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Introduction

Automorphic and cusp forms on a complex bounded symmetric domain B

are a classical field of research in mathematics, which famous mathemati-
cians have have been occupied with, for example H. Poincaré, A. Borel,
W. L. Baily Jr., H. Maass, M. Koecher and I. Satake . Let us give a
definition:

Suppose B ⊂ Cn is a bounded symmetric domain and G a semisimple Lie

group of Hermitian type acting transitively and holomorphically on B , in
general G = Aut1(B) will be the 1-component of the automorphism group
Aut(B) of B . Let j ∈ C∞(G×B)C be a cocycle, holomorphic in the second
entry. In general j (g,♦) = det g′ for all g ∈ G if G = Aut1(B) . Let k ∈ Z

and Γ � G be a discrete subgroup. Then a function f ∈ O(B) is called an
automorphic form of weight k with respect to Γ if and only if f = f |γ for
all γ ∈ Γ , where f |g (Z) := f (gZ) j (g,Z)k for all Z ∈ B and γ ∈ Γ . The
function f is called a cusp form of weight k with respect to Γ if and only if
f is in addition square-integrable over Γ\B in a certain sense, see section 1.2 .

Automorphic and cusp forms play a fundamental role in representation
theory of semisimple Lie groups of Hermitian type, they have various
applications to number theory, especially in the simplest case where B

is the unit disc in C , biholomorphic to the upper half plane H via a
Cayley transform, G = SL(2, IR) acting on H via Möbius transforma-
tions and Γ � SL(2,Z) of finite index. Also for mathematical physics
cusp forms are of some interest since the space Sk(Γ) of cusp forms is a
quantization space of the space Γ\B treated as the phase space of a physi-
cal system. In this concept one obtains the classical limit by taking k �∞ .

The starting point of the research presented in this thesis have been two
articles by Svetlana Katok and Tatyana Foth , namely

• Foth, Tatyana and Katok, Svetlana: Spanning sets for automorphic
forms and dynamics of the frame flow on complex hyperbolic spaces,
[5] ,
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• Katok, Svetlana: Livshitz theorem for the unitary frame flow, [11] .

In these articles Foth and Katok construct spanning sets for the space
of cusp forms on a complex bounded symmetric domain B of rank 1 ,
which by classification is (biholomorphic to) the unit ball of some Cn ,
n ∈ IN , and Γ � G = Aut1(B) is discrete such that vol Γ\G < ∞ , Γ\G
not necessarily compact. They use a new geometric approach, whose main
ingredient is the concept of a hyperbolic (or Anosov) diffeomorphism
resp. flow on a Riemannian manifold and an appropriate version of the
Anosov closing lemma. This concept originally comes from the theory
of dynamical systems, see for example in [10] . Roughly speaking a flow
(ϕt)t∈IR on a Riemannian manifold M is called hyperbolic if there exists an
orthogonal and (ϕt)t∈IR-stable splitting TM = T+⊕T−⊕T 0 of the tangent
bundle TM such that the differential of the flow (ϕt)t∈IR is uniformly
expanding on T+ , uniformly contracting on T− and isometric on T 0 ,
and finally T 0 is one-dimensional generated by ∂tϕt . In this situation
the Anosov closing lemma says that given an ’almost’ closed orbit of the
flow (ϕt)t∈IR there exists a closed orbit nearby. Indeed given a complex
bounded symmetric domain B of rank 1 , G = Aut1(B) is a semisimple
Lie group of real rank 1 , and the root space decomposition of its Lie

algebra g with respect to a Cartan subalgebra a � g shows that the
geodesic flow (ϕt)t∈IR on the unit tangent bundle S(B) , which is at the
same time the left-invariant flow on S(B) generated by a � IR , is hyperbolic.

The purpose of the research presented in this thesis now is to generalize
Foth’s and Katok’s approach in two directions: the higher rank case
and the case of super automorphic and super cusp forms on a bounded
symmetric super domain.

In chapter 1 we treat the generalization to the higher rank case. It is
well known that the theory of complex bounded symmetric domains
is closely related to the theory of semisimple Lie groups of Hermitian
type and also to the theory of Hermitian Jordan triple systems, see for
example [13] . If G is a semisimple Lie group of Hermitian type then
the quotient G/K , where K denotes a maximal compact subgroup of
G , can be realized as a complex bounded symmetric domain B such
that G is a covering of Aut1(B) . On the other hand there exists a
one-to-one correspondence between complex bounded symmetric domains
B and Hermitian Jordan triple systems Z such that B is realized as the
unit ball in Z . Hence there exist equivalent classifications of complex
bounded symmetric domains, semisimple Lie groups of Hermitian type and
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Hermitian Jordan triple systems. A classification of bounded symmetric
domains can be found for example in section 1.5 of [16] . In this thesis
the classification does not play a fundamental role, but the general theory
of semisimple Lie groups and Hermitian Jordan triple systems does, in
particular when clarifying the correspondence between MFTG (maximally
flat and totally geodesic) submanifolds of B , maximal split Abelian
subgroups of G (which are in one-to-one correspondence with Cartan

subalgebras of g via expG ) and frames in the corresponding Jordan triple
system. This is treated in section 1.1 . Let q be the rank of B . Then by
definition MFTG submanifolds of B are q-dimensional, and they are the
natural generalizations of geodesics in the rank 1 case. Also a Cartan

subalgebra of g now is q-dimensional, and so the geodesic flow general-
izes to a q-dimensional multiflow (ϕt)t∈IRq on S(B) , the frame bundle on B .

In generalizing Katok’s and Foth’s approach there are two major steps:

(i) On the geometric-dynamical side one has to generalize the notion of
hyperbolic flows and the Anosov closing lemma.

(ii) On the analytic-arithmetic side one has to prove and apply an ap-
propriate version of Satake’s theorem, which says that under certain
conditions and with respect to a certain measure on Γ\B the space of
cusp forms is the intersection of the space of automorphic forms with
the space Lr(Γ\B) for all r ∈ [ 1,∞ ] and k � 0 .

In this thesis we present a solution of part (i) generalizing the theory to
partially hyperbolic flows. Concerning part (ii) , as expected, there are
major difficulties. The main problem is that so far we are not able to handle
the Fourier expansion of an automorphic form at a cusp of Γ\B in the
higher rank case, which would lead to an appropriate version of Satake’s
theorem and a growth condition of a cusp form at cusps. However we
obtain a result for discrete subgroups Γ � G such that Γ\G is compact and
hence there are no cusps. Clearly this is an area where more research is
needed.

In the second part of the thesis we treat a generalization to super auto-
morphic forms, where our approach is more successful. For doing so it is
necessary to develop the theory of super manifolds first. This is done in
chapter 2 . Of course the general theory of (Z2-) graded structures and
super manifolds is already well established, see for example [4] . It has first
been developed by F. A. Berezin as a mathematical method for describ-
ing super symmetry in physics of elementary particles. However even for
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mathematicians the elegance within the theory of super manifolds is really
amazing and satisfying. Roughly speaking a real super manifold is an object
which has a pair (p, q) ∈ IN2 as dimension, p being the even and q being the
odd dimension. Characteristic of a supermanifoldM of dimension (p, q) is:

(i) it has a so-called body M =M# , which is an ordinary p-dimensional
C∞-manifold,

(ii) we have a graded algebra D(M) of ’functions’ on M , which are the
global sections of a sheaf S on M locally isomorphic to C∞M ⊗Λ (IRq) ,
and finally

(iii) there is a body map # : S → C∞M being a unital graded algebra epi-
morphism.

For the application to super automorphic forms we develop the concept
of parametrisation, where the ’parameters’ are odd elements of some
Grassmann algebra P := Λ (IRn) . It turns out that this concept,
which seems to be new in the theory of super manifolds, has far reaching
applications. The original purpose for doing so is the following: For the
definition of the space of super automorphic or super cusp forms we need
something like a discrete subgroup of a super Lie group G acting on a
complex bounded symmetric super domain B . But an ordinary discrete
subgroup of G is nothing but a discrete subgroup of the body G = G# of
G , which is an ordinary real C∞-Lie group acting on the body B = B#

of B . On the other hand considering parametrized discrete subgroups Υ
of G gives a much wider class of discrete sub super Lie groups of G not
necessarily restricted to the body G . It turns out that even within the
theory of super manifolds, especially in the theory of super Lie groups,
the new concept of parametrization is very useful. In particular the idea
of parametrized super points of super manifolds gives nice interpretations
of the definition of super embeddings and super projections between super
manifolds, see for example lemma 2.27 in section 2.2 . The same holds for
the multiplication and inversion super morphisms on super Lie groups, see
section 2.4 . Parametrized super points of a super manifold separate points
on the graded algebra D(M) of super functions on M , more precisely
if f ∈ D(M) such that f(Ξ) = 0 for all parametrized super points Ξ of
M then f = 0 . And so in some sense parametrized super points are the
analogon to ordinary points of C∞-manifolds.

Most surprising when dealing with parametrisation within the theory of
super manifolds is the fact that parametrization even makes sense if there
are no odd dimensions at all and so we deal with classical non-super objects.
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The category of ordinary open subsets of all IRp , p ∈ IN , together with P-
super morphisms is a proper extension of the category of open subsets of all
IRp together with C∞-maps. In other words given U ⊂

open
IRp and V ⊂

open
IRr

there are P-super morphisms from U to V which are not ordinary C∞-maps!

Also the subcategory of all P-super manifolds having dimension (p, 0) ,
p ∈ IN , together with P-super morphisms contains the category of
C∞-manifolds together with C∞-maps as a proper subcategory. In other
words there exist P-super manifolds M of dimension (p, 0) , p ∈ IN ,
which are not ordinary C∞- manifolds. However in the case P = IR (the
non-parametrized case) the subcategory of all P-super manifolds having
dimension (p, 0) , p ∈ IN , together with P-super morphisms is equal to
the category of C∞-manifolds together with C∞-maps, and an IR-super
morphism between open sets U ⊂ IRp and V ⊂ IRr is nothing but an
ordinary C∞-map.

Another result, which seems to be new, about super manifolds is the fol-
lowing: Given an odd complex dimension represented by an odd complex
coordinate function ζ it is indeed possible to split this single complex odd di-
mension into two real odd dimensions represented by the real odd coordinate
functions

ξ = Re ζ :=
ζ − iζ

2
and η = Im ζ :=

−iζ + ζ

2
.

Hence a complex (p, q)-dimensional (P-) super manifold is at the same
time a real (2p, 2q)-dimensional (P-) super manifold, and we obtain a
functor from the category of holomorphic (P-) super manifolds together
with holomorphic (P-) super morphisms to the category of real (P-)
super manifolds together with (P-) super morphisms forgetting about the
’complex structure’.

For a discussion of super automorphic and super cusp forms we restrict
ourselves to the case of the super special pseudo unitary group sSU(p, q|r) ,
p, q, r ∈ IN , acting on the super matrix ball Bp,q|r which is the complex
bounded symmetric super domain of dimension (pq, qr) with the full matrix
ball Bp,q ⊂ Cp×q as body. So far there seems to be no classification of
super complex bounded symmetric doimains although we know some basic
examples, see for example in chapter IV of [3] . In this context the reader
perhaps is missing the notion of super integration, see for example in [4].
In super integration there is indeed an analogon for the change of variables
formula, but there are still open problems constructing fundamental
domains for the quotient Υ\G , which is a P-super manifold, Υ being a
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discrete P-subgroup of G .

However in the case of a non-parametrized discrete subgroup Γ = Υ of G ,
which is simply an ordinary discrete subgroup of the body G = G# of G ,
we are able to define the space of super cusp forms sSk(Γ) of weight k as
a Hilbert space containing all super automorphic forms of weight k with
respect to Γ which are square-integrable in a certain sense.

As the main result of this thesis we succeed to generalize Foth’s and Ka-

tok’s method for rank q = 1 and either Γ\G compact or p ≥ 2 and
vol Γ\G < ∞ . In this case we construct a spanning set for the space of
super cusp forms under the additional assumption that the right translation
with the maximal split Abelian subgroup A � G is topologically transitive
on Γ\G , which is satisfied by ’almost all’ discrete subgroups Γ � G .
As the major step in the proof, we are able to prove a super analogon for
Satake’s theorem using Fourier expansion of super automorphic forms
at cusps after transforming the situation to the unbounded realization H of
B via a Cayley transform.

By the way the calculations in chapter 3 when dealing with super auto-
morphic and super cusp forms with respect to non-parametrized discrete
subgroups Γ in the case q = 1 are equivalent to the notion of ’twisted’ au-
tomorphic resp. cusp forms, and so chapter 3 shows in particular how to
extend Foth’s and Katok’s approach to such ’twisted’ automorphic and
cusp forms. By ’twisted’ automorphic resp. cusp forms we mean the follow-
ing:

Let V be a finite-dimensional unitary vector space over C

and χ : Γ → U(V ) a homomorphism. Then f ∈ O(B) ⊗ V

is called a twisted automorphic form of weight k with re-
spect to Γ and χ if and only if f |γ = χ(γ)f . f is called a
twisted automorphic form of weight k with respect to Γ and χ

if and only if it is in addition square integrable in a certain sense.

For discrete parametrized subgroups Υ of G we obtain partial results.
The space sMk(Υ) of automorphic forms of weight k with respect to Υ
is a graded PC-module, and in the general case it is not clear how to
define the space of cusp forms for such Υ as a graded PC-submodule of
sMk(Υ) since by the reasons desribed above there is no concept of square
integrability on D (Υ\G) . However in some special cases we can give
some ideas how to define the space sSk(Υ) of super cusp forms, not as
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a Hilbert space, and how to obtain spanning sets of sSk(Υ) over PC .
Hereby we treat a parametrized discrete subgroup Υ of G as a perturbation
of its body Γ = Υ# and so the space sSk(Υ) of super cusp forms as a
perturbation of sSk(Γ) � PC . Hence the idea is first to find a spanning
set (ϕλ)λ∈Λ for sSk(Γ) and then to deform the elements ϕλ to super cusp
forms ψλ ∈ sSk(Υ) , λ ∈ Λ , which then under certain conditions will give a
spanning set for sSk(Υ) over PC . Again notice that even in the case where
Υ is a parametrized discrete subgroup of G = G = sSU(p, q|0) = SU(p, q) ,
the classical case where there are no odd dimensions, the definition of the
space sSk(Υ) of super cuspforms is a non-trivial problem, not to mention
the problem of constructing spanning sets for sSk(Υ) . For a general
concept of super cusp forms for parametrized subgroups further research is
needed.

Finally, the last chapter, chapter 4 , of this thesis deals with another aspect
of super manifolds, namely the pointwise realization of super open sets in
contrast to chapter 2 , where we introduce super open sets as ringed spaces.
It turns out that given a real super open set U |q the graded algebra D

(
U |q)

belonging to U |q is nothing but the (reduced) graded algebra of continuous
and partially differentiable functions on the set U |q (which is now really a
set of points) . Surprisingly this is at the same time the (reduced) graded
algebra of all arbitrarily often diffentiable functions on U |q , see theorem 4.8
in section 4.1 , and this gives a hint why super theory is a generalization only
of C∞-structures while there is no super analogon to Ck-structures, k ∈ IN .
This is not directly related to super autorphic forms, but could be of
potential value when studying the fine structure of fundamental domains
for parametrized discrete subgroups.

Here for short the dependence amoung the 4 chapters of this thesis:

1 2 ��� 4

↘ ↙
3

.

Acknowledgement: I would like to thank my doctoral advisor Prof. Dr.
Harald Upmeier for many helpful comments and mentoring throughout my
work on the present thesis, my parents for support and appreciation and all
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List of symbols

IN := {0, 1, 2, 3, . . . } , the set of natural numbers,

Z the ring of integer numbers,

Q , IR , C the fields of rational, real resp. complex num-
bers,

C , C∞ , O the sheaves of continuous resp. infinitely often
differentiable functions with values in IR resp.
the sheaf of holomorphic functions with values
in C ,

g , k , n , a the Lie algebras of the real Lie groups G , K ,
N , A ,

Aut1(B) the 1-component of the group of automorphisms
of the domain B ⊂ Cn ,

{ , ∗, } : Z × Z × Z → Z , the Jordan triple product
on the Jordan triple system Z , section 1.1 ,

S(B) the frame bundle over the bounded symmetric
domain B , section 1.1 ,

Adg , adξ : g → g , the adjoint representations of G resp.
g on g ,

Z = Z1 (c)⊕ Z 1
2
(c)⊕ Z0 (c) the Pierce decomposition of the Jordan triple

system Z with respect to the tripotent c ∈ Z ,
section 1.1 ,

Z(Q) , N(Q) the centralizer resp. normalizer of the set Q ,

Bp,q := {Z ∈ Cp×q | Z∗Z
 1} the full complex ma-
trix ball,

SU(p, q) := {g ∈ SL(p+ q,C) | g∗Jg = J } , the special

pseudo unitary group, J :=

⎛⎝ 1 0

0 −1

⎞⎠ }p
}q

,

g =
⊕

α∈Φ gα the root space decomposition of the Lie algebra
g , section 1.1 ,
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f̃ ∈ CG resp. ∈ D(G) the ’lift’ of f ∈ CB resp.
f ∈ D(B) to the Lie group G resp. super Lie

group G , section 1.2 resp. 3.1 ,

Lrk (Γ\B) :=
{
f ∈ CB

∣∣∣ f̃ ∈ Lr (Γ\G)
}

, section 1.2 ,

Lsk (Γ\B) :=

⎧⎨⎩f ∈ D(B)

∣∣∣∣∣∣
∣∣∣f̃ ′∣∣∣ ∈ Ls (Γ\G)

⎫⎬⎭ , section

3.1 ,

∆ (Z,W) ∈ O(B)⊗O(B) the Jordan triple determinant
on the complex bounded symmetric domain B ,
section 1.2 ,

Mk(Γ) , Sk(Γ) the space of automorphic resp. cusp forms of
weight k with respect to the discrete subgroup
Γ � G , section 1.2 ,

TM = T 0 ⊕ T+ ⊕ T− the splitting of the tangent space of a manifold
M with respect to a partially hyperbolic diffeo-
morphism resp. flow on M , section 1.3 ,

v̇ ∈ Z2 the parity of the homogeneous element v
of a graded vector space , see section 2.1 ,

℘(n) the power set of {1, . . . , n} ,

Λ(V ) the exterior (Grassmann) algebra over the vec-
tor space V ,

a# , M# , f# the body of an element a ∈ Λ (Kn) , a super
manifold M resp. a function f ∈ D(M) on a
super manifoldM , see sections 2.1 and 2.2 ,

A(p|q)×(r|s) the graded vector space of (p|q)×(r|s) - matrices
over the graded algebra A , section 2.1 ,

GL(p|q,A) the group of invertible even (p|q) × (p|q) - ma-
trices over the graded algebra A , section 2.1 ,

A× the set of invertible elements of the unital alge-
bra A ,

strX , Ber g the supertrace of a matrix X ∈ A(p|q)×(p|q) resp.
the Berezinian of a matrix g ∈ GL(p|q,A) , sec-
tion 2.1 ,

A� B the graded tensor product of the graded algebras
A and B , section 2.1 ,
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D
(
♦|q)

M
, D
(
♦|q,q)

M
the sheaf C∞M ⊗ Λ (IRq) on the real C∞-manifold
M resp. the sheaf (C∞M )C ⊗ Λ (Cq) � Λ (Cq) on
the holomorphic manifold M , section 2.2 resp.
2.3 ,

U |q , U |q,q the real resp. complex (p, q)-dimensional super
open set with body U ⊂

open
IRp resp. U ⊂

open
Cp ,

see sections 2.2 and 4.1 resp. 2.3 and 4.2 ,

D(ϕ,Φ) the super Jacobian of the P-super morphism
(ϕ,Φ) between two super open sets, section 2.2 ,

Γ∞
E the sheaf of C∞-sections from a real C∞-manifold

into the C∞-vectorbundle E over M ,

M×P N the P-cross product between two P-super man-
ifoldsM and N , section 2.2 ,

O
(
♦|q,q)

M
the sheaf OM ⊗Λ (Cq) on the holomorphic man-
ifold M , section 2.3 ,

sGL(n|r) the
(
n2 + r2, 2nr

)
-dimensional holomorphic su-

per Lie group (GL(n,C)×GL(r,C))|2nr,2nr ,
section 3.1 ,

sSU(p, q|r) ↪→ sGL(p+q|r) the super special pseudo unitary
super Lie group, section 3.1 ,

Bp,q|r := (Bp,q)|qr,qr , the complex (pq, qr)-dimensional
super open set with body Bp,q ⊂

open
Cp×q ,

sMk(Υ) , sSk(Υ) the spaces of super automorphic resp. super
cusp forms of weight k with respect to the dis-
crete P-subgroup Υ of G , see sections 3.1 and
3.4 ,

f̃ ′ ∈ C∞(G) ⊗ Λ (Cr×s) , the alternative ’lift’ of a
function f ∈ D(B) to the Lie group G = G# ,
section 3.1 ,

∆′ (z,w) := z1+w1−w∗
2z2 ∈ O(H)⊗O(H) , the Jordan

triple determinant on the unbounded realization
H of the unit ball B ⊂ Cn , section 3.2 ,

trID :=
∑

j∈I dj , I ∈ ℘(r) , D =

⎛⎜⎜⎜⎝
d1 0

. . .

0 dr

⎞⎟⎟⎟⎠ ,

f#′
, deg′ f the relative body resp. the relative degree of a

function f ∈ D(M)� P ,M being a real super
manifold, see section 3.4 ,
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℘ := {I ⊂ Z finite} ,

ΛIK the graded algebra IK℘ , IK being IR or C , see
the beginning of chapter 4 ,

f̂ ∈ C
(
U |0) resp. ∈ C

(
U |0,0

)
the extension of a

function f ∈ C∞(U) to U |0 , U ⊂
open

IRp resp. to

U |0,0 , U ⊂
open

Cp , section 4.1 resp. 4.2 .
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Chapter 1

Automorphic and cusp forms

in the higher rank case

1.1 The geometry of a bounded symmetric domain

Let us first recall some well known basic facts about bounded symmetric
domains, see for example in [1], [2], [9], [13] , [15] and [16] . Let B ⊂ Cn

be a bounded symmetric domain. Then by classification we may assume
without loss of generality that 0 ∈ B and B is circled around 0 and convex.
Let G := Aut1(B) be the identity component of Aut(B) . By a well known
theorem of H. Cartan we know that G is a semisimple non-compact Lie

group of Hermitian type which acts transitively on B . Let

K := {g ∈ G | g0 = 0}

be the stabilizer group of 0 . Then K is a maximal compact subgroup of
G , and

B � G/K

as a real analytic manifold. According to the Cartan decomposition we can
split the Lie algebra g of G , which is precisely the Lie algebra of completely
integrable vectorfields on B , as

g = p⊕ k ,

where k is the Lie algebra of K and p is the orthogonal complement of
k with respect to the Killing form of g . The Killing form is negative
definite on k and positive definite on p , expG : p ↪→ G is an injection, but p

is not a sub Lie algebra of g , more precisely [k, k], [p, p] � k and [k, p] � p .
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Furthermore by classification we know that Z := Cn can be written as a
Hermitian Jordan triple system such that B is the unit ball in Z in the
following sense: Let { , ∗, } denote the Jordan triple product on Z ,
which is by definition C-linear and commutative in the outer variables and
C-antilinear in the second variable. Then for all Z,W ∈ Z we have a linear
operator {Z,W ∗,♦} : Z → Z , and it turns out that

〈Z,W〉 := tr{Z,W∗,♦}

for all Z,W ∈ Z gives a scalar product on Z , and {Z,W ∗,♦}∗ = {W,Z∗,♦}
for all Z,W ∈ Z with respect to 〈 , 〉 . So for all Z ∈ Z the operator
{Z,Z∗,♦} is self ajoint and positive semi-definite. Finally

B = {Z ∈ Z | {Z,Z∗,♦} 
 1} .

Z is uniquely determined up to isomorphism by B , K is the automorphism
group of Z , it can be shown that each automorphism of B belonging to K
extends uniquely to a linear (!) automorphism of Z and so it is unitary with
respect to 〈 , 〉 . Therefore there exists a unique G-invariant Hermitian
metric on B which is 〈 , 〉 at 0 ∈ B , it is called the Bergman metric. We
have canonical isomorphisms p � T0B as real verctorspaces and
TZB � T0B = Z as complex vector spaces for all Z ∈ B , and this fact
turns p and TZB into a Jordan triple product and at the same time into
a Hilbert space. Recall that the latter isomorphisms are not the identity
although TZ = Cn for all Z ∈ B . The first isomorphism is the consequence
of a more subtle construction. As a bounded symmetric domain B has a
so-called compact dual X which is a compact symmetric analytic manifold
such that Z ⊂ X is open and dense. The automorphism group of X is GC

which has gC as Lie algebra. We have two embeddings of Z into gC , which
is the Lie algebra of all completely integrable vectorfields on X . The first
one is the identity, each Z0 ∈ Z identified with the constant vectorfield equal
to Z0 , it is C-linear, and the second is given by

˜ : Z ↪→ gC , Z0 �→ Z̃0 ,

where Z̃0 (Z) := {Z,Z∗
0,Z} for all Z ∈ Z , which is clearly C-antilinear. The

images of both embeddings are commutative sub Lie algebras of gC , and a
straight forward calculation shows that

[
Z,W̃

]
= 2 {Z,W∗,♦}

for all Z,W ∈ Z . The isomorphism Z
∼→ p is precisely the diagonal

Z �→ Z−Z̃ . Via this isomorphism Re 〈 , 〉 on Z coincides with the Killing
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form on p up to a positive constant. Via the isomorphisms p � Z � T0 B

as real vector spaces the adjoint representation of K on p corresponds to the
action of K on Z as automorphism group and to the action of K on T0B

via the differential. Especially

Adk
(
Z̃
)

= k̃Z .

A fundamental concept in the theory of symmetric domains is that of the
rank, which we will define in terms of Z , G and the geometry of B .

An element c of the Jordan triple system Z is called a tripotent if and
only if {c, c∗, c} = c . Associated to a tripotent c ∈ Z we have the Peirce

decomposition

Z = Z1 (c)⊕ Z 1
2
(c)⊕ Z0 (c) ,

as a C-vectorspace, where Zα (c) is the α-eigenspace of the linear operator
{c, c∗,♦} on Z , α = 1, 1

2 , 0 .

Definition 1.1 Two tripotents c, c′ are called orthogonal if and only if one
of the following equivalent conditions is fulfilled:

{i} c ∈ Z0 (c′) ,

{ii} c′ ∈ Z0 (c) ,

{iii} {c, c′∗,♦} = 0 .

It turns out that a sum of two orthogonal tripotents is again a tripotent,
and a tripotent c �= 0 is called primitive if and only if c cannot be writ-
ten as a sum of two orthogonal tripotents �= 0 . Finally a maximal tuple
(e1, . . . , eq) ∈ Zq of primitive and pairwise orthogonal tripotents is called a
frame in Z . Every tripotent c can be written as a sum of primitive, pairwise
orthogonal tripotents, and the number of summands only depends on c and
is called the rank rk c of the tripotent c . rk c = 0 if and only if c = 0 ,
and rk c = 1 if and only if c is primitive if and only if Z1 (c) = C c for all
tripotents c ∈ Z . Finally every Z ∈ Z can be uniquely written as

Z =
r∑
j=1

λjcj (1.1)

with pairwise orthogonal non-zero tripotents c1, . . . , cr ∈ Z and
0 < λ1 < · · · < λr . Then all c1, . . . , cr ∈ Z are linear combinations
of odd powers of Z , and Z ∈ B if and only if λr < 1 . We call 1.1 the
spectral decomposition of Z .
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A subgroup A � G is called split Abelian if and only if A = exp a where the
Lie algebra a � g of A is a commutative sub Lie algebra (a so-called Cartan

subalgebra if it is maximal) of p . Then of course exp is an isomorphism
from a to A , so A is non-compact Abelian isomorphic to some IRq .

Definition 1.2

(i) Let Z be a Jordan triple system. Then the rank of Z is the common
length of all frames in Z .

(iii) Let G be a semisimple Lie group of Hermitian type. Then the real rank
of G is the common dimension of all maximal split Abelian subgroups of G .

(ii) Let B ⊂ Cn be a bounded symmetric domain. Then the rank of B is
the common dimension of all (real and connected) maximal flat and totally
geodesic (MFTG for short) submanifolds of B .

It turns out that in the case where B is the unit ball of the Hermitian
Jordan triple system Z and G is the identity component of AutB the
ranks of Z , G and B coincide. A following theorem clarifies the situation,
but before we have to handle these constructions in the reducible case:

Definition 1.3

(i) B is called reducible if there exist bounded symmetric domains B1 , B2

such that B � B1 ×B2 . Otherwise B is called irreducible.

(ii) the Jordan triple system Z is called simple if and only if {Z,♦,W} �= 0
for all Z,W ∈ Z \ {0} and Z has no non-trivial ideals.

Theorem 1.4

(i) B is irreducible if and only if G is a simple Lie group if and only if Z is
simple.

(ii) If B is reducible then there exist irreducible symmetric bounded domains
B1, . . . , Bs such that B = B1 × · · · ×Bs . Then

G = G1×· · ·×Gs where G1, . . . , Gs are the identity components
of AutB1, . . . ,AutBs resp. ,
B1, . . . , Bs are (isomorphic to) the unit balls of Jordan triple
systems Z1, . . . , Zs resp. such that Z = Z1 ⊕ · · · ⊕ Zs ,
K = K1 × · · · × Ks where K1, . . . ,Ks are the stabilizer groups
of 0 ∈ B1, . . . , Bs resp. ,
the maximal split Abelian subgroups of G are precisely
A1 × · · · × As where A1, . . . , As are maximal split Abelian
subgroups of G1, . . . , Gs resp. ,
the MFTG submanifolds of B are precisely Q1 × · · · ×Qs where
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Q1, . . . , Qs are MFTG submanifolds of B1, . . . , Bs resp. , and
finally
the frames in Z up to order are precisely(
e(1)

1 , . . . , e(1)
q1 , . . . , e

(s)
1 , . . . , e(s)

qs

)
where

(
e(1)

1 , . . . , e(1)
q1

)
, . . . ,(

e(s)
1 , . . . , e(s)

qs

)
are frames in Z1, . . . , Zs resp. .

Proof: (i) B is irreducible if and only if Z is simple, this is the main result
of section 4.11 in [13] , and B is irreducible if and only if G is simple, this
result can be found for example in [1] section 11. 4 . �
(ii) Since B ⊂ Cn and n is finite, clearly B can be written as a product of
finitely many irreducible symmetric domains.
G = G1 × · · · × Gs by iterated application of proposition II in chapter
5 of [14] , which tells us that given two bounded domains D1, D2 ∈ Cn

then any f ∈ Aut1 (D1 ×D2) is of the form f (z1, z2) = f1 (z1) f2 (z2) with
f1 ∈ Aut1 (D1) and f2 ∈ Aut1 (D2) .
Let Z1, . . . , Zs be the Jordan triple systems belonging to B1, . . . , Bs resp. .
Then by an easy calculation one sees that B is the unit ball of Z1⊕· · ·⊕Zs .
Trivially K := K1 × · · · ×Ks is the stabilizer of 0 ∈ B .
The rest can be easily shown by projecting on each factor resp. summand,
since we have p = p1 ⊕ · · · ⊕ ps ,

TZB = TZ1B1 ⊕ · · · ⊕ TZsBs

for each Z = (Z1, . . . ,Zs) ∈ B , Z = Z1 ⊕ · · · ⊕ Zs as orthogonal splittings,
and if c ∈ Z is a primitive tripotent, then there exists an i ∈ {1, . . . , s} such
that c ∈ Zi . �

Theorem 1.5

(i) If Q is an MFTG submanifold of B , then gQ is again an MFTG sub-
manifold of B for all g ∈ G , and there always exists g ∈ G such that
0 ∈ gQ .

(ii) Conversely if Q and Q′ are two MFTG submanifolds of B , Z ∈ Q and
Z′ ∈ Q′ then there exists g ∈ G such that gZ = Z′ and gQ = Q′ .

(iii) If A is a maximal split Abelian subgroup of G and k ∈ K then kAk−1

is again a maximal split Abelian subgroup of G , conversely if A and A′ are
two maximal split Abelian subgroups of G then there exists k ∈ K such that
A′ = kAk−1 .

(iv) If (e1, . . . , eq) is a frame in Z and k ∈ K then (ke1, . . . , keq) is again a
frame in Z . Conversely if B is irreducible (equivalently if Z is simple) and
(e1, . . . , eq) and

(
e′1, . . . , e′q

)
are two frames in Z then there exists k ∈ K

such that e′j = kej , j = 1, . . . , q .
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(v) If (e1, . . . , eq) is a frame in Z then the image of the isometric embedding

IRq ↪→ B , t �→ expB

⎛⎝ q∑
j=1

tj ej

⎞⎠ =
q∑
j=1

tanh tj ej

is an MFTG submanifold of B containing 0 . Conversely if Q is an MFTG
submanifold of B containing 0 then there exists a frame (e1, . . . , eq) in Z

such that Q is the image of the isometric embedding

IRq ↪→ B , t �→ expB

⎛⎝ q∑
j=1

tj ej

⎞⎠ =
q∑
j=1

tanh tj ej .

(vi) If (e1, . . . , eq) is a frame then the image A of the Lie group embedding

IRq ↪→ G , t �→ at := expG

⎛⎝ q∑
j=1

tj (ej − ẽj)

⎞⎠
is a maximal split Abelian subgroup of G . Conversely if A is a maximal
split Abelian subgroup of G then there exists a frame (e1, . . . , eq) such that
A is the image of the Lie group embedding

IRq ↪→ G , t �→ expG

⎛⎝ q∑
j=1

tj (ej − ẽj)

⎞⎠ .

(vii) Let (e1, . . . , eq) be a frame , Q be the MFTG submanifold containing 0
defined by the frame via (v) , and A be the maximal split Abelian subgroup
defined by the frame via (vi) . Then for all t ∈ IRq we have

at 0 =
q∑
j=1

tanh tj ej ∈ Q ,

and so A acts simply transitively on Q . The stabilizer M := Z(Q) of Q in G
is precisely the stabilizer of the frame (e1, . . . , eq) and at the same time the
centralizer ZK(A) of A in K . The normalizer N(Q) of Q in G is precisely
ANK(A) .

For proving (v) and (vi) of theorem 1.5 we need a technical lemma.

Lemma 1.6 Let (e1, . . . , eq) be a frame in Z and Z ∈ Z such that

{ej ,Z∗, ej} =
{
Z, e∗j , ej

}
for all j = 1, . . . , q . Then Z ∈ IRe1 + · · ·+ IReq .

Proof: We apply theorem 3.14 of [13] to the frame (e1, . . . , eq) , which says
that
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given pairwise orthogonal tripotents c1, . . . , cr ∈ Z then

Z =
⊕

0≤i≤n
Zij

(the so-called joint Peirce decomposition), where

Zij := Zji :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Z1 (ci) if i = j �= 0

Z 1
2
(ci) ∩ Z 1

2
(cj) if 0 �= i �= j �= 0

Z 1
2
(ci) ∩

⋂
j=1,...,r , j �=i

V0 (cj) if i �= 0 = j

Z0 (c1) ∩ · · · ∩ Z0 (cr) if i = j = 0

for all i, j ∈ {0, . . . , r} , the Peirce decomposition of
cI :=

∑
i∈I ci is given by

Z1 (cI) =
∑
i,j∈I

Zij

Z 1
2
(cI) =

∑
i∈I,j �∈I

Zij

Z0 (cI) =
∑
i,j �∈I

Zij

for all I ⊂ {1, . . . , r} , and we have the multiplication rule

{
Zij , Z

∗
jk, Zkl

}
⊂ Zil (1.2)

for all i, j, k, l ∈ {0, . . . , r} , and all other types of products are
zero.

Since all ej ∈ Zjj , j = 1, . . . , q , by property 1.2 we see that all Zkl ,
k, l = 0, . . . , q , are invariant under all {ej ,♦∗, ej} and

{
ej , e∗j ,♦

}
,

j = 1, . . . , q , and so without loss of generality we may assume that Z ∈ Zkl
for some k, l ∈ {0, . . . , q} .
Assume k �= l and without loss of generality k �= 0 . Then Z ∈ Z 1

2
(ek) , and

so by 1.2

Z = 2 {Z, e∗k, ek} = 2 {ek,Z∗, ek} = 0 .

Now assume k = l = 0 . Then by 1.2 all odd powers of Z are contained
in Z00 , and so Z can be written as Z =

∑r
s=1 λscs where λ1, . . . , λr ∈ IR ,

and c1, . . . , cr ∈ Z00 are pairwise orthogonal non-zero tripotents, which we
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can assume to be primitive since Z00 is a sub Jordan triple system of Z
by 1.2 . So (e1, . . . , eq, c1, . . . , cr) is a tuple of primitive pairwise orthogonal
tripotents, but since (e1, . . . , eq) is already a frame, we see that r = 0 and
so Z = 0 .
Finally assume k = l ∈ {1, . . . , q} . Then Z ∈ V1 (ek) = Cek . So let
Z = λek with an appropriate λ ∈ C . Then

λek = {ek, (λek)∗ , ek} = {λek, e∗k, ek} = λek ,

and so λ ∈ IR . �

Proof of theorem 1.5 : (i) trivial since G acts isometrically and transitively
on B .
(ii) This is precisely theorem 6.2 in chapter V of [9] . �
(iii) The first statement is trivial, the second is the group theoretic version
of lemma 6.3 of [9] , which says that given two maximal Abelian subspaces
a and a′ of p there exists k ∈ K such that a′ is the image of a under the
adjoint representation of k . �
(iv) The first statement is trivial since K is the automorphism group of Z .
The second is theorem 5.9 of [13] . �
(v) By 4.5 and corollary 4.8 of [13]

expB : Z � T0B → B , Z �→ tanh Z

is a real analytic diffeomorphism, so IR ↪→ B , t �→ tanh (tZ) is the geodesic
through 0 in direction of Z and at the same time the integral curve through
0 to the vector field Z − Z̃ for all Z ∈ Z � T0 . Now let (e1, . . . , eq) be a
frame in Z . Then we have a unitary embedding

IRq ↪→ Z , t �→ Zt := t1e1 + · · ·+ tqeq ,

and since all the vector fields Zt − Z̃t commute, together with expB this
unitary embedding leads to an isometric embedding

IRq ↪→ B , t �→ expB

⎛⎝ q∑
j=1

tj ej

⎞⎠ =
q∑
j=1

tanh tj ej ,

whose image Q0 is a flat and totally geodesic submanifold of B . To see
that it is maximal assume there exists a connected, flat and totally geodesic
submanifold Q of B such that Q0 ⊂ Q . Then T0Q0 � T0Q , and
T0Q0 = T0Q implies Q0 = Q . Let us assume Z ∈ T0Q . Then since Q is
flat and totally geodesic, for all t ∈ IRq and u ∈ ] − 1, 1 [ q

0 =
[
Z− Z̃,Zt − Z̃t

]
(Zu) = 2 ({Zt,Z∗,Zu} − {Z,Z∗

t ,Zu}) ,
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especially {ej ,Z∗, ej} =
{
Z, e∗j , ej

}
for all j = 1, . . . , q . So by lemma 1.6

Z ∈ IRe1 + . . . IReq = T0Q0 .
Conversely let Q be an MFTG submanifold of B containing 0 . Then by (ii)
there exists k ∈ K such that kQ0 = Q , (ke1, . . . , keq) is again a frame in Z
by (iv) , and an easy calculation shows that Q is the image of the isometric
embedding

IRq ↪→ B , t �→ k expB

⎛⎝ q∑
j=1

tj ej

⎞⎠ =
q∑
j=1

tanh tj kej .�

(vi) Let (e1, . . . , eq) be a frame in Z . Then clearly all ej − ẽj ∈ p ,
j = 1, . . . , q , commute, and so we have a Lie group embedding

IRq ↪→ G , t �→ at := expG

⎛⎝ q∑
j=1

tj (ej − ẽj)

⎞⎠ ,

whose image is a split Abelian subgroup A0 of G . To see that it is maximal
assume there exists Z ∈ Z such that Z−Z̃ ∈ p commutes with all ej−ẽj ∈ p ,
j = 1, . . . , q . This implies

0 =
[
Z− Z̃, ej − ẽj

]
= 2

(
{ej ,Z∗,♦} −

{
Z, e∗j ,♦

})
,

and so again by lemma 1.6 Z ∈ IRe1 + . . . IReq , therefore Z − Z̃ already
belongs to the Lie algebra of A0 .
Conversely let A be a maximal split Abelian subgroup of G . Then by (iii)
there exists k ∈ K such that kA0 = A , and by (iv) (ke1, . . . , keq) is again
a frame in Z . Finally A is the image of the Lie group embedding

IRq ↪→ G , t �→ katk
−1 = expG

⎛⎝ q∑
j=1

tj

(
kej − k̃ej

)⎞⎠ .�

(vii) The first statement is a trivial consequence of the fact that
IR ↪→ B , t �→ tanh (tZ) is the geodesic through 0 in direction of Z and at
the same time the integral curve through 0 to the vector field Z− Z̃ for all
Z ∈ Z � T0 .
Let us now prove that Z(Q) = ZK (e1, . . . , eq) = ZK(A) :

’Z(Q) � ZK (e1, . . . , eq)’ : Let w ∈ G such that w|Q is the
identity. Then especially w ∈ K , and w acts identically on
T0Q = IRe1 + · · ·+ IReq .

’ZK (e1, . . . , eq) � ZK(A)’ : Let w ∈ K stabilize e1, . . . , eq .
Then, as we have already seen, w stabilizes also all ej − ẽj ∈ g ,
j = 1, . . . , q , which span the Lie algebra of A .
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’ZK(A) � Z(Q)’ : Let w ∈ K stabilize all elements of A . Then
w0 = 0 , and so w stabilizes all elements of Q = A0 .

Finally let us show that N(Q) = ANK(A) :

’�’ : Let g ∈ G such that gQ = Q . Then g0 ∈ Q , and so there
exists a ∈ A such that g0 = a0 . So g = an with an appropriate
n ∈ NK(Q) . We see that n normalizes IRe1 + · · · + IReq , and
so a = IR (e1 − ẽ1) + · · ·+ IR (e1 − ẽ1) as well.

’�’ : Let a ∈ A and n ∈ NK(A) . Then

anQ = anA0 = aAn0 = A0 = Q .

�

Let us denote the rank of Z and B by q and fix a frame (e1, . . . , eq) in
Z � p . Then we have a standard MFTG surface

Q := expB

⎛⎝ q⊕
j=1

IRej

⎞⎠ =
q∑
j=1

] − 1, 1 [ ej

and a standard maximal Abelian subgroup of G being the image of the Lie

group embedding

IRq ↪→ G , t �→ at := expG

⎛⎝ q∑
j=1

tj (ej − ẽj)

⎞⎠ .

ByM we denote Z(Q) . The decompositionB = B1×· · ·×Bs into irreducible
factors of B leads to a corresponding decomposition of A and so finally to
the decomposition

IRq = IRq1 ⊕ · · · ⊕ IRqs ,

where q1, . . . , qs are the ranks of B1, . . . Bs resp. . This decomposition of
IRq is called the decomposition into irreducible summands.

Let us consider the full matrix ball

Bp,q :=
{
Z ∈ Cp×q ∣∣ Z∗Z
 1

}
as an example. G := SU (p, q) acts transitively on B from the left by
fractional linear (Möbius) transformations, and one can show that G is a
finite covering of the identity component of AutB .
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K = S (U (p)× U (q)) � G

is the stabilizer group of Z = 0 . B is irreducible, and the Jordan triple
product on Cp×q associated to B is

{Z,W∗,U} :=
1
2

(ZW∗U + UW∗Z) .

p is the image of the C-vectorspace embedding

Z ↪→ g , Z �→

⎛⎝ 0 Z

Z∗ 0

⎞⎠ ,

and the Bergman metric on B at 0 ∈ B coincides with the euclidian one
up to a positive constant. Z and so B are of rank q , since the standard
frame of Z is (e1, . . . , eq) , where

ej :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
. . . 0

0

1

0

0
. . .

0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

← j
∈ Cp×q .

Any other tripotent c in Z can be written as c = k
∑rk c

j=1 ej with an appro-
priate element k ∈ K , since Z is ireducible. The Peirce decomposition to
the tripotent c :=

∑r
j=1 ej is

Z1 (c) =

⎧⎨⎩
⎛⎝ z 0

0 0

⎞⎠∣∣∣∣∣∣ z ∈ Cr×r

⎫⎬⎭ ,

Z 1
2
(c) =

⎧⎨⎩
⎛⎝ 0 w1

w2 0

⎞⎠∣∣∣∣∣∣ w1 ∈ Cr×(q−r),w2 ∈ C(p−r)×r

⎫⎬⎭ ,

Z0 (c) =

⎧⎨⎩
⎛⎝ 0 0

0 u

⎞⎠∣∣∣∣∣∣ u ∈ C(p−r)×(q−r)

⎫⎬⎭ � Cp×q .

The standard maximal Abelian subgroup A of G is the image of the Lie

group embedding
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IRq ↪→ G ,

t �→ at :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cosh t1 0
. . .

0 cosh tq

0

0 1

sinh t1 0
. . .

0 sinh tq

0

sinh t1 0
. . .

0 sinh tq

0

cosh t1 0
. . .

0 cosh tq

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

all the MFTG surfaces can be transformed by an element g ∈ G to the
standard MFTG submanifold Q := A0 , and

IRq ∼→Q , t �→ at0 =

⎛⎜⎜⎜⎜⎜⎜⎝
tanh t1 0

. . .

0 tanh tq

0

⎞⎟⎟⎟⎟⎟⎟⎠
is an isometry between IRq and the standard MFTG submanifold Q . The
centralizer M of A in K is the subgroup of K of all⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ε1 0
. . .

0 εq

0

0 u

0

0

ε1 0
. . .

0 εq

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where ε ∈ U (1)q and u ∈ U (p− q) such that ε21 · · · ε2q detu = 1 .

Now let us return to the general case. On G we have an analytic multiflow
(ϕt)t∈IRq given by the right translation by elements of A :

ϕt : G→ G , g �→ gat .

Since the multiflow (ϕt)t∈IRq commutes with right translations by elements
of M it canonically projects down to the quotient G/M of G , where it has
a nice but more complicated geometric interpretation as the so-called frame
flow: On B we have the frame bundle
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S(B) := {(Z, ξ1, . . . , ξq) | Z ∈ B and (ξ1, . . . , ξq) is a frame in TZB}
� G/M

since G acts transitively on S(B) , and M is the stabilizer of the standard
frame sitting at 0 . Let (ϕt)t∈IRq be the projection of (ϕt)t∈IRq down to
S(B) . Then for any (Z, ξ0, . . . , ξq) ∈ S(B) and t ∈ IRq we obtain the image
point ϕt (Z, ξ0, . . . , ξq) =

(
Z′, ξ′0, . . . , ξ′q

)
∈ S(B) by the following procedure:

To (Z, ξ0, . . . , ξq) ∈ S(B) there exists a unique MFTG submanifold Q of B
containing Z and having the linear span of ξ0, . . . , ξq as tangent space at Z .
Following Q starting in Z and walking tj-far in the direction of ξj ,
j = 1, . . . , q , we reach the point Z′ , and finally the frame(
ξ′0, . . . , ξ′q

)
∈ TB(Z′)q of primitive pairwise orthogonal tripotents is given by

parallel transport of (ξ0, . . . , ξq) along Q . Hereby the result is independent
of the choice of the curve joining Z and Z′ , since Q is flat (isometric to
IRq )! So the frame flow generalizes the geodesic flow on the unit tangent
bundle S(B) in the q = 1 case.
Since all right translations on G are left invariant, the differential of the flow
(ϕt)t∈IRq corresponds to the adjoint representation of A on the Lie algebra
g of G via the identification of all tangentspaces TgG , g ∈ G , with g by
left translation. So let us decompose the adjoint representation of A :

g =
⊕
α∈Φ

gα ,

where for all α ∈ (IRq)∗

gα :=
{
ξ ∈ g

∣∣Adat(ξ) = eαtξ
}

and

Φ := {α ∈ (IRq)∗ | gα �= 0} .

Then Φ is called the root system of G , it is clearly always finite. For all
α, β ∈ Φ we have [gα, gβ ] ⊂ gα+β if α+β ∈ Φ and [gα, gβ] = 0 otherwise. In
[13] proposition 9.19 we have an explicit description of Φ :

Theorem 1.7

(i) 0 ∈ Φ , and g0 = a + m is the Lie algebra of AM .

(ii) If B is irreducible then

Φ = {0} ∪ {±2e∗i | i = 1, . . . , q} ∪
{
±e∗i ± e∗j

∣∣ i, j = 1, . . . , q, i �= j
}
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if B is of tube type,

Φ = {0} ∪ {±e∗i | i = 1, . . . , q} ∪ {±2e∗i | i = 1, . . . , q}
∪
{
±e∗i ± e∗j

∣∣ i, j = 1, . . . , q, i �= j
}

if B is not of tube type.

(iii) The spaces g2e∗j are always one-dimensional.

Let v ∈ IRq . Then v is called regular if and only if αv �= 0 for all
α ∈ Φ \ {0} . The connected components of the open and dense subset of
all regular v ∈ IRq are called the Weyl chambers of G . If B is irreducible
then v is regular if and only if all 0, |v1| , . . . , |vq| are pairwise different, and
we have a standard Weyl chamber

{v ∈ IRq | 0 < v1 < · · · < vq} .

Fix a regular v0 ∈ IRq . Then

n :=
⊕

α∈Φ , αv0>0

gα ,

which actually only depends on the Weyl chamber containing v , is a sub
Lie algebra of g such that [a, n] � n , and the corresponding subgroup
N := expG n of G is a nilpotent sub Lie group of G . Note that n and a are
perpendicular with respect to the Killing form on g , and n∩p = n∩k = {0}
since the Killing form is positive definite on p and negative definite on k ,
but for α, β ∈ Φ , ξ ∈ gα and η ∈ gβ we have (ξ, η) �= 0 only if β = −α ,
and so (η, η) = 0 for all η ∈ n . Finally we have the so-called Iwasawa

decomposition

G = KAN = NAK = ANK .

Definition 1.8 (loxodromic elements resp. subgroups of G ) Let
a ∈ G , and let Γ0 � G be a discrete subgroup.

(i) a is called loxodromic if and only if there exists g ∈ G such that
a ∈ gAMg−1 .

(ii) If a is loxodromic, it is called regular if and only if a = gatwg
−1 with

t ∈ IRq regular.

(iii) Γ0 is called loxodromic if and only if there exists g ∈ G such that
Γ0 � gAMg−1 is a lattice, and hence cocompact.
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So any loxodromic element a ∈ G can be written in the form a = gavwg
−1

for some g ∈ G , v ∈ IRq and w ∈ M , and for all loxodromic Γ0 � G and
g ∈ G such that Γ0 � gAMg−1 is a lattice we see that

φ : Γ0 → IRq , γ = gatwg
−1 �→ t

is a group homomorphism, Kerφ = Γ0 ∩
(
gMg−1

)
is finite, and

Λ := Im φ � IRq

is a lattice, hence cocompact. The next theorem should clarify in which way
the elements g ∈ G , v ∈ IRq , the group homomorphism Φ , its kernel and
its image Λ are uniquely determined by a resp. Γ0 . Especially we will see
that (ii) of definition 1.8 is independent of the choice of g .

Lemma 1.9

N(A) = ANK(A) = N(AM) � N(M) .

Proof: ’N(A) � ANK(A)’ : Let g ∈ N(A) . Then by the Iwasawa decom-
position we can write g = ank with appropriate k ∈ K , n ∈ N and a ∈ A .
But since clearly A � N(A) we may assume a = 1 without loss of generality.
Let ζ ∈ a and ζ ′ := Adg(ζ) = Adk (Adn(ζ)) ∈ a . Then on one hand we
have Adk−1(ζ ′) ∈ p , and on the other hand

Adk−1(ζ ′) = Adn(ζ) = ζ + η

with an appropriate η ∈ n . So η ∈ n ∩ p and therefore η = 0 . So n

commutes with all a ∈ A , but this is only possible if n = 1 since conjugation
by a−v0 is a contraction on N with respect to the left invariant metric on G .

’ANK(A) � N(AM)’ is trivial since M is the centralizer of A in K .

’N(AM) � N(M)’ : Since M = ZK(A) , all the root spaces of A in g

are invariant under M , and since M is a compact group we see that the
adjoint representation of M on g is unitary on each of them with respect
to an appropriately chosen scalar product. So g ∈ N(AM) permutes the
root spaces, and the adjoint representation of gMg−1 on g is unitary on all
root spaces with respect to an appropriate scalar product. Now let w ∈M .
Then there exist t ∈ IRq and w′ ∈M such that

gwg−1 = atw
′ . (1.3)
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Looking for example at the spaces g2e∗j , j = 1, . . . q , shows that equation
1.3 is possible only if t = 0 , and this means gwg−1 = w′ ∈M .

’N(AM) � N(A)’ : Let g ∈ N(AM) . Then g ∈ N(M) as we have already
seen. Since a is the unique orthogonal complement to m with respect to the
Killing form restricted to a + m and the adjoint representation of G on
g respects the Killing form, it follows immediately that even g ∈ N(A) . �

Clearly M is a normal subgroup of NK(A) , and the so-called Weyl group
W := NK(A)/M acts on A via conjugation, and so on IRq as well, and this
action is simply transitive on the Weyl chambers, and so it is isomorphic to
the subgroup of GL(q, IR) permuting the components within each irreducible
summand of IRq and changing signs of the components, hence isomorphic to

S (q1)× · · · ×S (qs)× {±1}q ,

see for example in [15] , Lecture 2 .

Definition 1.10 We call two vectors v and v′ ∈ IRq
Weyl equivalent if

and only if the corresponding elements av and av′ of A are conjugated by an
element of the Weyl group, in other words v and v′ are equal up to per-
muting the components within each irreducible summand of IRq and changing
signs.

Clearly regularity is invariant under Weyl equivalence.

Theorem 1.11

(i) Let a ∈ G be loxodromic, g ∈ G , w ∈ M and v ∈ IRq be regular such
that a = gavwg

−1 . Then g is uniquely determined up to right transla-
tion by elements of ANK(A) , and v is uniquely determined up to Weyl

equivalence.

(ii) Let Γ0 � G be loxodromic, g ∈ G such that Γ0 � gAMg−1 ,

φ : Γ0 → IRq

the corresponding group homomorphism and Λ := Im φ � IRq the corre-
sponding lattice. Then again g is uniquely determined up to right translation
by elements of ANK(A) , φ and so Λ are uniquely determined up to Weyl

equivalence, and Kerφ = Γ0 ∩ gMg−1 is independent of g .

Proof: (i) Let g′ ∈ G , w′ ∈ M and v′ ∈ IR such that also a = g′av′w′g′−1 .
Then avw =

(
g−1g′

)
av′w′ (g−1g′

)
. Since v ∈ IRq is regular, a + m is the

largest subspace of g on which the conjugation with avw is orthogonal
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with respect to an appropiate scalar product. So conjugation with g−1g′

stabilizes a + m . This implies g−1g′ ∈ N(AM) = ANK(A) by lemma 1.9 ,
and so v′ is in the image of v under the Weyl group W . �

(ii) This is a trivial consequence of (i) , because in the lattice Λ we always
find regular elements. �

In both cases the groups gAMg−1 , gAg−1 and gMg−1 are independent of
the choice of g .

Now let Γ � G be a discrete subgroup ofG . Then geometrically the maximal
loxodromic subgroups of Γ correspond to closed MFTG submanifolds on
Γ\B . Hereby a subset R ⊂ Γ\B is called a closed MFTG submanifold,
if and only if it is the image of an MFTG submanifold R′ ∈ B under the
canonical projection, and the composition IRq ∼→R′ → R of the canonical
isometry and the canonical projection factors through a lattice of IRq .

Theorem 1.12 There is a one to one correspondence

{R ⊂ Γ\B closed MFTG surface }
↔ {Γ0 � Γ max. lox. subgroup of Γ }/ conjugation by elements of Γ

given by

R �→ Γ ∩
(
gAMg−1

)
, where g ∈ G such that R = Γ\(gQ) ,

Γ\(gQ) ←� Γ0 , where g ∈ G such that g−1Γ0g � AM .

Proof: Let us first check that both mappings are well-defined:

Let g, g′ ∈ G such that Γ\(g′Q) = Γ\(gQ) and define

Γ0 := Γ ∩
(
gAMg−1

)
,

which is clearly a maximal loxodromic subgroup of Γ . Then
since Q is connected and Γ discrete there exists γ ∈ Γ such
that γg′Q = gQ , and so n := g′−1γ−1g ∈ N(Q) = N(AM) .
Therefore we have

Γ ∩
(
g′AMg′−1

)
= Γ ∩

(
γ−1gn−1AMng−1γ

)
= γ−1

(
Γ ∩

(
gAMg−1

))
γ

= γ−1Γ0γ .
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Now let Γ0 be a maximal loxodromic subgroup of Γ , let g, g′ ∈ G
such that g−1Γ0g, g

′−1Γ0g
′ � AM and γ ∈ Γ . Then by theorem

1.11 g′ = gn with an appropriate n ∈ ANK(A) = N(Q) . Then
we have g′Q = gnQ = gQ , and so the result is independent of
the choice of g .

Clearly Γ′
0 := γ−1Γ0γ is again a maximal loxodromic subgroup

of Γ , and

Γ′
0 �

(
γ−1g

)
AM

(
γ−1g

)−1
,

and so finally

Γ\
((
γ−1g

)
Q
)

= Γ\ (gQ) .

Clearly both mappings are inverse to each other. �

The boundary of B can easily be described in terms of tripotents of Z .
Let c ∈ Z be a tripotent. Then both Z1 (c) and Z0 (c) are sub Jordan

triple systems of Z , and so Bc := B ∩ Z0 (c) is the unit ball in Z0 (c) . We
see that Bc is itself a bounded symmetric domain of lower dimension and
rank q − rk c . The tripotents in Z0 (c) are precisely the tripotents in Z

orthogonal to c .
A subset F of B is called a face of B if and only if it is closed and convex
and fulfills the extremality condition: If a,b ∈ B such that

]a,b [ ∩ F �= ∅

then [a,b ] ⊂ F .

Theorem 1.13

(i) Let c ∈ Z be a tripotent. Then Fc := c +Bc is a face of B .

(ii) Let F be a face of B . Then there exists a unique tripotent of Z such
that F = c +B ∩ Z0 (c) .

Proof: Up to uniqueness in (ii) this is theorem 1.5.47 of [16] . To see unique-
ness of c in (ii) let c′ be another tripotent such that F = c′ + B ∩ Z0 (c′) .
Then c′ − c and c are orthogonal, and therefore c′ − c is a tripotent in Bc ,
and so it must be 0 . �

For all j ∈ {0, . . . , q} let Sj be the set of all tripotents c of Z of rank j .
Then Sj is a closed submanifold of Z , S0 = {0} , and since the (relative to
c + Z0 (c) ) open faces c +Bc are pairwise disjoint, we have a partition
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∂B =
⋃

j=1,...,j

⋃
c∈Sj

Bc .

If c = 0 then Bc = B , and this is the only open face of B which is not
contained in ∂B . If c ∈ Sq then Z0 = {0} , and so the associated face is
{c} itself. We see that Sq is the submanifold of extremepoints of B , and it
is called the Shilov boundary of B .

To each tripotent c ∈ Z we have a partial Cayley transformation

Rc := exp
(π

4
(c + c̃)

)
∈ GC,

which maps biholomorphically B onto the unbounded symmetric domain
Hc := Rc(B) ⊂ Z . For describing Hc , which is a Siegel domain of type
III , we need some more information about the Peirce decomposition
Z = Z1 (c) ⊕ Z 1

2
(c) ⊕ Z0 (c) , see for example chapter 10 and section 3.13

in [13] .

Z1 (c) is a Hermitian Jordan algebra with product given by

ZW = {Z, c∗,W}

for all Z,W ∈ Z1 (c) . Z1 (c) has the unit element c and the involution ∗

given by

Z∗ := {c,Z∗, c}

for all Z ∈ Z1 (c) . The set

A := {Z ∈ Z1 (c) | Z∗ = Z }

of with respect to ∗ real points of Z1 (c) is a formally real sub-IR-Jordan-
algebra of Z1 (c) , and Z1 (c) = A⊕ iA . Let Y be the positive cone of A ,
this means

Y :=
{
Z2 |Z ∈ A \ {0}

}
.

Define

F : Z 1
2
(c)× Z 1

2
(c)→ Z1 (c) , F (V,W) := {V,W∗, c} .

Then F is C-linear in the first and C-antilinear in the second variable, it is
Hermitian with respect to ∗ and positive definite with respect to Y . For
all Z ∈ Z0 (c) we define
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ϕZ : Z 1
2
(c)→ Z 1

2
(c) , W �→ {c,W∗,Z} ,

which is C-antilinear and selfadjoint with respect to F . We have

0 �= F (W,W)− F (ϕZ (W) , ϕZ (W)) ∈ Y \ {0} ,

where Y here denotes the topological closure of Y in A , therefore
Id + ϕZ ∈ GLIR

(
Z 1

2

)
for each Z ∈ Z1 (c) , and so for all Z ∈ Z1 (c) we can

define

FZ : Z 1
2
(c)×Z 1

2
(c)→ Z1 (c) , FZ (V,W∗) := FZ

(
V, (Id + ϕZ)−1 (W)∗

)
,

which is C-linear in the first but in general only IR-linear in the second
variable.

Finally we have

Theorem 1.14

Hc =
{
Z1 + Z 1

2
+ Z0

∣∣∣∣Z1 ∈ Z1 (c) , Z 1
2
∈ Z 1

2
(c) , Z0 ∈ Bc ,

Re
(
Z1 −

1
2
FZ0

(
Z 1

2
,Z 1

2

))
∈ Y

}
.

Proof: This is precisely theorem 10.8 of [13] . �

We see that there is a canonical embedding iA ↪→ Aut0 (Dc) = RcGR
−1
c ,

iA acting on Hc via translation.

1.2 The space of cusp forms on a bounded sym-

metric domain

Let k ∈ Z be a fixed integer and let

j : G×B → C , (g,Z) �→ det g′ (Z) .

Then clearly j fulfills the cocycle property j (gh,Z) = j (g, hZ) j (h,Z) , and
so on BC we have a right action of G :

|g : CB → CB , f �→ f |g

for all g ∈ G where

f |g (Z) := f (gZ) j (g,Z)k
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for all Z ∈ B . This action is clearly holomorphic in the sense that if
f ∈ O(B) then again f |g ∈ O(B) for all g ∈ G , and we have a lift

˜ : CB ↪→ CG , f �→ f̃

where

f̃(g) := f (g0) j (g,0)k = f |g (0)

for all f ∈ CB and g ∈ G , which is C∞ in the sense that if f ∈ C∞(B)C

then again f̃ ∈ C∞(G)C . The right action |g on CB lifted to CG is simply
the left translation, more precisely

CG (g♦)−→ CG

↑˜ % ↑˜
CB −→

|g
CB

for all g ∈ G .
On G we always use the left invariant Haar measure, which is at the same
time the right invariant Haar measure since G is semisimple, hence uni-
modular. Let Γ be a discrete subgroup of G . Then we define a ’scalar
product’

(f, h)Γ :=
∫

Γ\G
f̃ h̃

for all f, g ∈ CB such that f̃ h̃ ∈ L1 (Γ\G) and for all r ∈]0,∞]

Lrk (Γ\B) :=
{
f ∈ CB

∣∣ f̃ left-Γ-invariant and ∈ Lr (Γ\G)
}
.

Then clearly especially all ( , ) := ( , ){1} and all Lrk(B) are invariant
under the action |g , g ∈ G .

Definition 1.15 (automorphic resp. cusp forms on B )

(i) Let f ∈ O(B) . f is called an automorphic form for Γ of weight k if
and only if f̃ is left-Γ-invariant or equivalently f = f |γ for all γ ∈ Γ .
The C-vector space of all automorphic forms for Γ of weight k is denoted by
Mk(Γ) .

(ii) Let f ∈ Mk(Γ) . f is called a cusp form for Γ of weight k if and only
if f ∈ L2

k (Γ\B) .The C-vector space of all cusp forms for Γ of weight k is
denoted by Sk(Γ) := Mk(Γ) ∩ L2

k (Γ\B) = O(B) ∩ L2
k (Γ\B) .

Let ∆ : Z × Z → C be the Jordan triple determinant of Z and P be the
genus of B , see for example in 1.5 and 2.9 of [16] . Then ∆ has the following
properties:
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(i) ∆ (0,♦) = 1 ,

(ii) ∆ is a sesqui polynomial, holomorphic in the first and antiholomorphic
in the second variable,

(iii) ∆ (Z,W) = ∆ (W,Z) for all Z,W ∈ Z and ∆ (Z,Z) > 0 for all
Z ∈ B ,

(iv) |j (g,0)| = ∆ (g0, g0)
P
2 for all g ∈ G ,

(v) ∆ (gZ, gW)P = ∆ (Z,W)P j (g,Z) j (g,W) for all g ∈ G and
Z,W ∈ B ,

(vi)
∫
B ∆ (Z,Z)λ dVLeb <∞ if and only if λ > −1 , and finally

(vii) if Z = Z1 ⊕ · · · ⊕ Zs is the decomposition of Z into simple summands
then for all Z,W ∈ Z

∆ (Z,W) = ∆1 (Z1,W1) · · ·∆s (Zs,Ws) ,

where ∆1, . . . ,∆s are the Jordan triple determinants of the Jordan

triple systems Z1, . . . , Zq resp. .

By (iv) and (v) we have the G-invariant volume element ∆(Z,Z)−PdVLeb

on B . So for all r ∈ ] 0,∞ ] and f ∈ CB such that f̃ ∈ CG is left-Γ-invariant
we have f ∈ Lrk(Γ\G) if and only if

|f |∆ (Z,Z)
kP
2 ∈ Lr(Γ\B)

with respect to the measure ∆ (Z,Z)−P dVLeb on B , and for all f, g ∈ CB

such that f̃g ∈ L1(Γ\G)

(f, h)Γ :=
∫

Γ\G
f̃ h̃ ≡

∫
Γ\B

f h∆ (Z,Z)(k−1)P dVLeb .

Clearly Sk(Γ) is the subspace of all f ∈ Mk(Γ) such that (f, f)Γ < ∞ .
Since convergence with respect to ( , )Γ implies compact convergence, we
see that (Sk(Γ), ( , )Γ) is a Hilbert space.

Now fix a discrete subgroup Γ � G .

A famous theorem by I. Satake says that under certain conditions there
exists k0 ∈ IN such that for all k ≥ k0 and r ∈ [ 1,∞ ]

Sk(Γ) = Mk(Γ) ∩ Lrk(Γ\B) .
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In many cases Satake’s theorem holds, trivially if Γ\G is compact, but for
example also in the case where B is (biholomorphic) to the unit ball of some
Cn , n ≥ 2 , (so rank q = 1 ) and vol Γ\G < ∞ . This can be shown by a
calculation similar to that of section 3.2 . If Satake’s theorem holds and
vol Γ\G < ∞ then Sk(Γ) is finite dimensional for all k ≥ k0 since we have
the following lemma, lemma 12 of [1] section 10. 2 :

Let (X,µ) be a locally compact measure space, where µ is a
positive measure such that µ(X) < ∞ . Let F be a closed
subspace of L2(X,µ) which is contained in L∞(X,µ) . Then

dimF <∞ .

Merely the only way to construct automorphic forms for Γ is by relative
Poincaré series. Let Γ′ � Γ be a subgroup and f ∈ Mk(Γ′) . Then the
relative Poincaré series

∑
γ∈Γ′\Γ

f |γ

defines a function in Mk(Γ) provided that the convergence is ’good enough’.
Recall that the summation is independent of the choice of a fundamental
set of Γ′\Γ to be summated over since already f ∈Mk(Γ′) .

Theorem 1.16 (convergence of relative Poincaré series) Let Γ′ � Γ
be a subgroup and

f ∈Mk

(
Γ′) ∩ L1

k

(
Γ′\B

)
.

Then

Φ :=
∑

γ∈Γ′\Γ
f |γ and Φ̃ :=

∑
γ∈Γ′\Γ

f̃ (γ♦)

converge absolutely and uniformly on compact subsets of B resp. G ,

Φ ∈Mk (Γ) ∩ L1
k (Γ\B) ,

Φ̃ is the lift of Φ to G , and for all ϕ ∈Mk (Γ) ∩ L∞
k (Γ\B) we have

(Φ, ϕ)Γ = (f, ϕ)Γ′ .

Proof: Let g0 ∈ G and L ⊂ G be a compact neighbourhood of g0 in G

such that γL ∩ L = ∅ for all γ ∈ Γ \ {1} . Since the canonical projection
π : G→ G/K � B is open π(L) is a compact neighbourhood of g00 . So by
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the mean value property of holomorphic functions and since j is continuous
and nowhere zero, there exists a neighbourhood U ⊂ L of g0 in G and C ∈ IR
such that for all h ∈ O(B) and g ∈ U

∣∣∣h̃(g)∣∣∣ ≤ C ∫
L

∣∣∣h̃∣∣∣ .
So for all g ∈ U

∑
γ∈Γ′\Γ

∣∣∣f̃(γg)
∣∣∣ =

∑
γ∈Γ′\Γ

∣∣∣f̃ |γ(g)∣∣∣
≤ C

∑
γ∈Γ′\Γ

∫
L

∣∣∣f̃ |γ∣∣∣
= C

∑
γ∈Γ′\Γ

∫
L

∣∣∣f̃ (γ♦)
∣∣∣

≤ C

∫
Γ′\G

∣∣∣f̃ ∣∣∣ <∞ .

Since j is continuous and G is a Lie group we see that Φ and Φ̃ converge
absolutely and uniformly on compact subsets of B resp. G , and Φ̃ is the
lift of Φ to G . So clearly Φ ∈Mk(Γ) .

∫
Γ\G

∣∣∣Φ̃∣∣∣ ≤ ∫
Γ\G

∑
γ∈Γ′\Γ

∣∣∣f̃ (γ♦)
∣∣∣ = ∫

Γ′\G

∣∣∣f̃ ∣∣∣ <∞ ,

and so Φ ∈ L1
k (Γ\B) . Now let ϕ ∈ L∞

k (Γ\B) . Then f̃ ϕ̃ ∈ L1 (Γ′\G) , and
so

(Φ, ϕ)Γ =
∫

Γ\G

∑
γ∈Γ′\Γ

f̃ (γ♦)ϕ̃ =
∫

Γ′\G
f̃ ϕ̃ = (f, ϕ)Γ′ .�

Let W ∈ B . Since Sk(Γ) is a Hilbert space and the evaluation

Sk(Γ)→ C , ϕ �→ ϕ (W)

is a continuous linear form on Sk (Γ) , there exists a unique ΦW ∈ Sk(Γ)
such that

ϕ (W) = (ΦW, ϕ)

for all ϕ ∈ Sk (Γ) . The following theorem in combination with Satake’s
theorem and theorem 1.16 gives an idea how to get the ’reproducing kernel’
ΦW for Sk (Γ) .
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Theorem 1.17 Let k ≥ 2 . Then for all W ∈ B

∆ (♦,W)−k ∈ L1
k(B) ,

and for all f ∈ O(B) ∩ L∞
k (B) we have

(
∆ (♦,W)−k , f

)
≡ f (W) ,

where ≡ denotes equality up to a constant �= 0 independent of W and f .

Proof: First treat the case W = 0 . Then ∆ (♦,0)−kP = 1 ,

∫
G

∣∣∣1̃∣∣∣ = ∫
G

∣∣∣j (g,0)k
∣∣∣ ≡ ∫

B
∆ (Z,Z)(

k
2
−1)P <∞ ,

and for all f ∈ O(B) ∩ L∞
k (B)

(1, f) ≡
∫
B
f∆ (Z,Z)(k−1)P dVLeb ≡ f (0) ,

since f ∈ O(B) and ∆ (Z,Z) and B are invariant under the circle group
U(1) ↪→ K .

Now let W ∈ B be arbitrary. Then there exists g ∈ G such that W = g0 ,
and so

∆ (♦,W)−kP = ∆ (♦, g0)−kP = j
(
g−1,♦

)k
j (g,0)

−k
= j (g,0)

−k
1|g−1

∈ L1
k(B) .

Let f ∈ O(B) ∩ L∞
k (B) . Then

(
∆ (♦,W)−kP , f

)
=

(
j (g,0)

−k
1|g−1 , f

)
= j (g,0)−k (1, f |g)
≡ j (g,0)−k f |g (0)

= f (W) .�

Corollary 1.18 Assume Satake’ theorem holds, and let k ≥ max (2, k0) .
Then for all W ∈ B

ΦW ≡
∑
γ∈Γ

∆ (♦,W)−kP
∣∣∣
γ
,

where ≡ denotes equality up to a constant �= 0 independent of W and Γ .
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By the way a simple calculation shows that ΦW (Z) = ΦZ (W) for all
Z,W ∈ B and so ΦW (Z) is holomorphic in Z and antiholomorphic in W .

Let us consider again the full matrix ball

B := {Z ∈ Cp×q|Z∗Z� 1}

and the group G := SU (p, q) acting on B as an example. The genus of B
is P := p+ q , and for all

g =

⎛⎝ A B

C D

⎞⎠ }p
}q
∈ G

and Z ∈ B we have

j (g,Z) = det (CZ +D)−P ,

although in general one defines j (g,Z) := det (CZ +D)−1 since this is al-
ready a cocylce, but it is not well-defined on Aut1(B) which is the quotient
of G by its centre. Finally we have

∆ (Z,W) := det (1−W∗Z)

for all Z,W ∈ Z = Cp×q .

1.3 An Anosov type result for the frame flow

Hyperbolic (or Anosov) diffeomorphisms and hyperbolic (or Anosov) flows
on manifolds have been delt with for example in [10] . A diffeomorphism or
a flow being hyperbolic implies a rich structure of periodic orbits. Roughly
speaking a diffeomorphism ϕ on a manifold W is called hyperbolic if there
exists a Riemannian metric on W and a ϕ-invariant splitting of the tangent
bundle TM = T+ ⊕ T− such that ϕ is expanding on T+ and contracting
on T− both with a global constant C . The famous Anosov closing lemma
(theorem 6.4.15 in [10]) says that for a hyperbolic diffeomorphism ϕ on W

given an ε-closed orbit of ϕ there exists a closed orbit ε-nearby. Here we
have to deal with partially hyperbolic diffeomorphisms and flows, and we
can state a partial Anosov closing lemma (see theorem 1.21) for them. For
our purposes it is enough to restrict ourselves to the C∞-case.
LetW be a smooth Riemannian manifold and ϕ a C∞-diffeomorphism ofW .

Definition 1.19 (partially hyperbolic diffeomorphism) Let C > 1 .
ϕ is called partially hyperbolic with constant C if and only if there exists an
orthogonal Dϕ (and therefore Dϕ−1 ) -invariant C∞-splitting
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TW = T 0 ⊕ T+ ⊕ T−

of the tangent bundle TW such that T 0 ⊕ T+ , T 0 ⊕ T− , T 0 , T+ and T−

are closed under the commutator, Dϕ|T 0 is an isometry, ||Dϕ|T− || ≤ 1
C and∣∣∣∣Dϕ−1|T+

∣∣∣∣ ≤ 1
C .

ϕ being partially hyperbolic, T 0⊕T+ , T 0⊕T− , T 0 , T+ and T− give rise to
C∞-foliations on W . Let us denote the distances along the T 0⊕T+- , T 0- ,
T+- respectively T−-leaves by d0,+ , d0 , d+ respectively d− . Then clearly
for any two points a, b ∈ W belonging to the same T−-leaf the points ϕ(a)
and ϕ(b) again belong to the same T−-leaf and d− (ϕ(a), ϕ(b)) ≤ 1

C d
− (a, b) ,

and for two points c, d ∈ W belonging to the same T+-leaf the points ϕ(c)
and ϕ(d) resp. the points ϕ−1(c) and ϕ−1(d) again belong to the same
T+-leaf and d+

(
ϕ−1(c), ϕ−1(d)

)
≤ 1

C d
+ (c, d) .

T+ ⊕ T− in general is not closed under the commutator.

Definition 1.20 Let TW = T 0⊕T+⊕T− be an orthogonal C∞-splitting of
the tangent bundle TW of W such that T 0⊕T+ , T 0 , T+ and T− are closed
under the commutator, C ′ ≥ 1 and U ⊂W . U is called C ′-rectangular (with
respect to the splitting TW = T 0 ⊕ T+ ⊕ T− ) if and only if for all y, z ∈ U

{i} there exists a unique intersection point a ∈ U of the T 0⊕T+-leaf con-
taining y and the T−-leaf containing z and a unique intersection point
b ∈ U of the T 0 ⊕ T+-leaf containing z and the T−-leaf containing y ,

d0,+ (y, a) , d− (y, b) , d− (z, a) , d0,+ (z, b) ≤ C ′d (y, z) ,

and

1
C ′d

0,+ (z, b) ≤ d0,+ (y, a) ≤ C ′d0,+ (z, b) ,

1
C ′d

− (z, a) ≤ d− (y, b) ≤ C ′d− (z, a) ,

see figure 1.1 .

39



Figure 1.1: intersection points in {i} .

{ii} if y and z belong to same T 0⊕T+-leaf there exists a unique intersection
point c ∈ U of the T 0-leaf containing y and the T+-leaf containing z
and a unique intersection point d ∈ U of the T 0-leaf containing z and
the T+-leaf containing y ,

d0 (y, c) , d+ (y, d) , d+ (z, c) , d0 (z, d) ≤ C ′d0,+ (y, z) ,

and

1
C ′d

0 (z, d) ≤ d0 (y, c) ≤ C ′d0 (z, d) ,

1
C ′d

+ (z, c) ≤ d+ (y, d) ≤ C ′d+ (z, c) ,

see figure 1.2 .
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Figure 1.2: intersection points in {ii} .

Since the splitting TW = T 0 ⊕ T+ ⊕ T− is orthogonal and C∞ we see that
for all x ∈W and C ′ > 1 there exists a C ′-rectangular neighbourhood of x .

Theorem 1.21 (partial Anosov closing lemma) Let ϕ be partially hy-
perbolic with constant C , let x ∈W , C ′ ∈ ] 1, C [ and δ > 0 such that Uδ(x)
is contained in a C ′-rectangular subset U ⊂W .

If d (x, ϕ(x)) ≤ δ 1−C′
C

C′2+1
then there exist y, z ∈ U such that

(i) x and y belong to the same T−-leaf and

d− (x, y) ≤ C ′

1− C′
C

d (x, ϕ(x)) ,

(ii) y and ϕ(y) belong to the same T 0 ⊕ T+-leaf and

d0,+ (y, ϕ(y)) ≤ C ′2d (x, ϕ(x)) ,

(iii) y and z belong to the same T+-leaf and

d+ (ϕ(y), ϕ(z)) ≤ C ′3

1− C′
C

d (x, ϕ(x)) ,
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(iv) z and ϕ(z) belong to the same T 0-leaf and

d0 (z, ϕ(z)) ≤ C′4d (x, ϕ(x)) .

Proof: Let U be C ′-rectangular neighbourhood of x in W and δ > 0 such

that Uδ(x) ⊂ U . Suppose ε := d (x, ϕ(x)) ≤ δ 1−C′
C

C′2+1
.

Step I Show that there exists a point y ∈ U such that y and x belong
to the same T−-leaf, y and ϕ(y) belong to the same T 0 ⊕ T+-leaf,

d (ϕ(y), x) ≤ ε

1− C′
C

,

d− (y, x) ≤ ε C ′

1− C′
C

and

d0,+ (y, ϕ(y)) ≤ εC ′2 .

We inductively construct points xn ∈ U , n ∈ IN , such that x0 := x and for
all n ∈ IN

(i) xn and x belong to the same T−-leaf,

(ii) xn and ϕ (xn−1) belong to the same T 0 ⊕ T+-leaf if n ≥ 1 ,

(iii) d− (xn, xn−1) ≤ εC ′
(
C′
C

)n−1
if n ≥ 1 ,

(iv) d− (ϕ (xn) , ϕ (xn−1)) ≤ ε
(
C′
C

)n
if n ≥ 1 ,

(v)

d (ϕ (xn) , x) ≤ ε
n∑
k=0

(
C ′

C

)k
,

see figure 1.3 . x0 = x clearly fulfills (i) and (v) . Now let us assume n ∈ IN
and xn ∈ U fulfills (i) - (v) . Since by (v)

d (ϕ (xn) , x) ≤
ε

1− C′
C

≤ δ ,

even ϕ (xn) ∈ U , and so by {i} of definition 1.20 there exists a unique
intersection point in U of the T−-leaf containing xn and the T 0 ⊕ T+-leaf
containing ϕ (xn), which we define to be xn+1 . Then clearly (i) and (ii) are
fulfilled. d− (x1, x0) ≤ C ′d (x, ϕ(x)) = C ′ε follows from {i} . If n ≥ 1 then
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ϕ (xn−1) is the unique intersection point of the T−-leaf containing ϕ (xn)
and the T 0 ⊕ T+-leaf containing xn , and so by {i} and (iv) we obtain

d− (xn+1, xn) ≤ C ′d− (ϕ (xn) , ϕ (xn−1)) ≤ εC ′
(
C ′

C

)n
.

Since xn+1 and xn belong to the same T−-leaf, we get

d− (ϕ (xn+1) , ϕ (xn)) ≤
1
C
d− (xn, xn+1) ≤ ε

(
C ′

C

)n+1

,

and this is (iv) . Finally by (iv) and (v) we see that

d (ϕ (xn+1) , x) ≤ d− (ϕ (xn+1) , ϕ (xn)) + d (ϕ (xn) , x)

≤ ε

(
C ′

C

)n+1

+ ε
n∑
k=0

(
C ′

C

)k
= ε

n+1∑
k=0

(
C ′

C

)k
.

By (iii) we see that (xn)n∈IN is a Cauchy sequence in U . Let
y := limn→∞ xn ∈ U . Then y and x belong to the same T−-leaf , and by
(iii) we see that

d− (x, y) ≤ εC ′
∞∑
k=0

(
C ′

C

)k
≤ ε C ′

1− C′
C

.

y and ϕ(y) belong to the same T 0 ⊕ T+-leaf, and

d (ϕ(y), x) ≤ ε
∞∑
n=0

(
C ′

C

)k
=

ε

1− C′
C

≤ δ .

So ϕ(y) ∈ U . Finally y is the unique intersection point in U of the T−-leaf
containing x1 and the T 0⊕T+-leaf containing ϕ(y) , and ϕ(x) is the unique
intersection point in U of the T−-leaf containing ϕ(y) and the T 0 ⊕ T+-leaf
containing x1 . So by {i}

d0,+ (y, ϕ(y)) ≤ C ′d (x1, ϕ(x)) ≤ εC ′2 .
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Figure 1.3: constructing the Cauchy sequence (xn)n∈IN in step I .

Step II Show that there exists a point z ∈ U such that z and y

belong to the same T+-leaf, z and ϕ(z) belong to the same T 0-leaf,

d+ (ϕ(y), ϕ(z)) ≤ ε C ′3

1− C′
C

and

d0 (z, ϕ(z)) ≤ εC ′4 .

We inductively construct points y′n ∈ U , n ∈ IN , such that y′0 := ϕ(y) and
for all n ∈ IN

(i) y′n and ϕ(y) belong to the same T+-leaf,

(ii) y′n and ϕ−1
(
y′n−1

)
belong to the same T 0-leaf if n ≥ 1 ,

(iii) d+
(
y′n, y′n−1

)
≤ εC ′3

(
C′
C

)n−1
if n ≥ 1 ,

(iv) d+
(
ϕ−1 (y′n) , ϕ−1

(
y′n−1

))
≤ εC ′2

(
C′
C

)n
if n ≥ 1 ,

(v)

d
(
ϕ−1

(
y′n
)
, x
)
≤ ε

(
C ′2

n∑
k=0

(
C ′

C

)k
+

1
1− C′

C

)
,
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see figure 1.4 . y′0 = ϕ(y) clearly fulfills (i) and (v) . Now let us assume
n ∈ IN and yn ∈W fulfills (i) - (v) . Since by (v)

d
(
ϕ−1

(
y′n
)
, x
)
≤ εC

′2 + 1
1− C′

C

≤ δ ,

we see that again even ϕ−1 (y′n) ∈ U . By (i) since the splitting of the tangent
bundle is Dϕ−1-invariant , ϕ−1 (y′n) and y belong to the same T+-leaf, and
so ϕ−1 (y′n) and y′n belong to the same T 0⊕T+-leaf. So by {ii} of definition
1.20 there exists a unique intersection point of the T+-leaf containing y′n
and the T 0-leaf containing ϕ−1 (y′n) , which we define to be y′n+1 . Then
clearly (i) and (ii) are fulfilled. d+ (y′1, y′0) ≤ εC ′3 follows from {ii} since
d (y, ϕ(y)) ≤ εC ′2 . If n ≥ 1 then ϕ−1

(
y′n−1

)
is the unique intersection point

of the T+-leaf containing ϕ−1 (y′n) and the T 0-leaf containing y′n , and so by
{ii} and (iv) we have

d+
(
y′n+1, y

′
n

)
≤ C ′d+

(
ϕ−1

(
y′n
)
, ϕ−1

(
y′n−1

))
≤ εC ′3

(
C ′

C

)n
.

Since y′n+1 and y′n belong to the same T+-leaf, we get

d+
(
ϕ−1

(
y′n+1

)
, ϕ−1

(
y′n
))
≤ 1
C
d+
(
y′n+1, y

′
n

)
≤ εC ′2

(
C ′

C

)n+1

,

and this is (iv) . Finally by (iv) and (v) we obtain

d
(
ϕ−1

(
y′n+1

)
, x
)
≤ d

(
ϕ−1

(
y′n+1

)
, ϕ−1

(
y′n
))

+ d
(
ϕ−1

(
y′n
)
, x
)

≤ εC ′2
(
C ′

C

)n+1

+ ε

(
C ′2

n∑
k=0

(
C ′

C

)k
+

1
1− C′

C

)

= ε

(
C ′2

n+1∑
k=0

(
C ′

C

)k
+

1
1− C′

C

)
.

By (iii) we see that (y′n)n∈IN is a Cauchy sequence in U . Let
z′ := limn→∞ y′n ∈ U and z := ϕ−1(z′) . Then z′ and ϕ(y) belong to the
same T+-leaf, so again z and y belong to the same T+-leaf, and by (iii)

d+ (ϕ(y), ϕ(z)) ≤ εC ′3
∞∑
k=0

(
C ′

C

)k
= ε

C ′3

1− C′
C

.

z and ϕ(z) belong to the same T 0-leaf, and by (v)

d (z, x) ≤ εC
′2 + 1

1− C′
C

≤ δ .

So z ∈ U . Finally ϕ(z) is the unique intersection point in U of the T+-leaf
containing y′1 and the T 0-leaf containing z , and y is the unique intersection
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point in U of the T+-leaf containing z and the T 0-leaf containing y′1 . So by
{ii}

d (z, ϕ(z)) ≤ d0 (z, ϕ(z)) ≤ C ′d0
(
y, y′1

)
≤ C ′2d (y, ϕ(y)) ≤ C ′4ε .�

Figure 1.4: constructing the Cauchy sequence (y′n)n∈IN in step II .

Now let (ϕt)t∈IR be a C∞-flow on W , which means that t �→ ϕt is a homo-
morphism of IR into the group of diffeomorphisms of W and the map
IR×W →W, (t, x) �→ ϕt(x) is smooth.

Definition 1.22 (partially hyperbolic flow) Let C > 0 . The flow
(ϕt)t∈IR is called partially hyperbolic with constant C if and only if there
exists an orthogonal Dϕt-invariant C∞-splitting

TW = T 0 ⊕ T+ ⊕ T−

of the tangent bundle TW such that T 0⊕T+ , T 0⊕T− , T 0 , T+ and T− are
closed under the commutator, Dϕt|T 0 is an isometry, ||Dϕt|T− || ≤ e−Ct and
||Dϕ−t|T+ || ≤ e−Ct for all t > 0 , and T0 contains the generator ∂tϕt|t=0 of
the flow.

If the flow (ϕt)t∈IR is partially hyperbolic with constant C , then for all
t > 0 clearly ϕt is a diffeomorphism of W which is hyperbolic with constant
eCt > 1 and corresponding splitting TW = T 0 ⊕ T+ ⊕ T− .
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Now let us return to the Lie group G . Let v ∈ IRq . Then we can restrict
the multiflow (ϕt)t∈IRq to the ’diagonal flow’ (ϕτv)τ∈IR , which is simply the
right translation by the group

Av := {aτv | τ ∈ IR} .

Choose a left invariant metric on G such that all gα , α ∈ Φ \ {0} , a and m

are pairwise orthogonal and the isomorphism IRq � A ⊂ G is even isometric.
Let v ∈ IRq . Then since the ’diagonal flow’ (ϕτv)τ∈IR commutes with left
translations it is partially hyperbolic, as one sees immediately in the root
space decomposition of g , see theorem 1.7 , and after rescaling v we may
assume the constant of hyperbolicity to be equal to 1 . The corresponding
splitting of the tangent bundle of G is the unique left invariant splitting such
that

T1G = g =
⊕

α∈Φ , αv=0

gα︸ ︷︷ ︸
T 0
1 :=

⊕
⊕

α∈Φ , αv>0

gα︸ ︷︷ ︸
T−
1 :=

⊕
⊕

α∈Φ , αv<0

gα︸ ︷︷ ︸
T+
1 :=

.

Indeed T 0 ⊕ T+ , T 0 ⊕ T− , T 0 , T+ and T− are closed under the
commutator since [gα, gβ ] ⊂ gα+β if α + β ∈ Φ and [gα, gβ] = 0 oth-
erwise for all α, β ∈ Φ . So we can apply the partial Anosov closing
lemma, theorem 1.21 , which here is really convenient since G acts tran-
sitively and isometrically on itself by left translations. Before we do so
we need two little lemmas. Recall that T 0

1 = a+m if and only if v is regular.

For L ⊂ G compact, T, ε > 0 define

ML,T :=
{
gatg

−1
∣∣ g ∈ L, t ∈ IRq such that |t| ≤ T

}
and

NL,T,ε := {g ∈ G |dist (g,ML,T ) ≤ ε} .

Lemma 1.23 For all L ⊂ G compact there exist T0, ε0 > 0 such that
Γ ∩NL,T0,ε0 = {1} .

Proof: Let L ⊂ G be compact and T > 0 . Then ML,T is compact, and so
there exists ε > 0 such that NL,T,ε is again compact. Since Γ is discrete,
Γ ∩ NL,T,ε is finite. Clearly for all T, T ′, ε and ε′ > 0 if T ≤ T ′ and ε ≤ ε′

then NL,T,ε ⊂ NL,T ′,ε′ . Finally we have

⋂
T,ε>0

NT,ε = {1} ,

and so the claim follows. �
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Lemma 1.24 For all L ⊂ G compact there exists a constant c ≥ 1 such
that for all g ∈ L and a, b ∈ G

1
c
d (ag, bg) ≤ d (a, b) ≤ cd (ag, bg) .

Proof: The conjugation map

C : G× g→ g , (g, ξ) �→ Adg(ξ)

clearly is linear with respect to ξ and continuous with respect to g . So
if L ⊂ G is compact then there exists c ≥ 1 such that ||C (g,♦)|| ,∣∣∣∣C (g−1,♦

)∣∣∣∣ ≤ c for all g ∈ L . �

Theorem 1.25 Let v ∈ IRq be regular such that the flow ϕτv , τ ∈ IR is
hyperbolic with constant 1 .

(i) For all T1 > 0 there exist C1 ≥ 1 and ε1 > 0 such that for all x ∈ G ,
γ ∈ Γ and T ≥ T1 if

ε := d (γx, xaTv) ≤ ε1

then there exist z ∈ G , w ∈ M and t ∈ IRq regular such that γz = zatw ,
d ((t, w) , (Tv, 1)) ≤ C1ε , and for all τ ∈ [ 0, T ]

d (xaτv, zaτv) ≤ C1ε
(
e−τ + e−(T−τ)

)
.

(ii) For all L ⊂ G compact there exists ε2 > 0 such that for all x ∈ L , γ ∈ Γ
and T ∈ [ 0, T0 ] , T0 > 0 given by lemma 1.23 , if

ε := d (γx, xaTv) ≤ ε2

then γ = 1 and T ≤ 2ε .

Proof: (i) Let T1 > 0 and define

C1 := max

(
e

3
2
T1

1− e−
T1
2

, e2T1

)
≥ 1 .

Let TG = T 0⊕T+⊕T− be the splitting corresponding to the flow (ϕτv)τ∈IR

on G . Define C ′ := e
T1
2 , let U be a C ′-rectangular neighbourhood of

1 ∈ G and let δ > 0 such that Uδ(1) ⊂ U . Then by the left invariance
of the splitting and the metric on G we see that gU is a C ′-rectangular
neighbourhood of g and Uδ(g) = gUδ(1) ⊂ gU for all g ∈ G . Since v
is regular there exists ε′ > 0 such that if T ≥ T1 and t ∈ IRq such that
||t− Tv||2 ≤ ε′C1 then t is regular.
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Define

ε1 := min

(
δ
1− e−

T1
2

eT1 + 1
, ε′
)
> 0 .

Let x ∈ L , γ ∈ Γ , T ≥ T1 and

ε := d (γx, xaTv) ≤ ε1 .

Then ϕ : G → G , g �→ γ−1gaTv is a partially hyperbolic diffeomorphism
with constant eT1 > 1 and the same splitting TG = T 0 ⊕ T+ ⊕ T− as the
one of the flow (ϕτv)τ∈IR on G . Then since

ε ≤ δ1− e−
T1
2

eT1 + 1
= δ

1− C ′e−T1

C ′2 + 1
the partial Anosov closing lemma, theorem 1.21 , tells us that there exist
y, z ∈ G such that

(i) x and y belong to the same T−-leaf and

d− (x, y) ≤ ε C ′

1− C′
C

,

(iii) y and z belong to the same T+-leaf and

d+ (yaTv, zaTv) ≤ ε C ′3

1− C′
C

,

(iv) γz and zaTv belong to the same T 0-leaf and

d0 (γz, zaTv) ≤ εC ′4 .

In (iii) and (iv) we already used that the metric and the flow (ϕτv)τ∈IR on G
are left invariant. So by (iv) and since the T 0-leaf containing zaTv is zAM ,
there exist w ∈M and t ∈ IRq such that γz = zatw . So

d0 (at−Tvw, 1) ≤ εC ′4 ,

and so, since AM � IRq ×M isometrically, we see that

d ((t, w) , (Tv, 1)) ≤ εC ′4 = εe2T1 ≤ εC1 .

Especially ||t− Tv||2 ≤ ε′C1 , and so t regular.

Now let τ ∈ [ 0, T ] . Then since x and y belong to the same T−-leaf the
same is true for xaτv and yaτv , and
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d− (xaτv, yaτv) ≤ d− (x, y) e−τ ≤ ε C ′

1− C′
C

e−τ ≤ εC1e
−τ .

Since y and z belong to the same T+-leaf the same is true for yaτv and
zaτv , and

d+ (yaτv, zaτv) ≤ d+ (yaTv, zaTv) e−(T−τ)

≤ ε
C ′3

1− C′
C

e−(T−τ) ≤ εC1e
−(T−τ) .

Combining these two inequalities we obtain

d (xaτv, zaτv) ≤ εC1

(
e−τ + e−(T−τ)

)
.

(ii) Let L ⊂ G be compact and let c ≥ 1 be given by lemma 1.24 . Let
ε0 > 0 be given by lemma 1.23 and define

ε2 :=
ε0
c
> 0 .

Let x ∈ L , γ ∈ Γ , T ∈ [ 0, T0 ] and

ε := d (γx, xaTv) ≤ ε2 .

Then since x ∈ L we get

d
(
γ, xaTvx

−1
)
≤ cε ≤ ε0

and so γ ∈ Γ ∩ NL,T0,ε0 . This implies γ = 1 and so d (1, aTv) = ε and
therefore T ≤ 2ε . �

1.4 A spanning set for the space of cusp forms

Assume Γ � G discrete and k0 ∈ IN such that Satake’s theorem holds,
more precisely

Sk(Γ) = Mk(Γ) ∩ Lrk (Γ\G)

for all k ≥ k0 and r ∈ [ 1,∞ ] . Let v ∈ IRq be regular such that ϕv is
partially hyperbolic with constant 1 , C > 0 , and let ΦC be the subset of
(IRq)∗ of all l ∈ (IRq)∗ such that there exists v′ ∈ IRq

Weyl equivalent to v
with |lv′| < C .
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Figure 1.5: ΦC in the case B irreducible of rank q := 2 and v :=
(
1
2

)
.

Figure 1.6: ΦC in the case B = B1 × B2 reducible of rank q := 2 and
v :=

(
1
2

)
.

Let us consider a maximal loxodromic subgroup Γ0 � Γ . Let g ∈ G such
that Γ0 � gAMg−1 .

Definition 1.26 Γ0 is called k-admissible if and only if j (w)k = 1 for all
w ∈ g−1Γ0g ∩M .
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Recall that j := j (♦,Z) |K , Z ∈ Z , is independent of Z and a character of
K , since K is compact. Let us now check that this definition is independent
of the choice of g ∈ G .

By theorem 1.11 (ii) it suffices to show that M and j|M are
independent of conjugation by elements of ANK(A) . So let
aTn ∈ ANK(A) , T ∈ IRq and n ∈ NK(A) , and w ∈ M . Then
NK(A) � NK(M) since M centralizes A . And so

(aTn)−1w (aTn) = n−1a−TwaTn
−1 = nwn ∈M

and

j
(
(aTn)−1w (aTn)

)
= j

(
k′−1wn

)
= j(w) .

By the same reason if Γ0 � Γ is loxodromic and γ ∈ Γ then Γ0 is k-admissible
if and only if γΓ0γ

−1 is k-admissible.

Proposition 1.27 If Γ0 is k-admissible, then there exists χ ∈ (IRq)∗ such
that for all t ∈ IRq and w ∈ M if gatwg−1 ∈ Γ0 then j (w)k = e2πiχt .
Having g fixed, χ is unique up to Λ∗ . Otherwise χ is unique up to Λ∗ and
Weyl equivalence.

Proof: Since AM � IRq×M , having g fixed we get a well-defined character

µ : Γ→ U(1) , γ = gatwg
−1 �→ j(w)k ,

t ∈ IRq , w ∈M , which is independent of the choice of g , as we have seen
above. On the other hand we have a group homomorphism φ : Γ0 → IRq

with image φ (Γ0) = Λ and kernel kerφ = Γ0 ∩ gMg−1 . Γ0 being k-
admissible then implies precisely that kerφ ⊂ kerµ and so there exists a
unique character µ′ : Λ→ U(1) such that µ = µ′ ◦ Φ , and this means

j(w)k = µ′ (t)

for all t ∈ IRq and w ∈ M such that gatwg−1 ∈ Γ0 . Since Λ � IRq is a
lattice we can write µ′ = e2πiχ♦ with an up to Λ∗ unique χ ∈ (IRq)∗ . Since
φ without fixing g ∈ G is uniquely determined up to Weyl equivalence, we
have the desired uniqueness for χ∗ . �

To each Γ0 � Γ loxodromic there is a torus T := Γ0\ gAM belonging to Γ0 .
T is independent of g up to right translation with an element of the Weyl

group W = NK(A)/M . Let us check it.
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Let g, g′ ∈ G . Then by theorem 1.11 (ii) there exists T ∈ IRq

and n ∈ NK(A) = NK(AM) such that g′ = gaTn . So

g′AM = gaTnAM = gaTAMn = gAMn .

We see that g′AM only depends on the class Mn = nM ∈W of
n .

Let f ∈ Sk (Γ) . Then f̃ ∈ C∞ (Γ\G)C . Define h ∈ C∞ (IRq ×M)C as

h (t, w) := f̃ (gatw)

’screening up’ the values of f̃ on T . Clearly h (t, w) = j(w)kh (t, 1) for all
(t, w) ∈ IRq ×M .

Lemma 1.28 If Γ0 is not k-admissible then h = 0 .

Proof: Let w ∈ g−1Γ0g ∩M such that j(w)k �= 1 . Then gwg−1 ∈ Γ , and
so for all t ∈ IRq we have

h (t, 1) = f̃
(
gwg−1gatw

−1
0

)
= f̃

(
gatw

−1
)

= h (t, 1) j(w)−k ,

and this implies h = 0 . �

From now on assume Γ0 to be k-admissible.

Theorem 1.29 (Fourier expansion of h )

(i) h (t + T, w) = h (t, w) e−2πiχT for all (t, w) ∈ IRq ×M and T ∈ Λ , and
there exist unique bl ∈ C , l ∈ Λ∗ − χ , such that

h (t, w) = j(w)k
∑

l∈Λ∗−χ
ble

2πilt

for all (t, w) ∈ IRq ×M , where the sum converges uniformly in all deriva-
tives.

(ii) If bl = 0 for all l ∈ ΦC then for all v′ ∈ IRq
Weyl equivalent to v there

exists Hv′ ∈ C∞ (IRq ×M)C uniformly Lipshitz continuous with a Lipshitz

constant C2 ≥ 0 independent of Γ0 and v′ such that

h = ∂v′Hv′ ,

Hv′ (t, w) = j(w)kHv′ (t, 1)

and
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Hv′ (t + T, w) = Hv′ (t, w) e−2πiχT

for all (t, w) ∈ IRq ×M and T ∈ Λ .

Proof: (i) Let t ∈ IRq and T ∈ Λ . Then there exists w ∈ M such that
gaTwg

−1 ∈ Γ0 � Γ . So

h (t + T, 1) = f̃ (k)
(
gaTwg

−1gatw
−1
)

= f̃ (k) (gat) j(w)−k = h (t, 1) e−2πiχT .

The rest follows by standard Fourier expansion. �

For proving (ii) we need a lemma, which we will deduce from the ordinary
reverse Bernstein inequality, see for example theorem 8.4 in chapter I of
[12] ( T := IR/2πZ here):

Let B be a homogeneous Banach space on T , and m > 0 an
integer. There exists a constant Cm such that if

f =
∑
|j|≥n

aje
ijt

is m-times differentiable and f (m) ∈ B , then f ∈ B and

||f ||B ≤ Cm |n|
−m
∣∣∣∣∣∣f (m)

∣∣∣∣∣∣
B
.

For even m we obtain Cm = m + 1 ; for odd m we can take
Cm = 12m .

Lemma 1.30 (generalization of the reverse Bernstein inequality)
Let Λ � IRq be a lattice, χ ∈ (IRq)∗ , v′ ∈ IRq and C > 0 . Let S be the
space of all convergent Fourier series

s =
∑

l∈(Λ∗−χ) , |lv′|≥C
sle

2πil♦ ∈ C∞ (IRq)C ,

all sl ∈ C . Then

̂ : S → S , s =
∑

l∈(Λ∗−χ) , |lv′|≥C
sle

2πil♦ �→ ŝ :=
∑

l∈(Λ∗−χ) , |lv′|≥C

sl
2πilv′ e

2πil♦

is a well-defined linear map, and ||ŝ||∞ ≤ 6
πC ||s||∞ for all s ∈ S .
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Proof: Of course for all s ∈ S the Fourier series converges uniformly in
all derivatives. For checking that ̂ is well-defined observe that given a
function

s =
∑

l∈(Λ∗−χ) , |lv′|≥C
sle

2πil♦ ∈ S ,

we have |l|n sl � 0 for all n ∈ IN if l�∞ and so again

|l|n sl
2πilv′ � 0

for all n ∈ IN since |lv′| ≥ C > 0 for all l that occur in the sum, and so

∑
l∈(Λ∗−χ) , |lv′|≥C

sl
2πilv′ e

2πil♦

again converges uniformly in all derivatives to a function ŝ ∈ C∞ (IRq)C .

Now let S0 be the subspace of S of all

s =
∑
l∈M

sle
2πil♦

where M ⊂ (Λ∗ − χ) is finite such that lv′ ≥ C for all l ∈M and all sl ∈ C .
Then since S0 is dense in S with respect to || ||∞ it suffices to show the
desired estimate for all s ∈ S0 . So let

s =
∑
l∈M

sle
2πil♦ ∈ S0 ,

M ⊂ (Λ∗ − χ) finite such that lv′ ≥ C for all l ∈M and all sl ∈ C . For all
ξ ∈ (IRq)∗ and w ∈ IRq let

C (ξ,w) := dist ((M + χ− ξ)w, 0) ,

which is clearly continuous with respect to (ξ,w) ∈ (IRq)∗ × IRq , and

U := {(ξ,w) ∈ (IRq)∗ × IRq | C (ξ,w) > 0} ,

which is clearly a neighbourhood of (χ,v′) in (IRq)∗ × IRq since
C (χ,v′) ≥ C > 0 . For all ξ ∈ (IRq)∗ define

sξ := e2πi(χ−ξ)♦s =
∑
l∈M

sle
2πi(l+χ−ξ)♦ ∈ C∞ (IRq)C ,

and for all (ξ,w) ∈ U

Sξ,w :=
∑
l∈M

sl
2πi (l + χ− ξ)we2πi(l+χ−ξ)♦ ∈ C∞ (IRq)C .
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Clearly ||sξ||∞ = ||s||∞ for all ξ ∈ (IRq)∗ , sχ = s and Sχ,v′ = ŝ . We will
prove that

||Sξ,w||∞ ≤
6

πC (ξ,w)
||s||∞ (1.4)

for all (ξ,w) ∈ U , then taking (ξ,w) := (χ,v′) gives the desired estimate.

The right hand side of 1.4 is clearly continuous with respect to
(ξ,w) ∈ U , but also the left hand side. To see this observe that
for any T ∈ Λ

Sξ,w (♦+ T) = e−2πiξTSξ,w ,

and so ||Sξ,w||∞ = ||Sξ,w||∞,F , where F is a fundamental do-
main for IRq/Λ which can be chosen to be compact, and that if
(ξn,wn) � (ξ,w) in U then Sξn,wn � Sξ,w uniformly on any
compact subset of IRq .

So since U ∩(QΛ∗ ×QΛ) ⊂
dense

U it suffices to show the inequality

for all (ξ,w) ∈ U ∩ (QΛ∗ ×QΛ) . So let
(ξ,w) ∈ U ∩ (QΛ∗ ×QΛ) . Then there exists n ∈ IN \ {0} such
that (nξ, nw) ∈ Λ∗ × Λ . Let t ∈ IRq be arbitrary, and define

s̃ := sξ

(
n2

2π
♦w + t

)
=
∑
l∈M

sl e
2πi(l+χ−ξ)t ei(l+χ−ξ)n

2w♦

and

S̃ :=
2π
n2
Sξ,w

(
n2

2π
♦w + t

)
=
∑
l∈M

sl e
2πi(l+χ−ξ)t

i (l + χ− ξ)n2w
ei(l+χ−ξ)n

2w♦

∈ C∞ (IR/2πiZ)C

since (l + χ− ξ)n2w ∈ 2πZ for all l ∈M . For all l ∈M we get∣∣(l + χ− ξ)n2w
∣∣ ≥ n2C (ξ,w) > 0 . And therefore the reverse

Bernstein inequality with m := 1 and B :=
(
C(T)C, || ||∞

)
,

T = IR/2πZ here, gives us

∣∣∣∣∣∣S̃∣∣∣∣∣∣
∞
≤ 12
n2C (ξ,v′)

||s̃||∞ .

In particular
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|Sξ,w (t)| = n2

2π

∣∣∣S̃(0)
∣∣∣ ≤ 6

πC (ξ,w)
||s̃||∞ ≤

6
πC (ξ,w)

||s||∞ .

Since t ∈ IRq has been arbitrary, we have the desired estimate.

�

Clearly s = ∂v′ ŝ for all s ∈ S , S is invariant under taking partial derivatives
and ̂ commutes with taking partial derivatives.

Proof of theorem 1.29 (ii) : Since differentiation along a direction of the flow
is a left invariant differential operator , f ∈ O(B) and f̃ ∈ L∞(G) imply
that there exists a constant C ′ > 0 independent of Γ0 such that ||f ||∞ ≤ C ′

and
∣∣∣∣∂tjf (♦at)

∣∣
t=0

∣∣∣∣
∞ ≤ C

′ for all j = 1, . . . , q .
Now let bl = 0 for all l ∈ ΦC , and let v′ ∈ IRq be Weyl equivalent to v .
Then since |lv′| ≥ C for all l ∈ (Λ∗ − χ) \ ΦC we can apply lemma 1.30 to
h (♦, 1) and all ∂jh (♦, 1) , j = 1, . . . , q , and so we can define
Hv′ ∈ C∞ (IRq ×M)C as

Hv′ (t, w) := j(w)kĥ (♦, 1) (t)

for all (t, w) ∈ IRq ×M . By lemma 1.30∣∣∣∣∣∣ĥ (♦, 1)
∣∣∣∣∣∣
∞
≤ 6
πC
||h (♦, 1)||∞ ≤

6C ′

πC

and similarly∣∣∣∣∣∣∂j ĥ (♦, 1)
∣∣∣∣∣∣
∞
≤ 6
πC

∣∣∣∣∂tjf (♦at)
∣∣
t=0

∣∣∣∣
∞ ≤

6C ′

πC
.

Since j is smooth on the compact set M , jk itself is uniformly Lip-

shitz continuous on M with a Lipshitz constant C ′′ independent of
Γ0 . So we see that H is uniformly Lipshitz continuous with Lipshitz

constant C2 := (C ′′+1)6C′
πC ≥ 0 independent of Γ0 , and the rest is trivial. �

Let l ∈ Λ∗ − χ . Since Sk (Γ) is a Hilbert space and Sk (Γ) → C , f �→ bl

is linear and continuous there exists exactly one ϕΓ0,l ∈ Sk (Γ) such that
bl = (ϕΓ0,l, f)Γ for all f ∈ Sk(Γ) .
Clearly, having g fixed, the family

{ϕΓ0,l}l∈(Λ∗−χ)∩ΦC

is independent of the choice of χ , but it is even independent of the choice
of g ∈ G up to permutation and multiplication with constants in U(1) and
invariant under conjugating Γ0 with elements of Γ . Let us check it.
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Let g′ ∈ G be another element such that Γ0 � g′AMg′−1 . Then
by theorem 1.11 (ii) there exist T ∈ IRq and n ∈ NK(A) such
that g′ = gaTn . Let h′ ∈ C∞ (IRq ×M)C be given by
h′ (t, w) := f̃ (g′atw) for all t ∈ IRq and w ∈M . Then we have

h′ (t, 1) = f̃ (gaTnat)

= f̃ (gaTat′n)

= j (n)k f̃ (gat′+T)

= j (n)k h
(
t′ + T, 1

)
,

where we obtain t′ ∈ IRq by transforming t with the element
nM ∈W . So if we decompose

h′ (t, w) = j(w)k
∑

l∈(Λ′)∗−χ′
b′le

2πilt

for all (t, w) ∈ IRq ×M , all b′l ∈ C , l ∈ (Λ′)∗ − χ′ , then

∑
l∈(Λ′)∗−χ′

b′le
2πilt = h′ (t, 1) = j (n)k h

(
t′ + T, 1

)
= j(n)k

∑
l∈Λ∗−χ

ble
2πil(t′+T) .

We see that b′l′ = j(n)ke2πilTbl and so if we define
ϕ′

l′ := j(n)−ke−2πilTϕΓ0,l for all l ∈ Λ∗ − χ then b′l = (ϕ′
l, f)

for all f ∈ Sk(Γ) and l ∈ (Λ′)∗ − χ′ , where we obtain Λ′ ,
χ′ ∈ (IRq)∗ and l′ ∈ (Λ′)∗−χ′ by transforming Λ , χ resp. l with
the element nM ∈ W . Clearly ΦC itself is invariant under the
Weyl group W .

Now let γ ∈ Γ and Γ′
0 := γΓ0γ

−1 . Then clearly
Γ′

0 � γgAW (γg)−1 , and so, if we define h′ ∈ C∞ (IRq ×M)C by
h′ (t, w) := f̃ (γgatw) for all t ∈ IRq and w ∈M , then we obtain

h′ (t, w) = f̃ (γgatw) = h (t, w)

by the left-Γ-invariance of f̃ .

For the rest of the chapter we simply write l ∈ ΦC instead of
l ∈ (Λ∗ − χ) ∩ ΦC . In the end we will compute ϕΓ0,l as a relative

58



Poincaré series.

Now we are able to formulate the main goal of this chapter. Let Ω be a
fundamental set for all k-admissible maximal loxodromic subgroups of Γ
modulo conjugation by elements of Γ .

Theorem 1.31 (spanning set for Sk (Γ) ) Assume

{i} Γ � G irreducible, which means that the projection on each simple
factor Gi , i = 1, . . . , s , of G is dense in Gi ,

{ii} Γ\G is compact,

{iii} if γ ∈ G regular loxodromic, then there exists a loxodromic subgroup
Γ0 of Γ such that γ ∈ Γ0 , and

{iv} v ∈ {±1}q and therefore B = B1 × · · · × Bq where Bj are bounded
symmetric domains of rank 1 .

Then

{ϕΓ0,l | Γ0 ∈ Ω, l ∈ ΦC}

is a spanning set for Sk (Γ) .

Clearly condition {ii} implies Satake’s theorem and dimSk(Γ) < ∞ ,
see section 1.2 . We conjecture that Satake’s theorem and theorem 1.31
remain true even if we replace condition {ii} by the weaker condition
of Γ � G being a lattice (discrete such that vol Γ\G < ∞ ) under the
additional assumption that dimCBj ≥ 2 , j = 1, . . . , q , using a calculation
similar to that of section 3.2 and a generalized version of theorem 0.6 of [6]
giving a nice ’fundamental domain’ for Γ\G , see the proof of theorem 3.13
in section 3.2 . In the rank q = 1 case the conjecture is true, this is Katok’s
and Foth’s result, see [11] .

For proving theorem 1.31 we need some tools:

Theorem 1.32

(i) There exists a unique Lie algebra embedding

ρ :
q⊕
j=1

sl(2,C) ↪→ gC

such that
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ρ

⎛⎝0, . . . , 0,

⎛⎝ 0 1

0 0

⎞⎠ , 0 . . . , 0

⎞⎠ = ej

↑
j

and

ρ

⎛⎝0, . . . , 0,

⎛⎝ 0 0

−1 0

⎞⎠ , 0 . . . , 0

⎞⎠ = ej

↑
j

for all j = 1, . . . , q .

(ii) The preimage of g under ρ is
⊕q

j=1 su(1, 1) , and the preimage of k is⊕q
j=1 s (u(1)⊕ u(1)) �

⊕q
j=1 u(1) . ρ lifts to a Lie group homomorphism

ρ̃ : SL(2,C)q → GC such that ρ̃ (SU(1, 1)q) � G .

Proof: (i) By lemma 9.7 of [13] and its proof for any tripotent c of Z there
exists a unique Lie algebra homomorphism ρ′ : sl(2,C)→ g such that

ρ′

⎛⎝ 0 1

0 0

⎞⎠ = c and ρ′

⎛⎝ 0 0

−1 0

⎞⎠ = c̃ .

Since e1, . . . , eq are pairwise orthogonal tripotents we get

[ei, ẽj ] = −2
{
ei, e∗j ,♦

}
= 0

if i �= j , and

[ei, ẽi] (ej) = −2 {ei, e∗i , ej} = −2δijei

for all i, j = 1, . . . , q . That implies that [ej , ẽj ] , j = 1, . . . , q , are linearly
independent, and so ρ is indeed an embedding. �
(ii) This follows again by lemma 9.7 of [13] , which says that the preimage
of g under ρ′ is su(1, 1) , and the preimage of k is s (u(1)⊕ u(1)) . The last
statement is trivial since SL(2,C)q is simply connected. �

Let us now identify the elements of g with the corresponding left invariant
differential operators, they are defined on a dense subset of L2 (Γ\G) , and
define
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Dj := ρ

⎛⎝0, . . . , 0,

⎛⎝ 0 1

1 0

⎞⎠ , 0 . . . , 0

⎞⎠ = ej − ẽj ∈ a ,

↑
j

D′
j := ρ

⎛⎝0, . . . , 0,

⎛⎝ 0 i

−i 0

⎞⎠ , 0 . . . , 0

⎞⎠ = i (ej + ẽj) ∈ p and

↑
j

φj := ρ

⎛⎝0, . . . , 0,

⎛⎝ i 0

0 −i

⎞⎠ , 0, . . . , 0

⎞⎠ ∈ k ,

↑
j

j = 1, . . . , q . We see that D1, . . . ,Dq span the Lie algebra a of A , and
so as left-invariant differential operators they generate the multiflow ϕt .
By theorem 1.32 the IR-linear span of all Dj ,D′

j , φj is the 3q-dimensional
sub Lie algebra ρ (su(1, 1)q) of g , and we have the following commutation
relations:

[φj ,Dj ] = 2D′
j ,
[
φj ,D′

j

]
= −2Dj and

[
Dj ,D′

j

]
= −2φj

for all j = 1, . . . , q , and all the other commutators are 0 . φ1, . . . , φq

generate a subgroup of K , and again by theorem 1.32 we have a Lie group
homomorphism

(IR/2πZ)q → K , t �→ exp (t1φ1 + · · ·+ tqφq)

= ρ̃

⎛⎝⎛⎝ eit1 0

0 e−it1

⎞⎠ , . . . ,

⎛⎝ eitq 0

0 e−itq

⎞⎠⎞⎠ .

Now define

D+
j :=

1
2
(
Dj − iD′

j

)
, D−

j :=
1
2
(
Dj + iD′

j

)
and Ψj := −iφj ,

j = 1, . . . , q , as left invariant differential operators on G . Then clearly

[
Ψj ,D+

j

]
= 2D+

j ,
[
Ψj ,D−

j

]
= −2D−

j and
[
D+
j ,D−

j

]
= Ψj ,
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j = 1, . . . , q , and all the other commutators are 0 . Define

D+
v :=

q∑
j=1

vjD+
j ,D−

v :=
q∑
j=1

vjD−
j and Ψ :=

q∑
j=1

Ψj ∈ gC .

Then again we have the commutation relations

[
Ψ,D+

v

]
= 2D+

v and
[
Ψ,D−

v

]
= −2D−

v ,

and if v ∈ {±1}q then also [D+
v ,D−

v ] = Ψ . Since the left invariant measure
on G is at the same time the right invariant measure, we see that all ξ ∈ g

are skew self adjoint on L2 (Γ\G) . So in particular

(
D+
j

)∗
= −D−

j ,
(
D−
j

)∗
= −D+

j and Ψ∗
j = Ψj

for all j = 1, . . . , q , and so

(
D+

v

)∗ = −D−
v ,
(
D−

v

)∗ = −D+
v and Ψ∗ = Ψ .

By standard Fourier analysis we see that

L2 (Γ\G) =
⊕̂

m∈Zq

Hm =
⊕̂
ν∈Z

Hν

where

Hm :=

⎧⎨⎩F ∈ L2 (Γ\G) ∩
q⋂
j=1

domain Ψj

∣∣∣∣∣∣ ΨjF = mjF for all j = 1, . . . , q

⎫⎬⎭
for all m ∈ Zq ,

Hν :=
⊕̂

m∈Zq ,
∑q

j=1mj=ν

Hm

=
{
F ∈ L2 (Γ\G) ∩ domain Ψ

∣∣ ΨF = νF
}

for all ν ∈ Z , and both sums are orthogonal. Since f ∈ Sk (Γ) we have
f̃ ∈ H(k,...,k) � Hqk . By a simple calculation we get

D+
j

(
Hm ∩ domain D+

j

)
⊂ Hm+2ej and D−

j

(
Hm ∩ domain D−

j

)
⊂ Hm−2ej

for all j = 1, . . . , q , m ∈ Zq , and so

D+
v

(
Hν ∩ domain D+

v

)
⊂ Hν+2 and D−

v

(
Hν ∩ domain D−

v

)
⊂ Hν−2

for all ν ∈ Z .
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Lemma 1.33 For all j = 1, . . . , q and h ∈ O(B)

D−
j h̃ = 0 .

Proof: Let g ∈ G . Then h|g ∈ O(B) and h̃ (g♦) = h̃|g . So

D−
j h̃(g) = D−

j

(
h̃ (g♦)

)
(1) = ∂z (h|g (zej))|z=0 = 0 .�

Lemma 1.34 Let f ∈ Sk(Γ) . Then f̃ is uniformly Lipshitz continuous.

Proof: Since on G we use a left invariant metric it suffices to show that there
exists a constant c ≥ 0 such that for all g ∈ G and ξ ∈ g with ||ξ||2 ≤ 1∣∣∣ξf̃(g)

∣∣∣ ≤ c .
Then c is a Lipshitz constant for f̃ . So choose an orthonormal basis
(ξ1, . . . , ξN ) of g and a compact neighbourhood L of 0 in B . Then by
Cauchy’s integral formula there exist C ′, C ′′ ≥ 0 such that for all
h ∈ O(B) ∩ L∞

k (B) and n ∈ {1, . . . , N}∣∣∣(ξh̃) (1)
∣∣∣ ≤ C ′

∫
L
|h| ≤ C ′vol L ||h||∞,L ≤ C ′′vol L

∣∣∣∣∣∣h̃∣∣∣∣∣∣
∞
,

and since g→ C , ξ �→
(
ξh̃
)

(1) is linear we obtain∣∣∣(ξh̃) (1)
∣∣∣ ≤ NC ′′vol L

∣∣∣∣∣∣h̃∣∣∣∣∣∣
∞

for general ξ ∈ g with ||ξ||2 ≤ 1 . Now let g ∈ G . Then again f |g ∈ O(B) ,
f̃ (g♦) = f̃ |g , and by Satake’s theorem, f and so f |g ∈ L∞

k (B) . So

∣∣∣ξf̃(g)
∣∣∣ = ∣∣∣(ξf̃ (g♦)

)
(1)
∣∣∣ ≤ NC ′′vol L

∣∣∣∣∣∣f̃ (g♦)
∣∣∣∣∣∣
∞
≤ NC ′′vol L

∣∣∣∣∣∣f̃ ∣∣∣∣∣∣
∞
,

and we can define c := NC ′′vol L
∣∣∣∣∣∣f̃ ∣∣∣∣∣∣

∞
. �

Lemma 1.35 There exists g0 ∈ G such that

Γg0Av ⊂
dense

G .

Proof: This is a direct consequence of Moore’s ergodicity theorem, see for
example theorem 2.2.6 in [18] :

Let G =
∏
Gi be a (finite) product of connected non-compact

simple Lie groups with finite center. Let Γ ⊂ G be an irreducible
lattice. If H ⊂ G is a closed subgroup and H is not compact,
then H is ergodic on G/Γ .
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Hereby ’H is ergodic on G/Γ’ means that every measurable H-invariant
subset of G/Γ is either null or conull, and proposition 2.1.7 in [18] :

Suppose S is a second countable topological space , that G acts
continuously, and that a quasi-invariant µ is positive on open
sets. If the action is properly ergodic then for almost every
s ∈ S , orbit(s) is a dense null set.

Hereby ’properly ergodic’ means that there is no conull orbit. �

Proof of theorem 1.31 : Let f ∈ Sk (Γ) such that (ϕΓ0,l, f) = 0 for all ϕΓ0,l ,
Γ0 k-admissible loxodromic subgroup of Γ , l ∈ ΦC . We will show that
f = 0 in several steps.

Lemma 1.36 There exists F ∈ C (Γ\G)C uniformly Lipshitz continuous
on compact sets and differentiable along the diagonal flow ϕτv such that
f = ∂τF (♦aτv) |τ=0 = DvF .

Proof: Let g0 ∈ G be given by lemma 1.35 . Define s ∈ C∞ (IR)C by

s(t) :=
∫ t

0
f̃ (g0aτv) dτ

for all t ∈ IR .

Step I Show that for all L ⊂ G compact there exist constants C3 ≥ 0
and ε3 > 0 such that for all t ∈ IR , T ≥ 0 and γ ∈ Γ if g0atv ∈ L and

ε := d
(
γg0atv, g0a(t+T )v

)
≤ ε3

then |s(t)− s(t+ T )| ≤ C3ε .

Let L ⊂ G be compact, T0 > 0 be given by lemma 1.23 and
C1 ≥ 1 and ε1 be given by theorem 1.25 (i) with T1 := T0 . Define
C3 := max

(
C1 (C2 + 2c) , 2

∣∣∣∣∣∣f̃ ∣∣∣∣∣∣
∞

)
≥ 0 , where C2 ≥ 0 is the Lipshitz

constant from theorem 1.29 (ii) and c ≥ 0 is the Lipshitz constant of
f̃ . Define ε3 := min

(
ε1, ε2,

T0
2C1

)
> 0 , where ε2 > 0 is given by theorem

1.25 (ii) .

Let t ∈ IR , T ≥ 0 and γ ∈ Γ such that g0atv ∈ L and
ε := d

(
γg0atv, g0a

′
(t+T )v

)
≤ ε′ .

First assume T ≥ T0 . Then by theorem 1.25 (i) since ε ≤ ε1 there
exist g ∈ G , w0 ∈ M and t0 ∈ IRq regular such that γg = gat0w0 ,
d ((t0, w0) , (Tv, 1)) ≤ C1ε , and for all τ ∈ [ 0, T ]
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d
(
g0a(t+τ)v, gaτv

)
≤ C1ε

(
e−τ + e−(T−τ)

)
.

We get

s(t+ T )− s(t) =
∫ T

0
f̃ (gaτv) dτ︸ ︷︷ ︸
I1:=

+
∫ T

0

(
f̃
(
g0a(t+τ)v

)
− f̃ (gaτv)

)
dτ︸ ︷︷ ︸

I2:=

,

|I2| ≤
∫ T

0

∣∣∣f̃ (g0a(t+τ)v

)
− f̃ (gaτv)

∣∣∣ dτ
≤ c

∫ T

0
d
(
g0a(t+τ)v, gaτv

)
dτ

≤ cC1ε

∫ T

0

(
e−τ + e−(T−τ)

)
dτ

≤ 2cC1ε .

By our assumption there exists a maximal loxodromic subgroup Γ0 of Γ
such that γ ∈ Γ0 and, since theorem 1.11 tells us that g ∈ G is already
determined by γ up to right translation with elements of ANK(A) , even
Γ0 � gAWg−1 . We define h ∈ C∞ (IRq ×M)C as h (t, w) := f̃ (gatw) for
all t ∈ IRq and w ∈M . Then

I1 =
∫ T

0
h (τv, 1) dτ .

If Γ0 is not k-admissible then I1 = 0 by lemma 1.28 and the claim follows.
If Γ0 is k-admissible then we can apply theorem 1.29 (i) and, since f is
perpendicular to all ϕΓ0,l , l ∈ ΦC , even 1.29 (ii) , and so

|I1| = |H (Tv, 1)−H (0, 1)|
= |H (Tv, 1)−H (t0, w0)|
≤ C2d ((Tv, 1) , (t0, w0))

≤ C1C2ε ,

where we used the fact that j (w0)
k = e2πiχt0 since γ ∈ Γ0 , and so

H (t0, w0) = H (0, 1) j(w0)ke−2πiχt0 = H (0, 1) ,

and the claim follows again.

Now assume T ≤ T0 . Then by theorem 1.25 (ii) since ε ≤ ε0 we obtain
T ≤ 2ε and so
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|s(t+ T )− s(t)| =
∣∣∣∣∫ T

0
f̃
(
g0a(t+τ)v

)
dτ

∣∣∣∣ ≤ 2ε
∣∣∣∣∣∣f̃ ∣∣∣∣∣∣

∞
.

Step II Show that there exists a unique F ∈ C (Γ\G)C uniformly
Lipshitz continuous on compact sets such that for all t ∈ IR

s(t) = F (g0atv) .

By step I for all L ⊂ Γ\G compact with L◦ ⊂
dense

L there exists a unique

FL ∈ C (Γ\G)C uniformly Lipshitz continuous such that for all t ∈ IR if
Γg0atv ∈ L then s(t) = FL (Γg0atv) . So we see that there exists a unique
F ∈ C (Γ\G)C such that F |L = FL for all L ⊂ Γ\G compact with L◦ ⊂

dense
L .

Step III Show that F is differentiable along the diagonal flow, and
for all g ∈ G

∂τF (gaτv) |τ=0 = f̃(g) .

Let g ∈ G . It suffices to show that for all T ∈ IR∫ T

0
f̃ (gaτv) dτ = F (gaTv)− F (g) .

If g = g0atv for some t ∈ IR then it is clear by construction. For general
g ∈ G since Γg0Av ⊂

dense
G there exists (γn, tn)n∈IN ∈ (Γ× IR)IN such that

lim
n→∞ γng0atnv = g ,

and so by lemma 1.24

lim
n→∞ γng0a(τ+tn)v = gaτv

compact in τ ∈ IR , finally f̃ is uniformly Lipshitz continuous. Therefore
we can interchange integration and taking limit n�∞ :

∫ T

0
f̃ (gaτv) dτ = lim

n→∞

∫ T

0
f̃
(
γng0a(τ+tn)v

)
dτ

= lim
n→∞

(
F
(
γng0a(T+tn)v

)
− F (γng0atnv)

)
= F (gaTv)− F (g) .�
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Lemma 1.37

(i) For all L ⊂ G compact there exists ε4 > 0 such that for all g, h ∈ L if g
and h belong to the same T−-leaf and d−(g, h) ≤ ε4 then

lim
t→∞ (F (gatv)− F (hatv)) = 0 ,

and if g and h belong to the same T+-leaf and d+(g, h) ≤ ε4 then

lim
t→−∞ (F (gatv)− F (hatv)) = 0 .

(ii) F is continuously differentiable along T−- and T+-leafs, more precisely
if ρ : I → G is a continuously differentiable curve in a T−-leaf then

∂t (F ◦ ρ) (t) = −
∫ ∞

0
∂tf̃ (ρ(t)aτv) dτ ,

and if ρ : I → G is a continuously differentiable curve in a T+-leaf then

∂t (F ◦ ρ) (t) =
∫ 0

−∞
∂tf̃ (ρ(t)aτv) dτ .

Proof: (i) Let L ⊂ G be compact, and let L′ ⊂ G be a compact neighbour-
hood of L . Let T0 > 0 be given by lemma 1.23 and ε2 > 0 by theorem 1.25
(ii) both with respect to L′ . Define

ε4 :=
1
3

min
(
ε1, ε2,

T0

2C1

)
> 0 ,

where ε1 > 0 and C1 ≥ 1 are given by theorem 1.25 (i) with T1 := T0 . Let
δ0 > 0 such that Uδ0(L) ⊂ L′ and let

δ ∈ ] 0,min (δ0, ε4) [ .

Let g, h ∈ L in the same T−-leaf such that ε := d−(g, h) ≤ ε4 . Fix some
T ′ > 0 . Since Γg0Av ⊂

dense
G there exist γg, γh ∈ Γ and tg, th ∈ IR such that

d
(
gatv, γgg0a(tg+t)v

)
, d
(
hatv, γhg0a(th+t)v

)
≤ δ

for all t ∈ [ 0, T ′ ] , and so especially γgg0atgv, γhg0athv ∈ L′ . We show that
for all t ∈ [ 0, T ′ ]

∣∣F (γgg0a(tg+t)v

)
− F

(
γhg0a(th+t)v

)∣∣ ≤ C ′
3

(
εe−t + 2δ

)
with the same constant C ′

3 ≥ 0 as in step I of the proof of lemma 1.36 with
respect to L′ .
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Without loss of generality we may assume T := th − tg ≥ 0 .
Define γ := γgγ

−1
h . Then for all t ∈ [ 0, T ′ ]

d
(
γγgg0a(tg+t)v, γgg0a(tg+t+T )v

)
≤ εe−t + 2δ

by the left invariance of the metric on G .

First assume T ≥ T0 and fix t ∈ [ 0, T ′ ] . Then by theorem 1.25
(i) since εe−t + 2δ ≤ ε + 2δ ≤ min

(
ε1,

T0
2C1

)
there exist z ∈ G ,

t0 ∈ IRq and w ∈M such that γz = zat0w ,

d ((t0, w) , (Tv, 1)) ≤ C1

(
2δ + εe−t

)
,

and for all τ ∈ [ 0, T ]

d
(
γgg0a(tg+t+τ)v, zaτv

)
≤ C1

(
εe−t + 2δ

) (
e−τ + e−(T−τ)

)
.

And so by the same calculations as in the proof of lemma 1.36
we get the estimate

∣∣F (γgg0a(tg+t)v

)
− F

(
γgg0a(th+t)v

)∣∣ ≤ C ′
3

(
εe−t + 2δ

)
.

Now assume T ≤ T0 . Then by theorem 1.25 (ii) since
γgg0atgv ∈ L′ and ε + 2δ ≤ ε2 we get γ = 1 and so by the
left invariance of the metric on G

d (1, aTv) ≤ εe−T ′
+ 2δ .

We see that T ≤ 2
(
εe−T ′

+ 2δ
)

. So as in the proof of lemma
1.36

∣∣F (γgg0a(tg+t)v

)
− F

(
γgg0a(th+t)v

)∣∣ ≤ 2
∣∣∣∣∣∣f̃ ∣∣∣∣∣∣

∞

(
εe−T

′
+ 2δ

)
≤ C ′

3

(
εe−t + 2δ

)
.

Since F is left-Γ-invariant we have the desired estimate.

Now let us take the limit δ � 0 . Then γgg0atgv � g and γhg0athv � h , so
since F is continuous
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|F (gatv)− F (hatv)| ≤ C ′
3εe

−t

for all t ∈ [0, T ′] , and since T ′ > 0 has been arbitrary, we obtain this
estimate for all t ≥ 0 and so limt→∞ F (gatv) − F (hatv) = 0 . By similar
calculations we can prove limt→−∞ F (gatv)−F (hatv) = 0 if g and h belong
to the same T+-leaf and d+ (g, h) ≤ ε4 . �

(ii) Let ρ : I → G be a continuously differentiable curve in a T−-leaf, and
let t0, t1 ∈ I , t1 > t0 . It suffices to show that

F (ρ (t1))− F (ρ (t0)) = −
∫ t1

t0

∫ ∞

0
∂tf̃ (ρ(t)aτv) dτdt .

Let C ′ ≥ 0 such that ||∂tρ(t)|| ≤ C ′ for all t ∈ [t0, t1] . Then since ρ lies in
a T−-leaf we have ||∂t (ρ(t)aτv)|| ≤ C ′e−τ and so

∂tf̃ (ρ(t)aτv) ≤ cC ′e−τ

for all τ ≥ 0 and t ∈ [t0, t1] where c ≥ 0 is the Lipshitz constant of f̃ . So
the double integral on the right side is absolutely convergent and so we can
interchange the order of integration:

∫ t1

t0

∫ ∞

0
∂tf̃ (ρ(t)aτv) dτdt =

∫ ∞

0

∫ t1

t0

∂tf̃ (ρ(t)aτv) dtdτ

=
∫ ∞

0

(
f̃ (ρ (t1) aτv)− f̃ (ρ (t0) aτv)

)
dτ

= lim
T→∞

(F (ρ (t1) aTv)− F (ρ (t0) aTv))

−F (ρ (t1)) + F (ρ (t0)) .

Now let L ⊂ G be compact such that ρ([t1, t2]) ⊂ L and let ε4 > 0 as in
(i) . Without loss of generality we may assume that d− (ρ (t0) , ρ (t1)) ≤ ε4 .
Then

lim
T→∞

(F (ρ (t1) aTv)− F (ρ (t0) aTv)) = 0

by (i) . By similar calculations we can also prove

∂t (F ◦ ρ) (t) =
∫ 0

−∞
∂tf̃ (ρ(t)aτv) dτ

in the case when ρ : I → G is a continuously differentiable curve in a T+-leaf.
�
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Lemma 1.38

(i) F ∈ L2 (Γ\G) ,

(ii) ξF ∈ L2 (Γ\G) for all ξ ∈ IRDv ⊕ g ∩ (T+ ⊕ T−) .

Proof: Since by conditiion {ii} we assume Γ\G to be compact, the assertions
are trivial. In the case where condition {ii} is replaced by the weaker
condition of vol Γ\G < ∞ , (i) must be a calculation similar to that of the
proof of theorem 3.24 in the super case, section 3.3 , using a fundamental
domain of Γ similar to the one described in theorem 3.13 in section 3.2
resp. in theorem 0.6 of [6] (both in the rank 1 case) and a Fourier

decomposition similar to that given by theorem 3.15 in section 3.2 . But up
to now we not able to handle these things.

(ii) goes through even in the case where vol Γ\G <∞ and Satake’s theorem
holds: Since ∂τF (♦aτv) |τ=0 = f̃ ∈ L2 (Γ\G) and vol (Γ\G) <∞ it suffices
to show that ξF is bounded for all α ∈ Φ\{0} and ξ ∈ gα . So let α ∈ Φ\{0}
and ξ ∈ gα . Then since v ∈ IRq is regular we have αv �= 0 . First assume
αv > 0 . Then since we assume (ϕτv)τ∈IR to be hyperbolic of constant 1
we even know αv ≥ 1 . Clearly ξ ∈ T− and so there exists a continuously
differential curve ρ : I → G contained in the T−-leaf containing 1 such that
0 ∈ I , ρ(0) = 1 and ∂tρ(t)|t=0 = ξ . Let g ∈ G . Then by lemma 1.37 (ii)
we have

(ξF ) (g) = ∂tF (gρ(t))|t=0

= −
∫ ∞

0
∂tf̃ (gρ(t)aτv)

∣∣∣
t=0

dτ

= −
∫ ∞

0
∂tf̃ (gaτva−τvρ(t)aτv)

∣∣∣
t=0

dτ

= −
∫ ∞

0

((
Ada−τv(ξ)

)
f̃
)

(gaτv) dτ

= −
∫ ∞

0
e−αvτ

(
ξf̃
)

(gaτv) dτ ,

So

|(ξF ) (g)| ≤ c ||ξ||2 <∞

where c is the Lipshitz constant of f̃ . The case αv < 0 is done similarly. �

So by the Fourier decomposition described above we have

F =
∑
ν∈Z

Fν ,
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where Fν ∈ Hν for all ν ∈ Z . Dv = D+
v +D−

v , and a simple calculation shows
that D+

v and D−
v ∈ IRDv ⊕ g ∩ (T+ ⊕ T−) , and so D+

v F,D−
v F ∈ L2 (Γ\G)

by lemma 1.38 . So we get the Fourier decomposition of f̃ as

f̃ = DvF =
∑
ν∈Z

(
D+

v Fν−2 +D−
v Fν+2

)
with D+

v Fν−2 +D−
v Fν+2 ∈ Hν for all ν ∈ Z . But f̃ ∈ Hqk , and so

D+
v Fν−2 +D−

v Fν+2 =

⎧⎨⎩ f̃ if ν = qk

0 otherwise
.

Lemma 1.39 Fν = 0 for ν ∈ IN≥qk .

Proof: similar to the argument of Guillemin and Kazhdan in [8] . By
the commutation relations of D+

j , D−
j and Ψj , j = 1, . . . , q , and since

v ∈ IR{±1}q , we get for all m ∈ Z

∣∣∣∣D+
v Fm

∣∣∣∣2
2

=
∣∣∣∣D−

v Fm
∣∣∣∣2

2
+m ||Fm||22 , (1.5)

and for all m ∈ IN≥qk+1 we have D+
v Fm−2 +D−

v Fm+2 = 0 and so

∣∣∣∣D−
v Fm+2

∣∣∣∣
2

=
∣∣∣∣D+

v Fm−2

∣∣∣∣
2
.

Now let ν ∈ IN≥qk . We will prove that

∣∣∣∣D+
v Fν+4l

∣∣∣∣
2
≥ ||Fν ||2

for all l ∈ IN by induction on l :

If l = 0 then the inequality is clear by 1.5 . So let us assume
that the inequality is true for some l ∈ IN . Then again by 1.5
we have

∣∣∣∣D+
v Fν+4l+4

∣∣∣∣2
2
≥
∣∣∣∣D−

v Fν+4l+4

∣∣∣∣2
2

=
∣∣∣∣D+

v Fν+4l

∣∣∣∣2
2
≥ ||Fν ||22 .

On the other hand D+
v F ∈ L2 (Γ\G) by lemma 1.38 and so ||D+

v Fm||2 � 0
for m�∞ . That implies Fν = 0 . �

So we obtain D+
v Fqk−2 = f̃ and finally since f ∈ O(B)

∣∣∣∣∣∣f̃ ∣∣∣∣∣∣2
2

=
(
f̃ ,D+

v Fqk−2

)
= −

(
D−

v f̃ , Fqk−2

)
= 0 ,
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which completes the proof of our main theorem. �

Now let again Γ be arithmetic, and fix a k-admissible maximal loxodromic
subgroup Γ0 of Γ , g ∈ G such that Γ0 � gAMg−1 and χ ∈ (IRq)∗ such that
for all t ∈ IRq and w ∈ M if gatwg−1 ∈ Γ0 then j(w)k = e2πiχt . We will
compute ϕΓ0,l ∈ Sk(Γ) , l ∈ Λ∗ − χ , as a relative Poincaré series. Hereby
≡ means equality up to a constant �= 0 (not necessarily independent of Γ0

and l ) .

Theorem 1.40 (computation of ϕΓ0,l ) If k ≥ max (k0, 2) , where k0 is
given by Satake’s theorem, then for all l ∈ Λ∗ − χ

(i)
ϕΓ0,l ≡

∑
γ∈Γ0\Γ

q|γ

where

q :=
∫

IRq
e2πilt∆ (♦, gat0)−kP j (gat,0)

k
dqt ∈M (k,Γ0) ∩ L1

k (Γ0\B) .

(ii) In the case where B = B1× · · · ×Bs and B1, . . . , Bs are the unit balls of
the full matrix spaces Cp1×q1 , . . . ,Cps×qs resp. , and Z ∈ B such that

g−1Z =

⎛⎝⎛⎝ v1

w1

⎞⎠ } q1
} p1 − q1

, . . . ,

⎛⎝ vs

ws

⎞⎠ } qs
} ps − qs

⎞⎠
with a triangular matrices v1, . . . , vs we can compute q (Z) explicitly as

q (Z) ≡ (∆ (Z,Xε0) ∆ (Z,X−ε0))
− k

2
P

q∏
j=1

(
1 + (v)jj
1− (v)jj

)πilj
,

where ε0 ∈ {±1}q is arbitrary,

g

⎛⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎜⎝
ε1 0

. . .

0 εq1

0

⎞⎟⎟⎟⎟⎟⎟⎠ , . . . ,

⎛⎜⎜⎜⎜⎜⎜⎝
εq−qs+1 0

. . .

0 εq

0

⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠ ,

ε ∈ {±1}q , are the 2q fixpoints of Γ0 in the Shilov boundery of B , and

v :=

⎛⎜⎜⎜⎜⎜⎜⎝
v1 0

v2
. . .

0 vs

⎞⎟⎟⎟⎟⎟⎟⎠ ∈ Cq×q .
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Proof: (i) Let F be a fundamental domain of IRq/Λ and f ∈ Sk (Γ) , and
define h ∈ C∞ (IRq ×M)C and bl as in theorem 1.29 . Then by standard
Fourier expansion and theorem 1.17 we have

bl ≡
∫
F
e−2πilth(t, 1)dqt

=
∫
F
e−2πiltf (gat0) j (gat,0)k dqt

≡
∫
F
e−2πilt

(
∆ (♦, gat0)−kP , f

)
j (gat,0)k dqt

=
∫
F
e−2πilt

∫
G

(
∆ (♦, gat0)−kP

)∼
f̃ j (gat,0)k dqt .

Since by Satake’s theorem, f̃ ∈ L∞(G) , and

∫
F

∫
G

∣∣∣(∆ (♦, gat0)−kP
)∼

j (gat,0)k
∣∣∣ dqt

≡
∫
F

∫
B

∣∣∣∆ (♦,0)|(gat)−1

∣∣∣∆ (Z,Z)(
k
2
−1)P dVLebd

qt

≡
∫
B

∆ (Z,Z)(
k
2
−1)P dVLeb <∞ ,

by Tonelli’s and Fubini’s theorem we can interchange the order of inte-
gration:

bl ≡
∫
G

∫
F
e−2πilt

(
∆ (♦, gat0)−kP

)∼
j (gat,0)k dqt f̃

=
(∫

F
e2πilt∆ (♦, gat0)−kP j (gat,0)

k
dqt, f

)
= (q, f)Γ0 ,

by theorem 1.16 , where(∫
F
e2πilt∆ (♦, gat0)−kP j (gat,0)

k
dqt
)∼
∈ L1(G) ,

∫
F
e2πilt∆ (♦, gat0)−kP j (gat,0)

k
dqt ∈ O(B)

since ∆ (♦,W) ∈ O(B) for all W ∈ B and the convergence of the integral
is compact, and so

q′ :=
∑
γ′∈Γ0

(∫
F
e2πilt∆ (♦, gat0)−kP j (gat,0)

k
dqt
)∣∣∣∣

γ′
∈Mk (Γ0)∩L1

k (Γ0\B) .

For all Z ∈ B we can compute q′ (Z) as
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q′ (Z) =
∑
γ′∈Γ0

∫
F
e2πilt∆

(
γ′Z, gat0

)−kP
j (gat,0)

k
dqt j

(
γ′,Z

)k
=

∑
γ′∈Γ0

∫
F
e2πilt∆

(
Z, γ′−1

gat0
)−kP

j
(
γ′−1gat,0

)k
dqt

≡
∑
T∈Λ

∫
F
e2πilt∆ (Z, gat−T0)−kP j (gat−T,0)

k
e2πiχTdqt

=
∑
T∈Λ

∫
F
e2πil(t−T)∆ (Z, gat−T0)−kP j (gat−T,0)

k
dqt

=
∫

IRq
e2πilt∆ (Z, gat0)−kP j (gat,0)

k
dqt =: q (Z) .

Again by theorem 1.16 we see that
∑

γ∈Γ0\Γ q
′|γ ∈Mk(Γ) ∩ L1

k (Γ\B) , and
so by Satake’s theorem, even ∈ Sk(Γ) , such that

bl ≡

⎛⎝ ∑
γ∈Γ0\Γ

q′|γ , f

⎞⎠
Γ

,

and so we conclude that ϕΓ0,l ≡
∑

γ∈Γ0\Γ q
′|γ . �

(ii) Let Z ∈ B such that

g−1Z =

⎛⎝⎛⎝ v1

w1

⎞⎠ } q1
} p1 − q1

, . . . ,

⎛⎝ vs

ws

⎞⎠ } qs
} ps − qs

⎞⎠

with triangular matrices v1, . . . , vs . Then
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q (Z) =
∫

IRq
e2πilt∆ (Z, gat0)−kP j (gat,0)

k
dqt

= j
(
g−1,Z

)k ∫
IRq
e2πilt∆

(
g−1Z, at0

)−kP
j (at,0)

k
dqt

= j
(
g−1,Z

)k q∏
j=1

∫ ∞

−∞
e2πiljt

(
1− (v)jj tanh t

)−kP 1

(cosh t)kP
dt

= j
(
g−1,Z

)k q∏
j=1

∫ ∞

−∞
e2πiljt(

cosh t− (v)jj sinh t
)kP dt

≡ j
(
g−1,Z

)k q∏
j=1

1(
1− (v)2jj

) k
2
P

(
1 + (v)jj
1− (v)jj

)πilj

= j
(
g−1,Z

)k⎛⎝ q∏
j=1

(
1− (ε0)j (v)jj

)(
1 + (ε0)j (v)jj

)⎞⎠− k
2
P

×

×
q∏
j=1

(
1 + (v)jj
1− (v)jj

)πilj

≡ (∆ (Z,Xε0) ∆ (Z,X−ε0))
− k

2
P

q∏
j=1

(
1 + (v)jj
1− (v)jj

)πilj
.�

75



Chapter 2

Super manifolds and the

concept of parametrization

2.1 Graded algebraic structures

Throughout this section let K be a field of characteristic �= 2 .

Definition 2.1 (graded vectorspace)

(i) A graded vectorspace over K is a K-vectorspace V together with a splitting
V = V0 ⊕ V1 of V into a direct sum of two K-vector spaces V1 and V2 . In
this case V0 is called the even and V1 the odd part of V , (V1 ∪ V2) \ {0}
is called the set of homogeneous elements of V , and for all homogeneous
v ∈ V

v̇ :=

⎧⎨⎩ 0 if v ∈ A0

1 if v ∈ A1

is called the parity of v .

(ii) Let V and W be two graded vector spaces over K and ϕ : V → W

be a linear map. Then ϕ is called graded if and only if ϕ (V0) ⊂ W0 and
ϕ (V1) ⊂W1 .

(iii) Let U � V be a subspace of V . Then U is called a graded subspace of
V if and only if U = U0⊕U1 where U0 := U ∩V0 and U1 := U ∩V1 . In this
case U itself is a graded vectorspace over K .

Definition 2.2 (graded algebra) Let A = A0 ⊕ A1 be at the same time
a graded vectorspace and an algebra over the field K .

(i) We say A is a graded algebra if AiAj ⊂ Ai+j for all i, j ∈ Z2 .
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(ii) If A is a graded algebra then it is said to be graded commutative if for
all homogeneous a, b ∈ A

ab = (−1)ȧḃba .

(v) Let A = A0 ⊕A1 be a graded algebra over the field K , and let
M =M0⊕M1 be at the same time a graded vectorspace over K and a left-
(right-)module over the algebra A . Then M is called a left- (right-) graded
module over the graded algebra A if and only if

AiMj ⊂Mi+j

resp.

MiAj ⊂Mi+j

for all i, j ∈ Z2 .

A being an associative graded algebra clearly implies that A0 ⊂ A is a
subalgebra and that A and A1 are bimoduls over A0 . Especially A being
a graded commutative algebra implies that A0 is commutative and that for
all α, β ∈ A1 we have αβ = −βα and so α2 = 0 .

Every commutative algebra A is graded commutative as well if we split
A = A⊕ {0} .

IfM is a left- (right-) graded module over the graded commutative algebra
A then M is at the same time a right- (left-) graded module over A by
bilinear extension of

ma := (−1)ṁȧam

resp.

am := (−1)ȧṁma

for all homogeneous a ∈ A and m ∈ M . And so in this case we say that
M is simply a graded module over A .

Clearly if A is an associative graded commutative algebra , B is a sub
graded algebra of A andM is a graded subspace of A invariant under left-
and right-multiplication with elements of B then M is a graded module
over B .
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The most important example of an associative graded commutative algebra
over K is the exterior (Grassmann) algebra of Kn , n ∈ IN :

Let n ∈ IN , ℘(n) := ℘ ({1, . . . , n}) , ℘0(n) :=
{
S ∈ ℘(n)

∣∣∣ 2 | |S|
}

,

℘1(n) :=
{
S ∈ ℘(n)

∣∣∣ 2 � |S|
}

, and let

Λ (Kn) =

⎧⎨⎩ ∑
S∈℘(n)

aSe
S

∣∣∣∣∣∣ aS ∈ K , S ∈ ℘(n)

⎫⎬⎭
be the exterior algebra of Kn with the abbreviation eS = ei1 ∧ · · · ∧ eir for
all S = {i1, . . . , ir} ∈ ℘(n) , i1 < · · · < ir , where ei denotes the i-th unit
vector in Kn for i = 1, . . . , n . Then clearly

Λ (Kn) =
n⊕
r=0

Λ(r) (Kn) ,

where Λ(r) (Kn) :=
⊕

S∈℘(n) , |S|=rKe
S , and Λ (Kn) = Λ0 (Kn)⊕Λ1 (Kn) ,

where

Λ0 (Kn) :=

⎧⎨⎩ ∑
S∈℘0(n)

aSe
S

∣∣∣∣∣∣ aS ∈ K , S ∈ ℘0(n)

⎫⎬⎭ =
⊕

r∈{0,...,n} , 2|r
Λ(r) (Kn)

and

Λ1 (Kn) :=

⎧⎨⎩ ∑
S∈℘1(n)

aSe
S

∣∣∣∣∣∣ aS ∈ K , S ∈ ℘1(n)

⎫⎬⎭ =
⊕

r∈{0,...,n} , 2�r

Λ(r) (Kn)

is a unital associative graded commutative algebra. In Λ (Kn) we have the
multiplication rule

eSeT =

⎧⎨⎩ (−1)|T<S|eS∪T if S ∩ T = ∅
0 otherwise

for all S, T ∈ ℘(n) , where we use the abbreviation

|K < L| := {(k, l) ∈ K × L | k < l}

for all K,L ∈ ℘(n) , and we have a so-called body map

# : Λ (Kn)→ K ,
∑

S∈℘0(n)

aSe
S �→ a∅ ,

which is a unital graded algebra epimorphism. Clearly #|K = id . The
kernel of # is precisely the set N of nilpotent elements in Λ (Kn) and at
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the same time the ideal spanned by Λ1 (Kn) . We have N n = Ke{1,...,n} ,
N n+1 = 0 and

Λ (Kn)/N � K

via # . Let a ∈ Λ (Kn) . Then a is invertible in Λ (Kn) if and only if a# is
invertible in K , and in this case

a−1 =
1
a#

∑
r∈IN

(
a# − a
a#

)r
.

This is a consequence of a more general theorem:

Theorem 2.3 Let A be a unital associative algebra over a field K , and let
a, b ∈ A such that b is invertible and (b− a)b−1 or equivalently b−1(b− a) is
nilpotent. Then a is invertible and

a−1 = b−1
∞∑
r=0

(
(b− a)b−1

)r =
∞∑
r=0

(
b−1(b− a)

)r
b−1 .

Proof: Both sums are finite since (b − a)b−1 and b−1(b − a) are nilpotent.
Clearly

a =
(
1 + (a− b)b−1

)
b = b

(
1 + b−1(a− b)

)
,

and so

a

(
b−1

∞∑
r=0

(
(b− a) b−1

)r) =
(
1 + (a− b)b−1

) ∞∑
r=0

(
−(a− b)b−1

)r
= 1

and

( ∞∑
r=0

(
b−1(b− a)

)r
b−1

)
a =

∞∑
r=0

(
−b−1(a− b)

)r (1 + b−1(a− b)
)

= 1 .

So a is invertible and the formula holds. �

Let A be a unital associative graded algebra over the field K , p, q, r, s ∈ IN .
Then we define the graded bimodule A(p|q)×(r|s) = A(p|q)×(r|s)

0 ⊕ A(p|q)×(r|s)
1

of (p|q)× (r|s) - graded matrices over A by A(p|q)×(r|s) := A(p+q)×(r+s) as a
graded vectorspace with grading
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A(p|q)×(r|s)
0 :=

⎧⎨⎩
⎛⎝ A β

γ D

⎞⎠∣∣∣∣∣∣ A ∈ Ap×r0 , D ∈ Aq×s0 , β ∈ Ap×s1 , γ ∈ Aq×r1

⎫⎬⎭
and

A(p|q)×(r|s)
1 =

⎧⎨⎩
⎛⎝ α B

C δ

⎞⎠∣∣∣∣∣∣ α ∈ Ap×r1 , δ ∈ Aq×s1 , B ∈ Ap×s0 , C ∈ Aq×r0

⎫⎬⎭ .

Clearly for all i, j ∈ Z2 if g ∈ A(p|q)×(r|s)
i and h ∈ A(r|s)×(t|u)

j then

gh ∈ A(p|q)×(t|u)
i+j . Especially A(p|q)×(p|q) is a unital associative graded alge-

bra, and all units in A(p|q)×(p|q)
0 form a group

GL(p|q,A) :=
(
A(p|q)×(p|q)

0

)×
=

⎧⎨⎩
⎛⎝ A β

γ D

⎞⎠ ∈ A(p|q)×(p|q)
0 invertible

⎫⎬⎭ .

In the special case where A = Λ (Kn) we have the body map

# : Λ (Kn)(p|q)×(r|s) → K(p|q)×(r|s)

taken componentwise, which is a graded K-linear map. Especially # is a
unital graded algebra epimorphism in the case where (p, q) = (r, s) . Again
all elements of ker # are nilpotent, and so we can apply theorem 2.3 , which
gives here

Corollary 2.4 Let

g =

⎛⎝ A β

γ D

⎞⎠ ∈ Λ (Kn)(p|q)×(p|q)
0 .

Then g ∈ GL (p|q,Λ (Kn)) if and only if A# ∈ GL(p,K) and
D# ∈ GL(q,K) if and only if A ∈ GL (p,Λ (Kn)0) and
D ∈ GL (q,Λ (Kn)0) . In this case

g−1 =

⎛⎝ A−1 0

0 D−1

⎞⎠ n∑
r=0

⎛⎝ 0 βD−1

γA−1 0

⎞⎠r

=
n∑
r=0

⎛⎝ 0 A−1β

D−1γ 0

⎞⎠r⎛⎝ A−1 0

0 D−1

⎞⎠ .
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We define the so-called Berezinian Ber on GL (p|q,Λ (Kn)) as

Ber : GL (p|q,Λ (Kn)) → (Λ (Kn)0)
× ,⎛⎝ A β

γ D

⎞⎠ �→ det
(
A− βD−1γ

)
(detD)−1 .

For checking well-definedness of Ber first observe that for all

⎛⎝ A β

γ D

⎞⎠ ∈ GL (p|q,Λ (Kn))

D ∈ GL (q,Λ (Kn)0) by corollary 2.4 , then A − βD−1γ and D

are ordinary matrices of sizes p × p resp. q × q over the unital
associative and commutative algebra Λ (Kn)0 , and so we can
take the determinant of them. A− βD−1γ ∈ GL (p,Λ (Kn)) by
theorem 2.3 , and so

det
(
A− βD−1γ

)# = detA# ∈ K× .

Therefore detA ∈ Λ (Kn)×0 and by the same reason
detD ∈ Λ (Kn)×0 .

Clearly for all

g =

⎛⎝ A β

γ D

⎞⎠ ∈ GL (p|q,Λ (Kn))

(Ber g)# = detA# det
(
D#
)−1 .

On Λ (Kn)(p|q)×(p|q) we define the super trace as

str : Λ (Kn)(p|q)×(p|q) → Λ (Kn) ,

⎛⎝ A B

C D

⎞⎠ �→ trA− trD ,

which is clearly Λ (Kn)- linear and respects the grading.

Theorem 2.5

(i) Ber is a group homomorphism.

(ii) If IK = IR or IK = C then the exponential series

exp : Λ (IKn)(p|q)×(p|q) → Λ (IKn)(p|q)×(p|q)
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converges absolutely and uniformly on compact sets, and for all
X ∈ Λ (IKn)(p|q)×(p|q)

0

(Λ (IKn)0 ,+)→ (GL (p|q,Λ (IKn)) , ·) , a �→ exp(aX)

is a group homomorphism.

(iii) If IK = IR or IK = C then

GL (p|q,Λ (IKn)) Ber−→ Λ (IKn)×0
exp ↑ % ↑ exp

Λ (IKn)(p|q)×(p|q)
0 −→

str|
Λ(IKn)

(p|q)×(p|q)
0

Λ (IKn)0

.

Proof: (i) This is theorem 2.27 of [4] . �
(ii) As a IK-vectorspace Λ (IKn)(p|q)×(p|q) � IK2n(p+q)2 since each entry of
Y ∈ Λ (IKn)(p|q)×(p|q) is an element of Λ (IKn) � IK2n

as a IK-vectorspace.
By induction on k ∈ IN we see that∣∣∣∣∣∣Y k

∣∣∣∣∣∣
∞
≤ (2n(p+ q) ||Y ||∞)k

for all k ∈ IN . So the exponential series exp converges absolutely
and uniformly on compact subsets of Λ (IKn)(p|q)×(p|q) . Now let
X ∈ Λ (IKn)(p|q)×(p|q)

0 . Then since Λ (IKn)(p|q)×(p|q)
0 is a closed subal-

gebra of Λ (IKn)(p|q)×(p|q) clearly expX ∈ Λ (IKn)(p|q)×(p|q)
0 . The rest goes

as in classical analysis. �

(iii) This is an assertion in section 2.2 of [4] . �

Clearly since # is a continuous unital graded algebra homomorphism we
have (expY )# = exp

(
Y #
)

for all Y ∈ Λ (IKn)(p|q)×(p|q) .

Definition 2.6 (graded tensor product) Let A = A0 ⊕A1 and
B = B0 ⊕ B1 be graded algebras over the field K . We define the graded
tensor product

A� B = (A� B)0 ⊕ (A� B)1

of A and B as A� B := A⊗ B as a K-vectorspace given the grading

(A� B)0 := (A0 ⊗ B0)⊕ (A1 ⊗ B1)

and

(A� B)1 = (A1 ⊗ B0)⊕ (A0 ⊗ B1)
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and given the multiplication by linear extension of

(a⊗ b)
(
a′ ⊗ b′

)
:= (−1)ḃȧ

′ (
aa′
)
⊗
(
bb′
)

for all homogeneous a, a′ ∈ A and b, b′ ∈ B . A� B is a graded algebra.

One easily verifies that A � B is associative resp. graded commutive, if A
and B are associative resp. graded commutative.
The graded tensor product fulfills the following universal property: We have
canonical graded embeddings C1 : A ↪→ A� B , a �→ a⊗ 1 and
C2 : B ↪→ A � B , b �→ 1 ⊗ b . If C is an associative graded commutative
algebra over the field K and Φ1 : A → C and Φ2 : B → C are graded algebra
homomorphisms then there exists a unique graded algebra homomorphism
Ψ : A� B → C such that Φ1 = Ψ ◦ C1 and Φ2 = Ψ ◦ C2 . Since
Ψ(a⊗b) = Φ1(a)Φ2(b) for all a ∈ A and b ∈ B we denote the induced graded
algebra homomorphism Ψ by Φ1 ⊗ Φ2 .
The graded tensor product is commutative and associative in the sense that
A� B � B �A , where the isomorphism is given by linear extension of

a⊗ b �→ (−1)ȧḃb⊗ a

for all homogeneous a ∈ A and b ∈ B , and if C is a third graded algebra
then (A� B) � C � A � (B � C) . If A = A ⊕ {0} is an ordinary algebra
regarded as a graded algebra then A � B = A ⊗ B as algebras, and the
grading of A � B is given by (A� B)0 = A ⊗ B0 and (A� B)1 = A ⊗ B1 ,
and in this case we write A⊗ B instead of A� B .

Clearly Λ (Km+n) � Λ (Km)� Λ (Kn) canonically for all m,n ∈ IN .

In the end of this section let us talk especially about graded algebras over
IR and C and the connection between them. Let A be a graded algebra over
IR . Then the complexification AC := C⊗A of A is a graded algebra over C

with grading AC = AC
0 ⊕AC

1 . If A is associative resp. graded commutative
then so is AC , and given two graded algebras A , B over IR we have

AC �C BC = (A�IR B)C .

Clearly Λ (IRq)C = Λ (Cq) .

Definition 2.7 (graded involution) Let A be a graded algebra over C .
A C-antilinear graded map

: A → A
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is called a graded involution on A if and only if ab = b a and a = a for all
a, b ∈ A .

Clearly if is a graded involution on the graded algebra A then it is an
involution on A regarded as an ordinary algebra as well. By the way, if A
is a unital algebra and is an involution on A then automatically

1 = 11 = 11 = 1 = 1 .

An easy calculation shows that given a graded commutative algebra A over
C with involution then

∗ : A(p|q)×(r|s) → A(r|s)×(p|q) , g �→ gt = gt ,

where ♦t denotes the usual transpose and is taken component-
wise, is clearly C-antilinear and respects the grading. (g∗)∗ = g for
all g ∈ A(p|q)×(r|s) , and if g ∈ A(p|q)×(r|s) and h ∈ A(r|s)×(t|u) then
(gh)∗ = h∗g∗ . So especially ∗ : A(p|q)×(p|q) → A(p|q)×(p|q) is a graded
involution.

Clearly exp (X∗) = (expX)∗ for all X ∈ Λ (Kn)(p|q)×(p|q)
0 , str (Y ∗) = strY

for all Y ∈ Λ (Kn)(p|q)×(p|q) , and Ber (g∗) = Ber g for all
g ∈ GL (p|q,Λ (Kn)) .

If A and B are two graded algebras over C with involution then the
C-antilinear extension of

a⊗ b′ := (−1)ȧḃ a⊗ b

for all homogeneous a ∈ A and b ∈ B defines a graded involution ′ on
A � B . If A and B are unital then ′ restricted to A and B canonically
embedded into A� B is just , and so we denote the involution ′ on
A� B again by the symbol .

Theorem 2.8

(i) Let A be a graded commutative algebra over IR . Then the C-antilinear
map : AC → AC given by C-antilinear extension of

a �→

⎧⎨⎩ a if a ∈ A0

ia if a ∈ A1

is a graded involution on AC .

A0 =
{
a ∈ AC

0

∣∣∣ a = a
}
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and

A1 =
{
α ∈ AC

1

∣∣∣ α = iα
}
.

(ii) Conversely let A be a graded commutative algebra over C with graded
involution . Then AIR = (AIR)0 ⊕ (AIR)1 given by

(AIR)0 := {a ∈ A0 | a = a}

and

(AIR)1 := {α ∈ A1 | α = iα}

is a graded commutative algebra over IR , A is the complexification of AIR ,
and the graded involution on A is given by C-antilinear extension of

a �→

⎧⎨⎩ a if a ∈ (AIR)0
ia if a ∈ (AIR)1

.

(iii) Let A and B be graded commutative algebras over IR and Φ : A → B a
graded algebra homomorphism. Then its unique C-linear extension
ΦC : AC → BC is again a graded algebra homomorphism, and it respects
given by (i) .

(iv) Conversely let A and B be graded commutative algebras over C with
graded involutions and Φ : A → B a graded algebra homomorphism
respecting . Then Φ restricts to a graded algebra homomorphism
ΦIR : AIR → BIR , and Φ is the unique C-linear extension of ΦIR .

Proof: (i) For proving that is a graded involution it suffices to show that
ab = b a and a = a for all homogeneous a, b ∈ A . Let α, β ∈ A1 . Then
αβ ∈ A0 . So

αβ = αβ = −βα = (iβ)(iα) = β α ,

and

α = iα = −iα = (−i)iα = α .

The other cases are similar. Now let a = x+ iy ∈ AC
0 , x, y ∈ A0 such that

a = a . Then

x− iy = a = a = x+ iy ,

so y = 0 and a ∈ A0 . Let α = ξ + iη ∈ AC
1 , ξ, η ∈ A1 such that α = iα .

Then
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i (ξ − iη) = ξ − iη = α = iα = i (ξ + iη) ,

so η = 0 and α ∈ A1 . �

(ii) For proving that AIR is a graded commutative algebra over IR it suffices
to show that ab ∈ AIR for all homogeneous a, b ∈ AIR . Let α, β ∈ (AIR)1 .
Then αβ ∈ A0 , and

αβ = β α = (iβ)(iα) = −βα = αβ .

So even αβ ∈ (AIR)0 . The other cases are done similar. For proving that A
is the complexification of AIR observe that for all a ∈ A0 and α ∈ A1

a =
a+ a

2︸ ︷︷ ︸
∈(AIR)0

+ i (−i) a− a
2︸ ︷︷ ︸

∈(AIR)0

and

α =
α− iα

2︸ ︷︷ ︸
∈(AIR)1

+ i
−iα+ α

2︸ ︷︷ ︸
∈(AIR)1

.

An easy calculation shows that (AIR)0 ∩ i (AIR)0 = (AIR)1 ∩ i (AIR)1 = {0} .
The rest is trivial. �

(iii) Clearly ΦC is a graded algebra homomorphism. For showing that it
respects let a = a1 + ia2 ∈ AC

0 , a1, a2 ∈ A0 and α = α1 + iα2 ∈ AC
1 ,

α1, α2 ∈ A1 . Then

ΦC (a) = ΦC (a1 − ia2) = Φ (a1)− iΦ (a2) = Φ (a1) + iΦ (a2) = ΦC(a)

and

ΦC (α) = ΦC (iα1 + α2) = iΦ (α1) + Φ (α2) = Φ (α1) + iΦ (α2) = ΦC(α) .

�

(iv) trivial.

We see that C-linear extension induces a bijection between all graded alge-
bra homomorphisms from A to B and all graded algebra homomorphisms
from AC to BC respecting .
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Furthermore a straight forward calculation shows that given two graded
commutative algebras A and B over IR and graded involutions on AC ,
BC and (A� B)C according to theorem 2.8 (i) then again

a� b = (−1)ȧḃ a� b

for all homogeneous a ∈ A and b ∈ B .

Definition 2.9 Let A be a graded commutative algebra over C with graded
involution .

(i) The graded commutative IR-algebra AIR given by

(AIR)0 := {a ∈ A0 | a = a}

and

(AIR)1 := {α ∈ A1 | α = iα}

is called the real part of A with respect to .

(ii) Let a ∈ A , and let a = x + iy be the unique splitting of a such that
x, y ∈ AIR . Then Re a := x is called the real part and Im a := y is called
the imaginary part of a with respect to .

Clearly if a ∈ A then a ∈ A0 if and only if Re a, Im a ∈ (AIR)0 and a ∈ A1

if and only if Re a, Im a ∈ (AIR)1 . For all a ∈ A0

Re a =
a+ a

2
and

Im a = −i a− a
2

,

and for all α ∈ A1

Re α =
α− iα

2
and

Im α =
−iα+ α

2
.
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Lemma 2.10 Let n ∈ IN .

(i) There exists a unique unital graded algebra automorphism

ι : (Λ (IRn)�IR Λ (IRn))C ∼−→Λ (Cn)�C Λ (Cn)

such that

ι (ej ⊗ 1) =
ej ⊗ 1− i (1⊗ ej)

2
and

ι (1⊗ ej) =
−i (ej ⊗ 1) + 1⊗ ej

2
for all j = 1, . . . , n .

ι−1 (ej ⊗ 1) = ej ⊗ 1 + i (1⊗ ej)

and

ι−1 (1⊗ ej) = i (ej ⊗ 1) + 1⊗ ej

for all j = 1, . . . , n .

(ii) There exists a unique graded involution on Λ (Cn) �C Λ (Cn) such
that

ej ⊗ 1 = 1⊗ ej

for all j = 1, . . . , n . is given by C-antilinear extension of

eS ⊗ eT := (−1)
|S|(|S|+1)

2
+

|T |(|T |+1)
2 eT ⊗ eS

for all S, T ∈ ℘(n) . Let ′ be the graded involution on
(Λ (IRn)�IR Λ (IRn))C given by theorem 2.8 (i) . Then is the
unique graded involution on Λ (Cn)�C Λ (Cn) such that

(Λ (IRn)�IR Λ (IRn))C ι−→ Λ (Cn)�C Λ (Cn)
′ ↑ % ↑

(Λ (IRn)�IR Λ (IRn))C ι−→ Λ (Cn)�C Λ (Cn)

.

Proof: (i) Clearly there exist unique C-vectorspace automorphisms Φ and Ψ
on C2q (with basis {e1 ⊗ 1, . . . , en ⊗ 1, 1⊗ e1, . . . , 1⊗ en} ) , such that

Φ (ej ⊗ 1) =
ej ⊗ 1− i (1⊗ ej)

2
, Φ (1⊗ ej) =

−i (ej ⊗ 1) + 1⊗ ej
2

,
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Ψ (ej ⊗ 1) = ej ⊗ 1 + i (1⊗ ej) and Ψ (1⊗ ej) = i (ej ⊗ 1) + 1⊗ ej

for all j = 1, . . . , n , clearly inverse to each other. So existence and
uniqueness of ι follow by functoriality of the exterior algebra.

(ii) For proving uniqueness of observe that since is an involution
ej ⊗ 1 = 1⊗ ej implies also 1⊗ ej = ej ⊗ 1 and so

eS ⊗ eT := (−1)
|S|(|S|+1)

2
+

|T |(|T |+1)
2 eT ⊗ eS

for all S, T ∈ ℘(n) . For proving existence of and commutativity of the
diagram let be the unique graded involution on Λ (Cn)�C Λ (Cn) such
that the diagram commutes. Then for all j = 1, . . . , n

ej ⊗ 1 = ι (ej ⊗ 1 + i (1⊗ ej))
= ι

(
ej ⊗ 1 + i (1⊗ ej)

′)
= ι (i (ej ⊗ 1) + 1⊗ ej)
= 1⊗ ej .�

In section 2.3 , when studying complex super open sets, we will see that ι is
precisely the ’intertwiner’ between odd holomorphic and odd real coordinate
functions on complex super open sets. Observe that for all j = 1, . . . n

Re (ej ⊗ 1) = ι (ej ⊗ 1)

and

Im (ej ⊗ 1) = ι (1⊗ ej)

with respect to .

2.2 super manifolds - the real case

We will give a short description of what we mean by the category of super
manifolds. Super manifolds have for example been studied in [4] , but a
notion of parametrization concerning super manifolds seems to be new, never
studied systematically. Let us start with a sub category, namely the category
of super open sets, which is simpler to deal with. Let M be a manifold and
q ∈ IN . Then we have a sheaf

D
(
♦|q
)
M

:= C∞M ⊗ Λ (IRq)
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of unital associative graded commutative algebras on M and a unital graded
sheaf epimorphism

# : D
(
♦|q
)
M
→ C∞M ,

∑
S∈℘(q)

fSe
S �→ f∅

called the body map. Via the canonical unital graded sheaf embeddings
C∞M ↪→

(
D
(
♦|q)

M

)
0

and Λ (IRq) ↪→ D
(
♦|q)

M
we identify C∞M and Λ (IRq)

with graded subsheaves of D
(
♦|q)

M
. Then clearly # is a projecton in the

sense that #|C∞
M

= id .
As in Λ (IRq) itself the subsheaf N of D

(
♦|q)

M
of all nilpotents elements

is precisely the kernel of # in D
(
♦|q)

M
and at the same time the ideal

in D
(
♦|q)

M
spanned by

(
D
(
♦|q)

M

)
1

. We have N q = e{1,...,q}C∞M �= 0 ,
N q+1 = 0 and

D
(
♦|q
)
M

/
N � C∞M

via # .
On D

(
♦|q)

M
as a free 2q-dimensional C∞M -module we will always use the

uniformal structure of compact convergence in all derivatives. Then from
classical analysis we know that given U ⊂ IRp open, D

(
U |q) is complete,

and given V ⊂ U open the restriction map

|V : D
(
U |q
)
→ D

(
V |q
)

is a continuous unital graded algebra homomorphism, whose image is dense
in D

(
V |q) .

Now let us consider the special case M = IRp for some p ∈ IN . Then in
D
(
IRp|q

)
we have the even coordinate functions

x1, . . . , xp ∈ C∞(IRp) ↪→ D
(
IRp|q

)
0

and the odd coordinate functions

ξ1 := e1, . . . , ξq := eq ∈ Λ (IRq)1 ↪→ D
(
IRp|q

)
1
.

We define ξS := eS for all S ∈ ℘(q) .

Definition 2.11 (super open sets)

(i) Let (p, q) ∈ IN2 and U ⊂ IRp be open. Then the pair U |q := (U, q) is
called a super open set of dimension (p, q) . U is called the body of U |q and
# : D

(
U |q) → C∞(U) the body map of D

(
U |q) . If V ⊂ U open, V |q is

called a sub super open set of U |q . If U is even a domain then U |q is called
a super domain.
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(ii) Let U |q and V |s be two super open sets, ϕ : U → V a C∞-map and
Φ : D

(
V |s) → D (U |q) a unital graded algebra homomorphism. Then the

pair (ϕ,Φ) is called a super morphism from U |q to V |s if and only if

(Φ(f))# = f# ◦ ϕ

for all f ∈ D
(
V |s) . In this case ϕ is called the body of (ϕ,Φ) .

(iii) Let (ϕ,Φ) be a super morphism from U |q to V |s . Then (ϕ,Φ) is called a
super embedding if and only if ϕ is an embedding and Φ

(
D
(
V |s)) ⊂ D (U |q)

is dense.
(ϕ,Φ) is called a super projection if and only if ϕ is a projection and Φ is
injective.

(iv) A super morphism (ϕ,Φ) from U |q to V |s is called a diffeomorphism if
and only if ϕ is a diffeomorphism and Φ is an isomorphism. Then an easy
calculation shows that (ϕ,Φ)−1 :=

(
ϕ−1,Φ−1

)
is a diffeomorphism from V |s

to U |q , which is called the inverse diffeomorphism to (ϕ,Φ) .

Let U |q be a (p, q)-dimensional and V |s be an (r, s)-dimensional super open
set, and let (ϕ,Φ) be a super morphism from U |q to V |s . Then comparing
degrees of nilpotency in D

(
U |q) and D

(
V |s) one sees that if (ϕ,Φ) is a

super embedding then p ≤ r and q ≤ s , if (ϕ,Φ) is a super projection then
p ≥ r and q ≥ s , and finally if (ϕ,Φ) is a super diffeomorphism then p = r

and q = s .
(
id,#

)
is a super embedding from U into U |q for each super

open set U |q .

Clearly the set of all super open sets together with all super morphisms forms
a category, where the composition of two super morphisms (ϕ,Φ) from U |q

to V |s and (ψ,Ψ) from V |s to W |u is defined as

(ϕ,Φ) ◦ (ψ,Ψ) := (ϕ ◦ ψ,Ψ ◦ Φ) ,

and (id, id) is the identity morphism from a super open set U |q to itself.
The category of ordinary open subsets of all IRp , p ∈ IN , together with
C∞-maps is a subcategory of the category of super open sets identifying
each U ⊂ IRp open, p ∈ IN , with (U, 0) . The body map is precisely a
functor from the category of super open sets to the category of ordinary
open subsets, which restricted to the subcategory of open subsets is just
the identity.

Given super open sets U |q, V |s and W |u , a super embedding (ϕ,Φ) from U |q

to V |s and a super morphism (ψ,Ψ) from V |s to W |u we call the composition
(ψ,Ψ)|U |q := (ψ,Ψ) ◦ (ϕ,Φ) the restriction of (ψ,Ψ) to U |q . In the trivial
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case where U |q is a super open set and U ′ ⊂ U open we call the super
embedding (c, |U ′) from U ′|q to U |q (where c : U ′ ↪→ U denotes the inclusion
map) the super inclusion from U ′|q to U |q . In this case given a super
morphism (ϕ,Φ) from U |q to V |s the restriction to U ′|q is just (ϕ|U ′ , |U ′ ◦Φ) .

There is a nice characterization of super morphisms between super open
sets, which shows in particular that in some sense given a super open set
U |q the algebra D

(
U |q) is ’spanned’ by its coordinate functions:

Theorem 2.12 Let U |q and V |s be two super open sets, and let y1, . . . , yr

and η1, . . . , ηs be the coordinate functions on V |s .

(i) Let Φ : D
(
V |s) → D (U |q) be a unital graded algebra homomorphism.

Then Φ is continuous, and there exists a unique C∞-map ϕ : U → V such
that (ϕ,Φ) is a super morphism from U |q to V |s . Let fi := Φ (yi) ,
i = 1, . . . , r , λj := Φ (ηj) , j = 1, . . . , s . Then

(
f#
1 , . . . , f

#
r

)
(x) ∈ V for

all x ∈ U , ϕ =
(
f#
1 , . . . , f

#
r

)
, and for all g =

∑
S∈℘(s) gSη

S ∈ D
(
V |q) we

have

Φ(g) =
∑

S∈℘(s)

∑
n∈INr

1
n!

((∂ngS) ◦ ϕ)
(
f1 − f#

1 , . . . , fr − f#
r

)n
λS (2.1)

in multi-index language, where we set λS := λt1 · · ·λtm for all
S = {t1, . . . , tm} ∈ ℘(s) , 1 ≤ t1 < · · · < tm ≤ s .

(ii) Conversely let f1, . . . , fr ∈ D
(
U |q)

0
such that

(
f#
1 , . . . , f

#
r

)
(x) ∈ V for

all x ∈ U , and let λ1, . . . , λs ∈ D
(
U |q)

1
. Then there exists a unique unital

graded algebra homomorphism Φ : D
(
V |s) → D (U |q) given by formula 2.1

such that Φ (yi) = fi , i = 1, . . . , r , and Φ (ηj) = λj , j = 1, . . . , s .

Proof: (i) For proving uniqueness of ϕ let ϕ = (ϕ1, . . . , ϕr) : U → V be a
C∞-map, such that the pair (ϕ,Φ) is a super morphism from U |q to V |s .
Then for all i = 1, . . . , r one has

ϕi = yi ◦ ϕ = (Φ (yi))
# = f#

i .

For proving existence we first show that
(
f#
1 , . . . , f

#
r

)
(x) ∈ V for all x ∈ U .

So let x0 ∈ U . Then

Ψ : C∞(V )→ IR , g �→ Φ(g)# (x0)

is an algebra homomorphism hence lies in the spectrum of C∞(V ) . So from
classical analysis we know that there exists y0 ∈ V such that Ψ(g) = g (y0)
for all g ∈ C∞(V ) . Therefore for all i = 1, . . . , r
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f#
i (x0) = Ψ (yi) = (y0)i ,

so
(
f#
1 , . . . , f

#
r

)
(x0) = y0 ∈ V . Define ϕ :=

(
f#
1 , . . . , f

#
r

)
: U → V . For

proving formula 2.1 let g ∈ C∞(V ) and x0 ∈ U . It suffices to show that

Φ(g) (x0) =
∑
n∈INr

1
n!
∂ng (ϕ (x0)) ((f1, . . . , fr) (x0)− ϕ (x0))

n

in Λ (IRq) . Again from classical analysis we know that there exist
∆n ∈ C∞(U) , n ∈ INr, |n| = s+ 1 , such that

g =
∑

n∈INr , |n|≤s

1
n!
∂ng (ϕ (x0)) (y − ϕ (x0))

n +
∑

n∈INr , |n|=s+1

(y − ϕ (x0))
n ∆n

and therefore

Φ(g) =
∑

n∈INr , |n|≤s

1
n!
∂ng (ϕ (x0)) ((f1, . . . , fr)− ϕ (x0))

n

+
∑

n∈INr , |n|=s+1

((f1, . . . , fr)− ϕ (x0))
n Φ (∆n) .

Since all
(
fi − f#

i

)
(x0) , i = 1, . . . , r , are nilpotent elements in Λ (IRs) we

have ((f1, . . . , fr) (x0)− ϕ (x0))
n = 0 for all n ∈ INr, |n| = s + 1 , and so

the desired equation follows. Especially by equation 2.1 we see that Φ is
continuous and that

Φ(g)# = g∅ ◦ ϕ = g# ◦ ϕ ,

for all g =
∑

S∈℘(s) gSη
S ∈ D

(
V |q) , so (ϕ,Φ) is indeed a super morphism

from U |q to V |s . �
(ii) For proving existence define

Φ : D
(
V |s
)
→ D

(
U |q
)
,∑

S∈℘(s)

gSη
S �→

∑
S∈℘(s)

∑
n∈INr

1
n!

((∂ngS) ◦ ϕ)
(
f1 − f#

1 , . . . , fr − f#
r

)n
λS .

Then clearly Φ is linear and respects the grading. For proving that Φ is also
multiplicative one observes immediately that
Φ
(
gηS
)

= Φ(g)Φ
(
ηS
)

= Φ(g)λS for all g ∈ C∞(V ) and S ∈ ℘(s) , for all
S, T ∈ ℘(s) we have

ηSηT =

⎧⎨⎩ (−1)|T<S|ηS∪T if S ∩ T = ∅
0 otherwise

,
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and since all λj ∈ D
(
U |q)

1
, j = 1, . . . , s ,

λSλT =

⎧⎨⎩ (−1)|T<S|λS∪T if S ∩ T = ∅
0 otherwise

as well.

For all g, h ∈ C∞(V )

Φ(g)Φ(h) =

( ∑
m∈INr

1
m!

((∂mg) ◦ ϕ)
(
f1 − f#

1 , . . . , fr − f#
r

)m
)
×

×
(∑

n∈INr

1
n!

((∂nh) ◦ ϕ)
(
f1 − f#

1 , . . . , fr − f#
r

)n
)
.

Since both sums are finite we can interchange the order of summation, so
we obtain

Φ(g)Φ(h) =
∑
k∈INr

⎛⎝ ∑
m∈INr,m≤k

1
m!(k−m)!

((∂mg) ◦ ϕ)
((
∂k−mh

)
◦ ϕ
)⎞⎠×

×
(
f1 − f#

1 , . . . , fr − f#
r

)k

=
∑
k∈INr

1
k!

⎛⎝⎛⎝ ∑
m∈INr,m≤k

(
k
m

)
(∂mg)

(
∂k−mh

)⎞⎠ ◦ ϕ
⎞⎠×

×
(
f1 − f#

1 , . . . , fr − f#
r

)k

=
∑
k∈INr

1
k!

((
∂k(gh)

)
◦ ϕ
)(

f1 − f#
1 , . . . , fr − f#

r

)k
= Φ(gh) ,

where we used Leibniz’ rule in multi-index language and that all
fi ∈ D

(
U |q)

0
, i = 1, . . . , p .

Uniqueness follows directly from (i) . �

Theorem 2.12 shows that there is a bijection between the set of all super
morphisms (ϕ,Φ) from U |q to V |p , the set of all unital graded algebra
morphisms Φ : D

(
V |s)→ D (U |q) and the set of all tuples

(f1, . . . , fr, λ1, . . . , λs) ∈ D
(
U |q)r

0
×D

(
U |q)s

1
such that the image of U under(

f#
1 , . . . , f

#
r

)
lies in V . So in practice, since it is more convenient and

analogous to classical analysis, we will identify a super morphism (ϕ,Φ)
from U |q to V |s with its ’defining tuple’

(f1, . . . , fr, λ1, . . . , λs) ∈ D
(
U |q
)r

0
×D

(
U |q
)s

1
.
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Then ϕ =
(
f#
1 , . . . , f

#
r

)
, and for all g ∈ D

(
V |s) we can write

g (f1, . . . , fr, λ1, . . . , λs) := Φ(g) ∈ D
(
U |q
)
,

regarding Φ as a ’plugging in’ homomorphism, although this can be just
formally.

Often the class of super morphisms between super open sets seems to be
too restrictive, for example if (f1, . . . , fr, λ) ∈ D

(
U |q)r

0
× D

(
U |q)

1
is a

super morphism from a super open set U |q to IRr|1 we have automatically
f1, . . . , fr ∈ C∞(U) , and the set of ’points’ of U |q given as the set of all
unital graded algebra homomorphisms from D

(
U |q) to IR is just U itself, so

in particular it is not separating points on D
(
U |q) . Therefore it is useful

to introduce a notion of parametrization where the ’parameters’ are odd
coordinate functions on some IR0|n , n ∈ IN .

Before we do so we remark that in the category of super open sets there exists
a cross product: If U |q and V |s are (p, q)- resp. (r, s)-dimensional super open
sets the cross product of them is simply U |q × V |s := (U × V, q + s) , and
from classical analysis we know that

D
(
U |q × V |s

)
= D

(
U |q
)
�̂D

(
V |s
)

in the topology of D
(
U |q × V |s) . As a cross product it fulfills the following

universal property, see paragraph 5.18 in [4] : There exist super projections
(pr1, C1) and (pr2, C2) from U |q × V |s onto U |q resp. V |s , where
pr1 : U ×V → U and pr2 : U ×V → V denote the canonical projections and
C1 : D

(
U |q) ↪→ D (U |q) �̂D (V |s) and C2 : D

(
V |s) ↪→ D (U |q) �̂D (V |s)

the canonical embeddings, such that for any super open set W |u and super
morphisms (ϕ1,Φ1) and (ϕ2,Φ2) from W |u to U |q resp. V |s there exists a
unique super morphism (ψ,Ψ) from W |u to U |q × V |s such that

(pr1, C1) ◦ (ψ,Ψ) = (ϕ1,Φ1)

and

(pr2, C2) ◦ (ψ,Ψ) = (ϕ2,Φ2) .

Here we have ψ = (ϕ1, ϕ2) : W → U × V and

Ψ = Φ1⊗̂Φ2 : D
(
U |q
)
�̂D

(
V |s
)
→ D

(
W |u

)
, f ⊗ g �→ Φ1(f)Φ2(g) .

If we write (ϕ1,Φ1) and (ϕ2,Φ2) in terms of their defining tuples
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(f1, . . . , fp, λ1, . . . , λq) ∈ D
(
W |u

)p
0
×D

(
W |u

)q
1

resp.

(g1, . . . , gr, µ1, . . . , µs) ∈ D
(
W |u

)r
0
×D

(
W |u

)s
1

then simply

(ψ,Ψ) = (f1, . . . , fp, g1, . . . , gr, λ1, . . . , λq, µ1, . . . , µs) .

Definition 2.13 (parametrized super morphisms) Let n ∈ IN and
P := Λ (IRn) = D

(
IR0|n

)
with coordinate functions α1, . . . , αn .

(i) Let U |q and V |s be two super open sets and (ϕ,Φ) a super morphism from
U |q × IR0|n to V |s × IR0|n . Then (ϕ,Φ) is called an over P parametrized
(or simply P-) super morphism from U |q to V |s if and only if Φ|P = id , in
other words

U |q × IR0|n (ϕ,Φ)−→ V |s × IR0|n

(pr2,C2) ↘ % ↙ (pr2,C2)

IR0|n
.

In this case again ϕ : U → V is called the body of (ϕ,Φ) .

(ii) Let (ϕ,Φ) be a P-super morphism from U |q to V |s . Then it is called
a P-super projection resp. embedding resp. diffeomorphism if it is a su-
per projection resp. embedding resp. diffeomorphism as an ordinary super
morphism from U |q × IR0|n to V |s × IR0|n .

From now on let n ∈ IN and P = Λ (IRn) = D
(
IR|n
)

.

By theorem 2.12 there is clearly a bijection between the set of all P-
super morphisms (ϕ,Φ) from U |q to V |p , the set of all unital graded al-
gebra morphisms Φ : D

(
V |s) → D

(
U |q) � P and the set of all tuples

(f1, . . . , fr, λ1, . . . , λs) ∈
(
D
(
U |q)� P)r

0
×
(
D
(
U |q)� P)s

1
such that the

image of U under
(
f#
1 , . . . , f

#
r

)
lies in V . So in practice we will again

identify a P-super morphism (ϕ,Φ) from U |q to V |s with its defining tuple
(f1, . . . , fr, λ1, . . . , λs) ∈

(
D
(
U |q)� P)r

0
×
(
D
(
U |q)� P)s

1
, again

ϕ =
(
f#
1 , . . . , f

#
r

)
.

Given P ′ := Λ
(
IRn′)

for some n′ ∈ IN every P-super morphism (ϕ,Φ) from

U |q to V |s can be also regarded as a P � P ′- super morphism from U |q to
V |s using Φ ⊗ id : D

(
V |s) � P � P ′ → D

(
U |q) � P � P ′ instead of Φ , in

particular every usual super morphism from U |q to V |s can be regarded as
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P-super morphism from U |q to V |s . Now if (ϕ,Φ) is a P-super morphism
from U |q to V |s and (ψ,Ψ) is a P-super morphism from V |s to W |u then the
composition (ψ,Ψ) ◦ (ϕ,Φ) is a P-super morphism from U |q to W |u .
If (ϕ,Φ) is a super diffeomorphism from U |q to V |s then the inverse(
ϕ−1,Φ−1

)
is a P-super diffeomorphism from V |s to U |q . The universal

property of the cross product in the category of super open sets remains
true even under P-super morphisms:
Let U |q , V |s and W |u be super open sets and (ϕ1,Φ1) and (ϕ2,Φ2) be P-
super morphisms from W |u to U |q resp. V |s . Then there exists a unique
P-super morphism from W |u to U |q × V |s such that

(pr1, C1 ⊗ id) ◦ (ψ,Ψ) = (ϕ1,Φ1)

and

(pr2, C2 ⊗ id) ◦ (ψ,Ψ) = (ϕ2,Φ2) .

We have ψ := (ϕ1, ϕ2) : W → U × V and

Ψ := Φ1|D(U |q) ⊗̂ Φ2|D(V |s) ⊗ id : D
(
U |q
)
�̂D

(
V |s
)
� P → D

(
W |u

)
� P .

Recall that Φ1 = Φ1|D(U |q) ⊗ id and Φ2 = Φ2|D(U |q) ⊗ id .

Let U ⊂ IRp , V ⊂ IRr and V ′ ⊂ V be open, and let ϕ : U → V be a C∞-map
such that ϕ(U) ⊂ V ′ . Then ϕ can also be regarded as a C∞-map U → V ′ .
In super analysis there is an analogon to this fact:

Lemma 2.14 Let (ϕ,Φ) be a P-super morphism from U |q to V |s and
V ′ ⊂ V open such that ϕ(U) ⊂ V ′ . Then there exists a unique P-super
morphism (ϕ′,Φ′) from U |q to V ′|s such that (ϕ,Φ) = (c, |V ′) ◦ (ϕ′,Φ′) ,
where (c, |V ′) denotes the super inclusion from V ′|s to V |s .

Proof: (ϕ′,Φ′) being a P-super morphism from U |q to V ′|s ,
(ϕ,Φ) = (c, |V ′) ◦ (ϕ′,Φ′) is equivalent to ϕ = c ◦ ϕ′ and

D
(
V |s)� P |V ′−→ D

(
V ′|s)� P

Φ ↘ % ↙ Φ′

D
(
U |q)� P

. (2.2)

Clearly there exists a unique C∞-map ϕ′ such that ϕ = c ◦ ϕ′ . By formula
2.1 one sees that ker |V ′ � ker Φ . Furthermore the image of |V ′ is dense in
D
(
V ′|s)� P , and Φ and Φ′ are automatically continuous. Therefore there
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exists a unique unital graded algebra homomorphism
Φ′ : D

(
V ′|s)� P → D (U |q)� P such that 2.2 is true.

Now we have to prove that (ϕ′,Φ′) is a P-super morphism from U |q to
V ′|s . Showing Φ′(f)# = f# ◦ ϕ′ for all f in the image of |V ′ is an easy
exercise, and since Φ′ , # and ♦ ◦ ϕ′ are continuous, it is true even for
general f ∈ D

(
V ′|s) � P . Since Φ (αj) = αj = αj |V ′ for all j = 1, . . . , n

trivially Φ′|P = id . �

We identify ϕ′ and ϕ . Lemma 2.14 has an important consequence: it
tells us that a P-super morphism (ϕ,Φ) from U |q to V |s , U |q and V |s

being two super open sets, induces a whole morphism from
(
U,D

(
♦|q)

U

)
to
(
V,D

(
♦|s)

V

)
as ringed spaces, in exact:

Corollary 2.15 Let U |q and V |s be two super open sets and
(ϕ,Φ) = (f1, . . . , fr, λ1, . . . , λr) a P-super morphism from U |q to V |s .

(i) Then for each W ⊂ V open there exists a unique P-super morphism(
ϕ|ϕ−1(W ),ΦW

)
from W |s to ϕ−1(W )|q such that

U |q (ϕ,Φ)−→ V |s(
c, |ϕ−1(W )

)
↑ % ↑ (c′, |W )

ϕ−1(W )|q −→(
ϕ|ϕ−1(W ),ΦW

) W |s
,

where
(
c, |ϕ−1(W )

)
and (c′, |W ) denote the canonical embeddings. We have

ΦV = Φ and for all W ′ ⊂W ⊂ V open

D
(
W |s)� P ΦW−→ D

(
ϕ−1(W )|q

)
� P

|W ′ ↓ % ↓ |ϕ−1(W ′)

D
(
W ′|s)� P −→

ΦW ′
D
(
ϕ−1(W ′)|q

)
� P

,

finally
(
ϕ|ϕ−1(W ),ΦW

)
= (f1, . . . , fr, λ1, . . . , λr)|ϕ−1(W ) for all W ⊂ V open.

(ii) Let W ⊂ V be open. If (ϕ,Φ) is a super embedding then ΦW

(
D
(
W |s)) is

dense in D
(
ϕ−1(W )|q

)
, if (ϕ,Φ) is a super projection then ΦW is injective,

and if (ϕ,Φ) is a super diffeomorphism then ΦW is an isomorphism and
Φ−1
W =

(
Φ−1

)
ϕ−1(W )

.

Proof: (i) Let W ⊂ V be open. Then one obtains the existence and unique-
ness of

(
ϕ|ϕ−1(W ),ΦW

)
by applying lemma 2.14 to the P-super morphism(

ϕ|ϕ−1(W ), |ϕ−1(W ) ◦ Φ
)

from ϕ−1(W )|q to V |s .

Now let y1, . . . , yr be the even and η1, . . . , ηs be the odd coordinate functions
on V |s . Then for all k = 1, . . . , r
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ΦW (yk|W ) = Φ (yk)|ϕ−1(W ) = fk|ϕ−1(W )

and for all l = 1, . . . , s

ΦW (ηl) = Φ (ηl)|ϕ−1(W ) = λl|ϕ−1(W ) .

Since ΦV := Φ fulfills the commuting diagram we have ΦV = Φ . Now let
W ′ ⊂W ⊂ V be open. Then for all f ∈ D

(
V |s)

ΦW (f |W ) |ϕ−1(W ′) = Φ(f)|ϕ−1(W ′) = ΦW ′ (f |W ′) ,

and so since the image of D
(
V |s) under |W is dense in D

(
W |s) we get

|ϕ−1(W ′) ◦ ΦW = ΦW ′ ◦ |W ′ . �

(ii) : Let (ϕ,Φ) be a super embedding. On one hand

ΦW

(
D
(
V |s
)∣∣∣
W

)
⊂ ΦW

(
D
(
W |s

))
⊂ D

(
ϕ−1(W )|q

)
,

and on the other hand

ΦW

(
D
(
V |s
)∣∣∣
W

)
= Φ

(
D
(
V |s
))∣∣∣

ϕ−1(W )|q

⊂
dense

D
(
U |q
)∣∣∣
ϕ−1(W )|q

⊂
dense

D
(
ϕ−1(W )|q

)
since |ϕ−1(W )|q is continuous, so ΦW

(
D
(
W |s)) ⊂ D (ϕ−1(W )|q

)
is dense.

Now let (ϕ,Φ) be a super projection and f ∈ ker ΦW � D
(
W |s) . We

have to show that f = 0 . Let ε ∈ C∞(V ) such that supp ε ∈ W . Then
fε ∈ D

(
V |s) , and it suffices to show that fε = 0 . By formula 2.1 we have

supp Φ(fε) ⊂ ϕ−1(W ) , and on the other hand

Φ(fε)|ϕ−1(W ) = ΦW (f (ε|W )) = ΦW (f)ΦW (ε|W ) = 0 .

Therefore fε = 0 since Φ is injective.

Now let (ϕ,Φ) be a super diffeomorphism. Then for all f ∈ D
(
V |s)

(
Φ−1

)
ϕ−1(W )

(ΦW (f |W )) =
(
Φ−1

)
ϕ−1(W )

(
Φ(f)|ϕ−1(W )

)
= Φ−1 (Φ(f))

∣∣
W

= f |W .

So since the image of D
(
V |s) under |W is dense in D

(
W |s) and Φ and Φ−1

are continuous we have
(
Φ−1

)
ϕ−1(W )

◦ΦW = id and by the same calculation
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ΦW ◦
(
Φ−1

)
ϕ−1(W )

= id as well. �

A simple calculation shows that if (ϕ,Φ) and (ψ,Ψ) are P-super mor-
phism from U |q to V |s resp. from V |s to W |u then for all X ⊂ W open
(Φ ◦Ψ)X = Φψ−1(X) ◦ΨX .

Let U |q be a super open set, and define the continuous linear maps

∂i| : D
(
U |q
)
→ D

(
U |q
)
, f =

∑
S∈℘(q)

fSξ
S �→

∑
S∈℘(q)

(∂ifS) ξS ,

i = 1, . . . , p , and

∂|j : D
(
U |q
)
→ D

(
U |q
)
, f =

∑
S∈℘(q)

fSξ
S �→

∑
S∈℘(q) , j �∈S

(−1)|S<j|fS∪{j}ξS ,

j = 1, . . . , q . Then ∂i|◦|V = |V ◦∂i| and ∂|j ◦|V = |V ◦∂|j for all i = 1, . . . , p ,
j = 1, . . . , q and V ⊂ U open. ∂i|xk = δik , ∂i|ξj = 0 , ∂|jxi = 0 and
∂|jξl = δik for all i, k = 1, . . . , p , j, l = 1, . . . , q .
Clearly

(
∂i|f
)# = ∂i

(
f#
)

, ∂i|D
(
U |q)

0
, ∂|jD

(
U |q)

1
⊂ D

(
U |q)

0
,

∂i|D
(
U |q)

1
, ∂|jD

(
U |q)

0
⊂ D

(
U |q)

1
for all i = 1, . . . , p and j = 1, . . . , q ,

and we have a super product rule:

∂i|(fg) =
(
∂i|f
)
g + f

(
∂i|g
)

and

∂|j(fg) =
(
∂i|f
)
g + (−1)ḟf

(
∂i|g
)

for all i = 1, . . . , p , j = 1, . . . , q and f, g ∈ D
(
U |q) , f homogeneous. So all

∂i| and ∂|j are super derivations on D
(
U |q) , and we call them the partial

derivatives with respect to the coordinate functions xj resp. ξj .

Definition 2.16 (super Jacobian) Let U |q and V |s be (p, q)- resp. (r, s)-
dimensional super open sets and (ϕ,Φ) = (f1, . . . , fr, λ1, . . . , λs) a P- super
morphism from U |q to V |s . Then the even (r|s)× (p|q) - graded matrix

D(ϕ,Φ) :=

⎛⎜⎝
(
∂i|fk

)
k∈{1,...,r} , i∈{1,...,p} −

(
∂|jfk

)
k∈{1,...,r} , j∈{1,...,q}(

∂i|λl
)
l∈{1,...,s} , i∈{1,...,p}

(
∂|jλl

)
l∈{1,...,s} , j∈{1,...,q}

⎞⎟⎠
∈
(
D
(
U |q
)
⊗ P

)(r|s)×(p|q)
0

is called the super Jacobian of the P-super morphism (ϕ,Φ) .
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Let U |q , V |s and W |u be (p, q)- resp. (r, s)- resp. (t, u)-dimensional super
open sets. If (ϕ,Φ) is a P-super morphism from U |q × V |s to W |u then one
can reorder the columns of D(ϕ,Φ) such that

D(ϕ,Φ) = (D1(ϕ,Φ)D2(ϕ,Φ)) ,

where D1(ϕ,Φ) ∈
(
D
(
U |q × V |s)⊗ P)(t|u)×(p|q)

0
is the even graded matrix

collecting all derivatives with resp. to the coordinate functions in U |q and
D2(ϕ,Φ) ∈

(
D
(
U |q × V |s)⊗ P)(t|u)×(r|s)

0
is the even graded matrix collect-

ing all derivatives with resp. to the coordinate functions in V |s .
If (ϕ,Φ) is a P-super morphism from U |q to V |s×W |u then one can reorder
the rows of D(ϕ,Φ) such that

D(ϕ,Φ) =

⎛⎝ D1(ϕ,Φ)

D2(ϕ,Φ)

⎞⎠
where D1(ϕ,Φ) = D ((pr1, C1) ◦ (ϕ,Φ)) ∈

(
D
(
U |q)⊗ P)(r|s)×(p|q)

0
and

D2(ϕ,Φ) = D ((pr2, C2) ◦ (ϕ,Φ))
(
D
(
U |q)⊗ P)(t|u)×(p|q)

0
.

Let us recall some properties of super Jacobians:

Lemma 2.17 Let U |q , V |s be (p, q)- resp. (r, s)-dimensional super open
sets and (ϕ,Φ) = (f1, . . . , fr, λ1, . . . , λs) a P-super morphism from U |q to
V |s and D(ϕ,Φ) its super Jacobian as a P-super morphism.

(i) The Jacobian of (ϕ,Φ) regarded as an ordinary super morphism from
U |q × IR0|n to V |s × IR0|n has the form

Dordinary(ϕ,Φ) =

⎛⎝ D(ϕ,Φ) ∗

0 1

⎞⎠ ,

where ∗ is an even (r|s)× (0|n) - graded matrix consisting of derivatives of
f1, . . . , fr, λ1, . . . , λs with respect to the odd coordinate functions α1, . . . , αn .

(ii) The body of D(ϕ,Φ) , taken componentwise, has the form

D(ϕ,Φ)# :=

⎛⎝ Dϕ 0

0 ∗

⎞⎠ ∈ C∞(U)(r,s)×(p,q)
0 .

(iii) For all W ⊂ V open D
(
ϕ|ϕ−1(W ),ΦW

)
= D(ϕ,Φ)|ϕ−1(W ) .

Proof: trivial.
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Lemma 2.18

(i) Let W |u be a third super open set and (ψ,Ψ) a P-super morphism from
V |s to W |u . Then the super Jacobian of (ψ,Ψ) ◦ (ϕ,Φ) is precisely

Φ (D(ψ,Ψ)) ·D(ϕ,Φ) ,

where Φ (D (ψ,Ψ)) is taken componentwise.

(ii) If (ϕ,Φ) is a super diffeomorphism then D(ϕ,Φ) is invertible as an
even (p, q)× (p, q)- graded matrix with entries in Λ (IRq)� P , equivalently
D(ϕ,Φ)# ∈ C∞(U)(p,q)×(p,q)

0 is invertible, and

D
(
(ϕ,Φ)−1

)
= Φ−1

(
(D(ϕ,Φ))−1

)
,

where Φ−1
(
(D(ϕ,Φ))−1

)
is taken componentwise.

Proof: (i) In the ordinary case where P = IR this is corollary 5.5 of [4] 1.
The general case then follows easily from lemma 2.17 (i) . �
(ii) follows directly from (i) . �

The converse of (ii) is almost right, since in the super case we have an
analogon to the local inversion theorem in classical analysis:

Theorem 2.19 (super analogon to the local inversion theorem)
Let U |q and V |q be two super open sets of dimension (p, q) , (ϕ,Φ) a
P-super morphism from U |q to V |q and x0 ∈ U .

(i) Let D(ϕ,Φ) (x0) ∈ (Λ (IRq)� P)(p|q)×(p|q)
0 be invertible, equivalently

D(ϕ,Φ)# (x0) ∈ IR(p|q)×(p|q)
0 be invertible. Then there exists an open neigh-

bourhood W ⊂ V of ϕ (x0) such that
(
ϕ|ϕ−1(W ),ΦW

)
is a super diffeomor-

phism from ϕ−1(W )|q to W |q .

(ii) Let ϕ be bijective and D(ϕ,Φ) (x0) , equivalently D(ϕ,Φ)# (x0) , be in-
vertible for all x0 ∈ U . Then (ϕ,Φ) is a diffeomorphism.

Proof: If P = IR then (i) is precisely theorem 5.13 , and (ii) is precisely
corollary 5.14 of [4] . The general case follows easily from the case P = IR
via lemma 2.17 (i) . �

In super analysis there is an analogon for the implicit function theorem as
well:

1
Constantinescu and de Groote have the minus sign in the lower left corner of the

super Jacobian, which of course does not change the result.
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Theorem 2.20 (super analogon to the implicit function theorem)
Let U |q be a (p, q)-dimensional and V |s,W |s be two (r, s)-dimensional super
open sets. Let (ϕ,Φ) be a P-super morphism from
U |q × V |s to W |s and (x0,y0) ∈ U × V such that

D2(ϕ,Φ) (x0,y0) ∈ (Λ (IRq)� Λ (IRs)� P)(p|q)×(p|q)
0 ,

equivalently D2(ϕ,Φ)# (x0,y0) ∈ IR(p|q)×(p|q)
0 , is invertible, and define

z0 := ϕ (x0,y0) ∈W . Then there exists an open neighbourhood A ⊂ U ×W
of (x0, z0) and a P-super morphism (ψ,Ψ) from A|q+s , which is actually a
sub super open set of U |q × V |s , to V |s such that ψ (x0, z0) = y0 and

(ϕ,Φ) ◦
(
(pr1|A, ψ) , (|A ◦ C1) ⊗̂Ψ

)
= (pr2, C2)|A .

Proof: If P = IR this is precisely theorem 5.23 of [4] . For the general case
apply theorem 5.23 of [4] to (ϕ,Φ) regarded as an ordinary super morphism
from U |q ×

(
V |s × IR0|n

)
to W |s × IR0|n since then the second part of the

ordinary super Jacobian is ⎛⎝ D2(ϕ,Φ) ∗
0 1

⎞⎠ ,

which so is invertible at (x0,y0) . Then it tells us that there exists an open
neighbourhood A ⊂ U ×W of (x0, z0) and a super morphism (ψ,Ψ) from
A|q+s+n as a super open subset of U |q ×

(
V |s × IR0|n

)
to V |s × IR0|n such

that ψ (x0, z0) = y0 and

(ϕ,Φ) ◦
(
(pr1|A, ψ) , (|A ◦ C1) ⊗̂Ψ

)
= (pr2|A , |A ◦ C2) ,

where (pr2, C2) denotes the canonical super projection from
U |q ×

(
V |s × IR0|n

)
to V |s × IR0|n . It remains to prove that (ψ,Ψ) is a

P-super morphism from A|q+s to V |s . For all j = 1, . . . , n

Ψ (αj) = ((|A ◦ C1) Ψ) (αj) = ((|A ◦ C1) Ψ) (Φ (αj))

= (|A ◦ C2) (αj) = αj ,

and so Φ|P = id . �

Definition 2.21 (parametrized super manifolds) Let M be a p-
dimensional real C∞-manifold and q ∈ IN . Let S be a sheaf of unital graded
IR-algebras over M and # : S → C∞M a sheaf homomorphism.
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(i) The triple M :=
(
M,S,#

)
is called a (p, q)-dimensional over P

parametrized (or simply P-) super manifold if and only if there exists a
sheaf embedding P ↪→ S , for all x0 ∈M an open neighbourhood U ⊂M of
x0 and a sheaf isomorphism Φ : S|U ∼→D

(
♦|q)

U
�P such that Φ|P = id and

S|U Φ−→ D
(
♦|q)

U
� P

# ↘ % ↙#

C∞U

.

In this caseM# := M is called the body of the P-super manifoldM , S the
structural sheaf ofM and # the body map of S . We write D(M) := S(M) .
In the case where P = IR we call M simply a super manifold.

(ii) If U ⊂ M is open then the triple U :=
(
U,S|U , #

∣∣
U

)
is called an open

sub P-super manifold of M . It is a (p, q)-dimensional P-super manifold
itself.

Now it is important to see that S carries a well-defined uniformal structure
of compact convergence in all derivatives via the local isomorphisms
S|U � D

(
♦|q)

U
� P , U ⊂M open.

For checkig well-definedness let x0 ∈ M , U ⊂ M be an open
neighbourhood of x0 and

Φ : S|U ∼→D
(
♦|q
)
U
� P

and

Ψ : S|U ∼→D
(
♦|q
)
U
� P

be unital graded sheaf isomorphisms. Without loss of generality
we may assume that U ↪→ IRp via a C∞-embedding. Therefore

ΦU ◦Ψ−1
U : D

(
U |q
)
� P → D

(
U |q
)
� P

is a unital graded algebra isomorphism, which is bicontinuous by
theorem 2.12 .

For checking existence observe that compact convergence in all
derivatives is already a local property.

From now on ifM , N and O are P-super manifolds then we always denote
by M , N and O the bodies and by S , T and R the structural sheaves of
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M resp. N resp. O .

From classical analysis we know that given a C∞-manifold M each open cov-
ering of M has a locally finite refinement, and to each locally finite covering
there exists a C∞-partition of unity, see for example theorem and proof of
theorem 4.11 in [4]. There exists an analogon for super manifolds:

Lemma 2.22 Let M be a (p, q)-dimensional super manifold and

M =
⋃
λ∈Λ

Uλ

be a locally finite open covering. Then there exists a family
(ελ)λ∈Λ ∈ D(M)Λ such that supp ελ ⊂ Uλ for all λ ∈ Λ and

1 =
∑
λ∈Λ

ελ .

Proof: This is theorem 4.11 of [4] . �

Using partitions of unity on the super manifoldM one easily proves that for
any U ⊂M open the algebra S(U) together with the uniformal structure of
compact convergence in all derivatives is complete, given some V ⊂ U open
the restriction map |V : S(U)→ S(V ) is a continuous unital graded algebra
homomorphism, whose image is dense in S(V ) , and for all U ⊂M open the
body map # : S(U)→ C∞(U) is a continuous unital algebra epimorphism.

Later we will deal with quotient sheaves of the structural sheaf S of a super
manifoldM , and so it is convenient to derive a lemma about such quotient
sheaves from the existence of partitions of unity in D(M) .

Lemma 2.23 LetM be a super manifold and I an ideal sheaf of S . Then
for all U ⊂M open

S(U)/I(U) = (S/I) (U) .

Proof: By definition of the quotient sheaf S/I , given U ⊂M open, we have
S(U)/I(U) ⊂ (S/I) (U) , and for any f ∈ (S/I) (U) there exists an open
covering U =

⋃
λ∈Λ Uλ such that f |Uλ

∈ S (Uλ)/ I (Uλ) , see for example in
[7] section 1.3 .

’⊂’ : now trivial.
’⊃’ : Let f ∈ (S/I) (U) . Then by definition of S/I there exists an open
covering

105



U =
⋃
λ∈Λ

Uλ

of U and for each λ ∈ Λ a function fλ ∈ S (Uλ) such that f |Uλ
= fλ+I (Uλ)

for all λ ∈ Λ . Without loss of generality we can assume that (Uλ)λ∈Λ is
locally finite. So by lemma 2.22 there exists a family (ελ)λ∈Λ ∈ D(M)Λ such
that supp ελ ⊂ Uλ for all λ ∈ Λ and

1 =
∑
λ∈Λ

ελ .

So clearly

g :=
∑
λ∈Λ

ελfλ ∈ S(U) ,

and so g + I(M) ∈ S(U)/I(U) ⊂ (S/I) (U) . Now let λ ∈ Λ . Then
ην := fν − fλ ∈ I (Uν ∩ Uλ) for all ν ∈ Λ , so

(g + I(U)) |Uλ
=

∑
ν∈Λ

(ενfν) |Uλ
+ I (Uλ)

=

(∑
ν∈Λ

εν |Uλ

)
fλ +

∑
ν∈Λ

(εν |Uλ
) ην + I (Uλ)

= fλ + I (Uλ)

= f |Uλ

as functions in S (Uλ)/ I (Uλ) , where we used that (εν |Uλ
) ην ∈ I (Uλ) for

all ν ∈ Λ since I is an ideal sheaf of S . Since λ ∈ Λ has been arbitrary and
S/I is a sheaf we get f = g + I(U) . �

Definition 2.24 (super morphisms) LetM and N be two P-super man-
ifolds, ϕ : M → N a C∞-map and (ΦW )W⊂N open a family of unital
graded algebra homomorphisms ΦW : T (W ) → S

(
ϕ−1(W )

)
such that for

all W ′ ⊂W ⊂ N open

T (W ) ΦW−→ S
(
ϕ−1(W )

)
|W ′ ↓ % ↓ |ϕ−1(W ′)

T (W ′) −→
ΦW ′

S
(
ϕ−1(W ′)

) ,

which means precisely that the pair Φ :=
(
ϕ, (ΦW )W⊂N open

)
is a morphism

from (M,S) to (N, T ) as ringed spaces.
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(i) The pair Φ :=
(
ϕ, (ΦW )W⊂N open

)
is called a P-super morphism from

M to N if and only if for all W ⊂ N open ΦW |P = id and

(ΦW (f))# = f# ◦ ϕ|ϕ−1(W )

for all f ∈ T (W ) . In this case Φ# := ϕ is called the body of Φ .

(ii) Let Φ be a P-super morphism fromM to N . Then Φ is called a P-super
embedding if and only if ϕ is an embedding and all ΦW (T (W )) ⊂ S

(
ϕ−1

)
,

W ⊂ N open, are dense.
Φ is called a P-super projection if and only if ϕ is a projection and all ΦW ,
W ⊂ N open, are injective.

(iii) A P-super morphism Φ =
(
ϕ, (ΦW )W⊂N open

)
from M to N is called

a P-super diffeomorphism if and only if ϕ is a diffeomorphism and all ΦW ,
W ⊂ N open are isomorphisms. Then again an easy calculation shows that

Φ−1 :=
(
ϕ−1,

(
Φ−1
ϕ(U)

)
U⊂M open

)
is a P-super diffeomorphism from N to M , which is called the inverse
P-super diffeomorphism to (ϕ,Φ) .

Let M be a (p, q)-dimensional and N an (r, s)-dimensional P-super man-
ifold, and let

(
ϕ, (ΦW )W⊂N open

)
be a P-super morphism from M to

N . Since for all x0 ∈ M there exist open neighbourhoods V ⊂ N of
ϕ (x0) and U ⊂ M of x0 such that ϕ(U) ⊂ V , which can be assumed
to be open subsets of IRp resp. IRr without loss of generality, such that
S|U � D

(
U |q) � P and T |V � D

(
V |s) � P an easy calculation shows that

all ΦW : T (W ) → S
(
ϕ−1(W )

)
are continuous. By the same argument one

sees that if Φ is a P-super embedding then p ≤ r and q ≤ s , if Φ is a
P-super projection then p ≥ r and q ≥ s , and finally if Φ is a P-super
diffeomorphism then p = r and q = s .
For any super manifold M we have a canonical embedding(
id,
(
#
)
U⊂M open

)
from M intoM .

Clearly all P-super manifolds together with all P-super morphisms form
a category, and the body map is precisely a functor from the category of
P-super manifolds to the category of ordinary C∞-manifolds together with
C∞-maps between them. Given super manifolds M , N and O and super
morphisms Φ :=

(
ϕ, (ΦV )V⊂N open

)
fromM to N and

Ψ :=
(
ψ, (ΨW )W⊂N open

)
from N to O the composition of Ψ ◦ Φ is given

by

Ψ ◦ Φ :=
(
ψ ◦ ϕ,

(
Φψ−1(W ) ◦ΨW

)
W⊂O open

)
,
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and it is a P-super morphism fromM to O .

Given a P-super morphism Φ =
(
ϕ, (ΦV )V⊂N open

)
from M to N for

all W ⊂ N open and f ∈ T (W ) we write f(Φ) := ΦV (f) ∈ S
(
ϕ−1(V )

)
regarding ΦW as a ’plugging in’ homomorphism although again this can be
meant just formally.

Every super open set U |q with U ⊂ IRp open can be regarded as a super
manifold with structural sheaf S := D

(
♦|q)

U
, and so the category of super

open sets is a subcategory of the category of super manifolds.

Given P ′ := Λ
(
IRn′)

for some n′ ∈ IN every (p, q)-dimensional super

manifold M :=
(
M,S,#

)
can be also regarded as a (p, q)-dimensional

P � P ′- super manifold using S � P ′ as structural sheaf instead of S ,
in particular every usual super manifold can be regarded as a P-super
manifold. Via this identification the super open sets together with P-super
morphisms form a subcategory of the category of P-super manifolds. In
general there are P � P ′- super morphisms between two P-super manifolds
that do not come from P-super morphisms. The P-super morphisms
between super open sets defined in 2.13 for example are of this type. The
category of C∞-manifolds together with C∞-maps is a subcategory of the
category of super manifolds identifying a p-dimensional manifold M with
the (p, 0)-dimensional super manifold (M, C∞M , id) , and the body functor is
the identity on this subcategory.

Clearly if M is a (p, q)-dimensional P-super manifold then M is a
usual (p, q + n)-dimensional super manifold as well, and there exists a
canonical super projection

(
0, (CW )W⊂M open

)
from M to IR0|n where

CW : P ↪→ S(W ) , W ⊂ M open, denote the (canonical) unital graded
algebra embeddings given by definition 2.21 .

Let M and N be two P-super manifolds and Φ a P-super embedding
from M to N . Then M is called a P-sub super manifold of N , and
in this case M can be regarded as a usual C∞-submanifold of N via the
C∞-embedding ϕ := Φ# : M ↪→ N . If O is a third P-super manifold and
Ψ a P-super morphism from N to O then the composition Ψ|M := Ψ ◦ Φ
is called the restriction of Ψ to M . In the special case where M is a
P-super manifold and U is an open sub P-super manifold of M we have a
canonical embedding C :=

(
c, (|U∩W )W⊂M open

)
from U into M , which

is called the super inclusion from U to M , where c : U → M denotes
the canonical inclusion, and in this case given a P-super morphism Φ
from M to another P-super manifold N the restriction of Φ to U is just
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(
ϕ|U ,

(
|U∩ϕ−1(W ) ◦ ΦW

)
W⊂N open

)
.

Clearly ifM andN are two P-super manifolds , Φ =
(
ϕ, (ΦW )W⊂M open

)
is

a P-super morphism fromM to N and U is an open sub P-super manifold of
N such that ϕ(M) ⊂ U := U# then there exists a unique P-super morphism
Φ′ fromM to U such that Φ = C ◦Φ′ , where C denotes the canonical super
inclusion from U into N . Φ′ is given by

Φ′ =
(
ϕ, (ΦW )W⊂U open

)
.

Again we identify Φ and Φ′ .

Theorem 2.25 Let M and N be super manifolds and η : D(N ) → D(M)
be a unital graded algebra homomorphism. Then there exists a unique super
morphism

(
ϕ, (ΦV )V⊂N open

)
from M to N such that ΦN = η .

In particular a super manifoldM is uniquely defined up to super diffeomor-
phism by the graded algebra D(M) .

Proof: This is precisely theorem 4.8 of [4] . �

From now on, given P-super manifolds M , N and O and P-super mor-
phisms Φ fromM to N and Ψ from N to O we write ϕ := Φ# and ψ := Ψ# ,
and we let ΦW : T (W ) → S

(
ϕ−1(W )

)
and ΨX : R(X) → T

(
ψ−1(X)

)
,

W ⊂ N resp, X ⊂ O open, be the unital graded algebra homomorphisms
building up Φ resp. Ψ . When dealing with super manifolds the notion of
parametrized points is very usefull, since we can formally deal with them as
with usual points of ordinary manifolds.

Definition 2.26 (P-points) Let M be a P-super manifold. A P-super
morphism Ξ =

(
x, (ΞU )U⊂M open

)
from IR0|0 to M , which then is auto-

matically a P-super embedding, is called an over P parametrized, or simply
P-, point of M . We write Ξ ∈P M .

Given a P-point Ξ of the P-super manifold M , the body x = Ξ# of
Ξ is a usual point of M = M# . By theorem 2.25 there is a bijec-
tion between P-points of M and unital graded algebra homomorphisms
η : D(M) → Λ (IRn) with η|P = id such that η = ΞM and η(f)# = f# (x)
for all f ∈ D(M) . If f ∈ D(M) then we write f (Ξ) := ΞM (f) ∈ P . If Φ is
a super morphism from M to another super manifold N then Φ ◦ Ξ is a P
point of N , and we write Φ(Ξ) := Φ ◦ Ξ . Then clearly for all V ⊂ N such
that x ∈ ϕ−1(V ) we have ΦV (f |V ) (Ξ) = f (Φ(Ξ)) for all f ∈ S(U) , and if
O is a third super manifold and Ψ is a super morphism from N to O then
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(Ψ ◦ Φ) (Ξ) = Ψ (Φ(Ξ)) .

In the special case where M = U |q is a super open set by theorem
2.12 there is a bijection between all P-points of U |q and the set of all
(a1, . . . , ap, π1, . . . , πq) ∈ Λ (IRn)p0 × Λ (IRn)q1 such that

(
a#

1 , . . . , a
#
p

)
∈ U ,

which then is the body of the corresponding P-point.

Lemma 2.27 LetM and N be P-super manifolds of dimensions (p, q) resp.
(r, s) and f ∈ D(M) , let Φ and Ψ be P-super morphisms from M to N ,
n′ ∈ IN and P ′ := Λ

(
IRn′)

= D
(
IR0|n′)

.

(i) If n′ ≥ q and f(Ξ) = 0 for all Ξ ∈P�P ′ M then f = 0 . So the P � P ′-
points of M are seperating points in D(M) .

(ii) If n′ ≥ q and Φ(Ξ) = Ψ(Ξ) for all Ξ ∈P�P ′ M then Φ = Ψ .

(iii) If n′ ≥ s and for all Θ ∈P�P ′ N there exists Ξ ∈P�P ′ M such that
Φ(Ξ) = Θ then Φ is a P-super projection.

(iv) If Φ is a P-super embedding and Ξ,Θ ∈P M such that Φ(Ξ) = Φ(Θ)
then Ξ = Θ .

Proof: (i) Assume n′ ≥ q and f(Ξ) = 0 for all Ξ ∈P�P ′ M and let U ⊂ M

such that S|U � DU � Λ (IRn) . Let x ∈ U . Then Λ (IRq) ↪→ P ′ = Λ
(
IRn′)

canonically since n′ ≥ q , and so (x, ξ1, . . . , ξq) ∈P�P ′ M . So

0 = f (x, ξ) =
∑

S∈℘(q)

∑
T∈℘(n)

fST (x)ξSαT .

Therefore f(x) = 0 as an element of Λ (IRq)�Λ (IRn) . Since x ∈ U has been
arbitrary we obtain f |U = 0 , and since U has been arbitrary even f = 0 . �
(ii) Assume n′ ≥ q and Φ(Ξ) = Ψ(Ξ) for all Ξ ∈P�P ′ M . By theorem 2.25
it suffices to show that ΦN (f) = ΨN (f) for all f ∈ D(N ) . So let f ∈ D(N )
and Ξ ∈P�P ′ M . Then

(ΦN (f)−ΨN (f)) (Ξ) = f (Φ(Ξ))− f (Ψ(Ξ)) = 0 .

So we can apply (i) , which tells us that ΦN (f)−ΨN (f) = 0 . �
(iii) Assume n′ ≥ s and for all Θ ∈P�P ′ N there exists Ξ ∈P�P ′ M such
that Φ(Ξ) = Θ . Let y ∈ N . Then trivially y ∈P�P ′ N , and so there exists
Ξ ∈P�P ′ M such that Φ(Ξ) = y . So ϕ(x) = y if we define x := Ξ# ∈ M .
Therefore ϕ is surjective.
Now let W ⊂ N be open. Then W :=

(
W, T |W ,#

)
and

R :=
(
ϕ−1(W ),S|ϕ−1(W ),

#
)

are open sub P-super manifolds ofN resp. M ,
and we have to show that ΦW : D(W) = T (W ) → S

(
ϕ−1(W )

)
= D(R) is

injective. So let f ∈ D(W) such that ΦW (f) = 0 . Let Θ ∈P�P ′ W with
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body y := Θ# ∈ W . Then Θ ∈P�P ′ N , and so there exists Ξ ∈P�P ′ M
with body x := Ξ# ∈M such that Φ(Ξ) = Θ . Since ϕ(x) = y we even have
x ∈ ϕ−1(W ) , and so Ξ ∈P�P ′ R . Clearly
f(Θ) = ΦW (f)(Ξ) = 0 . Since Θ ∈P�P ′ W has been arbitrary we obtain
f = 0 by (i) . �
(iv) Assume Φ is a P-super embedding and Φ(Ξ) = Φ(Θ) for some
Ξ,Θ ∈P M . By theorem 2.25 it suffices to show that ΞM = ΘM . Let
g ∈ D(N ) . Then

ΞN (ΦN (g)) = ΦN (g)(Ξ) = g (Φ(Ξ)) = g (Φ(Θ)) = ΦN (g)(Θ)

= ΘN (ΦN (g)) .

Therefore ΞM |ΦN (D(N )) = ΘM |ΦN (D(N )) . Since Φ is a P-super embed-
ding and so ΦN (D(N )) ⊂ D(M) is dense and ΞN : D(M) → P and
ΞN : D(M)→ P are continuous we finally get ΞM = ΘM . �

A special case of a P-super manifold is that of a discrete one.

Definition 2.28 Let M be a P-super manifold. Then it is called discrete
if and only if it is of dimension (0, 0) .

Clearly, given a discrete P-super manifoldM its body M is a discrete topo-
logical space. So its structural sheaf is P itself, and therefore we see that
each discrete P-submanifoldM is equal to its body M regarded as a (0, 0)-
dimensional P-super manifold. Conversely any discrete topological space M
is a 0-dimensional manifold. So the subcategory of discrete P-super mani-
folds is equal to the category of sets (regarded as discrete topological spaces)
together with arbitrary maps between them, and hereby the parametrization
over P is meaningless.
Let M be a P-super manifold. Then a discrete P-submanifold of M is
simply a set N of P-points Ξ ofM such that N := N# is a discrete subset
of M and for all x ∈ N there exists a unique Ξ ∈P N such that Ξ# = x . So
for the P-embedding of a discrete topological space N = N into a P-super
manifold the parametrization over P is essential.

There are two possibilities of constructing non-trivial examples of P-super
manifolds. The first is a super analogon of defining a manifold M as a com-
mon zero set of functions on some U ⊂ IRp open, the second is a construction
via a vectorbundle on a C∞-manifold.

Theorem 2.29 Let U |q be a (p, q)-dimensional super open set,
(ϕ,Φ) = (f1, . . . , fr, λ1, . . . , λs) be a P-super morphism from U |q to IRr|s

such that rk D(ϕ,Φ)# (x0) = r + s for all x0 ∈ U . Let
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M := ϕ−1 (0) ,

and let

S :=
((
D
(
♦|q
)
U
� P

)/
I
)∣∣∣
M
,

where I denotes the graded ideal sheaf in D
(
♦|q)

U
�P spanned by f1, . . . , fr

and λ1, . . . , λs .

(i) r ≤ p and s ≤ q , and M :=
(
M,S,#

)
is a (p − r, q − s)-dimensional

P-super manifold.

(ii) M is a P-sub super manifold of U |q , and

C :=
(
c, (|M∩V ◦ ρV )V⊂U open

)
is a P-super embedding from M into U |q , where
ρ : D

(
♦|q)

U
� P →

(
D
(
♦|q)

U
� P

)/
I denotes the canonical unital graded

sheaf projection.

Proof: (i) : Clearly r ≤ p and s ≤ q , and M is a (p−r)-dimensional subman-
ifold of U . The canonical unital graded sheaf embedding P ↪→ D

(
♦|q)

U

clearly induces a unital graded sheaf morphism ω : P →
(
D
(
♦|q)/ I)∣∣

M
,

but right now it is not clear that ω is an embedding. From classical analysis
we know that

(
C∞U
/
I#
)∣∣∣
M
� C∞M ,

and therefore # : D
(
♦|q)

U
� P → C∞U induces a unital graded sheaf homo-

morphism # : S → C∞M . Now let x0 ∈ M . Then without loss of generality
we can assume that x0 = (y0,0) with y0 ∈ IRp−r and that there exist open
neighbourhoods V ⊂ IRp−r of x0 and W ⊂ IRr of 0 such that V ×W ⊂ U ,
fi|V×W = zi , i = 1, . . . , r , and λj = ζj , j = 1, . . . , s , where zi denote the
even and ζj the odd coordinate functions on W |s . Let us check it:

Since rk D(ϕ,Φ)# = s we may assume without loss of generality
that D2(ϕ,Φ)# ∈ IR(r,s)×(r,s)

0 is invertible. Let
(ψ,Ψ) :=

(
(pr1, ϕ) , C1⊗̂Φ

)
. Then (ψ,Ψ) is a P-super mor-

phism from U |q to IRp|q = IRp−r|q−s × IRr|s with defining tu-
ple (x1, . . . , xp−r, f1, . . . , fs, ξ1, . . . , ξq−s, λ1, . . . , λs) . So after re-
ordering the rows and columns in D(ψ,Ψ) we have

D(ψ,Ψ) =

⎛⎝ 1 0

D1(ϕ,Φ) D2(ϕ,Φ)

⎞⎠ ,
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which is invertible at x0 . Therefore by theorem 2.19 there
exists an open neigbourhood X ⊂ IRp|q of ψ (x0) such that
(ψ|ψ−1(X),ΨX) is a P-super diffeomorphism from ψ−1(X)|q to
X |q . We have x′

0 := ψ (x0) = (y0,0) if we define
y0 := pr1 (x0) ∈ IRp−r , and without loss of generality we can
assume that X = V ×W where V ⊂ IRp−r and W ⊂ IRr are
open neighbourhoods of y0 resp. 0 .
Let M ′ := ψ(M) ∩X = V × {0} ⊂ V ×W .

(ϕ′,Φ′) := (ϕ,Φ)|ψ−1(X) ◦
(
ψ|ψ−1(X),ΨX

)−1

= (ϕ,Φ)|ψ−1(X) ◦
(
ψ−1

∣∣
X
,
(
Ψ−1

)
ψ−1(X)

)
is a P-super morphism from V |q−s ×W |s to IRr|s with defining
tuple (z1, . . . , zr, ζ1, . . . , ζs) .

Let I ′ be the ideal sheaf on V × W generated by
(z1, . . . , zr, ζ1, . . . , ζs) . Again the canonical unital graded sheaf
embedding P ↪→ D

(
♦|q)

U
� P induces a unital graded sheaf

morphism ω′ : P →
(
D
(
♦|q)/ I ′)∣∣

M ′ . Let Y ⊂ V × W

be open. Recall that ΨY : D
(
Y |q) � P → D (ψ−1(Y )|q

)
� P

is a unital graded algebra isomorphism such that ΨY |P = id
and ΨY

(
f#
)

= ΨY (f)# for all f ∈ D
(
Y |q) � P . Clearly

ΨY (I ′(Y )) = I
(
ψ−1(Y )|q

)
since ΨY is an isomorphism. Let

f ∈ D
(
Y |q) � P . Then by formula 2.1 f vanishes in a neigh-

bourhood of M ′ ∩ Y if and only if ΨY (f) ∈ D
(
ϕ−1(Y )|q

)
� P

vanishes in a neighbourhood of M ∩ ϕ−1(Y ) . So ΨY induces a
unital graded algebra isomorphism

Ψ′
Y :
((
D
(
Y |q
)
� P

)/
I ′(Y )

)∣∣∣
M ′∩Y

∼−→
((
D
(
ψ−1(Y )|q

)
� P

)/
I
(
ψ−1(Y )|q

))∣∣∣
M∩ψ−1(Y )|q

such that Ψ′
Y

(
f#
)

= Ψ′
Y (f)# for all

f ∈
((
D
(
Y |q)� P)/ I ′(Y )

)∣∣
M ′∩Y and Ψ′

Y ◦ω′
Y = ωψ−1(Y )◦Ψ′

Y .

Clearly for all Y ′ ⊂ Y ⊂ U ∩ V open
Ψ′
Y ◦ |M ′∩Y ′ = |M∩ψ−1(Y ′) ◦ ΨY , and so

(
ψ, (Ψ′

Y )Y⊂U×V open

)
is a whole isomorphism between the ringed spaces (M ′,S ′) and
(M ∩X,S|X∩M ) , where S ′ :=

((
D
(
♦|q)

U×V � P
)/
I ′
)∣∣∣
M ′

on
M ′ .
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So we see that M ∩ (V ×W ) = V × {0} , and now it is obvious that
ω|V×{0} is an embedding and that there exists a canonical unital graded
sheaf isomorphism Ψ : S|V×{0}

∼→D
(
♦|q−s)

V×{0} � P such that
Ψ (ω (αj)) = αj for all j = 1, . . . , n and

S|V×{0}
Ψ−→ D

(
♦|q−s)

V×{0} � P

# ↘ % ↙ #

C∞V×{0}

,

and so since x0 ⊂ M has been arbitrary M is indeed a (p − r, q − s)-
dimensional P-super manifold. �

(ii) trivial.

We say that the P-super manifold M is defined by the equations
f1 = 0 , . . . , fr = 0 , λ1 = 0 , . . . , λs = 0 .

Let M be a p-dimensional manifold and E a q-dimensional C∞-vectorbundle
on M . Then the triple

(
M,Γ∞

ΛE ,
#
)

is a (p, q)-dimensional super manifold,
where Γ∞

ΛE denotes the sheaf of C∞-sections into the bundle ΛE and
# : Γ∞

ΛE → C∞ denotes the sheaf projection onto the constant term.

Batchelor’s theorem, theorem 4.29 of [4] , now says that all super mani-
folds can be obtained this way:

Theorem 2.30 Let
(
M,S,#

)
be a super manifold of dimension (p, q) .

Then there exists a q-dimensional C∞-vectorbundle E on M such that

S � Γ∞
ΛE

# ↘ % ↙#

C∞|U

.

E is uniquely defined by S up to isomorphism.

Clearly if E has dimension q+n instead of q and there exists a C∞-embedding
M× IRn ↪→ E then this embedding induces a unital graded sheaf embedding
P ↪→ Γ∞

ΛE , and so
(
M,Γ∞

ΛE ,
#
)

is a (p, q)-dimensional P-super manifold. It
is not surprising that there is a formulation of Batchelor’s theorem for
P-super manifolds as well:

Corollary 2.31 (Batchelor’s theorem for P-super manifolds)
Let

(
M,S,#

)
be a P-super manifold of dimension (p, q) . Then there

exists a (q + n)-dimensional C∞- vectorbundle E on M , a C∞-embedding
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M × IRn ↪→ E and a unital graded sheaf isomorphism Φ : S ∼→Γ∞
ΛE such

that Φ (αi) = ej for all j = 1, . . . , n and

S Φ−→ Γ∞
ΛE

# ↘ % ↙#

C∞U

.

Again E is uniquely defined by S up to isomorphism.

Proof: Since
(
M,S,#

)
is an ordinary (p, q + n)-dimensional super man-

ifold we can apply theorem 2.30 to it, which says that there exists a
(q + n)-dimensional C∞-vectorbundle E on M and a sheaf isomorphism
Φ′ : S ∼→Γ∞

ΛE such that

S Φ′
−→ Γ∞

ΛE

# ↘ % ↙#

C∞U

.

One immediately sees that

N
/
N 2 � Γ∞

E

via Φ′ , where N denotes the subsheaf of all nilpotent elements in S , and
if U ⊂M such that E|U is trivial then for all V ⊂ U open(
N
/
N 2
)
(V ) = N (V )

/
N (V )2 . Let NP be the set of all nilpotent elements

in P . Then

IRn � NP
/
N 2

P ↪→ N
/
N 2 � Γ∞

E

as a sheaf on M , and so M × IRn ↪→ E as a C∞-vectorbundle on M ,

Φ′ (αj) ∈
(
ej +N (Γ∞

ΛE)2
)
∩ (Γ∞

ΛE)1 ,

where N (Γ∞
ΛE) denotes the subsheaf of Γ∞

ΛE of nilpotent elements. Let
M =

⋃
λ∈Λ Uλ be an open locally finite covering of M such that E|Uλ

is
trivial for all λ ∈ Λ , and let

1 =
∑
λ∈Λ

ελ

be a C∞-partition of unity onM such that supp ελ ⊂ Uλ for all λ ∈ Λ . Then
for all λ ∈ Λ since E|Uλ

is trivial we can find a C∞-vectorbundle embedding

ρλ : E|Uλ
↪→ (ΛE)1 |Uλ

such that ρλ (x, ej) = Φ′ (αj) (x) for all j = 1, . . . , n and x ∈ Uλ , and
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E|Uλ

ρλ
↪→ (ΛE)1 |Uλ

↪→ N (ΛE) |Uλ

pr−→N (ΛE)
/
N (ΛE)2 |Uλ

� E|Uλ

gives the identity map. So we get a whole C∞-vectorbundle embedding

ρ : E ↪→ (ΛE)1 , (x,v) �→
∑

λ∈Λ , x∈Uλ

ελρλ(x,v) ,

where the sum is taken in the fibre. Again ρ (x, ej) = Φ′ (αj) (x) for all
j = 1, . . . , n and x ∈M , and

E
ρ
↪→ (ΛE)1 ↪→ N (ΛE)

pr−→N (ΛE)
/
N (ΛE)2 � E

gives the identity map. By the universal property of the exterior algebra
the C∞-vectorbundle embedding ρ extends to a unital graded C∞-algebra
bundle automorphism χ on ΛE , and χ induces a unital graded sheaf au-
tomorphism Ψ of Γ∞

ΛE such that Ψ (ej) = Φ′ (αj) , j = 1, . . . , n . So take
Φ := Ψ−1◦ Φ′ . Since Ψ comes from the unital algebra bundle automorphism
χ we fortunately have again

S Φ−→ Γ∞
ΛE

# ↘ % ↙#

C∞U

,

and by theroem 2.30 E is uniquely defined by S up to isomorphism. �

Via the up to isomorphisms one-to-one-correspondence between super man-
ifolds and finite-dimensional C∞-vectorbundles over C∞-manifolds one can
show that there exists a cross product in the category of super manifolds,
see theorem 5.21 of [4] : Let M be a (p, q)-dimensional and N be an
(r, s)-dimensional super manifold. Without loss of generality we can as-
sume that S = Γ∞ (ΛE) and T = Γ∞ (ΛF ) where E is a q-dimensional
C∞-vectorbundle over M and F is an s-dimensional vectorbundle over N .
Then

M×N :=
(
M ×N,Γ∞ (Λ (pr∗1E ⊕ pr∗2F )) ,#

)
is a cross product ofM and N , where pr∗1E and pr∗2F denote the pullbacks
of E resp. F under the canonical projections pr1 : M × N → M resp.
pr2 : M ×N → N .
Since for all U ⊂M and V ⊂ N open

Γ∞ (Λ (pr∗1E ⊕ pr∗2F )) (U × V ) = S(U)�̂T (V )
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we denote the stucture sheaf Γ∞ (Λ (pr∗1E ⊕ pr∗2F )) of M × N by
pr∗1S �̂pr∗2T , where pr∗1S and pr∗2T denote the pullbacks of S resp. T .
(f ⊗ g)# := f# ⊗ g# ∈ C∞(U × V ) for all U ⊂ M and V ⊂ N open,
f ∈ S(U) and g ∈ T (V ) .
M×N is a (p+r, q+s)-dimensional super manifold. We have the canonical
super projections Pr1 :=

(
pr1, (C1U )U⊂M open

)
and

Pr2 :=
(
pr2, (C2,V )V⊂M open

)
fromM×N onto M resp. N , where

pr1 : M ×N →M and pr2 : M ×N → N denote the canonical projections
and

C1,U : S(U) ↪→ S(U)�̂T (N)

for all U ⊂M open and

C1,V : S(V ) ↪→ S(M)�̂T (V )

for all V ⊂ N open denote the canonical embeddings, and again we have
the universal property: For any super manifold O =

(
O,R,#

)
and super

morphisms Φ1 =
(
ϕ1, (Φ1,U )U⊂M open

)
and Φ2 =

(
ϕ2, (Φ2,V )V⊂N open

)
from O to M resp. N there exists a unique super morphism
Ψ =

(
ψ, (ΨW )W⊂M×N open

)
from O to M×N such that

Pr1 ◦Ψ = Φ1

and

Pr2 ◦Ψ = Φ2 .

Hereby we have ψ = (ϕ1, ϕ2) : O →M ×N and

ΨU×V =
(
|ϕ−1

1 (U)∩ϕ−1
2 (V ) ◦ Φ1,U

)(
|ϕ−1

1 (U)∩ϕ−1
2 (V ) ◦ Φ2,V

)
,

more precisely

ΨU×V : S(U)�̂T (V )→ R
(
ϕ−1

1 (U) ∩ ϕ−1(V )
)
,

f ⊗ g �→
(

Φ1,U (f)|ϕ−1
1 (U)∩ϕ−1

2 (V )

)(
Φ2,V (f)|ϕ−1

1 (U)∩ϕ−1
2 (V )

)
for all U ⊂M and V ⊂ N open. As usual we identify each super morphism
Ψ from O to M×N with its ’defining pair’ (Pr1 ◦Ψ,Pr2 ◦Ψ) .

Now let M =
(
M,S,#

)
be a (p, q)-dimensional and N =

(
N, T ,#

)
be an

(r, s)-dimensional P-super manifold. We will construct a P-cross product
M×P N of M and N in the category of P-super manifolds, being a
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(p + r, q + s)-dimensional P-super manifold. The cross product M×N of
M and N as usual super manifolds is a (p + r, q + s)-dimensional P � P-
super manifold since the embeddings P ↪→ S resp. T induce a unital graded
sheaf embedding P � P ↪→ pr∗1S �̂pr∗2T . We have a diagonal embedding
CP := (0,m) from IR|n into IR|n × IR|n , where the unital graded algebra
projection m : P � P → P is defined by R ⊗ S �→ RS , and m induces a
unital graded algebra isomorphism

m′ : (P � P) /IP → P ,

where IP := kerm � P � P , which is precisely the ideal in P spanned by
αj ⊗ 1− 1⊗ αj , j = 1, . . . , n . m′−1 is given by
R �→ (R⊗ 1) + IP = (1⊗R) + IP . Let I be the ideal sheaf of pr∗1S �̂pr∗2T
spanned by αj ⊗ 1− 1⊗ αj , j = 1, . . . , n .

Theorem 2.32

(i)

M×P N :=
(
M ×N,

(
pr∗1S �̂pr∗2T

)/
I,#

)
is a (p+ r, q + s)-dimensional P-super manifold.

(ii) C :=
(
id, (ρW )W⊂U×V open

)
is a super embedding from M×P N into

M×N , where ρ : pr∗1S �̂pr∗2T →
(
pr∗1S �̂pr∗2T

)/
I denotes the canonical

unital graded sheaf epimorphism, and

M×P N
C
↪→ M×N

↓ % ↓
IR|n ↪→

CP
IR|n × IR|n

,

where the arrows on the left and right side denote the canonical super pro-
jections.

Proof: (i) Clearly

m′−1 : P ∼−→ (P � P) /IP ↪→
(
pr∗1S �̂pr∗2T

)/
I

is a unital graded sheaf embedding. Let U ⊂ M and V ⊂ N be open such
that S|U = D

(
♦|q)

U
� P and T |V = D

(
♦|s)

V
� P . Then

id⊗m′ :
((

pr∗1S �̂pr∗2T
)/
I
)∣∣∣
U×V

= D
(
♦|q+s

)
U×V

� ((P � P) /IP )

∼−→D
(
♦|q+s

)
U×V

� P
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is an isomorphism, (id⊗m′) ◦m′−1 = id , and since I � ker # ,
# : pr∗1S �̂pr∗2T → C∞M×N induces a body map

# :
(
pr∗1S �̂pr∗2T

)/
I → C∞M×N

such that (1⊗m′) (f)# = f# for all W ⊂ U × V and
f ∈

(
pr∗1S �̂pr∗2T

)
(W ) . �

(ii) trivial since ρ (αj ⊗ 1) = αj and m (αj ⊗ 1) = αj as well for all
j = 1, . . . , n . �

Let Pr′1 := C ◦ Pr1 and Pr′2 := C ◦ Pr2 , where Pr1 and Pr2 denote the
canonical projections fromM×N ontoM resp. N . Then Pr′1 and Pr′2 are
super morphisms from M×P N to M resp. N . We can write

Pr′1 =
(

pr1,
(
C′1,U

)
U⊂M open

)
and Pr′1 =

(
pr1,

(
C′1,U

)
U⊂M open

)
where

C′1,U = C1,U ◦ ρU×N and C′2,V = C1,V ◦ ρM×V for all U ⊂ M resp. V ⊂ N

open.

Theorem 2.33 Pr′1 and Pr′2 are P-super projections from M×P N onto
M resp. N .

Proof: Let U ⊂M be open. We would like to show that

C′1,U : S(U)→
(
S(U)�̂T (N)

)/
I(U ×N)

is injective. So let V ⊂ N be open, V �= ∅ . Without loss of generality we
may assume that S|U = D

(
♦|q)

U
� P and T |V = D

(
♦|s)

V
� P . Let

f =
∑

I∈℘(n)

fIα
I ∈ ker C′1,U � S(U) = D

(
U |q
)
� P .

Then an easy calculation shows that

0 = C′1,U (f)
∣∣
U×V =

∑
I∈P(n)

fI ⊗ 1⊗m′−1 (α)I

as an element of
(
S(U)�̂T (V )

)
= D

(
U |q) �̂D (V |s)� ((P � P) /IP ) , and

since m′−1 : P ∼→ (P � P) /IP is an isomorphism we have fI = 0 for all
I ∈ ℘(n) , and so f = 0 .

Now let j = 1, . . . , n and U ⊂M be open. Then

C′1,U (αj) = ρU×N (C1,α (αj)) = ε (αj ⊗ 1) = αj .

119



So C1,U |P = id . For proving that Pr′2 is a P-super projection fromM×PN
onto N one has to do the same calculations again. �

Again we have the universal property:

Theorem 2.34 For any P-super manifold O =
(
O,R,#

)
and P-super

morphisms Φ1 =
(
ϕ1, (Φ1,W )W⊂O open

)
and Φ2 =

(
ϕ2, (Φ2,W )W⊂O open

)
there exists a unique P-super morphism Ψ′ from O to M×P N such that

Pr′1 ◦Ψ′ = Φ1

and

Pr′2 ◦Ψ′ = Φ2 .

Let Ψ := (Φ1,Φ2) , going from O toM×N . Then Ψ′ is the unique P-super
morphism from O to M×P N such that Ψ = C ◦ Ψ′ , and so in particular
the body of Ψ′ is again ψ = (ϕ1, ϕ2) : O →M ×N .

Proof: Let us first show that there exists a unique P-super morphism Ψ′

from O to M×P N such that Ψ = C ◦ Ψ′ . Ψ′ =
(
ψ′, (Ψ′

W )W⊂M×N open

)
being a P-super morphism from O toM×P N , Ψ = C ◦Ψ′ is equivalent to
ψ′ = ψ and

ΨW = Ψ′
W ◦ ρW

for all W ⊂M×N open. Let W ⊂M×N . Then ΨW (αj ⊗ 1− 1⊗ αj) = 0
since ΨM×N ◦ C1,M = Φ1,M and ΨM×N ◦ C2,N = Φ2,N , and so

ΨM×N (αj ⊗ 1) = ΨM×N (C1,M (αj)) = Φ1,M (αj) = αj = Φ2,N (αj)

= ΨM×N (C2,N (αj)) = ΨM×N (1⊗ αj) .

It follows that ker ρW = I(W ) � ker ΨW . Therefore since ρW is surjective
there exists a unique unital graded algebra homomorphism

Ψ′
W :

((
pr∗1S �̂pr∗2T

)/
I
)

(W )→R
(
ψ−1(W )

)
such that ΨW = Ψ′

W ◦ ρW . Now we show that
(
ψ, (ΨW )W⊂U×V open

)
is

indeed a P-super morphism from O to M×P N :

Let W ′ ⊂ W ⊂ M × N be open. Since Ψ is already a super
morphism from O to M×N we obtain
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Ψ′
W ′ ◦ |W ′ ◦ ρW = Ψ′

W ′ ◦ ρW ′ ◦ |W ′

= ΨW ′ ◦ |W ′

= |ψ−1(W ′) ◦ΨW

= |ψ−1(W ′) ◦Ψ′
W ◦ ρW .

But ρW is surjective, and so we have Ψ′
W ′ ◦ |W ′ = |ψ−1(W ′) ◦Ψ′

W .

Let W ⊂ M × N be open and f ∈
((

pr∗1S �̂pr∗2T
)/
I
)

(W ) .

Then we have f = g + I(W ) for some g ∈
(
pr∗1S �̂pr∗2T

)
(W )

by lemma 2.23 . So we get

Ψ′
W (f)# = Ψ(g) = g# ◦

(
ψ|ψ−1(W )

)
= f# ◦

(
ψ|ψ−1(W )

)
.

Now let j = 1, . . . , n . Then

Ψ′
M×N (αj) = Ψ′

M×N (ρM×N (αj ⊗ 1)) = ΨM×N (α⊗ 1) = αj ,

and so we get Ψ′
W |P = id for all W ⊂M ×N open.

It remains to prove that, Ψ′ =
(
ψ′, (Ψ′

W )W⊂M×N open

)
being a P-super

morphism from O to M×P N , Ψ = C ◦ Ψ′ is equivalent to Pr′1 ◦Ψ′ = Φ1

and Pr′2 ◦Ψ′ = Φ2 .

’⇒’ : Let Ψ = C ◦Ψ′ . Then

Pr′1 ◦Ψ′ = Pr1 ◦C ◦Ψ′ = Pr1 ◦Ψ = Φ1

and by the same calculation Pr′2 ◦Ψ′ = Φ2 as well.

’⇐’ : Let Pr′1 ◦Ψ′ = Φ1 and Pr′2 ◦Ψ′ = Φ2 , and define Π := C ◦Ψ′ . Then

Pr1 ◦Π = Pr1 ◦C ◦Ψ′ = Pr′1 ◦Ψ′ = Φ1

and by the same calculation Pr2 ◦Π = Φ1 as well. So by the universal
proverty of the cross productM×N we get Π = Ψ . �

Given P-super manifolds M , N and O , we denote the P-projections Pr′1
and Pr′2 going from M×P N to M resp. N by Pr1 resp. Pr2 since there
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is no danger of confusion. Again given a P-super morphism Ψ from O to
M×P N we write Ψ = (Pr1 ◦Ψ,Pr2 ◦Ψ) . Finally by the universal property
of the P-cross product one sees that the P-cross product is commutative
and associative in the sense that given P-super manifolds M , N and O
there are canonical P- super diffeomorphisms from M×P N to N ×P M
and from (M×P N ) ×P O to M×P (N ×P O) , and so we simply write
M×P N ×P O .

2.3 super manifolds - the complex case

Now we will treat holomorphic super manifolds. Let us again start with the
subcategory of complex super open sets.

Let M be a holomorphic manifold. Then we define the sheaves

D
(
♦|q,q

)
M

:= (C∞M )C � Λ (Cq)� Λ (Cq)

and

O
(
♦|q,q

)
M

:= OM ⊗ Λ (Cq)

of unital associative graded commutative algebras on M and a graded invo-
lution on D

(
♦|q,q)

M
given by

: D
(
♦|q,q

)
M
→ D

(
♦|q,q

)
M
,∑

S,T∈℘(q)

fS,T e
S ⊗ eT �→

∑
S,T∈℘(q)

(−1)
|S|(|S|+1)

2
+

|T |(|T |+1)
2 fS,T e

T ⊗ eS ,

which is less complicated than it seems to be: This is precisely the unique
involution on D

(
♦|q,q)

M
such that restricted to (C∞M )C is just

ordinary complex conjugation and ek ⊗ 1 = 1⊗ ek , k = 1, . . . , q .

We regard O
(
U |q,q) as a sub graded sheaf of D

(
♦|q,q)

M
via the embedding

O
(
♦|q,q

)
M
↪→ D

(
♦|q,q

)
M
, f �→ f ⊗ 1 .

Again we have a body map

# : D
(
♦|q,q

)
M
→ (C∞M )C ,

∑
S,T∈℘(q)

fS,T eS ⊗ eT �→ f∅,∅ ,

which respects . Again on D
(
♦|q,q)

M
as a free 22q-dimensional C∞M -

module we will always use the uniformal structure of compact convergence in
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all derivatives. So for all U ⊂M open O
(
U |q,q) is a unital closed sub graded

algebra of D
(
U |q,q) , and we call a function f ∈ D

(
U |q,q) holomorphic if

and only if it belongs to O
(
U |q,q) . The image of O

(
♦|q,q)

M
under the body

map # is precisely OM . We have

D
(
♦|q,q

)
M
� D

(
♦|2q

)C

by lemma 2.10 .

Now let M = Cp for some p ∈ IN . Then on Cp|q,q we have the even
coordinate functions

z1, . . . , zp ∈ O (Cp) ↪→ O
(
Cp|q,q

)
0

and the odd coordinate functions

ζ1 := e1, . . . , ζq := eq ∈ Λ (Cq)1 ↪→ O
(
Cp|q,q

)
1
.

We define ζS := eS ∈ Λ (Cq) ↪→ O
(
Cp|q,q) and ζS := 1⊗eS ∈ Λ (Cq)�Λ (Cq)

for all S ∈ ℘(q) .

Definition 2.35 (complex super open sets)

(i) Let (p, q) ∈ IN2 and U ⊂ Cp be open. Then the triple U |q,q := (U, q, q) is
called a complex super open set of dimension (p, q) . U is called the body of
Up|q,q and # : D

(
U |q,q)→ C∞(U)C the body map of D

(
U |q,q) .

(ii) Let U |q,q and V r|s,s be two complex super open sets, ϕ : U → V a C∞-
map and Φ : D

(
V |s,s) → D (U |q,q) a unital graded algebra homomorphism

respecting . Then the pair (ϕ,Φ) is called a super morphism from U |q,q

to V |s,s if and only if

(Φ(f))# = f# ◦ ϕ

for all f ∈ D
(
V |s,s) . In this case ϕ is called the body of (ϕ,Φ) . (ϕ,Φ) is

called holomorphic if and only if ϕ is holomorphic and

Φ
(
O
(
V |s,s

))
⊂ O

(
U |q,q

)
.

From now on let n ∈ IN and P := Λ (IRn) = D
(
IR0|n

)
with real odd

coordinate functions α1, . . . , αn . Then clearly PC = Λ (Cn) . As in the
real case we have the wider class of P-super morphisms between super open
sets.
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Definition 2.36 (complex P-super morphisms) Let U |q,q and V r|s,s be
two complex super open sets, ϕ : U → V a C∞-map and
Φ : D

(
V |s,s)�PC → D

(
U |q,q)�PC a unital graded algebra homomorphism

respecting such that Φ|PC = id . Then the pair (ϕ,Φ) is called a P-super
morphism from U |q,q to V |s,s if and only if

(Φ(f))# = f# ◦ ϕ

for all f ∈ D
(
V |s,s) . In this case again ϕ is called the body of (ϕ,Φ) .

(ϕ,Φ) is called holomorphic if and only if ϕ is holomorphic and

Φ
(
O
(
V |s,s

))
⊂ O

(
U |q,q

)
� PC .

Again the set of all complex super open sets together with P-super mor-
phisms forms a category, where the composition of two P-super morphisms
(ϕ,Φ) from U |q,q to V |s,s and (ψ,Ψ) from V |s,s to W |u,u is again defined as

(ϕ,Φ) ◦ (ψ,Ψ) := (ϕ ◦ ψ,Ψ ◦ Φ) ,

and (id, id) is the identity morphism from a complex super open set U |q,q

to itself. Clearly if both (ϕ,Φ) and (ψ,Ψ) are holomorphic then so is
(ϕ,Φ) ◦ (ψ,Ψ) .

Fortunately by lemma 2.10 each (p, q)-dimensional complex super open set
can be regarded as a (2p, 2q)-dimensional real super open set. Given two
complex super open sets U |q,q and V |s,s and a P-super morphism (ϕ,Φ)
from U |q,q to V |s,s , then by theorem 2.8

(
ϕ,Φ|D(V |2s)

)
is a P - super

morphism from U |2q to V |2s . So we obtain a whole functor from the
category of complex super open sets together with holomorphic P-super
morphisms to the category of real super open sets together with P - super
morphisms forgetting about the ’complex structure’ .

Therefore on a (p, q)-dimensional complex super open set regarded as a
real (2p, 2q)-dimensional super open set we have the real even coordinate
functions

xk := Re zk =
zk + zk

2
,

yk := Im zk = −i zk − zk
2

,

k = 1, . . . , p , and the real odd coordinate functions

ξl := Re ζl =
ζl − iζl

2
,
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and

ηl := Im ζl =
−iζl + ζl

2
,

l = 1, . . . , q .

Theorem 2.37 Let U |q,q and V |s,s be two complex super open sets. Let
w1, . . . , wr and ϑ1, . . . , ϑs be the coordinate functions on V |s,s .

(i) Let Φ : D
(
V |s,s) � PC → D

(
U |q,q) � PC be a unital graded algebra ho-

momorphism respecting . Then Φ is continuous, and there exists a
unique C∞-map ϕ : U → V such that (ϕ,Φ) is a P-super morphism from
U |q,q to V |s,s . Let fk := Φ (wk) ∈

(
D
(
U |q,q)� PC

)
0

, k = 1, . . . , r , and

λl := Φ (ϑl) ∈
(
D
(
U |q,q)� PC

)
1

, l = 1, . . . , s . Then
(
f#
1 , . . . , f

#
r

)
(z) ∈ V

for all z ∈ U , ϕ =
(
f#
1 , . . . , f

#
r

)
, and for all

h =
∑

S,T∈℘(s)

hS,T ϑSϑ
T ∈ D

(
V |s,s

)
↪→ D

(
V |s,s

)
� PC

we have

Φ(h) =
∑

S,T∈℘(s)

∑
m,n∈INr

1
m!n!

((
∂m∂

n
hS,T

)
◦ ϕ
)
×

×
(
f1 − f#

1 , . . . , fr − f#
r

)m (
f1 − f#

1 , . . . , fr − f
#
r

)n
λSλ

T

(2.3)

in multi-index language, where we set λS := λt1 · · ·λtm and λS := λt1 · · ·λtm
for all S = {t1, . . . , tm} ∈ ℘(s) , 1 ≤ t1 < · · · < tm ≤ s .

(ii) Conversely let f1, . . . , fr ∈
(
D
(
U |q,q)� PC

)
0

and

λ1, . . . , λs ∈
(
D
(
U |q,q)� PC

)
1

such that
(
f#
1 , . . . , f

#
r

)
(z) ∈ V for all

z ∈ U . Then there exists a unique unital graded algebra homomorphism
Φ : D

(
V |s,s) � PC → D

(
U |q,q) � PC respecting given by PC-linear

extension of formula 2.3 such that Φ|PC = id and Φ (wk) = fk , k = 1, . . . , r ,
and Φ (ϑl) = λl , l = 1, . . . , s .

(iii) Let Φ : D
(
V |s,s) � PC → D

(
U |q,q) � PC be given by PC-linear exten-

sion of formula 2.3 . Then Φ
(
O
(
V |s,s)) ⊂ O (U |q,q) � P if and only if

f1, . . . , fr, λ1, . . . , λs ∈ O
(
U |q,q)� PC if and only if (ϕ,Φ) is holomorphic.

Proof: (i) Since Φ respects and D
(
U |q,q) � PC � D

(
U |2q+n)C the

continuity of Φ and the existence and uniqueness of ϕ follow from theorem
2.8 (iv) and 2.12 (i) . The rest can be proven by the same calculations as in
the proof of theorem 2.12 (i) using the fact that for all w0 ∈ V there exist
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∆m,o ∈ C∞(V )C , m,o ∈ INr , |m| = s+ 1 , |o| = s , and Σm,o ∈ C∞(V )C ,
m,o ∈ INr , |m| = s , |o| = s+ 1 such that

h =
∑

m,o∈INr

1
m!o!

∂m∂
o
h (w0) (w −w0)

m (w −w0)
o

+
∑

m,o∈INr , |m|=s+1 , |o|=s
(w −w0)

m (w −w0)
o ∆m,o

+
∑

m,o∈INr , |m|=s , |o|=s+1

(w −w0)
m (w −w0)

o Σm,o .�

(ii) Let xk , yk , k = 1, . . . , r , and ξl , ηl , l = 1, . . . , s , be the real coordi-
nate functions on V |s,s . Since Φ is a unital graded algebra homomorphism
respecting by theorem 2.8 Φ (wk) = fk , k = 1, . . . , r , Φ (ϑl) = λl ,
l = 1, . . . , s , and Φ|PC = id is equivalent to

ΦIR (xk) = Re fk =
fk − fk

2
,

ΦIR (yk) = Im fk = −i fk − fk
2

∈
(
D
(
U |q,q

)
IR

)
0

for all k = 1, . . . , r ,

ΦIR (αt) = αt

for all t = 1, . . . , n and

ΦIR (ξl) = Re λl =
λl − iλl

2
,

ΦIR (ηl) = Im λl =
−iλ+ λl

2
∈
(
D
(
U |q,q

)
IR

)
1

for all l = 1, . . . , s . Therefore uniqueness and existence of Φ follow by
theorem 2.8 (iii) and 2.12 (ii) . �

(iii) Assume Φ
(
O
(
V |s,s)) ⊂ O

(
U |q,q) � PC . Then since

w1, . . . , wr, ϑ1, . . . , ϑs ∈ O
(
V |s,s) we have fk = Φ (zk) ∈ O

(
U |q,q) � PC

and λl = Φ (ϑl) ∈ O
(
U |q,q)� PC , k = 1, . . . , r , l = 1, . . . , s .

Now assume all fk, λl ∈ O
(
U |q,q) � PC , k = 1, . . . , r , l = 1, . . . , s .

Then we see that ϕ =
(
f#
1 , . . . , f

#
r

)
is holomorphic, and given some

h =
∑

S∈℘(s) hSϑ
S ∈ O

(
V |s,s) , all hS ∈ O(V ) , S ∈ ℘(s) , by formula

2.3 we get

Φ(h) =
∑

S∈℘(s)

∑
m∈INr

1
m!

((∂mhS) ◦ ϕ)
(
f1 − f#

1 , . . . , fr − f#
r

)m
λS

∈ O
(
U |q,q

)
� PC ,
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and so (ϕ,Φ) is holomorphic.

Finally assume (ϕ,Φ) is holomorphic. Then by definition
Φ
(
O
(
V |s,s)) ⊂ O (U |q,q)� PC . �

By theorem 2.37 there is a bijection between the set of all P-super mor-
phisms (ϕ,Φ) from U |q,q to V |s,s , the set of all unital graded algebra homo-
morphisms Φ : D

(
V |s,s)→ D (U |q,q)� PC and the set of all tuples

(f1, . . . , fr, λ1, . . . , λs) ∈
(
D
(
U |q,q

)
� PC

)r
0
×
(
D
(
U |q,q

)
� PC

)s
1

such that the image of U under
(
f#
1 , . . . , f

#
r

)
lies in V . So again we will

identify a P-super morphism (ϕ,Φ) from U |q,q to V |s,s with its ’defining
tuple’

(f1, . . . , fr, λ1, . . . , λs) ∈
(
D
(
U |q,q

)
� PC

)r
0
×
(
D
(
U |q,q

)
� PC

)s
1
,

U |q,q and V |s,s regarded as real super open sets of dimensions (2p, 2q) resp.
(2r, 2s) , (ϕ,Φ) has the defining tuple

(Re f1 , . . . , Re fp , Im f1 , . . . , Im fp , Re λ1 , . . . , Re λq ,

Im λ1 , . . . , Im λq)

∈
(
D
(
U |2q

)
� P

)2r

0
×
(
D
(
U |2q

)
� P

)2s

1
.

For all h ∈ D
(
V |s,s)� PC we write

h (f1, . . . , fr, λ1, . . . , λs) := Φ(h) ∈ D
(
U |q,q

)
� PC ,

regarding Φ as a ’plugging in’ homomorphism.

Clearly in the category of complex super open sets together with holomor-
phic P-super morphisms we have a cross product: If U |q,q and V |s,s are
complex super open sets then the cross product of U |q,q and V |s,s is defined
as

U |q,q × V |s,s := (U × V )|q+s,q+s ,

which is up to the additional complex structure equal to the real cross prod-
uct. From classical analysis we know that

O
(
U |q,q × V |s,s

)
= O

(
U |q,q

)
�̂O

(
V |s,s

)
.
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The canonical projections (pr1, C1) and (pr2, C2) from U |q,q × V |s,s to U |q,q

resp. V |s,s turn out to be holomorphic. If W |u,u is a third complex super
open set and (ϕ1,Φ1) and (ϕ2,Φ2) are P-super morphisms from W |u,u to
U |q,q resp. V |s,s with defining tuples

(f1, . . . , fp, λ1, . . . , λq) ∈
(
D
(
W |u,u

)
� PC

)p
0
×
(
D
(
U |q,q

)
� PC

)q
1
,

resp.

(g1, . . . , gr, µ1, . . . , µs) ∈
(
D
(
W |u,u

)
� PC

)r
0
×
(
D
(
U |q,q

)
� PC

)s
1
,

then the unique P-super morphism Ψ from W |u,u to U |q,q × V |s,s such that

(pr1, C1 ⊗ id) ◦ (ψ,Ψ) = (ϕ1,Φ1)

and

(pr2, C2 ⊗ id) ◦ (ψ,Ψ) = (ϕ2,Φ2)

has the defining tuple

(f1, . . . , fp, g1, . . . , gr, λ1, . . . , λq, µ1, . . . , µs)

∈
(
D
(
W |u,u

)
� PC

)p+r
0
×
(
D
(
U |q,q

)
� PC

)q+s
1

,

and so it is holomorphic if and only if (ϕ1,Φ1) and (ϕ2,Φ2) are holomorphic.

Clearly if (ϕ,Φ) is a holomorphic P-super morphism from U |q,q to V |s,s

and V ′ ⊂ V open such that ϕ(U) ⊂ V ′ then the unique P-super mor-
phism (ϕ′,Φ′) from U |q,q to V ′|s,s such that (ϕ,Φ) = (c, |V ′) ◦ (ϕ′,Φ′) , see
theorem 2.14 in the real case, section 2.2 , is again holomorphic. We can
deduce it from the fact that if we denote the defining tuple of (ϕ,Φ) by
(f1, . . . , fr, λ1, . . . , λs) then ϕ′ = ϕ|ϕ−1(V ′) and the defining tuple of (ϕ′,Φ′)
is just

(
f1|ϕ−1(V ′) , . . . , fr|ϕ−1(V ′) , λ1|ϕ−1(V ′) , . . . , λs|ϕ−1(V ′)

)
.

Let U |q,q be a complex super open set, and define the continuous linear maps

∂k| : D
(
U |q,q

)
→ D

(
U |q,q

)
,

f =
∑

S,T∈℘(q)

fS,T ζSζ
T �→

∑
S,T∈℘(q)

(∂kfS,T ) ζSζT ,
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∂k| : D
(
U |q,q

)
→ D

(
U |q,q

)
,

f �→
∑

S,T∈℘(q)

(
∂kfS,T

)
ζSζ

T
,

k = 1, . . . , p ,

∂|l : D
(
U |q,q

)
→ D

(
U |q,q

)
,

f �→
∑

S,T∈℘(q), l /∈S
(−1)|S<l|fS∪{l},T ζSζ

T

and

∂|l : D
(
U |q,q

)
→ D

(
U |q,q

)
,

f �→
∑

S,T∈℘(q), l /∈T
(−1)|S|+|T<l|fS,T∪{l} ζSζ

T
,

l = 1, . . . , q . Clearly again
(
∂i|f
)# = ∂i

(
f#
)

and
(
∂i|f

)# = ∂i
(
f#
)

,

∂i|D
(
U |q
)

0
, ∂i|D

(
U |q
)

0
, ∂|jD

(
U |q
)

1
, ∂|jD

(
U |q
)

1
⊂ D

(
U |q
)

0
,

∂i|D
(
U |q
)

1
, ∂i|D

(
U |q
)

1
, ∂|jD

(
U |q
)

0
, ∂|jD

(
U |q
)

0
⊂ D

(
U |q
)

1

for all i = 1, . . . , p and j = 1, . . . , q , and again we have a super product
rule:

∂i|(fg) =
(
∂i|f
)
g + f

(
∂i|g
)
,

∂i|(fg) =
(
∂i|f

)
g + f

(
∂i|g
)
,

∂|j(fg) =
(
∂i|f
)
g + (−1)ḟf

(
∂i|g
)

and

∂|j(fg) =
(
∂i|f

)
g + (−1)ḟf

(
∂i|g
)

for all i = 1, . . . , p , j = 1, . . . , q and f, g ∈ D
(
U |q) , f homogeneous. So

all ∂i| , ∂i| , ∂|j and ∂|j are super derivations on D
(
U |q) , and we call

them the partial derivatives with respect to the holomorphic coordinate
functions zj resp. ζj . We can extend them to continuous linear maps from
D
(
U |q,q)�PC to D

(
U |q,q)�PC by right-PC-linear extension. If we denote
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the unique C-linear extensions of the real derivatives on U |q,q regarded as
a real (2p, 2q)-dimensional super open set by ∂xk

, ∂yk
, ∂ξl resp. ∂ηl

,
k = 1, . . . , p , l = 1, . . . , q , then we have the following basic properties,
which can be proven by straight forward computation:

(i)

∂xk
= ∂k| + ∂k| ,

∂yk
= i

(
∂k| − ∂k|

)
,

∂ξl = ∂|l + i∂|l ,

∂ηl
= i∂|l + ∂|l ,

(ii)

∂k| =
∂xk
− i∂yk

2
,

∂k| =
∂xk

+ i∂yk

2
,

∂|l =
∂ξl − i∂ηl

2
,

∂|l =
−i∂ξl + ∂ηl

2
,

(iii)

∂k|f = ∂k|f ,

∂|lf = (−1)ḟ+1 ∂|lf ,

(iv)

∂xk
f = ∂xk

f ,

∂yk
f = ∂yk

f ,

∂ξlf = i (−1)ḟ+1 ∂ξlf ,

∂ηl
f = i (−1)ḟ+1 ∂ηl

f ,

for all k = 1, . . . , p , l = 1, . . . , q and homogeneous f ∈ D
(
U |q,q)� PC .

Clearly if f ∈ D
(
U |q,q) then f is holomorphic if and only if ∂k|f = ∂|lf = 0

for all k = 1, . . . , p and l = 1, . . . , q . O
(
U |q,q) is closed under all ∂k| ,

k = 1, . . . , p , and ∂|l , l = 1, . . . , q .

Definition 2.38 (complex and holomorphic super Jacobian) Let
U |q,q and V |s,s be two complex super open sets and (ϕ,Φ) a P-super
morphism from U |q,q to V |s,s with defining tuple (f1, . . . , fr, λ1, . . . , λs) .
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(i) The even (2r, 2s)× (2p, 2q) - graded matrix

DC(ϕ,Φ) :=

⎛⎜⎜⎜⎜⎜⎜⎝

(
∂k|ft

) (
∂k|ft

)(
∂k|ft

) (
∂k|ft

) −
(
∂|lft

)
−
(
∂|lft

)
−
(
∂|lft

)
−
(
∂|lft

)(
∂k|λu

) (
∂k|λu

)(
∂k|λu

) (
∂k|λu

) (
∂|lλu

) (
∂|lλu

)(
∂|lλu

) (
∂|lλu

)

⎞⎟⎟⎟⎟⎟⎟⎠
∈
(
D
(
U |q,q

)
� PC

)(2r|2s)×(2p|2q)
0

,

where k ∈ {1, . . . , p} , l ∈ {1, . . . , q} , t ∈ {1, . . . , r} and u ∈ {1, . . . , s} , is
called the complex super Jacobian of (Φ, ϕ) .

(ii) If (ϕ,Φ) is holomorphic then the even (r|s)× (p|q) - graded matrix

Dhol(ϕ,Φ) :=

⎛⎝ (
∂k|ft

)
t∈{1,...,r},k∈{1,...,p} −

(
∂|lft

)
t∈{1,...,r},l∈{1,...,q}(

∂k|λu
)
u∈{1,...,s},k∈{1,...,p}

(
∂|lλu

)
u∈{1,...,s},l∈{1,...,q}

⎞⎠
∈
(
O
(
U |q,q

)
� PC

)(r|s)×(p|q)
0

is called the holomorphic super Jacobian of (ϕ,Φ) .

Lemma 2.39 Let U |q,q , V |s,s and W |u,u be complex super open sets, (ϕ,Φ)
a P-super morphism from U |q,q to V |s,s and (ψ,Ψ) a P-super morphism
from V |s,s to W |u,u . For all t, u ∈ IN define

St,u :=

⎛⎜⎜⎜⎜⎜⎜⎝
1 i 1

1 −i 1
0

0
1 i 1

i 1 1

⎞⎟⎟⎟⎟⎟⎟⎠
}t
}t
}u
}u

∈ IR(2t,2u)×(2t,2u)
0 .

(i)

DC(ϕ,Φ) = S−1
p,qDIR(ϕ,Φ)Sr,s ,

where DIR(ϕ,Φ) denotes the real super Jacobian of (ϕ,Φ) .

(ii) The complex super Jacobian of (ψ,Ψ) ◦ (ϕ,Φ) is precisely

Φ (DC(ψ,Ψ)) ·DC(ϕ,Φ) ,

where Φ (DC(ψ,Ψ)) is taken componentwise.

(iii) If (p, q) = (r, s) and z0 ∈ U then DC(ϕ,Φ) (z0) is invertible if and only
if DIR(ϕ,Φ) (z0) is invertible.
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(iv) If (ϕ,Φ) is a P-super diffeomorphism then

DC

(
(ϕ,Φ)−1

)
= Φ−1

(
(DC(ϕ,Φ))−1

)
,

where Φ−1
(
(DC(ϕ,Φ))−1

)
is taken componentwise.

(v) If (ϕ,Φ) is holomorphic then

DC(ϕ,Φ) =

⎛⎜⎜⎜⎜⎜⎜⎝
A 0

0 A

β 0

0 −β

γ 0

0 γ

D 0

0 D

⎞⎟⎟⎟⎟⎟⎟⎠ , (2.4)

where

Dhol(ϕ,Φ) =

⎛⎝ A β

γ D

⎞⎠ ∈ (O (U |q,q
)
� PC

)(r|s)×(p|q)
0

.

(vi) If (ϕ,Φ) and (ψ,Ψ) are holomorphic then the holomorphic super Jaco-
bian of (ψ,Ψ) ◦ (ϕ,Φ) is precisely

Φ (Dhol(ψ,Ψ)) ·Dhol(ϕ,Φ) ,

where again Φ (Dhol (ψ,Ψ)) is taken componentwise.

(vii) If (ϕ,Φ) is holomorphic , (p, q) = (r, s) and z0 ∈ U then Dhol(ϕ,Φ) (z0)
is invertible if and only if DC(ϕ,Φ) (z0) is invertible.

(viii) If (r, s) = (p, q) and (ϕ,Φ) is a holomorphic P-super diffeomorphism
then (ϕ,Φ) is biholomorphic, and

Dhol

(
(ϕ,Φ)−1

)
= Φ−1

(
(Dhol(ϕ,Φ))−1

)
,

where Φ−1
(
(Dhol(ϕ,Φ))−1

)
is taken componentwise.

Proof: (i) straight forward calculation.

(ii) combine (i) and lemma 2.18 (i) . �

(iii) trivial using (i) .

(iv) combine (i) and lemma 2.18 (ii) . �

(v) straight forward calculation.
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(vi) combine (v) and lemma 2.18 (i) . �

(vii) combine (v) and corollary 2.4 . �

(viii) It suffices to show that Φ−1
(
DC(ϕ,Φ)−1

)
is again of the form 2.4 ,

but this is an easy exercise using corollary 2.4 since Φ−1 respects . �

Corollary 2.40 (holomorphic super local inversion theorem) Let
U |q,q and V |q,q be two complex super open sets of dimension (p, q) , (ϕ,Φ)
a holomorphic P-super morphism from U |q,q to V |q,q and z0 ∈ U .

(i) Let Dhol(ϕ,Φ) (z0) ∈
(
Λ (Cq)� PC

)(p|q)×(p|q)
0

be invertible, equivalently
Dhol(ϕ,Φ)# (z0) ∈ C(p|q)×(p|q)

0 be invertible. Then there exists an open neigh-
bourhood W ⊂ V of ϕ (z0) such that

(
ϕ|ϕ−1(W ),ΦW

)
is a biholomorphic

super morphism from ϕ−1(W )|q,q to W |q,q .

(ii) Let ϕ be bijective and D(ϕ,Φ) (z0) , equivalently D(ϕ,Φ)# (z0) , be in-
vertible for all z0 ∈ U . Then (ϕ,Φ) is biholomorphic.

Proof: combine lemma 2.39 (iii) , (vii) and (viii) and theorem 2.19 . �

Definition 2.41 (parametrized holomorphic super manifolds) Let
M be a p-dimensional holomorphic manifold and q ∈ IN . Let S be a sheaf
of unital graded C-algebras over M with involution , F a sub graded
sheaf of S and # : S → (C∞M )C a sheaf homomorphism respecting such
that the image of F under # lies in OM .

(i) The tuple M :=
(
M,S,F ,#

)
is called a (p, q)-dimensional holomorphic

over P parametrized (or simply P-) super manifold if and only if there exists
a sheaf embedding PC ↪→ F respecting , for all x0 ∈ M an open neigh-
bourhood U ⊂M of x0 and a sheaf isomorphism Φ : S|U ∼→D

(
♦|q,q)

U
�PC

respecting such that Φ|PC = id ,

S|U Φ−→ D
(
♦|q,q)

U
� PC

# ↘ % ↙#

(C∞U )C

and the image of F|U under Φ is precisely O
(
♦|q,q)

U
� PC .

In this caseM# := M is called the body of the P-super manifoldM , F the
structural sheaf ofM and # the body map of S . We write D(M) := S(M)
and O(M) := F(M) . In the case where n = 0 , equivalently P = IR we call
M simply a holomorphic super manifold.
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(ii) If U ⊂M is open then the tuple U :=
(
U,S|U ,FU , #

∣∣
U

)
is called an open

sub P-super manifold ofM . It is a (p, q)-dimensional holomorphic P-super
manifold itself.

(iii) Let N =
(
N, T ,G,#

)
be another holomorphic P-super manifold,

ϕ : M → N a C∞-map and (ΦW )W⊂N open a family of unital graded algebra
homomorphisms ΦW : T (W )→ S

(
ϕ−1(W )

)
respecting such that for all

W ′ ⊂W ⊂ N open

T (W ) ΦW−→ S
(
ϕ−1(W )

)
|W ′ ↓ % ↓ |ϕ−1(W ′)

T (W ′) −→
ΦW ′

S
(
ϕ−1(W ′)

) .

Then the pair Φ :=
(
ϕ, (ΦW )W⊂N open

)
is called a P-super morphism from

M to N if and only if for all W ⊂ N open ΦW |PC = id and

(ΦW (f))# = f# ◦ ϕ|ϕ−1(W )

for all f ∈ T (W ) . In this case Φ# := ϕ is called the body of Φ . Φ is called
holomorphic if and only if ΦW

(
F
(
ϕ−1(W )

))
⊂ G(W ) for all W ⊂ N open.

Again all holomorphic P-super manifolds together with P-super morphisms
form a category. Given holomorphic P-super manifolds M , N and O and
P-super morphisms Φ from M to N and Ψ from N to O the composition
of Φ and Ψ is again given by

Ψ ◦ Φ :=
(
ψ ◦ ϕ,

(
Φψ−1(W ) ◦ΨW

)
W⊂O open

)
,

and obviously if Φ and Ψ are holomorphic then so is Ψ ◦ Φ . Obviously by
theorem 2.39 if Φ is a holomorphic P-super diffeomorphism from M to N
then it is biholomorphic.

By lemma 2.10 each holomorphic (p, q)-dimensional P-super manifold
can be regarded as a real (2p, 2q)-dimensional P-super manifold, and
each P-super morphism Ψ from M to N being two holomorphic P-super
manifolds can also be regarded as a real P-super morphism. So we obtain
a whole functor from the category of holomorphic P-super manifolds
together with holomorphic P-super morphisms to the category of real
P-super manifolds together with P-super morphisms fogetting about the
’holomorphic structure’.

Again in the category of holomorphic P-super manifolds we have a P-cross
product: Given two holomorphic super manifolds M =

(
M,S,F ,#

)
and

N =
(
N, T ,G,#

)
we have
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M×P N =
(
M ×N,

(
pr∗1S�̂pr∗2T

)/
I,
(
pr∗1F�̂pr∗2G

)/
I ′,#

)
,

where I denotes the ideal sheaf of pr∗1S�̂pr∗2T spanned by αt ⊗ 1− 1⊗ αt ,
t = 1, . . . , n , and I ′ denotes the ideal sheaf of pr∗1F�̂pr∗2G spanned
by αt ⊗ 1 − 1 ⊗ αt , t = 1, . . . , n . PC ↪→

(
pr∗1F�̂pr∗2G

)/
I ′ via

R �→ R⊗ 1 + I ′ = 1⊗R+ I ′ .

M×PN regarded as a real P-super manifold is precisely the P-cross product
M×P N ofM and N regarded as real P-super manifolds given the unique
’holomorphic structure’ such that the canonical projections Pr′1 and Pr′2 from
M×P N to M resp. N are holomorphic. Again given three holomorphic
P-super manifolds and P-super morphism Φ , Ψ from O toM resp. N then
the P-super morphism (Φ,Ψ) from O toM×PN is holomorphic if and only
if Φ and Ψ are holomorphic.

2.4 Super Lie groups and parametrized discrete

subgroups

Again let n ∈ IN and P := Λ (IRn) = D
(
IR0|n

)
.

Definition 2.42 (P-super Lie groups)

(i) Let G be a real (p, q)-dimensional P-super manifold and µ a P-super dif-
feomorphism from G ×P G to G . The pair (G, µ) , or G for short, is called
a (p, q)-dimesional P-super Lie group if and only if there exist e ∈ G := G#

and a P-super morphism ι from G to G such that

G ×P G ×P G
(Pr1,µ)−→ G ×P G

(µ,Pr3) ↓ % ↓ µ
G ×P G −→

µ
G

(associativity) ,

G ×P G
(e,Id) ↗ % ↘ µ

G = G

(neutral property of e )

and

G
(ι,Id)
↪→ G ×P G

↓ % ↓ µ
{e} ↪→ G

(inversion property of ι ) .
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G is called commutative if and only if in addition µ ◦ (Pr2,Pr1) = µ as a
P-super morphism from G ×P G to G . If n = 0 equivalently P = IR then G
is simply called a super Lie group. If G is a holomorphic (p, q)-dimensional
PC-super manifold then G is called a holomorphic PC-super Lie group if and
only if µ and ι are holomorphic.

(ii) Let (G, µ) and (H, ν) be P-super Lie groups and Φ a P-super morphism
from G to H . Then Φ is called a P-super Lie group homomorphism if and
only if ϕ : G→ H is an ordinary group homomorphism, where ϕ := Φ# and
H := H# , and

G ×P G
(Φ◦Pr1,Φ◦Pr2)−→ H×P H

µ ↓ % ↓ ν
G Φ−→ H

.

If Φ is a P-diffeomorphism and at the same time a P-super Lie group ho-
momorphism then it is called a P-super Lie group isomorphism. If Φ is an
embedding then we call G a P-sub super Lie group of H .

Clearly all P-super Lie groups together with P-super Lie group homomor-
phisms between them form a category. If G is a P-super Lie group and
P ′ := Λ

(
IRn′)

= D
(
IR0|n′)

with n′ ∈ IN then G can also be regarded as a
P � P ′ - super Lie group, more precisely the category of all P- super Lie

groups is a sub category of the category of all P � P ′- super Lie groups ,
and the category of usual C∞-Lie groups together with C∞- homomorphisms
between them is a subcategory of the category of all super Lie groups.

If G is a P-super Lie group then G := G is an ordinary C∞-Lie group with
multiplication m := µ# : G×G→ G , neutral element e ∈ G and inversion
map i := ι# : G → G , and if G is commutative then so is G . The body
map is precisely a functor from the category of P-super Lie groups to the
category of usual C∞-Lie groups, and restricted to the category of usual
C∞-Lie groups it is simply the identity functor.

Conversely if n = 0 equivalently P = IR and so G is simply a super Lie

group then the canonical embedding
(
id,
(
#
)
U⊂M open

)
from G into G is a

super Lie group homomorphism.

If G is a P-sub super Lie group of H then G can be regarded as an ordinary
C∞-sub Lie group of H := H# via the C∞-Lie group embedding ϕ := Φ# .

For any g, h ∈P G let us write gh := µ(g, h) ∈P G . Then clearly
(gh)# = g#h# . Let G be of dimension (p, q) , n′ ∈ IN such that n′ ≥ 3q and
P ′ := Λ

(
IRn′)

. Then by theorem 2.27 (ii) the associativity is equivalent to
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(gh)j = g(hj) for all g, h, j ∈P�P ′ G , the neutral property of e is equivalent
to eg = g for all g ∈P�P ′ G , the inversion property of ι to ι(g)g = e for
all g ∈P�P ′ G and finally commutativity is equivalent to gh = hg for all
g, h ∈P�P ′ G .
Let g ∈P G . Define the left translation by g on G as lg := µ ◦ (g, id)
and the right translation by g on G as rg := µ ◦ (id, g) , which both are
P-super morphisms from G to G . Then one immediately sees that le = Id ,
lg ◦ lh = lgh , re = Id and rg ◦ rh = rhg .

Theorem 2.43 Let G be a P-super Lie group, ι given as in definition 2.42
and g, h, j ∈P G .

(i) ge = g and g ι(g) = e . So

G ×P G
(Id,e) ↗ % ↘ µ

G = G

and

G
(Id,ι)
↪→ G ×P G

↓ % ↓ µ
{e} ↪→ G

as well.

(ii) rg and lg are P-super diffeomorphisms, and l−1
g = lι(g) and r−1

g = rι(g) .
In particular if gh = gj then h = j and if gj = hj then g = h .

(iii) ι is uniquely determined by µ , it is a P-super diffeomorphism, and
ι−1 = ι .

(iv) ι (gh) = ι(h) ι(g) , and so

G ×P G
(ι◦Pr2,ι◦Pr1)−→ G ×P G

µ ↓ % ↓ µ
G −→

ι
G

.

Proof: Let (p, q) be the dimension of G as a P-super manifold and
P ′ := Λ

(
IR2q

)
.

(i) ge = g and g ι(g) = e is proven as in classical algebra. Using P � P ′

instead of P , theorem 2.27 (ii) gives the commutativity of the diagrams. �
(ii) trivial using (i) .
(iii) Assume ι′ is another P-super morphism from G to G having the inversion
property. Then ι(g) g = e = ι′(g) g and so ι(g) = ι′(g) by (ii) , furthermore
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g ι−1(g) = ι
(
ι−1(g)

)
ι−1(g) = e = g ι(g) by (i) , and so ι(g) = ι−1(g) by

(ii) . Therefore using P�P ′ instead of P , since g ∈P G is arbitrary theorem
2.27 (ii) gives ι = ι′ and ι−1 = ι . �
(iv) ι (gh) = ι(h) ι(g) is proven as in classical algebra using (i) , the
commutativity of the diagram then follows from theorem 2.27 (ii) using
P � P ′ instead of P . �

Since given a P-super Lie group G , ι is uniquely determined by µ and it is
a P-super diffeomorphism, we call it the inversion P-super diffeomorphism
of G . For any g ∈P G we write g−1 := ι(g) .

Definition 2.44 (P-super actions) Let G be a P-super Lie group , M a
P-super manifold and α : G ×PM→M a P-super morphism.

(i) α is called a P-super action of G on M if and only if

G ×P G ×PM
(Pr1,α)−→ G ×PM

(µ,Pr3) ↓ % ↓ α
G ×PM −→

α
M

(associativity)

and

G ×PM
(e,Id) ↗ % ↘ α

M = M

(neutral property of e ) .

(ii) If α is a P-super action and N is a P-sub manifold of M then N is
called α-invariant (or G- invariant) if and only if there exists a P-super
morphism α′ from G ×P N to N such that

G ×P N ↪→ G ×PM
α′ ↓ % ↓ α
N ↪→ M

.

(iii) If α is a P-super action then α is called transitive if and only if there
exists x ∈M :=M# such that α ◦ (Id, x) is a super projection from G onto
M .

If α is a P-super action from G ×PM toM , G being a P-super Lie group
and M being a P-super manifold, then α# : G ×M → M is an ordinary
action, if N is an α-invariant P-sub super manifold ofM then N is invariant
under α# , and finally if α is transitive then so is α# .
Let g ∈P G and Ξ ∈P M . Then we write gΞ := α(g,Ξ) . Let G
be of dimension (p, q) and M of dimension (r, s) , let n′ ≥ q + s and
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P ′ := Λ
(
IRn′)

. Then by theorem 2.27 the associativity in definition 2.44
is equivalent to g(hΞ) = (gh)Ξ for all g, h ∈P�P ′ G and Ξ ∈P�P ′ M , so we
write ghΞ := (gh)Ξ = g(hΞ) , and the neutral property of e is equivalent to
eΞ = Ξ for all Ξ ∈P�P ′ M .
Let g ∈P G . Then αg := α ◦ (g, Id) is a P-super diffeomorphism fromM to
M , and α−1

g = αg−1 .
Let N be an α-invariant P-sub super manifold of M and α′ be given by
definition 2.44 (ii) . Then α′ is uniquely determined by α and N , and α′

is again a P-super action. This can easily be checked using P � P ′-points
of G and N . If U is an open sub P-super manifold of M then clearly
U is α-invariant if and only if U := U# is α# invariant, and in this case
α′ = α|G×PU , and so we write α|G×PN := α′ if N is an arbitrary α-invariant
sub P-super manifold ofM .

Let α be a transitive P-super action of G on M and x ∈ M such that
α ◦ (Id, x) is a super projection from G ontoM . Then α ◦ (Id, y) is a super
projection from G onto M for all y ∈M . Let us check it:

Let G be of dimension (p, q) . By definition α# ◦ (id, x) : G→M

is a projection, and so α# is transitive. Therefore there exists
g0 ∈ G such that y = g0x . Let P ′ := Λ (IRq) = D

(
IR0|q

)
. Then

we obtain gy = gg0x for all g ∈P�P ′ G . So
α ◦ (Id, y) = α ◦ (Id, x) ◦ rg0 by lemma 2.27 (ii) . Since rg0 is a
P-super diffeomorphism from G to G we see that again α◦ (Id, y)
is a P-super projection.

Clearly µ is a P-super action of G on itself for each P-super Lie group
G . Given two P-super Lie groups G and H , a P-super Lie group
homomorphism Φ from G to H and a P-super action α of H on a P-super
manifoldM , α ◦ (Φ ◦ Pr1,Pr2) is a P-super action of G onM , and in the
case where Φ is an embedding we have α ◦ (Φ ◦ Pr1,Pr2) = α|G×PM .

Let Γ be a group, M a C∞-manifold and α : Γ×M →M be a discrete and
fixpoint free C∞-action of Γ on M . Then in classical analysis we can form
the quotient Γ\M , which then is again a C∞-manifold locally diffeomorphic
to M itself. In this case have a canonical sheaf isomorphism

C∞Γ\M �
{
f ∈ C∞

(
ϕ−1(♦)

) ∣∣ f Γ-invariant
}
,

where ϕ : M → Γ\M denotes the canonical projection. In super analysis
there is an analogon to this fact.
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Recall that each group Γ can be regarded as a discrete P-Lie group, and
conversely each discrete P-super Lie group is nothing but an ordinary group
given the discrete topology. So given a group Γ and a P-super manifoldM
we have a canonical bijection between all P-super actions α of Γ onM and
all mappings

Γ→ { P - super diffeomorphisms from M to M } , γ �→ αγ

such that αγδ = αγ ◦ αδ and αe = Id .

Definition 2.45 Let G be a P-super Lie group, α a P-super action of G
on the P-super manifold M and f ∈ D(M) . f is called α-invariant (or G-
invariant) if and only if αM (f) = CM (f) , where αM is the unital graded
algebra homomorphism from D(M) to D (G ×PM) coming from α and CM
is the canonical embedding from D(M) into D (G ×PM) .

Let G be of dimension (p, q) , M be of dimension (r, s) , n′ ∈ IN such that
n′ ≥ q + s and P ′ := Λ

(
IRn′)

. Let f ∈ D(M) . Then by lemma 2.27 (i) f
is α-invariant if and only if f(gΞ) = f(Ξ) for all g ∈P�P ′ G and Ξ ∈P�P ′ .

Theorem 2.46 (quotients of P-super manifolds) Let Γ be a group,M
be a P-super manifold of dimension (p, q) with structural sheaf S , and let α
be a P-super action of Γ on M such that α# is a discrete and fixpoint free
action of Γ on M . Let ϕ : M → Γ\M denote the canonical projection, and
let Q be the sheaf on Γ\M given by

Q :=
{
f ∈ S

(
ϕ−1(♦)

) ∣∣ f α-invariant
}
.

For all V ⊂ Γ\M open let ΦV : Q(V ) ↪→ S
(
ϕ−1(V )

)
denote the canonical

embedding.

(i) Γ\M :=
(
Γ\M,Q,#

)
is a (p, q)-dimensional P-super manifold, and

Φ :=
(
ϕ, (ΦV )V⊂Γ\M open

)
is a P-super projection from M onto Γ\M .

(ii) Φ is a local diffeomorphism, more precisely for each x ∈ M there exists
an open sub P-super manifold U of M such that x ∈ U := U# and Φ|U is
a diffeomorphism from U to V :=

(
φ(U),Q|φ(U),

#
)

, which is actually an
open sub P-super manifold of Γ\M .

Proof: Since Γ acts discretely and without fixpoints on M via α# ,
from classical analysis we know that Γ\M is a p-dimensional C∞-manifold,
ϕ : M → Γ\M is an open C∞-projection and induces a canonical sheaf
isomorphism

C∞Γ\M �
{
f ∈ C∞

(
ϕ−1(♦)

)∣∣ f α#-invariant
}
,
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and so we will identify these sheaves in what follows. Let V ⊂ Γ\M be
open. Then clearly Φ(f)# = f# ◦ ϕ for all f ∈ Q(V ) , and if V ′ ⊂ V open
as well

Q(V ) ΦV−→ S
(
ϕ−1(V )

)
|V ′ ↓ % ↓ |ϕ−1(V ′)

Q(V ′) −→
ΦV ′

S
(
ϕ−1(V ′)

) .

Now let x ∈M . Since α# is discrete and without fixpoints there exists an
open neighbourhood U ⊂M of x such that γU ∩ γ′U = ∅ for all γ, γ′ ∈ Γ ,
γ �= γ′ . Define V := ϕ(U) ⊂ Γ\M . Then clearly ϕ|U : U → V is a
C∞-diffeomorphism, and for all W ⊂ V open

|ϕ−1(W )∩U ◦ ΦW : Q(W )→ S
(
ϕ−1(W ) ∩ U

)
is a unital graded algebra isomorphism.

(i) : Let ϕ(x) = Γx ∈ Γ\M , x ∈M and U ⊂M of x such that γU∩γ′U = ∅
for all γ, γ′ ∈ Γ , γ �= γ′ . Without loss of generality we may assume that
S|U � C∞U ⊗ Λ (IRq) � P . Clearly P ↪→ Q , and identifying V and U via
ϕ , and so identifying W with ϕ−1(W )∩U for all W ⊂ V open, we see that
Ψ :=

(
|ϕ−1(W )∩U ◦ ΦW

)
W⊂V open

is a whole sheaf isomorphism from Q|V to
S|V such that Ψ|P = id and

Q|V Ψ−→ S|V � C∞V ⊗ Λ (IRq)� P
# ↘ % ↙ #

C∞V

.

So Γ\M is a (p, q)-dimensional P-super manifold. Since ΦW |P = id it is
now obvious that Φ is a P-super projection fromM onto Γ\M . �
(ii) : now trivial.

The most important example of a discrete and fixpoint free action α of a
group Γ on a P-super manifoldM is the case whereM = G is a P-super Lie

group, Γ = Υ is a discrete P-sub super Lie group of G and α = µ|Υ×PM .
Recall that a discrete P-sub super Lie group of G is nothing but a subset Υ
of the set of all P-points of G such that Γ := Υ# is discrete, γδ ∈P Υ for all
γ, δ ∈P Υ and for all γ ∈ Γ := Υ# there exists a unique γ′ ∈P Υ such that
γ = γ′# .
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Chapter 3

Super automorphic and

super cusp forms

3.1 The general setting

Let n, r ∈ IN . ThenGL (n,C)×GL (r,C) is an open subset of Cn2+r2 , and so
sGL (n|r) := (GL (n,C)×GL (r,C))|2nr,2nr is a complex super open set with
even coordinate functions aij and dkl ∈ O (sGL (n|r))0 and odd coordinate
functions βil and γkj ∈ O (sGL (n|r))1 , i, j = 1, . . . , n and k, l = 1, . . . , r .
sGL (n|r) is a holomorphic

(
n2 + r2, 2nr

)
-dimensional super Lie group with

multiplication

⎛⎝ A β

γ D

⎞⎠⊗
⎛⎝ A β

γ D

⎞⎠ =

⎛⎝ A⊗A+ β ⊗ γ A⊗ β + β ⊗D

γ ⊗A+D ⊗ γ γ ⊗ β +D ⊗D

⎞⎠ ,

where we use ordinary matrix multiplication, neutral element
1 ∈ GL (n,C)×GL (r,C) and inversion super diffeomorphism ι given by the
ordinary matrix inversion⎛⎝ A β

γ D

⎞⎠−1

=

⎛⎝ A−1 0

0 D−1

⎞⎠ 2nr∑
l=0

⎛⎝ 0 βD−1

γA−1 0

⎞⎠l

by corollary 2.4 . Clearly the body of sGL (n|r) is GL (n,C) × GL (r,C)
together with ordinary matrix multiplication. Now let p, q ∈ IN \ {0} such
that p+ q = n , and let us now sum up the coordinate functions into blocks
according to ⎛⎜⎜⎜⎝

A B µ

C D ν

ρ σ E

⎞⎟⎟⎟⎠
}p
}q
}r

.
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Then using theorem 2.29 one can show that the equations

⎛⎜⎜⎜⎝
A B µ

C D ν

ρ σ E

⎞⎟⎟⎟⎠
∗⎛⎜⎜⎜⎝

1 0 0

0 −1 0

0 0 1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

A B µ

C D ν

ρ σ E

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
1 0 0

0 −1 0

0 0 1

⎞⎟⎟⎟⎠ ,

Ber

⎛⎜⎜⎜⎝
A B µ

C D ν

ρ σ E

⎞⎟⎟⎟⎠ = 1

or more explicitely

A∗A− C∗C + ρ∗ρ = 1 ,

A∗B − C∗D + ρ∗σ = 0 ,

B∗B −D∗D + σ∗σ = −1 ,

µ∗µ− ν∗ν + E∗E = 1 ,

det

⎛⎝ A− µE−1ρ B − µE−1σ

C − νE−1ρ D − νE−1σ

⎞⎠ = detE ,

A∗µ− C∗ν + ρ∗E = 0 ,

B∗µ−D∗ν + σ∗E = 0

define a real
(
(p+ q)2 + r2 − 1, 2(p+ q)r

)
-dimensional sub super manifold

of sGL (n|r) , which we denote by sSU(p, q|r) . It turns out that sSU(p, q|r)
is even a real sub super Lie group of sGL(n|r) on which the inversion map
ι has a nice expression:

⎛⎜⎜⎜⎝
1 0 0

0 −1 0

0 0 1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

A B µ

C D ν

ρ σ E

⎞⎟⎟⎟⎠
∗⎛⎜⎜⎜⎝

1 0 0

0 −1 0

0 0 1

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
A∗ −C∗ ρ∗

−B∗ D∗ −σ∗

µ∗ −ν∗ D∗

⎞⎟⎟⎟⎠
The body of sSU(p, q|r) is

sS (U(p, q)× U(r)) :=

⎧⎨⎩
⎛⎝ g 0

0 E

⎞⎠ ∈ U(p, q)× U(r)

∣∣∣∣∣∣ det g = detE

⎫⎬⎭
together with ordinary matrix multiplication. We call sSU(p, q|r) the super
special pseudo unitary group. Define the complex (pq, rq)-dimensional super
domain Bp,q|r as Bp,q|r := (Bp,q)|qr,qr , where
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Bp,q :=
{
Z ∈ Cp×q ∣∣ Z∗Z
 1

}
⊂ Cp×q

open, with holomorphic even coordinate functions zij ∈ O
(
Bp,q|r)

0
and

holomorphic odd coordinate functions ζkj ∈ O
(
Bp,q|r)

1
, i = 1, . . . , p ,

j = 1, . . . , q , k = 1, . . . , r . Then we have a super action α of sSU(p, q|r)
on Bp,q|r given by super fractional linear (Möbius) transformations⎛⎝ (AZ +B + µζ) (CZ +D + νζ)−1

(ρZ + σ + Eζ) (CZ +D + νζ)−1

⎞⎠ .

α is holomorphic with respect to

⎛⎝ Z

ζ

⎞⎠ in the sense that if f ∈ O
(
Bp,q|r)

then f(α) ∈ D (sSU(p, q|r))C �̂O
(
Bp,q|r) . Let us check that α is also

transitive.

We claim that α (♦,0) is a super projection from sSU(p, q|r)
onto Bp,q|r . For a proof define the super morphism Φ from
Bp,q|r to sSU(p, q|r) by

⎛⎝ A µ

ρ E

⎞⎠ :=

⎛⎝1−

⎛⎝ Z

ζ

⎞⎠( Z∗ ζ∗
)⎞⎠− 1

2

=

⎛⎝1−

⎛⎝ ZZ∗ Zζ∗

ζZ∗ ζζ∗

⎞⎠⎞⎠− 1
2

,

⎛⎝ B

σ

⎞⎠ :=

⎛⎝ Z

ζ

⎞⎠⎛⎝1−
(

Z∗ ζ∗
)⎛⎝ Z

ζ

⎞⎠⎞⎠− 1
2

=

⎛⎝ Z

ζ

⎞⎠ (1− Z∗Z− ζ∗ζ)−
1
2 ,

(
C ν

)
:=

(
Z∗ ζ∗

)⎛⎝1−

⎛⎝ Z

ζ

⎞⎠( Z∗ ζ∗
)⎞⎠− 1

2

=
(

Z∗ ζ∗
)⎛⎝1−

⎛⎝ ZZ∗ Zζ∗

ζZ∗ ζζ∗

⎞⎠⎞⎠− 1
2

and
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D :=

⎛⎝1−
(

Z∗ ζ∗
)⎛⎝ Z

ζ

⎞⎠⎞⎠− 1
2

= (1− Z∗Z− ζ∗ζ)−
1
2 .

Then a simple calculation shows that Φ is even a cross section
for α (♦,0) in the sense that the composition

Bp,q|r Φ−→ sSU(p, q|r) α(♦,0)−→ Bp,q|r

gives the identity. So Φ is a super embedding from Bp,q|r into
sSU(p, q|r) and α (♦,0) is a super projection from sSU(p, q|r)
onto Bp,q|r .

Now let m ∈ IN and P := Λ (IRm) = D
(
IR0|m

)
with the odd coordinate

functions β1, . . . , βm ∈ D
(
IR0|m

)
1

.

The stabilizer sub super Lie group of 0 ↪→ Bp,q|r is K := sS (U(p|r)× U(q))
which is a real

(
p2 + q2 + r2 − 1, 2pr

)
-dimensional sub super Lie group of

sSU(p, q|r) given by the equations

B = 0 ,

C = 0 ,

ν = 0 ,

σ = 0 ,⎛⎝ A µ

ρ E

⎞⎠∗⎛⎝ A µ

ρ E

⎞⎠ = 1 ,

D∗D = 1 ,

Ber

⎛⎝ A µ

ρ E

⎞⎠ detD = 1

or more explicitely
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B = 0 ,

C = 0 ,

ν = 0 ,

σ = 0 ,

A∗A+ ρ∗ρ = 1 ,

D∗D = 1 ,

µ∗µ+ E∗E = 1 ,

det
(
A− µE−1ρ

)
detD = detE ,

A∗µ+ ρ∗E = 0

in the sense that if g ∈P sSU(p, q|r) then g0 = 0 if and only if g ∈P K .
Clearly the body of K is K := sS ((U(p)× U(q))× U(r)) , explicitely

K =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎜⎜⎜⎝

A 0

0 D
0

0 E

⎞⎟⎟⎟⎠ ∈ U(p)× U(q)× U(r) | detAdetD = detE

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ,

which is also automatically the stabilizer of 0 in s (SU(p, q)× U(r)) acting
on Bp,q via α# .
From now on let G := sSU(p, q|r) , B := Bp,q|r ,
G := G# = s (SU(p, q)× U(r)) and B := B# = Bp,q . Then on G × B we
define the function

j := det (CZ +D + βζ)−1 ∈
(
D (G)C �̂O(B)

)
0
.

j fulfills the cocycle property

j (m ◦ (Pr1,Pr2) ,Pr3) = j (Pr1, α ◦ (Pr2,Pr3)) j (Pr2,Pr3) ,

where we compare functions in D (G × G)C �̂D(B) , or equivalently if
m ≥ 2(p+ q)r + qr then

j (gh,Ξ) = j (g, hΞ) j (h,Ξ)

for all g, h ∈P G and Ξ ∈P B .

From now on let k ∈ Z be fixed. Then we have PC-linear continuous graded
injections
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| : D(B)� PC → D(G)C�̂D(B)� PC , f �→ f | := f(α)jk

and

˜ : D(B)� PC → (D(G)� P)C , f �→ f̃ := f (α (♦,0)) j (♦,0)k = f |♦ (0)

respecting , in other words f |g(Ξ) = f(gΞ)j(g,Ξ)k and
f̃(g) = f (g0) j (g,0)k = f |g (0) for all Ξ ∈P B and g ∈P G . Clearly | is
holomorphic in the sense that if f ∈ O(B)�PC then f | ∈ D(G)C�̂O(B)�PC .

From now on let Υ be a discrete P-sub super Lie group of G with body
Γ � G .

Definition 3.1 (super automorphic forms) Let f ∈ O(B)�PC . Then
f is called a super automorphic form for Υ of weight k if and only if
f̃ ∈ (D(G)� P)C is left-Υ-invariant or equivalently f |γ = f for all γ ∈P Υ .
We denote the set of automorphic forms for Υ of weight k by sMk(Υ) . It
is a graded sub PC-module of O(B)� PC .

Recall that Υ\G is a real
(
(p+ q)2 + r2 − 1, 2(p+ q)r

)
-dimensional P-super

manifold with body Γ\G by theorem 2.46 , and f̃ left-Υ-invariant means
nothing but f̃ ∈ D (Υ\G)C .

Defining the space of cusp forms for a discrete P-sub super Lie group Υ
of G needs a notion of integrability in particular square integrability on B
resp. G which seems to be very difficult to develop.

Therefore until the end of section 3.3 we restrict ourselves to
the case where m = 0 equivalently P = IR , and we call it the
non-parametrized case.

Then Υ = Γ is nothing but a usual discrete subgroup of the C∞-Lie group
G . Clearly G is a sub super Lie group of G , so G acts on B via α|G×B ,
and so we have a right action of G on D(B) given by

|g : D(B)→ D(B) , f �→ f |g

for all g ∈ G . This action is clearly holomorphic in the sence that if
f ∈ O(B) then again f |g ∈ O(B) for all g ∈ G , and it respects the splittings

D(B) =
⊕

(µ,ν)∈{0,...,rq}
D(µ,ν)(B) ,
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where

D(µ,ν)(B) :=
⊕

I,J∈℘(rq) , |I|=µ , |J |=ν
C∞(B)ζIζJ

and so also

O(B) =
⊕

(µ)∈{0,...,rq}
O(µ)(B) ,

where

O(µ)(B) :=
⊕

I∈℘(rq) , |I|=µ
O(B)ζI = D(µ,0)(B) ∩ O(B) .

Now in the case of a usual discrete subgroup Γ � G another ’lift’ seems to
be more convenient:

˜′ : D(B) → C∞(G)C ⊗ Λ
(
Cr×q)� Λ

(
Cr×q)

� C∞(G)C ⊗D
(
C0|rq,rq

)
,

f �→ f̃ ′ ,

where

f̃ ′(g) := f |g

⎛⎝ 0

η

⎞⎠
= f

⎛⎝g
⎛⎝ 0

η

⎞⎠⎞⎠ j

⎛⎝g,
⎛⎝ 0

η

⎞⎠⎞⎠k

= f

⎛⎝g
⎛⎝ 0

η

⎞⎠⎞⎠ j (g,0)k

for all f ∈ D(B) and g ∈ G , where we denote

j (g,♦) = j

⎛⎝g,
⎛⎝ ♦

ζ

⎞⎠⎞⎠ ,

since j

⎛⎝g,
⎛⎝ ♦

ζ

⎞⎠⎞⎠ ∈ O(B) and therefore ’independent’ of ζ for all g ∈ G .

Clearly again
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C∞(G)C ⊗D
(
C0|rq,rq) (g♦)−→ C∞(G)C ⊗D

(
C0|rq,rq)

˜′ ↑ % ↑ ˜′
D(B) −→

|g
D(B)

for all g ∈ G , and clearly if f ∈ O(B) then

f̃ ′ ∈ C∞(G)C ⊗O
(
C0|rq,rq

)
� C∞(G)C ⊗ Λ

(
Cr×q) .

f ∈ sMk(Γ) if and only if f ∈ O(B) and f̃ ′ ∈ C∞(G)C ⊗ Λ (Cr×q) is left-Γ-
invariant.
Even f̃ ′ ∈ C∞(G)C⊗Λ(µ) (Cr×q)�Λ(ν) (Cr×q) if and only if f ∈ D(µ,ν)(B) for
all f ∈ D(B) , and so f̃ ′ ∈ C∞(G)C ⊗ Λ(µ) (Cr×q) if and only if f ∈ O(µ)(B)
for all f ∈ O(B) .

Since Λ (Cr×q)�Λ (Cr×q) � Λ
(
C2rq

)
canonically we have a canonical scalar

product 〈 , 〉 (semilinear in the second entry) on Λ (Cr×q)�Λ (Cr×q) coming
from the standard scalar product on C2rq . For all a ∈ Λ (Cr×q)� Λ (Cr×q)
we write |a| :=

√
〈a, a〉 .

We have a canonical embedding

G′ := SU(p, q) ↪→ G , g �→

⎛⎝ g 0

0 1

⎞⎠ ,

and the canonical projection

G→ U(r) ,

⎛⎝ g 0

0 E

⎞⎠ �→ E

induces a group isomorphism

G
/
G′ � U(r) .

Clearly α# extends the action of G′ = SU(p, q) on B by fractional linear
(Möbius) transformations.

Since G′ = SU(p, q) is semisimple and U(r) is compact both are unimodu-
lar. Furthermore the left- and right-invariant Haar measure on G′ is even
invariant under conjugation with elements of G . So a simple calculation
shows that ∫

G
ϕ :=

∫
G/G′

(∫
G′
ϕ(gn)dn

)
d
(
gG′)
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is a left- and right-invariant Haar measure on G , and therefore G is again
unimodular. As in the higher rank case, chapter 1 , we have a ’scalar
product’

(f, h)Γ :=
∫

Γ\G

〈
h̃′, f̃ ′

〉
for all f, g ∈ D(B) such that

〈
h̃′, f̃ ′

〉
∈ L1(Γ\G) and for all s ∈ ] 0,∞ ]

Lsk(Γ\B) :=

⎧⎨⎩f ∈ D(B)

∣∣∣∣∣∣ f̃ ′ left-Γ-invariant and
∣∣∣f̃ ′∣∣∣ ∈ Ls(Γ\G)

⎫⎬⎭ .

Then clearly especially all ( , ) := ( , ){1} and all Lsk(B) are invariant
under the action |g , g ∈ G .

Definition 3.2 (super cusp forms in the non-parametrized case)
Let f ∈ sMk(Γ) . f is called a super cusp form for Γ of weight k if and
only if f ∈ L2

k(Γ\B) . The C- vector space of all cups forms for Γ of weight
k is denoted by sSk(Γ) := sMk(Γ) ∩ L2

k(Γ\B) = O(B) ∩ L2
k(Γ\B) .

Let π : G→ G/K � B denote the canonical projection. Then clearly for all
L ⊂ B compact π−1(L) ⊂ G is again compact and there exists C ′ ≥ 0 such
that for all h =

∑
I,J∈℘(r) hIJζ

Iζ
J ∈ D(B) , all hIJ ∈ C∞(B)C , I, J ∈ ℘(r) ,

if we decompose h̃′ = qIJη
IηJ , all qIJ ∈ C∞(G)C , I, J ∈ ℘(r) , then

||hIJ ||∞,L ≤ C ′ max
I′,J ′∈℘(r)

||qI′J ′ ||∞,π−1(L)

for all I, J ∈ ℘(r) . So we see that convergence with respect to ( , )Γ
implies compact convergence, and so sSk(Γ) is a Hilbert space. Since all
Λ(µ) (Cr×q) � Λ(ν) (Cr×q) , µ, ν = 0, . . . , rq , are pairwise orthogonal with
respect to 〈 , 〉 we have an orthogonal splitting

sSk(Γ) =
⊕

µ∈{0,...,rq}
sS

(µ)
k (Γ) ,

where

sS
(µ)
k (Γ) := sSk(Γ) ∩ O(µ)(B)

for all µ = 0, . . . , rq .
As in the case of a usual bounded symmetric domain we would like to use
relative Poincaré series

∑
γ∈Γ′\Γ

f |γ

for a subgroup Γ′ ⊂ Γ .
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Theorem 3.3 (convergence of relative Poincaré series) Let Γ′ � Γ
be a subgroup and

f ∈ sMk

(
Γ′) ∩ L1

k

(
Γ′\B

)
.

Then

Φ :=
∑

γ∈Γ′\Γ
f |γ and Φ̃′ :=

∑
γ∈Γ′\Γ

f̃ ′ (γ♦)

converge absolutely and uniformly on compact subsets of B resp. G ,

Φ ∈ sMk (Γ) ∩ L1
k (Γ\B) ,

Φ̃′ is the lift of Φ to G , and for all ϕ ∈ sMk (Γ) ∩ L∞
k (Γ\B) we have

(Φ, ϕ)Γ = (f, ϕ)Γ′ .

Proof: Let g0 ∈ G and L ⊂ G be a compact neighbourhood of g0 in G

such that γL ∩ L = ∅ for all γ ∈ Γ \ {1} . Since the canonical projection
π : G → G/K � B is open, π(L) is a compact neighbourhood of g00
in B . Clearly since L is compact there exists C ′ ≥ 0 such that for all
h =

∑
I∈℘(r) hIζ

I ∈ O(B) , all hI ∈ O(B) , I ∈ ℘(r) , if we decompose
h̃′ = qIη

I , all qI ∈ C∞(G)C , I ∈ ℘(r) , then

||hI ||∞,π(L) ≤ C ′ max
J∈℘(r)

||qJ ||∞,L

for all I ∈ ℘(r) and

||qJ ||∞,L ≤ C ′ max
I∈℘(r)

||hI ||∞,π(L)

for all J ∈ ℘(r) . So by the mean value property of holomorphic functions
applied to each hI ∈ O(B) , I ∈ ℘(r) , seperately there exists a neigh-
bourhood U ⊂ L of g0 in G and C ∈ IR such that for all h ∈ O(B) and
g ∈ U

∣∣∣h̃′(g)∣∣∣ ≤ C ∫
L

∣∣∣h̃′∣∣∣ .
So for all g ∈ U
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∑
γ∈Γ′\Γ

∣∣∣f̃ ′(γg)∣∣∣ =
∑

γ∈Γ′\Γ

∣∣∣f̃ |γ ′(g)∣∣∣
≤ C

∑
γ∈Γ′\Γ

∫
L

∣∣∣f̃ |γ ′∣∣∣
= C

∑
γ∈Γ′\Γ

∫
L

∣∣∣f̃ ′ (γ♦)
∣∣∣

≤ C

∫
Γ′\G

∣∣∣f̃ ′∣∣∣ <∞ .

We see that Φ̃′ and, since for all L ⊂ B again π−1(L) is compact, Φ as well
converge absolutely and uniformly on compact subsets of B resp. G , and
Φ̃′ is the lift of Φ to G . So clearly Φ ∈ sMk(Γ) .∫

Γ\G

∣∣∣Φ̃′
∣∣∣ ≤ ∫

Γ\G

∑
γ∈Γ′\Γ

∣∣∣f̃ ′ (γ♦)
∣∣∣ = ∫

Γ′\G

∣∣∣f̃ ′∣∣∣ <∞ ,

and so Φ ∈ L1
k (Γ\B) . Now let ϕ ∈ L∞

k (Γ\B) . Then f̃ ′ϕ̃′ ∈ L1 (Γ′\G) ,
and so

(Φ, ϕ)Γ =
∫

Γ\G

∑
γ∈Γ′\Γ

f̃ ′ (γ♦)ϕ̃′ =
∫

Γ′\G
f̃ ′ϕ̃′ = (f, ϕ)Γ′ .�

From now on we assume q = 1 , and unlike in the higher rank case, where we
had to do with an arbitrary bounded symmetric domain, in the special case
of the unit ball B = Bp,1 ∈ Cp now for our purposes it is more convenient
to define classical automorphic resp. cusp forms on B with respect to the
cocycle j ∈ C∞ (G′)C ⊗̂O(B) given by

j (g, z) = (cz + d)−1

for all g =

⎛⎝ A b

c d

⎞⎠ ∈ G′ and z ∈ B , since it is the restriction of

j ∈
(
D(G)C�̂O(B)

)
0
from above toG′×B . Then det (z �→ gz)′ = j (g, z)p+1

for all g ∈ G′ and z ∈ B . Again we can use the Jordan triple determinant
∆ : Cp × Cp → C which is given by

∆ (z,w) := 1−w∗z

for all z,w ∈ Cp . We recall the basic properties:

(i) ∆ (0,♦) = 1 ,

(ii) ∆ is a sesqui polynomial, holomorphic in the first and antiholomorphic
in the second variable,
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(iii) ∆ (z,w) = ∆ (w, z) for all z,w ∈ Cp and ∆ (z, z) > 0 for all z ∈ B ,

(iv) |j (g,0)| = ∆ (g0, g0)
1
2 for all g ∈ G ,

(v) ∆ (gz, gw) = ∆ (z,w) j (g, z) j (g,w) for all g ∈ G and z,w ∈ B , and

(vi)
∫
B ∆ (z, z)λ dVLeb <∞ if and only if λ > −1 .

Because of (iv) and since
∣∣det (z �→ gz)′

∣∣ = |j (g, z)|p+1 for all g ∈ G and
z ∈ B on B we have the G-invariant volume element ∆(z, z)−(p+1)dVLeb .

For all I, J ∈ ℘(r) , h ∈ C∞(B)C , z ∈ B and g =

⎛⎝ ∗ 0

0 E

⎞⎠ ∈ sSU(p, 1|r)

we have

hζIζ
J
∣∣∣
g
(z) = h (gz) (Eη)I

(
Eη
)J
j (g, z)k+|I|+|J | , (3.1)

where E ∈ U(r) . So for all s ∈ ] 0,∞ ] and f =
∑

I,J∈℘(r) fIJζ
Iζ
J ∈ D(B)

such that f̃ ′ ∈ C∞(G)C ⊗D
(
C0|r,r) is left-Γ-invariant we have f ∈ Lsk(Γ\B)

if and only if

fIJ∆ (z, z)
k+|I|+|J|

2 ∈ Ls(Γ\B)

for all I, J ∈ ℘(r) with respect to the G-invariant measure
∆(z, z)−(p+1)dVLeb , and for all f =

∑
I,J∈℘(r) fIJζ

Iζ
J ,

h =
∑

I,J∈℘(r) hIJζ
Iζ
J ∈ D(Γ\B) such that

〈
h̃′, f̃ ′

〉
∈ L1(Γ\G)

(f, h)Γ ≡
∑

I,J∈℘(r)

∫
Γ\B

fIJhIJ∆ (z, z)
k+|I|+|J|

2
−(p+1) dVLeb .

In particular for all s ∈ ] 0,∞ ] and I, J ∈ ℘(r) there is an embedding

Lsk+|I|+|J |(B) ↪→ Lsk(B) , f �→ fζIζ
J

being unitary in the case s = 2 up to a constant �= 0 , and for all s ∈ ] 0,∞ ]

Lsk (B) =
⊕

I,J∈℘(r)

Lsk+|I|+|J |(B)ζIζJ ,

where in the case s = 2 the sum is orthogonal.

Theorem 3.4 Let I ∈ ℘(r) and k ≥ 2p+ 1− |I| . Then for all w ∈ B

∆ (♦,w)−k−|I| ζI ∈ L1
k(B) ,

and for all f =
∑

I∈℘(r) fIζ
I ∈ O(B) ∩ L∞

k (B) we have

153



(
∆ (♦,w)−k−|I| ζI , f

)
≡ fI (w) ,

where ≡ denotes equality up to a constant �= 0 independent of w and f .

Proof: Since for all f ∈ O(B) ∩ L∞
k (B)

(
∆ (♦,w)−k−|I| ζI , f

)
=

(
∆ (♦,w)−k−|I| ζI , fIζI

)
≡

∫
B

∆ (♦,w)−k−|I|fI∆ (z, z)
k+|I|

2
−(p+1) dVLeb

it is the same calculation as in the proof of theorem 1.17 in the higher rank
case. �

Right now we see that there is a trivial special case, namely the case where
Γ � G′ = SU(p, 1) ↪→ G .

Theorem 3.5 Let Γ � G′ = SU(p, 1) ↪→ G . Then for all I ∈ ℘(r) the
embedding

Sk+|I|(Γ) ↪→ sSk(Γ) , f �→ fζI

is unitary up to a constant �= 0 , and

sSk(Γ) =
⊕
I∈℘(r)

Sk+|I|(Γ)ζI

as an orthogonal sum.

Proof: obvious by formula (3.1) . �

In the end let us compare the situation in the super case with that of the
higher rank case in chapter 1 for again arbitrary q ∈ IN \ {0} . Obviously
K ′ = K ∩ G′ = S(U(p) × U(q)) is the stabilizer of 0 in G′ . Let A denote
the standard maximal split abelian subgroup of G′ given by the image of
the Lie group embedding
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IRq ↪→ G′ ,

t �→ at :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cosh t1 0
. . .

0 cosh tq

0

0 1

sinh t1 0
. . .

0 sinh tq

0

sinh t1 0
. . .

0 sinh tq

0

cosh t1 0
. . .

0 cosh tq

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Then A is at the same time a maximal abelian subgroup without compact
factors, hence isomorphic to some IRν , ν ∈ IN , of G since G /G′ � U(r) is
compact. The centralizer M of A in K is the subgroup of K of all

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ε1 0
. . .

0 εq

0

0 u

0

0

ε1 0
. . .

0 εq

0

0 E

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where ε ∈ U (1)q , u ∈ U (p− q) and E ∈ U(r) such that
ε21 · · · ε2q detu = detE . Let M ′ = K ′ ∩ M = G′ ∩ M be the central-
izer of A in K ′ .

Again on G we have an analytic multiflow (ϕt)t∈IRq given by the right trans-
lation by elements of A :

ϕt : G→ G , g �→ gat .

Th centralizer of G′ in G is precisely

Z
(
G′) :=

⎧⎨⎩
⎛⎝ ε1 0

0 E

⎞⎠∣∣∣∣∣∣ ε ∈ U(1) , E ∈ U(r) , εp+q = detE

⎫⎬⎭ �M ,

and G′ ∩ Z (G′) is the centre of G′ , which is finite and belongs to M ′ .
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Lemma 3.6

G = G′Z
(
G′) .

Proof: Let g =

⎛⎝ g′ 0

0 E

⎞⎠ ∈ G . Then there exists ε ∈ U(1) such that

εp+q = det g′ ∈ U(1) , and so

g = ε−1g′

︸ ︷︷ ︸
∈G′

⎛⎝ ε1 0

0 E

⎞⎠
︸ ︷︷ ︸

∈Z(G′)

.�

So K = K ′Z (G′) and M = M ′Z (G′) . Therefore if we decompose the
adjoint representation of A as

g =
⊕
α∈Φ

gα ,

where for all α ∈ (IRq)∗

gα :=
{
ξ ∈ g

∣∣Adat(ξ) = eαt
}

and

Φ := {α ∈ (IRq)∗ | gα �= 0}

then we see that theorem 1.7 remains true word by word, and we have
gα � g′ for all α ∈ IRq \ {0} .

Lemma 3.7

N(A) = ANK(A) = N(AM) � N(M) .

Proof: We will use lemma 1.9 . For this purpose let g = g′w ∈ G , g′ ∈ G′

and w ∈ Z (G′) .

’N(A) � ANK(A)’ : Assume g ∈ N(A) . Then

g′ = gw−1 ∈ NG′(A) = ANK′(A)

by lemma 1.9 , and so g = g′w ∈ ANK(A) .

’ANK(A) � N(AM)’ again trivial since M is the centralizer of A in K .

’N(AM) � N(M)’ : Assume g ∈ N(AM) . Then
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g′ ∈ NG′
(
A
(
M ∩G′)) = NG′

(
AM ′) � NG′

(
M ′)

by lemma 1.9 . So g ∈ N(M) .

’N(AM) � N(A)’ : Assume g ∈ N(AM) . Then

g′ ∈ NG′(AM) � NG′
(
AM ′) = NG′(A)

by lemma 1.9 . So g ∈ N(A) . �

Again we define the Weyl group W := NK(A)/M acting on A via conju-
gation.

Lemma 3.8
W ′ →W , gM ′ �→ gM ,

where W ′ := NK′(A)/M ′ denotes the Weyl group with respect to G′ , is
an isomorphism.

Proof: Let ϕ : NK′(A) → W , g �→ gM , which is clearly a group ho-
momorphism. Let gM ∈ W , g ∈ NK(A) . Then we can write g = g′w
with g′ ∈ NK′(A) and w ∈ Z (G′) � M , so ϕ(g′) = gM . Therefore ϕ
is surjective. Now let g ∈ kerϕ . Then g ∈ G′ ∩ M = M ′ . Therefore
kerϕ = M ′ . �

From now on for simplicity we again assume q = 1 . Then the root system
Φ of G is simply Φ = {−2,−1, 0, 1, 2} if p > 1 and Φ = {−2, 0, 2} if p = 1 ,
and the Weyl group degenerates to W � {±1} changing sign on IR � A .

Definition 3.9 Let a ∈ G .

(i) a is called loxodromic if and only if there exists g ∈ G such that
a ∈ gAMg−1 .

(ii) If a is loxodromic, it is called regular if and only if a = gatwg
−1 with

t ∈ IR \ {0} and w ∈M .

(iii) If a ∈ Γ is regular loxodromic then it is called primitive in Γ if and only
if a = a′ν implies ν ∈ {±1} for all loxodromic a′ ∈ Γ and ν ∈ Z .

Clearly for all a ∈ Γ regular loxodromic there exists a′ ∈ Γ primitive regular
loxodromic and ν ∈ IN \ {0} such that a = a′ν .

Theorem 3.10 Let a ∈ G be loxodromic, g ∈ G , w ∈M and t ∈ IR \ {0}
such that a = gatwg

−1 . Then g is uniquely determined up to right transla-
tion by elements of ANK(A) , and t is uniquely determined up to sign.
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Proof: similar to the proof of theorem 1.11 (i) using lemma 3.7 instead of
lemma 1.9 . �

3.2 Satake’s theorem in the super case

Let Γ � G be a discrete subgroup. The main goal of this section is the
following theorem:

Theorem 3.11 ( Satake’s theorem) Assume Γ\G is compact or q = 1 ,
p ≥ 2 and Γ � G is a lattice (discrete such that vol Γ\G < ∞ , Γ\G not
necessarily compact) . Then there exists k0 ∈ IN such that

sSk (Γ) = sMk (Γ) ∩ Lsk (Γ\B)

for all s ∈ [1,∞] and k ≥ k0 .

If Γ\G is compact then the assertion is trivial. In the case of q = 1 , p ≥ 2
and Γ � G being a lattice, not compact, we will give a proof in the end of
this section using the so-called unbounded realization H of B , which we
will develop in the following. As in the higher rank case Satake’s theorem
and vol Γ\G < ∞ imply that sSk(Γ) is finite dimensional for k ≥ k0 via
lemma 12 of [1] section 10. 2 , see section 1.2 .

So let q = 1 . As in the higher rank case define

n :=
⊕
α∈Φ>0

gα ,

which is a sub Lie algebra of g′ , and N := exp n , which is a nilpotent
sub Lie group of G′ . As in the higher rank case we have an Iwasawa

decomposition

G = KAN = NAK .

Clearly the group N is abelian in the case p = 1 and 2-step-nilpotent in the
case p > 1 . Let N ′ denote the centre of N . Then N ′ = N if p = 1 and
N ′ = [N,N ] if p > 1 .

Now let R ∈ G′C = SL(p+ 1,C) denote the partial Cayley transformation

with respect to the tripotent e1 =

⎛⎝ 1

0

⎞⎠ ← 1

}p− 1
∈ Cp , see the end of

section 1.1 . Via Möbius transformation it maps B biholomorphically onto
the unbounded domain
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H :=

⎧⎨⎩w =

⎛⎝ w1

w2

⎞⎠ ← 1

}p− 1
∈ Cp

∣∣∣∣∣∣ Re w1 >
1
2
w∗

2w2

⎫⎬⎭ ,

R 0 = e1 , and we can compute R explicitely as

R =

⎛⎜⎜⎜⎝
1√
2

0 1√
2

0 1 0

− 1√
2

0 1√
2

⎞⎟⎟⎟⎠
← 1

}p− 1

← p+ 1

.

We see that RG′R−1 � G′C = SL(p+ 1,C) ↪→ GL(p+ 1,C)×GL(r,C) acts
biholomorphically and transitively on H via Möbius transformations, and
R commutes with all g ∈ Z (G′) . Explicit calculations show that

a′t := RatR
−1 =

⎛⎜⎜⎜⎝
et 0 0

0 1 0

0 0 e−t

⎞⎟⎟⎟⎠
← 1

}p− 1

← p+ 1

for all t ∈ IR , RNR−1 is the image of

IR× Cp−1 → RG′R−1 , (λ,u) �→ n′λ,u :=

⎛⎜⎜⎜⎝
1 u∗ iλ+ 1

2u
∗u

0 1 u

0 0 1

⎞⎟⎟⎟⎠ ,

which is a C∞-diffeomorphism onto its image, with the multiplication rule

n′λ,un
′
µ,v = n′λ+µ+Im (u∗v),u+v

for all λ, µ ∈ IR and u,v ∈ Cp−1 and acting on H as pseudo translations

w �→

⎛⎝ w1 + u∗w2 + iλ+ 1
2u

∗u

w2 + u

⎞⎠ ,

and RN ′R−1 is the image of the Lie group embedding

IR→ RG′R−1 , λ �→ n′λ,0

acting on H as translations w �→ w + iλe1 .

Define j (R,♦) ∈ O(B) as j (R, z) =
√

2
1−z1 for all z ∈ B and

j
(
R−1,♦

)
∈ O(H) as j

(
R−1,w

)
:= j

(
R,R−1w

)−1 =
√

2
1+w1

for all w ∈ H ,
and for all g ∈ RGR−1 define j (g,♦) ∈ O(H) as

j (g,w) = j
(
R,R−1gw

)
j
(
R−1gR,R−1w

)
j
(
R−1,w

)
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for all w ∈ H . Then j remains a cocycle in the sense that for all
g, h ∈ RGR−1

j (gh,w) = j (g, hw) j (h,w) ,

and for all g =

⎛⎜⎜⎜⎝
A b

c d
0

0 E

⎞⎟⎟⎟⎠ ∈ RGR−1 an explicit computation of

j (g,♦) gives

j (g,w) =
1

cw + d

for all w ∈ H . Define the complex super domain H as H := H |r,r . Then
we have a right action of the group RGR−1 on D(H) given by

|g : D(H)→ D(H) , f �→ f

⎛⎝g
⎛⎝ ♦

ϑ

⎞⎠⎞⎠ j (g,♦)k

for all g ∈ RGR−1 , which is clearly holomorphic in the sense that if
f ∈ O(H) then f |g ∈ O(H) too. If we define

|R : D(H)→ D(B) , f �→ f

⎛⎝R
⎛⎝ ♦

ϑ

⎞⎠⎞⎠ j (R,♦)k

and

|R−1 : D(B)→ D(H) , f �→ f

⎛⎝R−1

⎛⎝ ♦
ϑ

⎞⎠⎞⎠ j
(
R−1,♦

)k
,

then we see that again if f ∈ O(H) then f |R ∈ O(B) , and if f ∈ O(B)
then f |R−1 ∈ O(H) . |R and |R−1 are clearly invers to each other, and for
all g ∈ G

D(H)
|RgR−1

−→ D(H)

|R ↓ % ↓ |R
D(B) −→

|g
D(B)

.

Now define the sesqui polynomial ∆′ on H × H , holomorphic in the first
and antiholomorphic in the second variable, as

∆′ (z,w) := ∆
(
R−1z, R−1w

)
j
(
R−1, z

)−1
j (R−1,w)

−1
= z1 + w1 −w∗

2 z2

for all z,w ∈ H . Clearly
∣∣det (z �→ Rz)′

∣∣ = |j (R, z)|p+1 for all z ∈ B . So
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∣∣det (w �→ gw)′
∣∣ = |j (R,w)|p+1 ,

|j (g, e1)| = ∆′ (ge1, ge1)
1
2

for all g ∈ RGR−1 and ∆′ (w,w)−(p+1) dVLeb is the RGR−1 -invariant vol-
ume element on H . If f =

∑
I,J∈℘(q) fIJζ

Iζ
J ∈ D(B) , all fIJ ∈ C∞(B)C ,

I, J ∈ ℘(q) , then

f |R−1 =
∑

I,J∈℘(q)

fIJ
(
R−1♦

)
j
(
R−1,♦

)k+|I|+|J |
ϑIϑ

J ∈ D(B) ,

and if f =
∑

I,J∈℘(q) fIJϑ
Iϑ

J ∈ D(H) , all fIJ ∈ C∞(H)C , I, J ∈ ℘(q) , and

g =

⎛⎝ ∗ 0

0 E

⎞⎠ ∈ RGR−1 , E ∈ U(r) , then

f |g =
∑

I,J∈℘(q)

fIJ (g♦) j (g,♦)k+|I|+|J | (Eϑ)I
(
Eζ
)J ∈ D(H) .

Let ∂H =
{
w ∈ Cp

∣∣Re w1 = 1
2w

∗
2w
}

be the boundary of H in Cp . Then
∆′ and ∂H are RNR−1 -invariant, and RNR−1 acts transitively on ∂H and
on each

{
w ∈ H

∣∣∆′ (w,w) = e2t
}

= RNat0 ,

t ∈ IR .
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Figure 3.1: the geometry of H .

All geodesics in H can be written in the form

IR→ H , t �→ wt := Rgat0 = RgR−1a′te1

with some g ∈ G , and conversely all these curves are geodesics in H . We
have to distinguish two cases: Either the goedesic connects ∞ with a point
in ∂H , or it connects two points in ∂H . In the second case we have

lim
t→±∞∆′ (wt,wt) = 0 ,

so we may assume without loss of generality that ∆′ (wt,wt) is maximal for
t = 0 , otherwise we have to reparametrize the geodesic using gaT , T ∈ IR
appropiately chosen, instead of g .

Lemma 3.12

(i) Let

IR→ H , t �→ wt := Rgat0 = RgR−1a′te1

be a geodesic in H such that limt→∞ wt = ∞ and limt→−∞ ∈ ∂H with
respect to the euclidian metric on Cp . Then for all t ∈ IR

∆′ (wt,wt) = e2t∆′ (w0,w0) ,
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and if instead limt→−∞ wt =∞ and limt→∞ ∈ ∂H then

∆′ (wt,wt) = e−2t∆′ (w0,w0) .

(ii) Let

IR→ H , t �→ wt := Rgat0 = RgR−1a′te1

be a geodesic in H connecting two points in ∂H such that ∆′ (wt,wt) is
maximal for t = 0 . Then

IR→ IR>0 , t �→ ∆′ (wt,wt)

is strictly increasing on IR≤0 and strictly decreasing on IR≥0 , and for all
t ∈ IR

∆′ (w−t,w−t) = ∆′ (wt,wt)

and

e−2|t|∆′ (w0,w0) ≤ ∆′ (wt,wt) ≤ 4e−2|t|∆′ (w0,w0) .

Proof: (i) Since RNR−1 acts transitively on ∂H and ∆′ is RNR−1 -invariant
we can assume without loss of generality that the geodesic connects 0 and
∞ . But in H a geodesic is uniquely determined up to reparametrization by
its endpoints. So we see that in the first case

wt = a′txe1 = e2txe1

and in the second case

wt = a′−txe1 = e−2txe1

both with an appropriately chosen x ∈ IR>0 . �

(ii) Let u, y ∈ IR and s ∈ Cp−1 such that y2 + s∗s = 1 . Then

IR→ H , t �→ w(u,y,s)
t :=

eu

1 + y2tanh 2t

⎛⎝ eu
(
1− y2tanh 2t+ 2iytanh t

)
√

2 tanh t (1 + iytanh t) s

⎞⎠
is the geodesic through e2ue1 in H since it is the image of the standard
geodesic

IR→ B , t �→ at0 =

⎛⎝ tanh t

0

⎞⎠
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in B under the transformation

a′u

︸ ︷︷ ︸
∈RAR−1�RG′R−1

R

⎛⎜⎜⎜⎝
iy −s∗ 0

s −iy 0

0 0 1

⎞⎟⎟⎟⎠
︸ ︷︷ ︸

∈K′�G′

.

So we see that ∂tw
(u,y,s)
t

∣∣∣
t=0

=

⎛⎝ 2ie2uy
√

2 eus

⎞⎠ ∈ Te2ue1
H is a unit vector

with respect to RGR−1 -invariant metric on H .

Now since RNR−1 acts transitively on each

{
w ∈ H

∣∣∆′ (w,w) = e2t
}

= RNat0 ,

t ∈ IR , and ∆′ is invariant under RNR−1 we may assume without loss of
generality that w0 = e2ue1 with an appropriate u ∈ IR . Since ∆′ (wt,wt)
is maximal for t = 0 we know that ∂twt|t=0 is a unit vector in
iIR⊕Cp−1 � Te1H , and therefore there exist y ∈ IR and s ∈ Cp−1 such that

y2 + s∗s = 1 and ∂twt|t=0 =

⎛⎝ 2ie2uy
√

2 eus

⎞⎠ . Since the geodesic is uniquely

determined by w0 and ∂twt|t=0 we see that wt = w(u,y,s)
t for all t ∈ IR , and

so a straight forward calculation shows that

∆′ (wt,wt) = 2e2u
1− tanh 2t

1 + y2tanh 2t

=
8e2u

(1 + y2) (e2t + e−2t) + 2s∗s
.

The rest is an easy exercise using y2 + s∗s = 1 . �

For all t ∈ IR and η ⊂ N define A<t := {aτ | τ < t} ⊂ A and
A>t := {aτ | τ > t} ⊂ A .

Theorem 3.13 (a ’fundamental domain’ for Γ\G ) If Γ\G is not
compact then there exist η ⊂ N open and relatively compact , t0 ∈ IR and
Ξ ⊂ G′ finite such that if we define

Ω :=
⋃
g∈Ξ

gηA>t0K

then
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(i) g−1Γg ∩ NZ (G′) � NZ (G′) and g−1Γg ∩ N ′Z (G′) � N ′Z (G′) are lat-
tices, and

NZ
(
G′) =

(
g−1Γg ∩NZ

(
G′)) ηZ (G′)

for all g ∈ Ξ ,

(ii) G = ΓΩ ,

(iii) the set {γ ∈ Γ | γΩ ∩ Ω �= ∅} is finite.

Proof: We use theorem 0.6 (i) - (iii) of [6] , which says the following:

Let Γ′ ⊂ G′ be an admissible discrete subgroup of G′ . Then
there exists t′0 > 0 , an open, relatively compact subset η0 ⊂ N+ ,
a finite set Ξ ⊂ G′ , and an open, relatively compact subset Ω′

of G′ ( Ξ being empty if G′/Γ′ is compact, and Ω′ being empty
if G′/Γ′ is non-compact) such that

(i) For all b ∈ Ξ , Γ ∩ b−1N+b is a lattice in b−1N+b .

(ii) For all t > t′0 and for all open, relatively compact subsets η
of N+ such that η ⊃ η0 , if

Ω′
t,η = Ω′ ∪

(⋃
b∈Ξ

σt,ηb

)
,

then Ω′
t,ηΓ

′ = G′ , and

(iii) the set
{
γ′ ∈ Γ′ , Ω′

t,ηγ
′ ∩ Ω′

t,η �= ∅
}

is finite.

Hereby G′ is a connected semisimple Lie group of real rank 1 , N+ = N is
the standard nilpotent sub Lie group of G′ and σt,η := K ′A<tη for all t > 0
and η ⊂ N+ open and relatively compact, where A denotes the standard
maximal non-compact abelian and K ′ the standard maximal compact sub
Lie group of G′ . Admissibility is a geometric property of the quotient
Γ′\G′/K ′ , roughly speaking Γ′ is called admissible if and only if Γ′\G′/K ′

has only finitely many cusps.

Let us apply theorem 0.6 (i) - (iii) of [6] with G′ = SU(p, q) ↪→ G and

Γ′ :=
{
γ′ ∈ G′ ∣∣ there exists w ∈ Z

(
G′) such that γ′w ∈ Γ

}
� G′ ,

which of course is again a lattice such that Γ′\G′ is not compact and so it
is admissible in the sense of [6] by theorem 0.7 of [6] . By lemma 3.18 of [6]
g−1Γ′g ∩ N ′ � N ′ is a lattice, and by lemma 3.16 of [6] applied with any
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ρ ∈ Γ′ ∩N ′ \ {1} tells us that
(
g−1Γ′g ∩N

)∖
N is compact. So we see that

there exist t0 ∈ IR , η ⊂ N open and relatively compact and Ξ ⊂ G′ finite
such that for all g ∈ Ξ

Γ′ ∩ gNg−1 � gNg−1

is a lattice, Γ′Ω′ = G′ if we define Ω′ =
⋃
b∈Ξ bηA<t0K

′ and

∆ :=
{
γ′ ∈ Γ′ ∣∣ γ′Ω′ ∩ Ω′ �= ∅

}
is finite.
(i) and (ii) : now trivial by definition of Γ′ � G′ . �

(iii) : Let γ = γ′w ∈ Γ , γ′ ∈ Γ′ , w ∈ Z (G′) , such that γΩ ∩Ω �= ∅ . Then

γ′Ω′Z
(
G′) ∩ Ω′Z

(
G′) �= ∅ .

Since Z (G′) ∩ G′ � K ′ and Ω′ is right-K ′-invariant we have γ′Ω′ ∩ Ω′ �= ∅
as well and therefore γ′ ∈ ∆ . Conversely γ′Z (G′) is compact and therefore
Γ ∩ γ′Z (G′) is finite for all γ′ ∈ Γ′ . �

Corollary 3.14 Assume Γ\G is not compact, and let t0 ∈ IR , η ⊂ N and
Ξ ⊂ G be given by theorem 3.13 . Let h ∈ C (Γ\G)C and s ∈ ] 0,∞ ] . Then
h ∈ Ls (Γ\G) if and only if h (g♦) ∈ Ls (ηA>t0K) for all g ∈ Ξ .

Proof: If s =∞ then it is evident since G = ΓΩ by theorem 3.13 (ii) . Now
assume s ∈ IR>0 , and assume h ∈ Ls (Γ\G) .

S := |{γ ∈ Γ | γΩ ∩ Ω �= ∅}| <∞

by theorem 3.13 (iii) . Then for all g ∈ Ξ we have∫
ηA>t0K

|h (g♦)|s =
∫
gηA>t0K

|h|s ≤
∫

Ω
|h|s ≤ S

∫
Γ\G
|h|s <∞ .

Conversely assume h (g♦) ∈ Ls (ηA>t0K) for all g ∈ Ξ . Then since G = ΓΩ
by theorem 3.13 (ii) we obtain∫

Γ\G
|h|s ≤

∫
Ω
|h|s ≤

∑
g∈Ξ

∫
ηA>t0K

|h (g♦)|s <∞ .�

Assume again Γ\G is not compact, and let f ∈ sMk(Γ) and g ∈ Ξ . Then we
can decompose f |g|R−1 =

∑
I∈℘(r) qIϑ

I ∈ O(H) , all qI ∈ O(H) , I ∈ ℘(r) ,
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and by theorem 3.13 (i) we know that g−1Γg ∩ N ′Z (G′) �� Z (G′) . So let
n ∈ g−1Γg ∩N ′Z (G′) \ Z (G′) ,

RnR−1 = n′λ0,0

⎛⎝ ε1 0

0 E

⎞⎠ ,

λ0 ∈ IR \ {0} , ε ∈ U(1) , E ∈ U(r) , εp+1 = detE .
j
(
RnR−1

)
:= j

(
RnR−1,w

)
= ε−1 ∈ U(1) is independent of w ∈ H .

So there exists χ ∈ IR such that j
(
RnR−1

)
= e2πiχ . Without loss of

generality we can assume that E is diagonal, otherwise conjugate n with an
appropriate element of Z (G′) . So there exists D ∈ IRr×r diagonal such that

E = exp (2πiD) . If D =

⎛⎜⎜⎜⎝
d1 0

. . .

0 dr

⎞⎟⎟⎟⎠ and I ∈ ℘(r) then we define

trI D :=
∑

j∈I dj .

Theorem 3.15 (Fourier expansion of f |g|R−1 )

(i) There exist unique cI,m ∈ O
(
Cp−1

)
, I ∈ ℘(r) ,

m ∈ 1
λ0

(Z− trID − (k + |I|)χ) , such that

qI (w) =
∑

m∈ 1
λ0

(Z−trID−(k+|I|)χ)

cI,m (w2) e2πmw1

for all w ∈ H and I ∈ ℘(r) , and so

f |g|R−1 (w) =
∑
I∈℘(r)

∑
m∈ 1

λ0
(Z−trID−(k+|I|)χ)

cI,m (w2) e2πmw1ϑI

for all w =

⎛⎝ w1

w2

⎞⎠ ← 1

}p− 1
∈ H , where the convergence is absolute and

compact.

(ii) Assume p ≥ 2 . Then cI,m = 0 for all I ∈ ℘(r) and
m ∈ 1

λ0
(Z− trID − (k + |I|)χ) ∩ IR>0 (this is a super analogon for

Koecher’s principle, see for example in section 11.5 of [1] ) , and if
trID + (k + |I|)χ ∈ Z then cI,0 is a constant.

(iii) Assume again p ≥ 2 , and let I ∈ ℘(r) and s ∈ [ 1,∞ ] . If
trID + (k + |I|)χ �∈ Z then

qI∆′ (w,w)
k+|I|

2 ∈ Ls (RηA>t00)

with respect to the RGR−1 -invariant measure ∆′ (w,w)−(p+1) dVLeb on H .
If trID + (k + |I|)χ ∈ Z and k ≥ 2p− |I| then
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qI∆′ (w,w)
k+|I|

2 ∈ Ls (RηA>t00)

with respect to the RGR−1 -invariant measure on H if and only if cI,0 = 0 .

Proof: (i) f |g is g−1Γg invariant, so we see that for all w ∈ H

∑
I∈℘(r)

qI (w)ϑI = f |g|R−1 (w)

= f |g|n
∣∣
R−1 (w)

=
∑
I∈℘(r)

qI (w + iλ0e1)
(
Eϑj

(
RnR−1

))I
j
(
RnR−1

)k
=

∑
I∈℘(r)

qI (w + iλ0e1) e2πi(trID+(k+|I|)χ)ϑI .

Therefore for all I ∈ ℘(r)

qI = qI (♦+ iλ0e1) e2πi(trID+(k+|I|)χ) .

Let I ∈ ℘(r) . Then h ∈ O(H) given by

h (w) := qI (w) e−2πi 1
λ0

(trID+(k+|I|)χ)w1

for all w ∈ H is iλ0e1 periodic, and therefore there exists ĥ holomorphic on

Ĥ :=

⎧⎨⎩z =

⎛⎝ z1

z2

⎞⎠ ← 1

}p− 1

∣∣∣∣∣∣ |z1| > e
π

λ0
z∗2z2

⎫⎬⎭
such that for all w ∈ H

h (w) = ĥ

⎛⎝ e
2π
λ w1

w2

⎞⎠ .

Laurent expansion now tells us that there exist am,l ∈ C , m′ ∈ Z ,
l ∈ INp−1 , such that

ĥ (z) =
∑
m′∈Z

∑
l∈INp−1

am′,lz
m′
1 zl

2

for all z =

⎛⎝ z1

z2

⎞⎠ ← 1

}p− 1
∈ Ĥ , where the convergence is absolute and

compact. Now let us define dm′ ∈ O
(
Cp−1

)
as

dm′ (z) :=
∑

l∈INp−1

am′,lzl
2 ,
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m′ ∈ Z . Then for all w ∈ H

qI (w) e−
2πi
λ0

(trID+(k+|I|)χ)w1 = h (w) =
∑
m′∈Z

dm′ (w2) e
2π
λ0
m′w1 .

So taking cm := dλ0m+trID+(k+|I|)χ , m ∈ 1
λ0

(Z− trID − (k + |I|)χ) , gives
the desired result. Uniqueness follows from standard Fourier theory. �

(ii) Step I Show that all qI , I ∈ ℘(r) , are bounded on
RN0 = {w ∈ H | ∆′ (w,w) = 2} .

Obviously all qI , I ∈ ℘(r) , are bounded on Rη0 since Rη0 is relatively
compact in H . Let C ≥ 0 such that |qI | ≤ C on Rη0 for all I ∈ ℘(r) . By
theorem 3.13

RN0 = R
(
g−1Γg ∩NZ

(
G′)) η0 .

So let Rn′R−1 = n′λ′,u

⎛⎝ ε′1 0

0 E′

⎞⎠ ∈ g−1Γg∩NZ (G′) , λ′ ∈ IR , u ∈ Cp−1 ,

ε′ ∈ U(1) and E′ ∈ (r) . Then again

j
(
Rn′R−1

)
:= j

(
Rn′R−1,w

)
= ε′−1 ∈ U(1)

is independent of w ∈ H .

∑
I∈℘

qIϑ
I = f |g|R−1

= f |g|n′
∣∣
R−1

=
∑
I∈℘(r)

qI
(
Rn′R−1♦

) (
E′ϑ
)I
ε′k+|I| .

Λ (Cr)→ Λ (Cr) , ϑI �→ (E′ϑ)I ε′k+|I| is unitary, therefore

|qI | ≤ 2r
∣∣qI (Rn′R−1♦

)∣∣ .
We see that |qI | ≤ 2rC on RN0 .

Step II Show that

∣∣cI,m (w2) e2πmw1
∣∣ ≤ ||qI ||∞,RN0

on RN0 for all I ∈ ℘(r) and m ∈ 1
λ0

(Z− trID − (k + |I|)χ) .

Let I ∈ ℘(r) and m ∈ 1
λ0

(Z− trID − (k + |I|)χ) . By classical Fourier

analysis
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cI,m (w2) e2πmw1 =
1
λ0

∫ λ0

0
qI (w + iλe1) e−2πimλ

for all w ∈ H , and since w + iλe1 = n′λ,0w ∈ RNR−1w the claim follows.

Step III Conclusion.

Let I ∈ ℘(r) and m ∈ 1
λ0

(Z− trID − (k + |I|)χ) . Let u ∈ Cp−1 be arbi-
trary. Then ⎛⎝ 1 + 1

2u
∗u

u

⎞⎠ ∈ RN0 ,

and so

|cI,m (u)| ≤ ||qI ||∞,RN0 e
−πmu∗u .

Now the assertion follows by Liouville’s theorem . �

(iii) Let

η′ :=

⎧⎨⎩(iy,u) ∈ iIR⊕ Cp−1

∣∣∣∣∣∣
⎛⎝ 1 + 1

2u
∗u + iy

u

⎞⎠ ∈ Rη0
⎫⎬⎭

be the projection of Rη0 onto iIR⊕Cp−1 in direction of Re w1 ∈ IR . Then

Ψ : IR>e2t0 × η′ → RηA>t00 , (x, iy,u) �→

⎛⎝ x+ 1
2u

∗u + iy

u

⎞⎠
is a C∞-diffeomorphism with determinant 1 , and

∆′ (Ψ (x, iy,u) ,Ψ (x, iy,u)) = 2x

for all (x, iy,u) ∈ IR>e2t0 × η′ . So

qI∆′ (w,w)
k+|I|

2 ∈ Ls (RηA>t00)

with respect to the measure ∆′ (w,w)−(p+1) dVLeb if and only if

(qI ◦Ψ)x
k+|I|

2 ∈ Ls
(
IR>e2t0 × η′

)
with respect to the measure x−(p+1)dVLeb .

Now assume either trID + (k + |I|)χ �∈ Z or trID + (k + |I|)χ ∈ Z and
cI,0 �= 0 . Then in both cases by (ii) we can write
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qI (w) =
∑

m∈ 1
λ0

(Z−trID−(k+|I|)χ)∩IR<0

cI,m (w2) e2πmw1

for all w ∈ H , where the sum converges absolutely and uniformly on com-
pact subsets of H . Since Rηat00 ⊂ H is relatively compact we can define

C ′′ := e−2πM0e2t0
∑

m∈ 1
λ0

(Z−trID−(k+|I|)χ)∩IR<0

∣∣∣∣cI,m (w2) e2πmw1
∣∣∣∣
∞,Rηat00

<∞ .

If we define in addition

M0 := max
1
λ0

(Z− trID − (k + |I|)χ) ∩ IR<0 < 0

then we see that

|qI (w)| ≤ C ′′eπM0∆′(w,w)

for all w ∈ RηA>t00 , so

|qI ◦Ψ| ≤ C ′′e2πM0x ,

and so x
k+|I|

2 (qI ◦Ψ) ∈ Ls (IR>e2t0 × η′) with respect to the measure
x−(p+1)dVLeb .

Conversely assume trID+ (k + |I|)χ ∈ Z , k ≥ 2p− |I| and cI,0 �= 0 . Then
as before we have the estimate∣∣∣∣∣∣∣

∑
m∈ 1

λ0
IN\{0}

cI,m (w2) e2πmw1

∣∣∣∣∣∣∣ ≤ C ′′e−π∆′(w,w)

for all w ∈ RηA>t00 if we define

C ′′ := e2πe
2t0

∑
m∈ 1

λ0
(Z−trID−(k+|I|)χ)∩IR<0

∣∣∣∣cI,m (w2) e2πmw1
∣∣∣∣
∞,Rηat00

<∞ .

Therefore there exists S ∈ IR≥0 such that∣∣∣∣∣∣∣
∑

m∈ 1
λ0

IN\{0}
cI,m (w2) e2πmw1

∣∣∣∣∣∣∣ ≤
1
2
|cI,0|

and therefore |qI (w)| ≥ 1
2 |cI,0| for all w ∈ RηA>t00 such that

∆′ (w,w) ≥ S . So |(qI ◦ Φ) (x, iy,u)| ≥ 1
2 |cI0| for all (x, iy,u) ∈ IR≥S × η′ ,
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and therefore definitely x
k+|I|

2 qI ◦ Φ /∈ Ls (IR>e2t0 × η′) with respect to the
measure x−(p+1)dVLeb . �

Now we prove theorem 3.11 in the case of p ≥ 2 and Γ � G being a lattice,
Γ\G not compact.

Let k ≥ k0 := 2p ∈ IN . Since vol Γ\G < ∞ it suffices to show that
f ∈ sMk(Γ) and f̃ ′ ∈ L1 (Γ\G)⊗Λ (Cr) imply f̃ ′ ∈ L∞ (Γ\G)⊗Λ (Cr) . So
let f ∈ sMk(Γ) such that f̃ ′ ∈ L1 (Γ\G)⊗Λ (Cr) . Let g ∈ Ξ . By corollary
3.14 it is even enough to show that f̃ ′ (g♦) ∈ L∞ (ηA>t0K)⊗ Λ (Cr) .

Let f |g|R−1 =
∑

I∈p(r) qIϑ
I , all qI ∈ O(H) , I ∈ ℘(r) . Then

f |g =
∑
I∈℘(r)

qI (R♦) ζIj (R,♦)k+|I| .

Since by corollary 3.14 f̃ ′ ∈ L1 (ηA>t0K) we conclude that

qI (Rz) j (R, z)k+|I| ∆ (z, z)
k+|I|

2 ∈ L1 (ηA>t00)

with respect to the G-invariant measure on B or equivalently
qI∆′ (w,w)

k+|I|
2 ∈ L1 (RηA>t00) for all I ∈ ℘(r) with respect to

the RGR−1 -invariant measure on H . So by theorem 3.15 (iii)

we see that qI∆′ (w,w)
k+|I|

2 ∈ L∞ (RηA>t00) as well or equivalently

qI (Rz) j (R, z)k+|I| ∆ (z, z)
k+|I|

2 ∈ L∞ (ηA>t00) for all I ∈ ℘(r) . There-
fore

f̃ ′ (g♦) ∈ L∞ (ηA>t0K)⊗ Λ (Cr) .�

3.3 A spanning set for the space of super cusp

forms in the non-parametrized case

Again assume q = 1 . Assume Γ\G compact or p ≥ 2 and vol Γ\G < ∞
and k ≥ k0 , where k0 ∈ IN is given by Satake’s theorem, theorem 3.11 .
Let C > 0 . Let us first consider a regular loxodromic γ0 ∈ Γ . Let g ∈ G ,
w0 ∈M and t0 ∈ IR \ {0} such that γ0 = gat0w0g

−1 .

There exists a torus T := 〈γ0〉\ gAM belonging to γ0 . As in the higher
rank case, chapter 1 , one can prove that T is independent of g up to right
translation with an element of the Weyl group W = NK(A)/M using
theorem 3.10 .
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Let f ∈ sSk (Γ) . Then f̃ ′ ∈ C∞ (Γ\G)C ⊗ Λ (Cr) . Define
h ∈ C∞ (IR×M)C ⊗ Λ (Cr) as

h (t, w) := f̃ ′ (gatw)

for all (t, w) ∈ IR ×M . Then clearly h (t, w) = j(w)kh (t, 1, Eηj(w)) , and
so h (t, w) = j(w)k+µh (t, 1, Eη) if f ∈ sS

(µ)
k (Γ) for all (t, w) ∈ IR ×M ,

w =

⎛⎝ ∗ 0

0 E

⎞⎠ , E ∈ U(r) . Clearly w0 =

⎛⎝ ∗ 0

0 E0

⎞⎠ with some

E0 ∈ U(r) . So we can choose g ∈ G such that E0 is diagonal without
changing T . Choose D ∈ IRr×r diagonal such that exp(2πiD) = E0 and
χ ∈ IR such that j (w0) = e2πiχ . D and χ are uniquely defined by w0 up to

Z . If D =

⎛⎜⎜⎜⎝
d1 0

. . .

0 dr

⎞⎟⎟⎟⎠ with d1 . . . , dr ∈ IR and I ∈ ℘(r) then again

we define trID :=
∑

j∈I dj .

Theorem 3.16 (Fourier expansion of h )

(i) h (t+ t0, w) = h
(
t, w−1

0 w
)

for all (t, w) ∈ IR×M , and there exist unique
bI,m ∈ C , I ∈ ℘(r) , m ∈ 1

t0
(Z− (k + |I|)χ− trID) , such that

h (t, w) =
∑
I∈℘(r)

j(w)k+|I| ∑
m∈ 1

t0
(Z−(k+|I|)χ−trID)

bI,me
2πimt (Eη)I

for all (t, w) ∈ IR × M , w =

⎛⎝ ∗ 0

0 E

⎞⎠ , E ∈ U(r) , where the sum

converges uniformly in all derivatives.

(ii) If bI,m = 0 for all I ∈ ℘(r) and
m ∈ 1

t0
(Z− (k + |I|)χ− trID)∩ ] − C,C [ then there exists

H ∈ C∞ (IR×M)C⊗Λ (Cr) uniformly Lipshitz continuous with a Lipshitz

constant C2 ≥ 0 independent of γ0 such that

h = ∂tH ,

H (t, w) = j(w)kH (t, 1, Eηj(w))

and

H (t+ t0, w) = H
(
t, w−1

0 w
)

173



for all (t, w) ∈ IR×M , w =

⎛⎝ ∗ 0

0 E

⎞⎠ , E ∈ U(r) .

Proof: (i) Let t ∈ IR and w ∈M . Then

h (t+ t0, w) = f̃ ′ (at0atw) = f̃ ′
(
γ0w

−1
0 atw

)
= f̃ ′

(
atw

−1
0 w

)
= h

(
t, w−1

0 w
)
,

and so

h (t+ t0, 1) = h
(
t, w−1

0

)
= j (w0)

−k h
(
t, 1, E−1

0 ηj (w0)
−1
)

= j (w0)
−k ∑

I∈℘(r)

h (t, 1) e−2πitrIDηIj (w0)
−|I|

=
∑
I∈℘(r)

e−2πi((k+|I|)χ+trID)hI(t, 1)ηI .

Therefore hI (t+ t0, 1) = e−2πi((k+|I|)χ+trID)hI(t, 1) for all I ∈ ℘(r) , and
the rest follows by standard Fourier expansion. �

(ii) Let bI,m = 0 for all I ∈ ℘(r) and
m ∈ 1

t0
(Z− (k + |I|)χ− trID)∩ ] − C,C [ , and fix I ∈ ℘(r) . Then

hI(♦, 1) =
∑

m∈ 1
t0

(Z−(k+|I|)χ−trID)∩ ]−C,C [

bI,me
2πim♦ ,

and so we can apply the generalized reverse Bernstein inequality, theorem
1.30 , to hI with q = 1 , Λ := t0Z � IR lattice,
χ := (k + |I|)χ+ trID ∈ IR∗ = IR and v′ = 1 . Therefore we can define

H ′
I := ̂hI (♦, 1) =

∑
m∈ 1

t0
(Z−(k+|I|)χ−trID)∩ ]−C,C [

bI,m
2πim

e2πim♦ ∈ C∞ (IR)C .

By Satake’s theorem , theorem 3.11 , since f ∈ sSk(Γ) ,∣∣∣f̃ ′∣∣∣ ∈ L∞(G) , and so there exists a constant C ′ > 0 independent of γ0 such
that ||hI ||∞ < C ′ for all I ∈ ℘(r) , and now theorem 1.30 tells us that

∣∣∣∣H ′
I

∣∣∣∣
∞ ≤

6
πC
||h (♦, 1)||∞ ≤

6C ′

πC
.

Clearly hI (♦, 1) = ∂tH
′
I .
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Since j is smooth on the compact set M , all jk+|I| (Eη)I , I ∈ ℘(r) , are
uniformly Lipshitz continuous on M with a common Lipshitz constant C ′′

independent of γ0 . So we see that H ∈ C∞(IR,M)C ⊗ Λ (Cr) defined as

H(t, w) :=
∑
I∈℘(r)

j(w)k+|I|H ′
I(t) (Eη)I

for all (t, w) ∈ IR × M is uniformly Lipshitz continuous with Lipshitz

constant C2 :=
(

6C′′
πC + 1

)
C ′ independent of γ0 , and the rest is trivial. �

Let I ∈ ℘(r) and m ∈ 1
t0

(Z− (k + |I|)χ− trID) . Since sSk (Γ) is a
Hilbert space and sSk (Γ) → C , f �→ bI,m is linear and continuous there
exists exactly one ϕγ0,I,m ∈ sSk (Γ) such that bI,m = (ϕγ0,I,m, f) for all
f ∈ sSk(Γ) .

Clearly having g fixed, the family

{ϕγ0,I,m}I∈℘(r) ,m∈ 1
t0

(Z−(k+|I|)χ−trID)∩ ]−C,C [

is independent of the choice of D and χ , but even independent of the choice
of g ∈ G itself up to multiplication with a unitary matrix with entries in C

and invariant under conjugating γ0 with elements of Γ . Let us check it.

Let g′ ∈ G , t′0 ∈ IR and w′
0 =

⎛⎝ ∗ 0

0 E′
0

⎞⎠ ∈ M , E′
0 ∈ U(r)

diagonal, such that also γ0 = g′at′0w
′
0g

′−1 . Then by theorem

3.10 there exist T ∈ IR and n =

⎛⎝ ∗ 0

0 En

⎞⎠ ∈ NK(A) ,

En ∈ U(r) , such that g′ = gaTn . Then at′0 = n−1at0n , and so
t′0 = t0 if n ∈M and t′0 = −t0 if n /∈M , w′

0 = w−1
n w0wn , and so

E′
0 = E−1

n E0En . j (w′
0) = j (w0) = e2πiχ , and E′

0 = exp (2πiD′)
if we define D′ := E−1

n DEn . Without loss of generality we
may assume that two diagonal elements of D are equal if the
corresponding diagonal elements of E0 are equal. Then D′ is
again diagonal. Let h′ ∈ C∞ (IR×M)C ⊗ Λ (Cr) be given by
h′(t, w) := f̃ ′ (g′atw) for all t ∈ IR and w ∈M . Then

h′ (t, 1) = f̃ ′ (gaTnat)

= f̃ ′ (gaTat′n)

= j (n)k f̃ ′ (gat′+T, Enηj(n))

= j (n)k h
(
t′ + T, 1, Enηj(n)

)
,
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where we obtain t′ by transforming t with the element nM ∈W ,
so t′ = t if n ∈M and t′ = −t if n /∈M . If we decompose

h′ (t, w) =
∑
I∈℘(r)

j(w)k+|I| ∑
m∈ 1

t′0
(Z−(k+|I|)χ−trID′)

b′I,me
2πimt (Eη)I

for all (t, w) ∈ IR×M , all b′l,m ∈ C , I ∈ ℘(r) ,
m ∈ 1

t′0
(Z− (k + |I|)χ− trID′) , then we get

∑
I∈℘(r)

∑
m∈ 1

t′0
(Z−(k+|I|)χ−trID′)

b′I,me
2πimtηI

= h′ (t, 1)

= j (n)k h
(
t′ + T, 1, Enηj(n)

)
=
∑
I∈℘(r)

j(n)k+|I| ×

×
∑

m∈ 1
t0

(Z−(k+|I|)χ−trID)

bI,me
2πim(t′+T ) (Enη)

I . (3.2)

Let ϕ′
I,m ∈ sSk(Γ) such that b′I,m =

(
ϕ′
I,m, f

)
for all f ∈ sSk(Γ) ,

I ∈ ℘(r) , m ∈ 1
t′0

(Z− (k + |I|)χ− trID′) .

Without loss of generality we can assume that either
n ∈ NK′(A) \M ′ or n ∈ M itself and T = 0 , since by lemma
3.8 a general aTn is a product of the two types.

In the first case En = 1 , t′0 = −t0 and t′ = −t for all t ∈ IR . So
by equation 3.2 we see that b′I,m′ = j(n)k+|I|e2πiT bI,m for all
m ∈ 1

t0
(Z− (k + |I|)χ− trID) and so

ϕ′
I,m′ = j(n)k+|I|e2πiTϕγ0,I,m , where we obtain m′ by transform-

ing m with nM ∈W , so m′ = −m .

Now let us treat the case n ∈ M and T = 0 . Then t′0 = t0

and t′ = t for all t ∈ IR . Without loss of generality we can
assume that either En is a permutation matrix or En stabilizes
each eigenspace of E0 , again a general En is a product of the two
types since En ∈ U(r) and E′

0 = E−1
n E0En is again diagonal.

In the first case let σ ∈ S(r) such that Enej = eσ(j) for all
j = 1, . . . , r . Then we have (Enηj(n))I = εIη

σ−1(I)j(n)|I| with
some εI ∈ {±1} and trσ−1(I)D

′ = trID for all I ∈ ℘(r) . So
again by equation 3.2 we see that
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b′σ−1(I),m = εIj(n)k+|I|bI,m ,

and so ϕ′
σ−1(I),m = εIj(n)−k−|I|ϕγ0,I,m .

In the second case, where En stabilizes each eigenspace of E0 we
have E′

0 = E0 and therefore D′ = D . Since En ∈ U(r) there
exists a unitary matrix (εIJ)I,J∈℘(r) with entries in C such that

(Enη)
I =

∑
J∈℘(r)

εIJη
J ,

if εIJ �= 0 then |I| = |J | , and since En stabilizes each eigenspace
of D if εIJ �= 0 then trID = trJD . So by equation 3.2

∑
J∈℘(r)

∑
m∈ 1

t0
(Z−(k+|J |)χ−trJD)

b′J,me
2πimtηJ

=
∑
I∈℘(r)

j(n)k+|I| ∑
m∈ 1

t0
(Z−(k+|I|)χ−trID)

bI,me
2πim(t′+T ) (Enη)

I

=
∑

J∈℘(r)

j(n)k+|J | ×

×
∑

m∈ 1
t0

(Z−(k+|J |)χ−trJD)

∑
I∈℘(r)

εIJbI,me
2πimT ηJ ,

so b′J,m = j(n)k+|J |∑
I∈℘(r) εIJbI,m and

ϕ′
J,m = j(n)−k−|J | ∑

I∈℘(r)

εIJϕγ0,I,m .

Now let γ ∈ Γ and γ′0 := γγ0γ
−1 . Then clearly

γ′0 = γgat0w0 (γg)−1 , and so, if we define
h′ ∈ C∞ (IR×M)C ⊗ Λ (Cr) by h′(t, w) := f̃ ′ (γgatw) for all
t ∈ IR and w ∈M , then we get

h′(t, w) = f̃ ′ (γgatw) = h(t, w)

by the left-Γ-invariance of f̃ ′ .

For the rest of the chapter for simplicity we write m ∈ ] − C,C [ instead of
m ∈ 1

t0
(Z− (k + |I|)χ− trID)∩ ] − C,C [ . In the end we will compute

ϕγ0,I,m as a relative Poincaré series.

Now we can state our main theorem: Let Ω be a fundamental set for all
primitive regular loxodromic γ0 ∈ Γ modulo conjugation by elements of Γ .
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Theorem 3.17 (spanning set for sSk (Γ) ) Assume that the right trans-
lation of A on Γ\G is topologically transitive. Then

{ϕγ0,I,m | γ0 ∈ Ω, I ∈ ℘(r),m ∈ ] − C,C [ }

is a spanning set for sSk (Γ) .

Proof: The Lie algebra embedding ρ : sl(2,C) ↪→ g′C of theorem 1.32 in the
higher rank case now has an explicit description:

ρ : sl(2,C) ↪→ g′C = sl(p+ 1,C) ,

⎛⎝ a b

c −a

⎞⎠ �→
⎛⎜⎜⎜⎝

a 0

0 0

b

0

c 0 −a

⎞⎟⎟⎟⎠ .

By theorem 1.32 or by explicit computation one can see that the preimage
of g′ under ρ is su(1, 1) , the preimage of k′ under ρ is s (u(1)⊕ u(1)) � u(1) ,
and ρ lifts to a Lie group homomorphism

ρ̃ : SL(2,C)→ G′C = SL(p+ 1,C) ,

⎛⎝ a b

c d

⎞⎠ �→
⎛⎜⎜⎜⎝

a 0

0 0

b

0

c 0 d

⎞⎟⎟⎟⎠
such that ρ̃ (SU(1, 1)) � G′ .
Let us now identify the elements of g with the corresponding left invariant
differential operators, they are defined on a dense subset of L2 (Γ\G) , and
define

D := ρ

⎛⎝ 0 1

1 0

⎞⎠ ∈ a

D′ := ρ

⎛⎝ 0 i

−i 0

⎞⎠ ∈ g′

φ := ρ

⎛⎝ i 0

0 −i

⎞⎠ ∈ k′ .

We see that a = IRD , and so as left-invariant differential operator D gen-
erates the flow ϕt . Again the IR-linear span of D , D′ and φ is the 3-
dimensional sub Lie algebra ρ (su(1, 1)) of g′ � g , and we have the following
commutation relations:
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[φ,D] = 2D′ ,
[
φ,D′] = −2D ,

[
D,D′] = −2φ .

φ generates a subgroup of K ′ � K , and

IR/2πZ→ K , t �→ exp (tφ) = ρ

⎛⎝ eit 0

0 e−it

⎞⎠
is an isomorphism. Now define

D+ :=
1
2
(
D − iD′) , D− :=

1
2
(
D + iD′) and Ψ := −iφ

as left invariant differential operators on G . Then clearly

[
Ψ,D+

]
= 2D+,

[
Ψ,D−] = −2D− and

[
D+,D−] = Ψ .

As in the higher rank case we see that

(
D+
)∗ = −D−,

(
D−)∗ = −D+ and Ψ∗ = Ψ ,

and so by standard Fourier analysis

L2 (Γ\G) =
⊕̂
ν∈Z

Hν

as an orthogonal sum, where

Hν :=
{
F ∈ L2 (Γ\G) ∩ domain Ψ

∣∣ ΨF = νF
}

for all ν ∈ Z . By a simple calculation we obtain

D+
(
Hν ∩ domain D+

)
⊂ Hν+2 and D− (Hν ∩ domain D−) ⊂ Hν−2

for all ν ∈ Z .

Lemma 3.18 For all h ∈ O(B) � O(B)⊗ Λ (Cr)

D−h̃′ = 0 .

Proof: Let g ∈ G . Then again h|g ∈ O(B) , and h̃′ (g♦) = h̃|g
′
. So

D−h̃′(g) = D−
(
h̃′ (g♦)

)
(1) = ∂1h|g = 0 .�

Lemma 3.19 Let f ∈ sSk(Γ) . Then f̃ ′ is uniformly Lipshitz continuous.
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Proof: similar to the proof in the higher rank case, chapter 1 , using
Satake’s theorem, theorem 3.11 . �

Now let us return to the Lie group G . Choose a left invariant metric on
G such that gα , α ∈ Φ \ {0} , a and m are pairwise orthogonal and the
isomorphism IR � A ⊂ G is even isometric. Then since the flow (ϕt)t∈IR

commutes with left translations it is partially hyperbolic with constant 1 ,
as one sees immediately in the root space decomposition of g . The corre-
sponding splitting of the tangent bundle of G is the unique left invariant
splitting given by

T1G = g = a⊕m

︸ ︷︷ ︸
T 0
1 :=

⊕
⊕

α∈Φ , α>0

gα︸ ︷︷ ︸
T−
1 :=

⊕
⊕

α∈Φ , α<0

gα︸ ︷︷ ︸
T+
1 :=

.

Indeed T 0 ⊕ T+ , T 0 ⊕ T− , T 0 , T+ and T− are closed under the
commutator since [gα, gβ ] ⊂ gα+β if α+β ∈ Φ and [gα, gβ] = 0 otherwise for
all α, β ∈ Φ . So we can apply the partial Anosov closing lemma, theorem
1.21 , which here is again really convenient since G acts transitively and
isometrically on itself by left translations.

As in the higher rank case for all L ⊂ G compact, T, ε > 0 define

ML,T :=
{
gatg

−1
∣∣ g ∈ L, t ∈ [−T, T ]

}
and

NL,T,ε := {g ∈ G |dist (g,ML,T ) ≤ ε} .

Lemma 3.20 For all L ⊂ G compact there exist T0, ε0 > 0 such that
Γ ∩NL,T0,ε0 = {1} .

Proof: same as in the higher rank case, chapter 1 . �

Theorem 3.21

(i) For all T1 > 0 there exist C1 ≥ 1 and ε1 > 0 such that for all x ∈ G ,
γ ∈ Γ and T ≥ T1 if

ε := d (γx, xaT ) ≤ ε1
then there exist z ∈ G , w ∈ M and t ∈ IR \ {0} such that γz = zatw ,
d ((t, w), (T, 1)) ≤ C1ε and for all τ ∈ [ 0, T ]

d (xaτ , zaτ ) ≤ C1ε
(
e−τ + e−(T−τ)

)
.
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(ii) For all L ⊂ G compact there exists ε2 > 0 such that for all x ∈ L , γ ∈ Γ
and T ∈ [ 0, T0 ] , T0 > 0 given by lemma 3.20 , if

ε := d (γx, xaT ) ≤ ε2

then γ = 1 and T ≤ ε .

Proof: same as in the higher rank case. �

Now let f ∈ sSk (Γ) such that (ϕγ0,I,m, f) = 0 for all ϕγ0,I,m , γ0 ∈ Γ
primitive loxodromic, I ∈ ℘(r) , m ∈ ] −C,C [ . We will show that f = 0 in
several steps.

Lemma 3.22 There exists F ∈ C (Γ\G)C uniformly Lipshitz continuous
on compact sets and differentiable along the flow ϕt such that

f = ∂τF (♦aτ )|τ=0 = DF .

Proof: By assumption the right translation with A is topologically transitive
on Γ\G . So there exists g0 ∈ G such that Γg0A ⊂ G is dense. Define
s ∈ C∞ (IR)C ⊗ Λ (Cr) by

s(t) :=
∫ t

0
f̃ ′ (g0aτ ) dτ

for all t ∈ IR .

Step I Show that for all L ⊂ G compact there exist constants C3 ≥ 0
and ε3 > 0 such that for all t ∈ IR , T ≥ 0 and γ ∈ Γ if g0at ∈ L and

ε := d (γg0at, g0at+T ) ≤ ε3

then |s(t)− s(t+ T )| ≤ C3ε .

Let L ⊂ G be compact, T0 > 0 be given by lemma 3.20 and
C1 ≥ 1 and ε1 be given by theorem 3.21 (i) with T1 := T0 . Define
C3 := max

(
C1 (C2 + 2c) ,

∣∣∣∣∣∣f̃ ′∣∣∣∣∣∣
∞

)
≥ 0 , where C2 ≥ 0 is the Lipshitz

constant from theorem 3.16 (ii) and c ≥ 0 is the Lipshitz constant of
f̃ ′ . Define ε3 := min

(
ε1, ε2,

T0
2C1

)
> 0 , where ε2 > 0 is given by theorem

3.21 (ii) .

Let t ∈ IR , T ≥ 0 and γ ∈ Γ such that g0at ∈ L and
ε := d

(
γg0at, g0a

′
t+T

)
≤ ε′ .
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First assume T ≥ T0 . Then by theorem 3.21 (i) since ε ≤ ε1 there exist
g ∈ G , w0 ∈M and t0 ∈ IR \ {0} such that γg = gat0w0 ,
d ((t0, w0) , (T, 1)) ≤ C1ε , and for all τ ∈ [ 0, T ]

d (g0at+τ , gaτ ) ≤ C1ε
(
e−τ + e−(T−τ)

)
.

We get

s(t+ T )− s(t) =
∫ T

0
f̃ ′ (gaτ ) dτ︸ ︷︷ ︸
I1:=

+
∫ T

0

(
f̃ ′ (g0at+τ )− f̃ ′ (gaτ )

)
dτ︸ ︷︷ ︸

I2:=

and by the same calculation as in the proof of lemma 1.36 in the higher
rank case |I2| ≤ 2cC1ε .

Since γ ∈ Γ is regular loxodromic there exists γ0 ∈ Γ primitive loxodromic
and ν ∈ IN\{0} such that γ = γν0 . γ0 ∈ gAWg−1 as well since theorem 3.10
tells us that g ∈ G is already determined by γ up to right translation with
elements of ANK(A) . Choose w′ ∈M such that γ = gw′at′0w

′
0 (gw′)−1 with

t′0 ∈ IR and w′
0 =

⎛⎝ ∗ 0

0 E′
0

⎞⎠ ∈M , E′
0 ∈ U(r) diagonal, and let g′ := gw′ .

We define h ∈ C∞ (IR×M)C ⊗ Λ (Cr) as

h(τ, w) := f̃ ′
(
g′aτw

)
= f̃ ′

(
gaτw

′w
)

for all τ ∈ IR and w ∈M . Then

I1 =
∫ T

0
h
(
τ, w′−1

)
dτ .

We can apply theorem 3.16 (i) and, since f is perpendicular to all ϕγ0,I,m ,
I ∈ ℘(r) , m ∈ ] − C,C [ , 3.16 (ii) as well with g′ := gw′ instead of g , and
so

|I1| =
∣∣H (T,w′−1

)
−H

(
0, w′−1

)∣∣
=

∣∣H (T,w′−1
)
−H

(
t0, w

′−1w0

)∣∣
≤ C2d ((T, 1) , (t0, w0))

≤ C1C2ε ,

where we used that H
(
0, w′−1

)
= H

(
t′0, w′

0w
′−1
)

and that we have chosen
the left invariant metric on M , and the claim follows.
Now assume T ≤ T0 . Then by theorem 3.21 (ii) since ε ≤ ε0 we get T ≤ ε

and so
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|s(t+ T )− s(t)| =
∣∣∣∣∫ T

0
f̃ ′ (g0at+τ ) dτ

∣∣∣∣ ≤ ε ∣∣∣∣∣∣f̃ ′∣∣∣∣∣∣∞ .

Step II Show that there exists a unique F ∈ C (Γ\G)C uniformly
Lipshitz continuous on compact sets such that for all t ∈ IR

s(t) = F (g0at) .

It is the same calculation as in the proof of theorem 1.36 in the higher rank
case.

Step III Show that F is differentiable along the diagonal flow and
that for all g ∈ G

∂τF (gaτ ) |τ=0 = f̃ ′(g) .

again the same calculation as in the proof of theorem 1.36 in the higher
rank case. �

Lemma 3.23

(i) For all L ⊂ G compact there exists ε4 > 0 such that for all g, h ∈ L if g
and h belong to the same T−-leaf and d−(g, h) ≤ ε4 then

lim
t→∞ (F (gat)− F (hat)) = 0 ,

and if g and h belong to the same T+-leaf and d+(g, h) ≤ ε4 then

lim
t→−∞ (F (gat)− F (hat)) = 0 .

(ii) F is continuously differentiable along T−- and T+-leafs, more precisely
if
ρ : I → G is a continuously differentiable curve in a T−-leaf then

∂t (F ◦ ρ) (t) = −
∫ ∞

0
∂tf̃

′ (ρ(t)aτ ) dτ ,

and if ρ : I → G is a continuously differentiable curve in a T+-leaf then

∂t (F ◦ ρ) (t) =
∫ 0

−∞
∂tf̃

′ (ρ(t)aτ ) dτ .
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Proof: (i) Let L ⊂ G be compact, and let L′ ⊂ G be a compact neighbour-
hood of L . Let T0 > 0 be given by lemma 3.20 and ε2 > 0 by theorem 3.21
(ii) both with respect to L′ . Define

ε4 :=
1
3

min
(
ε1, ε2,

T0

2C1

)
> 0 ,

where ε1 > 0 and C1 ≥ 1 are given by theorem 3.21 (i) with T1 := T0 . Let
δ0 > 0 such that Uδ0(L) ⊂ L′ and let

δ ∈ ] 0,min (δ0, ε4) [ .

Let g, h ∈ L in the same T−-leaf such that ε := d−(g, h) ≤ ε4 . Fix some
T ′ > 0 . By assumption there exists g0 ∈ G such that Γg0A ⊂

dense
G . So

there exist γg, γh ∈ Γ and tg, th ∈ IR such that

d
(
gat, γgg0atg+t

)
, d (hat, γhg0ath+t) ≤ δ

for all t ∈ [ 0, T ′ ] , and so especially γgg0atg , γhg0ath ∈ L′ . We show that
for all t ∈ [ 0, T ′ ]

∣∣F (γgg0atg+t

)
− F (γhg0ath+t)

∣∣ ≤ C ′
3

(
εe−t + 2δ

)
with the same constant C ′

3 ≥ 0 as in step I of the proof of lemma 3.22 with
respect to L′ .

Without loss of generality we may assume T := th − tg ≥ 0 .
Define γ := γgγ

−1
h . Then for all t ∈ [ 0, T ′ ]

d
(
γγgg0atg+t, γgg0atg+t+T

)
≤ εe−t + 2δ

by the left invariance of the metric on G .

First assume T ≥ T0 and fix t ∈ [ 0, T ′ ] . Then by theorem 3.21
(i) since εe−t + 2δ ≤ ε + 2δ ≤ min

(
ε1,

T0
2C1

)
there exist z ∈ G ,

t0 ∈ IR and w ∈M such that γz = zat0w ,

d ((t0, w) , (T, 1)) ≤ C1

(
2δ + εe−t

)
,

and for all τ ∈ [ 0, T ]

d
(
γgg0atg+t+τ , zaτ

)
≤ C1

(
εe−t + 2δ

) (
e−τ + e−(T−τ)

)
.
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And so by the same calculations as in the proof of lemma 1.36
we obtain the estimate

∣∣F (γgg0atg+t

)
− F (γgg0ath+t)

∣∣ ≤ C ′
3

(
εe−t + 2δ

)
.

Now assume T ≤ T0 . Then by theorem 3.21 (ii) since
γgg0atg ∈ L′ and ε+ 2δ ≤ ε2 we obtain γ = 1 and so by the left
invariance of the metric on G

d (1, aT ) ≤ εe−T ′
+ 2δ ,

therefore T ≤ εe−T ′
+ 2δ . So as in the proof of lemma 3.22

∣∣F (γgg0atg+t

)
− F (γgg0ath+t)

∣∣ ≤ ∣∣∣∣∣∣f̃ ′∣∣∣∣∣∣
∞

(
εe−T

′
+ 2δ

)
≤ C ′

3

(
εe−t + 2δ

)
.

Since F is left-Γ-invariant we have the desired estimate.

The rest goes exactly as in the higher rank case. �

(ii) same as in the higher rank case. �

Lemma 3.24

(i) F ∈ L2 (Γ\G)⊗ Λ (Cr) ,

(ii) ξF ∈ L2 (Γ\G)⊗ Λ (Cr) for all ξ ∈ IRD ⊕ g ∩ (T+ ⊕ T−) .

Proof: (i) If Γ\G is compact then the assertion is trivial. So assume that
Γ\G is not compact. Since vol (Γ\G) < ∞ it suffices to prove that F is
bounded, and by corollary 3.14 it is even enough to show that F (g♦) is
bounded on NA>t0K for all g ∈ Ξ . So let g ∈ Ξ .

Step I Show that F (g♦) is bounded on Nat0K .

F (g♦) is bounded on ηat0K since ηat0K is relatively compact. On the other
hand F (g♦) is left- g−1Γg -invariant, so it is also bounded on

Nat0K =
(
gΓg−1 ∩NZ

(
G′)) ηat0K

by theorem 3.13 (i) .
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Step II Show that there exists C ′ ≥ 0 such that for all g′ ∈ NA>t0K∣∣∣f̃ ′ (gg′)∣∣∣ ≤ C ′

∆′ (Rg′0, Rg′0)
.

As in section 3.2 let qI ∈ O(H) such that f |g|R−1 =
∑

I∈℘(r) qIϑ
I . Then

since f̃ ′ (g♦) ∈ L2 (ηA>t0K) ⊗ Λ (Cr) by theorem 3.15 we have Fourier

expansions

qI (w) =
∑

m∈ 1
λ0

(Z−trID−(k+|I|)χ)∩IR<0

cI,m (w2) e2πmw1 (3.3)

for all I ∈ ℘(I) and w =

⎛⎝ w1

w2

⎞⎠ ← 1

}p− 1
∈ H , where cI,m ∈ O

(
Cp−1

)
,

I ∈ ℘(r) , m ∈ 1
λ0

(z− trID − (k + |I|)χ) ∩ IR<0 . Define

M0 := max
⋃

I∈℘(r)

1
λ0

(Z− trID − (k + |I|)χ) ∩ IR<0 < 0 .

Rηat00 ⊂ H is relatively compact, and so since the convergence of the
Fourier series 3.3 is absolute and compact we can define

C ′′ := e−2πM0e2t0 ×
× max
I∈℘(r)

∑
m∈ 1

λ0
(Z−trID−(k+|I|)χ)∩IR<0

∣∣∣∣cI,m (w2) e2πmw1
∣∣∣∣
∞,Rηat00

<∞ .

Then we have

|qI (w)| ≤ C ′′eπM0∆′(w,w)

for all I ∈ ℘(r) and w ∈ RηA>t00 . Now let g′ =

⎛⎝ ∗ 0

0 E′

⎞⎠ ∈ ηA>0K ,

E′ ∈ U(r) . Then

f̃ ′
(
gg′
)

= f |g|R−1

∣∣
RgR−1 (e1)

= f |g|R−1

⎛⎝Rg′R−1

⎛⎝ e1

η

⎞⎠⎞⎠ j
(
Rg′R−1, e1

)k
= f |g|R−1

⎛⎝ Rg′0

Eηj
(
Rg′R−1

)
⎞⎠ j

(
Rg′R−1, e1

)k
=

∑
I∈℘(r)

qI
(
Rg′0

)
(Eη)I j

(
Rg′R−1, e1

)k+|I|
.
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Therefore since
∣∣j (Rg′R−1, e1

)∣∣ =√∆′ (Rg′0, Rg′0) we get

∣∣∣f̃ ′ (gg′)∣∣∣ ≤ 2rC ′′eπM0∆′(Rg′0,Rg′0) ×

×
(

∆′ (Rg′0, Rg′0) k
2 + ∆′ (Rg′0, Rg′0) k+r

2

)
.

So we see that there exists C ′ > 0 such that∣∣∣f̃ ′ (gg′)∣∣∣ ≤ C ′

∆′ (Rg′0, Rg′0)

for all g′ ∈ ηA>t0K , but on one hand f̃ ′ (g♦) is left- g−1Γg -invariant, and
on the other hand ∆′ is RNZ (G′)R−1 -invariant. Therefore the estimate is
correct even for all

g′ ∈ NA>t0K =
(
gΓg−1 ∩NZ

(
G′)) ηA>t0K

by theorem 3.13 (i) .

Step III Conclusion: Prove that

|F (g♦)| ≤ ||F (g♦)||∞,Nat0K
+ 2C ′e−2t0

on NA>t0K .

Let g′ ∈ G be arbitrary. We will show the estimate on g′A ∩NA>t0K .

IR→ H , t �→ wt := Rg′at0

is a geodesic in H , and for all t ∈ IR we have g′at ∈ NA>t0K if and only if
∆′ (wt,wt) > 2e2t0 . Now we have to distinguish two cases.

In the first case the geodesic connects ∞ with a point in ∂H . First assume
that limt→∞ wt = ∞ and limt→−∞ wt ∈ ∂H . Then limt→∞ ∆′ (wt,wt) =
∞ and limt→−∞ ∆′ (wt,wt) = 0 . So we may assume without loss of gener-
ality that ∆′ (w0,w0) = 2e2t0 , and therefore g′ = g′a0 ∈ Nat0K and
g′at ∈ NA>t0K if and only if t > 0 . So let t > 0 . Then

F
(
gg′at

)
= F

(
gg′
)

+
∫ t

0
f̃ ′
(
gg′aτ

)
dτ ,

and so

∣∣F (gg′at)∣∣ ≤ ||F (g♦)||∞,Nat0K
+
∫ t

0

∣∣∣f̃ ′ (gg′aτ)∣∣∣ dτ .
By step II and lemma 3.12 (i)
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∫ t

0

∣∣∣f̃ ′ (gg′aτ)∣∣∣ dτ ≤ C ′
∫ t

0

dτ

∆′ (wτ ,wτ )

=
C ′

∆′ (w0,w0)

∫ t

0
e−2τdτ

≤ C ′e−2t0 .

The case where limt→−∞ =∞ and limt→∞ ∈ ∂H is done similarly.

In the second case the geodesic connects two points in ∂H . Then without
loss of generality we can assume that ∆′ (Rwt, Rwt) is maximal for t = 0 . So
if ∆′ (w0,w0) < 2e2t0 we have g′A∩NA>t0K = ∅ . Otherwise by lemma 3.12
(ii) there exists T ∈ IR≥0 such that ∆′ (wT ,wT ) = ∆′ (w−T ,w−T ) = 2e2t0 ,
and since ∆′ (wT ,wT ) ≤ 4

e2|T | ∆′ (w0,w0) we see that

T ≤ 1
2

log
(
2∆′ (wT ,wT )

)
− t0 .

So g′aT , g′a−T ∈ Nat0K and g′at ∈ NA>t0K if and only if t ∈ ] − T, T [ .
Let t ∈ ] − T, T [ and assume t ≥ 0 first. Then

F
(
gg′at

)
= F

(
gg′aT

)
−
∫ T

t
f̃ ′
(
gg′aτ

)
dτ ,

and so

∣∣F (gg′at)∣∣ ≤ ||F (g♦)||∞,Nat0K
+
∫ T

0

∣∣∣f̃ ′ (gg′aτ)∣∣∣ dτ .
By step II and lemma 3.12 (ii) now

∫ T

0

∣∣∣f̃ ′ (gg′aτ)∣∣∣ dτ ≤ C ′
∫ T

0

dτ

∆′ (wτ ,wτ )

≤ C ′

∆′ (w0,w0)

∫ T

0
e2τdτ

≤ C ′

2∆′ (w0,w0)
e2T

≤ 2C ′e−2t0 .

The case t ≤ 0 is done similarly. �

(ii) Since on one hand ∂τF (♦aτ ) |τ=0 = f̃ ′ ∈ L2 (Γ\G)⊗ Λ (Cr) and on the
other hand vol (Γ\G) < ∞ it suffices to show that ξF is bounded for all
α ∈ Φ\{0} and ξ ∈ gα . So let α ∈ Φ\{0} and ξ ∈ gα . First assume α > 0 ,
which clearly implies α ≥ 1 and ξ ∈ T− . So there exists a continuously
differential curve ρ : I → G contained in the T−-leaf containing 1 such that
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0 ∈ I , ρ(0) = 1 and ∂tρ(t)|t=0 = ξ . Let g ∈ G . Then by theorem 3.23 (ii)
we have

(ξF ) (g) = ∂tF (gρ(t))|t=0

= −
∫ ∞

0
∂tf̃

′ (gρ(t)aτ )
∣∣∣
t=0

dτ

= −
∫ ∞

0
∂tf̃

′ (gaτa−τρ(t)aτ )
∣∣∣
t=0

dτ

= −
∫ ∞

0

((
Ada−τ (ξ)

)
f̃ ′
)

(gaτ ) dτ

= −
∫ ∞

0
e−ατ

(
ξf̃ ′
)

(gaτ ) dτ ,

so

|(ξF ) (g)| ≤ c ||ξ||2 <∞

where c is the Lipshitz constant of f̃ ′ . The case α < 0 is done similarly. �

Therefore by the Fourier decomposition described above we have

F =
∑
I∈℘

∑
ν∈Z

FIνη
I ,

where FIν ∈ Hν for all I ∈ ℘(r) and ν ∈ Z . D = D+ + D− , and again a
simple calculation shows that D+ and D− ∈ IRD ⊕ g ∩ (T+ ⊕ T−) , and so
D+F,D−F ∈ L2 (Γ\G) ⊗ Λ (Cr) by lemma 3.24 . So we get the Fourier

decomposition of f̃ ′ as

f̃ ′ = DF =
∑
I∈℘(r)

∑
ν∈Z

(
D+FI,ν−2 +D−FI,ν+2

)
ηI

with D+FI,ν−2 + D−FI,ν+2 ∈ Hν for all ν ∈ Z . But since f ∈ sSk(Γ) the
Fourier decomposition of f̃ ′ is exactly

f̃ ′ = qIη
I

with qI ∈ C∞(G)C ∩Hk+|I| , and so for all I ∈ ℘(r) and ν ∈ Z

D+FI,ν−2 +D−FI,ν+2 =

⎧⎨⎩ qI if ν = k + |I|
0 otherwise

.

Lemma 3.25 FI,ν = 0 for I ∈ ℘(r) and n ∈ IN≥k+|I| .
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Proof: similar to the higher rank case. Apply the argument for each
I ∈ ℘(r) seperately. �

So for all I ∈ ℘(r) we obtain D+FI,k+|I|−2 = qI and finally D−qI = 0 by
lemma 3.18 , since f ∈ O(B) , so

||qI ||22 =
(
qI ,D+FI,ν−2

)
= −

(
D−qI , FI,ν−2

)
= 0 ,

and so f̃ ′ = 0 , which completes the proof of our main theorem. �

Fix a regular loxodromic γ0 ∈ Γ , g ∈ G , g =

⎛⎝ ∗ 0

0 E

⎞⎠ , E ∈ U(r) ,

such that γ0 = gat0w0g
−1 ∈ gAMg−1 , t0 ∈ IR \ {0} and w0 =

⎛⎝ ∗ 0

0 E0

⎞⎠ ,

E0 ∈ U(r) diagonal, D ∈ IRr×r diagonal such that exp(2πiD) = E0 and
χ ∈ IR such that j(w0) = e2πiχ . Now we will compute ϕγ0,I,m ∈ sSk(Γ) ,
I ∈ ℘(r) , m ∈ 1

t0
(Z− (k + |I|)χ− trID) , as a relative Poincaré series

with respect to Γ0 := 〈γ0〉 � Γ . Hereby again ≡ means equality up to a
constant �= 0 (not necessarily independent of γ0 , I and m ) .

Theorem 3.26 (computation of ϕγ0,I,m ) Let I ∈ ℘(r) and
k ≥ max (k0, 2p+ 1− |I|) , where k0 is given by Satake’s theorem, theorem
3.11 . Then for all m ∈ 1

t0
(Z− (k + |I|)χ− trID)

(i)

ϕγ0,I,m ≡
∑

γ∈Γ0\Γ
q|γ

where

q :=
∫ ∞

−∞
e2πimt∆ (♦, gat0)−k−|I| j (gat,0)

k+|I|
dt
(
E−1ζ

)I
∈ sMk (Γ0) ∩ L1

k (Γ0\B) .

(ii) For all z ∈ B we have

q (z) ≡
(
∆
(
z,X+

)
∆
(
z,X−))− k+|I|

2

(
1 + v1
1− v1

)πim (
E−1ζ

)I
,

where
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X+ := g

⎛⎜⎜⎜⎜⎜⎜⎝
1

0
...

0

⎞⎟⎟⎟⎟⎟⎟⎠ and X− := g

⎛⎜⎜⎜⎜⎜⎜⎝
−1

0
...

0

⎞⎟⎟⎟⎟⎟⎟⎠
are the two fixpoints of γ0 in ∂B , and

v := g−1z ∈ B ⊂ Cp .

Proof: (i) Let f ∈ sSk (Γ) , and define
h =

∑
J∈℘(r) hJη

J ∈ C∞ (IR×M)C ⊗ Λ (Cr) , all hJ ∈ C∞ (IR×M)C and
bI,m ∈ C , I ∈ ℘(r) , m ∈ 1

t0
(Z− (k + |I|)χ− trID) as in theorem 3.16 .

Then by standard Fourier expansion we have

bI,m ≡
∫ t0

0
e−2πimthI(t, 1)dt

=
∫ t0

0
e−2πimt

〈
f

⎛⎝gat
⎛⎝ 0

η

⎞⎠⎞⎠ j (gat,0)k , ηI
〉
dt

≡
∫ t0

0
e−2πimt ×

×
〈 ∑
J∈℘(r)

(
∆ (♦, gat0)−k−|J | ζJ , f

)
(Eη)J j (gat,0)k+|J | , ηI

〉
dt

≡
∫ t0

0
e−2πimt

(
∆ (♦, gat0)−k−|I| (E−1ζ

)I
, f
)
j (gat,0)k+|I| dt

=
∫ t0

0
e−2πimt

∫
G

〈
f̃ ′,
(
∆ (♦, gat0)−k−|I| (E−1ζ

)I)∼′〉
×

× j (gat,0)k+|I| dt .

Since by Satake’s theorem, theorem 3.11 , f̃ ′ ∈ L∞(G)⊗ Λ (Cr) , and

∫ t0

0

∫
G

∣∣∣∣(∆ (♦, gat0)−k−|I| (E−1ζ
)I)∼′

j (gat,0)k+|I|
∣∣∣∣ dt

=
∫ t0

0

∫
G

∣∣∣∣(∆ (♦,0)−k−|I| ζI
)∼′ (

(gat)
−1♦

)∣∣∣∣ dt
≡
∫
G

∣∣∣ζ̃I ′∣∣∣
=
∫
G

∣∣∣j (♦,0)k+|I|
∣∣∣

≡
∫
B

∆ (Z,Z)
k+|I|

2
−(p+1) dVLeb <∞ ,
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by Tonelli’s and Fubini’s theorem we can interchange the order of inte-
gration:

bI,m ≡
∫
G

∫ t0

0
e−2πimt

〈
f̃ ′,
(
∆ (♦, gat0)−k−|I| (E−1ζ

)I)∼′〉
×

× j (gat,0)k+|I| dt

=
∫
G

〈
f̃ ′,
∫ t0

0
e2πimt

(
∆ (♦, gat0)−k−|I| (E−1ζ

)I)∼′
j (gat,0)

k+|I|
dt

〉
=

(∫ t0

0
e2πimt∆ (♦, gat0)−k−|I| j (gat,0)

k+|I|
dt
(
E−1ζ

)I
, f

)
= (q′, f)Γ0 ,

where

(∫ t0

0
e2πimt∆ (♦, gat0)−k−|I| j (gat,0)

k+|I|
dt
(
E−1ζ

)I)∼′
∈ L1(G)⊗Λ (Cr) ,

∫ t0

0
e2πimt∆ (♦, gat0)−k−|I| j (gat,0)

k+|I|
dt
(
E−1ζ

)I ∈ O(B)

since ∆ (♦,w) ∈ O(B) for all w ∈ B and the convergence of the integral is
compact, and so by theorem 3.3

q′ :=
∑
γ′∈Γ0

∫ t0

0
e2πimt∆ (♦, gat0)−k−|I| j (gat,0)

k+|I|
dt
(
E−1ζ

)I ∣∣∣∣
γ′

∈ sMk (Γ0) ∩ L1
k (Γ0\B) .

Clearly

∆ (♦, gat0)−k−|I| (E−1ζ
)I ∣∣∣

γ0

= ∆ (γ0♦, gat0)−k−|I| (E0E
−1ζ
)I
j (γ0,♦)k+|I|

= ∆
(
♦, γ−1

0 gat0
)−k−|I| (

E0E
−1ζ
)I
j
(
γ−1

0 , gat0
)k+|I|

,

so for all z ∈ B we can compute q′ (z) as
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q′ (z) =
∑
ν∈Z

∫ t0

0
e2πimt∆ (♦, gat0)−k−|I| (E−1ζ

)I
j (gat,0)

k+|I|
dt

∣∣∣∣
γν
0

(z)

=
∑
ν∈Z

∫ t0

0
e2πimt∆

(
z, γ−ν0 gat0

)−k−|I| (
Eν0E

−1ζ
)I ×

× j
(
γ−ν0 gat,0

)k+|I|
dt

=
∑
ν∈Z

∫ t0

0
e2πimt∆ (z, gat−νt00)−k−|I| (E−1ζ

)I
e2πiνtrID ×

× j (gat−νt0 ,0)
k+|I|

e2πiν(k+|I|)χdt

=
∑
ν∈Z

∫ t0

0
e2πim(t−νt0)∆ (z, gat−νt00)−k−|I| j (gat−νt0 ,0)

k+|I|
dt×

×
(
E−1ζ

)I
= ±

∫ ∞

−∞
e2πimt∆ (z, gat0)−k−|I| j (gat,0)

k+|I|
dt
(
E−1ζ

)I =: q (z) .

Again by theorem 3.3 we see that
∑

γ∈Γ0\Γ q|γ ∈ sMk(Γ) ∩ L1
k (Γ\B) , and

so by Satake’s theorem, theorem 3.11 , even ∈ sSk(Γ) , such that

bI,m ≡

⎛⎝ ∑
γ∈Γ0\Γ

q|γ , f

⎞⎠
Γ

,

and so we conclude that ϕγ0,I,m ≡
∑

γ∈Γ0\Γ q|γ . �

(ii) ∫ ∞

−∞
e2πimt∆ (z, gat0)−k−|I| j (gat,0)

k+|I|
dt

= j
(
g−1, z

)k+|I|
∫ ∞

−∞
e2πimt∆

(
g−1z, at0

)−k−|I|
j (at,0)

k+|I|
dt

= j
(
g−1, z

)k+|I|
∫ ∞

−∞
e2πimt (1− v1tanh t)−k−|I| 1

(cosh t)k+|I|dt

= j
(
g−1, z

)k+|I|
∫ ∞

−∞
e2πimt

(cosh t− v1sinh t)k+|I|dt

≡ j
(
g−1, z

)k+|I| 1(
1− v2

1

) k+|I|
2

(
1 + v1
1− v1

)πim

= j
(
g−1, z

)k+|I| ((1− v1) (1 + v1))
− k+|I|

2

(
1 + v1
1− v1

)πim
≡
(
∆
(
z,X+

)
∆
(
z,X−))− k+|I|

2

(
1 + v1
1− v1

)πim
.�
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3.4 Super cusp forms in the parametrized case

Now we return to the general case where G := sSU(p, q|r) ,
P := Λ (IRm) = D

(
IR0|m

)
, m ∈ IN , with the odd coordinate functions

β1, . . . , βm ∈ D
(
IR0|m

)
and Υ is a discrete P-sub super Lie group of G with

body Υ# = Γ being a discrete subgroup of G = G# .
Let M be a real super manifold and f ∈ (D(M)� P)C . Then f has a
unique expansion

f =
∑

I,J∈℘(m)

fIβ
I

with fI ∈ D(M)C , I ∈ ℘(m) , and a notion of a (with respect to P ) relative
body map and also of a relative degree seem to be useful: We define the
relative body map #′

as

#′
:= id⊗ # : (D(M)� P)C → D(M)C , f =

∑
I∈℘(m)

fIβ
I �→ f#′

:= f∅ ,

which is again a unital continuous graded algebra epimorphism, and the
relative degree deg′ as

deg′ f := min
{
|I|

∣∣∣ I ∈ ℘(m) and fIJ �= 0
}

for all f ∈ (D(M)� P)C (in particular this implies deg′ 0 = ∞ !) .
Clearly deg′ (f + h) ≥ min

(
deg′ f,deg′ h

)
, deg′ (fh) ≥ deg′ f + deg′ h and

deg′ f − f#′ ≥ 1 for all f, g ∈ (D(M)� P)C . The kernel of #′ is precisely

I ′ :=
{
f ∈ (D(M)� P)C

∣∣∣ deg′ f ≥ 1
}
,

which is an ideal of (D(M)� P)C (only contained in the set of nilpotent
elements of (D(M)� P)C ) . For all ν ∈ IN obviously

I ′ν =
{
f ∈ (D(M)� P)C

∣∣∣ deg′ f ≥ ν
}

is the ideal spanned by the elements βI , I ∈ ℘(m) , |I| = ν . So I ′m+1 = 0 .
Clearly ifM is a holomorphic super manifold then the image of O(M)�PC

under #′
is O(M) .

Proposition 3.27 Let g ∈P G .

(i) Let f ∈ (D(G)� P)C and f(g♦) =
∑

I∈℘(m) qIβ
I with qI ∈ D(G)C for all

I ∈ ℘(m) . Then f(g♦)#
′
= f#′ (

g#♦
)

, deg′ f(g♦) = deg′ f , and

qI = fI

(
g#♦

)
for all I ∈ ℘(m) such that |I| = deg′ f .
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(ii) Let f ∈ D(B) � PC and f |g =
∑

I∈℘(m) qIβ
I with qI ∈ D(B) for all

I ∈ ℘(m) . Then deg′ f |g = deg′ f , and

qI = fI |g#

for all I ∈ ℘(m) such that |I| = deg′ f , in particular (f |g)#
′
=
(
f#′
)∣∣∣
g#

.

Proof: (i) Obviously it suffices to prove the assertion for f ∈ D(M) � P .
The fact that h(g♦)#

′
= h#′ (

g#♦
)

for all h ∈ D(G)�P can be seen in the
following commutative diagrams: Let

m′ : P �D(G)� P → D(G)� P , a⊗ h⊗ b �→ (−1)ȧḣh⊗ (ab) ,

m be the multiplication on G , which is a super morphism from G to G ×G ,
and let

(m) : D(G)→ D(G × G) = D(G)�̂D(G) , h �→ h(m) ,

(g) : D(G)→ P , h �→ h(g)

and

(
g#
)

: C∞(G)→ C , h �→ h
(
g#
)

be the ’plugging in’ homomorphisms, which are graded algebra homomor-
phisms. Then

D(G)� P
(m)⊗ id ↓

D(G)�̂D(G)� P
#⊗̂id⊗id−→ C∞(G)⊗̂D(G)�̂P

(g)⊗̂id⊗ id ↓ % ↓
(
g#
)
⊗̂id⊗ id

P �D(G)� P
#⊗id⊗id−→ D(G)� P

m′ ↓ % ↓ #′

D(G)� P
#′
−→ D(G)

(3.4)

and
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D(G)� P
#′
−→ D(G)

(m)⊗ id ↓ % ↓ |

D(G)�̂D(G)� P id⊗̂id⊗#

−→ D(G)�̂D(G)
#⊗̂id⊗ id ↓ % ↓ #⊗̂id

C∞(G)⊗̂D(G)� P id⊗̂id⊗#

−→ C∞(G)⊗̂D(G)(
g#
)
⊗̂id⊗ id ↓ % ↓

(
g#
)
⊗̂id

D(G)� P
#′
−→ D(G)

. (3.5)

The map in the lower left corner of 3.4 maps h ∈ D(G) � P to
h(g♦)#

′ ∈ D(B) , the map in the upper right corner of 3.5 maps
h ∈ D(G)�P to h#′ (

g#♦
)
∈ D(B) , and finally the map in the upper right

corner of 3.4 and the map in the lower left corner of 3.5 , both going from
D(G)� P to D(G) , coincide.

Now let ν := deg′ f . Since the map

D(G)� P → D(G)� P , h �→ h(g♦)

is P-linear we have

∑
I∈℘(m)

qI = f(g♦)

=
∑

I∈℘(m) , |I|≥ν
fI(g♦)βI

=
∑

I∈℘(m) , |I|=ν
fI(g♦)#

′
βI

+
∑

I∈℘(m) , |I|=ν

(
fI(g♦)− fI(g♦)#

′)
βI

+
∑

I∈℘(m) , |I|≥ν+1

fI(g♦)βI ,

but all
(
fI(g♦)− fI(g♦)#

′
)
βI , I ∈ ℘(m) , |I| = ν , and fI(g♦)βI ,

I ∈ ℘(m) , |I| ≥ ν + 1 , belong to I ′ν+1 . So qI = fI(g♦)#
′
= fI

(
g#♦

)
.

Since therefore qI = 0 if and only if fI = 0 we finally obtain
deg′ f |g = deg′ f . �

(ii) follows from (i) since h̃|g = h̃(g♦) for all h ∈ D(B) � PC ,
f̃ =

∑
I∈℘(m) f̃Iβ

I and f̃(g♦) =
∑

I∈℘(m) q̃Iβ
I with all f̃I , q̃I ∈ D(G)C . �
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Corollary 3.28 Let f ∈ sMk(Υ) . Then fI ∈ sMk(Γ) for all I ∈ ℘(m)
such that |I| = deg′ f . In particular f#′ ∈ sMk(Γ) .

Because of proposition 3.27 and corollary 3.28 the idea now is to define the
space of super cusp forms sSk(Υ) as a sub graded PC-module of sMk(Υ)
having the following property:

If f =
∑

I∈℘(m) fIβ
I ∈ sSk(Υ) , fI ∈ O(B) for all I ∈ ℘(m) ,

and I0 ∈ ℘(m) such that |I0| = deg′ f then fI0 ∈ sSk(Γ) .

Assume that we have already successfully defined sSk(Υ) . Then in partic-
ular f#′ ∈ sSk(Γ) for all f ∈ sSk(Υ) , and we have the following theorem:

Theorem 3.29 Let {ϕλ}λ∈Λ be a family in sSk(Υ) with the following prop-
erties:

{i}
{
ϕ#
λ

′}
λ∈Λ

is a spanning set for sSk(Γ) ,

{iii} all ϕλ , λ ∈ Λ are homogeneous,

{ii} if {cλ}λ∈Λ is a family in C such that
∑

λ∈Λ cλϕ
#
λ

′
converges with re-

spect to ( , )Γ then
∑

λ∈Λ cλϕλ converges uniformly on compact sets
to a function in sSk(Υ) .

Then {ϕλ}λ∈Λ is a PC-spanning set for sSk(Υ) , more precisely if
f ∈ sSk(Υ) then there exists a family {aλ}λ∈Λ in PC such that

f =
∑
λ∈Λ

ϕλaλ ,

where the sum converges with respect to ( , )Γ in all components belonging
to some I ∈ ℘(m) with |I| = deg′ f and uniformly in all derivatives on
compact sets, and deg aλ ≥ deg′ f for all λ ∈ Λ .

Proof: If f = 0 then the assertion is obvious. Otherwise deg′ f ≤ m , and so
we prove the assertion for f ∈ sSk(Υ) \ {0} by reverse induction on deg′ f .
Let f ∈ sSk(Υ) such that deg′ f = m . Then by corollary 3.28

f = f{1,...,m}β{1,...,m}

with f{1,...,m} ∈ sSk(Γ) . So by property {i} there exists a family {cλ}λ∈Λ

in C such that

f{1,...,m} =
∑
λ∈Λ

cλϕ
#
λ

′
,
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where the convergence is with respect to ( , )Γ and so also uniformly on
compact sets, even uniformly in all derivatives on compact sets. So if we
define aλ := cλβ

{1...,m} ∈ PC for all λ ∈ Λ then

∑
λ∈Λ

ϕλaλ =
∑
λ∈Λ

cλϕ
#
λ

′
β{1...,m}

+
∑
λ∈Λ

cλ

(
ϕλ − ϕ#

λ

′)
β{1...,m}

= f +
∑
λ∈Λ

cλ

(
ϕλ − ϕ#

λ

′)
β{1...,m} ,

but
(
ϕλ − ϕ#

λ

′)
β{1...,m} ∈ Im+1 and therefore it is = 0 for all λ ∈ Λ .

Now assume ν ∈ {1, . . . ,m− 1} and that for all h ∈ sSk(Υ) with
deg′(h) ≥ ν + 1 there exists a family {bλ}λ∈Λ in PC such that
f =

∑
λ∈Λ ϕλbλ , where the sum converges with respect to ( , )Γ in all

components belonging to some I ∈ ℘(m) with |I| = deg′ f and uniformly on
compact sets. Let f ∈ sSk(Υ) with deg′(f) = ν . Then if we decompose

f =
∑

I∈℘(m) , |I|≥ν
fIJβ

I ,

fI ∈ O(B) for all I ∈ ℘(m) , |I| ≥ ν , by corollary 3.28 we see that
fI ∈ sSk(Γ) for all I ∈ ℘(m) such that |I| = ν . Again by property {i} there
exist families

{
c
(I)
λ

}
λ∈Λ

in C , I ∈ ℘(m) , |I| = ν , such that

fI =
∑
λ∈Λ

c
(I)
λ ϕ#

λ

′

for all I ∈ ℘(m) such that |I| = ν . Let I ∈ ℘(m) such that |I| = ν .
By property {iii}

∑
λ∈Λ c

(I)
λ ϕλ converges uniformly on compact sets to a

function FI ∈ sSk(Υ) , and F#
I

′
= fI . So

h := f −
∑

I∈℘(m) , |I|=ν
FIβ

I

= −
∑

I∈℘(m) , |I|=ν

(
FI − F#

I

′)
βI

+
∑

I∈℘(m) , |I|≥ν+1

fIβ
I

∈ sSk(Υ)

with deg′ h ≥ ν+1 . So by induction hypothesis there exists a family {bλ}λ∈Λ

such that h =
∑

λ∈Λ ϕλbλ in compact convergence and deg bλ ≥ ν + 1 .
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Therefore by property {ii} f =
∑

λ∈Λ ϕλaλ in compact convergence, since

all ϕλ are holomorphic with respect to

⎛⎝ Z

ζ

⎞⎠ even in uniform convergence

in all derivatives on compact sets, if we define

aλ :=
∑

I∈℘(m) , |I|=ν
(−1)ν+ϕ̇λc

(I)
λ βI + bλ ∈ PC

for all λ ∈ Λ . Clearly deg aλ ≥ ν , and

f =
∑
λ∈Λ

ϕλaλ

=
∑

I∈℘(m) , |I|=ν

∑
λ∈Λ

c
(I)
λ ϕ#

λ

′
βI

+
∑

I∈℘(m) , |I|=ν

∑
λ∈Λ

c
(I)
λ

(
ϕλ − ϕ#

λ

′)
βI +

∑
λ∈Λ

bλϕλ .

All
(
ϕλ − ϕ#

λ

′)
βI and bλ , I ∈ ℘(n) , |I| = ν , λ ∈ Λ , belong to Iν+1 .

Therefore we see that the convergence is with respect to ( , )Γ in all
components belonging to some I ∈ ℘(m) having |I| = ν . �

Now in the end let us consider three special cases where it is possible to
define the space sSk(Υ) having the desired property.

First case : Γ\G compact.

Then we define sSk(Υ) := sMk(Υ) .

Second case : There exists a discrete subgroup Γ � G and a
P-element g ∈P G such that Υ = gΓg−1 .

Without loss of generality we may assume that g# = 1 . Then clearly
Γ = Υ# .

Proposition 3.30

Φ : sMk(Γ)� PC → sMk(Υ) , f �→ f |g−1

is a PC-linear isomorphism, which respects the grading.

Proof: simple calculation. Φ−1 : sMk(Υ) → sMk(Γ) � PC is given by
f �→ f |g . �

Clearly Φ and Φ−1 are continuous with respect to compact convergence.
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Definition 3.31 The sub graded PC-module

sSk(Υ) := Φ
(
sSk(Γ)� PC

)
of sMk(Υ) is called the space of super cusp forms for Υ of weight k .

For proving that this definition is independent of the choice of g ∈P G one
has to consider a P-point g ∈P G commuting with all elements of Γ and to
show that |g : sMk(Γ)� PC → sMk(Γ)� PC maps sSk(Γ)� PC onto itself.
Unfortunately this seems to be out of reach. However we have the following
theorem:

Theorem 3.32

(i) Let f =
∑

I∈℘(m) fIβ
I ∈ sSk(Υ) , fI ∈ O(B) for all I ∈ ℘(m) , and

I0 ∈ ℘(m) such that |I| = deg′ f . Then fI0 ∈ sSk(Γ) .

(ii) If {ϕλ}λ∈Λ is a spanning set for sSk(Γ) then
{
ϕλ|g−1

}
λ∈Λ

fulfills prop-

erties {i} , {ii} and {iii} of theorem 3.29 , and so it is a PC-spanning set
for sSk(Υ) in the sense of theorem 3.29 .

Proof: (i) Let Φ−1(f) = f |g =
∑

I∈℘(m) qIβ
I ∈ sSk(Γ)� PC , all

qI ∈ sSk(Γ) . Then by proposition 3.27 (ii) fI0 = qI0 . �
(ii) Properties {i} and {ii} are clearly fulfilled. For proving property {iii}
let {cλ}λ∈Λ be a family in C such that

∑
λ∈Λ cλϕλ converges with respect

to ( , )Γ . Then f :=
∑

λ∈Λ cλϕλ ∈ sSk(Γ) , where the sum converges
also uniformly on compact sets, and since all ϕλ ∈ O(B) , λ ∈ Λ , even in
compact convergence in all derivatives. |g : D(B)→ D(B) is continuous with
respect to the uniform structure of compact convergence in all derivatives,
so f |g :=

∑
λ∈Λ ϕλ|g−1 in compact convergence as well. �

Third case : p ≥ 2 , q = 1 , vol Γ\G < ∞ , Γ\G not compact, and
k ≥ k0 , where k0 ∈ IN is given by Satake’s theorem, theorem 3.11 .

We will use the Fourier expansion given by theorem 3.15 of section 3.2 .
Before we do so we need some tools:

Lemma 3.33 Let Φ be a P-super Lie group homomorphism from IR to G
(this implies that Φ(t) ∈P G for all t ∈ IR ) and h ∈ (D (G)� P)C left-Φ(1)-
invariant. Then there exists a unique splitting h =

∑
s∈Z bs ,

bs ∈ (D (G)� P)C , s ∈ Z , such that

bs (Φ(t)♦) = e2πistbs

for all s ∈ Z and t ∈ IR . deg′ bs ≥ deg h for all s ∈ Z , and if h is
homogeneous then all bs are homorgeneous of the same parity.
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Proof: Since h ∈ (D (G)� P)C is left-Φ(1)-invariant we see that

h (Φ♦) ∈ (D ((IR/Z)× G)� P)C =
(
C∞(IR/Z)⊗̂D(G)� P

)C
.

If h is homogeneous then again h (Φ♦) is homogeneous of the same parity.
By proposition 3.27 (i) we have deg′ h (Φ♦) = deg′ h .

Let S denote the structural sheaf of G regarded as a real(
(p+ 1)2 + r2 − 1, 2(p+ 1)r

)
-dimensional super manifold (this means

D(U) = S
(
U#
)

for each open sub super manifold U of G ) .
Then h (Φ♦) ∈

(
C∞(IR/Z)⊗̂S(G)� P

)C , and for all g ∈ G

there exists an open neighbourhood U ⊂ G of g such that
S|U � C∞U ⊗ Λ

(
IR2(p+1)r

)
� C∞U ⊗ D

(
IR0|2(p+1)r

)
. Let ξ1, . . . , ξ2(p+1)r be

the odd coordinate functions on IR0|2(p+1)r .

Let δ be the set of all
(
U, (ds)s∈Z

)
such that U ⊂ G open, all

ds ∈ (S(U)� P)C , s ∈ Z , and

h (Φ♦) |IR×U =
∑
s∈Z

dse
2πisτ ,

where we denote the coordinate function on IR by τ .

Step I Show that if
(
U, (ds)s∈Z

)
,
(
V, (hs)s∈Z

)
∈ δ then ds ≡ hs on

IR× (U ∩ V ) for all s ∈ Z .

Let g ∈ U ∩ V be arbitrary. Then there exists an open neighbourhood
W ⊂ U ∩ V of g such that S|W � C∞W ⊗ Λ

(
IR2(p+1)r

)
, and without loss of

generality we may assume equality. Then if we decompose

h (Φ♦) |IR×W =
∑

S∈℘(2(p+1)r) , I∈℘(m)

qSI ξ
SβI ,

ds|IR×W =
∑

S∈℘(2(p+1)r) , I∈℘(m)

ds,SI ξ
SβI

and

hs|IR×W =
∑

S∈℘(2(p+1)r) , I∈℘(m)

hs,SI ξ
SβI ,

all qSI ∈ C∞ ((IR/Z)×W )C =
(
C∞(IR/Z)⊗̂C∞(W )

)C ,
ds,SI , hs,SI ∈ C∞(W )C , then we see that

qSI =
∑
s∈Z

ds,SIe
2πisτ =

∑
s∈Z

hs,SIe
2πisτ .

201



So ds,SI = hs,SI for all S ∈ ℘ (2(p+ 1)r) and I ∈ ℘(m) by classical Fourier

analysis.

Step II Show that for all g ∈ G there exists
(
U, (ds)s∈Z

)
∈ δ such

that g ∈ U , deg′ ds ≥ deg′ h for all s ∈ Z and if h is homogeneous
then all ds are homogeneous of the same parity.

Let g ∈ G . Then again there exists an open neighbourhood U ⊂ G of g
such that S|U � C∞U ⊗ Λ

(
IR2(p+1)r

)
, and again without loss of generality

we assume equality. So we can decompose

h (Φ♦) |IR×U =
∑

S∈℘(2(p+1)r) , I∈℘(m)

qSI ξ
SβI

with some qSI ∈ C∞ ((IR/Z)× U)C , S ∈ ℘ (2(p+ 1)r) , I ∈ ℘(m) . By
classical Fourier theory we see that there exist unique ds,SI ∈ C∞(U)C

such that

qSI =
∑
s∈Z

ds,SIe
2πisτ ,

where the convergence is compact in all derivatives on IR × U . If
I ∈ ℘(m) such that |I| < deg′ h then all qSI = 0 and so all ds,SI = 0 ,
S ∈ ℘ (2(p+ 1)r) , s ∈ Z . So clearly

(
U, (ds)s∈Z

)
∈ δ if we define

ds :=
∑

S∈℘(2(p+1)r) , I∈℘(m) ds,SIξ
SβI ∈ S(U)� P , s ∈ Z .

Step III Conclusion.

By step II

⋃
(U,(ds)s∈Z)∈δ

U = G ,

and so by step I since (S � P)C is a sheaf on G we see that there exist unique
cs ∈ (S(G)� P)C = (D(G)� P)C , s ∈ Z , such that

cs|U = ds

for all
(
U, (ds)s∈Z

)
∈ δ . Then deg′ cs ≥ deg′ h , if h is homogeneous then

all cs are homogeneous of the same parity, and clearly cs ∈ (D(G)� P)C ,
s ∈ Z are unique such that

h (Φ♦) =
∑
s∈Z

cse
2πisτ .
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Now for proving existence of bs ∈ (D(G)� P)C , s ∈ Z , let bs := cs for all
s ∈ Z . Then obviously

h =
∑
s∈Z

bs ,

and for all t ∈ IR

∑
s∈Z

bs (Φ(t)♦) e2πiτ = h (Φ(τ) Φ(t)♦)

= h (Φ(τ + t))

=
∑
s∈Z

bse
2πiste2πisτ .

By uniqueness of cs ∈ (D(G)� P)C , s ∈ Z , we see that
bs (Φ(t)♦) = cs (Φ(t)♦) = bse

2πist for all s ∈ Z .

For proving uniqueness assume that bs ∈ (D(G)� P)C , s ∈ Z , such that

bs (Φ(t)♦) = e2πistbs

for all s ∈ Z and t ∈ IR and h =
∑

s∈Z bs . Then

h (Φ♦) =
∑
s∈Z

bs (Φ♦) =
∑
s∈Z

bse
2πisτ .

So by uniqueness of cs ∈ (D(G)� P)C , s ∈ Z , we see that bs = cs for all
s ∈ Z . �

Now let η ⊂ N open and relatively compact, t0 ∈ IR and Ξ ⊂ G′ finite be
given by theorem 3.13 in section 3.2 with respect to Γ . For all g ∈ Ξ let
ng ∈P g−1Υg such that n#

g ∈ g−1Γg ∩N ′Z (G′) \ Z (G′) . Then

Rn#
g R

−1 = n′λg,0

⎛⎝ εg1 0

0 Eg

⎞⎠
with appropriate λg ∈ IR \ {0} , εg ∈ U(1) and Eg ∈ U(r) ,
εp+1
g = detEg . Let g ∈ Ξ be arbitrary. As we have already seen in section

3.2 , j
(
Rn#

g R−1
)

:= j
(
Rn#

g R−1,w
)

= ε−1
g ∈ U(1) is independent of

w ∈ H . Let χg ∈ IR such that j
(
Rn#

g R−1,w
)

= e2πiχg . Again without
loss of generality we can assume that Eg is diagonal, and we may assume
λg > 0 . So choose
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Dg =

⎛⎜⎜⎜⎝
d

(g)
1 0

. . .

0 d
(g)
r

⎞⎟⎟⎟⎠ ∈ IRr×r

diagonal such that Eg = exp (2πiDg) . Then clearly

ϕg : IR ↪→ G , t �→ R−1n′tλg,0

⎛⎝ e−2πitχg 1 0

0 exp (2πitDg)

⎞⎠R

is a C∞-Lie group embedding, and ϕ(1) = n#
g ∈ g−1Γg .

Let f ∈ sMk(Γ) . Then f̃(g♦) ∈ D(G)C is left-ϕg(1)-invariant, and by
lemma 3.33 applied with P = IR we see that there exists a unique splitting

f̃ (g♦) =
∑
s∈Z

bg,s ,

bg,s ∈ D(G)C , s ∈ Z , such that

bg,s (ϕg(t)♦) = e2πistbg,s

for all s ∈ Z and t ∈ IR , and a straight forward calculation shows that for
all s ∈ Z

bg,s =

⎛⎝⎛⎝ ∑
I∈℘(r)

cI,mI,s
(w2) e2πmI,sw1ϑI

⎞⎠∣∣∣∣∣∣
R

⎞⎠∼

,

where

mI,s :=
1
λg

(s− trI Dg − (k + |I|)χg) ∈
1
λg

(Z− trI Dg − (k + |I|)χg)

and cI,mI,s
∈ O

(
Cp−1

)
is given by theorem 3.15 (i) for all I ∈ ℘(r) .

From now on we have to make the additional assumption that for
all g ∈ Ξ we can choose ng , χg and Dg such that

trI Dg + (k + |I|)χg ∈ ] − 1, 0 ]

and all d(g)
k , d

(g)
k − d

(g)
l /∈ Z \ {0} , k, l ∈ {1, . . . , r} .

Proposition 3.34 f ∈ sSk(Γ) if and only if bg,s = 0 for all g ∈ Ξ and
s ≥ 0 .
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Proof: Let g ∈ Ξ and I ∈ ℘(m) . Since s ∈ Z and we assume
trIDg + (k + |I|)χg ∈ ]− 1, 0 ] we have s ≥ 0 if and only if ms,I ≥ 0 .

’⇒’ : Let f ∈ sMk(Γ) and g ∈ Ξ . Let f |g|R−1 =
∑

I∈℘(r) qIϑ
I , all

qI ∈ O(H) . Then

f |g =
∑
I∈℘(r)

qI(R♦)ζIj(R,♦)k+|I| .

Since f̃ ′ ∈ L2 (Γ\G) ⊗ Λ (Cr) , and so f̃ ′(g♦) ∈ L2 (ηA>t0K) ⊗ Λ (Cr) by
corollary 3.14 of section 3.2 , we conclude that

qI (Rz) j (R, z)k+|I| ∆ (z, z)
k+|I|

2 ∈ L2 (ηA>t00)

with respect to the G-invariant measure ∆ (z, z)−(p+1) dVLeb on B or

equivalently qI∆′ (w,w)
k+|I|

2 ∈ L2 (RηA>t00) for all I ∈ ℘(r) with respect
to the RGR−1-invariant measure ∆′ (w,w)−(p+1) dVLeb on H . So by
theorem 3.15 (ii) and (iii) of section 3.2 we see that cI,m = 0 for all m ≥ 0
and I ∈ ℘(m) , and so bg,s = 0 for all s ≥ 0 .

’⇐’ : Conversely assume that bg,s = 0 for all g ∈ Ξ and s ≥ 0 . Let g ∈ Ξ .
Then we have cI,m = 0 for all m ≥ 0 and I ∈ ℘(m) , and by corollary 3.14
it suffices to show that

f̃ ′(g♦) ∈ L2 (ηA>t0K)⊗ Λ (Cr) .

If we decompose f |g|R−1 =
∑

I∈℘(r) qIϑ
I , all qI ∈ O(H) , we obtain

qI∆′ (w,w)
k+|I|

2 ∈ L2 (RηA>t00) for all I ∈ ℘(r) with respect to theRGR−1-
invariant measure ∆′ (w,w)−(p+1) dVLeb onH by theorem 3.15 (iii) of section
3.2 , and so

qI (Rz) j (R, z)k+|I| ∆ (z, z)
k+|I|

2 ∈ L2 (ηA>t00)

with respect to the G-invariant measure ∆ (z, z)−(p+1) dVLeb on B . So we
see that f̃ ′(g♦) ∈ L2 (ηA>t0K)⊗ Λ (Cr) . �

Again let g ∈ Ξ .

Theorem 3.35 There exists a unique P-super Lie group embedding Φg

from IR to G such that Φg(1) = ng and Φ#
g = ϕg .

Proof: Since we did not introduce the concept of super Lie algebras of super
Lie groups and the concept of a super chart we are only able to give a sketch.
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We use the exponential mapping exp which is a holomorphic super morphism
from Cn2+r2|2nr,2nr with even coordinate functions a′ij and
d′kl ∈ O (sGL (n|r))0 and odd coordinate functions β′il and
γ′kj ∈ O (sGL (n|r))1 , i, j = 1, . . . , n and k, l = 1, . . . , r , to sGL(n, r) ,
n = p+ 1 , given by

exp

⎛⎝ A′ β′

γ′ D′

⎞⎠
defined via the exponential power series, see theorem 2.5 of section 2.1 .
Since the body (D exp)# (0) of the super Jacobian of exp at 0 is the identity
matrix one sees that exp is locally biholomorphic at 0 ∈ Cn2+r2 by theorem
2.40 (i) . Let us again sum up the coordinate functions of Cn2+r2|2nr,2nr in
blocks according to ⎛⎜⎜⎜⎝

A′ B′ µ′

C ′ D′ ν ′

ρ′ σ′ E′

⎞⎟⎟⎟⎠
}p
← p+ 1

}r

,

and let V be the real
(
n2 + r2 − 1, 2nr

)
-dimensional sub super manifold of

Cn2+r2|2nr,2nr given by the equations

⎛⎜⎜⎜⎝
A′ B′ µ′

C ′ D′ ν ′

ρ′ σ′ E′

⎞⎟⎟⎟⎠
∗⎛⎜⎜⎜⎝

1 0 0

0 −1 0

0 0 1

⎞⎟⎟⎟⎠ = −

⎛⎜⎜⎜⎝
1 0 0

0 −1 0

0 0 1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

A′ B′ µ′

C ′ D′ ν ′

ρ′ σ′ E′

⎞⎟⎟⎟⎠ ,

str

⎛⎜⎜⎜⎝
A′ B′ µ′

C ′ D′ ν ′

ρ′ σ′ E′

⎞⎟⎟⎟⎠ = 0

or more explicitely

A′∗ = −A′ ,

C ′∗ = B′ ,

D′∗ = −D′ ,

E′∗ = −E′ ,

trA′ + trD′ = trE′ ,

ρ′∗ = −µ′

σ′∗ = ν ′ .
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Then clearly V is diffeomorphic to IRn2+r2−1|2nr , and exp restricts to a
super morphism expV from V to G = sSU(p, 1|r) . V# = g is the Lie

algebra of G = G# , and exp#
V = expG : g → G is the usual exponential

mapping. Again expV is a local diffeomorphism at 0 ∈ g = V# , and so we
can regard V as the ’super Lie algebra’ of the super Lie group G .
Since expV is a local super diffeomorphism and its body expG maps 0 to
1 we will use expV as a local chart of G at 1 when talking about super
Jacobians, in other words given an open sub super manifold U of G such
that U# is a neighbourhood of 1 ∈ G which is small enough we identify U
with the unique super open subset W of V such that 0 ∈ W# and expV |W
is a super diffeomorphism from W to U .

Now let

X := R−1

⎛⎜⎜⎜⎝
0 λg

0 0
0

0 2πiDg

⎞⎟⎟⎟⎠
← 1

}p
}r

R ∈ g .

Then ϕg = expG (♦X) , and so especially n#
g = expG(X) . It suffices to

show that expV (X +♦) is a local diffeomorphism at 0 since then there
exists a unique Y ∈P V with body Y # = X and expV(Y ) = ng , and so
Φg := expV (♦Y ) is the unique P-super Lie group embedding from IR to G
such that Φ#

g = ϕg and Φg(1) = ng .

Since the left translation l(
n#

g

)−1 is a super diffeomorphism from G to G it

is even enough to show that l(
n#

g

)−1 ◦ expV (♦+X) is a local super diffeo-

morphism at 0 ∈ g . l(
n#

g

)−1 ◦ expV (X +♦) has the body

(
l(
n#

g

)−1 ◦ expV (X +♦)

)#

= l(
n#

g

)−1 ◦ expg (X +♦) : g→ G

mapping 0 to 1 . So by theorem 2.19 of section 2.2 it suffices to show that

D

(
l(
n#

g

)−1 ◦ expV (X +♦)

)#

(0) is invertible.

Since D

(
l(
n#

g

)−1 ◦ expV (X +♦)

)#

(0) only involves terms which are

constant or linear with respect to the odd coordinate functions we may
replace these odd coordinate functions by even ones.

So let exp′ denote the exponential map from C(n+r)×(n+r) , which is the Lie

algebra of GL(n+ r,C) , to GL(n+ r,C) . Then expG is the restriction of
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exp′ to g ↪→ C(n+r)×(n+r) going from g to G ↪→ GL(n+r,C) . Let V ′ denote
the

(
(n+ r)2 − 1

)
-dimensional IR-subspace of C(n+r)×(n+r) containing all

matrices ⎛⎜⎜⎜⎝
A′ B′ M ′

C ′ D′ N ′

P ′ Q′ E′

⎞⎟⎟⎟⎠
}p
← p+ 1

}r

such that

A′∗ = −A′ ,

C ′∗ = B′ ,

D′∗ = −D′ ,

E′∗ = −E′ ,

trA′ + trD′ = trE′ ,

P ′∗ = −M ′ ,

Q′∗ = N ′ .

Then of course V ′ is not a sub Lie algebra of C(n+r)×(n+r) . But still the
image of V ′ under the differential of l(

n#
g

)−1 ◦ exp′ (♦+X) taken at 0 again

lies in V ′ , and D

(
l(
n#

g

)−1 ◦ expV (♦+X)

)
(0)# is equal to the differential

of l(
n#

g

)−1 ◦ exp′ (♦+X) taken at 0 and restricted to V ′ . So it suffices to

show that the differential of l(
n#

g

)−1 ◦ exp′ (♦+X) is an automorphism of

C(n+r)×(n+r) .

We use theorem 1.7 of chapter II section 1.4 in [9] , which says the following:

Let G be a Lie group with Lie algebra g . The exponential
mapping of the manifold g into G has the differential

D expX = D (lexpX)e ◦
1− e−adX

adX
(X ∈ g) .

As usual, g is here identified with the tangent space gX .

Hereby e denotes the unit element of the Lie group G .

So we see that D

(
l(
n#

g

)−1 ◦ exp′ (♦+X)

)
(0) = 1−e−adX

adX
. We can

split X = Xd + Xn , where Xd ∈ C(n+r)×(n+r) is a diagonalizable and
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Xn ∈ C(n+r)×(n+r) is a nilpotent matrix. Clearly Xd has the eigenvalues
0, 2πid(g)

1 , . . . , 2πid(g)
r . So adX = adXd

+ adXn , adXd
is diagonalizable and

adXn is nilpotent. Let S denote the set of eigenvalues of adXd
. Then

S ⊂
{

0, 2πid(g)
1 , . . . , 2πid(g)

r

}
∪
{

2πi
(
d

(g)
i − d

(g)
j

) ∣∣∣ i, j ∈ 1, . . . , r
}
.

So again 1−e−adX

adX
as a linear operator from g to g splits into a sum of a

diagonalizable operator and a nilpotent operator. The diagonalizable sum-
mand of 1−e−adX

adX
has precisely the eigenvalues 1−e−s

s , s ∈ S , which all are
different from 0 since by assumtion S ∩ (2πiZ \ {0}) = ∅ . So

D

(
l(
n#

g

)−1 ◦ exp′ (♦+X)

)
(0) =

1− e−adX

adX

is indeed an automorphism. �

Let f ∈ sMk(Υ) . Then f̃ (g♦) ∈ (D(G)� P)C is left-Φg(1)-invariant since
Φg(1) ∈ g−1Υg and f̃ (g♦) is left-g−1Υg-invariant. So by lemma 3.33 there
exists a unique splitting

f̃(g♦) =
∑
s∈Z

hg,s , (3.6)

hg,s ∈ (D(G)� P)C , s ∈ Z , such that for all s ∈ Z and t ∈ IR

hg,s (Φ(t)♦) = e2πithg,s .

deg′ hg,s ≥ deg′ f (g♦) = deg′ f by lemma 3.33 .

Definition 3.36

sSk(Υ) := {f ∈ sMk(Υ) | hg,s = 0 in 3.6 for all g ∈ Ξ and s ≥ 0}

is called the space of super cusp forms for Υ of weight k .

From lemma 3.33 we deduce that if f is homogeneous then in the splitting
3.6 all hg,s , g ∈ Ξ and s ∈ Z , are homogeneous of the same parity. So we
see that again sSk(Υ) is a sub graded PC-module of sMk(Υ) .

Theorem 3.37 Let f =
∑

I∈℘(m) fIβ
I ∈ sSk(Υ) , all fI ∈ O(B) , and

I0 ∈ ℘(m) such that |I0| = deg′ f . Then indeed fI0 ∈ sSk(Γ) .

Proof: Let g ∈ Ξ . Clearly fI0 ∈ sMk(Γ) by corollary 3.28 . So we have a
unique splitting
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f̃I0(g♦) =
∑
s∈Z

bg,s ,

bg,s ∈ D(G)C , g ∈ Ξ , s ∈ Z , such that

bg,s (ϕg(t)♦) = e2πistbg,s

for all g ∈ Ξ , s ∈ Z and t ∈ IR . On the other hand we have the splitting
3.6 , and by proposition 3.34 it suffices to show that bg,s = h

(I0)
g,s for all s ∈ Z

if we decompose

hg,s =
∑

I∈℘(m)

h(I)
g,sβ

I ,

h
(I)
g,s ∈ D(G)C , I ∈ ℘(m) , for all s ∈ Z .

∑
I∈℘(m)

f̃I (g♦)βI = f̃ (g♦)

=
∑
s∈Z

hg,s

=
∑

I∈℘(m)

(∑
s∈Z

h(I)
g,s

)
βI .

Therefore since all f̃I (g♦) , h(I)
g,s ∈ D(G)C we see that f̃I (g♦) =

∑
s∈Z h

(I)
g,s

for all I ∈ ℘(m) . On the other hand for all t ∈ IR we have

hg,s (Φg(t)♦) =
∑

I∈℘(m)

e2πith(I)
g,sβ

I

with e2πith(I)
g,s ∈ D(G)C . Therefore by proposition 3.27 (i) since

Φg(t)# = ϕg(t) we obtain

e2πith(I0)
g,s = h(I0)

g,s (ϕg(t)♦) .

So by uniqueness of bg,s ∈ D(G)C , s ∈ Z , we have bg,s = h
(I0)
g,s for all

s ∈ Z . �

Further research has to show if in the first and the third case it is possible
to find ψγ0,I,m ∈ sSk(Υ) , γ0 ∈ Ω , I ∈ ℘(r) and m ∈ ] − C,C [ , satisfying
ψ#′
γ0,I,m

= ϕγ0,I,m , γ0 ∈ Ω , I ∈ ℘(r) and m ∈ ] − C,C [ , and conditions
{ii} and {iii} of theorem 3.29 , where Ω and ϕγ0,I,m , γ0 ∈ Ω , I ∈ ℘(r) and
m ∈ ] − C,C [ , are given by theorem 3.17 .
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Chapter 4

Super numbers and super

functions

In chapter 2 we introduced (p, q)-dimensional super open sets U |q as ringed
spaces, which means in terms of sheaves over their bodies U being ordinary
open subsets of IRp resp. Cp , which are interpreted as the sheaves of
C∞-functions on U |q itself. The goal of this chapter now is to show that
there also exists a description of super open sets in terms of points using
super numbers, which have been considered for example in section 1.1 of
[17] , which is equivalent to that by sheaves.

We set ℘ := {I ⊂ Z finite} , ℘0 :=
{
I ∈ ℘

∣∣∣ 2 | |I|
}

, and

℘1 :=
{
I ∈ ℘

∣∣∣ 2 � |I|
}

. Let IK be IR or C . ΛIK := IK℘ ,

ΛIK
0 :=

{
(aI)I∈℘ ∈ ΛIK

∣∣∣ aI = 0 for all I ∈ ℘1

}
� IK℘0

and

ΛIK
1 :=

{
(aI)I∈℘ ∈ ΛIK

∣∣∣ aI = 0 for all I ∈ ℘0

}
� IK℘1 .

Then clearly ΛIK = ΛIK
0 ⊕ΛIK

1 as IK-vector spaces. On ΛIK we use the uniformal
structure of pointwise convergence. So ΛIK is complete, ΛIK

0 and ΛIK
1 form

closed subspaces of ΛIK , and all

] − ε, ε [ ℘
′ × IK℘\℘′ ⊂ Ω

with ε > 0 and ℘′ ⊂ ℘ finite form a basis of neighbourhoods of 0 ∈ ΛIK .
If for all I ∈ ℘ we define EI := 1{I} we can write the elements of ΛIK as

(aI)I∈℘ =
∑
I∈℘

aIEI .

On ΛIK we define a multiplication by
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(aI)I∈℘ (bI)I∈℘ :=

(∑
J⊂I

(−1)|J<I\J | aJbI\J

)
I∈℘

with the abbreviation |K < L| := |{(r, s) ∈ K × L | r < s}| for all
K,L ∈ ℘ . Especially for I, J ∈ ℘ this means

EIEJ =

⎧⎨⎩ (−1)|J<I|EI∪J if I ∩ J = ∅
0 otherwise

.

One immediately verifies that this multiplication is continuous and that ΛIK

together with this multiplication is a unital associative algebra over IK with
unit element E∅ . In addition one can easily verify

Theorem 4.1 ΛIK = ΛIK
0 ⊕ ΛIK

1 is a unital associative graded commutative
algebra, which is called the graded algebra of super numbers.

We can regard IK as a subalgebra of ΛIK
0 via the embedding

IK ↪→ ΛIK
0 , x �→ xE∅ ,

which is clearly a homeomorphism onto its image and respects scalar mul-
tiplication, and therefore we will identify 1 = E∅ in what follows.
We also have a so-called body map

# : ΛIK → IK , z =
∑
I∈℘

aIEI �→ z# := a∅ ,

which is a continuous, open and surjective algebra projection, and it is clear
that #

∣∣
IK

= id and #
∣∣
ΛIK

1
= 0 .

For every z :=
∑

I∈℘ aIEI ∈ ΛIK we define the degree of z as

deg z := min
{
|I|

∣∣∣ I ∈ ℘ and aI �= 0
}
.

Then we see immediately deg(z + w) ≥ min(deg z,degw) and
deg(zw) ≥ deg z + degw for all z, w ∈ ΛIK , deg

(
z − z#

)
≥ 2 for all z ∈ ΛIK

0

and deg z ≥ 1 for all z ∈ ΛIK
1 .

Lemma 4.2

(i) Let (zn)n∈IN be a sequence in ΛIK with the property deg zn � ∞ . Then
zn � 0 , and

∑
n∈IN

zn

is convergent.
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(ii) Let (an)n∈INp ∈
(
ΛIK
)INp

, z ∈
(
ΛIK
)p with deg zi ≥ 1 for all i = 1, . . . , p .

Then

∑
n∈INp

anzn

converges.

Proof: (i) Let zn =
∑

I∈℘ c
(n)
I for all n ∈ IN . Fix an I ∈ ℘ . Then

deg zn > |I| and so c
(n)
I = 0 for almost all n ∈ IN . So clearly in the

sum
∑

n∈IN c
(n)
I only a finite number of terms are �= 0 , and therefore it

converges. �

(ii) For all n ∈ INp we have deg (anzn) ≥ deg an +
∑p

i=1 ni deg zi ≥ |n| , and
we can apply (i) . �

Corollary 4.3 z ∈ ΛIK is invertible if and only if z# �= 0 . In this case

z−1 =
1
z#

∑
n∈IN

(
z# − z
z#

)n
.

If z ∈ ΛIK
0 then again z−1 ∈ ΛIK

0 .

Proof: Let z ∈ ΛIK such that z# �= 0 . Then convergence of the sum is clear
by lemma 4.2 , and since multiplication in ΛIK is continuous we have

z
1
z#

∑
n∈IN

(
z# − z
z#

)n
=

z

z#

∑
n∈IN

(
1− z

z#

)n
=

∑
n∈IN

( z

z#

)n
−
∑
n∈IN

( z

z#

)n+1

= 1 ,

and by the same calculation 1
z#

∑
n∈IN

(
z#−z
z#

)n
z = 1 . �

Now we have to treat the cases IK = IR and IK = C seperately.

4.1 The real case

Let IK := IR and Λ := ΛIR . We define IRp|q := Λp0 × Λq1 for all p, q ∈ IN .
Then again we have a body map

# : IRp|q → IRp ,

(z, ζ) = (z1, . . . , zp, ζ1, . . . , ζq) �→ (z, ζ)# :=
(
z#
1 , . . . , z

#
p

)
= z# .
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Let U ⊂
open

IRp . Then we define U |q :=
{

(z, ζ) ∈ IRp|q
∣∣∣ (z, ζ)# ∈ U

}
. We

have U |q ⊂
open

IRp|q and
(
U |q)# = U . Conversely if Ω ⊂

open
IRp|q then clearly

Ω# ⊂
open

IKp and Ω ⊂
(
Ω#
)|q , see figure 4.1 below.

Figure 4.1: Ω , Ω# and
(
Ω#
)|q .

If M ⊂ IRp|q , the set ΛM = ΛM0 ⊕ ΛM1 of all functions f : M → Λ forms
a unital associative graded commutative algebra by pointwise addition and
multiplication, and we consider Λ as the sub graded algebra of ΛM containing
precisely the constant functions. Then clearly C (M,Λ) is a sub graded
algebra of ΛM containing Λ .

Theorem 4.4 For each U ⊂
open

IRp we have an algebra embedding

̂ : C∞(U) ↪→ C
(
U |0,Λ0

)
, f �→ f̂

where for all z ∈ U |0

f̂(z) :=
∑

n∈INp

1
n!
∂nf

(
z#
)(

z− z#
)n
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in multi-index language. Clearly f̂
∣∣∣
U

= f , and if ∂nfk � ∂nf pointwise

for all n ∈ INp then again f̂k � f̂ pointwise.

Proof: The sum is convergent by lemma 4.2 (ii) . Injectivity is clear by the
property f = f̂

∣∣∣
U

. So let us prove the conservation of multiplication. For

all f, g ∈ C∞(U) and z ∈ U |0 we have

f̂(z)ĝ(z) =

( ∑
m∈INp

1
m!

∂mf
(
z#
)(

z− z#
)m
)
×

×
(∑

n∈INp

1
n!
∂ng

(
z#
)(

z− z#
)n
)
.

Since restricted to any fixed component in both sums only a finite number
of terms is �= 0 we can interchange the order of summation. So

f̂(z)ĝ(z) =
∑

k∈INp

⎛⎝ ∑
m∈INp,m≤k

1
m!(k−m)!

∂mf
(
z#
)
∂k−mg

(
z#
)⎞⎠×

×
(
z− z#

)k

=
∑

k∈INp

1
k!

⎛⎝ ∑
m∈INp,m≤k

(
k
m

)
∂mf

(
z#
)
∂k−mg

(
z#
)⎞⎠(z− z#

)k

=
∑

k∈INp

1
k!
∂k(fg)

(
z#
)(

z− z#
)k

= (̂fg)(z) ,

where we used Leibniz’ rule in multi-index language.
To see that f̂ is continuous let z ∈ U |0 , I ∈ ℘ , and let FI be the I-th
component function of f̂ . Then since deg

(
zi − z#

i

)
≥ 2 , i = 1, . . . , p , we

have

FI(z) =
∑

n∈INp,n≤
( |I|

2

)p

1
n!
∂nf

(
z#
)((

z− z#
)n)

I
.�

More precisely we have a sheef embedding C∞IRp ↪→ C
(
♦|0,Λ0

)
IRp since if V

is an open subset of U then V |0 ⊂ U |0 and f̂ |V = f̂
∣∣∣
V |0

.

Lemma 4.5 Let U ⊂
open

IRp , f ∈ C∞(U) and b ∈ U |0 . Then for all z ∈ IRp|0

with z# = 0

f̂(b + z) =
∑

n∈INp

1
n!
∂̂nf(b)zn .
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Proof: Let z ∈ IRp|0 with z# = 0 . Then

f̂(b + z) =
∑

n∈INp

1
n!
∂nf

(
b#
)(

b + z− b#
)n

=
∑

n∈INp

1
n!
∂nf

(
b#
) ∑

m∈INp,m≤n

(
n
m

)(
b− b#

)n−m
zm .

Since restricted to any fixed component in the summation over n only a
finite number of terms is �= 0 we can interchange the order of summation.
So

f̂(b + z) =
∑

m∈INp

(∑
k∈INp

1
(m + k)!

∂m+kf
(
b#
)(m + k

m

)(
b− b#

)k
)

zm

=
∑

m∈INp

1
m!

(∑
k∈INp

1
k!
∂k∂mf

(
b#
)(

b− b#
)k
)

zm

=
∑

m∈INp

1
m!

∂̂mf(b)zm .�

Lemma 4.6 Let f(x) :=
∑

n∈INp
an
n! (x− c)n be a power series convergent

in U ⊂ IRp with c ∈ IRp and all an ∈ IR . Then for all z ∈ U |0

f̂(z) =
∑

n∈INp

an
n!

(z− c)n .

Proof: Let z ∈ U |0 . Then

f̂(z) =
∑

n∈INp

1
n!
∂nf

(
z#
)(

z− z#
)n

=
∑

n∈INp

1
n!

(∑
k∈INp

an+k

k!

(
z# − c

)k
)(

z− z#
)n

.

Since restricted to any fixed component in the summation over n only a
finite number of terms is �= 0 we can interchange the order of summation
again. So we have

f̂(z) =
∑

m∈INp

am
∑

n∈INp,n≤m

1
n!(m− n)!

(
z# − c

)m−n (
z− z#

)n

=
∑

m∈INp

am
m!

∑
n∈INp,n≤m

(
m
n

)(
z# − c

)m−n (
z− z#

)n

=
∑
m∈IN

am
m!

(z− c)m .�
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In the following we will discuss more in detail mappings from Ω ⊂
open

IRp|q to

Λ , and we will always use the following notations:
We set (z, ζ) = (z1, . . . , zp, ζ1, . . . ζq) ∈ Ω with for all i = 1, . . . , p respectively
j = 1, . . . , q : zi =

∑
J∈℘0

xiJEJ ∈ IR1|0 , ζj =
∑

J∈℘1
yjJEJ ∈ IR0|1 , all

xiJ , yjJ ∈ IR . We define

ζS := ζs1 · · · ζsr

for all S = {s1, . . . , sr} ⊂ {1, . . . , q} and s1 < · · · < sr . And if there is no
danger of confusion we denote by the same symbols the projections

zi : IRp|q → IR1|0 , (z, ζ) �→ zi

for i = 1, . . . , p ,

ζj : IRp|q → IR0|1 , (z, ζ) �→ ζj

for j = 1, . . . , q and

ζS : IRp|q → Λ , (z, ζ) �→ ζS

for all S ⊂ {1, . . . , q} .
If f ∈ ΛΩ then we write f =

∑
I∈℘ FIEI with uniquely determined compo-

nent functions FI : Ω → IR . Let (b, β) ∈ Ω and I ∈ ℘ . If i ∈ {1, . . . , p}
and J ∈ ℘0 , and FI(z, ζ) differentiable with respect to xiJ at (b, β) then
we define

∂i|JFI(b, β) :=
∂FI(z, ζ)
∂xiJ

∣∣∣∣
(z,ζ)=(b,β)

.

And also if j ∈ {1, . . . , q} , J ∈ ℘1 and FI(z, ζ) is partially differentiable
with respect to yjJ at (b, β) we define

∂|jJFI(b, β) :=
∂FI(z, ζ)
∂yjJ

∣∣∣∣
(z,ζ)=(b,β)

.

Definition 4.7 Let Ω ⊂
open

IRp|q , f : Ω → Λ and (b, β) ∈ Ω . f is called

differentiable at (b, β) if and only if there exist Ω′ ⊂
open

Ω such that (b, β) ∈ Ω′

and ∆i,Σj : Ω′ → Λ , i = 1, . . . , p , j = 1, . . . , q , continuous at (b, β) such
that for all (z, ζ) ∈ Ω′

f(z, ζ) = f(b, β) +
p∑
i=1

(zi − bi)∆i(z, ζ) +
q∑
j=1

(ζi − βi) Σj(z, ζ) .

If f is differentiable at (b, β) then we call ∂i|f(b, β) := ∆i(b, β) ,
i = 1, . . . , p , and ∂|jf(b, β) := Σj(b, β) , j = 1, . . . , q , the partial deriva-
tives of f at (b, β) . If f is differentiable at each (b, β) ∈ Ω then f is said
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to be differentiable, and ∂i|f : Ω → Λ , (z, ζ) �→ ∂i|f(z, ζ) , i = 1, . . . , p ,
and ∂|jf : Ω → Λ , (z, ζ) �→ ∂|jf(z, ζ) , j = 1, . . . , q , are called the partial
derivatives of f .

In general the functions ∆i , i ∈ {1, . . . , p} , Σj , j ∈ {1, . . . , q} , are not
uniquely determined by f and (b, β) . Let us check that however ∂i|f(b, β) ,
i ∈ {1, . . . , p} , ∂|jf(b, β) , j ∈ {1, . . . , q} , are well-defined:

Let i ∈ {1, . . . , p} . Then ∆i(b, β) = ∂tf (b + tei, β)|t=0 ,
t ∈ IR , is independent of the choice of ∆1, . . . ,∆p , Σ1, . . . ,Σq .

Now let j ∈ {1, . . . , q} and I ∈ ℘ , and let ΣjI : Ω→ IR be the I-
th component function of Σj . Choose J ∈ ℘1 such that J < I .
Then ΣjI(b, β) = ∂|jJFI∪J = ∂tFI∪J (b, β + tEJej)|t=0 ,
t ∈ IR , is independent of the choice of ∆1, . . . ,∆p , Σ1, . . . ,Σq

as well.

If Ω ⊂
open

IRp|q , then clearly the set of all differentiable mappings Ω → Λ

forms a sub graded algebra of C (Ω,Λ) containing Λ , all ∂i| and ∂|j are 0 on
Λ , and the super product rule holds:

(
∂i|f
)· = ḟ ,

(
∂|jf

)· = ḟ + 1 ,

∂i| (fg) =
(
∂i|f
)
g + f

(
∂i|g
)

and

∂|j (fg) =
(
∂|jf

)
g + (−1)ḟf

(
∂|jg
)

for all differentiable f, g : Ω→ Λ , f homogeneous.

If Ω ⊂
open

IRp|q then we define D(Ω,Λ) to be the set of all f ∈ ΛΩ that are

continuous with respect to z and partially differentiable with respect to all
zi ,
i = 1, . . . , p , and ζj , j = 1, . . . , q .
Then D(Ω,Λ) is a sub graded algebra of ΛΩ containing Λ and, as we will
see, of C(Ω,Λ) as well.

One goal of this chapter is the following theorem, which we will prove later.

Theorem 4.8 Let Ω ⊂
open

IRp|q such that Ωx :=
{
(z, ζ) ∈ Ω

∣∣ (z, ζ)# = x
}

is

connected for all x ∈ Ω# , see figure 4.2 below. Then we have isomorphisms
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(
Λ (IRq)⊗ C∞

(
Ω#
))
�̂Λ � C∞

((
Ω#
)|q

,Λ
)
� D(Ω,Λ)

as unital graded algebras, where on C∞
(
Ω#
)

we use the uniformal structure

of compact convergence in all derivatives and on C∞
((

Ω#
)|q
,Λ
)

that of
pointwise convergence.

The first isomorphism is the unique IR-linear and continuous map given by
eS ⊗ f ⊗ EI �→ ζS f̂EI for all f ∈ C∞

(
Ω#
)

, S ∈ ℘(q) , I ∈ ℘ , and the
second is given by the restriction map.

Figure 4.2: Ωx in theorem 4.8 .

Let Ω ⊂
open

IRp|q . We say Ω is of cube type if and only if there exist ℘′ ⊂ ℘\{∅}

finite and ε > 0 such that for all (z, ζ) ∈
(
Ω#
)|q :

(z, ζ) ∈ Ω if and only if xiI , yjJ ∈ ] − ε, ε [ for all i = 1, . . . , p , j = 1, . . . , q ,
I ∈ ℘′ ∩ ℘0 , J ∈ ℘′ ∩ ℘1 .

In this case clearly Ωx ⊂
open , convex

IRp|q
x for all x ∈ Ω# and Ω# ⊂ Ω . Clearly

U |q is of cube type for all U ⊂
open

IRp .
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Theorem 4.9 Let Ω ⊂
open

IRp|0 be of cube type and f ∈ ΛΩ . Then there are

equivalent

(i) f is differentiable,

(ii) f ∈ D(Ω,Λ) ,

(iii) all FI , I ∈ ℘ , are continuous and fulfill the following system of
differential equations

∂i|JFI =

⎧⎨⎩ (−1)|I\J<J |∂i|∅FI\J if J ⊂ I
0 otherwise

for all i = 1, . . . , p , I ∈ ℘ and J ∈ ℘1 ,

(iv) there exists a family (fI)I∈℘ ∈
(
C∞
(
Ω#
))℘ such that

f(z) =
∑
I∈℘

f̂I(z)EI

for all z ∈ Ω .

In this case f∗ :=
∑

I∈℘ f̂IEI :
(
Ω#
)|0 → Λ is the unique extension in

D
((

Ω#
)|0) of f , f∗ is differentiable, ∂i|f∗ ∈ D

((
Ω#
)|0) , and

∂i|f∗ =
∑
I∈℘

∂̂ifIEI

for all i = 1, . . . , p .

Notice that fI = FI |Ω# , I ∈ ℘ , but in general f̂I �= FI since f̂I(z) �∈ IR
for z ∈ Ω \ Ω# . Theorem 4.8 will show that the family (fI)I∈℘ in (iv) is
uniquely determined by f .

Proof: (iv) ⇒ (i) : Let U ⊂
open

IRp , (fI)I∈℘ ∈ (C∞(U))℘ , f =
∑

I∈℘ f̂IEI

and b ∈ U |0 . Let g := f
(
♦+ b− b#

)
: U |0 → Λ .

First we prove that g is again of the form g =
∑

K∈℘ ĝKEK with
(gK)K∈℘ ∈ (C∞(U))℘ .

So let z ∈ U |0 and a(n)
J ∈ IR , J ∈ ℘0 , n ∈ INp , such that for all

n ∈ INp

(
b− b#

)n
=
∑
J∈℘0

a
(n)
J EJ .
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So by lemma 4.5

g(z) =
∑
I∈℘

f̂I

(
z + b− b#

)
EI

=
∑
I∈℘

∑
n∈INp

1
n!
∂̂nfI(z)

(
b− b#

)n
EI

=
∑
I∈℘

∑
n∈INp

1
n!
∂̂nfI(z)

∑
J∈℘0

a
(n)
J EJEI .

Since deg
(
b− b#

)
≥ 2 we have a

(n)
J = 0 for all n ∈ INp ,

J ∈ ℘ with |n| > |J |
2 . Therefore for each fixed component

the summation is finite, and so we can interchange the order of
summation. So

g(z)

=
∑
K∈℘0

⎛⎜⎝ ∑
J∈℘0,J⊂K

(−1)|K\J<J | ∑
n∈INp,|n|≤ |K|

2

1
n!
a

(n)
J

̂∂nfK\J(z)

⎞⎟⎠EK

=
∑
K∈℘

ĝK(z)EK ,

if we define for all K ∈ ℘

gK :=
∑

J∈℘0,J⊂K
(−1)|K\J<J | ∑

n∈INp,|n|≤ |K|
2

1
n!
a

(n)
J ∂nfK\J ∈ C∞(U) .�

Now we would like to show that f is differentiable at b . Since all
gK ∈ C∞(U) , K ∈ ℘ , there exist ∆iK ∈ C∞(U) , i = 1, . . . , p , K ∈ ℘ ,
such that for all x ∈ U and K ∈ ℘

gK(x) = gK

(
b#
)

+
p∑
i=1

(
xi − b#

i

)
∆iK(x) .

If we apply ̂ to these equations we obtain for all z ∈ U |0

f(z) = g
(
z− b + b#

)
=
∑
K∈℘

ĝK

(
z− b + b#

)
EK

=
∑
K∈℘

gK

(
b#
)
EK +

p∑
i=1

∑
K∈℘

(zi − bi) ∆̂iK

(
z− b + b#

)
EK

= f(b) +
p∑
i=1

(zi − bi) ∆i(z) ,
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where

∆i : U |0 → Λ , z �→
∑
K∈℘

∆̂iK

(
z− b + b#

)
EK

is a continuous function because all ∆̂iK are continuous, and restricted to
any fixed component in the sum only a finite number of terms is �= 0 . So f
is differentiable at b , and for all i = 1, . . . , p

∂i|f(b) = ∆i(b) =
∑
K∈℘

∆iK

(
b#
)
EK =

∑
K∈℘

∂igK

(
b#
)
EK

=
∑
K∈℘

∑
J∈℘0 , J⊂K

(−1)|K\J<J | ∑
n∈INp,|n|≤ |K|

2

1
n!
∂n∂ifK\J

(
b#
)
a

(n)
J EK

=
∑
I∈℘

∑
n∈INp

1
n!
∂n∂ifI

(
b#
) ∑
J∈℘0

a
(n)
J EJEI

=
∑
I∈℘

∑
n∈INp

1
n!
∂n∂ifI

(
b#
) ∑
J∈℘0

(
b− b#

)n
EI

=
∑
I∈℘

∂̂ifI(b)EI .�

(i) ⇒ (ii) : trivial.
(ii) ⇒ (iii) : Let f ∈ D(Ω) , which means differentiable with respect to all
zi , i = 1, . . . , p , and continuous. Then clearly all FI are continuous. For
proving the system of differential equations let b = (b1, . . . , bp) ∈ Ω and
i ∈ {1, . . . , p} be arbitrary , bi =

∑
I∈℘0

biIEI , all biI ∈ IR . Ω ⊂
open

IRp|0 and

f is differentiable at b with respect to zi . Therefore there exist Ω′ ⊂
open

IR1|0

such that bi ∈ Ω′ and (b1, . . . , bi−1, zi, bi+1, . . . , bp) ∈ Ω for all zi ∈ Ω′ and
∆ : Ω′ → Λ continuous at bi such that

f(b1, . . . , bi−1, zi, bi+1, . . . , bp) = f(b) + ∆(zi)(zi − bi)

for all zi ∈ Ω′ . Let ∆J be the J-th component function of ∆ for all J ∈ ℘ .
Then for all zi ∈ Ω′

∑
I∈℘

FI(b1, . . . , bi−1, zi, bi+1, . . . , bp)EI

=
∑
I∈℘

FI(b)EI +
∑
K∈℘0

(xiK − biK)EK
∑
J∈℘

∆J (zi)EJ

=
∑
I∈℘

⎛⎝FI(b) +
∑

K∈℘0,K⊂I
(−1)|I\K<K| (xiK − biK) ∆I\K (zi)

⎞⎠EI .
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So for all I ∈ ℘ and zi ∈ Ω′

FI (b1, . . . , bi−1, zi, bi+1, . . . , bp)

= FI(b) +
∑

K∈℘0,K⊂I
(−1)|I\K<K| (xiK − biK) ∆I\K (zi) .

We see that FI is partially differentiable at b with respect to xiJ for all
I ∈ ℘ , J ∈ ℘0 , and

∂i|JFI(b) =

⎧⎨⎩ (−1)|I\J<J |∆i,I\J(b) if J ⊂ I
0 otherwise

.

Especially, if we set J = ∅ , we obtain ∆iR(b) = ∂i|∅FR(b) for all R ∈ ℘ . �

(iii) ⇒ (iv) Assume that all FI are continuous and fulfill the system of
differential equations.

Step I Show that all FI are affine linear with respect to xiJ ,
J ⊂ I, J �= ∅ , and C∞ with respect to x∅ :=

(
x1∅, . . . xp∅

)
∈ Ω# .

Let i ∈ {1, . . . , p} , I ∈ ℘ , J ∈ ℘0 \ {∅} with J ⊂ I . Then J �⊂ I \ J ,
and therefore ∂i|JFI = (−1)|I\J<J |∂i|∅FI\J is independent of xiJ . So FI is
affine linear in xiJ .

Now we prove by induction on n that all FI are Cn with repect to x∅ for
arbitrary n ∈ IN .

Since f is continuous, all FI are continuous with respect to x∅ .
Now let i ∈ {1, . . . , p} , n ∈ IN such that all FR are Cn with
repect to x∅ , and let I ∈ ℘ , b ∈ Ω . Choose S ∈ ℘0 \ {∅} such
that S < I .

Since Ω ⊂
open

IRp|0 , there exist ε > 0 and Ω′ ⊂
open

Ω such that b ∈ Ω′

and Ω′ + [ 0, ε ]ESej ⊂ Ω . So for all z ∈ Ω′

∂i|∅FI(z) = ∂i|SFI∪S(z)

=
FI∪S (z + εESei)− FI∪S(z)

ε
,

because FI∪S is affine linear with respect to xiS .

By assumption the right hand side is Cn with respect to x∅ , and
so is the left hand side. This means FI |Ω′ is Cn+1 with respect
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to x∅ . Since b was arbitrary, the FI itself is Cn+1 with respect
to x∅ . �

Step II Show that all FI and so f are determined by f |Ω# .

Since the system is linear, we only have to prove that f |Ω# = 0 implies
f = 0 . So let f |Ω# = 0 .

We will show that FI = 0 for all I ∈ ℘ by induction on |I| . This of course
will imply f = 0 .

Assume n ∈ IN with the property that FK = 0 for all K ∈ ℘ with
|K| < n , and let I ∈ ℘ with |I| = n . For any i ∈ {1, . . . , p} ,
J ∈ ℘0 \ {∅} with J ⊂ I we have by (ii)

∂i|JFI = (−1)|I\J<J |∂i|∅FI\J ,

which is 0 by assumption, since |I \ J | ≤ |I| − 2 < n . So FI is
independ of all xiJ , i = 1, . . . , p , J ∈ ℘0 \ {∅} , and so for all
z ∈ Ω

FI(z) = FI

(
z#
)

= 0 ,

because z# ∈ Ω# . �

This automatically proves the uniqueness of f∗ as well, because U |q is of
cube type for all U ⊂

open
IRp|0 .

Step III Conclusion .

Define fI := FI |Ω# ∈ C∞
(
Ω#
)

by step II for all I ∈ ℘ , and
g :=

∑
I∈℘ f̂IEI :

(
Ω#
)|0 → Λ , which then fulfills (iv) . So, since we proved

already (iv) ⇒ (i) ⇒ (iii) , we know that g is differentiable and fulfills (iii)
as well. Finally we have

g|Ω# =
∑
I∈℘

f̂I

∣∣∣
Ω#

EI =
∑
I∈℘

fIEI =
∑
I∈℘

FI |Ω#EI = f |Ω# .

So we can apply step II , which tells us f = g|Ω . �

A similar result holds for Ω ⊂ IR0|1 :

224



Theorem 4.10 Let Ω ⊂
open

IR0|1 be of cube type and f ∈ ΛΩ . Then there

are equivalent

(i) f is differentiable,

(ii) FI , I ∈ ℘ , fulfill the following system of differential equations

∂JFI =

⎧⎨⎩ (−1)|I\J<J |+|I\J<K|∂KF(I\J)∪K if J ⊂ I
0 otherwise

for all I ∈ ℘ , J ∈ ℘1 and K ∈ ℘1 with K ∩ (I \ J) = ∅ ,

(iii) there exist a, d ∈ Λ such that f(ζ) = a+ ζd for all ζ ∈ Ω .

In this case f∗ : IR0|1 → Λ , ζ �→ a + ζd is again the unique differentiable
extension of f , and ∂|1f∗ = d .

Proof: (iii) ⇒ (i) : It is obvious that every f : IR0|1 → Λ , ζ �→ a+ ζd where
a, d ∈ Λ is differentiable with ∂|1f = d . Since f∗(0) = a = f(0) and
∂|1f∗(0) = d = ∂|1f(0) clearly f∗ is uniquely determined by f . �
(i) ⇒ (ii) : Assume f differentiable and let β ∈ Ω be arbitrary. As in the
proof of theorem 4.9 we get: FI is partially differentiable at β with respect
to all yJ for all I ∈ ℘, J ∈ ℘1 , and

∂JFI(β) =

⎧⎨⎩ (−1)|I\J<J |ΣI\J(β) if J ⊂ I
0 otherwise

.

So if K ∈ ℘1 with K ∩ (I \ J) , we get

ΣI\J(β) = (−1)|I\J<K|∂JF(I\J)∪K(β) .�

(ii) ⇒ (iii) : Let FI , I ∈ ℘ fulfill the system of differential equations.

Step I Prove that all ∂JFI are constant .

We show ∂S∂TFI = 0 for all I ∈ ℘ , S, T ∈ ℘1 , S, T ⊂ I .

Let I ∈ ℘ , S, T ∈ ℘1 with S, T ⊂ I .

First assume S ∩ T �= ∅ . Choose K ∈ ℘1 such that K < I .
Then K < I \ T and S �⊂ (I \ T ) ∪K . Therefore by (ii)

∂TFI = (−1)|I\T<T |∂KF(I\T )∪K

is independent of yS , and so ∂S∂TFI = 0 . Especially if we set
S := T := J we see that FI is affine linear with respect to yJ for

225



all I ∈ ℘ , J ∈ ℘1 , J ⊂ I .

Now let I ∈ ℘ , S, T ∈ ℘1 with S, T ⊂ I and S ∩ T = ∅ . Choose
L,M ∈ ℘1 such that M < L < I . Then we have L < I \S , and
so by (ii)

∂SFI = (−1)|I\S<S|∂LF(I\S)∪L .

Since all FK , K ∈ ℘ are affine linear with respect to all yJ ,
J ∈ ℘1 , J ⊂ K , we can interchange partial derivatives. Clearly
M < (I \ (S ∪ T )) ∪ L , and so again by (ii) , since
|L < T | = |L| |T | is an odd number,

∂S∂TFI = (−1)|I\S<S|∂L∂TF(I\S)∪L
= (−1)|I\S<S|+|(I\(S∪̇T ))∪̇L<T |∂L∂MF(I\(S∪T ))∪L∪M
= (−1)|I\S<S|+|I\T<T |+|S<T |+1∂L∂MF(I\(S∪T ))∪L∪M .

But S and T are arbitrary, so this holds again when S and T are
interchanged. So we get

∂S∂TFI = ∂T∂SFI = (−1)|S<T |+|T<S|∂S∂TFI = −∂S∂TFI ,

because |S < T | + |T < S| = |S| |T | is again an odd number.
And this implies ∂S∂TFI = 0 . �

Step II Conclusion .

For all I ∈ ℘ we have {min (I ∪ {0})− 1} ∈ ℘1 , so we can define
dI := ∂{min(I∪{0})−1}FI∪{min(I∪{0})−1} ∈ IR , d :=

∑
I∈℘ dIEI ∈ Λ .

Let I ∈ ℘ , J ∈ ℘1 and K := {min ((I \ J) ∪ {0}) − 1} < I \ J . Then by
(ii)

∂JFI = (−1)|I\J<J |∂KF(I\J)∪K = (−1)|I\J<J |dI\J ,

so for all I ∈ ℘ and ζ ∈ Ω

FI(ζ) = FI(0) +
∑

J∈℘1,J⊂I
(−1)|I\J<J |yJdI\J ,
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and finally, if we define a := f(0) ∈ Λ ,

f(ζ) = f(0) +
∑
I∈℘

∑
J∈℘1,J⊂I

(−1)|I\J<J |yJdI\JEI

= a+
∑
J∈℘1

yJEJ
∑
K∈℘

dKEK

= a+ ζd .�

Corollary 4.11 Let Ω ⊂ IRp|q be of cube type and f : Ω→ Λ . Then there
are equivalent

(i) f is arbitrarily often differentiable,

(ii) f ∈ D(Ω,Λ) ,

(iii) there exists a family (fIS)I∈℘,S∈℘(q) ∈
(
C∞
(
Ω#
))℘×℘(q) such that for

all (z, ζ) ∈
(
Ω#
)|q

f(z, ζ) =
∑
I∈℘

∑
S∈℘(q)

ζS f̂IS(z)EI .

Again the function

f∗ :=
∑
I∈℘

∑
S∈℘(q)

(
ζS f̂IS

)
EI :

(
Ω#
)|q
→ Λ

is the unique extension in D
((

Ω#
)|q) of f . f∗ is arbitrarily often differ-

entiable, for all i = 1, . . . , p we have

∂i|f∗ =
∑
I∈℘

∑
S∈℘(q)

ζS ∂̂ifISEI

and for all j = 1, . . . , q

∂|jf∗ =
∑
I∈℘

∑
S∈℘(q),j∈S

(−1)|S\{j}<j|ζS\{j}f̂ISEI .

Proof: (i) ⇒ (ii) : trivial.
(ii) ⇒ (iii) and uniqueness: by induction on q . If q = 0 then it follows
immediately from theorem 4.9 .
So let us assume Ω ⊂ IRp|q+1 of cube type and f ∈ D(Ω,Λ) . Then there
exist Ω′ ⊂ IRp|q and Ω′′ ⊂ IR0|1 both of cube type such that Ω = Ω′ × Ω′′ .
So for all (z, ζ ′) ∈ Ω′ we have a differentiable function f (z, ζ ′,♦) : Ω′′ → Λ ,
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and so by theorem 4.10 there exist unique g, h : Ω′ → Λ such that for all
(z, ζ) = (z, ζ ′, ζq+1) ∈ Ω

f(z, ζ) = g
(
z, ζ ′

)
+ ζq+1h

(
z, ζ ′

)
.

g = f |Ω′×{0} ∈ D (Ω′,Λ) . Now we prove that h ∈ D (Ω′,Λ) .

For all (z, ζ) = (z, ζ ′, ζq+1) ∈ Ω we have

∑
I∈℘

FI(z, ζ)EI

=
∑
I∈℘

GI
(
z, ζ ′

)
EI +

∑
J∈℘1

yq+1,JEJ
∑
K∈℘

HK

(
z, ζ ′

)
EK

=
∑
I∈℘

⎛⎝GI(z, ζ ′) +
∑

J∈℘1,J⊂I
(−1)|I\J<J |HI\J

(
z, ζ ′

)
yq+1,J

⎞⎠EI ,

and so

FI(z, ζ) = GI
(
z, ζ ′

)
+

∑
J∈℘1,J⊂I

(−1)|I\J<J |HI\J
(
z, ζ ′

)
yq+1,J .

Finally we get

HK = ∂|q+1,SFK∪S

for all K ∈ ℘ and S ∈ ℘1 with S < K , and therefore one
can easily verify that HI , I ∈ ℘ , fulfill (iii) of theorem 4.9
with respect to z and (ii) of theorem 4.10 with respect to all
ζ1, . . . , ζq , and so h ∈ D(Ω′,Λ) by theorems 4.9 and 4.10 .

By induction hypothesis there exist families (gIR)I∈℘,R∈℘(q) and

(hIR)I∈℘,R∈℘(q) ∈
(
C∞
(
Ω#
))℘×℘(q) such that for all (z, ζ ′) ∈ Ω′

g
(
z, ζ ′

)
=
∑
I∈℘

∑
R∈℘(q)

ζ ′RĝIR(z)EI

and

h
(
z, ζ ′

)
=
∑
I∈℘

∑
R∈℘(q)

ζ ′RĥIR(z)EI .

So since ζ ′R = ζR and ζq+1ζ
R = (−1)|R|ζR∪{q+1} for all R ∈ ℘(q) , we have

for all (z, ζ) ∈ Ω
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f(z, ζ) = g
(
z, ζ ′

)
+ ζq+1h

(
z, ζ ′

)
=

∑
I∈℘

∑
S∈℘(q+1)

ζS f̂IS(z)EI ,

if we define

fIS :=

⎧⎨⎩ (−1)|S\{q+1}|hI,S\{q+1} if q + 1 ∈ S
gIS otherwise

.

By the same argument it ca be seen that if f∗ ∈ D
((

Ω#
)|q+1

,Λ
)

is an
extension of f then f∗ = g∗ + ζq+1h

∗ where g∗ and h∗ are the unique
extensions of g and h , and so f∗ is uniquely determined by f . �
(iii)⇒ (i) and partial derivatives: by induction on q . If q = 0 then it follows
directly from theorem 4.9 .
Now let us assume U ⊂

open
IRp and (fIS)I∈℘,S∈℘(q+1) ∈ (C∞(U))℘×℘(q+1) such

that for all (z, ζ) ∈ U |q+1

f(z, ζ) =
∑
I∈℘

∑
S∈℘(q+1)

ζS f̂IS(z)EI .

Then f(z, ζ) = g (z, ζ ′) + ζq+1h (z, ζ ′) for all (z, ζ ′, ζq+1) ∈ U |q+1 with

g =
∑
I∈℘

∑
R∈℘(q)

ζRf̂IREI ,

h =
∑
I∈℘

∑
R∈℘(q)

(−1)|R|ζR ̂fR∪{q+1}EI : U |q → Λ .

Let (b, β) = (b, β′, βq+1) ∈ U |q+1 . By induction hypothesis g and h

are differentiable. So there exist ∆1, . . . ,∆p , Σ1, . . . ,Σq , ∆′
1, . . . ,∆

′
i ,

Σ′
1, . . . ,Σ

′
j : U |q → Λ continuous at (b, β) such that

g
(
z, ζ ′

)
= g

(
b, β′

)
+

p∑
i=1

(zi − bi) ∆i

(
z, ζ ′

)
+

q∑
j=1

(
ζ ′i − βi

)
Σi

(
z, ζ ′

)
and

h
(
z, ζ ′

)
= h

(
b, β′

)
+

p∑
i=1

(zi − bi) ∆′
i

(
z, ζ ′

)
+

q∑
j=1

(
ζ ′i − βi

)
Σ′
i

(
z, ζ ′

)
for all (z, ζ ′) ∈ U |q . So for all (z, ζ) = (z, ζ ′, ζq+1) ∈ Up|q+1
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f(z, ζ) = g
(
z, ζ ′

)
+ ζq+1h

(
z, ζ ′

)
= g(b, β) + βq+1h(b, β) +

p∑
i=1

(zi − bi)
(
∆i

(
z, ζ ′

)
+ ζq+1∆′

i

(
z, ζ ′

))
+

q∑
j=1

(ζi − βi)
(
Σj

(
z, ζ ′

)
− ζq+1Σ′

j

(
z, ζ ′

))
+ (ζq+1 − βq+1)h(b, β) .

So we see that f is differentiable at (b, β) ,
∂i|f(b, β) = ∂i|g (b, β′) + βq+1∂i|h(b, β) for all i = 1, . . . , p ,
∂|jf(b, β) = ∂|jg (b, β′)− βq+1∂|jh(b, β) for all j = 1, . . . , q and
∂|q+1f(b, β) = h(b, β) .
By induction hypothesis

∂i|g
(
b, β′

)
=
∑
I∈℘

∑
R∈℘(q)

β′R∂̂ifIR(b)EI ,

∂i|h
(
b, β′

)
=
∑
I∈℘

∑
R∈℘(q)

(−1)|R|β′R ̂∂ifR∪{q+1}(b)EI

for all i = 1, . . . , p ,

∂|jg
(
b, β′

)
=
∑
I∈℘

∑
R∈℘(q),j∈R

(−1)|R\{j}<j|β′R\{j}f̂IR(b)EI ,

∂|jh
(
b, β′

)
=
∑
I∈℘

∑
R∈℘(q),j∈R

(−1)|R\{j}<j|+|R|β′R\{j} ̂fR∪{q+1}(b)EI

for all j = 1, . . . , q . So if j ∈ {1, . . . , q} one has

∂|jf(b, β) =
∑
I∈℘

∑
R∈℘(q),j∈R

(−1)|R\{j}<j|β′R\{j}f̂IR(b)EI

− βq+1

∑
I∈℘

∑
R∈℘(q),j∈R

(−1)|R\{j}<j|+|R|β′R\{j} ̂fR∪{q+1}(b)EI

=
∑
I∈℘

∑
S∈℘(q+1),j∈S

(−1)|S\{j}<j|βS\{j}f̂IS(b)EI .

With similar calculations in the cases i = 1, . . . , p and j = q + 1 the rest
follows as well. �

Corollary 4.12 Let Ω ⊂
open

IRp|q such that Ωx =
{
(z, ζ) ∈ Ω

∣∣ (z, ζ)# = x
}

is connected for all x ∈ Ω# . Then the same holds as in corollary 4.11 .
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Proof: (i) ⇒ (ii) : again trivial.
(ii) ⇒ (iii) and uniqueness: Let α be the set of all (U, g) where U ⊂

open
Ω#

and g ∈ D
(
U |q,Λ

)
such that g ≡ f on U |q ∩ Ω .

Step I Show that if (U, g) and (V, h) ∈ α then g ≡ h on (U ∩ V )|q .

Let (z, ζ) ∈ (U ∩ V )|q ⊂
(
Ω#
)|q . Then there exists (z′, ζ ′) ∈ Ω ∩ (U ∩ V )|q

such that z′# = z# . Since Ω ∩ (U ∩ V )|q ⊂
open

IRp|q there exists Ω′ ⊂
open

IRp|q

of cube type such that 0 ∈ Ω′ and

(
z′, ζ ′

)
+ Ω′ ⊂ Ω ∩ (U ∩ V )|q .

Therefore g (♦+ (z′, ζ ′))|(Ω′#)|q and h (♦+ (z′, ζ ′))|(Ω′#)|q both are

differentiable extensions of f (♦+ (z′, ζ ′))|Ω′ to
(
Ω′#

)|q
, and so

g (♦+ (z′, ζ ′)) = h((♦+ (z′, ζ ′)) on
(
Ω′#

)|q
by the uniqueness in

corollary 4.11 . Since (z, ζ)− (z′, ζ ′) ∈
(
Ω′#

)|q
, we have g(z, ζ) = h(z, ζ) .

Step II Show that for all (b, β) ∈ Ω there exists (U, g) ∈ α such that
b# ∈ U .

Let (b, β) ∈ Ω . Since Ω ⊂
open

IRp|q , there exists Ω′ ⊂
open

IRp|q of cube type

such that 0 ∈ Ω′ and (b, β) + Ω′ ⊂ Ω . Let U := ((b, β) + Ω′)# ⊂
open

Ω#.

Then clearly b# ∈ U . By corollary 4.11 there exists h ∈ D
((

Ω′#
)|q

,Λ
)

such that h = f(♦+(b, β)) on Ω′ , because f(♦+(b, β))|Ω′ ∈ D (Ω′,Λ) . So
if we define g := h(♦− (b, β)) ∈ D

(
U |q,Λ

)
we have g ≡ f on (b, β) + Ω′ .

Now let us prove g ≡ f on U |q ∩ Ω .

So let (z, ζ) ∈ U |q ∩ Ω and x := z# ∈ U . Since
U = ((b, β) + Ω′)# there exists (z′, ζ ′) ∈ (b, β) + Ω′ such that
x = z′# . Let X be the set of all (z′′, ζ ′′) ∈ Ωx such that

∂i1|J1
. . . ∂ir|Jr

∂|j1K1
. . . ∂|jsKs

(FI −GI)
(
z′′, ζ ′′

)
= 0

for all i1, . . . , ir ∈ {1, . . . , p} , J1, . . . , Jr ∈ ℘0 \ {∅} ,
j1, . . . , js ∈ {1, . . . , q} , K1, . . . ,Ks ∈ ℘1 , I ∈ ℘ . Then clearly
X ⊂

closed
Ωx , and (z′, ζ ′) ∈ X since (b, β) + Ω′ ⊂

open
Ω is a neigh-

bourhood of (z′, ζ ′) . But since f and g both fulfill the systems
of differential equations given in theorem 4.9 (iii) and theorem
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4.10 (ii) for each ζ1, . . . , ζq , all FI , GI , I ∈ ℘ , are locally affine
linear with respect to all xiJ , i = 1, . . . , p , J ⊂ ℘0 \ {∅} and
yjK , j = 1, . . . , q , K ⊂ ℘1 . So X ⊂

open
Ωx .

And since Ωx is connected we have X = Ωx , so (z, ζ) ∈ X and
so f(z, ζ) = g(z, ζ) . �

Step III Conclusion.

Since by step II

⋃
(U,g)∈α

U |q =
(
Ω#
)|q

,

g = h on (U ∩ V )|q for all (U, g) and (V, h) ∈ α by step I there exists a
unique function f∗ ∈ D

((
Ω#
)|q) such that f∗|U |q = g for all (g, U) ∈ α .

So f = f∗|Ω , and f∗ is the only function in D
((

Ω#
)|q) which has this

property. Since
(
Ω#
)|q is of cube type, we see that f∗ has the required

form by corollary 4.11 . �

(iii) ⇒ (i) : same as in in the proof of corollary 4.11 . �

Now we prove theorem 4.8 .

Let U := Ω# and

Φ : (Λ (IRq)⊗ C∞(U)) �̂Λ→ C∞
(
U |q,Λ

)
be the unique IR-linear and continuous map given by
eS ⊗ f ⊗ EI �→

(
ζS f̂

)
EI for all f ∈ C∞(U) , S ∈ ℘(q) , I ∈ ℘ . Then Φ is

surjective by lemma 4.11 since U |q is of cube type. To prove injectivity let

f :=
∑
I∈℘

∑
S∈℘(q)

eS ⊗ fIS ⊗ EI ∈ (Λ (IRq)⊗ C∞(U)) �̂Λ

such that

0 = Φ(f) =
∑
I∈℘

∑
S∈℘(q)

ζS f̂ISEI ,

and let x ∈ U . We prove by induction on |S| that all fIS(x) = 0 , I ∈ ℘ ,
S ∈ ℘(q) .
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Let n ∈ IN such that fKR(x) = 0 for all K ∈ ℘ , R ∈ ℘(q) with
|R| < n , and let I ∈ ℘ and S ∈ ℘(q) with |S| = n . Define
ζj := E{j+max I} for all j = 1, . . . , q . Then (x, ζ) ∈ U |q , and

0 = Φ(f)(x, ζ) =
∑
K∈℘

∑
R∈℘(q)

ER+max IfKR(x)EK

=
∑
L∈℘

∑
R∈℘(q),R+max I⊂L

(−1)|L\(R+max I)<R+max I| ×

× fL\(R+max I),R(x)EL .

Since all fKR(x) ∈ IR , K ∈ ℘ , R ∈ ℘(q) this implies

∑
R∈℘(q),R+max I⊂L

(−1)|L\(R+max I)<(R+max I)|fL\(R+max I),R(x) = 0

for all L ∈ ℘ . If we set L := I∪̇(S + max I) we see that for all
R ∈ ℘(q) : R + max I ⊂ L implies R ⊂ S and so either R = S

or |R| < n . By induction hypothesis we obtain fIS(x) = 0 . �

For proving the conservation of multiplication and grading let eR ⊗ f ⊗ EI
and eS ⊗ g⊗EK ∈ (Λ (IRq)⊗ C∞(U))�Λ and (z, ζ) ∈ IRp|q . Then we have

eReS =

⎧⎨⎩ (−1)|S<R| eR∪S if R ∩ S = ∅
0 otherwise

,

and since all ζj ∈ Λ1

ζRζS =

⎧⎨⎩ (−1)|S<R| ζR∪S if R ∩ S = ∅
0 otherwise

as well.

Of course since Λ is a graded algebra ζ̇S ≡ |S| and ĖI ≡ |I| mod 2 . So
EIζ

S = (−1)|I||S|ζSEI . This all implies

Φ
((
eR ⊗ f ⊗ EI

) (
eS ⊗ g ⊗ EK

))
(z, ζ)

= Φ
(
(−1)|I||S|eReS ⊗ fg ⊗ EIEK

)
(z, ζ)

= (−1)|I||S|ζRζSf(z)g(z)EIEK

= ζRf(z)EIg(z)ζSEK =
(
Φ
(
eS ⊗ f ⊗ EI

)
Φ
(
eR ⊗ g ⊗ EK

))
(z, ζ) .
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eR ⊗ f ⊗EI is homogeneous of parity ≡ |S|+ |I| mod 2 by definition of
the graded tensor product, and

Φ(eS ⊗ f ⊗ EI)(z, ζ) = ζS f̂(z)EI ∈ Λ

is clearly homogeneous with parity ≡ |S|+ |I| mod 2 as well.

Now let |Ω : C∞
(
U |q) → D (Ω) be the restriction map. Then it is

clearly a graded algebra homomorphism, and by corollary 4.12 we have
∗ : D (Ω)→ C∞

(
U |q) , f �→ f∗ as an inverse homomorphism. �

Now we will deduce a lemma which will be useful in what follows.

Lemma 4.13 Let U ⊂
open

IRp and f ∈ D
(
U |q,Λ

)
.

(i) For all (b, β) ∈ U |q there exist ∆1, . . . ,∆p , Σ1, . . . ,Σq ∈ D
(
U |q,Λ

)
such

that for all (z, ζ) ∈ U |q

f(z, ζ) = f(b, β) +
p∑
i=1

(zi − bi) ∆i(z, ζ) +
q∑
j=1

(ζj − βj) Σj(z, ζ) .

(ii) f is determined by the functions
(
∂|j1 . . . ∂|jr f

)∣∣
U
∈ C∞(U) ⊗ Λ ,

{j1, . . . , jr} ⊂ {1, . . . , q} with j1 < · · · < jr .

Proof: By corollary 4.11 and theorem 4.8 we can write

f =
∑
I∈℘

∑
S∈℘(q)

ζS f̂ISEI

with uniquely determined fIS ∈ C∞(U) , I ∈ ℘ , S ∈ ℘(q) because
U |q ⊂ IRp|q is of cube type.
(i) Since f

(
♦+

(
b− b#, β

))
∈ D

(
U |q,Λ)

)
we can say without loss of gen-

erality b = b# ∈ U and β = 0 . Since all fI∅ ∈ C∞(U) there exist
∆Ii ∈ C∞(U) , I ∈ ℘ , i = 1, . . . , p , such that

fI∅(x) = fI∅(b) +
p∑
i=1

(xi − bi)∆Ii(x)

for all I ∈ ℘ and x ∈ U . If we apply ̂ to these equations we obtain

f(z, ζ) =
∑
I∈℘

fI∅(b)EI +
p∑
i=1

(zi − bi)
∑
I∈℘

∆̂Ii(z)EI

+
q∑
j=1

ζj
∑
I∈℘

∑
S∈℘(q),j=minS

ζS\{j}f̂IS(z)EI

= f(b,0) +
p∑
i=1

(zi − bi) ∆i(z, ζ) +
q∑
j=1

ζjΣj(z, ζ)
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for all (z, ζ) ∈ U |q with ∆i :=
∑

I∈℘ ∆̂IiEI ,
Σj :=

∑
I∈℘
∑

S∈℘(q),j=minS ζ
S\{j}f̂IS ∈ D

(
U |q,Λ

)
, i = 1, . . . , p ,

j = 1, . . . , q . �

(ii) Since all ∂j| are linear it suffices to show that if
(
∂|j1 . . . ∂|jr f

)∣∣
U

= 0
for all r ∈ IN , (j1, . . . , jr) ∈ ℘(q)r then f = 0 . So assume all(
∂|j1 . . . ∂|jr f

)∣∣
U

= 0 . Let R = {j1, . . . , jr} ∈ ℘(q) with j1 < · · · < jr .
Then for all x ∈ U by the derivation rule given in corollary 4.11

0 = ∂|j1 . . . ∂|jr f(x,0) =
∑
I∈℘

fIR(x)EI .

But all fIR(x) ∈ IR , so since x ∈ U was arbitrary all fIR = 0 , and this
implies f = 0 . �

If f ∈ D
(
U |q) then especially z# = b# implies f(z, ζ)# = f(b, β)# for all

(z, ζ), (b, β) ∈ U |q .

From now on let Ω ⊂
open

IRp|q and Ω′ ⊂
open

IRr|s such that Ωx and Ω′
x′ are con-

nected for all x ∈ Ω# resp. x′ ∈ Ω′# . We define

D(Ω) := Ψ
((

Λ (IRq)⊗ C∞
(
Ω#
))
⊗ 1
)
⊂ D(Ω,Λ) ,

where Ψ :
(
Λ (IRq)⊗ C∞

(
Ω#
))
�̂Λ → D(Ω,Λ) is the isomorphism given by

theorem 4.8 . Then D(Ω) is a sub graded algebra of D(Ω,Λ) not containing
Λ , more precisely D(Ω) ∩ Λ = IR . We can characterize D(Ω) as follows:

Theorem 4.14

a) D(Ω) is closed under derivation.

b) Let f ∈ D(Ω,Λ) . Then there are equivalent

(i) f ∈ D(Ω) ,

(ii) there exists a family (fS)S∈℘(q) ∈ C∞
(
Ω#
)℘(q) such that

f∗ =
∑

S∈℘(q)

ζS f̂S ,

(iii) f∗(z, ζ) ∈ 〈z, ζ〉 for all (z, ζ) ∈
(
Ω#
)|q , where 〈z, ζ〉 is defined to be

the smallest closed sub graded algebra of Λ containing all
zi, . . . , zp , ζi, . . . , ζq ,

(iv) ∂|j1 . . . ∂|jr f
∗(x,0) ∈ IR for all {j1, . . . , jr} ∈ {1, . . . , q}r and

x ∈ Ω# .
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c) Λ(IRq) ⊗ C∞
(
Ω#
)
� D (Ω) as graded algebras where the isomorphism is

the unique IR-linear map given by eS ⊗ f �→ ζS f̂ for all f ∈ C∞
(
Ω#
)

and
S ∈ ℘(q) .

d) D (Ω,Λ) = D (Ω) �̂Λ , where on D (Ω,Λ) we use the topology coming from(
Λ (IRq)⊗ C∞

(
Ω#
))
�̂Λ via the isomorphism Ψ .

Proof: b) (i) ⇔ (ii) : trivial.

a) Let f ∈ D(Ω) . Then by b) (i) ⇔ (ii) there exists a family
(fS)S∈℘(q) ∈ C∞

(
Ω#
)℘(q) such that f∗ =

∑
S∈℘(q) ζ

S f̂S .
So

(
∂i|f
)∗ = ∂i|f∗ =

∑
S∈℘(q)

ζS ∂̂ifS ∈ D(Ω)

for all i = 1, . . . , p and

(
∂|jf

)∗ = ∂|jf∗ =
∑

S∈℘(q),j∈S
(−1)|S<j|ζS\{j}f̂S ∈ D(Ω)

for all j = 1, . . . , q by corollary 4.11 . �

b) (ii) ⇒ (iii) : trivial.
(iii) ⇒ (iv) : By (iii) we have g∗(x,0) ∈ 〈x,0〉 = IR for all g ∈ D(Ω) and
x ∈ Ω# . Since D(Ω) closed under derivation by a) we get (iv) . �

(iv) ⇒ (ii) : By corollary 4.12 we can write

f∗ =
∑
I∈℘

∑
S∈℘(q)

ζS f̂ISEI ,

where (fIS)I∈℘,S∈℘(q) ∈
(
C∞
(
Ω#
))℘×℘(q) . So let R = {j1, . . . , jr} ∈ ℘(q)

with j1 < · · · < jr and x ∈ Ω# . Then

∂|j1 · · · ∂|jr f∗(x,0) =
∑
I∈℘

fIR(x)EI ∈ IR

by (iv) . Since all fIR(x,0) ∈ IR this means fIR(x) = 0 for all I ∈ ℘ \ {∅} .
Because R and x are arbitrary we have

f∗ =
∑

S∈℘(q)

ζS f̂∅S .�

c) trivial since it is the restriction of the isomorphism Ψ .
d) trivial since Ψ(1⊗ 1⊗ EI) = EI . �
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The next two theorems show that
(
Ω#
)|q is essentially determined by the

algebra D(Ω) .

Let U ⊂
open

IRn and S (C∞(U)) be the spectrum of C∞(U) , which is the set

of all unital algebra homomorphisms η : C∞(U) → IR . Then from analysis
we know that there is a canonical bijection

U → S (C∞(U)) , a �→ ηa

with ηa(f) := f(a) for all f ∈ C∞(U) and a ∈ U . There is an analogous
result for D(Ω) :

Let S (D(Ω,Λ)) be the set of all graded algebra homomorphisms
ψ : D(Ω,Λ)→ Λ being the identity on Λ , and let S (D(Ω)) be the set of all
unital graded algebra homomorphisms η : D(Ω)→ Λ .

Theorem 4.15 We have bijections

(
Ω#
)|q
→ S (D(Ω,Λ)) , (b, β) �→ ψ(b,β) ,

where ψ(b,β)(f) := f∗(b, β) for all f ∈ D(Ω,Λ) , and

(
Ω#
)|q
→ S (D(Ω)) , (b, β) �→ η(b,β) ,

where η(b,β)(g) := g∗(b, β) for all g ∈ D(Ω) and (b, β) ∈
(
Ω#
)|q .

Proof: For proving surjectivity let first ψ ∈ S (D(Ω,Λ)) ,
bi := ψ(zi) ∈ Λ0 , i = 1, . . . , p , b := (b1, . . . , bp) , βj := ψ(ζi) ∈ Λ1 ,

j = 1, . . . , q , and β := (β1, . . . , βq) . Since C∞
(
Ω#
)
→ IR , h �→ ψ

(
ĥ
)#

is again a unital algebra homomorphism, there exists a ∈ Ω# such that

ψ
(
ĥ
)#

= h(a) for all h ∈ C∞(U) . So b# = a , and so (b, β) ∈
(
Ω#
)|q .

Now let f ∈ D(Ω,Λ) . Then by lemma 4.13 (i) there exist ∆1, . . . ,∆p ,
Σ1, . . . ,Σq ∈ D

((
Ω#
)|q
,Λ
)

such that for all (z, ζ) ∈
(
Ω#
)|q

f∗(z, ζ) = f∗(b, β) +
p∑
i=1

(zi − bi) ∆i(z, ζ) +
q∑
j=1

(ζj − βj) Σj(z, ζ) .

We see that ψ(f) = f∗(b, β) . This proves ψ = ψ(b,β) .

Now let η ∈ S (D(Ω)) . Then by Λ-linear extension there exists
ψ ∈ S (D(Ω,Λ)) such that η = ψ|D(Ω) . So there exists (b, β) ∈

(
Ω#
)|q such

that ψ = ψ(b,β) , and so η = η(b,β) .
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Injectivity is clear because all coordinate functions z1, . . . , zp , ζ1, . . . , ζq
belong to D

((
Ω#
)|q) . �

Definition 4.16 Let ϕ : Ω→ Ω′ .

(i) ϕ is called a D-map if and only if all component functions ϕi| : Ω→ IR1|0 ,
i = 1, . . . , r , and ϕ|j : Ω→ IR0|1 , j = 1, . . . , s , belong to D(Ω) .

(ii) ϕ is called a diffeomorphism if and only if ϕ is bijective and ϕ and ϕ−1

are D-maps.

Clearly if ϕ : Ω → Ω′ is a D-map then there exists a unique extension
ϕ∗ :

(
Ω#
)|q → (

Ω′#)|s of ϕ which is as well a D-map. For all i = 1, . . . , r
and j = 1, . . . , s we have (ϕ∗)i| = ϕ∗

i| and (ϕ∗)|j = ϕ∗
|j .

In the super case a chain rule holds as well:

Proposition 4.17 Let f ∈ D(Ω′) and

ϕ = (ϕ1|, . . . , ϕr|, ϕ|1, . . . , ϕ|s) : Ω→ Ω′

be a D-map. Then f ◦ ϕ ∈ D(Ω) , and for all i = 1, . . . , p and j = 1, . . . , q
we have

∂i| (f ◦ ϕ) =
r∑

k=1

(
∂i|ϕk|

) ((
∂k|f

)
◦ ϕ
)

+
s∑
l=1

(
∂i|ϕ|l

) ((
∂|lf
)
◦ ϕ
)

and

∂|j (f ◦ ϕ) =
r∑

k=1

(
∂|jϕk|

) ((
∂k|f

)
◦ ϕ
)

+
s∑
l=1

(
∂|jϕ|l

) ((
∂|lf
)
◦ ϕ
)
.

Proof: Let (b, β) ∈ Ω . Then ϕ(b, β) ∈ Ω′ , and so by lemma 4.13 (i) there
exist ∆1, . . . ,∆r , Σ1, . . . ,Σs ∈ D(Ω′,Λ) such that for all (z′, ζ ′) ∈ Ω′

f
(
z′, ζ ′

)
= f (ϕ(b, β)) +

r∑
k=1

(
z′k − ϕk|(b, β)

)
∆k

(
z′, ζ ′

)
+

s∑
l=1

(
ζ ′l − ϕ|l(b, β)

)
Σl

(
z′, ζ ′

)
,

and there exist Rki , Skj , Tli and Ulj ∈ D(Ω,Λ) , i = 1, . . . , p ,
j = 1, . . . , q , k = 1, . . . , r , l = 1, . . . , s , such that for all k = 1, . . . , r ,
l = 1, . . . , s and (z, ζ) ∈ Ω

ϕk|(z, ζ) = ϕk|(b, β) +
p∑
i=1

(zi − bi)Rki(z, ζ) +
q∑
j=1

(ζj − βj)Skj(z, ζ) ,
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and

ϕ|l(z, ζ) = ϕ|l(b, β) +
p∑
i=1

(zi − bi)Tli(z, ζ) +
q∑
j=1

(ζj − βj)Ulj(z, ζ) .

So for all (z, ζ) ∈ Ω we get

(f ◦ ϕ) (z, ζ) = (f ◦ ϕ) (b, β) +
r∑

k=1

(
ϕk|(z, ζ)− ϕk|(b, β)

)
∆k (ϕ(z, ζ))

+
s∑
l=1

(
ϕ|l(z, ζ)− ϕ|l(b, β)

)
Σl (ϕ(z, ζ))

= (f ◦ ϕ) (b, β)

+
p∑
i=1

(zi − bi)
(

r∑
k=1

Rki(z, ζ)∆k (ϕ(z, ζ)) +
s∑
l=1

Tli(z, ζ)Σl (ϕ(z, ζ))

)

+
q∑
j=1

(ζj − βj)
(

r∑
k=1

Skj(z, ζ)∆k (ϕ(z, ζ)) +
s∑
l=1

Ulj(z, ζ)Σl (ϕ(z, ζ))

)
,

so f ◦ ϕ is differentiable and so f ◦ ϕ ∈ D(Ω,Λ) . For all i = 1, . . . , p and
j = 1, . . . , q

∂i| (f ◦ ϕ) (b, β) =
r∑

k=1

Rki(b, β)∆k (ϕ(b, β)) +
s∑
l=1

Tli(b, β)Σl (ϕ(b, β))

=
r∑

k=1

∂i|ϕk|(b, β)∂k|f (ϕ(b, β))

+
s∑
l=1

∂i|ϕ|l(b, β)∂|lf (ϕ(b, β))

and

∂|j (f ◦ ϕ) (b, β) =
r∑

k=1

Skj(b, β)∆k (ϕ(b, β)) +
s∑
l=1

Ulj(b, β)Σl (ϕ(b, β))

=
r∑

k=1

∂|jϕk|(b, β)∂k|f (ϕ(b, β))

+
s∑
l=1

∂|jϕ|l(b, β)∂|lf (ϕ(b, β)) .

For proving f ◦ϕ ∈ D(Ω) let (z, ζ) ∈ Ω . Then since all component functions
of ϕ belong to D(Ω) and f ∈ D(Ω′) we have
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(f ◦ ϕ) (z, ζ) ∈
〈
ϕ1|(z, ζ), . . . , ϕr|(z, ζ), ϕ|1(z, ζ), . . . , ϕ|s(z, ζ)

〉
⊂ 〈z, ζ〉 .�

So every D-map ϕ : Ω→ Ω′ induces a unital graded algebra homomorphism
Φ : D(Ω′)→ D(Ω) , f �→ f ◦ ϕ . The converse is almost true.

Theorem 4.18 Let Φ : D(Ω′) → D(Ω) be a unital graded algebra homo-
morphism. Then

(i) there exists a unique map ϕ : Ω→
(
Ω′#)|s such that Φ(f) = f∗ ◦ϕ for all

f ∈ D(Ω′) ,

(ii) ϕ is a D-map, and Φ(f)∗ = f∗ ◦ ϕ∗ for all f ∈ D(Ω′) ,

(iii) Φ is an isomorphism if and only if ϕ∗ is a diffeomorphism.

Proof: (i) For proving uniqueness let

ϕ = (ϕ1|, . . . , ϕr|, ϕ|1, . . . , ϕ|s) : Ω→
(
Ω′#
)|s

with component functions ϕ1|, . . . , ϕr| ∈ ΛΩ
0 and ϕ|1, . . . , ϕ|s ∈ ΛΩ

1 such that
Φ(f)∗ = f∗ ◦ ϕ for all f ∈ D(Ω′) . Let z′i , i = 1, . . . , r , and ζ ′j ∈ D(Ω′) ,
j = 1, . . . , s , be the coordinate functions on Ω′ . Then ϕi| = z′i

∗ ◦ϕ = Φ(z′i)
and ϕ|j = ζ ′j

∗ ◦ ϕ = Φ(ζ ′j) for all i = 1, . . . , r and j = 1, . . . , s .

For proving existence notice that since Φ is a unital graded algebra homo-
morphism it induces a map

S (D(Ω))→ S
(
D(Ω′)

)
, η �→ η ◦ Φ

and so by theorem 4.15 a map ϕ̃ :
(
Ω#
)|q → (Ω′#)|q such that

η(b,β) ◦ Φ = ηϕ̃(b,β) for all (b, β) ∈
(
Ω#
)|q . So for all f ∈ D(Ω′) and

(b, β) ∈
(
Ω#
)|q

Φ(f)∗(b, β) =
(
η(b,β) ◦ Φ

)
(f) = ηϕ̃(b,β)(f) = f∗ (ϕ̃(b, β)) ,

and so Φ(f)∗ = f∗ ◦ ϕ̃ . If we define ϕ := ϕ̃|Ω we get Φ(f) = f∗ ◦ ϕ for all
f ∈ D(Ω′) . �

(ii) Let

ϕ̃ = (ϕ̃1|, . . . , ϕ̃r|, ϕ̃|1, . . . , ϕ̃|s) :
(
Ω#
)|q
→
(
Ω′#
)|s

with component functions ϕ̃1|, . . . , ϕ̃r| ∈ ΛΩ
0 and ϕ̃|1, . . . , ϕ̃|s ∈ ΛΩ

1 . Let

z′i , i = 1, . . . , r , and ζ ′j ∈ D
((

Ω#
)|q) , j = 1, . . . , s , be the coordinate
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functions on
(
Ω′#)|s . Then ϕ̃i| = z′i ◦ ϕ̃ = Φ(z′i)

∗ ∈ D
((

Ω#
)|q) and

ϕ̃′
|j = ζj ◦ ϕ̃ = Φ(ζ ′j)

∗ ∈ D
((

Ω#
)|q) for all i = 1, . . . , r and j = 1, . . . , s .

So ϕ̃ is a D-map, and since ϕ = ϕ̃|Ω , ϕ is again a D-map and ϕ̃ = ϕ∗ . �

(iii) By theorem 4.8 we have D(Ω) � D
((

Ω#
)|q) and

D(Ω′) � D
((

Ω′#)|s) via ∗ , which are unital graded algebra isomorphisms.
So Φ induces a unital graded algebra homomorphism

Ψ : D
((

Ω′#
)|s)

→ D
((

Ω#
)|q)

.

Ψ(g) = g ◦ ϕ∗ for all g ∈ D
((

Ω′#)|s) as we saw in the proof of (i) .
’⇒’ : Let Φ be an isomorphism. Then so is Ψ .
By (i) and (ii) there exists a D-map ρ :

(
Ω′#)|s → (Ω#

)|q such that

Ψ−1(h) = h ◦ ρ for all h ∈ D
((

Ω#
)|q) . So for g ∈ D

((
Ω′#)|s) we have

g = Ψ (Φ(g)) = g ◦ ϕ∗ ◦ ρ .

So by the uniqueness in (i) we obtain ϕ∗◦ρ = id and by the same calculation
ρ ◦ ϕ∗ = id .
’⇐’ : Let ϕ∗ be a diffeomorphism. Then ϕ−1 induces a unital graded algebra
isomorphism

Ξ : D
((

Ω#
)|s)

→ D
((

Ω′#
)|q)

, h �→ h ◦ ϕ−1 .

For g ∈ D
((

Ω′#)|s) we have

Ξ (Ψ(g)) = g ◦ ϕ ◦ ϕ−1 = g .

So Ξ ◦Ψ = id and by the same calculation Ψ ◦ Ξ = id . Therefore Ψ and so
Φ are isomorphisms. �

To conclude this section we make the following definition:

Definition 4.19 Let Ω ⊂ IRp|q . Ω is called super open in IRp|q if and only
if Ω# ⊂

open
IRp and Ω =

(
Ω#
)|q .

In this case we regard D (Ω) � Λ (IRq) ⊗ C∞
(
Ω#
)

as the natural analogon
of C∞-functions for the super open set Ω . There are two reasons for doing
so. The first is: if U ⊂

open
IRn then

C∞(U,Λ) = C∞(U)⊗̂Λ .
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The second is: in the case Ω ⊂ IRp|0 we have D(Ω) � C∞
(
Ω#
)

.
For all f ∈ C∞

(
Ω#
)

we identify f̂ and f , and if f ∈ D (Ω) we write

f =
∑
I∈℘(q)

ζIfI

with uniquely determined fI ∈ C∞
(
Ω#
)

, I ∈ ℘(q) . On D(Ω) the body
map now simply occurs as the restriction map

# : D(Ω)→ C∞
(
Ω#
)
, f �→ f |Ω# ,

which is a continuous unital graded algebra epimorphism.

4.2 The complex case

Now let IK := C . Then ΛC is the complexification of Λ . There is a graded
involution on ΛC :

: ΛC → ΛC , w =
∑
I∈℘

aIEI �→ w =
∑
I∈℘

a−IEI .

Clearly is a homeomorphism. degw = degw for all w ∈ ΛC ,
commutes with the body map # , and restricted to C it is just the complex
conjugation.

By the way: Let ′ be the involution on ΛC given by theorem 2.8 (i) , in
particular w′ = w if w ∈ Λ0 and w′ = iw if w ∈ Λ1 . Then an easy calcu-
lation shows that there exists a unique unital bicontinuous graded algebra
automorphism ρ : ΛC → ΛC such that

ρ
(
E{n}

)
=
E{n} − iE{−n}

2
for all n ∈ Z .

ρ−1
(
E{n}

)
= E{n} + iE{−n}

for all n ∈ Z , and

ΛC ρ−→ ΛC

′ ↑ % ↑
ΛC ρ−→ ΛC

.

Let Λr :=
(
ΛC
)
IR

be the real part of ΛC with respect to the graded invo-
lution . Then ρ|Λ : Λ→ Λr is a bicontinuous unital graded isomorphism.
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Now we define Cp|q,q :=
(
ΛC

0

)p×(ΛC
1

)q for all p, q ∈ IN . Then again we have
a body map

# : Cp|q,q → Cp ,

(w, ϑ) = (w1, . . . , wp, ϑ1, . . . , ϑq) �→ (w, ϑ)# :=
(
w#

1 , . . . , w
#
p

)
= w# .

Let U ⊂
open

Cp . Then we define U |q,q :=
{

(w, ϑ) ∈ Cp|q,q ∣∣ (w, ϑ)# ∈ U
}

.

We have U |q,q ⊂
open

Cp|q,q and
(
U |q,q)# = U . Conversely if Ω ⊂

open
Cp|q,q then

clearly Ω# ⊂
open

Cp and Ω ⊂
(
Ω#
)|q,q .

If M ⊂ Cp|q,q , the set
(
ΛC
)M =

(
ΛC

0

)M ⊕ (ΛC
1

)M of all functions
f : M → ΛC forms a unital associative graded commutative algebra by
pointwise addition and multiplication, and we consider ΛC as the sub graded
algebra of

(
ΛC
)M containing precisely the constant functions. Then clearly

C
(
M,ΛC

)
is a sub graded algebra of

(
ΛC
)M containing ΛC .

Theorem 4.20 For each U ⊂
open

Cp we have an algebra embedding

̂ : C∞(U)C ↪→ C
(
U |0,0,ΛC

0

)
, f �→ f̂

where for all w ∈ U |0,0

f̂(w) :=
∑

m,n∈INp

1
m!n!

∂m∂
n
f
(
w#
)(

w −w#
)m

(w −w#)
n
.

Clearly again f̂ |U = f , and if ∂nfk � ∂nf and ∂n
fk � ∂

n
f pointwise for

all n ∈ INp then again f̂k � f̂ pointwise.

Proof: same as in the real case since deg w = deg w for all w ∈ ΛC .

Again we have a sheef embedding (C∞Cp)C ↪→ C
(
♦|0,0,ΛC

0

)
.

Lemma 4.21 Let U ⊂
open

Cp , f ∈ C∞(U)C and b ∈ U |0,0 . Then for all

w ∈ Cp|0,0 with w# = 0

f̂(b + w) =
∑

m,n∈INp

1
m!n!

∂̂m∂
n
f (b)wmwn .

Proof: same as in the real case.

Lemma 4.22 Let

f(z) :=
∑

m,n∈INp

amn

m!n!
(z− c)m (z− c)

n
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be a power series convergent in U ⊂ Cp with c ∈ Cp and all amn ∈ C . Then
for all w ∈ U |0,0

f̂(w) =
∑

m,n∈INp

amn

m!n!
(w − c)m (w − c)

n
.

Proof: same as in the real case.

There is a canonical restriction of this construction to (Λr)0 :

Lemma 4.23 Let U ⊂
open

Cp and f ∈ C∞(U)C . Then

(i) if U ∩ IRp �= ∅ and g := f |U∩IRp we have

f̂(w) =
∑

n∈INp

1
n!
∂ng

(
w#
)(

w −w#
)n

for all w ∈ U |0,0 ∩ (Λr)
p
0 .

(ii) f̂ = f̂ , and so if f(U) ⊂ IR then f
(
U |0,0

)
⊂ (Λr)0 .

Proof: (i) Let w ∈ U |0,0 ∩ (Λr)
p
0 . Then

f̂(w) =
∑

m,n∈INp

1
m!n!

∂m∂
n
f
(
w#
)(

w −w#
)m+n

.

Since for each fixed component the sum over m and n is finite we can
interchange the order of summation. So

f̂(w) =
∑
r∈INp

∑
n∈INp,n≤r

1
(r− n)!n!

∂r−n∂
n
f
(
w#
)(

w −w#
)r

=
∑
r∈INp

1
r!

∑
n∈INp,n≤r

(
r
n

)
∂r−n∂

n
f
(
w#
)(

w −w#
)r

=
∑
r∈INp

1
r!
(
∂ + ∂

)r
f
(
w#
)(

w −w#
)r

=
∑
r∈INp

1
r!
∂rg

(
w#
)(

w −w#
)r

.�

(ii) Let w ∈ U |0,0 . Then

f̂(w) =
∑

m,n∈INp

1
m!n!

∂m∂
n
f
(
w#
)(

w −w#
)m

(w −w#)
n

=
∑

m,n∈INp

1
m!n!

∂
m
∂nf (w#) (w −w#)n (w −w#)

m

= f̂(w) .�
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As in the real case for the following we need some notations:
We set (w, ϑ) = (w1, . . . , wp, ϑ1, . . . ϑq) ∈ Ω with for all i = 1, . . . , p respec-
tively j = 1, . . . , q : wi =

∑
J∈℘0

ziJEJ ∈ C1|0,0 ,
ϑj =

∑
J∈℘1

rjJEJ ∈ C0|1,1 , all ziJ , rjJ ∈ C . We define

ϑS := ϑs1 · · ·ϑsr

for all S = {s1, . . . , sr} ⊂ {1, . . . , q} and s1 < · · · < sr .

If f ∈
(
ΛC
)Ω then we write f =

∑
I∈℘ FIEI with uniquely determined

component functions FI : Ω→ C . Let (b, β) ∈ Ω and I ∈ ℘ . If
i ∈ {1, · · · , p} and J ∈ ℘0 , and FI(w, ϑ) is partially differentiable with
respect to ziJ at (b, β) then we define

∂i|JFI(b, β) :=
∂FI(w, ϑ)
∂riJ

∣∣∣∣
(w,ϑ)=(b,β)

and

∂i|JFI(b, β) :=
∂FI(w, ϑ)
∂ziJ

∣∣∣∣
(w,ϑ)=(b,β)

.

And also if j ∈ {1, · · · , q} , J ∈ ℘1 and FI(w, ϑ) differentiable with respect
to rjJ at (b, β) we define

∂|jJFI(b, β) :=
∂FI(w, ϑ)
∂rjJ

∣∣∣∣
(w,ϑ)=(b,β)

and

∂|jJFI(b, β) :=
∂FI(w, ϑ)
∂rjJ

∣∣∣∣
(w,ϑ)=(b,β)

.

Definition 4.24 Let Ω ⊂
open

Cp|q,q , f : Ω→ ΛC and (b, β) ∈ Ω . f is called

differentiable at (b, β) if and only if there exist Ω′ ⊂
open

Ω such that (b, β) ∈ Ω′

and ∆i,∆′
i,Σj ,Σ′

j : Ω′ → ΛC , i = 1, . . . , p , j = 1, . . . , q , continuous at
(b, β) such that for all (w, ϑ) ∈ Ω′

f(w, ϑ) = f(b, β) +
p∑
i=1

(wi − bi) ∆i(w, ϑ) +
p∑
i=1

(wi − bi)∆′
i(w, ϑ)

+
q∑
j=1

(ϑi − βi) Σj(w, ϑ) +
q∑
j=1

(ϑi − βi)Σ′
j(w, ϑ) .

If f is differentiable at (b, β) then we call ∂i|f(b, β) := ∆i(b, β) ,
∂i|f(b, β) := ∆′

i(b, β) , i = 1, . . . , p , ∂|jf(b, β) := Σj(b, β) ,
∂|jf(b, β) := Σ′

j(b, β) , j = 1, . . . , q , the partial derivatives of f at
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(b, β) . If ∂i|f(b, β) = ∂|jf(b, β) = 0 for all i = 1, . . . , p , j = 1, . . . , q then
f is called complex differentiable at (b, β) .

If f is differentiable at each (b, β) ∈ Ω then f is said to be differentiable, and
∂i|f, ∂i|f : Ω → ΛC , i = 1, . . . , p , and ∂|jf, ∂|jf : Ω → ΛC , j = 1, . . . , q ,
are called the partial derivatives of f . If f is complex differentiable at each
(b, β) ∈ Ω then f is said to be holomorphic.

Notice that again ∂i|f(b, β) , ∂i|f(b, β) , i ∈ {1, . . . , p} , and ∂|jf(b, β) ,
∂|jf(b, β) , j ∈ {1, . . . , q} , are well-defined. This can be proven by
calculations similar to that in the real case.

If Ω ⊂
open

Cp|q,q , then clearly the set of all differentiable mappings Ω → ΛC

forms a sub graded algebra of C
(
Ω,ΛC

)
invariant under , which

contains the holomorphic mappings Ω→ ΛC as a graded sub algebra, both
containing ΛC .

All ∂i| , ∂i| , ∂|j and ∂|j are 0 on ΛC , and again a super product rule holds:

(
∂i|f
)· =

(
∂i|f

)· = ḟ ,
(
∂|jf

)· =
(
∂|jf

)· = ḟ + 1 ,

∂i| (fg) =
(
∂i|f
)
g + f

(
∂i|g
)
, ∂i| (fg) =

(
∂i|f

)
g + f

(
∂i|g
)
,

∂|j (fg) =
(
∂|jf

)
g + (−1)ḟf

(
∂|jg
)

and

∂|j (fg) =
(
∂|jf

)
g + (−1)ḟf

(
∂|jg

)
for all differentiable f, g : Ω→ Λ , f homogeneous.

If Ω ⊂
open

Cp|q,q then we define as in the real case D
(
Ω,ΛC

)
to be the set of all

f ∈
(
ΛC
)Ω that are continuous with respect to w and partially differentiable

with respect to all wi , i = 1, . . . , p , and ϑj , j = 1, . . . , q . We define
O
(
Ω,ΛC

)
to be the set containing all f ∈ D

(
Ω,ΛC

)
that are partially

holomorphic with respect to each wi and ϑj .

Then D
(
Ω,ΛC

)
is a sub graded algebra of

(
ΛC
)Ω invariant under and

containing ΛC , and O
(
Ω,ΛC

)
is a sub graded algebra of D

(
Ω,ΛC

)
contain-

ing ΛC but of course not invariant under .

The main goal in the complex case is:
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Theorem 4.25 Let Ω ⊂
open

Cp|q,q such that

Ωz :=
{
(w, ϑ) ∈ Ω

∣∣ (w, ϑ)# = z
}

for all z ∈ Ω# is connected.

(i) We have isomorphisms

(
Λ (Cq)� Λ (Cq)⊗ C∞

(
Ω#
)C
)
�̂ΛC � C∞

((
Ω#
)|q,q

,ΛC

)
� D

(
Ω,ΛC

)
as unital graded algebras, where on C∞

(
Ω#
)C we use the uniformal structure

given by fn � 0 if and only if ∂k∂
l
fn � 0 compact for all k, l ∈ INp and

pointwise convergence on C∞
((

Ω#
)|q,q

,ΛC
)

.
The first isomorphism is the unique C-linear and continuous map given by
eS ⊗ eT ⊗ f ⊗ EI �→ ϑSϑ

T
f̂EI for all f ∈ C∞

(
Ω#
)C ,

S, T ∈ ℘(q) , I ∈ ℘ , and the second is given by the restriction map.

(ii) The above isomorphism restricts to an isomorphism

(
Λ (Cq)⊗O

(
Ω#
))
�̂ΛC � O

(
Ω,ΛC

)
.

Let Ω ⊂
open

Cp|q,q . Now we say Ω is of cube type if and only if there exist

℘′ ⊂ ℘ \ {∅} finite and ε > 0 such that for all (w, ϑ) ∈
(
Ω#
)|q,q :

(w, ϑ) ∈ Ω if and only if |ziJ | , |rjJ | < ε for all i = 1, . . . , p , j = 1, . . . , q ,
I ∈ ℘′ ∩ ℘0 , J ∈ ℘′ ∩ ℘1 .

In this case clearly Ωz ⊂
open , convex

Cp|q,q
z for all z ∈ Ω# , and Ω# ⊂ Ω .

Clearly U |q,q is of cube type for all U ⊂
open

Cp .

Theorem 4.26 Let Ω ⊂
open

Cp|0,0 be of cube type and f ∈
(
ΛC
)Ω . Then

there are equivalent

(i) f is differentiable,

(ii) f ∈ D
(
Ω,ΛC

)
,

(iii) all FI , I ∈ ℘ , are differentiable with respect to all ziJ , i = 1, . . . , p ,
J ∈ ℘0 , continuous, and they fulfill the following system of differential
equations

∂i|JFI =

⎧⎨⎩ (−1)|I\J<J |∂i|∅FI\J if J ⊂ I
0 otherwise
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and

∂i|JFI =

⎧⎨⎩ (−1)|I\(−J)<−J |∂i|∅FI\(−J) if J ⊂ −I
0 otherwise

for all i = 1, . . . , p , I ∈ ℘ and J ∈ ℘1 ,

(iv) there exists a family (fI)I∈℘ ∈
(
C∞
(
Ω#
)C)℘ such that

f(w) =
∑
I∈℘

f̂I(w)EI

for all w ∈ Ω .

In this case f∗ :=
∑

I∈℘ f̂IEI :
(
Ω#
)|0,0 → ΛC is the unique extension

in D
((

Ω#
)|0,0) of f , f∗ is differentiable, ∂i|f∗ and ∂i|f∗ are again in

D
((

Ω#
)|0,0) , and

∂i|f∗ =
∑
I∈℘

∂̂ifIEI

and

∂i|f∗ =
∑
I∈℘

∂̂ifIEI

for all i = 1, . . . , p .

Proof: almost the same as the proof of theorem 4.9 in the real case. Step I
of (iii) ⇒ (iv) is different:

Show that all FI are affine linear with respect to ziJ , J ⊂ I ,
J �= ∅ , if −J �⊂ I , affine antilinear with respect to ziJ , −J ⊂ I ,
J �= ∅ , if J �⊂ I and C∞ with respect to z∅ := (z1∅, . . . , zp∅) ∈ Ω# .

Let i ∈ {1, . . . , p} and I ∈ ℘0 . Let J ∈ ℘0 \ {∅} such that J ⊂ I and
−J �⊂ I . Then J,−J �⊂ I \ J , and so ∂k|JFI = (−1)|I\J<J |∂k|∅FI\J is
independent of ziJ . So FI is affine linear with respect to ziJ .
Now let J ∈ ℘0 \{∅} such that −J ⊂ I and J �⊂ I . Then J,−J �⊂ I \ (−J) ,
and so again ∂k|JFI = (−1)|I\(−J)<−J |∂k|∅FI\(−J) is independent of ziJ . So
here FI is affine antilinear with respect to ziJ .

Now we prove by induction on n that all FI are Cn with repect to z∅ for
arbitrary n ∈ IN .
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Since f is continuous, all FI are continuous with respect to z∅ .
Now let n ∈ IN such that all FR are Cn with respect to z∅ , and
let i ∈ {1, . . . , p} , I ∈ ℘ , b ∈ Ω .

Choose S ∈ ℘0 \ {∅} such that −S < I < S .

Since Ω ⊂
open

Cp|0,0 , there exist ε > 0 and Ω′ ⊂
open

Ω such that

b ∈ Ω′ and Ω′ + [ 0, ε ]ESej ⊂ Ω . So for all w ∈ Ω′

∂i|∅FI(w) = ∂i|−SFI∪(−S)(w)

=
FI∪(−S) (w + εE−Sei)− FI∪S(w)

ε
,

because FI∪(−S) is affine linear with respect to wi,−S , and

∂i|∅FI(w) = ∂i|SFI∪S(w)

=
FI∪S (w + εESei)− FI∪S(w)

ε
,

because FI∪S is affine antilinear with respect to ziS .

By assumption in both cases the right hand side is Cn with
respect to z∅ , and so is the left hand side. That means FI |Ω′

is Cn+1 with respect to z∅ . Since b was arbitrary, FI itself is
Cn+1 with respect to z∅ . �

A similar result holds again for Ω ⊂ C0|1,1 :

Theorem 4.27 Let Ω ⊂
open

C0|1,1 be of cube type and f ∈
(
ΛC
)Ω . Then

there are equivalent

(i) f is differentiable,

(ii) FI , I ∈ ℘ , are differentiable with respect to all rJ and fulfill the
following system of differential equations

∂JFI =

⎧⎨⎩ (−1)|I\J<J |+|I\J<L|∂LF(I\J)∪L if J ⊂ I
0 otherwise

for all I ∈ ℘ , J ∈ ℘1 and L ∈ ℘1 with L ∩ (I \ J) = ∅ , and

∂KFI =

⎧⎨⎩ (−1)|I\(−K)<−K|+|I\(−K)<−L|∂LF(I\(−K))∪(−L) if K ⊂ −I
0 otherwise

for all I ∈ ℘ , K ∈ ℘1 and L ∈ ℘1 with (−L) ∩ (I \ (−K)) = ∅ ,
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(iii) there exist a, b, c, d ∈ ΛC such that f(ϑ) = a + ϑb + ϑc + ϑϑd for all
ϑ ∈ Ω .

In this case f∗ : C0|1,1 → ΛC , ϑ �→ a + ϑb + ϑc + ϑϑd is again the unique
differentiable extension of f , ∂|1f∗(ϑ) = b + ϑd and ∂|1f∗(ϑ) = c − ϑd for
all ϑ ∈ C0|1,1 .

Proof: almost the same as the proof of theorem 4.10 in the real case. Now
(ii) ⇒ (iii) is different:

Let FI , I ∈ ℘ fulfill the system of differential equations.

Step I Show that all ∂JFI , J ⊂ I , are independent of
rK if K �⊂ −(I \ J) and antiholomorphic in rK if K ⊂ −(I \ J) , that
all ∂KFI , K ⊂ −I , are independent of rJ if J �⊂ I \ (−K) and
holomorphic in rJ if J ⊂ I \ (−K) and that all ∂J∂KFI = ∂K∂JFI ,
J ⊂ I , K ⊂ −I , J ∩ (−K) = ∅ , are constant.

First we show ∂S∂TFI = 0 for all I ∈ ℘ , S, T ∈ ℘1 , S, T ⊂ I and
∂S∂TFI = 0 for all I ∈ ℘ , S, T ∈ ℘1 , S, T ⊂ −I .

First assume S ∩ T �= ∅ . Then ∂S∂TFI = 0 and ∂S∂TFI = 0
follow as in the real case. Since J �= ∅ for all J ∈ ℘1 we see
that FI is polynomial in rJ and rJ of partial degrees ≤ 1 for all
I ∈ ℘ , J ∈ ℘1 . And so as in the real case we can interchange
partial derivatives.

Now assume S ∩ T = ∅ . Then ∂S∂TFI = 0 and ∂S∂TFI = 0
follow again as in the real case since we can interchange partial
derivatives. �

So clearly all ∂J∂KFI , J ⊂ I , K ⊂ −I are constant.

It remains to show that all ∂K∂JFI = 0 , J ⊂ I , K ⊂ −I , J ∩ (−K) �= ∅ .
So let I ∈ ℘ , J,K ∈ ℘1 such that J ⊂ I , K ⊂ −I and J ∩ (−K) �= ∅ .
Choose M ∈ ℘1 such that M < I . Then K �⊂ −((I \ J) ∪M) and so

∂K∂JFI = (−1)|I\J<J |∂M∂KF(I\J)∪M = 0 .
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Step II Conclusion .

For all I ∈ ℘ we have {min (I ∪ {0})− 1}, {min (I ∪ {0})− 2} ∈ ℘1 , so we
can define

bI := ∂{min(I∪{0})−1}FI∪{min(I∪{0})−1}|rK=0,K⊂−I ∈ C ,
b :=

∑
I∈℘ bIEI ∈ ΛC ,

cI := ∂{−min(I∪{0})+1}FI∪{min(I∪{0})−1}|rK=0,K⊂I ∈ C ,
c :=

∑
I∈℘ cIEI ∈ ΛC ,

dI := ∂{min(I∪{0})−2}∂{−min(I∪{0})+1}FI∪{min(I∪{0})−2}∪{min(I∪{0})−1} ∈ C ,
d :=

∑
I∈℘ dIEI ∈ ΛC .

Let I ∈ ℘ .

Let J ∈ ℘1 with J ⊂ I and S := {min ((I \ J) ∪ {0})− 1} < I \ J . Then

∂JFI |rK=0,K⊂−(I\J) = (−1)|I\J<J |∂SF(I\J)∪S |rK=0,K⊂−(I\J)

= (−1)|I\J<J |bI\J .

Let K ∈ ℘1 with K ⊂ −I and T := {−min ((I \ (−K)) ∪ {0})− 1} . Then
−T < I \ (−K) and so

∂KFI |rJ=0,J⊂I\(−K) = (−1)|I\(−K)<−K|∂TF(I\(−K))∪(−T )|rJ=0,J⊂I\(−K)

= (−1)|I\(−K)<−K|bI\(−K) .

Now let J,K ∈ ℘1 such that J ⊂ I , K ⊂ −I and J ∩ (−K) = ∅ . We prove
that

∂J∂KFI = (−1)|−K<J |+|I\(J∪(−K))<J∪(−K)|dI\(J∪(−K)) .

We define S := {−min(I \ ((−K) ∪ J)) + 1} and
T := {min(I \ ((−K) ∪ J)) − 2} < (I \ ((−K) ∪ J)) ∪ (−S) .
Choose M,N ∈ ℘1 such that M > (−I)∪T and N < I ∪ (−M) .
Then
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∂J∂KFI = (−1)|I\(−K)<−K|∂J∂MF(I\(−K))∪(−M)

= (−1)|I\(−K)<−K|+|(I\((−K)∪J))∪(−M)<J | ×
× ∂N∂MF(I\(J∪(−K)))∪(−M)∪N

= (−1)|I\(−K)<−K|+|I\((−K)∪J)<J |+1 ×
× ∂N∂MF(I\(J∪(−K)))∪(−M)∪N ,

since −M < I \ (−K) , N < (I \ (−K)) ∪ (−M) , and
|−M < J | = |M | |J | is an odd number. Further

∂N∂MF(I\(J∪(−K)))∪(−M)∪N = (−1)|N<−M |+|N<−T | ×
× ∂N∂TF(I\(J∪(−K)))∪N∪(−T )

= ∂N∂TF(I\(J∪(−K)))∪N∪(−T )

= ∂S∂TF(I\(J∪(−K)))∪S∪(−T )

= dI\(J∪(−K)) ,

since −M,−T < I \ (J ∪ (−K)) ,
|N < −M |+ |N < −T | = |M | |N |+ |N | is an even number, and
N,S < (−T ) ∪ (I \ (J ∪ /(−K))) . Finally we have

|I \ (−K) < −K|+ |I \ (J ∪ (−K)) < J |+ 1

≡ |I \ (J ∪ (−K)) < −K|+ |J < −K|
+ |I \ ((−K) ∪ J) < J |+ |J | |K|
≡ |I \ (J ∪ (−K)) < J ∪ (−K)|+ |−K < J | mod 2 .�

So for all I ∈ ℘ and ϑ ∈ Ω

FI(ϑ) = FI(0) +
∑

J∈℘1,J⊂I
(−1)|I\J<J |rJbI\J

+
∑

K∈℘1,K⊂−I
(−1)|I\(−K)<−K|rKbI\(−K)

+
∑

J,K∈℘1,J⊂I,K⊂−I,J∩(−K)=∅
(−1)|−K<J |+|I\((−K)∪J)<J∪(−K)| ×

× rJrKd(I\(J∪(−K))) ,

and finally, if we define a := f(0) ∈ ΛC ,
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f(ϑ) = f(0) +
∑
I∈℘

∑
J∈℘1,J⊂I

(−1)|I\J<J |rJbI\JEI

+
∑
I∈℘

∑
K∈℘1,K⊂−I

(−1)|I\(−K)<−K|rKbI\(−K)EI

+
∑
I∈℘

∑
J,K∈℘1,J⊂I,K⊂−I,J∩(−K)=∅

(−1)|−K<J |+|I\((−K)∪J)<J∪(−K)| ×

× rJrKd(I\(J∪(−K)))EI

= a+
∑
J∈℘1

rJEJ
∑
L∈℘

bLEL +
∑
K∈℘1

rKE−K
∑
M∈℘

bMEM

+
∑
J∈℘1

rJEJ
∑
K∈℘1

rKE−K
∑
T∈℘

dTET

= a+ ϑb+ ϑc+ ϑϑd .�

Corollary 4.28 Let Ω ⊂ Cp|q,q be of cube type and f : Ω → ΛC . Then
there are equivalent

(i) f is arbitrarily often differentiable,

(ii) f ∈ D(Ω,ΛC) ,

(iii) there exists a family (fIST )I∈℘,S,T∈℘(q) ∈
(
C∞
(
Ω#
)C)℘×℘(q)2

such

that for all (w, ϑ) ∈
(
Ω#
)|q,q

f(w, ϑ) =
∑
I∈℘

∑
S,T∈℘(q)

ϑSϑ
T
f̂IST (w)EI .

Again the function

f∗ :=
∑
I∈℘

∑
S,T∈℘(q)

ϑSϑ
T
f̂ISTEI :

(
Ω#
)|q,q

→ ΛC

is the unique extension in D
((

Ω#
)|q,q) of f . For all i = 1, . . . , p we have

∂i|f∗ =
∑
I∈℘

∑
S,T∈℘(q)

ϑSϑ
T
∂̂ifISTEI

and

∂i|f∗ =
∑
I∈℘

∑
S,T∈℘(q)

ϑSϑ
T
∂̂ifISTEI ,

and for all j = 1, . . . , q
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∂|jf∗ =
∑
I∈℘

∑
S∈℘(q),j∈S

∑
T∈℘(q)

(−1)|S\{j}<j|ϑS\{j}ϑT f̂ISTEI

and

∂|jf∗ =
∑
I∈℘

∑
S∈℘(q)

∑
T∈℘(q),j∈T

(−1)|S|+|T\{j}<j|ϑSϑT\{j}f̂ISTEI .

Proof: similar to the proof of theorem 4.11 in the real case.

Corollary 4.29 Let Ω ⊂
open

Cp|q,q such that

Ωz =
{
(w, ϑ) ∈ Ω

∣∣ (w, ϑ)# = z
}

is connected for all z ∈ Ω# . Then the
same holds as in corollary 4.28 .

Proof: similar to the proof of theorem 4.12 in the real case.

Now we prove theorem 4.25 .

(i) similar to the proof of theorem 4.8 in the real case.

(ii) We prove that O
(
Ω,ΛC

)
= Φ

((
Λ (Cq)⊗ 1⊗O

(
Ω#
))
�̂ΛC

)
.

So let first

f =
∑
I∈℘

∑
S,T∈℘(q)

eS ⊗ eT ⊗ fIST ⊗EI ∈
(

Λ (Cq)� Λ (Cq)⊗ C∞
(
Ω#
)C
)
�̂ΛC

such that Φ(f) =
∑

I∈℘
∑

S,T∈℘(q) ϑ
Sϑ

T
f̂ISTEI ∈ O

(
Ω,ΛC

)
, let

R ∈ ℘(q) \ {∅} and j := minR . Then since Φ(f) ∈ O
(
Ω,ΛC

)

0 = ∂|jΦ(f) =
∑
I∈℘

∑
S∈℘(q)

∑
T∈℘(q),i∈T

(−1)|S|+|T\{j}<j|ϑSϑT\{j}f̂ISTEI ,

which is the image of

∑
I∈℘

∑
S∈℘(q)

∑
T∈℘(Cq),j∈T

(−1)|S|+|T\{j}<j|eS ⊗ eT\{j} ⊗ fIST ⊗ EI

under Φ . Since Φ is an isomorphism and j ∈ R we obtain fISR = 0 for all
S ∈ ℘(q) and I ∈ ℘ . But R ∈ ℘(q) \ {∅} was arbitrary, so since e∅ = 1 we
get

f =
∑
I∈℘

∑
S∈℘(Cq)

eS ⊗ 1⊗ fIS∅ ⊗ EI .
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Now let i ∈ {1, . . . , p} . Then since Φ(f) ∈ O
(
Ω,ΛC

)
0 = ∂i|Φ(f) =

∑
I∈℘

∑
S∈℘(q)

ϑS ∂̂ifIS∅EI .

And so by the same reason all ∂ifIS∅ = 0 , I ∈ ℘ , S ∈ ℘(q) . That means
all fIS∅ , I ∈ ℘ , S ∈ ℘(q) , are holomorphic.

Now let

f =
∑
I∈℘

∑
S∈℘(q)

eS ⊗ fIS ⊗ EI ∈
(
Λ (Cq)⊗ 1⊗O

(
Ω#
))
�̂ΛC .

Then it is easy to check that ∂i|Φ(f) = ∂|jΦ(f) = 0 for all i = 1, . . . , p ,
j = 1, . . . , q . �

Especially we see that if Ω ⊂
open

Cp|q,q then O
(
Ω,ΛC

)
is closed under

derivation, and if in addition Ωz is connected for all z ∈ Ω# then f ∈ O (Ω)
implies f∗ ∈ O

((
Ω#
)|q,q) .

Here again we have a useful lemma:

Lemma 4.30 Let U ⊂
open

Cp and f ∈ D
(
U |q,q,ΛC

)
.

(i) For all (b, β) ∈ U |q,q there exist ∆1, . . . ,∆p , ∆′
1, . . . ,∆

′
p , Σ1, . . . ,Σq ,

Σ′
1, . . . ,Σ

′
q ∈ D

(
U |q,q,ΛC

)
such that for all (w, ϑ) ∈ U |q,q

f(w, ϑ) = f(b, β) +
p∑
i=1

(wi − bi) ∆i(w, ϑ) +
p∑
i=1

(
wi − bi

)
∆′
i(w, ϑ)

+
q∑
j=1

(ϑj − βj) Σj(w, ϑ) +
q∑
j=1

(
ϑj − βj

)
Σ′
j(w, ϑ) .

(ii) If f ∈ O
(
U |q,q,ΛC

)
then for all (b, β) ∈ U |q,q there exist ∆1, . . . ,∆p ,

Σ1, . . . ,Σq ∈ O
(
U |q,q,ΛC

)
such that for all (w, ϑ) ∈ U |q,q

f(w, ϑ) = f(b, β) +
p∑
i=1

(wi − bi) ∆i(w, ϑ) +
q∑
j=1

(ϑj − βj) Σj(w, ϑ) .

(iii) f is determined by the functions

(
∂|j1 . . . ∂|jr ∂|k1 . . . ∂|ks

f
)
|U ∈ C∞(U)C ⊗ ΛC ,

{j1, . . . , jr} , {k1, . . . , ks} ⊂ {1, . . . , q} with j1 < · · · < jr ,
k1 < · · · < ks .
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Proof: similar to the proof of theorem 4.13 in the real case.

From now on let Ω ⊂
open

Cp|q,q and Ω′ ⊂
open

Cr|s,s such that Ωz and Ω′
z′ are

connected for all z ∈ Ω# resp. z′ ∈ Ω′# . We define

D(Ω) := Ψ
((

Λ (Cq)� Λ (Cq)⊗ C∞
(
Ω#
))C
⊗ 1
)
⊂ D

(
Ω,ΛC

)
,

where Ψ :
(
Λ (Cq)� Λ (Cq)⊗ C∞

(
Ω#
))C �̂ΛC → D

(
Ω,ΛC

)
is the isomor-

phism given by theorem 4.25 (i) , and O(Ω) := D(Ω) ∩ O
(
Ω,ΛC

)
. Then

D(Ω) is a sub graded algebra of D
(
Ω,ΛC

)
invariant under , and O(Ω) is

a sub graded algebra of O
(
Ω,ΛC

)
, both not containing ΛC , more precisely

D(Ω) ∩ ΛC = O(Ω) ∩ ΛC = C .

We can characterize D(Ω) and O(Ω) as follows:

Theorem 4.31

a) D(Ω) and O(Ω) are closed under derivation.

b) Let f ∈ D
(
Ω,ΛC

)
. Then there are equivalent

(i) f ∈ D(Ω) ,

(ii) there exists a family (fST )S,T∈℘(q) ∈
(
C∞
(
Ω#
)C)℘(q)2

such that

f∗ =
∑

S,T∈℘(q)

ϑSϑ
T
f̂ST ,

(iii) f∗(w, ϑ) ∈
〈
w,w, ϑ, ϑ

〉
for all (w, ϑ) ∈

(
Ω#
)|q,q , where

〈
w,w, ϑ, ϑ

〉
is the smallest closed graded subalgebra of ΛC invariant under
containing all wi, . . . , wp and ϑi, . . . , ϑq ,

(iv) ∂|j1 . . . ∂|jr ∂|k1 . . . ∂|ks
f∗(z,0) ∈ C for all

(j1, . . . , jr) ∈ {1, . . . , q}r , (k1, . . . , ks) ∈ {1, . . . , q}s and z ∈ Ω# .

c) Let f ∈ O
(
Ω,ΛC

)
. Then there are equivalent

(i) f ∈ O(Ω) ,

(ii) there exists a family (fS)S∈℘(q) ∈ O
(
Ω#
)℘(q) such that

f∗ =
∑

S∈℘(q)

ϑS f̂S ,
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(iii) f∗(w, ϑ) ∈ 〈w, ϑ〉 for all (w, ϑ) ∈
(
Ω#
)|q,q , where 〈w, ϑ〉 is the

smallest closed graded subalgebra of ΛC containing all wi, . . . , wp and
ϑi, . . . , ϑq ,

(iv) ∂|j1 . . . ∂|jr f
∗(z,0) ∈ C for all (j1, . . . , jr) ∈ {1, . . . , q}r and z ∈ Ω# .

d) Λ(Cq) � Λ(Cq) ⊗ C∞
(
Ω#
)C � D(Ω) and Λ(Cq) ⊗ O

(
Ω#
)
� O(Ω) as

graded algebras where the isomorphisms are the unique C-linear maps given
by eS ⊗ eT ⊗ f �→ ϑSϑ

S
f̂ for all f ∈ C∞

(
Ω#
)C , S and T ∈ ℘(q) resp.

eS ⊗ f �→ ϑS f̂ for all f ∈ O
(
Ω#
)

and S ∈ ℘(q) .

e) D
(
Ω,ΛC

)
= D(Ω)�̂ΛC and O

(
Ω,ΛC

)
= O(Ω)�̂ΛC , where on D

(
Ω,ΛC

)
we use the topology coming from

(
Λ (Cq)⊗ C∞

(
Ω#
)C) �̂ΛC via the isomor-

phism Ψ .

Proof: similar to the proof of theorem 4.14 in the real case.

The last two theorems show that again in the complex case
(
Ω#
)|q,q is

essentially determined by the algebra D(Ω) .

Let U ⊂
open

Cn , S
(
C∞(U)C

)
be the spectrum of C∞(U)C , more precisely the

set of all unital algebra homomorphisms η : C∞(U)C → C which respect
. Then from analysis we know that there is a canonical bijection

U → S
(
C∞(U)C

)
, a �→ ηa ,

where ηa(f) := f(a) for all f ∈ C∞(U)C and a ∈ U . There is an analogous
result for D(Ω) :

Let S
(
D
(
Ω,ΛC

))
be the set of all graded algebra homomorphisms

ψ : D
(
Ω,ΛC

)
→ ΛC respecting and being the identity on ΛC , and let

S (D(Ω)) be the set of all unital graded algebra homomorphisms
η : D(Ω)→ ΛC respecting .

Theorem 4.32 We have bijections

(
Ω#
)|q,q

→ S
(
D
(
Ω,ΛC

))
, (b, β) �→ ψ(b,β) ,

where ψ(b,β)(f) := f∗(b, β) for all f ∈ D
(
Ω,ΛC

)
, and

(
Ω#
)|q,q

→ S (D(Ω)) , (b, β) �→ η(b,β) ,

where η(b,β)(g) := g∗(b, β) for all g ∈ D(Ω) and (b, β) ∈
(
Ω#
)|q,q .
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Proof: similar to the proof of theorem 4.15 in the real case.

Definition 4.33 Let ϕ : Ω→ Ω′ .

(i) ϕ is called a D-map if and only if all component functions
ϕi| : Ω → C1|0,0 , i = 1, . . . , r , and ϕ|j : Ω → C0|1,1 , j = 1, . . . , s , belong
to D(Ω) .

(ii) ϕ is called a diffeomorphism if and only if ϕ is bijective and ϕ and ϕ−1

are D-maps.

(iii) ϕ is called holomorphic if and only if all component functions of ϕ belong
to O(Ω) .

(iv) ϕ is called biholomorphic if and only if ϕ is bijective and ϕ and ϕ−1 are
holomorphic.

Clearly again if ϕ : Ω→ Ω′ is a D-map then there exists a unique extension
ϕ∗ :

(
Ω#
)|q,q → (Ω′#)|s,s of ϕ which is again a D-map. If ϕ is holomorphic

then again ϕ∗ is holomorphic. For all i = 1, . . . , r and j = 1, . . . , s we have
(ϕ∗)i| = ϕ∗

i| and (ϕ∗)|j = ϕ∗
|j .

Here again we have a chain rule:

Lemma 4.34 Let f ∈ D(Ω′) and ϕ =
(
ϕ1|, . . . , ϕr|, ϕ|1, . . . , ϕ|s

)
: Ω → Ω′

be a D-map.

(i) f ◦ ϕ ∈ D(Ω) , and for all i = 1, . . . , p and j = 1, . . . , q we have

∂i| (f ◦ ϕ) =
r∑

k=1

(
∂i|ϕk|

) ((
∂k|f

)
◦ ϕ
)

+
r∑

k=1

(
∂i|ϕk|

) ((
∂k|f

)
◦ ϕ
)

+
s∑
l=1

(
∂i|ϕ|l

) ((
∂|lf
)
◦ ϕ
)

+
s∑
l=1

(
∂i|ϕ|l

) ((
∂|lf

)
◦ ϕ
)
,

∂i| (f ◦ ϕ) =
r∑

k=1

(
∂i|ϕk|

) ((
∂k|f

)
◦ ϕ
)

+
r∑

k=1

(
∂i|ϕk|

) ((
∂k|f

)
◦ ϕ
)

+
s∑
l=1

(
∂i|ϕ|l

) ((
∂|lf
)
◦ ϕ
)

+
s∑
l=1

(
∂i|ϕ|l

) ((
∂|lf

)
◦ ϕ
)
,

∂|j (f ◦ ϕ) =
r∑

k=1

(
∂|jϕk|

) ((
∂k|f

)
◦ ϕ
)
−

r∑
k=1

(
∂|jϕk|

) ((
∂k|f

)
◦ ϕ
)

+
s∑
l=1

(
∂|jϕ|l

) ((
∂|lf
)
◦ ϕ
)

+
s∑
l=1

(
∂|jϕ|l

) ((
∂|lf

)
◦ ϕ
)
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and

∂|j (f ◦ ϕ) =
r∑

k=1

(
∂|jϕk|

) ((
∂k|f

)
◦ ϕ
)
−

r∑
k=1

(
∂|jϕk|

) ((
∂k|f

)
◦ ϕ
)

+
s∑
l=1

(
∂|jϕ|l

) ((
∂|lf
)
◦ ϕ
)

+
s∑
l=1

(
∂|jϕ|l

) ((
∂|lf

)
◦ ϕ
)
.

(ii) If f ∈ O (Ω′) and ϕ holomorphic then f ◦ ϕ ∈ O (Ω) .

Proof: similar to the real case.

So every D-map ϕ : Ω→ Ω′ induces a unital graded algebra homomorphism
Φ : D(Ω′)→ D(Ω) , f �→ f ◦ϕ , which respects , and if ϕ is holomorphic
then Φ (O (Ω′)) ⊂ O (Ω) . The converse is almost true.

Theorem 4.35 Let Φ : D(Ω′) → D(Ω) be a unital graded algebra homo-
morphism which respects . Then

(i) there exists a unique map ϕ : Ω →
(
Ω′#)|s,s such that Φ(f) = f∗ ◦ ϕ for

all f ∈ D(Ω′) ,

(ii) ϕ is a D-map, and Φ(f)∗ = f∗ ◦ ϕ∗ for all f ∈ D(Ω′) ,

(iii) Φ is an isomorphism if and only if ϕ∗ is a diffeomorphism,

(iv) Φ (O (Ω′)) ⊂ O(Ω) if and only if ϕ is holomorphic,

(v) Φ is an isomorphism and Φ (O (Ω′)) = O (Ω′) if and only if ϕ∗ is biholo-
morphic.

Proof: (i) , (ii) and (iii) : similar to the proof of theorem 4.18 in the real
case.
(iv) ’⇒’ : Let Φ (O (Ω′)) ⊂ O(Ω) and let w′

1, . . . , w
′
r , ϑ′1, . . . , ϑ′s ∈ O (Ω′) be

the coordinate functions on Ω′ . Then we have ϕi| = w′∗
i ◦ϕ = Φ(w′

i) ∈ O(Ω)

and ϕ|j = ϑ′∗j ◦ ϕ = Φ
(
ϑ′j
)
∈ O(Ω) for all i = 1, . . . , r , j = 1, . . . , s . So ϕ

is holomorphic.
’⇐’ : trivial since if f ∈ O (Ω′) then f∗ ∈ O

((
Ω#
)|s,s) . �

(v) apply (iv) to ϕ∗ and (ϕ∗)−1 . �

Definition 4.36 Let Ω ⊂ Cp|q,q . Ω is called super open in Cp|q,q if and
only if Ω# ⊂

open
Cp and Ω =

(
Ω#
)|q,q .

In this case for the same reasons as in the real case we regard
D (Ω) = C∞(Ω) � Λ (Cq) � Λ (Cq) ⊗ C∞

(
Ω#
)C as the natural analogon of

C∞-functions resp. O (Ω) � Λ (Cq) ⊗ O
(
Ω#
)

as the natural analogon of

259



holomorphic functions for the super open set Ω .

For all f ∈ C∞
(
Ω#
)C we identify f̂ and f , and so if f ∈ D (Ω) we write

f =
∑

I,J∈℘(q)

ϑIϑ
J
fIJ

with uniquely determined fIJ ∈ C∞
(
Ω#
)C , I, J ∈ ℘(q) . Again on D(Ω)

the body map simply occurs as the restriction map

# : D(Ω)→ C∞
(
Ω#
)C

, f �→ f |Ω# ,

which is a continuous unital graded algebra epimorphism.
In terms of f =

∑
I,J∈℘(q) ϑ

Iϑ
J
fIJ ∈ D(Ω) we have

f =
∑

I,J∈℘(q)

(−1)
(|I|+|J|)(|I|+|J|−1)

2 ϑIϑ
J
fJI .
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Zusammenfassung der

Hauptresultate

Ausgangspunkt der in der vorliegenden Dissertation vorgestellten For-
schungsarbeit bilden zwei Artikel von Svetlana Katok und Tatyana Foth:

• Foth, Tatyana and Katok, Svetlana: Spanning sets for automorphic
forms and dynamics of the frame flow on complex hyperbolic spaces,
[5] ,

• Katok, Svetlana: Livshitz theorem for the unitary frame flow, [11] .

In diesen Artikeln werden Erzeugendensysteme für den Raum der Spit-
zenformen (cusp forms) konstruiert für den Fall eines beschränkten sym-
metrischen Gebietes B in Cn vom Rang 1 , welches nach Klassifikation
biholomorph zur gewöhnlichen Einheitskugel in Cn ist, und eines Gitters
Γ @ G = Aut1(B) . Dabei ist nach einem berühmten Satz von H. Cartan

die 1-Zusammenhangskomponente Aut1(B) der Automorphismengruppe ei-
nes komplexen beschränkten symmetrischen Gebietes B stets eine halbein-
fache Lie-Gruppe vom Hermiteschen Typ, und wir nennen eine diskrete Un-
tergruppe Γ von G = Aut1(B) ein Gitter genau dann wenn vol Γ\G < ∞ .

Definition 0.1 (Automorphe Formen und Spitzenformen) Sei G ei-
ne Lie-Gruppe, welche transitiv und holomorph auf B operiert, in der Regel
G = Aut1(B) , und sei Γ @ G eine diskrete Untergruppe. Seien k ∈ IN und
j ∈ C∞(G × B)C ein Kozykel, holomorph in der zweiten Variablen. In der
Regel ist j(g♦) = det g′ für alle g ∈ G .

(i) Eine Funktion f ∈ O(B) heißt eine automorphe Form vom Gewicht k

bzgl. Γ genau dann wenn gilt

f |γ = f

für alle γ ∈ Γ oder äquivalent f̃ ∈ C∞(G)C ist links-Γ-invariant, wobei
f |g (Z) := f (gZ) j (g,Z)k und f̃(g) := f |g (0) für alle g ∈ G und Z ∈ B .
Der C-Vektorraum der automorphen Formen vom Gewicht k bzgl. Γ wird
mit Mk(Γ) bezeichnet.

i



(ii) Eine automorphe Form f ∈ Mk(Γ) heißt Spitzenform vom Gewicht k

bzgl. Γ genau dann wenn gilt f̃ ∈ L2(Γ\G) . Der C-Vektorraum aller Spit-
zenformen wird mit Sk(Γ) bezeichnet. Sk(Γ) ist ein Hilbert-Raum mit dem
Skalarprodukt

(f, h)Γ :=
∫

Γ\G
f̃ h̃

für alle f, h ∈ Sk(Γ) .

Foth und Katok benutzen einen neuen geometrischen Ansatz basie-
rend auf dem Konzept hyperbolischer Flüsse auf Mannigfaltigkeiten.
Dieses Konzept stammt ursprünglich aus der Theorie der dynamischen
Systeme, siehe z. B. [10] . Grob gesagt, nennt man einen Fluß (ϕt)t∈IR

auf einer Riemannschen Mannigfaltigkeit M hyperbolisch, wenn eine
orthogonale und (ϕt)t∈IR-stabile Zerlegung TM = T+ ⊕ T− ⊕ T 0 des
Tangentialbündels TM existiert, sodass (ϕt)t∈IR gleichmäßig expandiert
auf T+ , gleichmäßig kontrahiert auf T− , das Differential von (ϕt)t∈IR

auf T 0 isometrisch wirkt und schließlich T 0 von ∂tϕt erzeugt wird. Das
berühmte Anosov-Schließungslemma (closing lemma) besagt, dass im Falle
eines hyperbolischen Flusses auf einer Riemannschen Mannigfalitigkeit sich

”neben” einer ”fast” geschlossenen Bahn eines Punktes von M stets eine
komplett geschlossene Bahn befindet. In der Tat folgt aus der Theorie der
halbeinfachen Lie-Gruppen von Hermiteschem Typ, insbesondere aus der
Wurzelzerlegung der Lie Algebra g von G = Aut1(B) bzgl. einer Cartan-
Unteralgebra, dass der geodätische Fluss auf dem Einheitstangentenbündel
S(B) eines komplexen beschränkten symmetrischen Gebietes B vom Rang
1 hyperbolisch ist.

Ziel der vorliegenden Arbeit ist es nun, diese Artikel auf komplexe
beschränkte symmetrische Gebiete B vom Rang > 1 sowie auf super-
automorphe Formen und Super-Spitzenformen zu verallgemeinern.

In Kapitel 1 beschäftigen wir uns mit beschränkten symmetrischen Gebie-
ten höheren Ranges. Dabei ist nach Klassifikation jedes beschränkte sym-
metrische Gebiet B ⊂ Cn biholomorph zur Einheitskugel in Cn , Cn be-
trachtet als ein Hermitesches Jordan-Tripelsystem. Es gelingt mit Hilfe
des Foth/Katokschen Ansatzes ein Erzeugensystem für Sk(Γ) zu konstru-
ieren für den Fall eines Produktes B = B1×· · ·×Bq komplexer beschränkter
symmetrischer Gebiete B1, . . . , Bq vom Rang 1 ( B besitzt damit Rang q )
und kokompakter diskreter Untergruppe

Γ @ G = Aut1(B) = Aut1 (B1)× · · · ×Aut1 (Bq)
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unter Zusatzbedingungen (Satz 1.31 in Abschnitt 1.4 ). Hierfür müssen
zunächst Hilfsmittel bereitgestellt bzw. auf den höheren Rang verallgemei-
nert werden. Zu diesen zählen insbesondere:

• Eine Klärung des Zusammenhangs zwischen maximal flachen total
geodätischen (MFTG) Untermannigfaltigkeiten von B und maximal
Abelschen Untergruppen ohne kompakten Anteil (maximal split Abe-
lian subgroups) von G . Maximal Abelsche Untergruppen ohne kom-
pakten Anteil von G stehen in Einszueinsbeziehung zu Cartan-
Unteralgebren der Lie-Algebra g von G vermöge expG .

Hierfür benötigen wir die volle Theorie halbeinfacher Lie-
Gruppen vom Hermiteschen Typ sowie die Hermitescher Jordan-
Tripelsysteme.

• Eine Verallgemeinerung der Theorie hyperbolischer Flüsse auf parti-
ell hyperbolische Flüsse. Hierbei nennen wir einen Fluss (ϕt)t∈IR auf
einer Riemannschen Mannigfaltigkeit M partiell hyperbolisch, wenn
eine orthogonale und (ϕt)t∈IR-stabile Zerlegung TM = T+ ⊕ T− ⊕ T 0

des Tangentialbündels TM existiert, sodass (ϕt)t∈IR gleichmäßig ex-
pandiert auf T+ , gleichmäßig kontrahiert auf T− , das Differential
von (ϕt)t∈IR auf T 0 isometrisch wirkt und lediglich ∂tϕt in T 0 enthal-
ten ist. Wir entwickeln ein partielles Anosov-Schließungslemma für
partiell hyperbolische Flüsse, welches besagt, dass sich ”neben” einer
Bahn, die sich modulo der T0-Blätterung ”fast” schließt, stets eine
Bahn befindet, die sich modulo der T0-Blätterung komplett schließt
(Abschnitt 1.3 ).

Im zweiten Teil der Arbeit nun beschäftigen wir uns mit super-automorphen
Formen und Super-Spitzenformen. Zu diesem Zweck befassen wir uns in
Kapitel 2 zunächst mit (Z2-) graduierten algebraischen Strukturen, insbe-
sondere graduierten Algebren, sowie mit der allgemeinen Theorie der Su-
permannigfaltigkeiten. Dabei heißt eine Algebra A über einem Körper K

der Charakteristik 6= 2 eine graduierte Algebra genau dann wenn sie als K-
Vektorraum in eine direkte Summe A = A1⊕A2 zerfällt mit der Eigenschaft

AiAj ⊂ Ai+j

für alle i, j ∈ Z2 . Das Hauptbeispiel einer unitalen assoziativen graduierten
(sogar graduiert-kommutativen) Algebra ist die Grassmann-Algebra Λ(V )
über einem K-Vektorraum V . In diesem Fall haben wir eine sogenannte
Rumpfabbildung (body map) # : Λ(V ) → K , welche jedem Element aus
Λ(V ) seinen konstanten Term zuordnet, und welche ein Algebraepimorphis-
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mus ist.

Eine Supermannigfaltigkeit ist kurz gesagt ein Objekt mit einem Paar
(p, q) ∈ IN2 als Dimension. Charakteristisch für eine Supermannigfaltigkeit
M der Dimension (p, q) sind:

(i) M besitzt einen sogenannten Rumpf (body) M = M# , welcher eine
gewöhnliche C∞-Mannigfaltigkeit der Dimension p ist.

(ii) M zugeordnet ist die graduierte Algebra D(M) der Superfunktionen
auf M . Ihre Elemente sind die globalen Schnitte einer Garbe S , der
sogenannten Strukturgarbe von M , über M , welche lokal isomorph
zu C∞M ⊗ Λ (IRq) ist.

(iii) Es gibt eine Rumpfabbildung # : S → C∞M , und diese ist ein Garben-
epimorphismus.

Besonders einfache Supermannigfaltigkeiten sind die super-offenen Mengen.
Eine super-offene Menge U |q der Dimension (p, q) ist eine Supermannigfal-
tigkeit, deren Rumpf U eine offene Teilmenge des IRp , und deren Struk-
turgarbe gerade S = C∞U ⊗ Λ (IRq) ist. Auf einer super-offenen Menge U |q

der Dimension (p, q) haben wir also die geraden Koordinatenfunktionen
x1, . . . , xp ∈ C∞(U) ↪→ D (

U |q)
0

und die ungeraden Koordinatenfunktionen
ζ1 := e1, . . . , ζq := eq ∈ Λ (IRq) ↪→ D (

U |q)
1

.
In dieser Arbeit wird nun das Konzept einer Parametrisierung eingeführt,
wobei die ”Parameter” die (ungeraden) Koordinatenfunktionen α1, . . . , αn

aus einer Grassmann-Algebra P := Λ (IRn) = D
(
IR|n

)
, n ∈ IN ,

sind. Dieses Konzept ist offenbar neu. Hier die Definition einer P-
Supermannigfaltigkeit bzw. eines P-Supermorphismus:

Definition 0.2

(i) Seien M eine p-dimensionale C∞-Mannigfaltigkeit und q ∈ IN . Sei S
eine Garbe unitaler graduierter Algebren über M mit einer Garbeneinbettung
P ↪→ S und einem Garbenhomomorphismus # : S → C∞M . Dann heißt das
TripelM :=

(
M,S, #

)
eine (p, q)-dimensionale über P parametrisierte (oder

kurz P-) Supermannigfaltigkeit genau dann wenn für alle x0 ∈ M eine offene
Umgebung U ⊂ M sowie ein Garbenisomorphismus
Φ : S|U ∼→C∞U ⊗ Λ (IRq) £ P existieren, sodass Φ|P = id und

S|U Φ−→ C∞U ⊗ Λ (IRq) £ P
# ↘ % ↙#

C∞U

.
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M := M# heißt dabei der Rumpf (body) und S die Strukturgarbe der Su-
permannigfaltigkeit M . Wir schreiben D(M) := S(M) .

(ii) Seien M =
(
M,S, #

)
und N =

(
N, T , #

)
zwei P-

Supermannigfaltigkeiten, ϕ : M → N eine C∞-Abbildung und
(ΦW )W⊂N offen eine Familie von unitalen graduierten Algebrahomo-
morphismen ΦW : T (W ) → S (

ϕ−1(W )
)

mit der Eigenschaft, dass für alle
W ′ ⊂ W ⊂ N offen

T (W ) ΦW−→ S (
ϕ−1(W )

)

|W ′ ↓ % ↓ |ϕ−1(W ′)

T (W ′) −→
ΦW ′

S (
ϕ−1(W ′)

)

(das heißt gerade, dass das Paar Φ :=
(
ϕ, (ΦW )W⊂N offen

)
ein Morphismus

der geringten Räume (M,S) und (N, T ) ist). Dann heißt das Paar
Φ :=

(
ϕ, (ΦW )W⊂N offen

)
ein P-Supermorphismus von M nach N genau

dann wenn für alle W ⊂ N offen ΦW |P = id und für alle f ∈ T (W )

(ΦW (f))# = f# ◦ ϕ|ϕ−1(W )

gilt.

Setzen wir n = 0 (äquivalent P = IR ) , so erhalten wir die Definiti-
on einer gewöhnlichen Supermannigfaltigkeit bzw. eines gewöhnlichen Su-
permorphismus zurück. Es zeigt sich, dass die P-Supermannigfaltigkeiten
zusammen mit P-Supermorphismen eine Kategorie bilden, welche eine
echte Erweiterung der Kategorie der Supermannigfaltigkeiten mit Super-
morphismen darstellt. Als Hauptresultat der Untersuchungen über P-
Supermannigfaltigkeiten lässt sich sicherlich das Ergebnis bezeichnen, dass
auch in der Kategorie der P-Supermannigfaltigkeiten ein Kreuzprodukt
existiert (siehe die Sätze am Schluss von Abschnitt 2.2 ): Sind nämlich
M =

(
M,S, #

)
und N =

(
N, T , #

)
zwei P-Supermannigfaltigkeiten der

Dimension (p, q) bzw. (r, s) , so ist eine Realisierung ihres Kreuzproduktes
gegeben durch

M×P N =
(
M ×N,

(
pr∗1S£̂pr∗2T

)/
I, #

)
,

wobei I die Idealgarbe von pr∗1S£̂pr∗2T bezeichnet, welche von allen
αj ⊗ 1 − 1 ⊗ αj , j = 1, . . . , n , erzeugt wird, und £ das graduierte Ten-
sorprodukt bezeichnet. P wird eingebettet in die Garbe

(
pr∗1S£̂pr∗2T

)/
I

gemäß

P ↪→
(
pr∗1S£̂pr∗2T

)/
I , R 7→ R⊗ 1 + I = 1⊗R + I .
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M×P N ist also eine (p + r, q + s)-dimensionale P-Supermannigfaltigkeit
mit Rumpf M ×N .

Der Grund, warum wir das Konzept der Parametrisierung einführen ist
- abgesehen von der Eleganz der Theorie selbst - der folgende: Für die
Definition von super-automorphen Formen bzw. Super-Spitzenformen
benötigen wir analog zum klassischen Fall eine diskrete Untergruppe einer
Super-Lie-Gruppe, welche auf einem beschränkten symmetrischen Superge-
biet operiert. Eine Super-Lie-Gruppe G besitzt als Rumpf eine gewöhnliche
C∞-Lie-Gruppe G := G# , und es zeigt sich, dass eine diskrete Untergruppe
Γ von G nichts anderes ist als eine diskrete Untergruppe ihres Rumpfes
G . Betrachten wir stattdessen parametrisierte diskrete Untergruppen
von G , so erhalten wir eine echt größere Klasse von Untergruppen, nicht
notwendigerweise im Rumpf G enthalten.

In Kapitel 3 untersuchen wir nun super-automorphe Formen und Super-
Spitzenformen. Wir beschränken uns dabei auf den Fall eines beschränkten
symmetrischen Supergebietes B := Bp,q|r , p, q, r ∈ IN , p, q ≥ 1 , welches
die eindeutig bestimmte komplexe super-offene Menge von komplexer Di-
mension (pq, rq) ist mit der Matrizeneinheitskugel B := Bp,q ⊂ Cp×q als
Rumpf, und der super-speziellen pseudounitaren Gruppe G := sSU(p, q|r) .
sSU(p, q|r) ist eine reelle

(
(p + q)2 + r2 − 1, 2(p + q)r

)
-dimensionale Super-

Lie-Gruppe mit Rumpf

sS (U(p, q)× U(r)) :=






 g 0

0 E


 ∈ U(p, q)× U(r)

∣∣∣∣∣∣
det g = detE



 ,

und sie operiert transitiv auf B durch gebrochen rationale (Möbius-) Trans-
formation. Da zur Zeit noch unklar ist, wie das Kozept eines Fundamental-
bereiches einer diskreten Untergruppe Γ einer gewöhnlichen Lie-Gruppe auf
parametrisierte diskrete Untergruppen einer Super-Lie-Gruppe zu verallge-
meinern ist, können wir bislang nur für den Fall einer nicht-parametrisierten
diskreten Untergruppe eine Definition des Raums der Spitzenformen als
Hilbert-Raum geben. Im Falle einer nicht-parametrisierten diskreten Un-
tergruppe Γ gelingt es uns, mit Hilfe des Foth/Katokschen Ansatzes ein
Erzeugendensystem für den Raum sSk(Γ) der Super-Spitzenformen zum Ge-
wicht k zu konstruieren für q = 1 und Γ\G kokompakt oder q = 1 , p ≥ 2
und vol Γ\G < ∞ unter der Zusatzvoraussetzung, dass die Rechtstransla-
tion der maximal Abelschen Untergruppe A von G ohne kompakten Anteil
(da q = 1 also A ' IR ) auf Γ\G topologisch transitiv ist (Satz 3.17 in Ab-
schnitt 3.3 ). Zu diesem Zweck wird zunächst ein Analogon des Satzes von
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Satake für super-automorphe Formen gewonnen (Satz 3.11 in Abschnitt
3.2 ):

Sei Γ\G kompakt oder q = 1 , p ≥ 2 und Γ @ G ein Gitter.
Dann existiert ein k0 ∈ IN mit der Eigenschaft, dass

sSk(Γ) = sMk(Γ) ∩ Ls (Γ\B)

bzgl. eines geeigneten Maßes auf Γ\B für alle s ∈ [ 1,∞ ] und
k ≥ k0 , wobei sMk(Γ) den Raum der super-automorphen For-
men zum Gewicht k bzgl. Γ bezeichnet.

Im ersten Fall ist die Aussage trivial, und dort sSk(Γ) = sMk(Γ) für alle
k ∈ Z . Im zweiten Fall läuft der Beweis analog zum klassischen Fall über
die Fourier-Entwicklung einer super-automorphen Form an den Spitzen
des Quotienten Γ\B , und wir erhalten k0 = 2p .

Für parametrisierte diskrete Untergruppen (also diskrete P-Untergruppen
mit einem geeigneten P = Λ (IRn) , n ∈ IN ) Υ von G erzielen wir partielle
Resultate indem wir Υ als eine Störung ihres Rumpfes Γ := Υ# betrachten.
In drei Spezialfällen gelingt es uns, den Raum sSk(Υ) der Spitzenformen
vom Gewicht k bzgl. Υ als PC-Untermodul des PC-Moduls sMk(Υ) der
super-automorphen Funktionen vom Gewicht k bzgl. Υ zu definieren. Es
sind die folgenden Fälle:

(i) Γ\G kompakt. In diesem Falle definieren wir sSk(Υ) := sMk(Υ) ,

(ii) Es existiert ein parametrisiertes Element g ∈P G mit der Eigenschaft,
dass Υ = gΓg−1 . In diesem Falle definieren wir sSk(Υ) als das Bild
von sSk(Γ) £ PC unter dem Isomorphismus

Φ : sMk(Γ) £ PC → sMk(Υ) , f 7→ f |g−1 .

(iii) q = 1 , p ≥ 2 , vol (Γ\G) < ∞ , jedoch Γ\G nicht kompakt unter
einer Zusatzbedingung. Dieses ist der deutlich schwierigste Fall, und
hier benutzen wir wieder die Fourier-Entwicklung einer Spitzenform
f ∈ sSk(Γ) an den Spitzen des Quotienten Γ\B .

Ziel ist es nun ausgehend von einem Erzeugendensystem (ϕλ)λ∈Λ von
sSk(Γ) , die Spitzenformen ϕλ ∈ sSk(Γ) so zu Elementen ψλ ∈ sSk(Υ) zu
deformieren, dass (ψλ)λ∈Λ ein Erzeugendensystem des PC-Moduls darstellt.
Dies gelingt im Fall (ii) : Wir definieren hier ψλ := ϕλ|g−1 und weisen nach,
dass tatsächlich in einem gewissen Sinne (ψλ)λ∈Λ ein Erzeugendensystem
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von sSk(Υ) ist (Satz 3.32 (ii) in Abschnitt 3.4 ). In den Fällen (i) und (iii)
besteht hier weiterer Klärungsbedarf.

In Kapitel 4 schließlich wird eine punktweise Realisierung von super-offenen
Mengen gegeben unter Benutzung von Superzahlen im Unterschied zu Ka-
pitel 2 , wo wir super-offene Mengen als geringte Räume beschreiben. Auch
dieser Aspekt der Theorie der Supermannigfaltigkeiten ist augenscheinlich
neu, obwohl Superzahlen z. B. von B. de Witt in [17] betrachtet werden.
Wir zeigen, dass für eine super-offene Menge U |q die graduierte Algebra
D (

U |q) = C∞(U) ⊗ Λ (IRq) der Superfunktionen auf U |q nichts anderes ist
als die in einem gewissen Sinne reduzierte graduierte Algebra der stetigen
und partiell differenzierbaren Funktionen auf dem topologischen Raum U |q

(Satz 4.8 in Abschnitt 4.1 ), und dass die Algebra D (
U |q) die Menge U |q bis

auf Diffeomorphismen eindeutig bestimmt (Sätze 4.15 und 4.18 in Abschnitt
4.1 ). Bemerkenswert in diesem Zusammenhang ist, dass D (

U |q) gleichzei-
tig die (reduzierte) graduierte Algebra aller unendlich oft differenzierbaren
Funktionen auf U |q ist.
Mit Hilfe der punktweisen Realisierung von super-offenen Mengen wird es
möglicherweise in der Zukunft gelingen, Fundamentalbereiche für parame-
trisierte diskrete Untergruppen beschreiben zu können.

Ich möchte an dieser Stelle noch einmal allen Mitgliedern des Fachbereichs,
die mich wohlwollend während meiner Zeit in Marburg begleitet haben, für
ihre Unterstützung danken, dazu zähle ich insbesondere meinen Betreuer
Prof. Dr. H. Upmeier sowie den Zweitgutachter der Dissertation Prof. Dr.
F. W. Knöller .
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