s = 2.50 which has already been constructed
in [30]. Table 6.1 shows that for a fixed n the vector valued solutions are slightly
smoother than the scalar solutions. The gain is about 10%.
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Figure 6.1: Component functions of Φv
3 for Mq
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Figure 6.2: First component function of Φsc
3 for Mq
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In Figure 6.1 the component functions of Φv
3 are shown. For comparison, also

the first component function of the scalar solution Φsc
3 , taken as a scaling vector via

the embedding (3.7), is shown in Figure 6.2. All these functions possess the desired
symmetry properties and are very similar in shape. However, the components of
the true scaling vector seem to provide a stronger oscillation behaviour.

For the dual functions, the sets Ω̃0 and Ω̃1 have to be G–symmetric with centers
0 and −M−1ρ1, respectively. Therefore, we choose Ω̃0 := [−m̃, m̃]2 ∩ Z2 and

Λ̃0 := {(β0, β1)
> ∈ Ω̃0 | 0 ≤ β1 ≤ β0} for some m̃ ∈ N. Furthermore, we define

Ω̃1 := Ω1 and Λ̃1 := Λ1 for some ñ ∈ N. In the following examples we focus on
the case k̃ ≤ k only.

primal m̃ ñ sum rule s(Φ̃)

order Φ̃sc
em,en Φ̃v

em,en
Φsc

1 2 2 2 0.749 1.110
Φsc

2 3 2 4 0.852 1.152
Φsc

3 4 2 4 0.941 1.289
Φsc

3 5 3 6 1.394 1.959
Φsc

4 5 2 4 0.969 1.330
Φsc

4 6 3 6 1.495 2.276
Φsc

4 7 4 8 2.130 2.953

Table 6.2: Properties of the dual functions for Φsc and Mq

Table 6.2 shows the properties of the solutions corresponding to our scalar
primal generators. Again, we obtain scalar as well as vector valued dual functions
denoted by Φ̃sc

em,en and Φ̃v
em,en, respectively. In contrast to the primal case, the vector

setting yields a gain of about 40% in regularity. Moreover, all the obtained vector
valued duals are continuous.

In the literature, several examples of dual functions related to our scalar primal
solutions can be found, see, e.g., [32, 68]. To compare these functions with our
results, they have to be translated into our setting. First of all, by means of
the rule (3.7), these scalar generators can be considered as scaling vectors Φ̃sc.
Furthermore, all these functions are symmtric about the origin. Therefore, due to
Theorem 6.1.1, each mask is symmetric with the origin as the symmetry center. As
a consequence, the support of such a mask is centered about its zeroth coefficient
which perfectly fits into our setting. Thus, all these duals can be considered as
scaling vectors Φ̃sc

em,en with support parameters m̃ and ñ as above.

In [68] a collection of duals for the primal generator Φsc
1 have been constructed.

There, the most regular dual of Φsc
1 is continuous but not differentiable and, trans-

lated into our setting, corresponds to a scaling vector Φ̃sc
em,en with support parameters
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m̃ = ñ = 4. In contrast, our approach leads to a dual scaling vector Φ̃v
2,2 which

is continuous as well. Another interesting example can be found in [32]. There,
a continuous dual of Φsc∗

2 has been constructed. Translated to our setting, it cor-

responds to a scaling vector Φ̃sc
em,en with support parameters m̃ = ñ = 6. Again,

our approach leads to a true vector valued dual Φ̃v
em,en with similar regularity prop-

erties but smaller support parameters m̃ = 3 and ñ = 2. However, it should
be mentioned that the dual scaling functions in [68] and [32] provide a higher
approximation order than our solutions.

primal m̃ ñ sum rule s(Φ̃v
em,en)

order

Φ∞
1 2 2 2 1.265

Φv
2 3 2 4 1.196

Φv
3 4 2 4 1.316

Φv
3 5 3 6 2.391

Φv
4 5 2 4 1.676

Φv
4 6 3 6 2.335

Φv
4 7 4 8 2.548

Table 6.3: Properties of the dual functions for Φv and Mq

In Table 6.3 the properties of some duals corresponding to the primal scaling
vectors are stated. As already mentioned above, for the Φ∞

n we obtain duals that

are less regular then those of the Φsc
n , e.g., Φ̃v

5,3 ∈ H1.85 corresponding to Φ∞
3 . On

the other hand, the Φv
n lead to dual scaling vectors which are very smooth, even

smoother than the vector valued duals of the scalar Φsc
n . For example, for Φv

3 we ob-

tain a dual scaling vector Φ̃v
5,3 which is continuously differentiable. Unfortunately,

we observe that the dual Φ̃v
7,4 of Φv

4 is less regular than the dual Φ̃v
7,4 of Φsc

4 , and
therefore does not meet our expectations. However, since for all other examples
the duals of the vector valued primals Φv

n are considerably smoother than the duals
of the scalar primals Φsc

n , the reason for this misbehaviour may be of numerical

nature. Indeed, during the construction of the dual Φ̃v
7,4 of Φv

4, we are confronted
with several numerical problems. First of all, the solution of the corresponding
equation system reveals a large number of parameters, i.e., we obtain a mask Ãϑ

depending on a parameter vector ϑ ∈ Rt with t = 11. Therefore, as already stated
above, the downhill simplex method as well as the direction set method converge,
if at all, rather slowly. Furthermore, we observe that both algorithms frequently
run into local maxima such that we have to restart the process quite often. On the
other hand, due to the support size of the mask, computing the critical Sobolev
exponent of the corresponding scaling vector is very time consuming, cf. Section
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3.2.3. As a consequence, employing several computers (including also the cluster
of the Marburg University Computing Center) for many days led us to the exam-
ple stated above. However, it is worth mentioning that we found several examples
with similar regularity properties for distinct ϑ. Hence, we assume that using more
sophisticated optimization methods this problem can be bypassed.
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Figure 6.3: Component functions of Φ̃v
5,3 for Mq

φ̃0

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

x

y

Figure 6.4: First component function of Φ̃sc
5,3 for Mq
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Examples of some dual functions are depicted in Figure 6.3 and in Figure 6.4.
In Figure 6.3 the component functions of the dual scaling vector Φ̃v

5,3 of Φv
3 are

shown. Figure 6.4 shows a component function of Φ̃sc
5,3, a scalar dual of Φsc

3 , taken
as a scaling vector via (3.7). Similar to the primal generators, all functions show
the desired symmetry properties, and the vector valued function is visibly smoother
than its scalar counterpart.

Example 2

For our second example we choose the scaling matrix

Ms :=

(
0 −1
2 0

)

which generates the lattice MsZ2 = Z × 2Z. Thus, we can choose the nontrivial
representative ρ1 := (0, 1)>. Obviously, the set

G :=

{
±I,±

(
1 0
0 −1

)}

forms a proper symmetry group. Furthermore, we choose Ω1 := ([−n, n − 1] ×
[−n, n]) ∩ Z2 and Λ1 := {β ∈ Ω1 | β ≥ 0} for some n ∈ N. Similar to our
first example, the most regular scaling vectors Φ∞

n lead to poor dual functions.
Therefore, we focus on scalar solutions Φsc

n and vector valued solutions Φv
n which

satisfy (6.8). Table 6.4 shows that the primal solutions for the scaling matrix Ms

n sum rule s(Φ ∈ Hs)
order Φsc

n Φv
n

1 2 1.575
2 4 2.569 2.823
3 6 3.300 3.660

Table 6.4: Properties of the Φn for Ms

and for the quincunx matrix Mq possess very similar properties. For n = 1, the
solutions Φsc

1 and Φv
1 coincide and for n > 1, the Φv

n are slightly smoother than the
Φsc

n .

In Figure 6.5 the component functions of a typical example of the primal scaling
vectors corresponding to Ms are depicted. Both functions possess the desired
symmetry properties and show rectangular structures which correspond to the
stripes grid induced by Ms.
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Figure 6.5: Component functions of Φv
3 for Ms

primal m n sum rule s(Φ̃ ∈ Hs)

order Φ̃sc
m,n Φ̃v

m,n

Φsc
1 2 2 2 1.150 1.150

Φsc
2 3 2 4 0.797 0.943

Φv
2 3 2 4 — 1.044

Φsc
3 5 3 6 1.576 2.098

Φv
3 5 3 6 — 2.142

Table 6.5: Properties of the dual functions for Ms

For the dual functions we choose Ω̃0 := [−m̃, m̃]2∩Z2 and Λ̃0 := {(β ∈ Ω̃0 | β ≥
0}. Similar to Example 1, we define Ω̃1 := Ω1 and Λ̃1 := Λ1 for some ñ ∈ N, and

focus on the case k̃ = k only.
The properties of the dual functions are shown in Table 6.5. For n = 1, both

duals of Φsc
1 possess the same regularity though Φ̃sc

2,2 and Φ̃v
2,2 are not identical.

However, for larger n the results are similar to those of the quincunx case, i.e., the
vector valued duals considerably outperform their scalar counterparts.
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Figure 6.6: Primal multiwavelets corresponding to (Φv
3, Φ̃

v
5,3) for Mq

Let (Φ, Φ̃) be a pair of compactly supported biorthogonal r–scaling vectors with

masks A, Ã ∈ `0(Zd)r×r. We have seen in Theorem 3.2.2 that the biorthogonal

multiwavelets Ψ(n) and Ψ̃(n), 1 ≤ n < m, can be obtained by solving a matrix
extension problem related to the modulation matrices Pm(z) and P̃m(z) defined in
Equation (3.19). With the subsymbol notation introduced in (3.4) we define the
polyphase matrix of Φ by

P(z) :=




A0(z) · · · Am−1(z)

B
(1)
0 (z) · · · B

(1)
m−1(z)

...
. . .

...

B
(m−1)
0 (z) · · · B

(m−1)
m−1 (z)


 .

A direct computation using Equations (3.4) and (3.5) shows that the extension
problem in Theorem 3.2.2 can equivalently be stated in terms of the polyphase
matrices, i.e., Equation (3.20) holds if and only if

P(z)P̃(z)
>

= mIrm, (6.9)
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Figure 6.7: Dual multiwavelets corresponding to (Φv
3, Φ̃

v
5,3) for Mq

where P̃(z) denotes the dual polyphase matrix.

In the scalar setting, this problem can be solved with the extension algorithm
stated in [102]. The first step of this algorithm utilizes the well-known Quillen–
Suslin Theorem to find an invertible extension of the first row of P(z). Then, the
rows of the extended matrix are orthogonalized to obtain P(z). In the vector case,
however, not only a row vector but an r×mr–matrix has to be extended, and thus
it is much more complicated to apply the Quillen–Suslin Theorem. Hence, in the
known literature there is no fundamental method for obtaining some multiwavelets
for given multivariate scaling vectors. Fortunately, due to the simple structure
(3.10) of the symbol of an interpolating scaling vector, in our case the invertible
extension can be found by inspection. Then, the orthogonalization step can be
performed by using block matrices. As a consequence, we obtain the following
theorem which appears as one of the main results of this work.

Theorem 6.3.1. For 1 ≤ i < m define Ci := (Ci,1, . . . , Ci,m) with Ci,j := e>i ⊗ ej,

where ei denotes the ith unit vector in Rm. Furthermore, let P1(z) and P̃1(z)

denote the first m×m2-blocks of P(z) and P̃(z), respectively, where P1(z) corre-
sponds to a compactly supported interpolating m–scaling vector. If we define the
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ith m×m2-block of P(z), 1 < i ≤ m, by

Pi(z) := Ci − 1

m
CiP̃1(z)

>
P1(z)

then P(z) is nonsingular on Cd \ {0} and P(z)P̃1(z)
>

= (Im, 0)>.

Proof. A direct computation yields that P(z)P̃1(z)
>

= (Im, 0)>. It remains to be
shown that P(z) is nonsingular. Let di := (λi,1, . . . , λi,m)> ∈ Rm, 1 ≤ i ≤ m, with
λi,j 6= 0 for some i, j and let z ∈ Cd \ {0} such that

0 = (d>1 , . . . , d
>
m)P(z).

Thus, we have

0 =
m∑

i=1

d>i Pi(z)

= d>1 P1(z) +
m∑

i=2

d>i

(
Ci − 1

m
CiP̃1(z)

>
P1(z)

)

=

(
d>1 −

1

m

m∑
i=2

d>i CiP̃1(z)
>
)
P1(z) +

m∑
i=2

d>i Ci. (6.10)

Due to the interpolation condition (3.10), the first column of each Aj(z) is a unit
vector ej. Hence, the matrix

Q(z) :=




A0(z) · · · Am−1(z)
C1,1 · · · C1,m

...
. . .

...
Cm,1 · · · Cm,m




is nonsingular for all z ∈ Cd \ {0}. Therefore, (6.10) is equivalent to

0 =

(
d>1 −

1

m

m∑
i=2

d>i CiP̃1(z)
>
)
P1(z)Q(z)−1 +

m∑
i=2

d>i CiQ(z)−1.

Since P1(z)Q(z)−1 = (Im, 0) and CiQ(z)−1 = e>i ⊗ Im, we have

0 =
(
d>1 −

1

m

m∑
i=2

d>i CiP̃1(z)
>
, 0, . . . , 0

)
+

(
0, d>2 , . . . , d

>
m

)
.

Consequently, λi,j = 0 for 1 ≤ i, j ≤ m, i.e., the rows of P(z) are linearly indepen-
dent.
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Figure 6.8: Primal multiwavelets corresponding to (Φv
3, Φ̃

v
5,3) for Ms

This theorem provides us with a painless way of computing some canonical
primal multiwavelets. In addition, following the lines of the proof of Lemma 3.2.8
in [104], we obtain the following corollary. For the reader’s convenience, we sketch
the proof in our setting.

Corollary 6.3.2. The polyphase matrix P(z) satisfies

det(P(z)) = c · zα

for some α ∈ Zd and c ∈ R with c 6= 0.

Proof. Due to Theorem 6.3.1 we have det(P(z)) 6= 0 on Cd \ {0}. Since det(P(z))
is a Laurent polynomial, there exists a µ ∈ Zd

+ such that

p(z) := zµ det(P(z))

is a polynomial on Cd with p(z) 6= 0 for z ∈ Cd \ {0} and p(0) = 0. Let Ip be the
ideal generated by p, then the set of common zeros of all polynomials in Ip (or the
affine variety of Ip) contains only 0 ∈ Cd. Hilbert’s Nullstellensatz states that if
q is some polynomial on Cd which vanishes on the variety of Ip, then there exists
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an n ∈ Z+ such that qn ∈ Ip. Thus, with q(z) := z1, we have z(n·1) ∈ Ip for some
n ∈ Z+, i.e., there exists a polynomial h on Cd such that

z(n·1) = p(z)h(z).

On the other hand, each divisor of z(n·1) is a monomial times a constant. Therefore,
we have p(z) = c · zν for some ν ∈ Zd

+ and c ∈ C \ {0}. As a consequence, we
obtain

det(P(z)) = c · zν−µ =: c · zα.

Since the coefficients of the entries of P(z) are real-valued, we have c ∈ R.

This corollary enables us to compute P̃(z) = P(z)−1 directly by applying Cramer’s

rule. Furthermore, it ensures that P̃(z) consists of Laurent polynomials. This
provides us with the dual multiwavelets.

Figure 6.6 and Figure 6.7 show the component functions of the primal and
dual multiwavelets corresponding to the pair (Φv

3,Φ̃
v
5,3) for Mq. It turns out that

all our quincunx multiwavelets are mutually symmetric. Though each component
function itself shows some reflection symmetries, one component function seems
to be a shifted and rotated version of the other. This observation has been been
validated numerically. In contrast, the component functions of the multiwavelets
corresponding to the scaling matrix Ms are less intertwined. For example, Figure
6.8 shows that each of the components of the primal multiwavelet corresponding
to the pair (Φv

3,Φ̃
v
5,3) for Ms is symmetric on its own.
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Chapter 7

Dessert: Application to Image
Compression

In this chapter we study the suitability of our wavelets and multiwavelets for signal
processing purposes. Since most of the examples of multiwavelets constructed in
this work are bivariate, we focus on two-dimensional signals called digital images.
As a test application we consider image compression. It has turned out in a series of
papers [7, 8, 9, 113] that multiwavelet algorithms can cope with classical wavelet
algorithms in image compression at least for the univariate case using a tensor
product approach. Thus, we want to investigate the following questions:

(Q1) Are our univariate multiwavelets as well capable of providing a good com-
pression performance?

(Q2) It is well known that the tensor product approach leads to the preferred
directions phenomenon, i.e., image features along horizontal or vertical di-
rections are reproduced better than features in other direction. So what does
the nonseparable scaling matrix approach buy?

(Q3) In Chapter 6, we have constructed scalar as well as vector valued wavelets.
Which class performs better in image analysis?

This chapter is organized as follows. First of all, we give a brief introduction to
the theory of signal compression with a focus on transform based coding schemes.
For a detailed discussion of this topic, see, e.g., the textbook [116], Chapter 11
in [88], and Chapter 10 in [112]. In addition, we recall the basic definition of the
discrete multiwavelet transform which appears as a generalization of the classi-
cal discrete wavelet transform. Furthermore, we address some technical questions
which concern the restriction of the transform to finite domains and the initial-
ization problem. The latter is closely related to the notion of balancing. Finally,
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in the main part of this chapter, we compare the image compression performance
of our wavelets and multiwavelets with that of several established wavelets, in-
cluding one biorthogonal wavelet pair that is used within the JPEG2000 image
compression standard [2].

7.1 Signal/Image Compression

In signal or image processing one is concerned with data consisting of a finite
sequence X ∈ `(Λ), Λ ⊂ Rd with |Λ| < ∞. Usually, one assumes that X is
obtained from a function f ∈ L2(Rd) by either sampling f or taking local averages
of f . In the following, we focus on the sampling approach, i.e., we assume that f
is at least continuous such that Xλ = f(λ) for a finite section Λ of some lattice in
Rd. If f is smooth in λ0 ∈ Λ, then the values of f in a small neighborhood of λ0

are close to f(λ0). Thus, the signal X contains some correlation or redundancy
whenever the set Λ is sufficiently dense. The aim of signal compression is to reduce
this redundancy in order to be able to store or transmit signal data in an efficient
form.

In general, a compression algorithm consists of an encoder E : `(Λ) → {0, 1}∗
and a decoder D : {0, 1}∗ → `(Λ), where {0, 1}∗ denotes the set of all binary
words, i.e., all finite sequences with values in {0, 1}. The pair (E ,D) is also called
a codec. Its objective is that for all X belonging to a certain class of signals,
Ξ := E(X) contains as few information as possible, i.e., Ξ ∈ {0, 1}n for a small n.

Furthermore, the reconstructed signal X̃ := D(Ξ) should reveal a low distortion
rate. Two commonly used distortion or error measures are the mean square error

mse(X, X̃) :=
1

|Λ|
∑

λ∈Λ

(Xλ − X̃λ)
2

and the mean absolute difference

mad(X, X̃) :=
1

|Λ|
∑

λ∈Λ

|Xλ − X̃λ|.

Although the mse or other `2/L2–related distortion measures find a widespread
use in signal processing literature, it has been proposed by DeVore et al. in [45] to
use `1/L1–related measures like the mad in image compression, since they better
reflect the visual quality of a reconstructed image. However, it has been pointed
out in Chapter 10 of [112] that for high compression rates the above objective
measures may not resemble subjective measures obtained by visual perception at
all.



7.1 Signal/Image Compression 101

7.1.1 Transform Coding

A commonly known class of signal compression algorithms are transform coding
schemes which consist of several steps as is shown in Figure 7.1. Within the first

Encoder

X - transform - quantize - code

?
Ξ

¾

Decoder

X̃ ¾ inverse
transform

¾ re-
construct

¾ decode

Figure 7.1: Transform coding scheme

step of the encoding scheme, the signal X is decorrelated, i.e., it is transformed
into a signal consisting of few large coefficients which contain much information
and many small coefficients with a low information content. In general, this step
essentially reshuffles the information distribution among the coefficients but does
not alter the number of coefficients. Hence, the amount of data is not reduced
within this step. For example in image compression, where one often has to deal
with discrete valued or indexed data like 8-bit grayscale images, this step does even
increase the amount of data since the outcome of the transform may have arbitrary
values. Therefore, in a quantization step, the range of values of the transformed
signal is discretized and turned into a binary word or a bit stream. This can be
performed by dividing the range of values in several classes and mapping each class
onto a corresponding binary representation. Another possibility of quantization is
to sort the values of the transformed signal, e.g., by magnitude or spatial relation,
and then successively generate a bit stream by extracting the most significiant bits
of the values within this list. In this context, most significiant bits means those
bits in the binary representation of a value which belong to the largest powers of
two. A very efficient version of this quantization method has been proposed in
[97], see also [110]. Finally, the raw binary outcome of the quantization step can
be encoded using one of the classical compression strategies like entropy coding
and run-length encoding, see again [116] for details.
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Within the decoding scheme, the operations performed in the encoding process
have to be inverted. In general, the coding step as well as the transform step are
invertible. However, this may not be the case for the quantization step, and thus
one only obtains an approximation X̃ of the original signal X. If the quantization
step is invertible, the codec is called lossless, otherwise it is called lossy.

The performance of a transform coding scheme is vastly influenced by the
transform used to decorrelate the signal. In practice, one often uses the discrete
Fourier transform or the discrete cosine transform, e.g., as in the JPEG standard
[1]. In recent years, also the discrete wavelet transform has found its way into
compression algorithms within the JPEG2000 standard [2].

7.1.2 Discrete Multiwavelet Transform

Assume we are given a biorthogonal pair of r–scaling vectors (Φ, Φ̃) with masks

A, Ã ∈ `0(Zd)r×r Furthermore, assume we have a corresponding pair of biorthog-

onal r–multiwavelets (Ψ(n), Ψ̃(n)), 1 ≤ n < m, with masks B(n), B̃(n) ∈ `0(Zd)r×r.
For a sequence cJ := (cJ,β)β ∈ `0(Zd)r, J ∈ Z, the discrete multiwavelet transform
(DMWT) is defined by the analysis equations

cj−1,α :=
1√
m

∑

β

Ãβ−Mαcj,β

dj−1,α,n :=
1√
m

∑

β

B̃
(n)
β−Mαcj,β

(7.1)

for α ∈ Zd, j = J, J − 1, . . ., and 1 ≤ n < m. The inverse DMWT is given by the
synthesis equation

cj,α =
1√
m

∑

β

(
A>α−Mβcj−1,β +

m−1∑
n=1

B
(n)>
α−Mβdj−1,β,n

)
, (7.2)

see, e.g., [119] for details. For the scalar case (r = 1), the Equations (7.1) and
(7.2) define the classical discrete wavelet transform (DWT). Hence, the DMWT is
a natural generalization of the DWT.

For a function f ∈ VJ , the main purpose of the DMWT and its inverse is to
switch between the representation

f =
∑

β

m
J
2 c>J,βΦ(MJ · −β) (7.3)
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and the representation

f =
∑

β

m
J′
2 c>J ′,βΦ(MJ ′ · −β)

+
J−1∑

j=J ′

m−1∑
n=1

∑

β

m
j
2d>j,β,nΨ(n)(M j · −β) (7.4)

with J ′ < J . The cj,β, J ′ ≤ j ≤ J , determine the approximation of f in the space
Vj, therefore they are also called approximation coefficients. Consequently, the
multiwavelet coefficients dj,β,n represent the details lost when switching from the
approximation of f in Vj+1 to its approximation in Vj. From the signal processing
point of view, the DMWT acts as a tree structured multi-input, multi-output
(MIMO) filter bank as is sketched in Figure 7.2. Since the detail coefficients are
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Figure 7.2: Tree structure of the DMWT and the inverse DMWT

obtained by applying the multiwavelet masks, these masks can be considered as
high-pass filters whereas the low-pass filters are determined by the masks A and
Ã. The reader should note that the DMWT works in place, i.e., one step of the
DMWT does not alter the amount of data since one input sequence cj consisting
of N coefficients is transformed into m sequences cj−1, (dj−1,β,1)β, . . . , (dj−1,β,m−1)β

consisting of N/m coefficients.
As we have seen in Equation (3.16), the coefficients dj,β,n can as well be deter-

mined by the inner products

dj,β,n =
1

c

〈
f,m

j
2 Ψ̃(n)(M j · −β)

〉
. (7.5)
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Assume that f is smooth in the neighborhood of some x0 ∈ Rd, then the Taylor
expansion about x0 gives a good local approximation of f . Therefore, if the dual
multiwavelet possesses a sufficiently high order of vanishing moments, most of the
wavelet coefficients dj,β,n for β ≈ M jx0 will become rather small, cf. Section 2.2.
Hence, for a reasonably smooth function f the representation (7.4) will contain
many more small coefficients than the representation (7.3). On the other hand,
usually one does not compute the inner products (7.5) but utilizes the analysis
equations (7.1) to obtain the coefficients dj,β,n. Therefore, the corresponding fil-
ter banks possess an intrinsic property which resembles the vanishing moments
of the wavelets, i.e., those parts of a coefficient sequence cj,β which stem from
polynomial-like parts of a function are annihilated by the high-pass filters while
the polynomial background or structure is preserved by the low-pass filters, see the
Section 7.1.3 for a more detailed discussion of this topic. Therefore, the DMWT
or DWT is extremely well suited for transform coding algorithms, since in (7.4)
the information is concentrated on few large coefficients.

Another advantage of the DMWT is the low numerical complexity of O(N),
where N = r|{cJ,β}|, see, e.g., Section 7.1 in [88]. In contrast, both the fast
Fourier transform and the discrete cosine transform belong to the complexity class
O(N logN). A comparison between the DMWT and the DWT is somewhat more
complicated. At first glance, the DMWT seems to require more arithmetic op-
erations (multiplications) as the DWT. For the DMWT input data has to be
vectorized, i.e., input data consisting of N elements is split into r input streams of
size N/r. However, each scalar multiplication within the DWT is substituted by a
matrix-vector multiplication within the DMWT. Therefore, for scalar and r × r–
matrix valued masks of the same support, a naive implementation of the DMWT
requires r–times as many arithmetic operations as the DWT. On the other hand,
if we interpret a scalar generator ϕ as a scaling vector Φ via (3.7), then according
to Equation (6.7) the mask of Φ consist of 1/r–times as many coefficients as the
mask of ϕ. Taking this into account, a fair comparison reveals that the DMWT
can cope with the DWT concerning computational effort. Moreover, if not only
the scaling vector but also the multiwavelet is interpolating as in Chapter 4.3 and
in Chapter 5.3, then by exploiting the specific structure (3.11) of the masks the
DMWT can be accelerated by a factor r/(r − 1).

7.1.3 The Initialization Problem – Balancing

We have seen above that if we are given a proper starting sequence cJ , then the
polynomial reproduction property of the generator and the vanishing moments
of the wavelets are carried forward to the corresponding filter banks. However,
in practice a signal is more likely to consists of the sample values of a function
f than of the actual expansion coefficients. Nevertheless, a common practice is
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to use the sample values directly as coefficients which Strang and Nguyen [112]
refer to as a wavelet crime. Though this is mathematically incorrect, in some
applications using scalar data, it can be justified by the data acquisition process,
cf. [88]. Furthermore, for the scalar case the same Taylor expansion argument as
in Section 7.1.2 indicates that for large J we have f(M−Jβ) ≈ cJ,β.

For most scaling vectors Φ, however, one observes that the coefficients cJ,β

of a polynomial p ∈ πd
k are not necessarily the sample values of a polynomial in

πd
k and vice versa, even if Φ provides accuracy order k + 1. Consequently, the

low pass branch of the corresponding filter banks does not preserves polynomial
sequences cJ,β and the high pass branch does not annihilate them, cf. [83, 108]. To
bypass this problem in the univariate case, Lebrun and Vetterli [83, 84] invented
the notion of balancing. An orthonormal r-scaling vector Φ ∈ L2(R)r with mask A
is called balanced of order k, if the subdivision operator SA preserves the sequence
u(n) := ((rβ)n, (rβ + 1)n . . . , (rβ + r − 1)n)β∈Z for all n = 0, . . . , k − 1, i. e.,

SAu
(n) = 2−nu(n). (7.6)

Note that this is equivalent to the low-pass branch of the inverse DMWT preserving
the sequence u(n). Let Ψ denote an orthonormal multiwavelet corresponding to
Φ, and let B ∈ `0(Zd)r×r be the mask of Ψ. The unitarity of the corresponding
modulation matrix Pm(z) implies for α ∈ Z

∑

β∈Z
AβA

>
β−2α = 4 δ0,αI2 and

∑

β∈Z
BβA

>
β−2α = 0,

see Section 3.2.1 for details. Therefore, from Equation (7.6) it immediately follows
that ∑

β∈Z
Aβ−2αu

(n)
β = c · u(n)

α and
∑

β∈Z
Bβ−2αu

(n)
β = 0,

where c denotes some constant. Hence, for the analysis equations (7.1) we ob-
tain that the low-pass filter A preserves polynomial sequences whereas the high-
pass filter B annihilates them. Consequently, the balancing property allows us to
commit the wavelet crime. In particular, if we are given the samples (f(λβ))β∈Z
of f ∈ VJ for some equidistant nodes λβ then, due to the definition of the se-
quence u(n), we are allowed to approximate the coefficients cJ,β by the vectors
(f(λrβ), . . . , f(λrβ+r−1))

>.
A generalization of the balancing concept to multivariate biorthogonal scaling

vectors can be found in [19], see also [18]. Since only the dual masks are involved
in the analysis equations (7.1) of the DMWT, it stands to reason to introduce

the balancing concept for the dual scaling vector. Hence, let (Φ, Φ̃) be a pair

of biorthogonal r–scaling vectors with compact support. Then Φ̃ is said to be
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k–balanced relative to {ξ0, . . . , ξr−1} ⊂ Rd if and only if
∫

Rd

φ̃i(x)(x− ξi)
µdx =

∫

Rd

φ̃j(x)(x− ξj)
µdx, 0 ≤ i, j < r, (7.7)

holds for all µ ∈ Zd
+ with |µ| < k. Moreover, it was shown in [18, 19] that the filter

banks corresponding to balanced scaling vectors actually do possess the desired
approximation properties, i.e., for all µ ∈ Zd

+ with |µ| < k and α ∈ Zd we have

∑

β∈Zd

Ãβ−Mα




(β + ξ0)
µ

...
(β + ξr−1)

µ


 =




pα(β + ξ0)
...

pα(β + ξr−1)


 ,

where pα ∈ πd
|α|, and

∑

β∈Zd

B̃β−Mα




(β + ξ0)
µ

...
(β + ξr−1)

µ


 = 0.

Hence, again, the low-pass branch of the analysis filter bank preserves polynomial
sequences and the high-pass branch annihilates them.

In [18, 19], also the following handy and, moreover, implementable condition

for Φ̃ being balanced is stated.

Theorem 7.1.1. Let Φ be a compactly supported r–scaling vector with mask A ∈
`0(Zd)r×r. Furthermore, let A satisfy the sum rules of order k with vectors yµ =

(y1
µ, . . . , y

r
µ)>, |µ| < k. A compactly supported dual r–scaling vector Φ̃ is K–

balanced relative to {ξ0, . . . , ξr−1} ⊂ Rd, K ≤ k, if and only if

yi
µ =

∑
ν≤µ

1

ν!
(ξi − ξ0)

νy1
µ−ν , 1 ≤ i < r,

holds for all µ ∈ Zd
+ with |µ| < K.

In the sequel, we show that each dual Φ̃ of an interpolating scaling vector Φ
is balanced up to the accuracy order of Φ. It has been shown in [10, 11] that
the accuracy order provided by a compactly supported scaling vector with linearly
independent integer translates is equivalent to the order of sum rules satisfied
by its mask. Therefore, if a compactly supported interpolating m–scaling vector
Φ provides accuracy of order k then its mask satisfies the sum rules of order k
with vectors yµ given by Lemma 5.1.5. A direct computation shows that the yµ

satisfy the assumptions of Theorem 7.1.1 with ξi+1 = M−1ρi. Thus, we obtain the
following proposition.
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Proposition 7.1.2. Let Φ be a compactly supported interpolating m–scaling vector
that provides accuracy of order k. Then each compactly supported dual m–scaling
vector Φ̃ is k–balanced relative to the set {M−1ρ0, . . . ,M

−1ρm−1}.

If Φ is orthonormal, we have Φ = Φ̃, and thus Φ is balanced up to its order of
accuracy. For the univariate case, this result can also be obtained by utilizing the
factorization of the symbol in Theorem 4.1.4, see [79] for details.

The above results show that also for the multivariate (orthogonal or biortho-
gonal) case, the balancing property allows us to commit the wavelet crime without
having to bear any negative consequences, i.e., we are allowed to approximate the
coefficients cJ,β of a function f ∈ VJ in the expansion (7.3) by sample values of f .
Note that this is in perfect concordance with the sampling property induced by
our interpolation condition, since (3.8) implies that

cJ,β = m−J
2

(
f

(
M−J(β +M−1ρ0)

)
, . . . , f

(
M−J(β +M−1ρm−1)

))>
. (7.8)

On the other hand, as already mentioned at the beginning of Section 6.1, we do
not need both the representation of f in VJ and a representation of f in some ṼJ̃ .
Therefore, the balancing order of the primal scaling vector Φ is rather negligible.

7.1.4 Boundary Extension

One question that arises when applying the DMWT in signal processing is how to
treat the boundaries of the signal. So far we have assumed that the signal X stems
from the sample values of a function f ∈ VJ for some J ∈ Z such that X = f(Λ)
for a finite index set Λ. Now, suppose we have a method to transmute the sample
values into the coefficient sequence cJ of f . To apply the DMWT properly, we need
the complete representation of f in VJ , i.e., we have to assume that supp(f) ⊂ W,
where W denotes the convex hull of Λ. Furthermore, if f is at least continuous
then f(x) → 0 as x tends to the boundary of W. However, in practise signals
often refuse to do us the favor of vanishing at their boundaries. Hence, a signal is
more likely to stem from a truncations f |W than from a function supported on W.
Thus, even if we know how to compute the coefficients cJ given the sample values
of f , how can we obtain the coefficients corresponding to values outside of W?

A straightforward approach is to assume cJ,β = 0 outside of W. However, it
is well known that such a zero padding leads to suboptimal compression results,
cf. Chapter 10 in [112]. A more popular extension method is periodic extension,
i.e., one assumes that the image is periodic. Unfortunately, this assumption is
incompatible with f ∈ VJ since a nontrivial periodic function can not be contained
in L2(R2). This obstacle can be overcome by switching to periodized multiwavelets.
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For a compactly supported r–scaling vector Φ and x ∈ [0, 1]d, define

Φper
j,α(x) :=

∑

β∈Zd

Φ(M j(x+ β)− α), α ∈ Zd, j ∈ Z, (7.9)

and
V per

j := span{e>i Φper
j,α |α ∈ Zd, 0 ≤ i < r}, (7.10)

where ei denotes the ith unit vector in Rr. It has been shown in Section 9.3 in
[37] that in the univariate scalar case the V per

j define a multiresolution analysis for

L2([0, 1]d). Furthermore, if Φ̃ is dual to Φ, then its periodized version Φ̃per generates
a dual MRA via (7.10) and the primal and dual complement spaces W per

j and

W̃ per
j are spanned by the periodized primal and dual multiwavelets, respectively.

In addition, all orthogonality relations are carried over to the periodic case. Since
all these properties are directly inherited from their non-periodic counterparts, we
immediately obtain the extension of these results to our general setting.

Also for the periodic case a discrete multiwavelet transform can be defined.
Let f ∈ V per

J for some J . Similar to Equation (3.16), we have for j < J

cper
j,α :=

1

c

〈
f,m

j
2 Φ̃per

j,α

〉
L2([0,1]d)

=
1

c

∑

β∈Zd

m
j
2

〈
f, Φ̃(M j(·+ β)− α)

〉
L2([0,1]d)

, (7.11)

where the constant c is determined by Equation (3.17). With the mask Ã ∈
`0(Zd)r×r of Φ̃ the refinement equation yields

cper
j,α =

1

c

∑

β,γ∈Zd

m
j
2 Ãγ

〈
f, Φ̃(M j+1(·+ β)−Mα− γ)

〉
L2([0,1]d)

=
1

c
√
m

∑

γ∈Zd

Ãγ−Mα

〈
f,m

j+1
2 Φ̃per

j+1,γ

〉
L2([0,1]d)

=
1√
m

∑

γ∈Zd

Ãγ−Mαc
per
j+1,γ.

Thus, we obtain the periodized analogon to the lowpass part of the analysis equa-
tion (7.1). Periodized versions of the highpass part of (7.1) and the synthesis
equation (7.2) can be obtained analogously. On the other hand, Equation (7.11)
implies

cper
J,α =

m
J
2

c

∑

β∈Zd

∫

[0,1]d

f(x)Φ̃(MJ(x+ β)− α) dx

=
1

c

〈
fper,m

J
2 Φ̃(MJ · −α)

〉
L2(Rd)

,
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where fper denotes the periodization of f , i.e., for x ∈ [0, 1]d and β ∈ Zd we have
fper(x+ β) := f(x). Hence, it turns out that the periodic DMWT coincides with
its non-periodic counterpart using periodized coefficient sequences. For a signal
X which stems from a function f |W such that W is an arbitrary rectangular or
cubic window, the generalization of the above scheme to W–periodic functions is
straightforward.

7.2 Explicit Image Compression

In this section, we intend to find some answers to the questions (Q1)–(Q3) posed at
the beginning of this chapter by studying the performance of our (multi-)wavelets
in digital image compression. First of all, we have to make some assumptions
about the considered data. In general, digital images consists of real valued data
(Xλ)λ∈Λ defined on a finite section Λ of some square lattice in R2. Each data point
Xλ is called a pixel. Here we assume that Λ ⊂ Z2 and that the convex hull W of
Λ has the form W = 2n[0, 1]2 for some n ∈ Z+. This is due to the fact that all
the examples of scaling vectors or functions constructed in this work are refinable
with respect to a scaling matrix M with m = | det(M)| = 2 or M = 2. Since in
each step of the DMWT (7.1) the number of approximation coefficients is reduced
by a factor 1/m, the above choice ensures that we can compute several steps of
the DMWT without having to split a pixel.

Since we focus on two-dimensional data, all the univariate (multi-)wavelets and
generators have to be extended to bivariate functions. This can be performed by
means of a tensor product approach as follows, cf. Chapter 7.7 in [88]. Let Φ be
a univariate scaling vector, then the mapping

Φ× : R2 3 (x, y) → Φ(x)⊗ Φ(y)>

defines a matrix valued function. By rearranging the entries of Φ× columnwise into
a vector, we obtain a scaling vector of length r2 which is refinable with respect
to the scaling matrix M2 := 2I2. The corresponding multiwavelets are given by
vectorizing the matrix valued functions

Ψ
(1)
× (x, y) := Φ(x)⊗Ψ(y)>,

Ψ
(2)
× (x, y) := Ψ(x)⊗ Φ(y)>,

Ψ
(3)
× (x, y) := Ψ(x)⊗Ψ(y)>.

The dual functions are defined analogously. Although the vector interpretation of
these functions leads to a bivariate DMWT by means of Section 7.1.2, for practical
reasons it is more convenient to work with the matrix form given above. Since all



110 Chapter 7. Application to Image Compression

these functions are separable, also the corresponding bivariate DMWT can be
decomposed into products of univariate DMWTs. In particular, applying such
a bivariate DMWT to an image X is equivalent to applying the corresponding
univariate DMWT first to the columns and then to the rows of X.

7.2.1 Selection of Wavelets

To classify the applicability of our multiwavelets in image compression, we have
to compare their performance with that of some well-established scalar wavelets.
First of all, we choose the symmetric biorthogonal 9-7 wavelet pair constructed in
[6]. This univariate wavelet pair can be considered as a very tough competitor since
it is the basis of the lossy compression algorithm within the JPEG2000 standard,
cf. [2]. The mask of the primal generator ϕ7 consists of 7 nonvanishing coefficients,
and we have s(ϕ7) = 2.12. For the dual generator ϕ̃9, the critical Sobolev exponent
is s(ϕ̃9) = 1.41, and its mask consists of 9 coefficients. Both, the primal and the
dual wavelet have 4 vanishing moments. In the following, we will denote this
generator/wavelet combination by b9,7. In addition, we will denote by b7,9 the
same function set where the roles of primal and dual functions are interchanged.

Another class of reference wavelets is given by the univariate orthonormal Dau-
bechies wavelets with vanishing moment order n, cf. [36]. The masks of the
corresponding scaling functions ϕn consist of 2n coefficients. Here, we focus on
the case n = 3 and n = 4. The regularity of the generators ϕn is s(ϕ3) = 1.42 and
s(ϕ4) = 1.78. For conciseness, we denote these generator/wavelet combinations by
d3 and d4, respectively.

notation description source

b9,7, b7,9 univariate symmetric biorthogonal wavelet pair [6]

dn univariate orthonormal Daubechies wavelet of or-
der n

[36]

Ot
n orthonormal interpolating multiwavelet with in-

dex n, t ∈ {2, p, q}
Chap. 4/5

St
n multivariate biorthogonal multiwavelet pair with

primal index n, t ∈ {q, s}
Chap. 6

st
n multivariate biorthogonal wavelet pair with pri-

mal index n, t ∈ {q, s}
Chap. 6

Table 7.1: Notation for the selected (multi-)wavelets

For the performance comparison, we choose those of our multiwavelets which
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possess properties similar to those of the reference wavelets, i.e., we focus on mul-
tiwavelets which are at least continuous and at most continuously differentiable,
and which possess 3 or 4 vanishing moments. Therefore, from the univariate multi-
wavelets constructed in Chapter 4, we choose the interpolating multiwavelets corre-
sponding to the scaling vectors Φ4 and Φ6 and denote these generator/multiwavelet
pairs by O2

4 and O2
6, respectively. In addition, we employ the wavelets correspond-

ing to the multivariate orthonormal scaling vectors Φ3 and Φ5 of Chapter 5 for
quincunx and box–spline dilation. These generator/multiwavelet pairs shall be de-

noted by O
p/q
3 and O

p/q
5 , respectively, where the index p or q indicates the scaling

matrix Mp or Mq. From our symmetric (multi-)wavelets constructed in Chapter 6,
we choose the scalar as well as the vector valued biorthogonal wavelet pairs with
primal parameter n = 2 and n = 3 for both dilation matrices. At first glance, the
choice of n = 3 seems to be unfair due to the higher number of vanishing moments
and the smoothness of the primal functions. On the other hand, in particular
the dual functions have a much larger support than the other contestants which
might bear some disadvantage. For the symmetric examples, the scalar genera-
tor/multiwavelet combinations are denoted by s

q/s
2 and s

q/s
3 , and for the vector

valued functions we use the notation S
q/s
2 and S

q/s
3 . Again, the index q or s deter-

mines the scaling matrix. For the reader’s convenience, we have summarized the
notation in Table 7.1.

7.2.2 Fundamental DMWT Coding Scheme

We have seen in Section 7.1 that a DMWT based transform coding scheme essen-
tially consists of four steps. First of all, according to Section 7.1.3, image data has
to be preprocessed to obtain appropriate initialization data for the discrete wavelet
or multiwavelet transform. Then, taking care of a suitable boundary handling, the
DMWT is applied, followed by quantization and encoding.

In our setting, we are more interested in a performance comparison than in
the actual compression results. Therefore, we may omit the encoding step since
it is independent of the used wavelet transform and does not alter the data. Also
our quantization scheme differs from the highly advanced quantization schemes
used in real world applications. As we have seen in Section 7.1.1, quantization
essentially results in rounding off the values of the transformed image Ξ which
results in the annihilation of small coefficients. However, in most cases also the
large coefficients of Ξ are modified. Therefore, from the mathematical point of
view, image compression via (multi-)wavelet transform coding can be considered
as a perturbed N -term approximation, where N corresponds to the number of the
remaining large coefficients, cf. [45]. Consequently, for our comparison, we may
also use a true N -term approximation for quantization as follows.
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We assume that X = f(Λ) for a function f ∈ V per
J for some J . Since Λ = Z2 ∩

W, Equation (7.8) suggests to choose J = −1 for the vector case and J = 0 for the
scalar case. Note that the choice of J is completely arbitrary, it does only describe
the behaviour of f between the sample values, i.e., data between the pixels we in
general do not know. Hence, the choice of J can be taken as a regularity assumption
on f . As a consequence, for our interpolating generators we can obtain the starting
sequences utilizing Equation (7.8) for the W–periodized version of f . For the non-
interpolating scalar generators, we choose c0,β = f(β) analogously. Although this is
in some cases not thoroughly correct, in the literature it has proven to be adequate.
As the next step of our scheme, we apply as many steps of the discrete (multi-)
wavelet transform to X as possible. This means that the number of approximation
coefficients at the lowest level J ′ is only slightly larger than the number of filter
coefficients. Afterwards, we threshold the detail coefficients, i.e., depending on
the desired compression rate we keep the N ′ largest wavelet coefficients and set
all other wavelet coefficients to zero. The approximation coefficients cJ ′ remain
untouched. Finally, we apply the inverse DMWT followed by a postprocessing
step which is the inverse of the preprocessing step. Thus, we obtain an N -term
approximation of f orX, respectively, whereN equals the number of the remaining
wavelet coefficients plus the number of approximation coefficients on the level J ′

(taking into account that these coefficients are vector valued). This compression
scheme is sketched in Figure 7.3.

X transform - Ξ threshold - Ξ̃
inverse

transform
- X̃

Figure 7.3: Simple DMWT compression scheme

The reader should be aware of the fact that the above compression scheme is of
rudimentary nature. However, it is well suited for comparing the applicability of
certain wavelets or multiwavelets in image compression, although we do not take
into account the vector structure of multiwavelets. Hence, using more sophisticated
compression algorithms which exploit this vector structure, the performance of the
multiwavelets might be enhanced.

7.2.3 Numerical Results

In the sequel, we apply our simplified compression scheme to several 8-bit grayscale
images, each consisting of 512× 512 pixels. This image size allows us to compute
10 steps of the DMWT for the nonseparable (multi-)wavelets and 5 steps for the
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wavelets obtained by tensor products. For all images, we consider two distinct rates
of compression. First of all, we produce strongly perturbed reconstructions by
throwing away 99% of all wavelet coefficients which corresponds to a compression
rate of R = 1%. This enables us to study the typical artifacts induced by the
different kinds of wavelets. In addition, we use a compression rate of R = 10%,
i.e., thresholding results in keeping 10% of the wavelet coefficients. This medium-
sized compression rate should provide an insight into the average compression
performance of our wavelets by means of the subjective distortion measures mse
and mad.

Portrait Images

(a) ‘barbara’ (b) ‘lena’

Figure 7.4: Portrait test images

Our first class of test images are portrait images which, in general, reveal a
mixture of rather long curved edges and smooth surfaces. Two typical examples
of this class are the well-known test images ‘barbara’ and ‘lena’ depicted in Figure
7.4. These data sets can be obtained from various sources, e.g., from the USC-SIPI
Image Database [35].

The distortion rates of the reconstructed images are shown in Table 7.2. Un-
surprisingly, the best results by means of the objective measures are obtained by
the JPEG2000 wavelet b9,7. Nevertheless, also the multiwavelets O2

4 and O2
6 show

very good results. They even outperform the Daubechies wavelets d3 and d4 which
have a smaller support and are only slightly less regular than these univariate
multiwavelets. However, for the lower compression rate R = 10%, the second best
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(a) b9,7 (b) d4 (c) O2
6

(d) ss
3 (e) Ss

3 (f) Op
5

(g) sq
3 (h) Sq

3 (i) Oq
5

Figure 7.5: Compression results for ‘barbara’ with R = 1%
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(a) b9,7 (b) d4 (c) O2
6

(d) ss
3 (e) Ss

3 (f) Op
5

(g) sq
3 (h) Sq

3 (i) Oq
5

Figure 7.6: Compression results for ‘lena’ with R = 1%
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barbara lena
R = 1% R = 10% R = 1% R = 10%

mse mad mse mad mse mad mse mad

b9,7 261.7 11.08 32.52 4.158 91.4 6.577 9.96 2.436
b7,9 284.5 11.65 43.97 4.823 116.5 7.456 12.84 2.740
d3 274.9 11.45 40.87 4.633 109.7 7.140 11.50 2.605
d4 271.9 11.39 37.41 4.469 103.2 6.977 11.22 2.573
O2

4 262.2 11.16 36.39 4.418 96.9 6.759 11.07 2.562
O2

6 261.1 11.17 35.60 4.386 97.3 6.823 11.05 2.561
ss
2 302.3 11.94 51.11 5.092 107.1 7.150 12.52 2.677
Ss

2 313.4 12.00 67.89 5.585 114.6 7.268 13.50 2.727
ss
3 282.1 11.47 33.77 4.253 97.7 6.828 10.99 2.541
Ss

3 293.7 11.70 48.21 4.924 102.4 6.950 11.88 2.615
Op

3 295.4 11.81 69.58 5.898 119.6 7.482 13.55 2.799
Op

5 291.7 11.72 67.41 5.823 113.5 7.321 12.90 2.743
Oq

3 294.3 11.80 68.42 5.859 119.8 7.497 13.49 2.798
Oq

5 294.1 11.77 67.10 5.810 120.5 7.556 13.09 2.759
sq
2 300.2 11.76 70.71 5.643 115.2 7.321 12.62 2.668
Sq

2 312.8 12.00 81.44 5.996 119.8 7.475 13.12 2.710
sq
3 300.9 11.84 68.29 5.614 117.0 7.397 12.92 2.708
Sq

3 296.9 11.68 68.90 5.635 115.3 7.355 12.97 2.698

Table 7.2: Compression results for the portrait images

results are obtained by our multivariate symmetric wavelet ss
3. Unfortunately, we

observe the other nonseparable wavelets and multiwavelets can not cope with the
reference wavelet b9,7, though for the ‘lena’ image they perform at least similar
to the twisted reference wavelet b7,9. As we have expected, it turns out that for
almost all classes of wavelets in the test those representatives with the higher
order of vanishing moments and better regularity properties perform best. This
should explain the gap between the results of ss

2 and ss
3 or Ss

2 and Ss
3, respectively.

However, we observe that in most cases the sq
2 wavelet performs better than the

smoother sq
3 wavelet which may be due to the larger support of the latter.

One reason for the varying performance of the distinct wavelet classes becomes
evident when looking at the reconstructed images in Figures 7.5 and 7.6. All
wavelets and multiwavelets corresponding to the scaling matrices Mq and Mp in-
duce more or less strong artifacts along high contrast edges which resemble the
checkerboard structure of the quincunx grid. In contrast, the tensor product
wavelets show shadow-like artifacts which run parallel to these edges and thus
affect a much smaller area. The artifacts induced by the wavelets corresponding
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to Ms are somewhere in between, reminding of the row structure of the grid related
to Ms. In the literature, the artifacts along sharp edges are called pseudo-Gibbs
phenomena. They stem from missing wavelets bearing a significiant high frequency
content, cf. [27] and Chapter 2 in [112]. Now, for the ‘barbara’ image with its
many tiny parallel stripes, the artifacts induced by the tensor product wavelets and
multiwavelets do perfectly fit into these fine structures. Thus, this particular image
provides an advantage for the tensor product wavelets over the Mq and Mp related
wavelets. However, within the reconstructions of the ‘lena’ image in Figure 7.6 the
artifacts induced by the quincunx wavelets are much less striking. For example,
the reconstruction (h) obtained by Sq

3 shows nice smooth areas but rather blurred
edges. In contrast, the reconstruction (b) obtained by d4 shows nice crisp edges
but sharp artifacts which disturbingly extend into smoother areas of the image.
So, choosing the more pleasing reconstruction becomes a matter of personal taste.
A similar observation can be made for our objectively best performing wavelets
and multiwavelets, since is hard to tell which of the reconstructions (a), (c), and
(d) in Figures 7.5 and 7.6 is visually the best. Therefore, as already mentioned
above, we should not rely too much on the objective measures for high compression
rates.

(a) b9.7 (b) ss
3

Figure 7.7: Compression results for ‘barbara’ with R = 10%

In Figure 7.7 the reconstructions of the ‘barbara’ image obtained by the b9,7

and the ss
3 wavelets with a compression rate R = 10% are shown. As stated above,
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this image contains a kind of very fine structures which gives an edge to the tensor
product wavelets. Nevertheless, not only the reconstruction corresponding to the
b9,7 wavelet but also the one obtained by the ss

3 wavelet look rather close to the
original picture. Even the texture of the cloth is reproduced very well. However,
under close examination both reconstrcutions show some slight artifacts. Yet, to
decide which artifacts are more disturbing is in the eye of the beholder.

Texture Images

The second class of images we consider consists of pictures of textures which in
general thoroughly consist of fine structures without larger edges. Again, we em-
ploy two test images called ‘romanesco’ and ‘cereals’ which are shown in Figure 7.8.
The ‘romanesco’ image indeed is a close-up photograph of a Romanesco broccoli
taken from an article on fractal food by John Walker [117]. The ‘cereals’ image
is a close-up photograph of the author’s breakfast taken on one morning before
writing these lines.

In Table 7.3 the distortion rates of the reconstructed images are shown. It
turns out that almost all nonseparable (multi-)wavelets perform very well. In par-
ticular the Mq related symmetric wavelets and multiwavelets show pretty good
results which are close to those of the b9,7 wavelet and are superior to those ob-
tained by the Daubechies wavelets. In addition, also the separable orthonormal
multiwavelets show a very good performance. Similar to the portrait case, also
for the texture images the smoother wavelets with more vanishing moments reveal
better results. But again, for the symmetric quincunx wavelets sq

2 and sq
3 this is

not the case. However, in spite of the fact that this time the difference is not
very significant, both wavelets show a good overall performance. Quite remark-
ably, the worst results for the texture images are obtained by the twisted brother
of the b7,9 wavelet. Though it consists of the same functions as the b9,7 wavelet
and, moreover, the primal and the dual functions have very similar properties, the
b7,9 wavelet seems to be far less suitable for image compression purposes. This
shows that in image compression DMWT or DWT based algorithms respond very
sensitively to the choice of the analysis and the synthesis (multi-)wavelets.

Although the b9,7 wavelet yields the best results in terms of the objective dis-
tortion measures, the visual performance is much less appealing. In Figures 7.9
and 7.10 some reconstructed images for R = 1% are shown. All reconstructions
obtained by the separable (multi-)wavelets show similar box-like artifacts. These
artifacts stem from the preferred direction phenomenon and result in somewhat
grainy looking reconstructed images. This is particularly disturbing for the ‘ro-
manesco’ image where the highly detailed areas, i.e., the small Romanesco florets,
appear rather unnatural. In contrast, the Mq related wavelets and multiwavelets
lead to much more natural looking reconstructions. Especially the symmetric
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(a) ‘romanesco’ (b) ‘cereals’

Figure 7.8: Texture test images

romanesco cereals
R = 1% R = 10% R = 1% R = 10%

mse mad mse mad mse mad mse mad

b9,7 252.9 12.43 31.19 4.378 147.8 8.158 18.01 3.015
b7,9 290.8 13.35 46.40 5.382 170.9 8.851 24.77 3.549
d3 269.9 12.88 39.33 4.952 162.6 8.616 21.36 3.286
d4 264.1 12.71 37.04 4.797 158.1 8.496 21.54 3.323
O2

4 259.0 12.61 35.56 4.698 152.5 8.329 20.65 3.259
O2

6 260.1 12.63 35.02 4.666 151.5 8.295 20.82 3.279
ss
2 302.3 13.65 40.32 5.002 167.9 8.820 24.90 3.465
Ss

2 294.6 13.43 41.00 4.994 166.8 8.708 25.11 3.455
ss
3 274.2 12.99 34.15 4.605 158.2 8.474 22.50 3.358
Ss

3 278.4 13.09 35.72 4.715 158.9 8.515 23.06 3.367
Op

3 269.9 12.84 38.83 4.907 162.7 8.575 23.92 3.485
Op

5 262.8 12.68 35.97 4.726 161.1 8.554 23.16 3.428
Oq

3 270.8 12.85 38.48 4.884 161.6 8.594 23.60 3.473
Oq

5 262.0 12.66 35.78 4.717 158.6 8.524 22.82 3.418
sq
2 267.9 12.77 32.29 4.441 156.4 8.462 20.05 3.110
Sq

2 287.9 13.26 34.91 4.615 165.2 8.781 20.87 3.161
sq
3 269.6 12.82 31.83 4.417 157.6 8.481 20.66 3.188
Sq

3 265.5 12.75 32.92 4.486 155.8 8.402 20.51 3.146

Table 7.3: Compression results for the texture images
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(a) b9,7 (b) d4 (c) O2
6

(d) ss
3 (e) Ss

3 (f) Op
5

(g) sq
3 (h) Sq

3 (i) Oq
5

Figure 7.9: Compression results for ‘romanesco’ with R = 1%
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(a) b9,7 (b) d4 (c) O2
6

(d) ss
3 (e) Ss

3 (f) Op
5

(g) sq
3 (h) Sq

3 (i) Oq
5

Figure 7.10: Compression results for ‘cereals’ with R = 1%



122 Chapter 7. Application to Image Compression

wavelets sq
3 and Sq

3 resolve the fine details very good, since the symmetry of these
wavelets matches the structure of the details well. Therefore, the best visual per-
formance is obtained by applying the symmetric quincunx (multi-)wavelets.

(a) b9,7 (b) sq
3

Figure 7.11: Compression results for ‘romanesco’ with R = 10%

Yet less striking, the above observations can be confirmed for smaller compres-
sion rates as well. A close examination of Figure 7.11 reveals that also for R = 10%
the reconstruction obtained by the b9,7 wavelet suffers from the directional sensi-
tivity. Hence, although the b9,7 wavelet leads to better objective distortion rates,
the sq

3 wavelet yields a better visual performance.

Concluding Remarks

Altogether, the numerical results obtained above allow us to give an at least partial
answer to the questions (Q1)–(Q3) stated at the beginning of this chapter. First
of all, we can give a positiv answer to question (Q1). In almost all cases, the
univariate orthonormal multiwavelets perform very well. Though they do not
show the overall best results, they can cope with the b9,7 wavelets, and they usually
outperform the Daubechies wavelets.

The answers to the other questions are far less unambiguous. We observe
that the directional sensitivity of the tensor product (multi-)wavelets can have a
synergetic effect, as for the strong horizontal and vertical edges in the portrait
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images and, moreover, for the parallel stripe textures within the ‘barbara’ image.
There, the artifacts produced by the separable wavelets are less striking than
those obtained by their nonseparable relatives. On the other hand, for images
without such a strong horizontal or vertical alignment, like our texture images, the
nonseparable approach can lead to far better results by means of visual quality.
Thus, the choice of a proper wavelet for signal processing purposes should be made
according to the type of signals considered.

The comparison between scalar and vector valued wavelets is even more difficile.
Even though either one or the other of these two wavelet types may lead to better
distortion rates, their visual performance is almost identical. However, we should
have in mind that our simple compression scheme does not exploit the vector
structure of the multiwavelets in any sense. Still, up to the author’s knowledge,
no sound multiwavelet-specific compression methods can be found in the known
literature yet. Perhaps, developing and using a more sophisticated compression
scheme could shift the results for the benefit of the multiwavelets.
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Chapter 8

Summary and Perspectives

In the present work, we have studied the topic of multivariate multiwavelets asso-
ciated to interpolating scaling vectors. Our main aims are formulated in the tasks
(T1)–(T3) within the Introduction. In the following, we summarize our results
and discuss how these tasks have been solved.

First of all, we have designed several systematic algorithms for the construc-
tion of interpolating scaling vectors. The first method given in Chapter 4 leads to
univariate orthonormal interpolating scaling vectors with compact support. This
approach does not only allow us to reproduce but also to improve the results ob-
tained in [109]. The method presented in Chapter 5 is a multivariate analogon of
our univariate approach which can be used to construct compactly supported or-
thonormal interpolating scaling vectors for scaling matrices with determinant ±2
in arbitrary dimensions. Up to the author’s knowledge, the examples provided in
Chapter 5 are the first interpolating scaling vectors in L2(R2) with orthogonal in-
teger translates. Finally, in Chapter 6, we obtain an algorithm for the construction
of biorthogonal pairs of symmetric scaling vectors in L2(Rd) for arbitrary scaling
matrices where the primal scaling vector is interpolating. Again, the examples
provided in this chapter are the first ones of their kind throughout the known
literature. Moreover, these results do always possess better properties than their
scalar relatives in terms of regularity per support size. Thus, all the restrictions of
the scalar setting can be overcome by the vector concept. Furthermore, all three
approaches have in common that they contain a postprocessing step which, by
fixing all other properties, leads to a maximum Sobolev regularity. Hence, our
examples are not only some isolated solutions but are optimal ones in a larger
context. Hence, the task (T1) is completely and thoroughly solved.

In addition to the algorithms for the construction of scaling vectors which,
by the way, may be useful for the field of vector subdivision as well, we give a
solution to the problem of finding some corresponding multiwavelets. For the
more general biorthogonal case, we derive a method which enables us to compute
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canonical multiwavelets for arbitrary dual pairs of scaling vectors whenever their
masks are finitely supported and the primal scaling vector is interpolating. Hence,
we obtain an at least partial solution to an in general unsolved problem. Moreover,
by employing an additional interpolation property for the orthogonal case, we show
that the symbols of suitable multiwavelets are obtained by a simple modification
of the symbols of the corresponding scaling vector. Thus, also for the questions
within (T2) we have found a complete and positive answer.

The topic (T3) leads to somewhat less unambiguous statements. First of all,
as we have shown in Section 7.1.3, all interpolating scaling vectors are well-suited
for application purposes since they are automatically balanced. Furthermore, the
compression results obtained in Chapter 7 show that our univariate multiwavelets
perform very well in image processing algorithms. However, for our multivariate
examples, the compression results seem to depend on the properties of the data.
Therefore, using prior knowledge about the data, our multivariate multiwavelets
can be put to good use in image compression as well. Nevertheless, the reader
should be aware of the fact that our construction methods are intended to fathom
the potential of the vector approach in terms of regularity per support size. Hence,
they do not aim at finding multiwavelets for a specific application. Especially for
the biorthogonal setting, our approach may lead to suboptimal results for signal
processing purposes. As we observe from the performance gap between the b9,7

and the b7,9 wavelets, the image compression results are vastly influenced by the
properties of the primal and dual wavelets. Thus, it seems to be very important
to equilibrate the properties of primal and dual functions.

This observation leads us to one possible future prospect. It seems to be worth-
while to modify our method for the construction of biorthogonal multiwavelets to
better match the requirements of signal or image processing algorithms. Then
some very interesting questions arise, e.g., which specific property is needed on
the primal or dual side, respectively. As we have seen in the preceding chapter,
both components of the b9,7 pair possess very similar properties. The only differ-
ences are slightly distinct support sizes and a small regularity gap. Hence, what
are the key properties on each side in the multivariate setting? Moreover, in our
approach in Chapter 6, it is crucial to construct the primal scaling vectors first
since they determine the ỹµ and therefore the sum rules for the dual functions.
Thus, is there a canonical choice of the ỹµ to facilitate the equilibration of the
properties of primal and dual functions?

On the other hand, due to recent developments in the fields of medical imaging
and materials science, algorithms for three- or more dimensional image process-
ing are becoming more and more important. Hence, it seems to be profitable to
utilize our methods to construct scaling vectors for higher dimensions. Already
in the present work, while constructing some bivariate examples, we had to face
some numerical problems. One of the main difficulties is to estimate the regular-
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ity of a scaling vector which involves computing the spectrum a of large matrix.
Thus, in higher dimensions, these matrices are likely to become much larger, and
therefore estimating the regularity will cause even more trouble. Furthermore, the
optimization methods used in our examples may need an adjustment to the more
complex case. Last but not least, all these algorithms require a highly sophisticated
implementation which seems to be a challenging task on its own.

Finally, it is a personal desire of the author to take up the cudgels for non-
separable wavelets and multiwavelets. Up to the moment, there have been only
few attempts to employ this general setting in real world applications. This may
be due to the following reasons. First of all, particularly in signal processing, one
is mostly concerned with two-dimensional data like images or 2 × 1-dimensional
data like movies. For this setting, powerful algorithms based on tensor product
wavelets exist. So, why should one want to use a more complex setting? More-
over, from the mathematical point of view, the nonseparable setting is much less
accessible than the classical approach, and therefore also the implementation of
the corresponding algorithms is somewhat more involved. Nevertheless, as we
have seen above, nonseparable (multi-)wavelets can at least cope with the per-
formance of classical wavelets in image compression. We assume that for higher
dimensional data the nonseparable approach is even more proficient, since tensor
product approaches suffer from the large number of wavelets. Hence, the term mul-
tiscale approximation is taken ad absurdum by the coarseness of the corresponding
tensor multiresolution analysis. On the other hand, it is commonly known that
scaling matrices with determinant ±2 exist for arbitrary dimensions. Therefore, it
is always possible to obtain multivariate wavelet or multiwavelet bases which stem
from one single mother function or function vector, respectively.



128 Chapter 8. Summary and Perspectives



Appendix A

A Comprehensive List of Masks

In this appendix we list all masks corresponding to the scaling vectors obtained in
Chapter 4 and 6. Furthermore, we give a selection of the masks obtained by our
biorthogonal approach in Chapter 6. We restrict ourselves to those examples which
possess the optimal properties. To reproduce the plots of our scaling vectors and
to compute their critical Sobolev exponents, we provide a small software package
for MATLAB which can be downloaded from:

www.mathematik.uni-marburg.de/~dahlke/ag-numerik/research/software/

A.1 Masks corresponding to Chapter 4

In this section the masks obtained in Chapter 4 are given explicitely. First, we list
the coefficient sequences (aβ)β∈[−n,n+1] of the symbol entries a0(z) corresponding
to the scaling vectors Φn for 1 ≤ n ≤ 8. Then, the masks (Bk)k∈Z of the non-
interpolating multiwavelets Ψn are given. We use the notation

Bk :=

(
b00
k b01

k

b10
k b11

k

)
.
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Coefficient sequences (aβ)β∈Z

n
=

1
n

=
2

n
=

3
n

=
4

a
−4

−0
.0

01
30

20
83

33
33

33
3

a
−3

0.
00
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90

80
90

91
53

9
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.0

05
36

99
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72
5

a
−2

0.
03

12
5

0.
03

10
81

15
79

54
23

0.
03

78
41

22
69

57
63

6
a
−1

0.
22

08
12

22
79

22
28

0.
24

60
30

72
95

68
98

0.
24

31
27

57
27

25
38

0.
26

54
58

82
00

79
15

a
0

0.
94

86
0.

93
75

0.
93

80
06

52
61

37
31
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92

55
38

81
91

27
09

a
1

−0
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20
81

22
27

92
22

8
−0
.2

42
06

14
59

13
79

6
−0
.2

43
12
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72
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8
−0
.2

64
15
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36
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2
a

2
0.

05
14

0.
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12
5

0.
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1
0.
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01
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24
2

a
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2

−0
.0
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a
4
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00
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76
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2
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Multiwavelet masks (Bk)k∈Z

k b00
k b01

k b10
k b11

k

n = 1, α = 0.9486
-1 −0.222428080109859 0 0.0438833587894344 0
0 0.955541632714646 −0.999424991504081 −0.188521054922329 −0.0339070251875302
1 0.188521054922329 0.0339070251875302 0.955541632714647 −0.999424991504081
2 0.0438833587894344 0 0.222428080109859 0

n = 2
-2 0.0311168812088972 0 −0.00490482533694517 0
-1 −0.244982687543562 0 0.0386156081938253 0
0 0.929817562119305 −0.999550051522028 −0.270072770146329 0.0299949079397124
1 0.270072770146329 −0.0299949079397124 0.929817562119305 −0.999550051522028
2 0.0386156081938253 0 0.244982687543562 0
3 0.00490482533694487 0 0.0311168812088972 0

n = 3
-3 −0.00229081095067021 0 0.000168816819622176 0
-2 0.0310811831784831 0 −0.00229046682911585 0
-1 −0.243127911254386 0 0.0307407965668045 0
0 0.938009203374459 −0.999999999939369 −0.243117243486203 −1.10118897374539e−05
1 0.243117243486203 1.10118897373165e−05 0.93800920337446 −0.99999999993937
2 0.0307407965668045 0 0.243127911254386 0
3 0.00229046682911585 0 0.0310811831784831 0
4 0.000168816819622152 0 0.00229081095067003 0

n = 4
-4 −0.00268328498886854 0 0.000657980382143995 0
-3 0.00536656997773707 0 −0.00131596076428805 0
-2 0.0406157113141723 0 0.00331184495802566 0
-1 −0.265360110344017 0 0.038527333851246 0
0 0.924852859252655 −0.999996658664916 −0.266548449651388 0.00258508394493862
1 0.266548449651388 −0.00258508394493878 0.924852859252655 −0.999996658664917
2 0.038527333851246 0 0.265360110344017 0
3 −0.00331184495802567 0 0.0406157113141723 0
4 −0.00131596076428804 0 −0.00536656997773707 0
5 −0.000657980382144195 0 −0.00268328498886852 0

n = 5
-5 6.50480918150475e−07 0 −2.27758865018356e−07 0
-4 −0.00244117863790441 0 0.000854752323034522 0
-3 0.00695514575329282 0 −0.00244026625993947 0
-2 0.0410144854502473 0 0.00439284559696321 0
-1 −0.270014593192369 0 0.041013301010756 0
0 0.922853886195691 −0.999999999999985 −0.26830622303753 −1.7184062555909e−07
1 0.26830622303753 1.71840625647408e−07 0.922853886195691 −0.999999999999985
2 0.041013301010756 0 0.270014593192369 0
3 −0.00439284559696321 0 0.0410144854502473 0
4 −0.00244026625993949 0 −0.00695514575329281 0
5 −0.000854752323034523 0 −0.00244117863790442 0
6 −2.27758865005465e−07 0 −6.50480918022666e−07 0
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A.2 Masks corresponding to Chapter 5

In this section the upper right entries (aβ)β∈Λ of the masks of Φq
n are given. The

mask entries corresponding to the box spline case, i.e., M = Mp, can be derived
by applying Theorem 5.2.1.

n = 1

Structure and coefficients of (aβ)β∈Λ:

β −1 0 1
1 · −0.3632965053807939 0.1564659417494347
0 0.3632965053807939 0.8435340582505653 ·

n = 2

Structure of (aβ)β∈Λ:

β −2 −1 0 1 2
2 · e −d2 b1 ·
1 −e −d1 −b0 a1 −c1
0 d0 b0 a0 −c0 −d2

−1 −b1 a2 c0 −d1 ·
−2 a3 c1 d0 · ·

Coefficients of (aβ)β∈Λ:

a0 8.432940468331447e− 1 b0 3.389216872059052e− 1 d0 4.932029262350007e− 2
a1 1.358816741784712e− 1 b1 9.752076062522183e− 4 d1 4.249567159311051e− 2
a2 1.805671110607621e− 2 c0 1.232795955187407e− 1 d2 6.824621030389556e− 3
a3 2.767567882307886e− 3 c1 1.936777548856011e− 2 e 1.737898637156958e− 2

n = 3

Structure of (aβ)β∈Λ:

β −3 −2 −1 0 1 2 3
2 · g e −d1 b1 · ·
1 −g −e −d2 −b0 a1 −c1 ·
0 · d0 b0 a0 −c0 −d1 f0

−1 −d3 −b1 a2 c0 −d2 f1 ·
−2 · a3 c1 d0 −f1 g −h
−3 · · −d3 −f0 −g h ·

Coefficients of (aβ)β∈Λ:
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a0 7.901921309392772e− 1 c0 1.336983912343583e− 1 e 6.446281631765072e− 2
a1 1.833129840241968e− 1 c1 2.758348534724065e− 2 f0 4.595458726398507e− 3
a2 2.234434072046705e− 2 d0 5.687633161686027e− 2 f1 3.858791326069464e− 3
a3 4.150544316058975e− 3 d1 3.054027595325232e− 2 g 9.699853800555625e− 3
b0 3.779859556235052e− 1 d2 2.564456744673241e− 2 h 1.459557138932994e− 3
b1 4.595458738534255e− 3 d3 6.914882168755445e− 4

n = 4

Structure of (aβ)β∈Λ:

β −4 −3 −2 −1 0 1 2 3 4
4 · · j0 −h1 g3 −e2 d6 −b3 ·
3 · −j1 −h0 −g0 e1 −d3 b2 a6 −c3
2 −j2 h0 g1 e0 d0 −b1 −a3 c2 d6

1 h1 g2 −e0 −d2 −b0 a2 −c1 −d3 −f2

0 g4 −e1 −d1 b0 a0 −c0 d0 f0 g3

−1 e2 −d4 b1 a1 c0 −d2 −f1 −g0 −i1
−2 d5 −b2 a4 c1 −d1 f1 g1 −i0 j0
−3 b3 −a5 −c2 −d4 −f0 g2 i0 −j1 k0

−4 a7 c3 d5 f2 g4 i1 −j2 −k0 ·

Coefficients of (aβ)β∈Λ:

a0 7.393508266756186e− 1 c2 3.206281038156767e− 4 f2 2.192775353401839e− 4
a1 1.590366727193650e− 1 c3 1.329650173101297e− 5 g0 1.714248125803879e− 2
a2 1.040730157264092e− 1 d0 3.058761467675641e− 2 g1 1.112108322068441e− 2
a3 4.744930389692093e− 3 d1 2.278312551225702e− 2 g2 4.884345308568409e− 3
a4 2.351787322732341e− 3 d2 6.470579227153199e− 3 g3 8.619588028434883e− 4
a5 1.792405381399017e− 4 d3 1.177344005935610e− 3 g4 2.750939259424788e− 4
a6 1.065954092630927e− 4 d4 2.929922981510544e− 4 h0 1.801914437578222e− 2
a7 5.273074443778326e− 6 d5 8.693077071098538e− 5 h1 1.307841879260925e− 3
b0 4.149641472781915e− 1 d6 4.949559602948002e− 5 i0 1.265558617991367e− 3
b1 1.073735981624842e− 2 e0 1.204220172363404e− 1 i1 6.940258401403749e− 4
b2 6.876321370624657e− 4 e1 3.728234527298057e− 3 j0 3.299404090514096e− 3
b3 1.962876903607953e− 5 e2 3.417226001872880e− 4 j1 3.075104180937397e− 3
c0 1.392174328027228e− 1 f0 2.924068014056131e− 3 j2 2.242999095767010e− 4
c1 9.560418640657620e− 3 f1 2.585387372456025e− 3 k0 5.658604842792553e− 4
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n = 5

Structure of (aβ)β∈Λ:

β −5 −4 −3 −2 −1 0 1 2 3 4 5
5 · −n0 m1 −k1 j3 −h2 g5 −e3 d7 −b4 ·
4 n0 −m0 k0 −j0 h1 −g3 e2 −d5 −b3 a7 c4
3 m2 −k0 j1 −h0 g2 −e1 d4 b2 −a5 −c3 d7

2 k1 j2 h0 g1 e0 −d3 b1 −a3 c2 −d5 −f3

1 j4 −h1 −g0 −e0 −d1 −b0 a1 −c1 d4 −f2 g5

0 h2 g4 e1 d0 b0 a0 −c0 −d3 f0 −g3 −i2
−1 g6 −e2 −d2 −b1 a2 c0 −d1 −f1 g2 −i1 j3
−2 e3 d6 −b2 −a4 c1 d0 f1 g1 −i0 −j0 −l1
−3 d8 b3 a6 −c2 −d2 −f0 −g0 i0 j1 l0 m1

−4 b4 a8 c3 d6 f2 g4 i1 j2 −l0 −m0 ·
−5 a9 c4 d8 f3 g6 i2 j4 l1 m2 · ·

Coefficients of (aβ)β∈Λ:

a0 7.787365342903857e− 1 e1 8.992853890361197e− 3 g5 4.876740403433029e− 5
a1 1.563206966265842e− 1 e2 4.867871825262807e− 4 g6 1.569912663076266e− 5
a2 7.749999830045678e− 2 e3 3.477462756715321e− 5 h0 1.024618153667222e− 2
a3 8.271155512703776e− 3 f0 4.955451636014475e− 3 h1 2.407816279003956e− 3
a4 4.291537021864232e− 3 f1 4.729118599754660e− 3 h2 1.352189335862617e− 4
a5 2.915647698692102e− 4 f2 1.999788847486403e− 4 i0 2.948892987237558e− 5
a6 2.550502699488863e− 4 f3 5.643548015985818e− 6 i1 2.276548845913641e− 5
a7 3.760716383906979e− 5 d0 5.468640976381089e− 2 i2 5.191667165275111e− 6
a8 4.321779481775408e− 6 d1 5.028215879034868e− 2 j0 3.835472950458153e− 4
a9 4.887374074329685e− 8 d2 3.833252785442346e− 3 j1 2.658082630184461e− 4
b0 3.654554805658362e− 1 d3 2.232738245573430e− 3 j2 6.986281217643783e− 5
b1 2.228105086040924e− 3 d4 1.658784423038543e− 3 j3 3.357475727011834e− 5
b2 1.058617395881934e− 3 d5 1.752875013720132e− 4 j4 1.430146258081304e− 5
b3 1.056413112561339e− 4 d6 1.625484670874893e− 4 k0 1.005097425068883e− 3
b4 4.586135448870520e− 7 d7 1.197168631220558e− 5 k1 9.243533118832179e− 5
c0 1.856456585832774e− 1 d8 3.722982487333346e− 6 l0 4.082324106247016e− 6
c1 1.137766276335270e− 2 g0 1.271177367436286e− 2 l1 1.181464415989627e− 6
c2 1.547666424679079e− 3 g1 1.023267728924880e− 2 m0 9.536737680593730e− 6
c3 5.507259305046014e− 5 g2 2.754417575852340e− 3 m1 6.292715888320798e− 6
c4 1.275804213824031e− 6 g3 8.987066789608154e− 4 m2 3.244021792272933e− 6
e0 8.546073131670083e− 2 g4 5.589189575574359e− 4 n0 1.727830918819457e− 5
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A.3 Masks corresponding to Chapter 6

In this appendix the nontrivial parts of the masks of the most relevant scaling
vectors in Section 6.2.2 are listed. Again, for simplicity of notation, we consider
the scalar solutions as scaling vectors. Therefore, due to Eq. (6.7), we have to give
the first rows of the corresponding masks only.

Example 1: M = Mq

Primal Masks

n = 1 :

Φsc
1 Φ∞1

β ∈ Λ1 a0,1
β a0,1

β a1,1
β+ρ1

0 1/4 369/1024 143/1024

n = 2 :

Φsc
2 Φv

2

β ∈ Λ1 a0,1
β a0,1

β a1,1
β+ρ1

0 5475/16384 177/512 159/512
(1, 0)> −867/16384 −27/512 −21/512
(1, 1)> 355/16384 5/512 11/512

n = 3 :

Φsc
3 Φv

3

β ∈ Λ1 a0,1
β a0,1

β a1,1
β+ρ1

0 89/256 7043/16384 1835/8192
(1, 0)> −231/4096 −2411/65536 −115/4096
(1, 1)> −11/4096 −571/8192 113/8192
(2, 0)> 7/4096 −553/65536 11/2048
(2, 1)> 21/2048 −293/65536 113/4096
(2, 2)> −25/4096 −353/32768 5/2048
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n = 4 :

Φsc
4 Φv

4

β ∈ Λ1 a0,1
β a0,1

β a1,1
β+ρ1

0 5819/16384 25671/65536 20201/65536
(1, 0)> −459/8192 −903/16384 −685/16384
(1, 1)> −629/16384 −4759/65536 −1893/65536
(2, 0)> 21/8192 −5/16384 1/256
(2, 1)> 621/16384 305/8192 181/4096
(2, 2)> −573/16384 −2101/65536 −2703/65536
(3, 0)> −43/16384 −29/4096 −23/16384
(3, 1)> −27/8192 −3/2048 −19/16384
(3, 2)> 53/8192 35/4096 15/4096
(3, 3)> −29/16384 −43/65536 −189/65536

Dual Masks

primal: Φsc
1

Φ̃sc
2,2 Φ̃v

2,2

β ∈ Λ0 ã0,0
β ã0,0

β ã1,0
β+ρ1

0 1.600107924056818e+ 0 1.463447048560035e+ 0 1.852368110309690e+ 0
(1, 0)> −1.530785859804724e− 1 −2.458651577561153e− 1 −6.186321224181324e− 2
(1, 1)> −6.250000000000000e− 2 −9.684522260113693e− 2 −2.815477739886307e− 2
(2, 0)> 4.686745199111852e− 2 2.241131796386697e− 2 1.195273260334195e− 2
(2, 1)> 1.403929299023620e− 2 2.608735627692071e− 2 2.776828722043545e− 3
(2, 2)> −9.394433005323059e− 3 1.488169729498723e− 2 −3.199537579627432e− 3
β ∈ Λ1 ã0,1

β ã0,1
β ã1,1

β+ρ1

0 3.998920759431819e− 1 5.365529514399645e− 1 1.476318896903104e− 1
(1, 0)> −9.373490398223705e− 2 −4.482263592773394e− 2 −2.390546520668391e− 2
(1, 1)> 3.757773202129223e− 2 −5.952678917994891e− 2 1.279815031850973e− 2

primal: Φ∞
1

Φ̃v
2,2

β ∈ Λ0 ã0,0
β ã1,0

β+ρ1

0 1.399799757734565e+ 0 1.956178711753553e+ 0
(1, 0)> −1.093577505501146e− 1 −3.690526208030116e− 2
(1, 1)> −1.156879524547224e− 1 −5.201651558494899e− 3
(2, 0)> 1.791124034256157e− 2 7.608604888852144e− 3
(2, 1)> 9.845874730273253e− 3 5.030187508090313e− 3
(2, 2)> 1.645086776907467e− 2 −1.854934385735247e− 3
β ∈ Λ1 ã0,1

β ã1,1
β+ρ1

0 4.163990840649086e− 1 7.844929923839497e− 2
(1, 0)> −2.485245272463827e− 2 −2.724199792372236e− 2
(1, 1)> −4.565227261661915e− 2 1.328288679016009e− 2
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primal: Φsc
2

Φ̃sc
3,2 Φ̃v

3,2

β ∈ Λ0 ã0,0
β ã0,0

β ã1,0
β+ρ1

0 1.489959004741453e+ 0 1.377640177610037e+ 0 1.868570093649113e+ 0
(1, 0)> −1.504592340501103e− 1 −2.535438871169237e− 1 −6.888496860165862e− 2
(1, 1)> −6.147499859423500e− 2 −8.238148489787550e− 2 −3.744404927728919e− 2
(2, 0)> 9.486424762927366e− 2 5.801682282197251e− 2 −1.434458451547471e− 3
(2, 1)> 1.370617952505521e− 2 4.039188537918357e− 2 −2.224332519892439e− 3
(2, 2)> −2.985399881463683e− 2 8.550020327941846e− 3 −1.684952513154365e− 3
(3, 0)> −9.697015949889556e− 3 3.807987439147264e− 4 1.735556974667535e− 3
(3, 1)> −4.843890576497218e− 5 −3.998573281402748e− 3 7.772324565674431e− 4
(3, 2)> 3.871945474944779e− 3 −2.833453640255469e− 3 −1.778492190356619e− 4
(3, 3)> −9.281235942350252e− 4 1.355519013104642e− 3 −8.730318826933762e− 5
β ∈ Λ1 ã0,1

β ã0,1
β ã1,1

β+ρ1

0 3.553348646984411e− 1 4.626878567340421e− 1 1.037813036206012e− 1
(1, 0)> −7.408486469844125e− 2 −2.201767035819725e− 2 1.804851000355395e− 2
(1, 1)> 4.283486469844128e− 2 −6.256006622734213e− 2 4.029226581985430e− 3

primal: Φv
2

Φ̃v
2,2

β ∈ Λ0 ã0,0
β ã1,0

β+ρ1

0 1.399144982178193e+ 00 1.818511794595736e+ 00
(1, 0)> −2.047539926076301e− 01 −1.044501508274394e− 01
(1, 1)> −5.736299585011739e− 02 −6.036174690265650e− 02
(2, 0)> 7.180021931877056e− 02 −4.951402652602507e− 03
(2, 1)> 3.737785007318260e− 02 −7.870243150870260e− 03
(2, 2)> 1.133823879578236e− 02 −7.601249655432685e− 03
(3, 0)> −1.331158391306819e− 03 2.629650603141076e− 03
(3, 1)> −5.144770248195471e− 03 1.450400104696072e− 03
(3, 2)> −1.410570914612622e− 03 8.557896039174812e− 04
(3, 3)> 5.772400056101973e− 04 −4.637569658378880e− 04
β ∈ Λ1 ã0,1

β ã1,1
β+ρ1

0 4.217895800803504e− 01 1.522523359908732e− 01
(1, 0)> −4.718950907113650e− 02 2.893034993599408e− 02
(1, 1)> −5.910937657448421e− 02 2.158577877354517e− 02
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primal: Φsc
3

Φ̃sc
5,3 Φ̃v

5,3

β ∈ Λ0 ã0,0
β ã0,0

β ã1,0
β+ρ1

0 1.447315427337890e+ 0 1.434917708020856e+ 0 1.457318747769052e+ 0
(1, 0)> −1.494398043002927e− 1 −1.428139986885572e− 1 −1.757594606675662e− 1
(1, 1)> −5.187832844550799e− 2 3.018988426543162e− 4 −9.250132641721648e− 2
(2, 0)> 9.916756434062496e− 2 9.077333268652309e− 2 1.087475048523288e− 1
(2, 1)> 1.616502788076173e− 2 4.557508757954488e− 2 −3.159822261051633e− 3
(2, 2)> −2.362183329687495e− 2 8.467238139995101e− 3 −5.768604669108011e− 2
(3, 0)> −2.763583762499999e− 2 −4.318260784200491e− 2 8.749912394307897e− 3
(3, 1)> −4.287893286767562e− 3 −2.226586633482490e− 2 1.425975037117529e− 3
(3, 2)> 9.076820767431633e− 3 7.406838087778502e− 3 6.071494325419688e− 4
(3, 3)> −1.918720430175784e− 3 6.224648083032844e− 3 2.766350546015059e− 3
(4, 0)> 6.763089044921895e− 4 5.777110821272881e− 3 −4.413002426953758e− 3
(4, 1)> 1.906619874853513e− 3 3.387980277251427e− 3 1.869752932544759e− 4
(4, 2)> −7.849469203124989e− 4 −1.013557599140401e− 3 8.259512870494577e− 4
(4, 3)> −1.076315285009764e− 3 −1.444035411099614e− 3 −9.884310455286005e− 4
(4, 4)> 1.018997057910156e− 3 8.414394447404391e− 5 5.658173501448381e− 4
(5, 0)> 5.772288393554686e− 4 5.904048785991063e− 6 3.424583159325150e− 6
(5, 1)> −4.820326622558596e− 4 −4.799639953116584e− 4 2.227740785187213e− 4
(5, 2)> −6.484669506835955e− 5 −1.415787832071395e− 4 6.632985064342088e− 5
(5, 3)> 3.892003868652338e− 4 4.127170074684915e− 4 −1.986509989652709e− 4
(5, 4)> −2.581000000000000e− 4 1.519688981826937e− 5 −1.327682400845889e− 5
(5, 5)> 5.850000000000001e− 5 −5.618288115270778e− 5 3.064223866117416e− 5
β ∈ Λ1 ã0,1

β ã0,1
β ã1,1

β+ρ1

0 3.679062652000011e− 1 3.673714726486456e− 1 3.726546939270025e− 1
(1, 0)> −9.739715899999979e− 2 −1.200828106926882e− 1 −5.662469366105900e− 2
(1, 1)> 7.475394279999997e− 2 −2.575813272538062e− 2 1.115248959914140e− 1
(2, 0)> 2.245964379999995e− 2 4.324491458560385e− 2 −2.062607680750471e− 2
(2, 1)> −2.618490880000000e− 2 −1.297454702891494e− 2 6.259038116628677e− 3
(2, 2)> 9.584640000000002e− 3 −9.205003248059642e− 3 5.020424382246774e− 3
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primal: Φv
3

Φ̃v
5,3

β ∈ Λ0 ã0,0
β ã1,0

β+ρ1

0 1.435905158157269e+ 0 1.727885226275696e+ 0
(1, 0)> −1.645496711823307e− 1 −1.953194784762911e− 1
(1, 1)> −3.041564819165798e− 2 −8.560999058316465e− 2
(2, 0)> 4.903060934772241e− 2 −2.560166185479251e− 2
(2, 1)> −9.392102227921195e− 3 3.890120072223180e− 2
(2, 2)> 4.411151746033415e− 2 −2.445842541311460e− 2
(3, 0)> −9.782508976429738e− 3 1.132971422347406e− 2
(3, 1)> −8.435585869282280e− 3 −1.732231628961434e− 2
(3, 2)> −1.756784014003271e− 2 6.439579720562916e− 3
(3, 3)> 2.921857869606054e− 3 −5.834494747569221e− 5
(4, 0)> 3.594250567488050e− 3 −2.492899728881769e− 5
(4, 1)> 1.100033847582296e− 4 1.165697043471322e− 3
(4, 2)> 1.288046291019834e− 3 −1.238009280969662e− 3
(4, 3)> 1.001897214378523e− 3 6.394968777380557e− 4
(4, 4)> −5.245893293792780e− 4 −3.235515958444042e− 4
(5, 0)> −1.164319479827057e− 3 1.763497017252765e− 4
(5, 1)> 7.387715108399147e− 4 −1.921613809934466e− 4
(5, 2)> −7.461536801662422e− 4 5.432997984785985e− 5
(5, 3)> 2.910515258360107e− 4 −9.947195162347106e− 5
(5, 4)> −1.227747126128741e− 4 9.134245078439554e− 5
(5, 4)> 6.948615475677912e− 5 −1.704507895634243e− 5
β ∈ Λ1 ã0,1

β ã1,1
β+ρ1

0 3.455025863243808e− 1 2.703911707545501e− 1
(1, 0)> −2.490210949480987e− 2 2.185848958002024e− 2
(1, 1)> −3.869595091541100e− 2 7.716612997634015e− 4
(2, 0)> 1.553766661550493e− 2 6.729120883960320e− 3
(2, 1)> 1.084354693782524e− 2 3.062158804930768e− 3
(2, 2)> 3.637256100741115e− 3 −3.405689922203835e− 3
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primal: Φsc
4

Φ̃sc
7,4 Φ̃v

7,4

β ∈ Λ0 ã0,0
β ã0,0

β ã1,0
β+ρ1

0 1.458911886757529e+ 0 1.396326786315009e+ 0 1.521346127569127e+ 0
(1, 0)> −1.778461112855403e− 1 −1.986667789131478e− 1 −1.547563314813057e− 1
(1, 1)> −2.093876624779061e− 2 −1.544903102142589e− 2 −3.135088448472284e− 2
(2, 0)> 6.857354861895532e− 2 6.255291191188503e− 2 8.751851770230691e− 2
(2, 1)> 3.236481070927068e− 2 3.676452480358103e− 2 2.323270716823020e− 2
(2, 2)> −1.717426290204790e− 3 5.200412965743353e− 3 −1.749197937158220e− 2
(3, 0)> −4.596678882003101e− 3 −3.124540661208656e− 2 1.624706703902110e− 2
(3, 1)> −3.133410975622854e− 2 −4.210422075601192e− 2 −1.429238886134079e− 2
(3, 2)> −4.329058820641301e− 3 −4.206266834749632e− 3 4.320806368679196e− 4
(3, 3)> 2.081390698034639e− 2 1.666413402923058e− 2 1.825191628947080e− 2
(4, 0)> 1.569286498286392e− 2 8.154998095399735e− 3 1.025119877205654e− 2
(4, 1)> 3.895349498565826e− 3 4.285140465989735e− 3 7.413107823787608e− 3
(4, 2)> −4.051827858865090e− 3 −3.379083689063001e− 3 −2.317967585919351e− 3
(4, 3)> −2.839851670560841e− 3 −4.151383008697436e− 3 −3.925628917282185e− 3
(4, 4)> −1.763789633477622e− 3 −3.664961964335934e− 4 1.005378056087144e− 3
(5, 0)> −3.892822704883545e− 3 −1.324791758477191e− 3 −2.914321975227278e− 3
(5, 1)> 1.418253898066458e− 4 −5.810155787312109e− 4 −5.515600313668114e− 4
(5, 2)> 3.838208750554210e− 4 3.442958521348178e− 4 3.232051831561194e− 4
(5, 3)> 4.556301657928507e− 4 1.160149767548107e− 3 2.454799464058327e− 4
(5, 4)> 1.164864453559067e− 3 3.626887278286816e− 4 4.004012043884906e− 4
(5, 5)> −8.987990829219059e− 4 −4.846667609708030e− 4 −3.783409944884670e− 4
(6, 0)> −5.553645445971952e− 5 −5.990299170780752e− 5 7.946062023815245e− 5
(6, 1)> 4.566771922883294e− 4 1.509295306249043e− 4 4.527089197231077e− 4
(6, 2)> −4.140111896491555e− 5 −1.761617748317946e− 4 8.130273144277811e− 5
(6, 3)> −5.358995772262187e− 4 −2.932436779286007e− 4 −3.626874305372066e− 4
(6, 4)> 1.304494204664221e− 4 1.352649303700866e− 4 4.233489034190845e− 5
(6, 5)> 1.085838920218643e− 4 5.527206749547874e− 5 5.540956823780667e− 5
(6, 6)> −3.207379833170564e− 5 −1.642549248204695e− 5 −1.768154722622150e− 5
(7, 0)> 2.433398549930865e− 6 4.837745679320686e− 5 −5.417270332292274e− 5
(7, 1)> −7.516762843217175e− 5 1.472699790675799e− 6 −8.480845148160575e− 5
(7, 2)> 5.654627775807603e− 5 1.906963682479146e− 5 4.262163684047053e− 5
(7, 3)> 6.142310065938417e− 5 6.340131814282471e− 6 6.229043402323261e− 5
(7, 4)> −5.909786200839252e− 5 −2.926209254763072e− 5 −3.253536435593549e− 5
(7, 5)> 1.220139551698823e− 5 5.393340374289127e− 6 6.276047618224489e− 6
(7, 6)> −1.552311440337069e− 7 −2.317529894409219e− 7 2.553272538335563e− 7
(7, 7)> 5.301613641468597e− 8 5.583477050759378e− 7 −5.027820829441454e− 7
β ∈ Λ1 ã0,1

β ã0,1
β ã1,1

β+ρ1

0 3.535747703388350e− 1 3.961584661555971e− 1 3.170849596965070e− 1
(1, 0)> −5.782201964437747e− 2 −6.948004572752114e− 2 −6.201468211115798e− 2
(1, 1)> −2.789477543454291e− 2 −3.427844444210647e− 2 2.238986209599518e− 2
(2, 0)> 1.150915699951111e− 2 3.688916598661446e− 2 −1.089002623088525e− 2
(2, 1)> 1.898513583553627e− 2 9.138665622549374e− 3 7.613294936478802e− 3
(2, 2)> −1.855318274669944e− 2 −8.040870544001317e− 3 −1.091251275369930e− 2
(3, 0)> −8.189642068967714e− 3 3.742815034438686e− 3 −1.334612155359254e− 2
(3, 1)> 6.917206118384043e− 3 6.195550835068113e− 3 8.068925406940195e− 4
(3, 2)> 2.178053665199900e− 5 1.022081455892033e− 3 −8.940172229488332e− 4
(3, 3)> 2.995228893166258e− 5 3.154471999987643e− 4 −2.840545395502372e− 4
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Example 2: M = Ms

Primal Masks

n = 1 :

Φsc
1

β ∈ Λ1 a0,1
β

0 103/256
(0, 1)> 25/512

n = 2 :

Φsc
2 Φv

2

β ∈ Λ1 a0,1
β a0,1

β a1,1
β+ρ1

0 111/256 63/128 17/64
(1, 0)> −25/256 −17/128 3/32
(0, 1)> 7/64 7/32 31/512
(1, 1)> 0 −1/8 17/512
(0, 2)> −23/512 −13/512 −9/128
(1, 2)> 9/512 1/512 3/64

n = 3 :

Φsc
3 Φv

3

β ∈ Λ1 a0,1
β a0,1

β a1,1
β+ρ1

0 4543/8192 2359/4096 3263/8192
(1, 0)> −745/4096 −1529/8192 43/8192
(2, 0)> 203/8192 177/8192 15/2048
(0, 1)> 327/8192 2301/16384 31/2048
(1, 1)> 157/4096 −1299/16384 211/4096
(2, 1)> −11/8192 93/16384 3/16384
(0, 2)> −375/16384 −15/2048 −725/16384
(1, 2)> −19/4096 −29/2048 69/4096
(2, 2)> −53/16384 −43/8192 11/16384
(0, 3)> −11/8192 −39/16384 −23/8192
(1, 3)> 69/8192 45/4096 117/16384
(2, 3)> −1/512 −17/4096 1/8192
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Dual Masks

primal: Φsc
1

Φ̃sc
2,2 Φ̃v

2,2

β ∈ Λ0 ã0,0
β ã0,0

β ã1,0
β+ρ1

0 1.440549531452259e+ 0 1.444779063448928e+ 0 1.447189517747492e+ 0
(1, 0)> −2.190764089509072e− 1 −2.193198643337776e− 1 −2.183223940667431e− 1
(2, 0)> 6.064882532296319e− 2 5.829060394175832e− 2 5.808284705951094e− 2
(0, 1)> −3.307652529873131e− 2 −3.610604387268384e− 2 −3.477143757410776e− 2
(1, 1)> −1.669829648800684e− 2 −1.708466194495554e− 2 −1.653195114763771e− 2
(2, 1)> −1.600338386411846e− 4 9.683599913863785e− 4 8.537676394161649e− 4
(0, 2)> 4.353723050402365e− 3 3.910721104261113e− 3 4.041024811857492e− 3
(1, 2)> 1.236500963460443e− 3 1.191883314526538e− 3 1.245858978327107e− 3
(2, 2)> −9.403605617407395e− 4 −7.634772376040183e− 4 −7.746534276016387e− 4
β ∈ Λ1 ã0,1

β ã0,1
β ã1,1

β+ρ1

0 7.060603211166391e− 1 6.997031503031850e− 1 6.970314959238501e− 1
(1, 0)> −1.554132416532994e− 1 −1.486727665509067e− 1 −1.482119553608431e− 1
(0, 1)> −4.458212403612022e− 2 −4.004578410763379e− 2 −4.138009407342071e− 2
(1, 1)> 1.925858430445035e− 2 1.563601382613029e− 2 1.586490219728156e− 2

primal: Φsc
2

Φ̃sc
3,2 Φ̃v

3,2

β ∈ Λ0 ã0,0
β ã0,0

β ã1,0
β+ρ1

0 1.441170242241141e+ 0 1.421859276886160e+ 0 1.764362012832098e+ 0
(1, 0)> −1.550562346343914e− 1 −1.595892336521966e− 1 −1.856946251114907e− 1
(2, 0)> 1.114461288794294e− 1 1.211016115569202e− 1 −5.014975641604906e− 2
(3, 0)> −1.291251536560865e− 2 −8.379516347803423e− 3 1.772587511149067e− 2
(0, 1)> −1.056158356640418e− 1 −2.425261921542349e− 1 −5.874423628080448e− 2
(1, 1)> −5.747918989364955e− 2 −4.491744979803883e− 2 −5.562066029634941e− 2
(2, 1)> −1.879582167979076e− 3 6.657559607711744e− 2 −2.531538185959776e− 2
(3, 1)> 2.791689893649548e− 3 −9.770050201961174e− 3 9.331602963494031e− 4
(0, 2)> 6.907597437746077e− 2 2.895873830031883e− 2 2.478187566683178e− 2
(1, 2)> 1.134762223419044e− 2 1.216356205739538e− 2 1.686253252006832e− 2
(2, 2)> −2.086611218873038e− 2 −8.074941501594150e− 4 1.280937166584112e− 3
(3, 2)> 2.324252765809557e− 3 1.508312942604616e− 3 −3.190657520068320e− 3
(0, 3)> −4.357759833989537e− 3 1.525081007135403e− 2 −1.456640462594190e− 3
(1, 3)> 6.128099766547787e− 4 −2.144645166284160e− 3 2.048400650523080e− 4
(2, 3)> 2.178879916994769e− 3 −7.625405035677013e− 3 7.283202312970950e− 4
(3, 3)> −6.128099766547787e− 4 2.144645166284160e− 3 −2.048400650523080e− 4
β ∈ Λ1 ã0,1

β ã0,1
β ã1,1

β+ρ1

0 6.322241573438326e− 1 5.858062474015070e− 1 3.184870388583356e− 1
(1, 0)> −1.322241573438326e− 1 −8.580624740150704e− 2 1.815129611416644e− 1
(0, 1)> −3.486207867191630e− 2 1.220064805708322e− 1 −1.165312370075352e− 2
(1, 1)> 3.486207867191630e− 2 −1.220064805708322e− 1 1.165312370075352e− 2
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primal: Φv
2

Φ̃v
2,2

β ∈ Λ0 ã0,0
β ã1,0

β+ρ1

0 1.476846649101118e+ 0 1.875366517566218e+ 0
(1, 0)> −7.147504047098890e− 2 −9.199266653031440e− 2
(2, 0)> 1.659345856056912e− 1 −3.332534862685921e− 2
(3, 0)> −2.416704937276110e− 2 −3.649423313435604e− 3
(0, 1)> −9.413559239331361e− 2 −1.898190047712446e− 1
(1, 1)> −7.827371859238917e− 2 −7.590752676264784e− 2
(2, 1)> −2.329048017053070e− 2 2.455122601843477e− 2
(3, 1)> 7.915442225201668e− 3 5.549250395460341e− 3
(0, 2)> −6.889684084070262e− 2 1.100850009702430e− 3
(1, 2)> −7.797901255882132e− 3 −8.703852796407199e− 3
(2, 2)> 2.391985596722631e− 2 −1.107898945797622e− 2
(3, 2)> −2.730663197242868e− 3 −1.824711656717802e− 3
(0, 3)> 2.786835409915918e− 2 7.150650562731158e− 3
(1, 3)> 2.583677812980664e− 3 3.739425094997325e− 3
(2, 3)> −1.022629130739209e− 2 1.325604608219210e− 4
(3, 3)> 1.124207929206836e− 3 −3.153935280982471e− 5
β ∈ Λ1 ã0,1

β ã1,1
β+ρ1

0 3.204127523553855e− 1 1.561048399423833e− 1
(1, 0)> −1.368190023553855e− 1 2.748891005761668e− 2
(0, 1)> 1.821862274897458e− 1 1.420549763613697e− 1
(1, 1)> −2.398310248974584e− 2 1.614814863863025e− 2
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primal: Φsc
3

Φ̃sc
5,3 Φ̃v

5,3

β ∈ Λ0 ã0,0
β ã0,0

β ã1,0
β+ρ1

0 1.248860584413378e+ 0 1.167615178187773e+ 0 1.446572429884526e+ 0
(1, 0)> −1.072570932069709e− 1 −7.728925091671431e− 2 −1.433277093828857e− 1
(2, 0)> 1.558735171187718e− 1 1.888546938821553e− 1 6.085221561513490e− 2
(3, 0)> −8.955070805230042e− 2 −1.187284742137577e− 1 −5.378123789590539e− 2
(4, 0)> 2.096572192453899e− 2 2.860724827395809e− 2 1.713110069260200e− 2
(5, 0)> −1.922667490728697e− 3 −2.712743619527932e− 3 −1.621521471208812e− 3
(0, 1)> −1.870410495370978e− 2 −1.403335900393712e− 1 5.863037052559802e− 2
(1, 1)> −6.885758248669444e− 2 −4.793393782781558e− 2 −9.535676594603251e− 2
(2, 1)> −1.858256869770499e− 2 4.086806633413162e− 2 −5.062314323670625e− 2
(3, 1)> 2.954225407576334e− 2 8.709039637571915e− 3 5.538733948680068e− 2
(4, 1)> −1.051752726294012e− 2 −9.153419751946031e− 3 −1.714419046359280e− 2
(5, 1)> 8.631799734310942e− 4 7.727497527436601e− 4 1.517278021731859e− 3
(0, 2)> 3.715665709594559e− 2 2.706775067857388e− 3 5.569263783068024e− 2
(1, 2)> 1.316573719691788e− 2 2.280972899981356e− 2 1.168667506074336e− 2
(2, 2)> −5.143439255359894e− 3 9.587462117313924e− 3 −1.596134119595940e− 2
(3, 2)> 2.172726483773679e− 3 −7.287080015136010e− 3 3.790644889919228e− 3
(4, 2)> 1.945970082387100e− 3 4.440009723757393e− 3 3.495881655619283e− 3
(5, 2)> 4.239569430844405e− 5 −1.417896096775507e− 4 −9.646057566259234e− 5
(0, 3)> 5.383358933710038e− 3 1.111979655321926e− 2 8.751383345390871e− 4
(1, 3)> −4.372920227797116e− 3 −6.224201371556257e− 3 −1.460320384266236e− 3
(2, 3)> −4.101113058409931e− 3 −5.680499646148411e− 3 −2.424581192953283e− 3
(3, 3)> 1.771847259905660e− 3 3.506951089912501e− 3 −1.007506201115389e− 3
(4, 3)> −1.154042970945087e− 3 −2.442875192961218e− 3 −5.764645368162608e− 4
(5, 3)> 3.759640539145489e− 5 1.537737191437562e− 4 −9.564997711837430e− 5
(0, 4)> −1.128882896364643e− 3 1.488702290401376e− 3 −3.338595407112227e− 3
(1, 4)> 3.278983151430856e− 4 −9.110977301904477e− 4 1.156779805136713e− 3
(2, 4)> 1.624873804498521e− 4 −8.382304989510840e− 4 7.937529028566722e− 4
(3, 4)> −2.707553531526255e− 4 9.086381256274376e− 4 −1.036200932986718e− 3
(4, 4)> 4.019540677324694e− 4 9.387935375039568e− 5 8.755448006994410e− 4
(5, 4)> −5.714296199046007e− 5 2.459604563010142e− 6 −1.205788721499952e− 4
(0, 5)> −1.341465581454279e− 4 5.767099484458133e− 4 −5.054014841575678e− 4
(1, 5)> 6.890501685353420e− 5 −3.179697641278453e− 4 2.665717299703359e− 4
(2, 5)> 8.187897788907335e− 5 −9.208229619793408e− 5 2.251497764690581e− 4
(3, 5)> −7.554510029609942e− 5 2.853576033795180e− 4 −2.719809494541078e− 4
(4, 5)> −1.480569881635941e− 5 −1.962726780249726e− 4 2.755096560972586e− 5
(5, 5)> 6.640083442565223e− 6 3.261216074832735e− 5 5.409219483771981e− 6
β ∈ Λ1 ã0,1

β ã0,1
β ã1,1

β+ρ1

0 6.082108306133408e− 1 6.547914852818604e− 1 4.742933247739849e− 1
(1, 0)> −1.829061097649758e− 1 −2.657621840016456e− 1 −3.326462357924324e− 2
(2, 0)> 7.469527915163494e− 2 1.109706987197851e− 1 5.897129880525828e− 2
(0, 1)> −6.561561368690245e− 4 8.464125900104696e− 2 −4.621352655426576e− 2
(1, 1)> 3.554414343527990e− 2 −5.824546422272656e− 2 1.125369272173019e− 1
(2, 1)> −3.488798729841087e− 2 −2.639579477832039e− 2 −6.632340066303617e− 2
(0, 2)> −1.048050916980139e− 2 1.178653391333556e− 2 −2.881917138803943e− 2
(1, 2)> 7.080786447207994e− 3 −2.848396021647917e− 2 2.604965101234818e− 2
(2, 2)> 3.399722722593394e− 3 1.669742630314360e− 2 2.769520375691254e− 3
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primal: Φv
3

Φ̃v
5,3

β ∈ Λ0 ã0,0
β ã1,0

β+ρ1

0 1.376634423200461e+ 0 1.605808928234782e+ 0
(1, 0)> −9.284346344637796e− 2 −1.330070581905590e− 1
(2, 0)> 1.555481620561534e− 1 4.730951249653528e− 2
(3, 0)> −5.387061220097746e− 2 −1.412727590628023e− 2
(4, 0)> 8.889420404800214e− 3 2.540817447257451e− 3
(5, 0)> −5.311302914606342e− 4 −1.108718419768552e− 4
(0, 1)> −5.568776915048601e− 2 −1.658862256999892e− 1
(1, 1)> −5.071091314326795e− 2 −5.072632604906623e− 2
(2, 1)> −2.013751301192182e− 2 3.538632534061169e− 2
(3, 1)> 1.620116722476630e− 3 1.380225574763569e− 3
(4, 1)> −1.214730214968739e− 3 −1.639340292750591e− 3
(5, 1)> −1.053313813422444e− 4 1.499726721691176e− 4
(0, 2)> −2.844816616315944e− 2 1.326803720238974e− 2
(1, 2)> 2.299568182253520e− 3 6.096150186695251e− 4
(2, 2)> 1.180214090634767e− 2 −9.013197145961639e− 3
(3, 2)> −3.843814826333664e− 3 −2.101228399370152e− 3
(4, 2)> 8.993266232835055e− 4 8.565629928182265e− 4
(5, 2)> 2.163109213159980e− 5 −3.100217124791819e− 5
(0, 3)> 1.156457264651012e− 2 −5.492985386111831e− 3
(1, 3)> −2.263091987592424e− 3 −2.860964057243435e− 3
(2, 3)> −5.998153942715757e− 3 2.371181297884909e− 3
(3, 3)> 1.596067544430546e− 3 2.216498626453074e− 3
(4, 3)> −4.625021559537686e− 4 −3.030583802434601e− 4
(5, 3)> −1.134533225258886e− 5 −3.390434462410624e− 5
(0, 4)> 1.288996871424384e− 3 2.989783826076559e− 3
(1, 4)> −7.376436340053374e− 4 7.119588180794440e− 5
(2, 4)> −3.826773003266109e− 4 −1.467211640224730e− 3
(3, 4)> 7.535031816069951e− 4 1.226063361790190e− 5
(4, 4)> −1.788775468903265e− 4 5.526331568170471e− 5
(5, 4)> 6.708404089359737e− 5 −5.129269305917772e− 7
(0, 5)> −2.778259889168003e− 5 7.156217256814941e− 4
(1, 5)> −3.722417815508441e− 5 −4.903620157380687e− 4
(2, 5)> −2.879681912346664e− 5 −2.844053219285236e− 4
(3, 5)> −2.566176193167613e− 5 4.128102343523521e− 4
(4, 5)> −2.053937102133819e− 5 −1.366330305028683e− 4
(5, 5)> −3.415495038843051e− 7 1.432429179507176e− 5
β ∈ Λ1 ã0,1

β ã1,1
β+ρ1

0 4.521987792304032e− 1 4.880781875790933e− 1
(1, 0)> −1.329449512187649e− 1 −1.647601533882240e− 1
(2, 0)> 1.930818370711174e− 2 1.524397752788076e− 2
(0, 1)> 7.891896646919766e− 2 1.484235127815599e− 2
(1, 1)> −2.501534030258234e− 2 6.646628606360538e− 2
(2, 1)> 1.262469414588470e− 2 −1.478031702926138e− 2
(0, 2)> 6.815624730985620e− 3 3.452406009121726e− 2
(1, 2)> 4.577075561319153e− 3 −2.378469798030484e− 2
(2, 2)> 2.797973535820227e− 3 3.451311717212584e− 3



146 Chapter A. A Comprehensive List of Masks



Bibliography

[1] ISO/IEC JTC1 10918-x, Information technology – Digital compression and
coding of continuous-tone still images, 1994.

[2] ISO/IEC JTC 1 15444-x, Information technology – JPEG 2000 image coding
system, 2000.

[3] ANSI/IEEE Std 754-1985, IEEE standard for binary floating-point arith-
metic, 1985.

[4] F. S. Acton, Numerical methods that work, pp. 464–467, Mathematical As-
sociation of America, Washington D.C., 1990.

[5] B. K. Alpert, A class of bases in L2 for the sparse representation of integral
operators, SIAM J. Math. Anal. 24 (1993), no. 1, 246–262.

[6] M. Antonini, M. Barlaud, I. Daubechies, and P. Mathieu, Image coding using
wavelet transform, IEEE Trans. Image Process. 1 (1992), no. 2, 205–220.

[7] A. E. Bell and L. R. Iyer, Improving image compression performance with
balanced multiwavelets, Conference Record of the Thirty-Fifth Asilomar Con-
ference on Signals, Systems and Computers (Pacific Grove, CA, USA), vol. 1,
2001, pp. 773–777.

[8] A. E. Bell and M. B. Martin, New image compression techniques using mul-
tiwavelets and multiwavelet packets, IEEE Trans. Image Process. 10 (2001),
no. 4, 500–510.

[9] A. E. Bell and S. Rout, Color image compression: multiwavelets vs. scalar
wavelets, Proceedings of the IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP ’02), vol. 4, 2002, pp. IV–3501–IV–
3504.

[10] C. Cabrelli, C. Heil, and U. Molter, Accuracy of lattice translates of several
multidimensional refinable functions, J. Approx. Theory 95 (1998), 5–52.

147



148 BIBLIOGRAPHY

[11] , Accuracy of several multidimensional refinable distributions, J.
Fourier Anal. Appl. 6 (2000), no. 5, 483–502.

[12] , Self–similarity and multiwavelets in higher dimensions, Mem. Am.
Math. Soc. 170 (2004), no. 807, 82 p.

[13] P. J. Cameron, Permutation groups, London Mathematical Society Student
Texts, vol. 45, Cambridge University Press, 1999.

[14] A. S. Cavaretta, W. Dahmen, and C. A. Micchelli, Stationary subdivision,
Mem. Am. Math. Soc. 93 (1991), no. 453, 186 p.

[15] M. Charina, C. Conti, and T. Sauer, Regularity of multivariate vector subdi-
vision schemes, Numer. Algorithms 39 (2005), no. 1–3, 97–113.

[16] D. R. Chen, R. Q. Jia, and S. D. Riemenschneider, Convergence of vector
subdivision schemes in Sobolev spaces, Appl. Comput. Harmon. Anal. 12
(2002), no. 1, 128–149.

[17] O. Christensen, An Introduction to Frames and Riesz Bases, Birkhäuser,
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