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Introduction

Automorphic and cusp forms on a complex bounded symmetric domain B
are a classical field of research in mathematics, which famous mathemati-
cians have have been occupied with, for example H. POINCARE, A. BOREL,
W. L. Baivy Jr., H. MaAss, M. KOECHER and I. SATAKE . Let us give a

definition:

Suppose B C C™ is a bounded symmetric domain and G a semisimple LIE
group of Hermitian type acting transitively and holomorphically on B , in
general G = Auty(B) will be the 1-component of the automorphism group
Aut(B) of B . Let j € C*(G x B)® be a cocycle, holomorphic in the second
entry. In general j (¢,{) =detg’ for all g € G if G = Aut1(B) . Let k € Z
and I' C G be a discrete subgroup. Then a function f € O(B) is called an
automorphic form of weight k with respect to I' if and only if f = f|, for
all y € T, where f|,(Z) := f(92)j(g,Z)" for all Z € B and v € ' . The
function f is called a cusp form of weight k& with respect to I' if and only if

f isin addition square-integrable over I'\ B in a certain sense, see section 1.2 .

Automorphic and cusp forms play a fundamental role in representation
theory of semisimple LIE groups of Hermitian type, they have various
applications to number theory, especially in the simplest case where B
is the unit disc in C , biholomorphic to the upper half plane H via a
CAYLEY transform, G = SL(2,IR) acting on H via MOBIUS transforma-
tions and I' © SL(2,Z) of finite index. Also for mathematical physics
cusp forms are of some interest since the space Si(I') of cusp forms is a
quantization space of the space I'\ B treated as the phase space of a physi-

cal system. In this concept one obtains the classical limit by taking k ~» oo .

The starting point of the research presented in this thesis have been two

articles by Svetlana KATOK and Tatyana FOTH , namely

e FoTH, Tatyana and KATOK, Svetlana: Spanning sets for automorphic

forms and dynamics of the frame flow on complex hyperbolic spaces,
5],



e KATOK, Svetlana: Livshitz theorem for the unitary frame flow, [11] .

In these articles FOTH and KATOK construct spanning sets for the space
of cusp forms on a complex bounded symmetric domain B of rank 1 |
which by classification is (biholomorphic to) the unit ball of some C" |
n € IN,and I' C G = Aut;(B) is discrete such that vol '\G < oo , I'\G
not necessarily compact. They use a new geometric approach, whose main
ingredient is the concept of a hyperbolic (or ANOsoOV) diffeomorphism
resp. flow on a Riemannian manifold and an appropriate version of the
ANOSOV closing lemma. This concept originally comes from the theory
of dynamical systems, see for example in [10] . Roughly speaking a flow
(t);er on a Riemannian manifold M is called hyperbolic if there exists an
orthogonal and (¢;),cg-stable splitting TM =T+t &T~ @ TY of the tangent
bundle T'M such that the differential of the flow (¢¢),cg is uniformly
expanding on 7t | uniformly contracting on 7T~ and isometric on 70 ,
and finally 7° is one-dimensional generated by O;p; . In this situation
the ANOSOV closing lemma says that given an ’almost’ closed orbit of the
flow (@), there exists a closed orbit nearby. Indeed given a complex
bounded symmetric domain B of rank 1 , G = Aut;(B) is a semisimple
LIE group of real rank 1 , and the root space decomposition of its LIE
algebra g with respect to a CARTAN subalgebra a C g shows that the
geodesic flow (p;),cg on the unit tangent bundle S(B) , which is at the
same time the left-invariant flow on S(B) generated by a ~ IR , is hyperbolic.

The purpose of the research presented in this thesis now is to generalize
Forr’s and KATOK’s approach in two directions: the higher rank case
and the case of super automorphic and super cusp forms on a bounded

symmetric super domain.

In chapter 1 we treat the generalization to the higher rank case. It is
well known that the theory of complex bounded symmetric domains
is closely related to the theory of semisimple LIE groups of Hermitian
type and also to the theory of Hermitian JORDAN triple systems, see for
example [13] . If G is a semisimple LIE group of Hermitian type then
the quotient G/K , where K denotes a maximal compact subgroup of
G , can be realized as a complex bounded symmetric domain B such
that G is a covering of Aut;(B) . On the other hand there exists a
one-to-one correspondence between complex bounded symmetric domains
B and Hermitian JORDAN triple systems Z such that B is realized as the
unit ball in Z . Hence there exist equivalent classifications of complex

bounded symmetric domains, semisimple LIE groups of Hermitian type and



Hermitian JORDAN triple systems. A classification of bounded symmetric
domains can be found for example in section 1.5 of [16] . In this thesis
the classification does not play a fundamental role, but the general theory
of semisimple LIE groups and Hermitian JORDAN triple systems does, in
particular when clarifying the correspondence between MFTG (maximally
flat and totally geodesic) submanifolds of B , maximal split Abelian
subgroups of G (which are in one-to-one correspondence with CARTAN
subalgebras of g via expy ) and frames in the corresponding JORDAN triple
system. This is treated in section 1.1 . Let ¢ be the rank of B . Then by
definition MFTG submanifolds of B are g-dimensional, and they are the
natural generalizations of geodesics in the rank 1 case. Also a CARTAN
subalgebra of g now is g-dimensional, and so the geodesic flow general-

izes to a g-dimensional multiflow (¢¢)ycge on S(B) , the frame bundle on B .

In generalizing KATOK’s and FOTH’s approach there are two major steps:

(i) On the geometric-dynamical side one has to generalize the notion of

hyperbolic flows and the ANOSOV closing lemma.

(ii) On the analytic-arithmetic side one has to prove and apply an ap-
propriate version of SATAKE’s theorem, which says that under certain
conditions and with respect to a certain measure on I'\ B the space of
cusp forms is the intersection of the space of automorphic forms with
the space L"(I'\B) for all r € [1,00] and k>0 .

In this thesis we present a solution of part (i) generalizing the theory to
partially hyperbolic flows. Concerning part (i) , as expected, there are
major difficulties. The main problem is that so far we are not able to handle
the FOURIER expansion of an automorphic form at a cusp of I'\B in the
higher rank case, which would lead to an appropriate version of SATAKE’s
theorem and a growth condition of a cusp form at cusps. However we
obtain a result for discrete subgroups I' C G such that I'\G is compact and
hence there are no cusps. Clearly this is an area where more research is

needed.

In the second part of the thesis we treat a generalization to super auto-
morphic forms, where our approach is more successful. For doing so it is
necessary to develop the theory of super manifolds first. This is done in
chapter 2 . Of course the general theory of (Z»-) graded structures and
super manifolds is already well established, see for example [4] . It has first
been developed by F. A. BEREZIN as a mathematical method for describ-

ing super symmetry in physics of elementary particles. However even for



mathematicians the elegance within the theory of super manifolds is really
amazing and satisfying. Roughly speaking a real super manifold is an object
which has a pair (p,q) € IN? as dimension, p being the even and ¢ being the

odd dimension. Characteristic of a supermanifold M of dimension (p, q) is:

(i) it has a so-called body M = M?# | which is an ordinary p-dimensional

C*°-manifold,

(ii) we have a graded algebra D(M) of 'functions’ on M , which are the
global sections of a sheaf S on M locally isomorphic to C37 ® A (RY) ,
and finally

(iii) there is a body map # : S — Cy7 being a unital graded algebra epi-

morphism.

For the application to super automorphic forms we develop the concept
of parametrisation, where the ’parameters’ are odd elements of some
GRASSMANN algebra P := A(R") . It turns out that this concept,
which seems to be new in the theory of super manifolds, has far reaching
applications. The original purpose for doing so is the following: For the
definition of the space of super automorphic or super cusp forms we need
something like a discrete subgroup of a super LIE group G acting on a
complex bounded symmetric super domain B . But an ordinary discrete
subgroup of G is nothing but a discrete subgroup of the body G = G# of
G , which is an ordinary real C*°-LIE group acting on the body B = B#
of B . On the other hand considering parametrized discrete subgroups T
of G gives a much wider class of discrete sub super LIE groups of G not
necessarily restricted to the body G . It turns out that even within the
theory of super manifolds, especially in the theory of super LIE groups,
the new concept of parametrization is very useful. In particular the idea
of parametrized super points of super manifolds gives nice interpretations
of the definition of super embeddings and super projections between super
manifolds, see for example lemma 2.27 in section 2.2 . The same holds for
the multiplication and inversion super morphisms on super LIE groups, see
section 2.4 . Parametrized super points of a super manifold separate points
on the graded algebra D(M) of super functions on M , more precisely
if f € D(M) such that f(Z2) = 0 for all parametrized super points = of
M then f = 0. And so in some sense parametrized super points are the

analogon to ordinary points of C°°-manifolds.

Most surprising when dealing with parametrisation within the theory of
super manifolds is the fact that parametrization even makes sense if there

are no odd dimensions at all and so we deal with classical non-super objects.



The category of ordinary open subsets of all IR , p € IN , together with P-
super morphisms is a proper extension of the category of open subsets of all
R? together with C°°-maps. In other words given U C R? and V' C IR"

open open
there are P-super morphisms from U to V' which are not ordinary C*°-maps!

Also the subcategory of all P-super manifolds having dimension (p,0) ,
p € IN , together with P-super morphisms contains the category of
C°-manifolds together with C*°-maps as a proper subcategory. In other
words there exist P-super manifolds M of dimension (p,0) , p € IN |
which are not ordinary C°°- manifolds. However in the case P = R (the
non-parametrized case) the subcategory of all P-super manifolds having
dimension (p,0) , p € IN | together with P-super morphisms is equal to
the category of C°°-manifolds together with C*°-maps, and an IR-super
morphism between open sets U C RP and V C RR" is nothing but an

ordinary C*°-map.

Another result, which seems to be new, about super manifolds is the fol-
lowing: Given an odd complex dimension represented by an odd complex
coordinate function ( it is indeed possible to split this single complex odd di-
mension into two real odd dimensions represented by the real odd coordinate

functions

szeC::C;ig and n:ImC::_iC;_C.

Hence a complex (p,q)-dimensional (P-) super manifold is at the same
time a real (2p,2q)-dimensional (P-) super manifold, and we obtain a
functor from the category of holomorphic (P-) super manifolds together
with holomorphic (P-) super morphisms to the category of real (P-)
super manifolds together with (P-) super morphisms forgetting about the

‘complex structure’.

For a discussion of super automorphic and super cusp forms we restrict
ourselves to the case of the super special pseudo unitary group sSU (p, q|r) ,
p,q,7 € IN | acting on the super matrix ball BP4" which is the complex
bounded symmetric super domain of dimension (pq, ¢r) with the full matrix
ball BP4 C CP*9 as body. So far there seems to be no classification of
super complex bounded symmetric doimains although we know some basic
examples, see for example in chapter IV of [3] . In this context the reader
perhaps is missing the notion of super integration, see for example in [4].
In super integration there is indeed an analogon for the change of variables
formula, but there are still open problems constructing fundamental

domains for the quotient Y\G , which is a P-super manifold, T being a



discrete P-subgroup of G .

However in the case of a non-parametrized discrete subgroup I' =71 of G ,
which is simply an ordinary discrete subgroup of the body G = G# of G ,
we are able to define the space of super cusp forms sSi(I") of weight k as
a HILBERT space containing all super automorphic forms of weight k with

respect to I' which are square-integrable in a certain sense.

As the main result of this thesis we succeed to generalize FOTH’s and KA-
TOK’s method for rank ¢ = 1 and either I'\G compact or p > 2 and
vol T\G < oo . In this case we construct a spanning set for the space of
super cusp forms under the additional assumption that the right translation
with the maximal split Abelian subgroup A C G is topologically transitive
on I'\G , which is satisfied by ’almost all’ discrete subgroups I' C G .

As the major step in the proof, we are able to prove a super analogon for
SATAKE’s theorem using FOURIER expansion of super automorphic forms
at cusps after transforming the situation to the unbounded realization H of

B via a CAYLEY transform.

By the way the calculations in chapter 3 when dealing with super auto-
morphic and super cusp forms with respect to non-parametrized discrete
subgroups I' in the case ¢ = 1 are equivalent to the notion of 'twisted’ au-
tomorphic resp. cusp forms, and so chapter 3 shows in particular how to
extend FOTH’s and KATOK’s approach to such ’twisted’ automorphic and
cusp forms. By ’twisted’ automorphic resp. cusp forms we mean the follow-

ing:

Let V' be a finite-dimensional unitary vector space over C
and x : I' — U(V) a homomorphism. Then f € O(B)® V
is called a twisted automorphic form of weight k with re-
spect to I" and x if and only if f|, = x(v)f . f is called a
twisted automorphic form of weight k& with respect to I' and x

if and only if it is in addition square integrable in a certain sense.

For discrete parametrized subgroups Y of G we obtain partial results.
The space sMi(Y) of automorphic forms of weight k with respect to YT
is a graded PC-module, and in the general case it is not clear how to
define the space of cusp forms for such T as a graded PC-submodule of
sMy(T) since by the reasons desribed above there is no concept of square
integrability on D (YT\G) . However in some special cases we can give

some ideas how to define the space $Sk(Y) of super cusp forms, not as



a HILBERT space, and how to obtain spanning sets of sSj(Y) over PC .
Hereby we treat a parametrized discrete subgroup T of G as a perturbation
of its body I' = Y# and so the space sSi(Y) of super cusp forms as a
perturbation of sSj(T') ® PC . Hence the idea is first to find a spanning
set (pr)yep for sSi(I') and then to deform the elements ¢y to super cusp
forms 1) € sSE(Y) , A € A, which then under certain conditions will give a
spanning set for sSy(T) over PC . Again notice that even in the case where
T is a parametrized discrete subgroup of G = G = sSU(p, q|0) = SU(p, q) ,
the classical case where there are no odd dimensions, the definition of the
space sSk(Y) of super cuspforms is a non-trivial problem, not to mention
the problem of constructing spanning sets for sSx(Y) . For a general
concept of super cusp forms for parametrized subgroups further research is

needed.

Finally, the last chapter, chapter 4 , of this thesis deals with another aspect
of super manifolds, namely the pointwise realization of super open sets in
contrast to chapter 2 , where we introduce super open sets as ringed spaces.
It turns out that given a real super open set U9 the graded algebra D (U‘q)
belonging to U is nothing but the (reduced) graded algebra of continuous
and partially differentiable functions on the set U4 (which is now really a
set of points) . Surprisingly this is at the same time the (reduced) graded
algebra of all arbitrarily often diffentiable functions on Ul? , see theorem 4.8
in section 4.1 , and this gives a hint why super theory is a generalization only
of C*®-structures while there is no super analogon to C*-structures, k € IN .
This is not directly related to super autorphic forms, but could be of
potential value when studying the fine structure of fundamental domains

for parametrized discrete subgroups.

Here for short the dependence amoung the 4 chapters of this thesis:

N e
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Chapter 1

Automorphic and cusp forms

in the higher rank case

1.1 The geometry of a bounded symmetric domain

Let us first recall some well known basic facts about bounded symmetric
domains, see for example in [1], [2], [9], [13] , [15] and [16] . Let B C C"
be a bounded symmetric domain. Then by classification we may assume
without loss of generality that 0 € B and B is circled around 0 and convex.
Let G := Aut;(B) be the identity component of Aut(B) . By a well known
theorem of H. CARTAN we know that GG is a semisimple non-compact LIE

group of Hermitian type which acts transitively on B . Let
K :={g€G|g0=0}
be the stabilizer group of 0 . Then K is a maximal compact subgroup of
G, and
B~G/K

as a real analytic manifold. According to the CARTAN decomposition we can
split the LIk algebra g of G, which is precisely the LIE algebra of completely

integrable vectorfields on B , as

g=padt,

where £ is the LIE algebra of K and p is the orthogonal complement of
t with respect to the KILLING form of g . The KILLING form is negative
definite on ¢ and positive definite on p , expg : p — G is an injection, but p

is not a sub LIE algebra of g , more precisely [¢, €], [p,p] C € and [¢,p] T p .
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Furthermore by classification we know that Z := C™ can be written as a
Hermitian JORDAN triple system such that B is the unit ball in Z in the
following sense: Let { , *, } denote the JORDAN triple product on Z ,
which is by definition C-linear and commutative in the outer variables and
C-antilinear in the second variable. Then for all Z, W € Z we have a linear
operator {Z,W* , $} 1 Z — Z , and it turns out that

(Z, W) :=tr{Z, W* {}

for all Z, W € Z gives a scalar product on Z , and {Z, W*, = {W, 2%, O}
for all Z, W € Z with respect to ( , ) . So for all Z € Z the operator
{Z,7Z*,$} is self ajoint and positive semi-definite. Finally

B={Z¢cZ|{Z,Z",0} < 1} .

Z is uniquely determined up to isomorphism by B , K is the automorphism
group of Z , it can be shown that each automorphism of B belonging to K
extends uniquely to a linear (!) automorphism of Z and so it is unitary with
respect to ( , ) . Therefore there exists a unique G-invariant Hermitian
metric on B which is ( , ) at 0 € B, it is called the BERGMAN metric. We
have canonical isomorphisms p ~ Ty B as real verctorspaces and

T7zB ~ ToB = Z as complex vector spaces for all Z € B , and this fact
turns p and Tz B into a JORDAN triple product and at the same time into
a Hilbert space. Recall that the latter isomorphisms are not the identity
although Tz = C” for all Z € B . The first isomorphism is the consequence
of a more subtle construction. As a bounded symmetric domain B has a
so-called compact dual X which is a compact symmetric analytic manifold
such that Z C X is open and dense. The automorphism group of X is G
which has g€ as LIE algebra. We have two embeddings of Z into g® , which
is the LIE algebra of all completely integrable vectorfields on X . The first
one is the identity, each Zy € Z identified with the constant vectorfield equal

to Zg , it is C-linear, and the second is given by

~IZ‘—>gC’Z0l—>/Z\6,

where Zq (Z) :=={Z,Z},Z} for all Z € Z , which is clearly C-antilinear. The
images of both embeddings are commutative sub LIE algebras of g€ , and a

straight forward calculation shows that

[z,va] = 2{Z, W*,{)

for all Z, W € Z . The isomorphism Z = p is precisely the diagonal
Z — Z—7 . Via this isomorphism Re ( , )on Z coincides with the KILLING

14



form on p up to a positive constant. Via the isomorphisms p ~ 7 ~ Ty B
as real vector spaces the adjoint representation of K on p corresponds to the
action of K on Z as automorphism group and to the action of K on TyB

via the differential. Especially

Ady (Z) = KZ.
A fundamental concept in the theory of symmetric domains is that of the

rank, which we will define in terms of Z , G and the geometry of B .

An element c of the JORDAN triple system Z is called a tripotent if and
only if {c,c*,c} = ¢ . Associated to a tripotent ¢ € Z we have the PEIRCE

decomposition

Z=2(c)®Zy(c)®Z(c)

as a C-vectorspace, where Z, (c) is the a-eigenspace of the linear operator

" 1
{c,c";0onZ ,a=1,35,0.

Definition 1.1 Two tripotents c,c’ are called orthogonal if and only if one

of the following equivalent conditions is fulfilled:
{i} c€ Zy(d),

{ii} < € Zy(c),

{iii} {c,c*, 0} =0.

It turns out that a sum of two orthogonal tripotents is again a tripotent,
and a tripotent ¢ # 0 is called primitive if and only if ¢ cannot be writ-
ten as a sum of two orthogonal tripotents # 0 . Finally a maximal tuple
(e1,...,€eq) € Z9 of primitive and pairwise orthogonal tripotents is called a
frame in Z . Every tripotent c can be written as a sum of primitive, pairwise
orthogonal tripotents, and the number of summands only depends on ¢ and
is called the rank rk c of the tripotent ¢ . rk ¢ = 0 if and only if c = 0 ,
and rk ¢ = 1 if and only if ¢ is primitive if and only if Z; (¢) = Cc for all
tripotents ¢ € Z . Finally every Z € Z can be uniquely written as

7 = Z)\jcj (1.1)
7=1

with pairwise orthogonal non-zero tripotents c¢i,...,c, € Z and
0 < A1 < -+ < A.. Then all ¢c1,...,¢c, € Z are linear combinations
of odd powers of Z , and Z € B if and only if A\, < 1. We call 1.1 the

spectral decomposition of Z .
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A subgroup A C G is called split Abelian if and only if A = exp a where the
LIE algebra a C g of A is a commutative sub LIE algebra (a so-called CARTAN
subalgebra if it is maximal) of p . Then of course exp is an isomorphism

from a to A , so A is non-compact Abelian isomorphic to some IR? .

Definition 1.2

(i) Let Z be a JORDAN triple system. Then the rank of Z is the common
length of all frames in Z .

(iii) Let G be a semisimple LIE group of Hermitian type. Then the real rank

of G is the common dimension of all mazimal split Abelian subgroups of G .

(ii) Let B C C" be a bounded symmetric domain. Then the rank of B is
the common dimension of all (real and connected) maximal flat and totally
geodesic (MFTG for short) submanifolds of B .

It turns out that in the case where B is the unit ball of the Hermitian
JORDAN triple system Z and G is the identity component of AutB the
ranks of Z , G and B coincide. A following theorem clarifies the situation,

but before we have to handle these constructions in the reducible case:

Definition 1.3

(i) B is called reducible if there erxist bounded symmetric domains By , Bo
such that B ~ By x By . Otherwise B s called irreducible.

(ii) the JORDAN triple system Z is called simple if and only if {Z, >, W} #0
for all Z,W € Z\ {0} and Z has no non-trivial ideals.

Theorem 1.4

(i) B is irreducible if and only if G is a simple LIE group if and only if Z is

stmple.

(ii) If B is reducible then there exist irreducible symmetric bounded domains
Bi,...,Bs such that B= By x --- x By . Then

G =Gy x---xGg where G1,...,Gs are the identity components
of AutBy,. .., AutB; resp. ,

By, ..., Bs are (isomorphic to) the unit balls of JORDAN triple
systems Z1,...,Zs resp. suchthat Z =21 ®--- & Zs ,

K = K| x -+ x K where Ky,...,K; are the stabilizer groups
of 0 € By,...,Bs resp. ,

the mazximal split Abelian subgroups of G are precisely
Ay X -+ X Ag where Ai,...,As are maximal split Abelian
subgroups of G1,...,Gs resp.

the MFTG submanifolds of B are precisely Q1 X --- X Qs where
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Q1,...,Qs are MFTG submanifolds of By,...,Bs resp. , and

finally
the  frames in Z up to order are  precisely

egl),...,ef]}),...,egs),...,e(gi)) where (eﬁ”,...,efﬁ) , e,

( (s) (s)

e ,...,eqs> are frames in Z1,...,Zs resp. .

Proof: (i) B is irreducible if and only if Z is simple, this is the main result
of section 4.11 in [13] , and B is irreducible if and only if G is simple, this
result can be found for example in [1] section 11. 4 . O

(ii) Since B C C™ and n is finite, clearly B can be written as a product of
finitely many irreducible symmetric domains.

G = G1 x --- x G4 by iterated application of proposition II in chapter
5 of [14] , which tells us that given two bounded domains Dq, Dy € C"
then any f € Auty (D x Dy) is of the form f(z1,22) = f1(21) f2 (z2) with
f1 € Auty (D1) and fy € Auty (D2) .

Let Z1,...,Z5 be the JORDAN triple systems belonging to B, ..., B, resp. .
Then by an easy calculation one sees that B is the unit ball of Z1 ®---® Z; .
Trivially K := K7 X --- X K is the stabilizer of 0 € B .

The rest can be easily shown by projecting on each factor resp. summand,

since we have p =p; ®--- B ps ,

TzB = Tlel ®---D TZSBS

for each Z = (Zy1,...,Zs) € B, Z =7, ® --- @& Zs as orthogonal splittings,
and if ¢ € Z is a primitive tripotent, then there exists an ¢ € {1,..., s} such
that ce Z; . O

Theorem 1.5

(i) If Q is an MFTG submanifold of B , then gQ is again an MFTG sub-
manifold of B for all g € G , and there always exists g € G such that

0 €gQ .

(i1) Conversely if Q and Q' are two MFTG submanifolds of B , Z € Q and
Z' € Q' then there exists g € G such that gZ = 7' and gQ = Q' .

(iii) If A is a mazimal split Abelian subgroup of G and k € K then kAk™!
is again a mazximal split Abelian subgroup of G, conversely if A and A’ are
two mazximal split Abelian subgroups of G then there exists k € K such that
A = kAEL .

(v) If (e1,...,eq) is a frame in Z and k € K then (key,..., key) is again a
frame in Z . Conversely if B is irreducible (equivalently if Z is simple) and
(e1,...,€q) and (e’l, . .,e;) are two frames in Z then there exists k € K
such that €; = ke; , j=1,...,q .
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(v) If (e1,...,eq) is a frame in Z then the image of the isometric embedding

q q
R? — B, t+— expp thej :Ztanhtjej

j=1 j=1
is an MFTG submanifold of B containing 0 . Conversely if Q is an MFTG
submanifold of B containing O then there ezists a frame (e1,...,eq) in Z

such that Q is the image of the isometric embedding

q q
Rq<—>B,t}—>eXpB thej :Ztanhtjej.
j=1 J=1

(vi) If (e1,...,eq) is a frame then the image A of the LIE group embedding

q
R? — G, t — at = expg th (ej —€))
j=1
is a maximal split Abelian subgroup of G . Conversely if A is a mazximal
split Abelian subgroup of G then there exists a frame (er,...,€eq) such that

A is the image of the LIE group embedding

q
R G, t—expg | Dt (e — &)
j=1
(vii) Let (e1,...,eq) be a frame , Q be the MFTG submanifold containing O
defined by the frame via (v) , and A be the mazimal split Abelian subgroup
defined by the frame via (vi) . Then for all t € R? we have

q
atOZZtanh tiej € Q,

j=1
and so A acts simply transitively on Q . The stabilizer M := Z(Q) of Q in G
is precisely the stabilizer of the frame (e1,...,e,) and at the same time the

centralizer Zi(A) of A in K . The normalizer N(Q) of Q in G is precisely
ANk (A) .

For proving (v) and (vi) of theorem 1.5 we need a technical lemma.

Lemma 1.6 Let (e1,...,eq) be a frame in Z and Z € Z such that
{eja Z*v e]} = {Z7 e;f’ e]}

forallj=1,...,q. ThenZ € Re; +---+ Re, .

Proof: We apply theorem 3.14 of [13] to the frame (ey,...,e,) , which says
that
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given pairwise orthogonal tripotents cq,...,c, € Z then

Z= P z;

0<i<n

(the so-called joint PEIRCE decomposition), where

71 (c:) it i=j#0
Z1(c;) N Z1 (c)) if 0#i#7#0
Zij = Zj; = ’ ’
Y 7 Z1(c;)N N Vole) if i#0=j
2 =1, , i
Zo(Cl)ﬂ"-ﬂZO(CT) if i=5=0

for all 4,5 € {0,...,r} , the PEIRCE decomposition of

Cr := ) ;1 Ci is given by

Zi(er) = Y Zj

ijel
Zi(er) = ) Z
i€l j &l
Zo(er) = Y Z;
i,5¢1
forall I C {1,...,r} , and we have the multiplication rule
{Zij, Z3, Zna} C Za (1.2)

for all 4,4, k,1 € {0,...,7} , and all other types of products are

Zero.

Since all e; € Z;; , j =1,...,q , by property 1.2 we see that all Z, ,
k,l=0,...,q, are invariant under all {e;, {*, e;} and {ej,e;f, <>} ,
j=1,...,q, and so without loss of generality we may assume that Z € Zy,
for some k,l € {0,...,q} .

Assume k # [ and without loss of generality k 20 . Then Z € Z 1 (er) , and
so by 1.2

7 = Q{Z,e};,ek} = 2{ek,Z*’ek} =0.

Now assume k = [ = 0 . Then by 1.2 all odd powers of Z are contained
in Zy , and so Z can be written as Z = Y ._; Ascs where Aj,..., A\ € R,

and cq,...,c, € Zyo are pairwise orthogonal non-zero tripotents, which we
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can assume to be primitive since Zpy is a sub JORDAN triple system of Z

by 1.2 . So (e1,...,€q,C1,...,c;) is a tuple of primitive pairwise orthogonal
tripotents, but since (eq,...,e,) is already a frame, we see that r = 0 and
soZ=0.

Finally assume k = [ € {1,...,q} . Then Z € V;(ex) = Cer . So let
Z = )\ej, with an appropriate A € C . Then

Aey, = {er, (Aey)” ex}t = { Ny, ef, e} = Aey,

andsoAeR . O

Proof of theorem 1.5 : (i) trivial since G acts isometrically and transitively
on B .

(ii) This is precisely theorem 6.2 in chapter V of [9] . O

(iii) The first statement is trivial, the second is the group theoretic version
of lemma 6.3 of [9] , which says that given two maximal Abelian subspaces
a and o' of p there exists k € K such that a’ is the image of a under the
adjoint representation of k£ . [

(iv) The first statement is trivial since K is the automorphism group of Z .
The second is theorem 5.9 of [13] . OJ

(v) By 4.5 and corollary 4.8 of [13]

expg: Z ~ToB — B, Z+— tanh Z

is a real analytic diffecomorphism, so R < B, t + tanh (tZ) is the geodesic
through 0 in direction of Z and at the same time the integral curve through
0 to the vector field Z — Z for all Z € Z ~ Ty . Now let (e1,...,eq) be a

frame in Z . Then we have a unitary embedding

R —Z, t— Z =t1er + -+ igeq,

and since all the vector fields Zy — ZNt commute, together with expp this

unitary embedding leads to an isometric embedding

q q
R?Y— B, t— expp thej :Ztanhtjej,
j=1 j=1

whose image (Jg is a flat and totally geodesic submanifold of B . To see
that it is maximal assume there exists a connected, flat and totally geodesic
submanifold @ of B such that Qg C @ . Then ToQq = Tp@ , and

ToQo = To@ implies Qg = @ . Let us assume Z € TpQ . Then since @ is
flat and totally geodesic, for allt e R? and ue] —1,1[9

0= [z 7.7 — Z] (Zw) = 2 ({Zg, Z*, Zy} — {Z. 2}, Zo})
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especially {e;,Z* e;} = {Z,e;,ej} forall j =1,...,q . So by lemma 1.6
Z c Re; +...Re; = ToQo -

Conversely let @ be an MFTG submanifold of B containing 0 . Then by (ii)
there exists k € K such that kQo = Q , (kei, ..., key) is again a frame in Z
by (iv) , and an easy calculation shows that @ is the image of the isometric

embedding

q q
R?— B, t — kexpp thej :Ztanh tjke;. O

j=1 j=1
(vi) Let (e1,...,eq) be a frame in Z . Then clearly all e; —€; € p,
j=1,...,q, commute, and so we have a LIE group embedding

q
R?Y— G, t+— ag := expg th (ej—e€5) |
j=1
whose image is a split Abelian subgroup Ay of G . To see that it is maximal
assume there exists Z € Z such that Z—Z € p commutes with alle;—e; € p,

7 =1,...,q . This implies

0=|Z-Ze;—&| =2({e;, 2.0} ~ {Z,€],0}) .

and so again by lemma 1.6 Z € IRe; + ...IRe, , therefore Z — Z already
belongs to the LIE algebra of Ag .

Conversely let A be a maximal split Abelian subgroup of G . Then by (iii)
there exists k € K such that kAy = A , and by (iv) (key,..., ke,) is again
a frame in Z . Finally A is the image of the LIE group embedding

q
RY < Gt hagk™ = expg [ 0t (hej — ke ) | .0
j=1
(vii) The first statement is a trivial consequence of the fact that
R — B, t+ tanh (¢tZ) is the geodesic through 0 in direction of Z and at
the same time the integral curve through 0 to the vector field Z — Z for all
ZcZ~1y.
Let us now prove that Z(Q) = Zk (e1,...,eq) = Zx(A) :

'Z(Q) T Zk (e1,...,eq) : Let w € G such that w|g is the
identity. Then especially w € K , and w acts identically on
ToQ = Re; +--- + Rey .

Zk (e1,...,eq) T Zg(A) : Let w € K stabilize eq,..., e, .
Then, as we have already seen, w stabilizes also all e; —€; € g ,

j=1,...,q, which span the LIE algebra of A .
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"Zk(A) C Z(Q) : Let w € K stabilize all elements of A . Then

w0 = 0 , and so w stabilizes all elements of = A0 .
Finally let us show that N(Q) = ANk (A) :

'C’: Let g € G such that gQQ = @ . Then g0 € @ , and so there
exists a € A such that g0 = a0 . So g = an with an appropriate
n € Ng(Q) . We see that n normalizes Re; + --- + Re, , and
soa=IR(e; —e1)+---+R(e; —e;) as well.

"7’ : Let a € Aand n € Ng(A) . Then

an@) = anA0 = aAn0 = A0 = Q.

O

Let us denote the rank of Z and B by ¢ and fix a frame (ey,...,e,) in
Z ~p . Then we have a standard MFTG surface

q

q
Q = expp @Rej :Z]—l,l[ej

j=1 J=1
and a standard maximal Abelian subgroup of G being the image of the LIE
group embedding

q
R? — G, t — ay := expg th (ej —€j)
=1

By M we denote Z(Q) . The decomposition B = B; X - - x By into irreducible
factors of B leads to a corresponding decomposition of A and so finally to

the decomposition

]Rq:IRQI@,”EBIRqS7

where ¢1,...,qs are the ranks of By,...Bs resp. . This decomposition of

IR? is called the decomposition into irreducible summands.
Let us consider the full matrix ball

BP9 = {ZcCM| Z*Z < 1}

as an example. G := SU (p,q) acts transitively on B from the left by
fractional linear (MOBIUS) transformations, and one can show that G is a

finite covering of the identity component of AutB .
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K=SU) xU(g)Cca
is the stabilizer group of Z = 0 . B is irreducible, and the JORDAN triple
product on CP*? associated to B is
1
{Z,W*, U} := 3 (ZW*U + UW*Z) .

p is the image of the C-vectorspace embedding

0|2
Z—g,L— ;

Z" |0

and the BERGMAN metric on B at 0 € B coincides with the euclidian one
up to a positive constant. Z and so B are of rank ¢ , since the standard

frame of Z is (eq,...,eq) , where

€e; = € CP*1,

0

Any other tripotent ¢ in Z can be written as ¢ = k Z;l{:f e; with an appro-

priate element k € K | since Z is ireducible. The PEIRCE decomposition to

the tripotent ¢ := > 7._, e; is

Z 0 rXTr
Zi(c) = o zcC ;
0 |w
Zi(c) = ! wy € C*0 ") w, e Clo—m)xr %
2 W9 0
Zy(c) = 0[0 u e ¢cle—r)xla=—r) \ — cpxa
Olu

The standard maximal Abelian subgroup A of G is the image of the LIE
group embedding
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R?!— @G,

cosh 1 0 sinh t; 0
0
0 cosh t, 0 sinh ¢,
t—ay = 0 1 0
sinh t; 0 cosh 1 0
0
0 sinh ¢, 0 cosh t,

all the MFTG surfaces can be transformed by an element g € G to the
standard MFTG submanifold @ := A0 , and

tanh ¢; 0
RI5Q, t— a0 =
0 tanh ¢,

0

is an isometry between R? and the standard MFTG submanifold @ . The
centralizer M of A in K is the subgroup of K of all

€1 0

€1 0

0 Eq

where ¢ € U (1)? and u € U (p — q) such that &} ---eZ detu =1 .

Now let us return to the general case. On G we have an analytic multiflow

(¢t)4ere given by the right translation by elements of A :

et :G—= G, g gag.

Since the multiflow (¢¢)ycpe commutes with right translations by elements
of M it canonically projects down to the quotient G/M of G , where it has
a nice but more complicated geometric interpretation as the so-called frame

flow: On B we have the frame bundle
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S(B) = {(Z,&,....&)| Z e Band (&,...,§) is a frame in Tz B}
~ G/M

since G acts transitively on S(B) , and M is the stabilizer of the standard
frame sitting at 0 . Let (Py),cgs be the projection of (p¢)icpa down to
S(B) . Then for any (Z,&o,...,&;) € S(B) and t € IR? we obtain the image
point ¢ (Z,&,...,&) = (2,4, ... ,5;) € S(B) by the following procedure:
To (Z,&,...,&;) € S(B) there exists a unique MFTG submanifold @ of B
containing Z and having the linear span of &, . .., §, as tangent space at Z .
Following @ starting in Z and walking ¢;-far in the direction of §; ,
j=1,...,q, we reach the point Z’ , and finally the frame

(&s-- -, 5[1) € TB(Z')? of primitive pairwise orthogonal tripotents is given by
parallel transport of (&,...,&,;) along @ . Hereby the result is independent
of the choice of the curve joining Z and Z' , since @Q is flat (isometric to
R?)! So the frame flow generalizes the geodesic flow on the unit tangent
bundle S(B) in the ¢ = 1 case.

Since all right translations on G are left invariant, the differential of the flow
(¢t)4epre corresponds to the adjoint representation of A on the LiE algebra
g of G via the identification of all tangentspaces T,G , g € G , with g by

left translation. So let us decompose the adjoint representation of A :

s=Po*.

acd
where for all « € (IRY)"

g% = {£ € g | Ady, (&) = ¢}
and

®:={ae (RY)"|g" #0}.

Then ® is called the root system of GG , it is clearly always finite. For all
a, 3 € ® we have [gq, 93] C gats if a+ 5 € ® and [gq, gg] = 0 otherwise. In

[13] proposition 9.19 we have an explicit description of @ :

Theorem 1.7
(i) 0 € ® , and ¢° = a+m is the LIE algebra of AM .
(ii) If B is irreducible then

d={0}u{£2ej|i=1,...,q}U{xefte}|i,j=1,...,¢,i#j}
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if B is of tube type,

d={0}U{xe|i=1,....q}Uu{£2e|i=1,...,q}
U{xej+ej|ij=1,...,qi#j}

if B is not of tube type.

(iii) The spaces g°% are always one-dimensional.

Let v € R? . Then v is called regular if and only if av # 0 for all

a € &\ {0} . The connected components of the open and dense subset of
all regular v € R? are called the WEYL chambers of G . If B is irreducible
then v is regular if and only if all 0, |v1|, ..., |vq| are pairwise different, and

we have a standard WEYL chamber

{veR|0<v < - <y} .

Fix a regular vg € IR? . Then

aced avo>0

which actually only depends on the WEYL chamber containing v , is a sub
LiE algebra of g such that [a,n] C n , and the corresponding subgroup
N :=expgn of G is a nilpotent sub LIE group of G . Note that n and a are
perpendicular with respect to the KILLING form on g , and nNp = nN¢ = {0}
since the KILLING form is positive definite on p and negative definite on £ ,
but for a, 3 € ® , £ € g* and n € g° we have (£,1) # 0 only if 3 = —a ,
and so (n,n7) = 0 for all n € n . Finally we have the so-called IwAsAwWA

decomposition

G =KAN = NAK = ANK .

Definition 1.8 (loxodromic elements resp. subgroups of G ) Let

a€ G, andlet Ty C G be a discrete subgroup.

(i) a is called loxodromic if and only if there exists g € G such that
a€ gAMg"' .

(ii) If a is lozodromic, it is called regular if and only if a = gaywg™! with
t € RY regular.

(iii) T is called loxodromic if and only if there exists g € G such that
I'oC gAMg™" is a lattice, and hence cocompact.
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So any loxodromic element a € G can be written in the form a = gaywg ™"

for some g € G, v € R? and w € M , and for all loxodromic Iy C G and
g € G such that I'g C gAM g~ is a lattice we see that

¢:To—RI, v=gawg™ ' —t

is a group homomorphism, Ker¢ = I'g N (gMg’l) is finite, and

A:=Tm ¢ C RY

is a lattice, hence cocompact. The next theorem should clarify in which way
the elements g € G , v € R? | the group homomorphism @ , its kernel and
its image A are uniquely determined by a resp. I'g . Especially we will see

that (ii) of definition 1.8 is independent of the choice of ¢ .

Lemma 1.9
N(A) = ANk (A)=N(AM)C N(M).

Proof: '"N(A) C ANk (A)’ : Let g € N(A) . Then by the IwAsAwA decom-
position we can write g = ank with appropriate k € K ,n€ N anda € A .
But since clearly A © N(A) we may assume a = 1 without loss of generality.
Let ¢ € a and ¢ := Ady(¢) = Adi (Adn(¢)) € a . Then on one hand we
have Ad;-1(¢’) € p, and on the other hand

Adp-1(¢) = Adp(Q) = C + 1

with an appropriate n € n . Son € nNyp and therefore n = 0. So n
commutes with all @ € A | but this is only possible if n = 1 since conjugation

by a_v, is a contraction on N with respect to the left invariant metric on G .
"ANg(A) T N(AM)’ is trivial since M is the centralizer of A in K .

'N(AM) © N(M) : Since M = Zg(A) , all the root spaces of A in g
are invariant under M , and since M is a compact group we see that the
adjoint representation of M on g is unitary on each of them with respect
to an appropriately chosen scalar product. So g € N(AM) permutes the

1

root spaces, and the adjoint representation of gM g~ on g is unitary on all

root spaces with respect to an appropriate scalar product. Now let w € M .
Then there exist t € IR? and w’ € M such that

gwg~ "t = agw’ . (1.3)
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Looking for example at the spaces ng;' ,7=1,...q, shows that equation

1.3 is possible only if t = 0 , and this means gwg™' =w' € M .

'N(AM)C N(A)’ : Let g€ N(AM) . Then g € N(M) as we have already
seen. Since a is the unique orthogonal complement to m with respect to the
KiLLiNG form restricted to a + m and the adjoint representation of G on
g respects the KILLING form, it follows immediately that even g € N(A) . O

Clearly M is a normal subgroup of Nk (A) , and the so-called WEYL group
W := Ng(A)/ M acts on A via conjugation, and so on R? as well, and this
action is simply transitive on the WEYL chambers, and so it is isomorphic to
the subgroup of GL(¢, R) permuting the components within each irreducible

summand of R? and changing signs of the components, hence isomorphic to

S(q1) x - x 6(gs) x {£1}7,

see for example in [15] , Lecture 2 .

Definition 1.10 We call two vectors v and v/ € R? WEYL equivalent if
and only if the corresponding elements av and ay: of A are conjugated by an
element of the WEYL group, in other words v and v' are equal up to per-
muting the components within each irreducible summand of RY and changing

S1gNS.
Clearly regularity is invariant under WEYL equivalence.

Theorem 1.11

(i) Let a € G be lozodromic, g € G , w € M and v € R? be regular such

that a = gaywg™' . Then g is uniquely determined up to right transla-
tion by elements of ANk (A) , and v is uniquely determined up to WEYL

equivalence.

(ii) Let To C G be lozodromic, g € G such that Ty C gAMg™" |

¢2F0—>]Rq

the corresponding group homomorphism and A := Im ¢ T IR? the corre-
sponding lattice. Then again g is uniquely determined up to right translation
by elements of ANk (A) , ¢ and so A are uniquely determined up to WEYL

1

equivalence, and Ker¢p =TgNgMg™ is independent of g .

Proof: (i) Let ¢ € G, w’ € M and v’ € R such that also a = ¢'ayw'g"™" .
Then ayw = (97'¢') avw’ (¢7'¢’) . Since v € RY is regular, a + m is the

largest subspace of g on which the conjugation with a,w is orthogonal

28



with respect to an appropiate scalar product. So conjugation with g~'¢g’
stabilizes a + m . This implies g™1¢’ € N(AM) = ANk (A) by lemma 1.9 ,
and so v’ is in the image of v under the WEYL group W . O

(ii) This is a trivial consequence of (i) , because in the lattice A we always

find regular elements. [J

1

In both cases the groups gAMg~! , gAg~' and gMg~"' are independent of

the choice of g .

Now let I' C G be a discrete subgroup of G . Then geometrically the maximal
loxodromic subgroups of I' correspond to closed MFTG submanifolds on
I'\B . Hereby a subset R C I'\B is called a closed MFTG submanifold,
if and only if it is the image of an MFTG submanifold R’ € B under the
canonical projection, and the composition R? = R’ — R of the canonical

isometry and the canonical projection factors through a lattice of IR? .

Theorem 1.12 There is a one to one correspondence

{R C T'\B closed MFTG surface }

— {To C T maz. loz. subgroup of T }/ conjugation by elements of T

given by

R — T'n (gAMgil) , where g € G such that R =T'\(9Q),
M\(gQ) « Tg, where g € G such that g 'Tog = AM .

Proof: Let us first check that both mappings are well-defined:

Let g,¢" € G such that T'\(¢'Q) = T'\(¢Q) and define

To:=TnN(gAMg™"),

which is clearly a maximal loxodromic subgroup of I' . Then
since ) is connected and I' discrete there exists v € I' such
that v¢'Q = ¢gQ , and so n := ¢"14v7lg € N(Q) = N(AM) .

Therefore we have

I'n(dAMg™") = T'n(y 'gn "AMng™'y)
= 7 (TN (9AMg™))
= 7 'Tov.
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Now let I'g be a maximal loxodromic subgroup of I' , let g, ¢’ € G
such that g7 'Tyg, ¢’ 'Tog’ = AM and v € I . Then by theorem
1.11 ¢’ = gn with an appropriate n € ANg(A) = N(Q) . Then
we have ¢'Q = gn@Q = ¢gQ@Q , and so the result is independent of
the choice of g .

Clearly T, := 4 1Ty is again a maximal loxodromic subgroup
of I' , and

Ty C (v 'g) AM (v 'g) ",

and so finally

I\ ((v'9) Q) =T\ (yQ) .

Clearly both mappings are inverse to each other. [

The boundary of B can easily be described in terms of tripotents of Z .
Let ¢ € Z be a tripotent. Then both Z; (¢) and Zj (c) are sub JORDAN
triple systems of Z , and so B, := BN Zy (c) is the unit ball in Zy (c) . We
see that B, is itself a bounded symmetric domain of lower dimension and
rank ¢ —rk ¢ . The tripotents in Zj (c) are precisely the tripotents in Z
orthogonal to c .

A subset F of B is called a face of B if and only if it is closed and convex
and fulfills the extremality condition: If a,b € B such that

Ja,b[NF £0
then [a,b] C F .

Theorem 1.13
(i) Let c € Z be a tripotent. Then Fg := c + Be is a face of B .

(ii) Let F be a face of B . Then there exists a unique tripotent of Z such
that F =c+ BN Zy(c) .

Proof: Up to uniqueness in (ii) this is theorem 1.5.47 of [16] . To see unique-
ness of ¢ in (i) let ¢’ be another tripotent such that F' = ¢’ + BN Zy (c') .
Then ¢’ — ¢ and ¢ are orthogonal, and therefore ¢’ — ¢ is a tripotent in B ,
and so it must be 0 .

For all j € {0,...,q} let S; be the set of all tripotents ¢ of Z of rank j .
Then S; is a closed submanifold of Z , Sy = {0} , and since the (relative to

c+ Zy (c) ) open faces ¢ + B are pairwise disjoint, we have a partition
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OB = UBC.

j=1,....j c€S;

If ¢ = 0 then B, = B , and this is the only open face of B which is not
contained in 0B . If ¢ € S, then Zy = {0} , and so the associated face is
{c} itself. We see that S, is the submanifold of extremepoints of B , and it
is called the SHILOV boundary of B .

To each tripotent ¢ € Z we have a partial CAYLEY transformation

R :=exp (% (c —i—E)) e G,

which maps biholomorphically B onto the unbounded symmetric domain
H. := R¢(B) C Z . For describing H. , which is a SIEGEL domain of type
III , we need some more information about the PEIRCE decomposition

Z =27(c)® Z% (c) ® Zy (c) , see for example chapter 10 and section 3.13
in [13] .

Z1 (c) is a Hermitian JORDAN algebra with product given by

ZW = {Z,c*, W}

for all Z, W € Z; (c) . Zi(c) has the unit element ¢ and the involution *
given by

Z*:={c,Z", c}

for all Z € Z; (c) . The set

A={ZecZ(c)| 2" =2}

of with respect to * real points of Z; (c) is a formally real sub-IR-JORDAN-
algebra of Z; (c) , and Z; (c) = A®iA . Let Y be the positive cone of A ,

this means

V= {Z?|Z € A\ {0}} .

Define

F:Zi(c)x Z% (c)— Zi(c), F(V,W):={V,W* c} .

1
3
Then F is C-linear in the first and C-antilinear in the second variable, it is

*

Hermitian with respect to * and positive definite with respect to Y . For

all Z € Zy (c) we define
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0z : Z% (c) —>Z% (¢), W {c, W* Z} |

which is C-antilinear and selfadjoint with respect to F' . We have

0# F(W,W)—F(pz(W),pz (W)) e Y\ {0},

where Y here denotes the topological closure of Y in A , therefore

Id + ¢z € GLr (Z;) for each Z € Z; (c) , and so for all Z € Z; (c) we can
2

define

Fg: 71 (c) x Z1 (¢) = Zi (c) , Fz (V,W*) = Fz (V, (Id + z) ! (W)*) :

1
2

which is C-linear in the first but in general only IR-linear in the second

variable.

Finally we have
Theorem 1.14

H. = {Z1+Z1+Z0 1€
2 2

Re <Zl—;FZO( > }

Proof: This is precisely theorem 10.8 of [13] .

ZleZl(),Z () Zy € B,

1
2

We see that there is a canonical embedding iA — Autg (D.) = R.GRg*

1A acting on H via translation.

1.2 The space of cusp forms on a bounded sym-

metric domain

Let k € Z be a fixed integer and let

j:GxB—C, (9,Z) — detg (Z) .

Then clearly j fulfills the cocycle property j (gh,Z) = j (g9,hZ) j (h,Z) , and

so on B we have a right action of G :
lg:C7 = CP, ffl
for all g € G where
flg(Z) == [ (92)j (9,2)"
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for all Z € B . This action is clearly holomorphic in the sense that if
f € O(B) then again f|, € O(B) for all g € G, and we have a lift

TiCP sl e f

where

f(9) = f(90)j (9,0)" = fl4(0)
for all f € CB and g € G , which is C* in the sense that if f € C>®(B)C
then again ]76 C>(G)® . The right action | 4 on CPB lifted to CC is simply

the left translation, more precisely

CG(!]—OZCG
- % 1~

cBE — CP
lg
forallg e G .
On G we always use the left invariant HAAR measure, which is at the same
time the right invariant HAAR measure since G is semisimple, hence uni-
modular. Let I" be a discrete subgroup of G . Then we define a ’scalar

product’

(f.hr = [ fh

NG

for all f,g € CP such that ?E € L' (I'\G) and for all r €]0, o0

L, (T\B) := {f cCB ‘ f left-T-invariant and € L (F\G)} .

Then clearly especially all (, ) := (, )y and all Lj(B) are invariant
under the action |, , g € G .

Definition 1.15 (automorphic resp. cusp forms on B )

(i) Let f € O(B) . f is called an automorphic form for I' of weight k if
and only if f is left-I'-invariant or equivalently f = f|, for all v € T .
The C-vector space of all automorphic forms for I' of weight k is denoted by
M (T) .

(ii) Let f € Mp(T') . f is called a cusp form for T' of weight k if and only
if f € L2 (T'\B) .The C-vector space of all cusp forms for T of weight k is
denoted by Si(T') :== M(T)N L2 (T'\B) = O(B) N L (I'\B) .

Let A : Z x Z — C be the JORDAN triple determinant of Z and P be the
genus of B, see for example in 1.5 and 2.9 of [16] . Then A has the following

properties:
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(i) A0,¢) =1,

(ii) A is a sesqui polynomial, holomorphic in the first and antiholomorphic

in the second variable,

(i) A(Z,W) = A(W,Z) for all ZZW € Z and A(Z,Z) > 0 for all
Zc B,

(iv) 5 (9,0)| = A (g0, 90)? forall g € G ,

(v) A(9Z,gW)" = A(2,W)" j(9.2)j (9, W) for all g € G and
Z.W € B,

(vi) [ A(Z,Z)* dVien < oo if and only if A > —1 , and finally
(vil) if Z=2,®--- ® Zs is the decomposition of Z into simple summands
then for all Z, W € Z
A (Z7W) - A]. (Z17W1) e AS (Zsaws) )

where Aq,...,Ag are the JORDAN triple determinants of the JORDAN
triple systems Z1, ..., Z, resp. .

By (iv) and (v) we have the G-invariant volume element A(Z,Z)~dVi,
on B . Sofor all 7 €]0,00] and f € CB such that f € C is left-T-invariant
we have f € Lj(I'\G) if and only if

/|A(Z,2)F € I'(T\B)

with respect to the measure A (Z, Z)_P dVier, on B, and for all f,g € CB
such that fg € L}(T\G)

b= Fh= / FhA(Z,2) 0P aviy,
NG I'\B

Clearly Si(T') is the subspace of all f € M (T") such that (f, f)r < oo .
Since convergence with respect to ( , )r implies compact convergence, we

see that (Sk(I'),( , )r) is a HILBERT space.
Now fix a discrete subgroup I' C G .

A famous theorem by I. SATAKE says that under certain conditions there
exists kg € IN such that for all k > ko and r € [1,00]

Si(T) = My(I) N LE(T\B).
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In many cases SATAKE’s theorem holds, trivially if I'\G is compact, but for
example also in the case where B is (biholomorphic) to the unit ball of some
C",n>2,(sorank ¢ =1 ) and vol '\G < oo . This can be shown by a
calculation similar to that of section 3.2 . If SATAKE’s theorem holds and
vol I'\G < oo then Si(I') is finite dimensional for all k£ > kg since we have

the following lemma, lemma 12 of [1] section 10. 2 :

Let (X, u) be a locally compact measure space, where u is a
positive measure such that u(X) < oo . Let F be a closed
subspace of L?(X, 1) which is contained in L>(X, ) . Then

dim F < c0.

Merely the only way to construct automorphic forms for I' is by relative
POINCARE series. Let IV C T' be a subgroup and f € My(I') . Then the
relative POINCARE series

> fly

~eIV\T'
defines a function in My (") provided that the convergence is 'good enough’.

Recall that the summation is independent of the choice of a fundamental
set of I"\I" to be summated over since already f € M(I") .

Theorem 1.16 (convergence of relative POINCARE series) LetT' C T’

be a subgroup and
feM (I")nLy (I'\B) .
Then

= Y flyand®d:= > F(70)

~€eI/\T ~yeT\T

converge absolutely and uniformly on compact subsets of B resp. G ,

® e My, (T)N L (T\B)

® is the lift of ® to G , and for all ¢ € My, (T) N L (I\B) we have

((I)a@)r = (f7 SO)F’ .

Proof: Let go € G and L C G be a compact neighbourhood of gy in G
such that yL N L = () for all v € T'\ {1} . Since the canonical projection
m:G — G/K ~ B is open 7(L) is a compact neighbourhood of gy0 . So by
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the mean value property of holomorphic functions and since j is continuous
and nowhere zero, there exists a neighbourhood U C L of ggin G and C € R
such that for all h € O(B) and g € U

(E(g)( < C/L(Tz‘ .
So for all g € U

> ‘f(’m)‘ = > ‘f\v(g)‘

~€eI/\D ~yeT\T

(VAN
Q
g
—
B

IN
Q

Since j is continuous and G is a LIE group we see that & and ® converge
absolutely and uniformly on compact subsets of B resp. G , and ® is the
lift of ® to G . So clearly ® € M (T") .

/F\G‘i‘S/F\G > ‘f(vO)IZ/

~yeI’\T e
and so ® € L} (T'\B) . Now let ¢ € L° (I'\B) . Then f@ € L' (I"\G) , and

SO

<.

<<I>7so>r=/F\G > T60F= [ T=(er.O

~eI'\T' "\

Let W € B . Since Si(I") is a HILBERT space and the evaluation

is a continuous linear form on Sy (I') , there exists a unique &w € Si(I")
such that

¢ (W) = (Pw, p)

for all ¢ € Si (T") . The following theorem in combination with SATAKE’s
theorem and theorem 1.16 gives an idea how to get the 'reproducing kernel’
q)w for Sk (F) .
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Theorem 1.17 Let k> 2 . Then for all W € B

A0, W)™ e Ly(B),

and for all f € O(B) N L°(B) we have

(AW 1) =r(w),

where = denotes equality up to a constant # 0 independent of W and f .

Proof: First treat the case W =0 . Then A ($,0) " =1,

L= [pwor|= [ st

and for all f € O(B) N L (B)

(1,f) = /BfA (Z,Z)* VT avie, = £ (0)

since f € O(B) and A (Z,Z) and B are invariant under the circle group
U(l)— K .
Now let W € B be arbitrary. Then there exists g € G such that W = g0 ,

and so

A (O, W) = A (0,900 =5 (g7,0) 7(9,0) " =7(g,0) 1],
€ Li(B).
Let f € O(B) N L¥(B) . Then
(A0 W) 1) = (706,00 "y, f)
= j(g.07"(1, fly)
= j(.0)7" fl,(0)
= f(W).O

Corollary 1.18 Assume SATAKE’ theorem holds, and let k > max (2, ko) .
Then for all W € B

dw =D A(O,W)H

yer v

where = denotes equality up to a constant # 0 independent of W and T" .
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By the way a simple calculation shows that ®w (Z) = &z (W) for all
Z,W € B and so ®w (Z) is holomorphic in Z and antiholomorphic in W .

Let us consider again the full matrix ball

B :={Z € CPZ°Z > 1}

and the group G := SU (p,q) acting on B as an example. The genus of B
is P:=p+q, and for all

Al B
g— }peG
C|D ) }q

and Z € B we have

j(9,Z) =det (CZ+ D)™ ",

although in general one defines j (g, Z) := det (CZ + D) ™' since this is al-
ready a cocylce, but it is not well-defined on Aut;(B) which is the quotient
of G by its centre. Finally we have

A(Z, W) = det (1 - W*Z)

for all Z, W € Z = CP*1 .

1.3 An ANoOsoOV type result for the frame flow

Hyperbolic (or ANOsOV) diffeomorphisms and hyperbolic (or ANOsSOV) flows
on manifolds have been delt with for example in [10] . A diffeomorphism or
a flow being hyperbolic implies a rich structure of periodic orbits. Roughly
speaking a diffeomorphism ¢ on a manifold W is called hyperbolic if there
exists a Riemannian metric on W and a @-invariant splitting of the tangent
bundle TM = T+ & T~ such that ¢ is expanding on T and contracting
on T~ both with a global constant C' . The famous ANOSOV closing lemma
(theorem 6.4.15 in [10]) says that for a hyperbolic diffeomorphism ¢ on W
given an e-closed orbit of ¢ there exists a closed orbit e-nearby. Here we
have to deal with partially hyperbolic diffeomorphisms and flows, and we
can state a partial ANOSOV closing lemma (see theorem 1.21) for them. For
our purposes it is enough to restrict ourselves to the C*°-case.

Let W be a smooth Riemannian manifold and ¢ a C*°-diffeomorphism of W .

Definition 1.19 (partially hyperbolic diffeomorphism) Let C > 1 .
@ is called partially hyperbolic with constant C' if and only if there exists an
orthogonal Dy (and therefore Do~ ) -invariant C*®-splitting
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TW =TTt T~

of the tangent bundle TW such that TO @ T+ , T°® T~ , T , Tt and T~
are closed under the commutator, Dy|yo is an isometry, ||Dolr-|| < & and
e < &

¢ being partially hyperbolic, T°@T+ , T°@T~ , T, Tt and T~ give rise to
C>®-foliations on W . Let us denote the distances along the 7° @ T+- | T0- |
TT- respectively T~ -leaves by d®* , d° , dT respectively d~ . Then clearly
for any two points a,b € W belonging to the same T~ -leaf the points ¢(a)
and ¢(b) again belong to the same T~ -leaf and d~ (¢(a), (b)) < &d~ (a,b)
and for two points ¢,d € W belonging to the same Tt-leaf the points ¢(c)
and ¢(d) resp. the points ¢~ !(c) and ¢~!(d) again belong to the same
T+-leaf and d* (71 (c), ¢ 1(d)) < &d* (c,d) .

T+ @ T~ in general is not closed under the commutator.

Definition 1.20 Let TW = T°@ T+ @ T~ be an orthogonal C*®-splitting of
the tangent bundle TW of W such that T° T+ , T° , TT and T~ are closed
under the commutator, C' > 1 and U C W . U is called C'-rectangular (with
respect to the splitting TW =T & T+ @ T~ ) if and only if for all y,z € U

{i} there exists a unique intersection point a € U of the T° & T -leaf con-
taining y and the T~ -leaf containing z and a unique intersection point
be U of the T° @ T -leaf containing z and the T~ -leaf containing y ,

A" (y,a),d” (y,b),d" (2z,a),d"" (2,b) < C'd(y,2) ,

and
1
a7 () < d" (y,a) < OV (2,0),

1 _ _
ad (Z,G)Sd (yab)gcld (Z,(I),

see figure 1.1 .
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Figure 1.1: intersection points in {i} .

{ii} ify and z belong to same TO@ T -leaf there exists a unique intersection
point ¢ € U of the T°-leaf containing y and the T -leaf containing z
and a unique intersection point d € U of the T°-leaf containing z and

the T -leaf containing vy ,

d’ (y,c),d* (y,d),d" (z,¢),d° (z,d) < C'd"* (y,2) ,

and

see figure 1.2 .
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Figure 1.2: intersection points in {ii} .

Since the splitting TW = T @ T @ T~ is orthogonal and C™ we see that
for all z € W and C’ > 1 there exists a C'-rectangular neighbourhood of x .

Theorem 1.21 (partial ANOSOV closing lemma) Let ¢ be partially hy-

perbolic with constant C' , letz € W, C" €]1,C[ and § > 0 such that Us(z)

is contained in a C'-rectangular subset U C W .

!

If d(z,p(z)) < 5% then there exist y,z € U such that

(i) = and y belong to the same T~ -leaf and

/

d~ (z,y) < 1CC,d(w,<p(x)) :

C

(ii) y and @(y) belong to the same T° @ T+ -leaf and

A" (y,0(y)) < C%d(x, ¢(2)) ,

i11) y and z belong to the same T -leaf and
(1i1)

N 0/3
0" (o). p(2) < —grd (. 0(2) |

C
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i) z and p(z) belong to the same T°-leaf and
(i) ¥

d” (2,(2)) < C"d (z,0(x)) .

Proof: Let U be C'-rectangular neighbourhood of z in W and § > 0 such

c
that Us(x) C U . Suppose ¢ :=d (z,¢(x)) < 6%& .

Step I Show that there exists a point y € U such that y and « belong
to the same T~ -leaf, y and o(y) belong to the same T° @ T'-leaf,

3

d(e(y),z) < —F%,
T C

_ c’

C

and

d"F (y, (y)) < eC™.

We inductively construct points x, € U , n € IN | such that xg := x and for
alln e N

(i) =, and x belong to the same T~ -leaf,
(ii) 2, and ¢ (z,_1) belong to the same T0 @ T*-leaf if n > 1,

A\ n—1
(i) d~ (2n, Tn_1) < £C" (%) ifn>1,

!

(iv) d™ (¢ (xn), ¢ (xn-1)) <e (5)71 ifn>1,

(v)

see figure 1.3 . z¢p = x clearly fulfills (i) and (v) . Now let us assume n € IN
and z, € U fulfills (i) - (v) . Since by (v)

g
d(@(fﬁn)w)ﬁ _% Sda

even ¢ (zy) € U , and so by {i} of definition 1.20 there exists a unique
intersection point in U of the T~ -leaf containing x, and the T9 @ T*-leaf
containing ¢ (x,,), which we define to be x,41 . Then clearly (i) and (ii) are
fulfilled. d~ (x1,20) < C'd (2, ¢(x)) = C’e follows from {i} . If n > 1 then
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@ (xp—1) is the unique intersection point of the 7T~ -leaf containing ¢ (x,)

and the T° @ T -leaf containing z,, , and so by {i} and (iv) we obtain

& (o) < C0 (o (o) ponn) <0 ()

Since x,4+1 and z, belong to the same T~ -leaf, we get

and this is (iv) . Finally by (iv) and (v) we see that

d(¢(xns1),z) < d° (@(mn+11),s0(rcn))+d§:ﬁ(wn)+,lw) k
I\ N+ n ! n /
(S R

By (iii) we see that (z,),cn is @ CAUCHY sequence in U . Let

IN

y = lim, 0oy € U . Then y and x belong to the same T~ -leaf , and by

(iii) we see that

o N\ k l
d_(w,y)§60’2<g> Sslfo,.
k=0

y and ¢(y) belong to the same T9 @ TF-leaf, and

= /Cc\" €
d(p(y),z) SEZ(C> =~z <9
n=0 C

So ¢(y) € U . Finally y is the unique intersection point in U of the T~ -leaf
containing z; and the 79 @ T -leaf containing ¢(y) , and o(x) is the unique
intersection point in U of the T~ -leaf containing ((y) and the T° @ T*-leaf
containing z; . So by {i}

A (y,¢(y)) < C'd (a1, 0(x)) < eC?.
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O+

Figure 1.3: constructing the CAUCHY sequence (z,,),cp in step I .

Step II Show that there exists a point z € U such that z and y
belong to the same T -leaf, z and ¢(z) belong to the same 7'-leaf,

13
a* (p(y), o(2) < e~

C

and

d° (z,0(2)) < eC™.
We inductively construct points y;, € U , n € IN , such that y := p(y) and
for all n € IN
(i) y., and ¢(y) belong to the same T -leaf,
(ii) v, and ' (y},_;) belong to the same T0-leaf if n > 1,
A\ n—1
(i) d* (yp ) <eC®(G)" ifn =1,
() d* (¢ (W) 7t (vhor)) <02 () iz 1,
(v)
1, pa- (C1\ 1
d(p™" (yn) 2) <e|C Z(C> ti_ao )
k=0 C
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see figure 1.4 . y, = ¢(y) clearly fulfills (i) and (v) . Now let us assume
n € N and y, € W fulfills (i) - (v) . Since by (v)

we see that again even ! (y/,) € U . By (i) since the splitting of the tangent
bundle is Dy~ l-invariant , ¢! (y/,) and y belong to the same T*-leaf, and
so ! (y)) and o/, belong to the same T° @ T+-leaf. So by {ii} of definition
1.20 there exists a unique intersection point of the T"-leaf containing v/,
and the T0-leaf containing ¢! (y,) , which we define to be ¢/, ; . Then
clearly (i) and (i) are fulfilled. d* (y},y) < eC” follows from {ii} since
d(y,o(y)) <eC? . If n>1then ¢! (y,,_,) is the unique intersection point
of the T -leaf containing ¢! (y/,) and the T°-leaf containing 3/, , and so by
{ii} and (iv) we have
o\ "
A" (Y1 9n) < C'd (07" () 07" (o)) <2C° (c> -

Since y;,,; and y;, belong to the same T*-leaf, we get

1 / 1 / 1 / / 12 C, (s
A (7" (W) 27" () < 47 (Whrnvn) <20 <C> :
and this is (iv) . Finally by (iv) and (v) we obtain

IN

d(o7" (ynsa) 9~ (wn) +d (97" (), @)
7\ n+1 n I\ k
€Cl2 (g) + e (C/Q Z (g) + 1_10,>
k=0 C

n+1 k
c’ 1
- (B9 ).
( k=0 ¢ l-Z

By (iii) we see that (y,,),cn is @ CAUCHY sequence in U . Let

d (e (Yny1) , )

IN

2 = limp ooy, € U and z := ¢~ 1(2') . Then 2’ and ¢(y) belong to the
same T"-leaf, so again z and y belong to the same T"-leaf, and by (iii)

0 C’ k C’3
d* , <eC? <> = -
(p(y), 0(2) < ;) c) ~fite

z and ¢(z) belong to the same T°-leaf, and by (v)

So z € U . Finally ¢(2) is the unique intersection point in U of the T"-leaf

containing 3/} and the T%leaf containing z , and y is the unique intersection

45



point in U of the T*-leaf containing z and the T%leaf containing 3/} . So by

{ii}

d(z,¢(2)) < d° (2,0(2)) < C'd° (y,41) < Cd(y. p(y)) < C"e.O

Figure 1.4: constructing the CAUCHY sequence (y,,),,cny in step IT .

Now let (¢¢),cg be a C*°-flow on W', which means that ¢ — ¢; is a homo-
morphism of IR into the group of diffeomorphisms of W and the map
R x W — W, (t,z) — p¢(x) is smooth.

Definition 1.22 (partially hyperbolic flow) Let C > 0 . The flow
(0t)ier 15 called partially hyperbolic with constant C' if and only if there

exists an orthogonal Dy-invariant C°°-splitting

TW =TTt T"

of the tangent bundle TW such that T°©T+ , T®T~ ,T° , T* and T~ are

Ct and

closed under the commutator, D70 is an isometry, ||Doi|r-|| < e~
[|Dp_i|p+|| < e €t for allt >0, and Ty contains the generator dupili—o of

the flow.

If the flow (y¢),cg is partially hyperbolic with constant C', then for all
t > 0 clearly ¢ is a diffeomorphism of W which is hyperbolic with constant
et > 1 and corresponding splitting TW =T° @ Tt @& T .
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Now let us return to the LIE group G . Let v € IR . Then we can restrict

the multiflow (¢t)cgq to the 'diagonal flow’ (¢rv) which is simply the

T€ER >
right translation by the group

Ay ={a |T€R}.

Choose a left invariant metric on G such that all g* , « € &\ {0} , a and m
are pairwise orthogonal and the isomorphism IR? ~ A C @ is even isometric.
Let v € R? . Then since the ’diagonal flow’ (¢rv),cg commutes with left
translations it is partially hyperbolic, as one sees immediately in the root
space decomposition of g , see theorem 1.7 , and after rescaling v we may
assume the constant of hyperbolicity to be equal to 1 . The corresponding
splitting of the tangent bundle of G is the unique left invariant splitting such
that

nG=g= P o P "o D
acd,av=0 acd,av>0 aced av<0

~~ ~~

T%Z T, = .=
Indeed TO @ T+ , TV @ T~ , T° , T+ and T~ are closed under the
commutator since [ga,893] C ga4g if @« + 5 € @ and [ga,g93] = 0 oth-

erwise for all o, € & . So we can apply the partial ANOSOV closing
lemma, theorem 1.21 , which here is really convenient since G acts tran-
sitively and isometrically on itself by left translations. Before we do so

we need two little lemmas. Recall that TY = a+m if and only if v is regular.
For L. C G compact, T,e > 0 define

My = {gatgf1 ‘ g € L,t € R? such that |t| < T}

and

Npre:={g€G |dist(g, M) <e}.

Lemma 1.23 For all L C G compact there exist Ty, g > 0 such that
TAONLT e = {1}

Proof: Let L C G be compact and T" > 0 . Then My, r is compact, and so
there exists € > 0 such that Ny 7. is again compact. Since I' is discrete,
I'N N 7. is finite. Clearly for all T,7",e and ¢’ > 0if T < T" and e < ¢’
then Ny 7. C N1/ . Finally we have

(} A&kzz{l}a

T,e>0
and so the claim follows. [J
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Lemma 1.24 For all L C G compact there exists a constant ¢ > 1 such
that for all g € L and a,b € G

1
Ed(ag, bg) < d(a,b) < cd(ag,bg) .

Proof: The conjugation map

C:Gxg—g, (975)’_>Ad9(£)

clearly is linear with respect to £ and continuous with respect to g . So
if L € G is compact then there exists ¢ > 1 such that ||C (g, )| ,
|C (971 0)|| <cforallge L. O

Theorem 1.25 Let v € R? be regular such that the flow pv , T € IR is

hyperbolic with constant 1 .

(i) For all Ty > O there exist C1 > 1 and €1 > 0 such that for all x € G,
vyeTl and T > Ty if

e:=d(yr,zapy) < &1

then there exist z € G , w € M and t € IR? regqular such that vz = zayw
d((t,w),(Tv,1)) <Cie , and for all T € [0,T]

d(zary, zary) < Cre (e*T + e*(T’T)) )

(ii) For all L C G compact there exists €2 > 0 such that for allxz € L , vy €T
and T € [0,Ty] , Ty > 0 given by lemma 1.23 , if

e :=d(yr,zapy) < 9

theny=1and T < 2¢ .

Proof: (i) Let Ty > 0 and define

3
e op
Ci:=max | ———,e" ' | > 1.
e
1—e 2

Let TG = T°® T+ @ T~ be the splitting corresponding to the flow (©rv)reRr
on G . Define O’ := e% , let U be a (C'-rectangular neighbourhood of
1 € G and let 6 > 0 such that Us(1) C U . Then by the left invariance
of the splitting and the metric on G we see that gU is a C’-rectangular
neighbourhood of g and Us(g) = gUs(1) C gU for all ¢ € G . Since v
is regular there exists ¢ > 0 such that if 7> T; and t € R? such that
||t — Tv||, <€'Cy then t is regular.
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Define

1 T
- 3 —€ 2 /
€1 ‘= Imin <5€T1_|_]_7€> > 0.

Letxe L, vel',T>1T; and

e:=d(yr,zapy) < 7.

Then ¢ : G — G, g — v 'gary is a partially hyperbolic diffeomorphism
with constant e’? > 1 and the same splitting TG = T° @ T+ @ T~ as the
one of the flow (¢rv),cg on G . Then since
< 51 e F _ 1 —C'e™h
- el 41 C"?+1
the partial ANOSOV closing lemma, theorem 1.21 | tells us that there exist
Y,z € G such that

(i) = and y belong to the same T~ -leaf and

C/
ol

C

d”(z,y)<e

(iii) y and z belong to the same T"-leaf and

d* (yary, zary) < e

(iv) 7z and zap, belong to the same T°-leaf and

d° (yz, zapy) < eC™.

In (iii) and (iv) we already used that the metric and the flow (prv), cg on G
are left invariant. So by (iv) and since the T%-leaf containing zary is zAM |
there exist w € M and t € IR? such that vz = zagw . So

d* (ag—ryw, 1) < eC™,

and so, since AM ~ IR? x M isometrically, we see that

d((t,w),(Tv,1)) <eC" =ee®™t <0y .

Especially ||t — T'v||, < &'C , and so t regular.

Now let 7 € [0,7'] . Then since x and y belong to the same 7'~ -leaf the

same is true for xa,y and ya,ry , and
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C
d™ (Tary,yary) <d (z,y)e T < 870,6_7 <eCie 7.

Since y and z belong to the same T"-leaf the same is true for ya,, and

ZGry , and

d+ (yaTva Za/TV) < d+ (yaTV7 ZaTV) ei(TiT)
o
< ¢ el e~ (T-7) < eCre~T=7)
e

Combining these two inequalities we obtain

d(xary, zary) < eCy (e_T + e_(T_T)) .
(ii) Let L C G be compact and let ¢ > 1 be given by lemma 1.24 . Let

€o > 0 be given by lemma 1.23 and define

&
622:£>0.
&

Letxe L,yel' , T € [0,Ty] and
e:=d(yz,zapy) < e3.

Then since z € L we get

d (’y,:caTvafl) < ce < g

and so v € I'N Np 1y, - This implies v = 1 and so d(1,ary) = € and
therefore T' < 2¢e . O

1.4 A spanning set for the space of cusp forms

Assume I' © G discrete and kg € IN such that SATAKE’s theorem holds,

more precisely

Sk(T) = My(T') N L, (T\G)

for all K > ko and r € [1,00] . Let v € RY be regular such that ¢y is
partially hyperbolic with constant 1 , C' > 0 , and let &~ be the subset of
(R9)* of all 1 € (IR?)™ such that there exists v/ € R? WEYL equivalent to v
with [IV/| < C'.
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)

Figure 1.6: ®¢ in the case B = Bj x Bs reducible of rank ¢ := 2 and

vi= (3)

Let us consider a maximal loxodromic subgroup I'o C I" . Let ¢ € G such
that I'o C gAMg~! .

Definition 1.26 T’y is called k-admissible if and only if j (w)k =1 for all
w € g TogN M .



Recall that j :=j ($,Z2) |k , Z € Z , is independent of Z and a character of
K |, since K is compact. Let us now check that this definition is independent
of the choice of g € G .

By theorem 1.11 (ii) it suffices to show that M and j|s are
independent of conjugation by elements of ANg(A) . So let
atn € ANkg(A), Te R? and n € Ng(A) , and w € M . Then
Nk (A) C Nk (M) since M centralizes A . And so

1 1

(arn)”'w (apn) = n” ta_qwarn~! = nwn € M

and

j ((aTn)_l w (aTn)> =3 (k’flwn) = j(w).

By the same reason if I'g C I is loxodromic and v € T" then I'y is k-admissible

1

if and only if yI'gy~" is k-admissible.

Proposition 1.27 If 'y is k-admissible, then there exists x € (RY)" such
that for all t € R? and w € M if gaywg™' € Ty then j(w)k = e2mixt |
Having g fixed, x is unique up to A* . Otherwise x is unique up to A* and
WEYL equivalence.

Proof: Since AM ~ IR? x M , having g fixed we get a well-defined character

p:T = U1), v=gagwg ' — jw),

t € R?, w € M , which is independent of the choice of g , as we have seen
above. On the other hand we have a group homomorphism ¢ : 'y — R?
with image ¢ (I'9) = A and kernel ker¢ = I'o N gMg~! . Ty being k-
admissible then implies precisely that ker ¢ C ker y and so there exists a

unique character ¢/ : A — U(1) such that u = ¢/ o ® | and this means

for all t € RY and w € M such that gaywg™' € Ty . Since A C R? is a
lattice we can write 1/ = e*™X® with an up to A* unique y € (R?)* . Since
¢ without fixing g € GG is uniquely determined up to WEYL equivalence, we

have the desired uniqueness for x* . [

To each I'y C T loxodromic there is a torus T := I'g\ gAM belonging to Ty .
T is independent of g up to right translation with an element of the WEYL
group W = Nk (A)/M . Let us check it.
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Let g,g € G . Then by theorem 1.11 (ii) there exists T € RY
and n € Ng(A) = Ng(AM) such that ¢’ = gan . So

g AM = garnAM = garAMn = gAMn.

We see that ¢’ AM only depends on the class Mn =nM € W of

n.

Let f € S (T') . Then f € € (I'\G)® . Define h € C> (R? x M)€ as

h(t,w) = f (gasw)
'screening up’ the values of f on T . Clearly h (t,w) = j(w)*h (t,1) for all
(t,Lw) e RIx M .

Lemma 1.28 If T’y is not k-admissible then h =0 .

Proof: Let w € g~ 'Tgg N M such that j(w)* # 1. Then gwg™ € T', and

so for all t € IRY we have

h(t,1) = f (quggaswy ') = f (gasw™) = h(t,1) j(w) ™",

and this implies h =0 . [J

From now on assume I'g to be k-admissible.

Theorem 1.29 (FOURIER expansion of © )

(i) h(t +T,w) = h(t,w) e ?™XT for all (t,w) € RY x M and T € A, and
there exist unique by € C , 1€ A* — x , such that

h(t,w) =jw)® > b
leA*—x

for all (t,w) € R? x M , where the sum converges uniformly in all deriva-

tives.

(i1) If by = 0 for all1 € ®¢ then for all v € RY WEYL equivalent to v there
exists Hyr € C* (R? x M)(C uniformly LIPSHITZ continuous with a LIPSHITZ
constant Co > 0 independent of Ty and v’ such that

hzav’ v/

Hy (taw) = j(w)kHv’ (t’ 1)

and
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Hy (t 4 T,w) = Hy (t,w) e 2™XT

for all (t,w) e RYx M and T € A .

Proof: (i) Let t € R? and T € A . Then there exists w € M such that
garwg ' €To =T . So

ht+T,1) = ¥ (garwg'gagw™)
= ¥ (gag) j(w)* = h(t,1) e 2T,

The rest follows by standard FOURIER expansion. []

For proving (ii) we need a lemma, which we will deduce from the ordinary
reverse BERNSTEIN inequality, see for example theorem 8.4 in chapter I of
[12] ( T := R/27Z here):

Let B be a homogeneous BANACH space on T , and m > 0 an

integer. There exists a constant C,, such that if

f=2 ae

l7]>n

is m-times differentiable and f(™ € B, then f € B and

111l < G bl ™™ || 7] -

For even m we obtain C,, = m + 1 ; for odd m we can take
Cp, =12m .

Lemma 1.30 (generalization of the reverse BERNSTEIN inequality)
Let A C RY be a lattice, x € (RY)* , v/ € R and C > 0 . Let S be the
space of all convergent FOURIER series

s = Z 51210 € ¢ (RY)T |
(A ) [Iv/[>C

all s € C . Then

~ : — S1 ;
LS - 8, s = Z 8162ml<> — 5= E fe%mlo
2milv/
le(A*—x), IV |>C le(A*—x), [IV/|>C

~

is a well-defined linear map, and ||3]|., < -5 ||s||,, for all s €S .

54



Proof: Of course for all s € § the FOURIER series converges uniformly in
all derivatives. For checking that " is well-defined observe that given a

function

s = Z sle2ml<> €S,
le(A*—x), |Iv/|>C

we have [1]" s; ~ 0 for all n € IN if 1 ~ oo and so again

‘ ‘n S1

2milv’
for all n € N since [Iv’| > C' > 0 for all 1 that occur in the sum, and so

E 1 627ri1<>
2milv’
le(A*—x), [IV/|>C

again converges uniformly in all derivatives to a function s € C*> (IRq)(C .

Now let Sy be the subspace of S of all

s = § :81627ml<>

leM
where M C (A* — x) is finite such that Iv/ > C for alll € M and all s; € C ..
Then since Sy is dense in S with respect to || ||, it suffices to show the

desired estimate for all s € Sy . So let

s = Z swzmlo €S,
leM

M C (A* — x) finite such that Iv/ > C for all 1 € M and all s; € C . For all
£ € (RY)" and w € RY let

C (& w) :=dist (M +x—&w,0),

which is clearly continuous with respect to (£,w) € (R?)* x R? , and

U:={(w)e(R)" xR C(&w) >0},

which is clearly a neighbourhood of (y,v’) in (RY)* x IR since
C(x,v')>C >0. For all £ € (R?)" define

s¢ 1= 2mix=6< ¢ — Z 512 1HX=E)¢ ¢ ooo (Rq)c 7
leM
and for all (¢,w) e U

— 51 2mi(l+x—€)< 00 (pa\C
St w 1= X C>® (R%)" .
& lgzm(ux—@we € C* ()
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Clearly |[s¢||, = ||s|| for all & € (R?)" , s, = s and Sy =5 . We will
prove that

6
< —F— .
Sewlloe < ey 1ole (1.4

for all (§,w) € U , then taking ({,w) := (x, V') gives the desired estimate.

The right hand side of 1.4 is clearly continuous with respect to
(&, w) € U , but also the left hand side. To see this observe that
for any T € A

Sew (O +T) =e 78TG, o,

and so [|Se wll,, = [|S¢wllo  » Wwhere F is a fundamental do-
main for IR?/A which can be chosen to be compact, and that if
(&n,Wy) ~ (&, w) in U then Sg, w, ~> S¢w uniformly on any

compact subset of RY .

So since UN(QA* x QA) C U it suffices to show the inequality

dense

for all (§,w) € UN(QA* x QA) . So let
(&, w) € UN (QA* x QA) . Then there exists n € IN'\ {0} such
that (n§,nw) € A* x A . Let t € R? be arbitrary, and define

2
> n _ 2mi(lx =€)t Li(l+x—E)n*w
S:=8 | —OW+t ] = sje e
¢ (27r<> + ) 1€§M 1

and

2mi(l+x—&)t

~ 2w n? sie . 2
Si=""8w | — t) = i(4+x—En?*wé
n2 % <27r<>w+ ) gj\;i(l—l—x—f)n?we

€ C™ (R/2miZ)*

since (14 x — &) n?w € 2nZ for all1 € M . For all 1 € M we get
|14 x — &) n*w| > n?C (£, w) > 0. And therefore the reverse
BERNSTEIN inequality with m := 1 and B := (C(T)%,|| ||.) ,
T = R/27Z here, gives us

1511 < ey e -

In particular
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2

n
|S£,w (t)’ = 5=

2 ’g(())‘ = : L

— |5 < .
< e e < e el
Since t € IR? has been arbitrary, we have the desired estimate.

O

Clearly s = dy/s for all s € S, S is invariant under taking partial derivatives

and ~ commutes with taking partial derivatives.

Proof of theorem 1.29 (ii) : Since differentiation along a direction of the flow
is a left invariant differential operator , f € O(B) and f € L*®(G) imply
that there exists a constant C’ > 0 independent of I'g such that || ||, < C’
and Hatjf(Oat)‘t:OHoo <(C'forallj=1,...,q.

Now let by = 0 for all 1 € ¢ , and let v/ € R? be WEYL equivalent to v .
Then since [Iv/| > C for all 1 € (A* — x) \ ®¢ we can apply lemma 1.30 to
h($,1) and all 9jh ($,1) , 7 =1,...,q, and so we can define

Hy € C>® (R x M) as

Hyr (t,w) = j(w)*h (0, 1) (t)
for all (t,w) € R? x M . By lemma 1.30

7| < S <

and similarly

o] <1190 f a0l ol < &

Since j is smooth on the compact set M , j* itself is uniformly Lip-
SHITZ continuous on M with a LIPSHITZ constant C” independent of
I'g . So we see that H is uniformly LIPSHITZ continuous with LIPSHITZ
constant Cy := (C"+ 1)?% > 0 independent of T'y , and the rest is trivial. O

Let 1 € A* — x . Since Sk (I') is a HILBERT space and S; (I') — C, f +— b

is linear and continuous there exists exactly one ¢r,1 € Si (I') such that

b = (¢ro1, f)p for all f € Sp(T) .
Clearly, having ¢ fixed, the family

{‘Pfo,l}le(A*—x)méc
is independent of the choice of x , but it is even independent of the choice
of g € G up to permutation and multiplication with constants in U(1) and

invariant under conjugating I'g with elements of I' . Let us check it.
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Let ¢’ € G be another element such that I'g = ¢’ AM¢'~! . Then
by theorem 1.11 (ii) there exist T € IR? and n € Nk (A) such
that ¢’ = garn . Let b’ € C> (R? x M)® be given by

W (t,w) := f (¢'agw) for all t € R? and w € M . Then we have

R (t,1) = f(gaTnat)

where we obtain t' € IR? by transforming t with the element

nM € W . So if we decompose

Wiew =) Yt
le(A)"—x'

for all (t,w) € RIx M ,allb; € C,1€e (A)"—x, then

> ber™ = B (t,1)=j(n)"h(t'+T,1)

le(A)"—=x’
_ j(n)k Z b]€2ﬂ1(tl+T).
leA*—x
We see that b, = j(n)*e*1Th and so if we define

@ = j(n) ke 21T pp | for all 1 € A* — x then b] = (¢}, f)
for all f € Sk(T) and 1 € (A")* — X' , where we obtain A’ |
X € (RY)*" and I € (A')" — ¥’ by transforming A , x resp. 1 with
the element nM € W . Clearly ®¢ itself is invariant under the
WEYL group W .

1

Now let v € T and I'j; :=~7Toy~" . Then clearly

Ir'yC 79AW~(79)71 , and so, if we define b/ € C* (IRY x M)(C by
R (t,w) := f (ygagw) for all t € R? and w € M , then we obtain

3 (ta w) =f (’7gatw) =h (tv w)
by the left-I'-invariance of ]7

For the rest of the chapter we simply write 1 € & instead of
1l € (A*—x)N®c . In the end we will compute ¢, as a relative
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POINCARE series.

Now we are able to formulate the main goal of this chapter. Let Q be a
fundamental set for all k-admissible maximal loxodromic subgroups of I’

modulo conjugation by elements of T" .
Theorem 1.31 (spanning set for S (I') ) Assume

{1} I’ C G irreducible, which means that the projection on each simple
factor G; ,i=1,...,s, of G is dense in G; ,

{w} T\G is compact,

{wit} if v € G regular lozodromic, then there exists a lozodromic subgroup
Lo of I such that v €Ty , and

{iv} v € {£1}? and therefore B = By x --- x By where B; are bounded

symmetric domains of rank 1 .

Then

{ere1l To e Q1€ ¢}

is a spanning set for Sk (T') .

Clearly condition {ii} implies SATAKE’s theorem and dim Si(I') < oo ,
see section 1.2 . We conjecture that SATAKE’s theorem and theorem 1.31
remain true even if we replace condition {ii} by the weaker condition
of I' C G being a lattice (discrete such that vol I'\G < oo ) under the
additional assumption that dim¢ B; > 2, j =1,...,q , using a calculation
similar to that of section 3.2 and a generalized version of theorem 0.6 of [6]
giving a nice 'fundamental domain’ for I'\G , see the proof of theorem 3.13
in section 3.2 . In the rank ¢ = 1 case the conjecture is true, this is Katok’s
and Foth’s result, see [11] .

For proving theorem 1.31 we need some tools:

Theorem 1.32

(i) There exists a unique LIE algebra embedding

q
p: @5[(2,@) — g€

j=1

such that
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pl10,...,0, ,0...,0] = ey
0 0
7
J
and
0 0
pl0,...,0, ,0...,0 | = e
-1 0
T
J

forallj=1,...,q .

(ii) The preimage of g under p is @?:1 su(1,1) , and the preimage of € is
?le(u(l) ®u(l)) ~ 3‘:1 u(l) . p lifts to a LIE group homomorphism
p:SL(2,C) — GC such that p(SU(1,1)1) C G .

Proof: (i) By lemma 9.7 of [13] and its proof for any tripotent ¢ of Z there
exists a unique LIE algebra homomorphism p’ : s1(2,C) — g such that

(01 , 0 ~
p =cand p =c.
00 -1 0
Since ey, ..., e, are pairwise orthogonal tripotents we get
[e’ia é3] =-2 {eiae;7 <>} =0
ifi# 7, and
[ei,ei] (ej) = —2{ei, e}, €;} = —20;5€;

for all 4,5 = 1,...,q . That implies that [ej,€;] , j =1,...,q , are linearly
independent, and so p is indeed an embedding. [

(ii) This follows again by lemma 9.7 of [13] , which says that the preimage
of g under p’ is su(1,1) , and the preimage of ¢ is s (u(1) ® u(1)) . The last

statement is trivial since SL(2,C)? is simply connected. [

Let us now identify the elements of g with the corresponding left invariant
differential operators, they are defined on a dense subset of L? (I'\G) , and
define
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D; = p|0,...,0, ,0...,0) =ej—¢€j€aq,
1 0
7
J
, 0 1 _ -
D; = p|0,...,0, ' ,0...,0] =i(ej+e;)ep and
—1 0
7
J
i 0
(b] = p 07 '707 707 70 EE,
0 —z
T
J

j=1,...,9 . We see that Di,...,D, span the LIE algebra a of A , and
so as left-invariant differential operators they generate the multiflow ¢4 .
By theorem 1.32 the IR-linear span of all Dj,D;», ¢; is the 3g-dimensional
sub LIE algebra p (su(1,1)?) of g , and we have the following commutation

relations:

(65, D;] = 2D}, [¢;,D)] = —2D; and [D;, Dj] = —2¢;

for all j = 1,...,q , and all the other commutators are 0 . ¢1,...,¢q
generate a subgroup of K , and again by theorem 1.32 we have a LIE group

homomorphism

(R/27Z)* — K, t — exp (t1p1 + - - + tgdq)

I
A

Now define

1 1
D = 3 (Dj —iD}) , D; = 3 (Dj +iDj) and ¥ := —ig;,

j=1,...,q, as left invariant differential operators on G . Then clearly
] — opt | — - + ] —w.
[\I/J,Dj} = 2D}, [\pj,pj] ~ —2D; and [Dj ,Dj} — v,
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j=1,...,q, and all the other commutators are 0 . Define

q q

q
Df = Zvﬂ)j,l); = Zvﬂ); and ¥ := Z\Ifj cgt.
j=1 j=1 j=1

Then again we have the commutation relations

[0, D] = 2D} and [¥,D;] = -2D;,

and if v € {£1}7 then also [D{, Dy ] = ¥ . Since the left invariant measure

on (G is at the same time the right invariant measure, we see that all £ € g

are skew self adjoint on L? (I'\G) . So in particular
i * B _ A\ * B i . '
(pf) =-D5.(p;) = -Df and v} = v,

forall j=1,...,q, and so

(Df) =-Dy, (Dy)" = -Df and ¥* = V.

v v

By standard FOURIER analysis we see that

L*(I\G) = @ H, :@HV

meZ4 VEZL

where

q
Hy = F e L*(T\G)N (] domain ¥; | U;F =m;F forall j=1,...,q
j=1

for all m € Z? ,

—

H, := EB Hp,

q _
mezd,y 4 mi=v

= {FeL*('\G)N domain ¥ | VF = vF}
for all v € Z , and both sums are orthogonal. Since f € Si (I') we have
fE H,. k) T Hyr - By a simple calculation we get
D} (Hm N domain D} ) € Hunyzc, and Dy (Hm N domain D} ) € Hun-2,

forallj=1,...,¢q,m € Z? , and so

Dj (HV N domain Dj) C Hy49 and D, (HV N domain D;) CH, »

forallv e Z .
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Lemma 1.33 Forallj=1,...,q and h € O(B)

Dj_h:O.

Proof: Let g € G . Then h|, € O(B) and h(gd) = l;|/g . So

Dy hlg) =D (h(99)) (1) = 0= (hly (ze;))]._y = 0.1
Lemma 1.34 Let f € Si(I") . Then ]? is uniformly LIPSHITZ continuous.

Proof: Since on GG we use a left invariant metric it suffices to show that there
exists a constant ¢ > 0 such that for all ¢ € G and & € g with |[{|], <1

€F(g)| < e

Then c is a LIPSHITZ constant for f So choose an orthonormal basis
(&1,...,&n) of g and a compact neighbourhood L of 0 in B . Then by
CAUCHY’s integral formula there exist C’,C” > 0 such that for all
heOB)NLF(B)andne{l,...,N}

[(e) ] < c’/ bl < C'vol L||hl]., < C"vol L|[R]| .
L [e'e)
and since g — C, £ — ({ﬁ) (1) is linear we obtain

|(6r) ()] = NC™vol L[
for general £ € g with [|]|, < 1. Now let g € G . Then again f|, € O(B) ,

f(g®) = flg , and by SATAKE’s theorem, f and so f|, € L°(B) . So

7| =| (67 (90) ] = Ne™vol L[ F(g0)|| = Ne™vol L|F]]|

and we can define ¢ := NC"vol LHfH . O

Lemma 1.35 There exists go € G such that

FgpAvy C G.

dense

Proof: This is a direct consequence of MOORE’s ergodicity theorem, see for

example theorem 2.2.6 in [18] :

Let G = [[G; be a (finite) product of connected non-compact
simple LIE groups with finite center. Let I' C G be an irreducible
lattice. If H C G is a closed subgroup and H is not compact,
then H is ergodic on G/I" .
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Hereby 'H is ergodic on G/I” means that every measurable H-invariant

subset of G/T" is either null or conull, and proposition 2.1.7 in [18] :

Suppose S is a second countable topological space , that G acts
continuously, and that a quasi-invariant g is positive on open
sets. If the action is properly ergodic then for almost every

s €8, orbit(s) is a dense null set.

Hereby ’'properly ergodic’ means that there is no conull orbit. [

Proof of theorem 1.31 : Let f € Sy (I') such that (¢r,1, f) = 0 for all ¢r, 1,
I’y k-admissible loxodromic subgroup of I' , 1 € & . We will show that

f =0 in several steps.

Lemma 1.36 There exists F € C(I\G)® uniformly LIPSHITZ continuous

on compact sets and differentiable along the diagonal flow ¢, such that
f=0.F (Qarv) ’T:(] =DyF .

Proof: Let go € G be given by lemma 1.35 . Define s € C* (]R)(C by

t o~
s(t) ::/ f (goary)dr
0
forallte R .

Step I Show that for all L. C G compact there exist constants C3 > 0
and €3 > 0 such that for allt€ R, T >0 and v € T if ggary € L and

e:=d (’Ygoatw goa(t+T)V) <¢3

then |s(t) —s(t+7T)| < Cse .

Let L C G be compact, To, > 0 be given by lemma 1.23 and
Cy > 1 and ¢; be given by theorem 1.25 (i) with 77 := T . Define
C3 := max <Cl (Co + 2¢),2 Hf” ) > 0, where Cy > 0 is the LIPSHITZ
constant from theorem 1.29 (ii)ooand ¢ > 0 is the LipsHITZ constant of
f~‘. Define €3 := min (51,62, 2%’1) > 0, where g5 > 0 is given by theorem
1.25 (ii) .

let t €¢ R, T > 0 and v € T such that gpa;,y € L and
e:=d (790atv,goa'(t+T)v) <.

First assume 7' > Ty . Then by theorem 1.25 (i) since ¢ < e; there
exist ¢ € G, wo € M and tg € IRY regular such that yg = ga¢,wo ,
d ((to,wo), (Tv,1)) < Cie , and for all 7 € [0,7T]
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d (goa(t+r)v7ga'rv) < Cie (677 + ei(TiT)) .

We get

st+1)=s(t) = | *Flaen)ir+ / (7 naenn) — Floare)) dr

I1:= Ip:=

T, ~
|| < /0 ‘f(g()a(t-i-f)v) — f(garv)|dr

T
< C/ d (QOG(tJrT)va garv) dr
0
T
< cC’ls/ (e_T + e_(T_T)> dr
0
< 20016 .

By our assumption there exists a maximal loxodromic subgroup I'g of I"
such that v € T'y and, since theorem 1.11 tells us that g € G is already
determined by v up to right translation with elements of ANk (A) , even
Lo C gAWg™ . We define h € ¢ (R? x M)® as h (t,w) := f (gazw) for
all t € R? and w € M . Then

T
L :/ h(rv,1)dr.
0

If Ty is not k-admissible then I1 = 0 by lemma 1.28 and the claim follows.
If Ty is k-admissible then we can apply theorem 1.29 (i) and, since f is
perpendicular to all ¢r,1,1€ ®¢c , even 1.29 (ii) , and so

|| = |H(Tv,1)— H(0,1)]
|H (Tv,1) — H (to, wp)|
Cad ((Tv,1), (to,wp))
< (0%,

IN

where we used the fact that j (wo)k = 2™Xt0 gince v € Ty , and so

H (to,wo) = H (0,1) j(wo)*e ™% = H (0,1)

and the claim follows again.
Now assume 7" < T . Then by theorem 1.25 (ii) since € < g9 we obtain
T < 2¢ and so
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[ P ar] <22 |71

Step II Show that there exists a unique F € C(I'\G)® uniformly

LiPSHITZ continuous on compact sets such that for all ¢t € R

s(t+T) = s(t)| =

s(t) = F (goaty) -

By step I for all L € I'\G compact with L° C L there exists a unique

dense

Fy, € C(I'\G)® uniformly LIPSHITZ continuous such that for all ¢ € R if
Lgpawy € L then s(t) = Fr (Dgpasy) - So we see that there exists a unique
F € C(P\@)® such that F|, = F, for all L C I'\G compact with L° C L .

dense

Step III Show that F' is differentiable along the diagonal flow, and
for all g € G

0-F (garv) |-=0 = J?(g) :
Let g € G . It suffices to show that for all T' € R

T ~
/0 7 (gary) dr = F (gary) — F(g).

If g = goayy for some t € IR then it is clear by construction. For general
g € G since 'ggAy C G there exists (yn,tn),en € (I X R)™ such that

dense

lim Yngolt,v = g,
n—oo

and so by lemma 1.24

HILH;O Tngol(r+t,)v = 9arv

compact in 7 € R, finally fis uniformly LIPSHITZ continuous. Therefore

we can interchange integration and taking limit n ~» oo :

T

T~
/0 flgary)dr = lm [ f(m9o@(rie,)v)dT

n—oo J
= lim (F (’Yngoa(Tﬁ‘,n)v) _F(’Yngoatnv))

n—oo

= F(gary)— F(g9).0
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Lemma 1.37

(i) For all L C G compact there exists €4 > 0 such that for all g,h € L if g
and h belong to the same T~ -leaf and d=(g,h) < &4 then

lim (F (gatw) — F (haw)) =0,

t—o00

and if g and h belong to the same T -leaf and d* (g, h) < &4 then

lim (F (gaty) — F (haty)) =0.

t——o0

(i1) F is continuously differentiable along T~ - and T -leafs, more precisely

if p: I — G is a continuously differentiable curve in a T~ -leaf then

3 (FOp / atf a‘rv)
and if p : I — G is a continuously differentiable curve in a T -leaf then
0 ~
0 (Fop)(®)= [ af(plt)an)dr.

—00

Proof: (i) Let L C G be compact, and let L’ C G be a compact neighbour-
hood of L . Let Ty > 0 be given by lemma 1.23 and €5 > 0 by theorem 1.25
(ii) both with respect to L’ . Define

L oni 1o >0
‘= —min
€4 3 1 €1,82, =~ 20 )
where 1 > 0 and Cy > 1 are given by theorem 1.25 (i) with 77 := Tp . Let
do > 0 such that Us,(L) C L’ and let
d € 10, min (dp,e4) [ -
Let g,h € L in the same T~ -leaf such that ¢ := d7(g,h) < g4 . Fix some

T' >0 . Since I'gpAy C G there exist 74,7, € I' and tg4,t, € R such that

dense

d (gatva’Yggoa(thrt)v) yd (hatv»’thOa(ttht)v) <9
for all t € [0,7"] , and so especially vyg0at,v, Yrgoat,v € L' . We show that
for all t € [0,7"]

‘F (’Vggoa(tg+t)v) - F (’yhgoa (thtt)v )‘ < Ch ( —t 4 25)

with the same constant C% > 0 as in step I of the proof of lemma 1.36 with
respect to L’ .
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Without loss of generality we may assume T := ¢, —t, > 0 .
Define v := fygy,:l . Then for all t € [0,T"]

d (WVggoa(thrt)v» ngoa(tg+t+T)v) <ee ' +20

by the left invariance of the metric on G .

First assume T > Tj and fix t € [0,7” ] . Then by theorem 1.25
(i) since ee™! + 28 < ¢ + 2§ < min (51, 2%)1) there exist z € G,
to € R? and w € M such that vz = zag,w ,

d((to,w),(Tv,1)) < Cy (20 +ee") ,

and for all 7 € [0,7T]

d (fyggoa(thrtJrT)V’ zary) < Oy (ge™" 4 26) (677 + e*(T*T)> .

And so by the same calculations as in the proof of lemma 1.36

we get the estimate

|F (vg90a(t,+t)v) — F (Vgg0a (e, +6yv) | < C5 (ee™" +26) .

Now assume T < Ty . Then by theorem 1.25 (ii) since
Y9900ty € L' and € + 25 < g3 we get v = 1 and so by the

left invariance of the metric on G

d(1,ary) <ece T +25.

We see that T < 2 (86_T/ + 25) . So as in the proof of lemma
1.36

IN

‘F (’Yggoa(tg+t)v) -F (’Yggoa(ttht)v)’ 2

m LO (ae*T’ + 25)

Cy (ee™" +206) .

A

Since F' is left-I'-invariant we have the desired estimate.

Now let us take the limit § ~ 0 . Then vy4g0a,v ~ g and yg0as,v ~ h , so

since F' is continuous
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|F (gary) — F (haw)| < Céseft

for all ¢t € [0,7'] , and since 7" > 0 has been arbitrary, we obtain this
estimate for all ¢ > 0 and so limy_,o F' (gawy) — F (haw,) = 0 . By similar
calculations we can prove limy_, o, F' (gaw ) — F (haw) = 0 if g and h belong
to the same T -leaf and d* (¢g,h) <e4 . O

(ii) Let p : I — G be a continuously differentiable curve in a 7~ -leaf, and
let to,t1 € I, t1 >ty . It suffices to show that

Flo)=Flot) == [ [~ aF(p(tan) drit.

Let C’ > 0 such that ||9;p(t)|| < C’ for all ¢ € [ty,t1] . Then since p lies in
a T~ -leaf we have ||0; (p(t)arv)|| < C'e”™ and so

th(p(t)aﬂ,) <cCle™”

for all 7 > 0 and ¢ € [to,t1] where ¢ > 0 is the LIPSHITZ constant of f . So
the double integral on the right side is absolutely convergent and so we can

interchange the order of integration:

Afémafm@mwwhﬁ _

[ [ adtotianis
g

( tl aTV - f(p (tO) aTV)) dr
1 (F(p(t) arv) = F (p (to) arv))
(P( 1)) + F (p(to)) -

Now let L C G be compact such that p([t1,t2]) C L and let ¢4 > 0 as in
(i) . Without loss of generality we may assume that d~ (p (o), p (t1)) < &4 .
Then

lim (F (p(t1) arv) — F'(p(to) arv)) =0

T—o0

by (i) . By similar calculations we can also prove

8 Fop / atf G/TV)

in the case when p : I — G is a continuously differentiable curve in a T -leaf.
O
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Lemma 1.38
(i) FeL*(T\G) ,
(ii) €F € L2 (T\G) for all¢ e RDy @ gnN (TT 0 T7) .

Proof: Since by conditiion {ii} we assume I'\G to be compact, the assertions
are trivial. In the case where condition {ii} is replaced by the weaker
condition of vol I'\G < oo, (i) must be a calculation similar to that of the
proof of theorem 3.24 in the super case, section 3.3 , using a fundamental
domain of I" similar to the one described in theorem 3.13 in section 3.2
resp. in theorem 0.6 of [6] (both in the rank 1 case) and a FOURIER
decomposition similar to that given by theorem 3.15 in section 3.2 . But up

to now we not able to handle these things.

(ii) goes through even in the case where vol I'\G < 0o and SATAKE’s theorem
holds: Since 8, F ({ary) |r—o = f € L2 (I\G) and vol (I'\G) < oo it suffices
to show that {F'is bounded for all & € ®\ {0} and £ € g* . Solet o € ®\{0}
and £ € g¢ . Then since v € R? is regular we have av # 0 . First assume
av > 0. Then since we assume (¢rv), g to be hyperbolic of constant 1
we even know av > 1. Clearly £ € T~ and so there exists a continuously
differential curve p : I — G contained in the T~ -leaf containing 1 such that
0e1l,p0)=1and Op(t),_y =& . Let g € G . Then by lemma 1.37 (ii)

we have

(EF) (9)

OHF (9p(t))]1o
— - [ af )|,
0 ;

- _ /0 h O f (garya—ryp(t)ary) _
— /0 " ((Ada () F) (gar) dr
= — /000 e~ (ff) (9arv)dr,

dr

dr

So

[(§F) (9)] < clglly < o0

where c is the LIPSHITZ constant of f The case av < 0 is done similarly. [J

So by the FOURIER decomposition described above we have

F=>F,

VEZL
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where F,, € H, forallv € Z . Dy = DF+Dy , and a simple calculation shows
that Dy and Dy € RD, @ gN (I'" & T7) , and so DYF, D, F € L? (I'\G)
by lemma 1.38 . So we get the FOURIER decomposition of fvas

f~: DyF = Z (DjFI/72 +D;Fy+2)
VEZL

with D F,,_o + Dy F,uo € H, for all v € Z . But f € Hy, , and so

B f ifv=qk
D;/"_FV—Q +DVFV+2 =
0 otherwise

Lemma 1.39 F, =0 forv € N>y .

Proof: similar to the argument of GUILLEMIN and KAZHDAN in [§8] . By
the commutation relations of D;-r , Dj_ and ¥; ,j=1,...,q, and since
v € R{x1}9 , we get for all m € Z

D¢ B2 = || Dy Fnl|s + m || Fll? (1.5)

and for all m € IN> g1 we have DY F,—2+ Dy Fpi2 =0 and so

1DV Frnszlly = ||Dy Finall -

Now let v € IN>g, . We will prove that

}‘Dij+4l}|2 > HFVHQ

for all [ € IN by induction on [ :

If [ = 0 then the inequality is clear by 1.5 . So let us assume
that the inequality is true for some [ € IN . Then again by 1.5

we have

||1DF Fvairal |5 = ||D7 ol [5 = |[DF Fosat| 3 > NI B3 -

On the other hand DY F € L? (I'\G) by lemma 1.38 and so ||Df Fy,|[, ~ 0
for m ~» co . That implies F;, =0 . I

So we obtain D Fy_o = f and finally since f € O(B)

A = (72t ) = (07 ) =0
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which completes the proof of our main theorem. [

Now let again I' be arithmetic, and fix a k-admissible maximal loxodromic
subgroup I'g of I' , g € G such that T'g C gAMg~! and x € (IR?)* such that
for all t € R? and w € M if gaywg™" € Ty then j(w)* = e2™Xt | We will
compute ¢r,1 € Si(I') , 1€ A* — x , as a relative POINCARE series. Hereby
= means equality up to a constant # 0 (not necessarily independent of I'y
and 1) .

Theorem 1.40 (computation of ¢r,; ) If kK > max (ko,2) , where ko is
given by SATAKE’s theorem, then for all1 € A* — x

(i)
Prol = Z aly

y€lo\I'

where

. _ '7]@
= / A (6, 9ay0) ™ T (gar, 0)"d’ € M (k,To) N LL (To\B) .
Rq

(ii) In the case where B = By X --- X Bs and By, ..., Bs are the unit balls of
the full matriz spaces CPL*4N .. CPs*% resp. , and Z € B such that

g_IZ: L bar e U bas
wr | tp1i—aq ws | }ps —qs
with a triangular matrices vy, . ..,vs we can compute q (Z) explicitly as
_kp 1 1 + (U)jj il
Q(Z) = (A (Z7XEO)A(Z7X*EO)) 2 H 17 )
i\ ()
where g9 € {£1}9 is arbitrary,
61 0 Eq_QS+1 0
g PARERE | b
0 Eq 0 Eq
0 0

e € {£1}? , are the 29 fixpoints of Ty in the SHILOV boundery of B , and

U1 0

)
vi= € CI1*1,
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Proof: (i) Let F be a fundamental domain of R?/A and f € Si (I') , and
define h € € (R? x M)® and b, as in theorem 1.29 . Then by standard
FOURIER expansion and theorem 1.17 we have

h = / e 2™l (£, 1)d
j.‘

= / e~ £ (gay0) j (gag, 0)F d7t
F

/ o—2milt (A (Ojgato)*kp7f>j(gat’0)kdqt
-
— /}—627rilt/G<A (<>7gat0)—kP)ij (ga, 0) d7t .

Since by SATAKE's theorem, f € L>*(G) , and

/]_-/G ‘ <A (O7gat0)_kp>wj (gax, O)k’ d’t

= [ [ 2000l

E/ A(Z,2)2 P Vg < oo,
B

A (Z,2)(2 P g dit

by TONELLI’'s and FUBINI’s theorem we can interchange the order of inte-

gration:

b = /G/Fe_%ﬂt(A(O,gatO)_kP>Nj(gat,O)kdqtf

- ( [ A (.90 Tga 0, f)
f
= (Q7 f)ro )

by theorem 1.16 , where

~

( / ezﬂ“‘*A<<>,gato>kPj(gat,mkdqt) e (@),
f

/ 2Tt A (O,gatO)_kPj (gat, O)kdqt € O(B)
f

since A ($, W) € O(B) for all W € B and the convergence of the integral

is compact, and so

€ My (To)NL, (To\B) -

/

. _rp—F—————k
q/ = Z </ 2Tt A (O,gatO) kP] (gat,O) dqt>
_’F

~y'€lo

v

For all Z € B we can compute ¢’ (Z) as
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q(Z) = Z /fezmltA (fy’Z,gatO) _kPj (gat,O)kdqtj (’y’, Z)k
'€l

, B kP

= /eletA (Z,V’ 1gOLtO) j (v~ 'gat,0) d%
ot

RUSIN

. ok .
Z / e27rzltA (Z, gathO) kPj (gat7T7 0) e27rszdqt
TeA T

= Z/ ™M (Z, gay—10) " j (gag—r,0) d
TeAa '

. _ ,7’(;
= /qu’”ltA(Z,gatO) "5 (gag, 0) dit =: ¢ (Z) .
R

Again by theorem 1.16 we see that } . \r¢'ly € Mg(I') N L1 (I'\B) , and
so by SATAKE’s theorem, even € Si(T") , such that

by

Z q/|'y>f )

vETP\I' r

and so we conclude that ¢ro1 =3 crprdly - O

(ii) Let Z € B such that

g‘1Z U1 }ql . Us }QS
wq }Pl —q1 Ws }ps — (s
with triangular matrices vq,...,vs . Then
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/ﬁe%mA(ngm_MﬂQWMOfﬂt
]Rq

j (g—l’ Z)k/ eQﬂiltA (g—lz’ ato)ikpji(at, O)kdqt

—kP

ilg™", Z)k H /OO e2milit (1 — (v),; tanh t) . —
” (cosh )P

o) eQm'Ijt

j (g_l,Z)kH/ dt
j=1"7"%° (cosh t — (v);;sinh t)

g 14+ (v).; s
e ] (1—Ev)ﬂ>

E

JJ

j=1
= (14 ()™
X£1<1‘(”ﬂ>
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Chapter 2

Super manifolds and the

concept of parametrization

2.1 Graded algebraic structures

Throughout this section let K be a field of characteristic #£ 2 .

Definition 2.1 (graded vectorspace)

(i) A graded vectorspace over K is a K -vectorspace V' together with a splitting
V=Vo® V1 of V into a direct sum of two K -vector spaces Vi and Vo . In
this case Vi is called the even and Vi the odd part of V., (Vi1 UVa) \ {0}

is called the set of homogeneous elements of V', and for all homogeneous
veV

0 ifveA
1 ifve Ay
1s called the parity of v .

(ii) Let V and W be two graded vector spaces over K and ¢ : V. — W
be a linear map. Then ¢ is called graded if and only if ¢ (Vo) C Wy and
© (V1> c Wy .

(iii) Let U TV be a subspace of V. Then U is called a graded subspace of
V if and only if U = Uy ® Uy where Uy :=UNVy and Uy :=UNV, . In this

case U itself is a graded vectorspace over K .

Definition 2.2 (graded algebra) Let A = Ay @ Ay be at the same time

a graded vectorspace and an algebra over the field K .

(i) We say A is a graded algebra if A;A; C Aiyj for alli,j € Zs .
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(ii) If A is a graded algebra then it is said to be graded commutative if for

all homogeneous a,b € A

ab = (—1)d6ba .

(v) Let A= Ay ® A1 be a graded algebra over the field K , and let

M = Mg® My be at the same time a graded vectorspace over K and a left-
(right-)module over the algebra A . Then M is called a left- (right-) graded
module over the graded algebra A if and only if

.Ai./\/lj C ./\/liJrj

resp.

MZ'.A]' C Mi+j

foralli,j € Zsy .

A being an associative graded algebra clearly implies that A9 C A is a
subalgebra and that A and A; are bimoduls over Ag . Especially A being
a graded commutative algebra implies that 4y is commutative and that for
all o, 8 € A; we have a3 = —fa and so a®> =0 .

Every commutative algebra A is graded commutative as well if we split

A=Aa{0}.

If M is a left- (right-) graded module over the graded commutative algebra
A then M is at the same time a right- (left-) graded module over A by

bilinear extension of

resp.

am = (=1)""mq

for all homogeneous a € A and m € M . And so in this case we say that

M is simply a graded module over A .

Clearly if A is an associative graded commutative algebra , B is a sub
graded algebra of A and M is a graded subspace of A invariant under left-
and right-multiplication with elements of B then M is a graded module

over BB .
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The most important example of an associative graded commutative algebra

over K is the exterior (GRASSMANN) algebra of K" ,n € N :

Let n € N, p(n) == p({1,...,n}) , po(n) = {sep(n) ’ 2| |5|} ,
p1(n) = {S € p(n) ‘ 2¢ |S!} , and let

A(K™) = Z ase® | ag e K, S € p(n)
Sep(n)

be the exterior algebra of K" with the abbreviation e®

all S = {i1,...,iy} € p(n), i1 <--- < i, , where e; denotes the i-th unit

=e;, N---ANeg;, for
vector in K" for i =1,...,n . Then clearly

A(K") = él\(” (K™,
r=0

where A(T) (Kn) = @SEKJ(H),|S|:T‘ Kes s and A (Kn> = A() (Kn) ) Al (Kn) s

where

Ao (K") = Z aSeS ag € K, = KJO(n) — @ A(r) (Kn)
S€po(n) re{0,...,n},2|r

and

A (K") = Z aSeS ag € K, S € pl(n) = @ A(T) (Kn)

Sepi(n) re{0,...,n}, 2fr

is a unital associative graded commutative algebra. In A (K™) we have the

multiplication rule

(—1)IT<S1eSYT§f SNT =0
0 otherwise

for all S, T € p(n) , where we use the abbreviation

|[K < L|:={(k,l) e KxL|k <1}
for all K, L € p(n) , and we have a so-called body map
#LA(K") = K, Z ase® — ag,

Segpo(n)

which is a unital graded algebra epimorphism. Clearly #|x = id . The
kernel of # is precisely the set N of nilpotent elements in A (K™) and at
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the same time the ideal spanned by A; (K™) . We have N = Kell-n} |
N =0 and
AK")/N ~K

via # . Let a € A (K™) . Then a is invertible in A (K™) if and only if a™ is

invertible in K , and in this case

. 23 (a# —a)

relN

This is a consequence of a more general theorem:

Theorem 2.3 Let A be a unital associative algebra over a field K , and let
a,b € A such that b is invertible and (b— a)b™1 or equivalently b=1(b— a) is

nilpotent. Then a is invertible and

- :b_li((b— f: "yt

r=0 r=0

Proof: Both sums are finite since (b — a)b~! and b=!(b — a) are nilpotent.

Clearly

=(1+(a-bpb=b(1+b"a—0)),

and so

a(“i«b—a)bl)’“) = (1+<a—b>b*1)i(—<a—b>zr1)’"

and

(i (bt —a))" bl) a = i (=b"Ha—10) (1+b(a—10))

r=0

So a is invertible and the formula holds. [J

Let A be a unital associative graded algebra over the field K , p,q,r,s € IN .
Then we define the graded bimodule A®l9)*(rls) = A[()p‘Q)X(Tls) @ Agp'q)x“‘s)
of (p|q) x (r|s) - graded matrices over A by APIOX(rls) .= AP+a)x(r+s) a5 5

graded vectorspace with grading
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API1s) A€ AT D e AP, fe ATy e AP

and
o | B

APl - ae AT, §e AP Be A, Ce A
cle

Clearly for all i,j € Zy if g € AEMQ)XMS) and h € Ag.r‘s)x(tlu) then

gh € APl Especially A®PI9*l9) ig 5 unital associative graded alge-

i+j
bra, and all units in A(()p DX PlD) g1y 4 group

c Aéplq)X(p\q)

invertible

X
GL(plg, A) := (Agp\‘l)x(plq)) _

In the special case where A = A (K"™) we have the body map

# . A(Kn)(plq)X(r\S) — K @la)x(r]s)

taken componentwise, which is a graded K-linear map. Especially # is a
unital graded algebra epimorphism in the case where (p,q) = (r,s) . Again
all elements of ker # are nilpotent, and so we can apply theorem 2.3 , which

gives here

Corollary 2.4 Let

A
g= s c A(Kn)(()p\q)X(plq) .

v | D
Then g € GL (plg, A (K™)) if and only if A" € GL(p, K) and
D# € GL(q, K) if and only if A € GL (p, A (K™),) and
D e GL(q,A(K™),) . In this case




We define the so-called Berezinian Ber on GL (p|g, A (K™)) as

Ber : GL (p|¢,A (K™)) — (A(K™)y)™,

D € GL(¢q,A (K™),) by corollary 2.4 , then A — 8D~'y and D
are ordinary matrices of sizes p X p resp. ¢ X g over the unital
associative and commutative algebra A (K™), , and so we can
take the determinant of them. A — 3D~!y € GL (p, A (K™)) by

theorem 2.3 , and so

det (A — BD~'7)" = det A# € K* .

Therefore det A € A (K™); and by the same reason
det D € A (K™)] .

Clearly for all

Al B
g= € GL (plg, A (K™))

v | D

(Ber ¢)* = det A% det (D#)_l .
On A (K™)PlOX(Pl9) e define the super trace as

A| B
str: A (K™)®PlOx@lo A (g —trA—trD,
C|D

which is clearly A (K™)- linear and respects the grading.

Theorem 2.5
(i) Ber is a group homomorphism.

(i) If IK =R or IK = C then the exponential series
exp : A(]Kn)(p\q)X(plq) N A(]Kn)(plq)X(p\q)
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converges absolutely and uniformly on compact sets, and for all

XeA (]Kn)((]p\Q)X(plq)

(A(K")g,+) — (GL(plg, A (K")),) , a > exp(aX)
18 a group homomorphism.

(i) If K =R or IK = C then

Ber

GL (plg, A (K™)) — A (K")g
exp T % Texp
A (]Kn)(()plq)X(p\Q) . A (]Kn>0

StrlA(Kn)ép\q) % (pla)

Proof: (i) This is theorem 2.27 of [4] . O

(ii) As a K-vectorspace A (IK")PIO*Pld) ~ K2"(+9* gince each entry of
Y € A(K")POXPI) 5 an element of A (K") ~ K2 as a K-vectorspace.
By induction on k € IN we see that

HY’“HOO < (2"(p+q) |Y]l)"

for all ¥ € IN . So the exponential series exp converges absolutely
and uniformly on compact subsets of A (IK™)PO*FD  Now let
X € A(]K")(()plq)x(plq) . Then since A(]K")(()p‘q)x(plq) is a closed subal-
gebra of A (IK™)PIOXPlO) clearly exp X € A(]K”)(()p'q)x(plq) . The rest goes

as in classical analysis. (I
(iii) This is an assertion in section 2.2 of [4] . O

Clearly since 7 is a continuous unital graded algebra homomorphism we
have (exp y)# = exp (y#) forall Y € A (]Kn)(plq)x(plq) )

Definition 2.6 (graded tensor product) Let A= Ay @ Ay and
B = By @ By be graded algebras over the field K . We define the graded

tensor product

AR B = (AR B), & (AR B),

of A and B as AKX B := A® B as a K-vectorspace given the grading

(.A X B)O = (A ® Bo) ® (A ® Bl)

and

(AXB), = (A1 @ Bp) & (Ao @ By)
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and given the multiplication by linear extension of

(@a®b) (d @) == (~1)" (aa’) @ (b))

for all homogeneous a,a’ € A and b,b' € B . AKX B is a graded algebra.

One easily verifies that A X B is associative resp. graded commutive, if A
and B are associative resp. graded commutative.

The graded tensor product fulfills the following universal property: We have
canonical graded embeddings C1 : A — AKX B, a— a® 1 and

Co:B— AXB,b+— 1®b . If C is an associative graded commutative
algebra over the field K and ®; : A — C and ®5 : B — C are graded algebra
homomorphisms then there exists a unique graded algebra homomorphism
P : AX B — C such that ®; = T o C; and $3 = ¥ o (5 . Since

U(a®b) = ®1(a)P2(b) for all @ € A and b € B we denote the induced graded
algebra homomorphism ¥ by &; ® 5 .

The graded tensor product is commutative and associative in the sense that

AR B ~ BX A, where the isomorphism is given by linear extension of

a®b— (—1)abb®a

for all homogeneous a € A and b € B , and if C is a third graded algebra
then (AKB)XC ~ AR (BXC) . If A = A {0} is an ordinary algebra
regarded as a graded algebra then AKX B = A ® B as algebras, and the
grading of AKX B is given by (AXB), = A® By and (ANB), = A® B,
and in this case we write A ® B instead of AX B .

Clearly A (K™*") ~ A (K™)X A (K™) canonically for all m,n € IN .

In the end of this section let us talk especially about graded algebras over
R and C and the connection between them. Let A be a graded algebra over
R . Then the complexification A€ := C® A of A is a graded algebra over C
with grading A® = Ag @ AT . If A is associative resp. graded commutative
then so is AC , and given two graded algebras A , B over R we have

AR B = (ARR B)° .

Clearly A (R9)" = A (CY) .

Definition 2.7 (graded involution) Let A be a graded algebra over C .

A C-antilinear graded map



is called a graded involution on A if and only if ab="0 @ and a = a for all

a,be A .

Clearly if ~ is a graded involution on the graded algebra A then it is an
involution on A regarded as an ordinary algebra as well. By the way, if A

is a unital algebra and ~ is an involution on A then automatically

T=1T=11=1=1.

An easy calculation shows that given a graded commutative algebra A over

C with involution  then

* . Ala)x(rls) _, g(rls)x(pla) Lg—7g =g,

where <! denotes the usual transpose and ~  is taken component-
wise, is clearly C-antilinear and respects the grading. (¢g*)* = ¢ for
au g 6 A(p‘q)X(?“lS) R and lf g 6 A(plq)X(T“S) and h G A(T‘S)X(t‘u) then
(gh)* = h*g* . So especially * : APIOx@l) . APlDx@l9) s a graded

involution.

Clearly exp (X*) = (exp X)" for all X € A (K")éplq)x(p‘q) , str(Y*) = strY
for all Y € A(KMPO*@D anq Ber (¢f) = Berg for all
9 € GL (plg, A (K™)) .

If A and B are two graded algebras over C with involution ~  then the

C-antilinear extension of

a®b = (-1)%aeb
for all homogeneous a € A and b € B defines a graded involution ~ on
AR B . If Aand B are unital then ' restricted to A and B canonically

embedded into AKX B is just  , and so we denote the involution " on
AKX B again by the symbol

Theorem 2.8

(i) Let A be a graded commutative algebra over R . Then the C-antilinear

map  : A® — AC given by C-antilinear extension of

a ifa€ Ay
ia ifa € A

is a graded involution on AC .
AQZ{&EA%’EZ&}
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and

A1:{a€¢4ﬂazm}.

(ii) Conversely let A be a graded commutative algebra over C with graded
involution . Then Agr = (ARr)y @ (Ar), given by

(Ar)y :=={a € Ag| a=a}

and

(Ar); ={a e A | a =ia}

is a graded commutative algebra over R , A is the complexification of AR ,

and the graded involution —  on A is given by C-antilinear extension of

a if a € (Ar),
ia if a € (ARr),
(iii) Let A and B be graded commutative algebras over R and ® : A — B a

graded algebra homomorphism. Then its unique C-linear extension

®C . A® — BC is again a graded algebra homomorphism, and it respects
given by (i) .

(iv) Conversely let A and B be graded commutative algebras over C with
graded involutions ~—  and ® : A — B a graded algebra homomorphism
respecting . Then ® restricts to a graded algebra homomorphism

dR : AR — Br , and ® is the unique C-linear extension of PR .

Proof: (i) For proving that ~ is a graded involution it suffices to show that
ab = ba and @ = a for all homogeneous a,b € A . Let o,3 € A; . Then
af € Ay . So

aff = af = —fa = (if)(ia) = pa,
and

a=ia=—ia=(—i)ia=a.

The other cases are similar. Now let a = = + iy € A5 , x,y € Ag such that

a=a . Then

r—iwy=a=a=2x+1y,

soy=0andac Ay . Let a = ¢ +1in € AL | €1 € A; such that @ = ia .
Then
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i(§—in)=§—in=a=ia=1i({+in),

son=0and a € A; . O

(ii) For proving that Ag is a graded commutative algebra over IR it suffices
to show that ab € Ag for all homogeneous a,b € Ag . Let o, 5 € (AR); -
Then af € Ay , and

af = fa = (if)(ia) = —fa = af.

So even aff € (AR), - The other cases are done similar. For proving that A
is the complexification of AR observe that for all a € Ay and o € A;

ata ., ,a—a
a= —5— +1 (—17) 5

—— ———

€(Ar)g €(Ar),

and

a—1a | —tata
o= 5 +1 5

~——

E(-AR)l E(AR)1

An easy calculation shows that (Ar),Ni(Ar), = (Ar); Ni (Ar); = {0} .
The rest is trivial. [J

(iii) Clearly ®C is a graded algebra homomorphism. For showing that it
respects  let a = a1 + ias € .Ag ,a1,az € Ag and oo = a1 + i € A(lc ,
aq,09 € Ay . Then

€ (@) = 0 (a; —iag) = @ (ay) —i® (az) = @ (a;) + 1P (az) = ®C(a)

and

€ (@) = 0 (iay + o) = i® (a1) + P (an) = ® (1) + i® () = ¥C(a).
O
(iv) trivial.
We see that C-linear extension induces a bijection between all graded alge-

bra homomorphisms from A to B and all graded algebra homomorphisms

from AC to BC respecting
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Furthermore a straight forward calculation shows that given two graded
commutative algebras A and B over R and graded involutions ~ on A® |
BC and (AR B)® according to theorem 2.8 (i) then again

a®b=(-1)"®GRb

for all homogeneous a € A and b € B .

Definition 2.9 Let A be a graded commutative algebra over C with graded

involution

(i) The graded commutative R-algebra Ar given by

(‘AR)O = {CLE.A()‘ Eza}

and

(Ar); ={aec A1 a=1ia}
is called the real part of A with respect to

(ii) Let a € A, and let a = x + iy be the unique splitting of a such that
z,y € Ar . Then Re a := x is called the real part and Im a = y is called

the tmaginary part of a with respect to

Clearly if a € A then a € Ay if and only if Re a,Im a € (ARr), and a € A,
if and only if Re a,Im a € (AR), . For all a € A

a+a
R p—
ea 5
and
a—a
I = —1
m a ) 5
and for all o € A;
a— i
Re o =
e« 5
and
—ita+a
Ima= ———.
2
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Lemma 2.10 Letn € IN .

(i) There exists a unique unital graded algebra automorphism

vt (A(R") Mg A (R")® 5 A (C™) K A (C7)

such that

eyp1) = G 2LZILSC)
and

(1@ e;) = ile;®1)+1®e;

2
forallj=1,...,n .

Tlej@l)=¢;@1+i(1®e;))

and

Tt ®e) =i(e;@1)+1®¢;

forallj=1,....n .

(i1) There exists a unique graded involution —  on A (C") K¢ A (C") such
that

e; ® 1=1® €;
forallj=1,....,n .  is given by C-antilinear extension of

[SIAS[+D) | [TI(T]+1)
5 + 5 eT ® GS

eS@el .= (-1)
for all S, T € p(n) . Let ' be the graded involution on
(A(R™) Rg A (R™)® given by theorem 2.8 (i) . Then s the
unique graded involution on A (C") K¢ A (C") such that

(A(R") Rk A (R")® > A(C")RcA(C)
) % 1
(A(R") Mg A(R")® —> A(C") K¢ A(C)

Proof: (i) Clearly there exist unique C-vectorspace automorphisms ® and ¥
on C% (with basis {e; ®1,...,e, ® 1, 1®e1,...,1®e,} ), such that

e;®1—i(l®ey)
2

—i(ej®1)+1®e

Pe;®1) = ,P(1®ej) = 5 ,
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VU(el)=e®l+i(loe) and ¥V (1®ej) =i(e;@1)+1® e

for all 5 = 1,...,n , clearly inverse to each other. So existence and

uniqueness of ¢ follow by functoriality of the exterior algebra.

(ii) For proving uniqueness of ~  observe that since ~ is an involution

e; @1 =1® e; implies also 1 ® e; = ¢; ® 1 and so

S|(S1+1) | |TI(T|+1)
e e B AP

eS@el :=(-1) e

for all S,T € p(n) . For proving existence of ~  and commutativity of the
diagram let ~ be the unique graded involution on A (C") K¢ A (C™) such

that the diagram commutes. Then for all j =1,...,n

1 = 1(e;®1+i(1®eyj))
e;®@1+1 1®e])'>
= i e +1ee)
= 1®e;.0

= 1

N

In section 2.3 , when studying complex super open sets, we will see that ¢ is
precisely the 'intertwiner’ between odd holomorphic and odd real coordinate

functions on complex super open sets. Observe that for all j =1,...n

Re (e, ®1)=1(e; ®1)

and

Im (e;®1) =¢(1®ey)

with respect to

2.2 super manifolds - the real case

We will give a short description of what we mean by the category of super
manifolds. Super manifolds have for example been studied in [4] , but a
notion of parametrization concerning super manifolds seems to be new, never
studied systematically. Let us start with a sub category, namely the category
of super open sets, which is simpler to deal with. Let M be a manifold and
q € IN . Then we have a sheaf

D (<>|q)M =059 ® A (RY)
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of unital associative graded commutative algebras on M and a unital graded

sheaf epimorphism

# . D(olq)M —c Y fseS - fy
Sep(q)

called the body map. Via the canonical unital graded sheaf embeddings
Cy — (D (019),,), and A (R?) — D (O7), we identify C37 and A (RY)
with graded subsheaves of D (<>|q) 1 - Then clearly # is a projecton in the
sense that #|c;>§ =id .

As in A (IR?) itself the subsheaf N/ of D (<>|q) yy of all nilpotents elements
is precisely the kernel of # in D (<>|q) ,y and at the same time the ideal
in D (<>|q)M spanned by (D (<>|q)M)1 . We have N9 = ellalege £ 0 |
N9+ =0 and

(o), /¥ =c

via # .

On D (O'q) 1 as a free 29-dimensional Cjj-module we will always use the
uniformal structure of compact convergence in all derivatives. Then from
classical analysis we know that given U C R? open, D (U |q) is complete,

and given V C U open the restriction map

v :D (Ulq) ~D (qu)
is a continuous unital graded algebra homomorphism, whose image is dense
in D (V1) .
Now let us consider the special case M = IR? for some p € IN . Then in

D (IRp ‘q) we have the even coordinate functions

x1,...,2p € C(RP) =D (]Rplq>0

and the odd coordinate functions
fli=e1,....& =eq € A(RY), — D (IR”'q)l .
We define ¢% := e for all S € p(q) .

Definition 2.11 (super open sets)

(i) Let (p,q) € N? and U C RP be open. Then the pair Ut := (U,q) is
called a super open set of dimension (p,q) . U is called the body of Ul and
# D(U'q) — C®(U) the body map ofD(U‘q) . IfV C U open, V14 is
called a sub super open set of UM . If U is even a domain then U9 is called

a super domain.
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(ii) Let Ut and VI be two super open sets, ¢ : U — V a C®-map and
®:D (V's) — D (U'q) a unital graded algebra homomorphism. Then the
pair (@, @) is called a super morphism from Ul to V15 if and only if

(R()F =[Foyp
forall f € D (V‘s) . In this case @ is called the body of (¢, ®) .

(iii) Let (p,®) be a super morphism from Ul to V15 . Then (¢, ®) is called a
super embedding if and only if ¢ is an embedding and ® (D (V‘s)) cD (U‘q)
s dense.

(¢, @) is called a super projection if and only if ¢ is a projection and P is
mjective.

(iv) A super morphism (p,®) from Ul to V15 is called a diffeomorphism if
and only if © is a diffeomorphism and ® is an isomorphism. Then an easy
calculation shows that (¢, CID)_1 = (gpfl, (Ifl) is a diffeomorphism from Vs
to U9, which is called the inverse diffeomorphism to (¢, ®) .

Let Ul be a (p, q)-dimensional and V1* be an (r, s)-dimensional super open
set, and let (o, ®) be a super morphism from U 19 to V15 . Then comparing
degrees of nilpotency in D (U'q) and D (V'S) one sees that if (¢, ®) is a
super embedding then p < r and ¢ < s, if (¢, ®) is a super projection then
p>rand g > s, and finally if (¢, ®) is a super diffeomorphism then p = r
and ¢ = s . (id,#) is a super embedding from U into U 9 for each super

open set U7 .

Clearly the set of all super open sets together with all super morphisms forms
a category, where the composition of two super morphisms (¢, ®) from Ula
to VI* and (¢, ¥) from Vs to W% is defined as

(@) o (¢, ¥) :=(pot),¥od),

and (id,id) is the identity morphism from a super open set Ul to itself.
The category of ordinary open subsets of all R , p € IN , together with
C*-maps is a subcategory of the category of super open sets identifying
each U C IR? open, p € IN | with (U,0) . The body map is precisely a
functor from the category of super open sets to the category of ordinary
open subsets, which restricted to the subcategory of open subsets is just
the identity.

Given super open sets U!?, V15 and Wt | a super embedding (¢, ®) from Ula
to V15 and a super morphism (1, ¥) from V15 to W* we call the composition
(¥, 9)|g1a = (¥, ¥) o (, ®) the restriction of (1, ¥) to Ul . In the trivial
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case where Ul? is a super open set and U’ C U open we call the super
embedding (c, |¢) from UM to Ul? (where ¢ : U’ < U denotes the inclusion
map) the super inclusion from U’ 9 to U4 . In this case given a super

morphism (p, ®) from U7 to VI* the restriction to U7 is just (¢|gr, |7 o ®) .

There is a nice characterization of super morphisms between super open
sets, which shows in particular that in some sense given a super open set

Ul? the algebra D (U |q) is ’spanned’ by its coordinate functions:

Theorem 2.12 Let U7 and V15 be two super open sets, and let YLy e e oy Yr

and 01, ...,ns be the coordinate functions on V15 .

(i) Let ® : D (V‘S) — D (U‘q) be a unital graded algebra homomorphism.
Then ® is continuous, and there exists a unique C*°-map ¢ : U — V such
that (@, ®) is a super morphism from Ul to VI* . Let f; := ® (y;) ,
i=1,...,7r , A\j:=®(n;),i=1,...,s . Then (fl#,,ff) (x) € V for
alxeU , p= (ff,,fﬁ) , and for allgzZSep(s)gSnSED(Vm) we

have

W)= Y X L (@es)ow) (A fem i) @)

Sep(s) neN"

in multi-index language, where we set X% := \g, -+ N\, for all
S={t1,...,tm}€p(s) , 1<t < <t <s.
(i) Conversely let f1,...,fr € D (U‘q)o such that (fl#, e f,#) (x) €V for
allx e U , and let A,..., s € D (U‘q)1 . Then there exists a unique unital

graded algebra homomorphism ® : D (V‘S) —D (U'q) given by formula 2.1
such that ® (y;) = fi ,i=1,...,r ,and ®(n;) =X; , j=1,...,s.

Proof: (i) For proving uniqueness of ¢ let ¢ = (¢1,...,¢,) : U — V be a
C*-map, such that the pair (¢, ®) is a super morphism from Uld to Vs

Then for all i = 1,...,r one has

pi=yiop=(®y)* ="

For proving existence we first show that (fl#, e fﬁ) (x) e Viorallx e U.
So let xg € U . Then
V:C¥(V) = R, g ©(9)7 (x0)

is an algebra homomorphism hence lies in the spectrum of C*°(V') . So from
classical analysis we know that there exists yo € V' such that ¥U(g) = g (yo)
for all g € C*°(V) . Therefore for all i =1,...,r
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17 (x0) = ¥ () = (vo); -
SO (fl#,,ﬁ#) (x0) =yo € V. Define ¢ := <f1#,,f,#> :U — V . For
proving formula 2.1 let g € C*°(V') and xg € U . It suffices to show that

®(g) (x0) = ) %3”9 (o (%0)) ((fr, -+, fr) (x0) — ¢ (x0))"

nelN"
in A (R?) . Again from classical analysis we know that there exist
Ap €C®(U) ,neNN" |n| =s+1, such that

1

g= D, &) -e&)"+ Y (y—¢(x0)"An
neN”  |n|<s neN” , |n|=s+1
and therefore
) = N 0o 0x0) (i )~ (o))"
neN" , |n|<s

Y (e f) — e (x0)P R (An)
neN" | |n|=s+1
Since all (fz — fl.#) (x0) ,i=1,...,r , are nilpotent elements in A (R*) we
have ((f1,...,fr) (x0) — ¢ (x0))" =0 foralln € IN",|n| = s+ 1, and so
the desired equation follows. Especially by equation 2.1 we see that ® is

continuous and that

#

D(g)* =ggop =g op,

for all g = ZSep(s) gsn® € D (qu) , S0 (i, ®@) is indeed a super morphism
from Ul? to VIs . O

(ii) For proving existence define

d:D (V‘S) —~ D (U\Q) :
dogsn® = XY %((angs)o@)(fl—ff%,...,fr—ff)n)\s.
Sep(s) Sep(s)neN”

Then clearly ® is linear and respects the grading. For proving that ® is also
multiplicative one observes immediately that

® (gn°) = ®(9)® (n°) = ®(g)\° for all g € C>°(V) and S € gp(s) , for all
S, T € p(s) we have

(—~D)F<SIpSUT i SN T = ()

0 otherwise

93



and since all \; € D (U1), ,j=1,....s,

ASAT — (—DIT<SINSUT if SNT =)
0 otherwise

as well.

For all g,h € C®(V)

B(g)D(h) = (Z — (™) 0 9) (f1—f1#a-~7fr—ff)m) x

meN"

x (Z %((anh)oap) (fl—ff,...,fT—ff)n> .

nelN"

Since both sums are finite we can interchange the order of summation, so

we obtain

2(g)2(h) = >y (@000 () oe) | ¢

keN”™ \meN" m<k
k
X <f1_fi#))f1”_f7#>

- ¥ 3 <::1> (™) (9%™h) | o0 | x

keN" T meN", m<k
X (fl—fﬁ---,fr—ff)k
= 3 L ((wm) o) (- et 17) = 0ian).

kelN”
where we used LEIBNIZ’ rule in multi-index language and that all
fieDU),,i=1,...,p.

Uniqueness follows directly from (i) . O

Theorem 2.12 shows that there is a bijection between the set of all super
morphisms (¢, ®) from Ul? to VIP | the set of all unital graded algebra
morphisms @ : D (V'S) — D (U'q) and the set of all tuples

(fiye s frs Ay oo s Xs) €D (U'q)g x D (U‘q)i such that the image of U under
( fl# yeees fﬂéﬁ ) lies in V . So in practice, since it is more convenient and
analogous to classical analysis, we will identify a super morphism (¢, ®)
from U9 to VI* with its ’defining tuple’

(fiyee s frs My Ag) GD(U"I); XD(U"J)j .
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Then ¢ = (fi#, e ,j‘}#) , and for all g € D (V‘s) we can write

91y fr Ao ) = 0(g) €D (UM)

regarding ® as a ’plugging in’ homomorphism, although this can be just

formally.

Often the class of super morphisms between super open sets seems to be
too restrictive, for example if (f1,...,fr,A) € D(U'q)g X D(U‘q)1 is a
super morphism from a super open set Ul? to R’" we have automatically
fi,..., fr € C®°(U) , and the set of "points’ of Ul? given as the set of all
unital graded algebra homomorphisms from D (U |q) to R is just U itself, so
in particular it is not separating points on D (U'q) . Therefore it is useful
to introduce a notion of parametrization where the ’parameters’ are odd

coordinate functions on some R%" , n e IN .

Before we do so we remark that in the category of super open sets there exists
a cross product: If U9 and VI* are (p, q)- resp. (r, s)-dimensional super open
sets the cross product of them is simply Ul? x Vs .= (UxV,q+s) , and

from classical analysis we know that

D (Ul x V) = p (Uh) =D (V1)

in the topology of D (U 9 % V|S) . As a cross product it fulfills the following
universal property, see paragraph 5.18 in [4] : There exist super projections
(pry, C1) and (pry, Co) from Ul x V15 onto Ul resp. VI* | where

pri : UxV — U and pry : U XV — V denote the canonical projections and
Cy : D(UM) — D(U)XD (VF) and C; : D (V) — D (U9) KD (V)
the canonical embeddings, such that for any super open set W and super
morphisms (¢1,®1) and (p2, P2) from W to U4 resp. V15 there exists a
unique super morphism (1, ¥) from W* to Ul? x Vs such that

(prla Cl) o (w7 \I/) = (()017 (I)l)

and

(pra, C2) o (1, V) = (2, P2) .

Here we have ¢ = (¢1,p2) : W — U x V and

W= 0180, D (U)BD (V) =D (W) | f@ g @1(£)0a(g).
If we write (1, ®1) and (@2, P2) in terms of their defining tuples
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(ST D ST ¥ GD(WW)z % D(W‘uyj

resp.

S

(G1seeesGry Ly - vy lhs) € D(W'“)O X D(W'u)l

then simply

(¢)W) = (flu"'7fpugl7"')gT‘7)\17"‘7)‘un'17"'),U’S) .

Definition 2.13 (parametrized super morphisms) Let n € IN and
P:=AR")=D (]F{O'”) with coordinate functions ai, ..., a, .

(i) Let U% and V1* be two super open sets and (@, ®) a super morphism from
Ul x RO™ to VIs x RO™ . Then (¢, ®) is called an over P parametrized
(or simply P-) super morphism from U? to V1* if and only if ®|p = id , in

other words

Ul RO @8 yrls RO

(pr2702) \‘ % / (pr2702)
]RO\n
In this case again ¢ : U — V is called the body of (v, ®) .
(ii) Let (@, ®) be a P-super morphism from U1 to V15 . Then it is called
a P-super projection resp. embedding resp. diffeomorphism if it is a su-

per projection resp. embedding resp. diffeomorphism as an ordinary super
morphism from U1 x R™ to VIs x RO™ .

From now on let n € N and P =A(R") =D (IR'") .

By theorem 2.12 there is clearly a bijection between the set of all P-
super morphisms (¢, ®) from Ul? to VI? | the set of all unital graded al-
gebra morphisms @ : D (V'S) — D (U'q) X P and the set of all tuples
(fro-o i fro M- As) € (D(UM)RP) x (D (U) ®P); such that the
image of U under (fl#, ceey ﬁ#) lies in V' . So in practice we will again
identify a P-super morphism (¢, ®) from U!? to VI* with its defining tuple
(fir s frs Moo, As) € (D (UMY RP) x (D (Ul7) BP)] , again

o= (ff,,fq#) )

Given P’ := A (]R”/) for some n’ € IN every P-super morphism (¢, ®) from
Ul? to VI can be also regarded as a P X P’- super morphism from U7 to
VIS using @ ®id : D (V) KPR P’ — D (Ul7) WP K P’ instead of & , in

particular every usual super morphism from U7 to V15 can be regarded as
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P-super morphism from Ul¢ to VI* . Now if (¢, ®) is a P-super morphism
from U7 to Vs and (1, ¥) is a P-super morphism from V15 to W then the
composition (1, ¥) o (¢, ®) is a P-super morphism from U7 to W .

If (p,®) is a super diffeomorphism from U 19 to VI* then the inverse
(¢*1,¢)*1) is a P-super diffeomorphism from Vs to Ul? . The universal
property of the cross product in the category of super open sets remains
true even under P-super morphisms:

Let Ul , VI5 and W* be super open sets and (@1, ®1) and (@o, ®2) be P-
super morphisms from W to U7 resp. VI* . Then there exists a unique

P-super morphism from W1 to U7 x V15 such that

(prh C1® ld) o (1/}7 \I/) = (9017 (I)l)

and

(pr2, Co® id) 0 (w’ \II) = (902’ (1)2) .

We have 1 := (p1,p2) : W — U x V and

W i= Bl iy @ Dalp(y i) @id s D (U'q) XD (V'S) KNP —D (W‘“) =

Recall that ¢; = <I>1\D(U|q) ®1id and ®9 = <I>2\D(U|q) ®id .

Let U CIRP,V CR"and V' C V be open, and let ¢ : U — V be a C>®°-map
such that ¢(U) C V' . Then ¢ can also be regarded as a C*°-map U — V"’ .

In super analysis there is an analogon to this fact:

Lemma 2.14 Let (o, ®) be a P-super morphism from U2 to VI* and
V' C V open such that p(U) C V' . Then there exists a unique P-super
morphism (@', ®') from Ul to V'I* such that (o, ®) = (c,|y) o (¢, @) ,

where (c,|y+) denotes the super inclusion from V'I* to V15

Proof: (¢',®') being a P-super morphism from Ul¢ to V'l |
(p, @) = (¢,|yr) o (¢, ') is equivalent to ¢ = co ¢’ and

DVHRP L D) RP
o\, % Y : (2.2)
DU RP

Clearly there exists a unique C*°-map ¢’ such that ¢ = co ¢’ . By formula
2.1 one sees that ker |y T ker & . Furthermore the image of |y~ is dense in
D (V’ |S) X P , and ® and &' are automatically continuous. Therefore there
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exists a unique unital graded algebra homomorphism

9 :D (V') ®P — D (U!7) ®P such that 2.2 is true.

Now we have to prove that (¢',®’) is a P-super morphism from Ul to
V'ls . Showing ®'(f)# = f# o/ for all f in the image of |y is an easy
exercise, and since ® |, # and ¢ o ¢’ are continuous, it is true even for
general f € D (V"S) XP . Since ®(oj) = oj = |y forall j =1,...,n
trivially ®'|p =id . O

We identify ¢’ and ¢ . Lemma 2.14 has an important consequence: it
tells us that a P-super morphism (o, ®) from U7 to VI | U7 and VI
being two super open sets, induces a whole morphism from (U,D (<>|q)U)

to (V, D (Q‘s)v) as ringed spaces, in exact:
Corollary 2.15 Let U7 and V5 be two super open sets and
(0, ®) = (f1,---, frsMs- .., Ar) @ P-super morphism from Ul to V15 .

(i) Then for each W C V open there exists a unique P-super morphism
(<p|@_1(w), Pyy) from W5 to = (W)l such that

Ula ($:2) Vis
(e lo-1w)) 1 %o T lw)
UL wi

(#lo-10w:2w)

where (c, |¢_1(W)) and (¢, |w) denote the canonical embeddings. We have
Dy =D and for all W C W CV open

DWH)RP 2% D(p (W)l KP

|W’ ! %o l |<p—1(W’) 5
DWPF)RP — D(e (W) RP
w/!

finally (go]wﬂ(w), <I>W) = (f1,eo s fro Ay ee e, /\T)‘@*l(W) for all W C 'V open.

(i) Let W C V be open. If (¢, ®) is a super embedding then @y (D (W'S)) is
dense in D (cpfl(W)‘q) , if (¢, @) is a super projection then @y is injective,
and if (p,®) is a super diffeomorphism then @y is an isomorphism and

-1 _ (-1
Py = (27 -

Proof: (i) Let W C V be open. Then one obtains the existence and unique-

ness of (<p|g,—1(W), (I>W) by applying lemma 2.14 to the P-super morphism

(¢|@_1(W), lp-1(w) © ®) from e Y W)l to Vs,

Now let 41, ...,y be the even and 7, . .., 7ns be the odd coordinate functions

on Vs . Thenforallk=1,....r
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Pw (yklw) = @ (W)l wy = Frlp-1)

and foralll=1,...,s

Py (m) = ‘I’(nl)b—l(W) = )‘l‘¢—1(W) .
Since @y := ¢ fulfills the commuting diagram we have ¢y = ® . Now let
W’ C W C V be open. Then for all f € D (VI¥)

Sw (fIw) lo-1owry = ()1 ) = Pwr (flwr)
and so since the image of D (V's) under |y is dense in D (W's) we get

|<p—1(W’) o (I)W = (I)W/ o |W’ .4

(ii) : Let (¢, ®) be a super embedding. On one hand

o (o(v4),

and on the other hand

By (D (V'S)

) o (0(w4)) < (s 07).

W) = PVl

S P
D (¢ (W)7)

since |,,-1(y)lq is continuous, so Py (D (W'S)) cD ((,0_1(W)“1) is dense.

C

dense

Now let (¢, ®) be a super projection and f € ker @y C D(W‘s) . We
have to show that f = 0. Let e € C°>°(V) such that supp ¢ € W . Then
feeD (Vls) , and it suffices to show that fe =0 . By formula 2.1 we have
supp ®(fe) C o 1(W) , and on the other hand

(fe)lo-1w) = @w (f (elw)) = Pw (f)Pw (elw) = 0.

Therefore fe = 0 since ® is injective.

Now let (¢, ®) be a super diffeomorphism. Then for all f € D (V'S)

((I)_l)@fl(w) (q)W (f|W)) = q)_l)go—l(w) ((I)(f)Lp_l(W))
= 1)y = flw-

So since the image of D (V'S) under |y is dense in D (W'S) and ® and &1

are continuous we have (<I>*1) o ®yy = id and by the same calculation

(W)
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Py o ((I)_l)<p—1(W) =1id as well. (I

A simple calculation shows that if (¢, ®) and (¢, V) are P-super mor-
phism from Ul to VI* resp. from VI* to W* then for all X c W open
((I) 9} \IJ)X = q)w—l(x) o) ‘IJX .

Let Ul be a super open set, and define the continuous linear maps

o:D(U) =D (Ul), f= 3 15t~ 3 (0ifs)€5,
Sep(q) Sep(q)
i=1,...,p,and

0; DU =D (U") . f= 3 feg¥m Y (D)€t
Sep(q) Sep(q),igs
j=1,...,q. Then g;oly = |y0d; and gjjoly = |yo0; foralli=1,...,p,
Jj=1...,qand V C U open. Oz = di , 03§ = 0, Jjz; = 0 and
0;;& =y for all i, k=1,...,p,j,l=1,...,q.
#
Clearly (9;f)" = 8 (f*) , %D (Ulq)o’a\jp (U|q)1 c D(Ulq)o ’
0D (UM),,0,D(Ul), c D(UN), foralli=1,...,pand j =1,...,q,

and we have a super product rule:

0;(fg) = (3z'|f) g+ f (Bﬂg)

and

0 (fg) = (0yf) g+ (1) £ (039)
foralli=1,...,p,5=1,...,qand f,g € D (U'q) , [ homogeneous. So all

0; and J); are super derivations on D (U |q) , and we call them the partial

derivatives with respect to the coordinate functions x; resp. &; .

Definition 2.16 (super Jacobian) Let Ul and VI* be (p, q)- resp. (r,s)-
dimensional super open sets and (o, ®) = (f1,..., fr,A\1,...,As) a P- super
morphism from U9 to V15 . Then the even (r|s) x (p|q) - graded matriz

(8i\fk)ke{1,...,r},ie{1,...,p} - (8|jfk)k€{1,...,r},je{l,...,q}
)5M)

D(p,®) :=

(aﬂ)‘l)le{l,...,s},ie{l,...,p} ‘ (

c <D <U|q> ®P>2TS)X(IJ(1)

l€{17~~~7‘9} $j€{17~"’q}

is called the super Jacobian of the P-super morphism (o, ®) .
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Let U7 | V15 and W be (p, q)- resp. (r,s)- resp. (t,u)-dimensional super
open sets. If (¢, @) is a P-super morphism from Ult x Vs to W* then one
can reorder the columns of D(p, ®) such that

D(p, ®) = (D1(e, @) Da(, @) ,
where Di(p,®) € (D (Ul x VI¥) & P)éﬂu)x(plq) is the even graded matrix

collecting all derivatives with resp. to the coordinate functions in U4 and

Dy(p,®) € (D (U‘q X V‘S) ® P)(()tlu)xms) is the even graded matrix collect-

ing all derivatives with resp. to the coordinate functions in V1° .
If (o, @) is a P-super morphism from U 1 to Vs x W1 then one can reorder
the rows of D(p, ®) such that

Dl(@v (P)

D(SO, (I)) - DQ((,O,@)

where Di(p,®) = D ((pry,C1)o(p,®)) € (D (U|q) ®P)(()r|s)x(p|(J) and
Ds(,®) = D ((pry, C2) o (¢, ®)) (D (U\q) ® p)(()tW)X(plq) .

Let us recall some properties of super Jacobians:

Lemma 2.17 Let U7 | Vs pe (p,q)- resp. (r,s)-dimensional super open
sets and (@, ®) = (fi,..., frs M, ---,Xs) a P-super morphism from Ul? to

V15 and D(p, ®) its super Jacobian as a P-super morphism.

(i) The Jacobian of (o, ®) regarded as an ordinary super morphism from
Ut x RY™ to VIs x RO™ has the form

Dordinary(gﬁ (I)) =

where x is an even (r|s) X (0|n) - graded matriz consisting of derivatives of

fis-- oy fro A, ..oy As with respect to the odd coordinate functions aq, ..., ay -

(i) The body of D(p,®) , taken componentwise, has the form

Dy | 0
D(p, ®)* := 090 e co ) pa)
*

(iii) For all W C V open D (g0|¢_1(W), Py ) = D(e, D)1y -

Proof: trivial.
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Lemma 2.18

(i) Let WI* be a third super open set and (v, V) a P-super morphism from
VIS to Wl . Then the super Jacobian of (1, ¥) o (p, ®) is precisely

where ® (D (1, ¥)) is taken componentwise.

(ii) If (@, ®) is a super diffeomorphism then D(p,®) is invertible as an
even (p,q) X (p,q)- graded matriz with entries in A (R?) X P | equivalently
D(p, ®)* € COO(U)[()p’q)X(p’q) is invertible, and

D((p.®) ") =2 (D)) .
where &1 <(D(<p, @))_1) is taken componentwise.

Proof: (i) In the ordinary case where P = IR this is corollary 5.5 of [4] 1.
The general case then follows easily from lemma 2.17 (i) . O

(ii) follows directly from (i) . O

The converse of (ii) is almost right, since in the super case we have an

analogon to the local inversion theorem in classical analysis:

Theorem 2.19 (super analogon to the local inversion theorem)
Let Ul and V14 be two super open sets of dimension (p,q) , (¢, ®) a
P-super morphism from Ul to V14 and x¢ € U .

(i) Let D(p,®)(x0) € (A (]Rq)@P)ép'q)X(pm be invertible, equivalently
D(ip, ®)7 (xq) € IR(()plq)X(p‘Q) be invertible. Then there exists an open neigh-
bourhood W C V' of ¢ (x9) such that (g0|¢,—1(W), Py ) is a super diffeomor-
phism from = (W)l4 to Wa .

(ii) Let ¢ be bijective and D(p, ®) (xq) , equivalently D(p, ®)* (xq) , be in-
vertible for all xg € U . Then (¢, ®) is a diffeomorphism.

Proof: If P = R then (i) is precisely theorem 5.13 , and (ii) is precisely
corollary 5.14 of [4] . The general case follows easily from the case P = R
via lemma 2.17 (i) . O

In super analysis there is an analogon for the implicit function theorem as

well:

! CONSTANTINESCU and DE GROOTE have the minus sign in the lower left corner of the

super Jacobian, which of course does not change the result.

102



Theorem 2.20 (super analogon to the implicit function theorem)
Let Ul be a (p, q)-dimensional and Vs, Wls be two (r, s)-dimensional super
open sets. Let (o, ®) be a P-super morphism from

Uld x VIs to W5 and (x¢,y0) € U x V such that

Ds(p, @) (x0,y0) € (A(R?) XA (R*) X p)(()plq)X(p\q) ’
equivalently Do(p, ®)7 (x0,y0) € ]REPIQ)X(pIq)

zo == ¢ (x0,¥0) € W . Then there exists an open neighbourhood A C U x W

, 1s tnvertible, and define

of (x0,20) and a P-super morphism (¥, W) from Al+s | which is actually a
sub super open set of Ul1 x V15 | to V15 such that 1 (xq,20) = yo and

(@7 (I)) ° ((prl’Aﬂ/}) ) (|A ° Cl) ®\I’) = (pr2702)‘A .

Proof: If P = 1R this is precisely theorem 5.23 of [4] . For the general case
apply theorem 5.23 of [4] to (p, ®) regarded as an ordinary super morphism
from Ul x (V's X IRO|") to Wl x RY™ since then the second part of the

ordinary super Jacobian is

Do(p, @) *
0 1

which so is invertible at (xg,yo) . Then it tells us that there exists an open
neighbourhood A C U x W of (x¢,20) and a super morphism (¢, ¥) from
Aletstn a5 a super open subset of U7 x (V‘s X IRO|"> to V15 x R such
that v (x9,20) = yo and

(907(1)) o ((pr1|A>w) > (’A o Cl) ®\I/) = (pr2|A ) |A o 02) )

where (pry, Cy) denotes the canonical super projection from
Ule x <V‘s X ]RO‘”> to VI* x R%™ . It remains to prove that (i, ¥) is a

P-super morphism from Al7t5 to V15 . Forall j =1,...,n

VU(ag) = ((JaoC)¥)(a;) = ((|acC1)¥)(®(ay))

= (JaoC2) () = oy,

and so ®|p =id . O

Definition 2.21 (parametrized super manifolds) Let M be a p-
dimensional real C*°-manifold and ¢ € IN . Let S be a sheaf of unital graded

R-algebras over M and # : S — Cy7 a sheaf homomorphism.
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(i) The triple M := (M,S, #) is called a (p,q)-dimensional over P
parametrized (or simply P-) super manifold if and only if there ezists a
sheaf embedding P — S , for all xg € M an open neighbourhood U C M of
xo and a sheaf isomorphism ® : S|y = D (<>|q)U XP such that ®|p = id and

Sly 2, D(Ol), ®P
# N\ 7 S #
cr

In this case M#* := M is called the body of the P-super manifold M , S the
structural sheaf of M and ¥ the body map of S . We write D(M) := S(M) .

In the case where P =R we call M simply a super manifold.

(ii) If U C M is open then the triple U := (U,S]U, #‘U) is called an open
sub P-super manifold of M . It is a (p,q)-dimensional P-super manifold
itself.

Now it is important to see that S carries a well-defined uniformal structure

of compact convergence in all derivatives via the local isomorphisms

Sly 2D (Q‘q)Uﬁp , U C M open.

For checkig well-definedness let o € M , U C M be an open
neighbourhood of xy and

:8lp =D (0F) =P

and

visly 5D (0l) mP
be unital graded sheaf isomorphisms. Without loss of generality
we may assume that U — IR? via a C*°-embedding. Therefore
By oWy : D (U“I) KNP — D (Ulq) X P

is a unital graded algebra isomorphism, which is bicontinuous by
theorem 2.12 .

For checking existence observe that compact convergence in all

derivatives is already a local property.

From now on if M , N/ and O are P-super manifolds then we always denote
by M , N and O the bodies and by & , 7 and R the structural sheaves of
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M resp. N resp. O .

From classical analysis we know that given a C*°-manifold M each open cov-
ering of M has a locally finite refinement, and to each locally finite covering
there exists a C*°-partition of unity, see for example theorem and proof of

theorem 4.11 in [4]. There exists an analogon for super manifolds:

Lemma 2.22 Let M be a (p, q)-dimensional super manifold and

M = U Uy
AEA

be a locally finite open covering. Then there exists a family
(ex)xen € D(M)A such that supp ex C Uy for all X € A and

1225)\.

AEA

Proof: This is theorem 4.11 of [4] . O

Using partitions of unity on the super manifold M one easily proves that for
any U C M open the algebra S(U) together with the uniformal structure of
compact convergence in all derivatives is complete, given some V' C U open
the restriction map |y : S(U) — S(V) is a continuous unital graded algebra
homomorphism, whose image is dense in S(V') , and for all U C M open the

body map # : S(U) — C>®(U) is a continuous unital algebra epimorphism.

Later we will deal with quotient sheaves of the structural sheaf S of a super
manifold M , and so it is convenient to derive a lemma about such quotient

sheaves from the existence of partitions of unity in D(M) .

Lemma 2.23 Let M be a super manifold and I an ideal sheaf of S . Then
for allU C M open

SWU)/TU) = (5/T) ().

Proof: By definition of the quotient sheaf S/Z , given U C M open, we have
SWU)/I(U) c (S/I)(U) , and for any f € (S/Z) (U) there exists an open
covering U = [ Jy¢p Ux such that fly, € S(Uy)/Z (Uy) , see for example in
[7] section 1.3 .

'C’ : now trivial.
"D’ Let f € (S/Z)(U) . Then by definition of §/Z there exists an open

covering
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U:UUA

of U and for each A € A a function f\ € S (Uy) such that f|y, = fy+Z (Uy)
for all A € A . Without loss of generality we can assume that (Uy),c, is
locally finite. So by lemma 2.22 there exists a family (£)),c, € D(M)* such
that supp ex C Uy for all A € A and

1 ::EE:EA.

AEA

So clearly

g:=>Y axhesU),

AEA

and so g + Z(M) € S(U)/Z(U) C (S/Z)(U) . Now let A € A . Then
M:=fu—MHeEZU,NU,) foralveA,so

(G+IW) oy = D (eufo)loy +I(Un)

veA
= <Z€V‘UA> B+ (o) n + T (Uy)
veA veA
= fA+Z(Uy)
= f’U,\

as functions in S (Uy)/Z (Uy) , where we used that (e,|v,)n, € Z (Uy) for
all v € A since 7 is an ideal sheaf of S . Since A € A has been arbitrary and
S/T is a sheaf we get f =g +Z(U) . O

Definition 2.24 (super morphisms) Let M and N be two P-super man-
ifolds, ¢ + M — N a C®-map and (Pw)ycn gpen @ family of unital
graded algebra homomorphisms ®w : T(W) — S (¢ (W) such that for
al W C W C N open

TW) % S(p (W)

lwl % lg=1awny
T(W') - S (e~ (W)

which means precisely that the pair ® := (gp, (Pw)yen open ) s a morphism
from (M,S) to (N,T) as ringed spaces.
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(i) The pair ® = (go, (Pw)wen open> is called a P-super morphism from
M to N if and only if for all W C N open ®w|p = id and

(@w(/))F = f# ol
for all f € T(W) . In this case ®% := ¢ is called the body of ® .

(ii) Let ® be a P-super morphism from M to N . Then ® is called a P-super
embedding if and only if ¢ is an embedding and all Pw (T (W)) C S (cp_l) ,
W C N open, are dense.

D is called a P-super projection if and only if p is a projection and all Py ,
W C N open, are injective.

(iii) A P-super morphism ® = (gp, (Pw)wen Open) from M to N is called
a P-super diffeomorphism if and only if ¢ is a diffeomorphism and all Py |

W C N open are isomorphisms. Then again an easy calculation shows that

()

is a P-super diffeomorphism from N to M , which is called the inverse

P-super diffeomorphism to (@, ®) .

Let M be a (p,q)-dimensional and N an (r, s)-dimensional P-super man-
ifold, and let <<p, (Pw)wen Open) be a P-super morphism from M to
N . Since for all zg € M there exist open neighbourhoods V' C N of
¢ (zg) and U C M of xp such that ¢(U) C V , which can be assumed
to be open subsets of R? resp. IR" without loss of generality, such that
Sly~D (Ulq) XPand 7|y ~D (V‘S) X P an easy calculation shows that
all @y : T(W) — S (¢~ H(W)) are continuous. By the same argument one
sees that if ® is a P-super embedding then p < r and ¢ < s, if & is a
P-super projection then p > r and ¢ > s , and finally if ® is a P-super
diffeomorphism then p=r and ¢ =s .

For any super manifold M we have a canonical embedding
<id7 (#)UcM open ) from M into M .

Clearly all P-super manifolds together with all P-super morphisms form
a category, and the body map is precisely a functor from the category of
P-super manifolds to the category of ordinary C°°-manifolds together with
C*>®-maps between them. Given super manifolds M , N/ and O and super
morphisms ® := ((p, (PV)ven open ) from M to N and

U= (¢, (YW)wen open ) from N to O the composition of ¥ o ® is given
by

PYod:= ('(/J o, ((I)wfl(W) © \IIW)WcO open ) ’
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and it is a P-super morphism from M to O .

Given a P-super morphism & = ((p, (®v)yen Open> from M to N for
all W C N open and f € T(W) we write f(®) := @y (f) € S(p (V)
regarding ®y as a ‘plugging in” homomorphism although again this can be

meant just formally.

Every super open set Ul? with U C IRP open can be regarded as a super
manifold with structural sheaf § := D (<>|q)U , and so the category of super
open sets is a subcategory of the category of super manifolds.

Given P’ := A (]R”/> for some n’ € IN every (p,q)-dimensional super
manifold M := (M,S,#) can be also regarded as a (p,q)-dimensional
P X P’- super manifold using & X P’ as structural sheaf instead of S ,
in particular every usual super manifold can be regarded as a P-super
manifold. Via this identification the super open sets together with P-super
morphisms form a subcategory of the category of P-super manifolds. In
general there are P X P’- super morphisms between two P-super manifolds
that do not come from P-super morphisms. The P-super morphisms
between super open sets defined in 2.13 for example are of this type. The
category of C°°-manifolds together with C*°-maps is a subcategory of the
category of super manifolds identifying a p-dimensional manifold M with
the (p, 0)-dimensional super manifold (M,C5?,1d) , and the body functor is
the identity on this subcategory.

Clearly if M is a (p,q)-dimensional P-super manifold then M is a
usual (p,q + n)-dimensional super manifold as well, and there exists a
canonical super projection (0, CW)wem Open> from M to R™ where
Cw : P — SW), W C M open, denote the (canonical) unital graded
algebra embeddings given by definition 2.21 .

Let M and N be two P-super manifolds and ® a P-super embedding
from M to N''. Then M is called a P-sub super manifold of A/ , and
in this case M can be regarded as a usual C*°-submanifold of N via the
C>®-embedding ¢ := ®# : M < N . If O is a third P-super manifold and
U a P-super morphism from N to O then the composition ¥|y := ¥ o &
is called the restriction of ¥ to M . In the special case where M is a
‘P-super manifold and U is an open sub P-super manifold of M we have a
canonical embedding C := (c, (lvrw)wenr Open) from U into M , which
is called the super inclusion from U to M , where ¢ : U — M denotes
the canonical inclusion, and in this case given a P-super morphism ¢

from M to another P-super manifold N the restriction of ® to U is just
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(@‘Uv (‘Uﬁ¢*1(W) © cI)VV)WCN open ) '

Clearly if M and N are two P-super manifolds , ® = (@, (Pw) e open ) is
a P-super morphism from M to N and U is an open sub P-super manifold of
N such that (M) Cc U :=U # then there exists a unique P-super morphism
@' from M to U such that ® = Co®’ |, where C denotes the canonical super

inclusion from U into A/ . @' is given by

d = (gp, (@W)WCU open ) ‘

Again we identify ® and @' .

Theorem 2.25 Let M and N be super manifolds and n : D(N') — D(M)
be a unital graded algebra homomorphism. Then there exists a unique super
morphism <<p, (@V)ven open ) from M to N such that O =1 .

In particular a super manifold M is uniquely defined up to super diffeomor-
phism by the graded algebra D(M) .

Proof: This is precisely theorem 4.8 of [4] . O

From now on, given P-super manifolds M , AV and O and P-super mor-
phisms ® from M to N and ¥ from N to O we write ¢ := ®# and 1) := ¥# |
and we let @y : 7 (W) — S (¢ '(W)) and Uy : R(X) — 7T (v~ 1(X)) ,
W C N resp, X C O open, be the unital graded algebra homomorphisms
building up ® resp. ¥ . When dealing with super manifolds the notion of
parametrized points is very usefull, since we can formally deal with them as

with usual points of ordinary manifolds.

Definition 2.26 (P-points) Let M be a P-super manifold. A P-super
morphism Z = (x, Evem Open> from RO to M, which then is auto-
matically a P-super embedding, is called an over P parametrized, or simply

P-, point of M . We write = €p M .

Given a P-point Z of the P-super manifold M , the body = = ZE# of
Z is a usual point of M = M# . By theorem 2.25 there is a bijec-
tion between P-points of M and unital graded algebra homomorphisms
n: D(M) — A (R™) with n|p = id such that n = Zj; and n(f)* = f7 (x)
for all f € D(M) . If f € D(M) then we write f (E) :=Ep(f) e P. If P is
a super morphism from M to another super manifold N then ® o Z is a P
point of A/, and we write ®(Z) := ® 0 Z . Then clearly for all V' C N such
that o € o~ 1(V) we have ®y (f|v) () = f(®(E)) for all f € S(U) , and if

O is a third super manifold and ¥ is a super morphism from N to O then
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In the special case where M = Ul? is a super open set by theorem
2.12 there is a bijection between all P-points of Ul and the set of all
(ai,...,ap,m,...,mq) € A(R™)F x A(R™)] such that (a#,...,aﬁ) eU,
which then is the body of the corresponding P-point.

Lemma 2.27 Let M and N be P-super manifolds of dimensions (p, q) resp.
(r,s) and f € D(M) , let ® and ¥ be P-super morphisms from M to N,
€N and P i= A (R") =D () .

(i) If n' > q and f(Z) =0 for all 2 €pgpr M then f =0 . So the PR P’-
points of M are seperating points in D(M) .

(ii) If n' > q and ®(Z) = V(2) for all = €pgpr M then & =V .

(i11) If n' > s and for all © €pgpr N there exists = Epgpr M such that
®(Z) = O then ® is a P-super projection.

(iv) If ® is a P-super embedding and 2,0 €p M such that ®(E) = P(O)
then = =0 .

Proof: (i) Assume n’ > g and f(Z) =0 for all = €pgpr M and let U C M
such that S|y ~ Dy B A (R") . Let z € U . Then A (RY) — P’ = A (]R"’)
canonically since n’ > ¢ , and so (z,&1,...,&;) €prpr M . So

0=f(x80)= > > for(x)&a’.
Sep(q) Tep(n)
Therefore f(x) = 0 as an element of A (RY)XA (IR™) . Since x € U has been
arbitrary we obtain f|y = 0, and since U has been arbitrary even f =0 . O
(ii) Assume n’ > g and ®(Z) = ¥(2) for all = €pgpr M . By theorem 2.25
it suffices to show that ®x(f) = Un(f) for all f € D(N) . So let f € D(N)
and = €pwgpr M . Then

(@n(f) = Un(f) () = f(2(E)) - f(¥(E) =0.

So we can apply (i) , which tells us that ®n(f) — ¥Un(f) =0. O

(iii) Assume n’ > s and for all © €pgp N there exists Z €pgpr M such
that ®(Z) = O . Let y € N . Then trivially y €pgps N , and so there exists
= €prpr M such that ®(Z) =y . So p(z) = y if we define z := Z# € M .
Therefore ¢ is surjective.

Now let W C N be open. Then W := (VV, 7 \lw, #) and

R = (<p*1(W), Slo-1w), #) are open sub P-super manifolds of N resp. M,
and we have to show that &y : DOW) = T(W) — S (¢~ 1(W)) = D(R) is
injective. So let f € D(W) such that @y (f) = 0. Let © €pxgps W with
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body y := ©% € W . Then © €pgp N , and so there exists = €pgpr M
with body = := Z# € M such that ®(Z) = © . Since ¢(x) = y we even have
r €YW), and so Z €pgp R . Clearly

f(O) = D (f)(E) =0 . Since © €pgpr W has been arbitrary we obtain
f=0by (). O

(iv) Assume ® is a P-super embedding and ¢(Z) = ¢(0O) for some

2,0 €ep M . By theorem 2.25 it suffices to show that Zp; = O;; . Let
g € D(N) . Then

En (Pn(9)) = Pn(9)(B) = g (P(E)) = g (2(O)) = Pn(9)(O)
= On (PN (9)) -

Therefore Znrlg pvy) = OMlaymvy) - Since @ is a P-super embed-
ding and so ®n (D(N)) C D(M) is dense and Ey : D(M) — P and
EN : D(M) — P are continuous we finally get Zpy = Oy . O

A special case of a P-super manifold is that of a discrete one.

Definition 2.28 Let M be a P-super manifold. Then it is called discrete
if and only if it is of dimension (0,0) .

Clearly, given a discrete P-super manifold M its body M is a discrete topo-
logical space. So its structural sheaf is P itself, and therefore we see that
each discrete P-submanifold M is equal to its body M regarded as a (0, 0)-
dimensional P-super manifold. Conversely any discrete topological space M
is a 0-dimensional manifold. So the subcategory of discrete P-super mani-
folds is equal to the category of sets (regarded as discrete topological spaces)
together with arbitrary maps between them, and hereby the parametrization
over P is meaningless.

Let M be a P-super manifold. Then a discrete P-submanifold of M is
simply a set A of P-points Z of M such that N := N7 is a discrete subset
of M and for all z € N there exists a unique = €p N such that =# =z . So
for the P-embedding of a discrete topological space N = A into a P-super

manifold the parametrization over P is essential.

There are two possibilities of constructing non-trivial examples of P-super
manifolds. The first is a super analogon of defining a manifold M as a com-
mon zero set of functions on some U C IR? open, the second is a construction

via a vectorbundle on a C®-manifold.

Theorem 2.29 Let Ul9 be a (p, q)-dimensional super open set,
(0, ®) = (fi,.. s frsMs- -3 As) be a P-super morphism from Ul to R'l®
such that vk D(p, ®)# (xo) =7 + s for allxg € U . Let
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M :=¢ 1 (0),

and let

s (0(64),57)/3)],

where I denotes the graded ideal sheaf in D (Olq)Uﬁp spanned by f1,..., fr
and A, ..., s .

(i) r <pands<gq,and M := (M,S,#) is a (p — r,q — s)-dimensional

P-super manifold.

(ii) M is a P-sub super manifold of Ul | and

C:.= <C, (|MﬁV © IOV)VcU open )

is a P-super embedding from M into U9 | where
p:D (<>|q)U XP — (D (<>|‘1)U X P)/I denotes the canonical unital graded

sheaf projection.

Proof: (i) : Clearly r <pands < ¢, and M is a (p—r)-dimensional subman-
ifold of U . The canonical unital graded sheaf embedding P — D (<>|q)U
clearly induces a unital graded sheaf morphism w : P — (D (<>|q) / I) ‘ E
but right now it is not clear that w is an embedding. From classical analysis

we know that

(€ /7#),, ~cx

and therefore # : D (<>|q)U X P — Cgf induces a unital graded sheaf homo-
morphism # : S — Cy7 - Now let xg € M . Then without loss of generality
we can assume that xg = (yo,0) with yo € RP™" and that there exist open
neighbourhoods V- C RP™" of xg and W C R" of 0 such that V x W C U ,
filvxsw =2z ,i=1,...,r,and \; =(; ,j =1,...,s, where z; denote the

even and (; the odd coordinate functions on WIS . Let us check it:

Since rk D(p, ®)# = s we may assume without loss of generality
that Dy(, ®)# € R "™ is invertible. Let

(¥, ¥) := ((pry,¢),C1®®) . Then (i, ¥) is a P-super mor-
phism from Ul? to R4 = RP71975 x R"® with defining tu-
ple (x1,...,Tp—r, f1,- s fss €10, Eg—ss AL, - .-, As) . So after re-
ordering the rows and columns in D(1), ¥) we have

1 0
Pl = Di(p,®) Dy, ®) |
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which is invertible at x¢ . Therefore by theorem 2.19 there
exists an open neigbourhood X < TRPI? of 4 (x¢) such that
(Ylyp-1(x), Yx) is a P-super diffeomorphism from Y1(X) to
Xl . We have x( = 1 (x0) = (¥0,0) if we define

yo := pr; (x9) € RP™" | and without loss of generality we can
assume that X = V x W where V C IRP™" and W C R are
open neighbourhoods of y( resp. 0 .

Let M :=yp(M)NX =V x{0} CV xW.

(¢, @) = (p,®)]p-1(x)0 (¢|w—1(X)7‘I’X)_1
= ((pvq))h/)_l(X) © (¢_1‘X’ (\Ij_l)d,—l(x))

is a P-super morphism from V14=5 x Wl to R'® with defining
tuple (z1,...,2r,C1y. .-, Cs) -

Let 7' be the ideal sheaf on V x W generated by
(z1,.+.,2r,C1,...,(s) . Again the canonical unital graded sheaf
embedding P — D (<>|‘1)U X P induces a unital graded sheaf
morphism &' : P — (D(O'q)/I’)‘M/ . Let Y C VxW
be open. Recall that Uy : D (YI) P — D (¢~ 1(Y)l4) R P
is a unital graded algebra isomorphism such that W¥y|, = id
and Uy (f#) = Uy (f)* for all f € D(Y‘q) X P . Clearly
Uy (Z'(Y)) = T (¥~1(Y)9) since Py is an isomorphism. Let
feD (Y‘q) X P . Then by formula 2.1 f vanishes in a neigh-
bourhood of M’ NY if and only if Ty (f) € D (¢~ H(Y)l) R P
vanishes in a neighbourhood of M N¢~1(Y) . So ¥y induces a

unital graded algebra isomorphism

v ((P(r)mr)/7m),,.,
= (M EP) [2(6700) ]y

such that W}, (f#) = W} (f)¥ for all
fe((pYl)RP)/T'(Y))
Clearly for all Y/ C Y c UNV open

Uy o |mrayr = [png—1(vry © Py , and so (1/1, YY)y cuxy open)
is a whole isomorphism between the ringed spaces (M’,S’) and

(M N X,S8|xnn) , where 8’ := ((D (O‘Q)va @P)/I’)
M.

}M’QY and \I/’Yowg/ = u)w—l(y)o\ljg/ .

on
M’
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So we see that M N (V xW) = V x {0} , and now it is obvious that
Wlyxqoy is an embedding and that there exists a canonical unital graded
sheaf isomorphism ¥ : S|y 0y = D (<>|qis)vX{0} X P such that

U (w(ej)) =ajforall j=1,...,n and

)4

Slyxgop — D (O‘q_S)VX{O} XP
# N\ % S # ;
\O/OX{O}

and so since xg C M has been arbitrary M is indeed a (p — r,q — s)-

dimensional P-super manifold. [J
(ii) trivial.

We say that the P-super manifold M is defined by the equations
fi=0,..., =0, A2=0,...,2=0.

Let M be a p-dimensional manifold and E a g-dimensional C*°-vectorbundle
on M . Then the triple (M, 'Y, #) is a (p, ¢)-dimensional super manifold,
where I'}%, denotes the sheaf of C*°-sections into the bundle AE and

# 'Y — C*° denotes the sheaf projection onto the constant term.
BATCHELOR’s theorem, theorem 4.29 of [4] , now says that all super mani-

folds can be obtained this way:

Theorem 2.30 Let (M,S,#) be a super manifold of dimension (p,q) .

Then there exists a q-dimensional C*°-vectorbundle EE on M such that

S ~ '
N\ N S
C®|lu

E is uniquely defined by S up to isomorphism.

Clearly if E has dimension g+n instead of ¢ and there exists a C*°-embedding
M xIR"™ — F then this embedding induces a unital graded sheaf embedding
P — I , and so (M,T%, #) is a (p, g)-dimensional P-super manifold. It
is not surprising that there is a formulation of BATCHELOR’s theorem for

‘P-super manifolds as well:

Corollary 2.31 (BATCHELOR’s theorem for P-super manifolds)
Let (M,S,#) be a P-super manifold of dimension (p,q) . Then there

exists a (¢ + n)-dimensional C*°- vectorbundle E on M , a C*-embedding
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M x R"™ — E and a unital graded sheaf isomorphism ® : S ST such
that ® (oy;) = e forallj=1,...,n and

s oy,
#N N S
Cr

Again E is uniquely defined by S up to isomorphism.

Proof: Since (M ,S,#) is an ordinary (p,q + n)-dimensional super man-
ifold we can apply theorem 2.30 to it, which says that there exists a
(¢ + n)-dimensional C*°-vectorbundle E on M and a sheaf isomorphism
@' : § ST such that

@/

S — Iy
# N\ N e
cx
One immediately sees that
N /,/\/ 2T

via ® |, where N denotes the subsheaf of all nilpotent elements in S , and
if U € M such that E|y is trivial then for all V' C U open
(N /N?) (V) =N (V) /JN(V)? . Let Np be the set of all nilpotent elements
in P . Then

R" ~ Np /NE < N JN? ~ T%

as a sheaf on M , and so M x R"™ «— E as a C*°-vectorbundle on M |,

' (a)) € (e + N(TX%)*) N (T3%):

where N (I'Y%) denotes the subsheaf of I'Y% of nilpotent elements. Let
M = Uyca U be an open locally finite covering of M such that Ely, is
trivial for all A € A , and let

1226)\

be a C*°-partition of unity on M such that supp ) C Uy forall A € A. Then

for all A € A since E|y, is trivial we can find a C*°-vectorbundle embedding

P E’UA — (AE)l ’U/\

such that py (z,e;) = @' (o) (z) for all j =1,...,n and z € Uy , and
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Ely, & (AB), v, = N (AE) |y, 25 N (AE) /N (AE)? |y, ~ Elu,

gives the identity map. So we get a whole C*°-vectorbundle embedding

piEo (AE),, (m,v)— > expa(mv),
AEA ,z€U,
where the sum is taken in the fibre. Again p(z,e;) = @ (a;) (x) for all
j=1,....,nand x € M , and

EL (AE), — N (AE) 25 N (AE) /N(AE)2 ~E

gives the identity map. By the universal property of the exterior algebra
the C*°-vectorbundle embedding p extends to a unital graded C*-algebra
bundle automorphism y on AF , and x induces a unital graded sheaf au-
tomorphism ¥ of I'Y% such that ¥ (e;) = @' (o) , j = 1,...,n . So take
® := VU~ lo @ . Since ¥ comes from the unital algebra bundle automorphism

x we fortunately have again

P

S — Iy
#\ % /# )
Cg

and by theroem 2.30 F is uniquely defined by S up to isomorphism. [

Via the up to isomorphisms one-to-one-correspondence between super man-
ifolds and finite-dimensional C*°-vectorbundles over C*°-manifolds one can
show that there exists a cross product in the category of super manifolds,
see theorem 5.21 of [4] : Let M be a (p,q)-dimensional and N be an
(r, s)-dimensional super manifold. Without loss of generality we can as-
sume that S = I'° (AE) and 7 = I'*° (AF) where E is a ¢-dimensional
C®°-vectorbundle over M and F' is an s-dimensional vectorbundle over N .
Then

MxN = (M % N, T (A (priE @ priF)) ,#)

is a cross product of M and N, where priE and prjF denote the pullbacks
of E resp. F under the canonical projections pr; : M x N — M resp.
pro: M x N — N .

Since for all U € M and V C N open

I (A (priE @ pryF)) (U x V) =S(U)KT (V)
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we denote the stucture sheaf T'° (A (priE @ priF)) of M x N by
priS @prgT , where priS and pr37 denote the pullbacks of S resp. 7 .
(f@g)# = fF@g# € C°(U x V) forall U € M and V C N open,
feSU)andgeT(V).

M x N isa (p+r,q+s)-dimensional super manifold. We have the canonical

super projections Pry := (prl, (C1)uenr open ) and

Pry := (prQ, (C2,v)vcar open ) from M x N onto M resp. N, where
pry: M x N — M and pry : M x N — N denote the canonical projections

and

Cru: S(U) — S(U)KT(N)

for all U C M open and

Cry : S(V) = S(M)RT (V)

for all V' C N open denote the canonical embeddings, and again we have

the universal property: For any super manifold O = (O, R, #) and super
morphisms ®; = (@1,(@1,U)UcM Open) and &y = (¢27(‘I’2,V)VCN open
from O to M resp. N there exists a unique super morphism
= (%, (YW )y carss open ) from O to M x A such that

Pri oVl = &,

and

ProoWl = &5

Hereby we have ¥ = (p1,¢2) : O — M x N and

Yuxv = (’wfl(U)WpEl(V) © ‘I)lvU) (’w#(U)m@;l(w © ‘I’W) ,

more precisely

Uy s S(URT(V) = R (e (U) N (V)
f@gr— (q)LU(f)‘@fl(U)mpgl(V)) (Q)Q,V(f)’wl—l(U)m@;l(V))

forall U € M and V C N open. As usual we identify each super morphism
U from O to M x N with its ’defining pair’ (Pr; oW, PrgoW) .

Now let M = (M,S,#) be a (p, q)-dimensional and N = (N, T,#) be an
(r, s)-dimensional P-super manifold. We will construct a P-cross product

M xp N of M and N in the category of P-super manifolds, being a
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(p + r,q + s)-dimensional P-super manifold. The cross product M x N of
M and N as usual super manifolds is a (p + r,q + s)-dimensional P X P-
super manifold since the embeddings P <— S resp. 7 induce a unital graded
sheaf embedding P X P — priSXpr57 . We have a diagonal embedding
Cp = (0,m) from R™ into RI" x RI™ | where the unital graded algebra
projection m : P X P — P is defined by R® S — RS , and m induces a

unital graded algebra isomorphism

m': (PRP)/Ip — P,

where Zp := kerm C P K P , which is precisely the ideal in P spanned by

1—1

a;j®1-1®«a; ,7=1,...,n. m' ™" is given by

R+ (R®1)+Zp = (1® R) +Ip . Let T be the ideal sheaf of priS X pry7T
spanned by o; ® 1 - 1®«j , j=1,...,n.

Theorem 2.32
(i)
M xp N := (M x N, (pr’{SgprET)/I,#>
is a (p+r,q+ s)-dimensional P-super manifold.
(ii) C := (z’d, (oW)wcuxy open> is a super embedding from M xp N into
M XN, where p : priS X pr57 — (pr*l‘S @prgT)/I denotes the canonical

unital graded sheaf epimorphism, and

MXPN £> M x N

! % ! :
R/" — RI" x Rl
Cp

where the arrows on the left and right side denote the canonical super pro-

jections.
Proof: (i) Clearly

m'~l P L (PRP) /Ip (pr*{s 5 pr;T)/I

is a unital graded sheaf embedding. Let U C M and V C N be open such
that S|y =D (¢!7), ®P and T|y =D (O*),, K P . Then

idom' : ((Pf{sgpfﬁ)/z) UxV

—D (O|q+s)U><V \P

—D (<>\q+s)w X (PR P)/Ip)
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is an isomorphism, (id ® m/) o m/~! =id , and since Z C ker # ,

# . priS X pry7 — C37, v induces a body map

# . (prTSgpr§T>/I — CRixN
such that (1 ® m/) (f)* = f# for all W Cc U x V and
fe (pr’{S@pr’éT) (w). O

(ii) trivial since p(a; ®1) = a; and m(a; ®1) = «; as well for all
j=1....,n.0

Let Pr{ := C o Pr; and Pr}, := C o Pry , where Pr; and Pry denote the
canonical projections from M x N onto M resp. A/ . Then Pr} and Pr} are
super morphisms from M xp N to M resp. N'. We can write

Pry = (Prla (Ci,U) UM Open) and Prj = <pr1, (Ci’U>UcM Open> where
Ci,U = C1,u © puxn and Céy =Civopuxy forallU C M resp. V C N

open.

Theorem 2.33 Pr} and Prl, are P-super projections from M xp N onto
M resp. N .

Proof: Let U C M be open. We would like to show that

L SU) - (S(U)@T(N)) / I(U x N)

is injective. So let V'C N be open, V # () . Without loss of generality we
may assume that S|y =D (Q‘Q)U XPand Ty =D (<>|S)V XP . Let

f= Z fral € kerCy y C S(U) =D (Ulq) XP.
Iep(n)

Then an easy calculation shows that

0= Ci,U(f)’UXV = Z frel ®m,_1 (a)l
IeP(n)

as an element of (S(U)@T(V)) — D (UI9) 8D (VI) R (PRP) /Zp) , and
since m'~1 : P (PXP) /Zp is an isomorphism we have f; = 0 for all
I€p(n),andso f=0.

Now let j =1,...,n and U C M be open. Then

Cru () = puxn (Cra () =e (0 ®1) = a; .
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So C1y|p = id . For proving that Prj is a P-super projection from M xp N

onto N one has to do the same calculations again. [

Again we have the universal property:

Theorem 2.34 For any P-super manifold O = (O,R,#) and P-super

morphisms ®1 = (@1, (®1.W)wco open> and ©3 = (902, (P2, )y co open>
there exists a unique P-super morphism W' from O to M xp N such that
Prf oV’ = @,

and

Pri ol = &,

Let U := (&1, ®3) , going from O to M XN . Then V' is the unique P-super
morphism from O to M xp N such that ¥ = C o W' | and so in particular
the body of V' is again ¥ = (p1,¢2) : O — M x N .

Proof: Let us first show that there exists a unique P-super morphism ¥’
from © to M xp A’ such that ¥ = C oW . ¥ = (&', (¥iy)iycarnn open )
being a P-super morphism from O to M xp N, ¥ = C o ¥’ is equivalent to

¥ = 1 and
Uy = Wiy o pw

for all W C M x N open. Let W C M xN . Then ¥y (a; ®1 -1® ;) =0
since Wprun 0 Cr oy = @1 and Yy 0 Oy v = Po v , and so

Unrxn (o @ 1) = Uarun (Crou (o)) = @1 (o) = aj = o v ()

= Vv (Con () = Vv (1 ® aj) .

It follows that ker pyyy = Z(W) C ker Uy . Therefore since py is surjective

there exists a unique unital graded algebra homomorphism

v, ( (pr’{sgpr;T)/I) (W) = R (¢~ (W))

such that Wy = W, o pr . Now we show that <w, (Yw)weuxy Open> is
indeed a P-super morphism from O to M xp N :

Let W/ C W C M x N be open. Since V is already a super
morphism from O to M x N we obtain
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Tyolwropw = Wy opwrolws
= \Ifwl (@] ‘W’
= ’d)*l(W’) (¢] \I/W

= |yp-r1wry o Uiy o pw
But py is surjective, and so we have Wiy, o |y = |1y o Uy

Let W € M x N be open and f € ((pr’{S@pf%T)/I) (W) .

Then we have f = g + Z(W) for some g € <pr’1‘8®pr§’]'> (W)
by lemma 2.23 . So we get

Uiy (1) = T(g) = g% o (V]y-1m)) = 7 0 (Vly—rqw)) -

Now let j =1,...,n . Then

\IIIMXN (aj) = qj?\JXN (prvxN (@j ®1)=Vyxn(a®1) = aj,
and so we get Wy |, = id for all W C M x N open.
It remains to prove that, ¥/ = (W, (U ) wenxn Open> being a P-super
morphism from O to M xp N, ¥ = C o ¥ is equivalent to Pr} oV’ = &,
and Pr oV’ = &, .

'=’": Let U =Co U . Then

Pr/1 oW =PryoC oW = Pr; ol = @,

and by the same calculation Prho¥’ = &5 as well.
<" Let Prj o0/ = &; and Pry oV’ = &3 , and define IT := C o ¥’ . Then

Pry oIl = PryoC o ¥/ = Pr o¥’' = &,

and by the same calculation Prgoll = ®; as well. So by the universal

proverty of the cross product M x N we get [ =V . [

Given P-super manifolds M , N and O , we denote the P-projections Pr
and Pr}, going from M xp N to M resp. N by Pry resp. Pry since there
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is no danger of confusion. Again given a P-super morphism ¥ from O to
M xp N we write ¥ = (Pry oW, ProoW) . Finally by the universal property
of the P-cross product one sees that the P-cross product is commutative
and associative in the sense that given P-super manifolds M , N and O
there are canonical P- super diffeomorphisms from M xp N to N xp M
and from (M xp N) xp O to M xp (N xp O) , and so we simply write
Mxp N xpO .

2.3 super manifolds - the complex case

Now we will treat holomorphic super manifolds. Let us again start with the

subcategory of complex super open sets.
Let M be a holomorphic manifold. Then we define the sheaves

D (olm)M = ()T R A (C?) K A (C9)

and

%) (olq@)M = Oy ® A (C9)

of unital associative graded commutative algebras on M and a graded invo-

lution ~ on D (<>|q7§)M given by

(o), = (o),

[S1US14+1) | ITI(T[+1)
Z fored@el — Z (-1) "2 T fsrelwed,
S, Tep(q) S, Tep(q)

which is less complicated than it seems to be: This is precisely the unique
involution ~  on D (Q'q’ﬁ)M such that —  restricted to (C$9)C is just

ordinary complex conjugation and ez ® 1 =1Rer , k=1,...,q.
We regard O (U199) as a sub graded sheaf of D (Q‘QE)M via the embedding

g, la.g
o (o), =2 (o), fr et
Again we have a body map

#.D (O'q’q)M = (€%, Y. fsr fed — fyg,
S, Tep(q)

which respects . Again on D ((}‘q’a) o s a free 224_dimensional Cir-

module we will always use the uniformal structure of compact convergence in
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all derivatives. So for all U C M open O (U Iq@) is a unital closed sub graded
algebra of D (U 4:7) | and we call a function f € D (U!%7) holomorphic if
and only if it belongs to O (U99) . The image of O (O‘q’q)M under the body
map 7 is precisely Oy . We have

D (qu,E)M ~ D <<>|2q)(C
by lemma 2.10 .

Now let M = CP for some p € N . Then on CPI&7 we have the even

coordinate functions

2,2 €O (CP) = O (Cplq@)o

and the odd coordinate functions

G=ep,...,0q:=e, € A(CT); — O ((Cplq’q)l

We define ¢5 := e5 € A (C7) — O (CPI97) and T := 1®e5 € A (CT)RA (C9)
for all S € p(q) .

Definition 2.35 (complex super open sets)

(i) Let (p,q) € N? and U C CP be open. Then the triple U9 := (U, q,q) is
called a complex super open set of dimension (p,q) . U is called the body of
UPl9d and # : D (U199) — > (U)C the body map of D (U1%9) .

(ii) Let Ul gnd V'I55 be two complex super open sets, p:U—=V aC>®-
map and ® : D (V‘S’E) — D (U'q’q) a unital graded algebra homomorphism
respecting . Then the pair (@, ®) is called a super morphism from Ulea
to V155 if and only if

(@ =fFop

for all f € D (V‘57§) . In this case ¢ is called the body of (p,®) . (p,®@) is
called holomorphic if and only if ¢ is holomorphic and

o (0 (vh)) co(uh).

From now on let n € N and P := A(R") = D (RO\") with real odd
coordinate functions o, ...,q, . Then clearly P¢ = A (C") . As in the
real case we have the wider class of P-super morphisms between super open

sets.
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Definition 2.36 (complex P-super morphisms) Let U9 and V"I55 be
two complex super open sets, ¢ : U — V a C®-map and

®: D (VIs)RPC — D (Ul47) RPC a unital graded algebra homomorphism
respecting — such that ®|pc = id . Then the pair (¢, ®) is called a P-super
morphism from U9 to VIS5 if and only if

(@(f)* = fFoyp

for all f € D (V‘S’g) . In this case again ¢ is called the body of (v, ®) .
(¢, @) is called holomorphic if and only if ¢ is holomorphic and

o ((9 (V‘S’E)) co (U'q@) X PC.

Again the set of all complex super open sets together with P-super mor-
phisms forms a category, where the composition of two P-super morphisms
(¢, ®) from U9 to V155 and (1, ¥) from V155 to W/ is again defined as

(@) 0 (¢, ¥) := (poy),¥od),

and (id,id) is the identity morphism from a complex super open set U 2.2
to itself. Clearly if both (¢, ®) and (¢, V) are holomorphic then so is

(o, @) o (v, V) .

Fortunately by lemma 2.10 each (p, ¢)-dimensional complex super open set
can be regarded as a (2p,2q)-dimensional real super open set. Given two
complex super open sets U197 and VI and a P-super morphism (¢, ®)
from Ul97 to V155 | then by theorem 2.8 (gp,@]p(vm)) is a P - super
morphism from U?? to V1% . So we obtain a whole functor from the
category of complex super open sets together with holomorphic P-super
morphisms to the category of real super open sets together with P - super

morphisms forgetting about the 'complex structure’ .

Therefore on a (p,q)-dimensional complex super open set regarded as a

real (2p,2q)-dimensional super open set we have the real even coordinate

functions
zr = Re 2 = Zk+zk,
2
2k — 2k
Y = Im zp, = —1 ,
2
k=1,...,p, and the real odd coordinate functions
G —iG
G=Reg=-"-2—,
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and

—iG+ ¢
Ul 2=1mCz=ClTQ7

l=1,...,q.

Theorem 2.37 Let U%7 and V155 be two complex super open sets. Let

wi,...,wy and V1, ..., 05 be the coordinate functions on V15* |

(i) Let & : D (V'S’g) XPC — D (Ulq@) X PC be a unital graded algebra ho-
momorphism respecting . Then ® is continuous, and there exists a
unique C®°-map ¢ : U — V such that (¢, ®) is a P-super morphism from
Uled to VIS5 | Let f, := ® (wy) € (D (Ulq,é) @’PC)O ,k=1,...,r, and
M=) € (DU RPC), 1=1,....s. Then (f#,...,fT#) (z) eV

foralleU,cp:(fl#,...,ﬁ#) , and for all

h= > hsr 959 €D (V) D (Vi) mPE
S,Tep(s)

we have

o) = Y% o (0m ) o) x
STep(s) mmneN"
X(fl_fl#w..,f?"_fT#)m(ﬁ—ﬁw”’ﬁ_f?>n)\sxjﬂ
(2.3)

in multi-index language, where we set X% := Ay, -+ Ay, and = Ay - Mgy,
forall S ={ti,....tm} €p(s) , 1<t <---<t, <s.

(ii) Conversely let fi,..., fr € (D (U'q’q) X PC)O and

M,..., A € (D (Ulq@) &PC)I such that (ffﬁ,...,fy#) (z) € V for all
z € U . Then there exists a unique unital graded algebra homomorphism
®:D (V'S’E) X PC - D (U'qﬁ) X PC respecting ~  given by PC-linear
extension of formula 2.3 such that ®|pc = id and ® (wg) = fr , k=1,...,7,
and ® (%) =N ,1l=1,...,5.

(iii) Let ® : D (VI$5) R PC — D (Ul47) B PC be given by PC-linear exten-
sion of formula 2.3 . Then ® (O (V'S’E)) c O (U'q@) X P if and only if
fioe s frs A, e, A6 €0 (U\qﬁ) X PC if and only if (¢, ®) is holomorphic.

Proof: (i) Since ® respects  and D (U%7) K PC ~ D ((J'|2‘1+”)(C the
continuity of ® and the existence and uniqueness of ¢ follow from theorem
2.8 (iv) and 2.12 (i) . The rest can be proven by the same calculations as in
the proof of theorem 2.12 (i) using the fact that for all wg € V there exist
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Amo €C®(V) moeN"  m|=s5+1,|o]=s,and Sy € C®(V)C,
m,o0 € N" | lm| = s, |o|] = s + 1 such that

1 mAa° m /— —\O
ho= ) — 00 h (wo) (W — wo)™ (W — W)
m,0€IN"
+ Z (W —wo)™ (W —W0)® Amo
m,0€N" | |m|=s+1, |o|=s
+ > (W —wo)™ (W —W0)° Bmo .0

m,0€N" | |m|=s, |o|=s+1
(ii) Let g , yp , k=1,...,7r,and & ,m , Il =1,...,s, be the real coordi-
nate functions on V1*% . Since ® is a unital graded algebra homomorphism
respecting by theorem 2.8 ® (wy) = fr , k=1,...,7, @) = A\,

l=1,...,s, and ®|pc = id is equivalent to
S — Jx
2 )

oni) = =i T (0 (o))

PR (zx) = Re fr=

forallk=1,...,r,

DR (Oét) = 0y

forallt=1,...,n and

A — i\
PR (&) = Rel =2 5 L
— _ A A la,q
i) = - T (o(0),)
for all [ = 1,...,s . Therefore uniqueness and existence of ® follow by
theorem 2.8 (iii) and 2.12 (ii) . O
(ili) Assume @ (O (VI*%)) < 0O (UT) ® PC . Then since

Wiy, Wy, O1,...,05 € O(V|S7§) we have fr = ®(z) € @(Ulqﬂ) X PC
and =@ () € O (U RPC  k=1,....,r,1=1,...,5.

Now assume all fi, A\, € (’)(U'q’q) XRPC  k=1,....,r,1=1,...,5.
Then we see that ¢ = ( fl# sy j}# ) is holomorphic, and given some
h =Yg hs?® € O(VI¥F) all hs € O(V) , S € p(s) , by formula
2.3 we get

o) = Y (@ hs)ow) (i fe )TN

Sep(s) meN"

€0 (U‘q@) = PC,
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and so (¢, ®) is holomorphic.
Finally assume (¢, ®) is holomorphic. Then by definition
® (0 (VI#5)) co(Ul+?) ®RPC . O

By theorem 2.37 there is a bijection between the set of all P-super mor-
phisms (¢, ®) from Ul%9 to V1% | the set of all unital graded algebra homo-
morphisms @ : D (VI%) — D (U47) ®PC and the set of all tuples

(i frs Aty M) € (D (U199) &PC); < (p (v17) &PC)j
such that the image of U under ( f1# Yy ﬁ# ) lies in V . So again we will

identify a P-super morphism (¢, ®) from Ul97 to VI5* with its ’defining
tuple’

T S

X (D (UW) X PC) :

(f1s-osfrys Myoasds) € (D (U\Q@)gp(c) 1

0

Uled and viss regarded as real super open sets of dimensions (2p, 2q) resp.
(2r,2s) , (p, @) has the defining tuple

(Re fi,...,Re fp,Im fi,...,Im f,, Re A1,..., Re A\¢,
Im Ap, ..., Im A,)

c (D (U|2q) X P)Z x (D (U'2q) X P)j .
For all h € D (VI5%) B PC we write

B(fisees fos Ay As) = ®(R) eD(U'M) =P,

regarding ® as a 'plugging in’ homomorphism.

Clearly in the category of complex super open sets together with holomor-
phic P-super morphisms we have a cross product: If Ul%4 and VI*% are
complex super open sets then the cross product of U%7 and V15% is defined

as

U9l 5 VIss .= (U x V)latsats

which is up to the additional complex structure equal to the real cross prod-

uct. From classical analysis we know that
O (Ul x vI*F) = o (Uh) 3o (V1) .

127



The canonical projections (pry, C;) and (pry, Co) from Ul®T x V15 to Ul9d
resp. VI%5 turn out to be holomorphic. If W% is a third complex super
open set and (1, ®1) and (@g, ®y) are P-super morphisms from W/*® to
Ul resp. V155 with defining tuples

q

(Fra oo fos Myee s Ng) € (D (WW) &P‘%’ X (D (U‘M) &Pc)l ,

resp.

(G1s- s Gy [l oo fis) € (D (WW) xPC); “ (p (Um) @Pc>

S

1 )

then the unique P-super morphism ¥ from W*# to Ul% x V155 such that
(pry, C1 ®id) o (¥, ¥) = (¢1, P1)

and

(pr27 CQ ® ld) © (1/}7 \II) = (9027 (1)2)

has the defining tuple

(fla"'vfpa gi,---,9r, )‘13"'7)\117 Ml?’”aMS)

e (p (W) &PC)Z’” % (p (U177) PC)TH :

and so it is holomorphic if and only if (1, ®1) and (2, P3) are holomorphic.

Clearly if (¢, ®) is a holomorphic P-super morphism from Ul to V1%
and V' C V open such that ¢(U) C V' then the unique P-super mor-
phism (¢, @) from U197 to V'I** such that (¢, ®) = (c,|y) o (¢, ®’) , see
theorem 2.14 in the real case, section 2.2 , is again holomorphic. We can
deduce it from the fact that if we denote the defining tuple of (¢, ®) by
(1,5 frs A1y -5 As) then ¢ = @[ ,-1(y7) and the defining tuple of (¢/, @)

is just

(Flmrqny s oo Frlgmary s Mlgran e s Aslgmam ) -

Let Ul%7 be a complex super open set, and define the continuous linear maps

| :D(U"I@) = D(U\q,ﬁ),
f= 3 fsr ST = Y (Oufs) 5T

S, Tep(q) S,Tep(q)
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Ek‘:D(UVZ@) . D(U\q@>,
f= Z (Orfsr) ¢St

S, Tep(q)

,:D (Ul‘m) — D (U\qﬁ> ,
fo= D C L e ¢set

S, Tep(q),l¢S

and

B0 (Uh7) — p(UlT),
= Z ()<t g oy ¢St

S,Tep(q),l¢T

l=1,...,q. Clearly again (8i‘f)# = 0; (f#) and (51-|f)# =0; (f#) ,

oy (Ul) oy (UM) L0 (U) 9D (UM) cp(Ul)

oyp (U') L8, (U)o, (U17) 8D (U17) <D (U)
1 1 0 0 1
foralli=1,...,pand j = 1,...,q , and again we have a super product

rule:

0;(fg) = (ai|f) g+ f (az'|9) )
5z‘|(f9) = (5i|f) g+/f (51'\9) ;

,;(f9) = (9yf) g+ (=) £ (9;9)

and

5|j(f£7) = (5i|f) g+ (—1)ff (51'\9)
forall:=1,...,p,7=1,...,q and f,g € D(U‘q) , f homogeneous. So
all 9y , 5“ , 0 and EU are super derivations on D (U'q) , and we call
them the partial derivatives with respect to the holomorphic coordinate

functions z; resp. ¢; . We can extend them to continuous linear maps from
D (U‘q’q) XPC to D (U"m) X PC by right-PC-linear extension. If we denote
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the unique C-linear extensions of the real derivatives on Ul%7 regarded as
a real (2p,2q)-dimensional super open set by 0, , 0y, , O resp. Oy, ,
k=1,....,p,1=1,...,q , then we have the following basic properties,
which can be proven by straight forward computation:

(i)

O, = O+ 51€| )
Oy = (O — )
8& = 8” + iéu ,
(97” = ia” + 5” ,
(i)
_ 81% — iayk
6]6\ - 2 5
By = Oz, —gzﬁyk ,
_ afz - i@m
8‘[ - 2 )
a5 71’8&1 + am
a‘l - 2 )
(iii)
of = Ol

(iv)

O f = O f,
Of = 0Oyt
0] = i(-1)/ 37,
onf = i(-1)I1,7,

foralk=1,...,p,l=1,...,q and homogeneoustD(U‘q’a)@PC.

Clearly if f € D (Ulq@) then f is holomorphic if and only if gk‘f = 5|lf =0
forall k = 1,....,pand I = 1,...,q . O (U%9) is closed under all |
k=1,...,p,and 9 ,1=1,...,q.

Definition 2.38 (complex and holomorphic super Jacobian) Let
Ultd gnd VIS5 be two complex super open sets and (o, ®) a P-super
morphism from U1 to V155 with defining tuple (f1,..., fr, AMy-r oy Xs) -
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(i) The even (2r,2s) x (2p,2q) - graded matriz

(O fe) | Oufe) | —(9ufe) | — (9ufe)
(O fe) | Oufe) | —(9ufe) | = (9ufe)
(
(

Dc(p, @) = — —
o O | @) | @) | @)

(OkA) | (OkAu) (9ia) | (Opw)
) (2r|25) % (2p|24)

€ (D (Ulm) RPC)

)

where k € {1,...,p} , le{l,....q} ,te{l,....;r} andu e {1,... s}, is
called the complex super Jacobian of (P, ) .

(i) If (o, ®) is holomorphic then the even (r|s) x (p|q) - graded matriz

9 (0
Dhol(Soaq)) — ( ( k"ft)te{l,...,r},ke{l,...,p} ( ‘lft)te{l,..‘,r},le{l,...,q} )

-----

€ ((’) (Ulq@) X 7D<c>ér|s)x(plq)

is called the holomorphic super Jacobian of (¢, ®) .

Lemma 2.39 Let U997 | VI5% and WI%U be complex super open sets, (¢, ®)
a P-super morphism from U9 to V155 and (1, W) a P-super morphism

from V155 to WU  For all t,u € N define

1] 21 t
4 0 }
1] —21 t
Si } c R(()Qt,Qu)X(Qt,2u) ‘
1 ]idl tu
0 |
il] 1 tu

()
D(C((pv (I)) = SI;;DR(SOa (I))Sr,s )

where DR(p, ®) denotes the real super Jacobian of (¢, ®) .

(ii) The complex super Jacobian of (1, V) o (p, @) is precisely

¢ (D(C(w? \I/)) ’ DC(S@ (I)) )

where ® (D¢ (¢, V)) is taken componentwise.

(iii) If (p,q) = (r,s) and zg € U then Dc(p, ®) (zo) is invertible if and only
if Dr(p,®) (z0) is invertible.
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(i) If (p,®) is a P-super diffeomorphism then

De ((p.@)") = 87" ((De(e.®) ") |

where &1 <(D@(<p, @))71) is taken componentwise.
(v) If (o, ®) is holomorphic then

AlO 61 0
0A 0 —B
D(C((Pv <I>) = ) (24)
10 D| O
075 0|D

where

Dhol(p, @) = f i € ((’) (Ulm) @Pc)éﬂs)x(ﬂq) '

(vi) If (¢, ®) and (v, V) are holomorphic then the holomorphic super Jaco-
bian of (1, V) o (¢, ®) is precisely

@ (Dhol(¢7 \I/)) ’ Dhol(S07 Q)) )
where again ® (Dyo (¢, V)) is taken componentwise.

(vit) If (@, ®) is holomorphic , (p,q) = (r,s) and zg € U then Dy (g, ®) (zo)
is invertible if and only if Dc(p, @) (zo) is invertible.

(viii) If (r,s) = (p,q) and (@, ®) is a holomorphic P-super diffeomorphism
then (@, ®) is biholomorphic, and

Dhot (¢, @) ™") = @7 Dy, @) 7')

where &1 ((Dhol(ap, @))_1) is taken componentwise.

Proof: (i) straight forward calculation.
(ii) combine (i) and lemma 2.18 (i) . O
(iii) trivial using (i) .

(iv) combine (i) and lemma 2.18 (ii) . O

(v) straight forward calculation.
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(vi) combine (v) and lemma 2.18 (i) . O
(vii) combine (v) and corollary 2.4 . O

(viii) It suffices to show that ®~' (Dc(p, ®)~!) is again of the form 2.4 |

but this is an easy exercise using corollary 2.4 since ®~! respects . O

Corollary 2.40 (holomorphic super local inversion theorem) Let
Ul and V199 be two complex super open sets of dimension (p,q) , (¢, ®)

a holomorphic P-super morphism from Ul%9 to V199 and zg € U .

(i) Let Dyoi(p, ®)(zo) € (A (C9) @Pc)épmx(p@ be invertible, equivalently
Dhoi(p, )7 (20) € (C(()mq)x(pm be invertible. Then there exists an open neigh-
bourhood W C V' of ¢ (zo) sucﬁh that (Sf|@—1(W)a(I)W) is a biholomorphic
super morphism from o~ (W)I9T to Wlad |

(i) Let ¢ be bijective and D(p,®) (zo) , equivalently D(p, ®)# (zo) , be in-
vertible for all zo € U . Then (y, ®) is biholomorphic.

Proof: combine lemma 2.39 (iii) , (vii) and (viii) and theorem 2.19 . J

Definition 2.41 (parametrized holomorphic super manifolds) Let
M be a p-dimensional holomorphic manifold and ¢ € IN . Let S be a sheaf
of unital graded C-algebras over M with involution — , F a sub graded
sheaf of S and # : S — ((31?2))(C a sheaf homomorphism respecting — such
that the image of F under ¥ lies in Oy .

(i) The tuple M := (M,S,]—",#) is called a (p,q)-dimensional holomorphic
over P parametrized (or simply P-) super manifold if and only if there exists
a sheaf embedding PC — F respecting — , for all zo € M an open neigh-
bourhood U C M of zo and a sheaf isomorphism ® : S|y — D (qu,q)U X PC
respecting such that ®|pc = id ,

S|y 2. D(l7), mPC
£\ Yo S #
(c)°

and the image of F|y under ® is precisely O (Q‘q’q)U X PC .

In this case M := M 'is called the body of the P-super manifold M , F the
structural sheaf of M and ¥ the body map of S . We write D(M) := S(M)
and O(M) := F(M) . In the case where n =0 , equivalently P = IR we call
M simply a holomorphic super manifold.
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(i) If U C M is open then the tuple U := (U,S|U,]:U, #’U) is called an open
sub P-super manifold of M . It is a (p, q)-dimensional holomorphic P-super
manifold itself.

(iii) Let N = (N, T,g,#) be another holomorphic P-super manifold,
©: M — N aC>®-map and (Pw )y cn open @ family of unital graded algebra
homomorphisms ®yw : T (W) — S (¢~ 1(W)) respecting — such that for all
W' c W C N open

TW) % S(p ' (W)

we L % Lle=rqwry
W) o S (et (W")

Then the pair ® := ((p, (Pw)yen open) is called a P-super morphism from
M to N if and only if for all W C N open ®w|pc = id and

(@w (/)T = f# o ¢l
for all f € T(W) . In this case ® := ¢ is called the body of ® . ® is called
holomorphic if and only if ®w (F (¢~ *(W))) € G(W) for all W C N open.

Again all holomorphic P-super manifolds together with P-super morphisms
form a category. Given holomorphic P-super manifolds M , N' and O and
P-super morphisms ® from M to N and ¥ from N to O the composition
of ® and V is again given by

Yod: .= <¢ o, ((bw_l(W) o lI]W)WCO open > ,
and obviously if ® and ¥ are holomorphic then so is ¥ o ® . Obviously by
theorem 2.39 if ® is a holomorphic P-super diffeomorphism from M to N

then it is biholomorphic.

By lemma 2.10 each holomorphic (p,q)-dimensional P-super manifold
can be regarded as a real (2p,2q¢)-dimensional P-super manifold, and
each P-super morphism ¥ from M to N being two holomorphic P-super
manifolds can also be regarded as a real P-super morphism. So we obtain
a whole functor from the category of holomorphic P-super manifolds
together with holomorphic P-super morphisms to the category of real
P-super manifolds together with P-super morphisms fogetting about the

"holomorphic structure’.

Again in the category of holomorphic P-super manifolds we have a P-cross
product: Given two holomorphic super manifolds M = (M , S, F ,#) and
N = (N,T,G,#) we have
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M xp N = <M x N, (prfS@pr;T)/Z, <pr’{}“®pr§g>/f’#> ’

where Z denotes the ideal sheaf of prfS@préT spanned by a; ® 1 — 1 ® oy
t = 1,...,n , and Z' denotes the ideal sheaf of pr’{]—"@prgg spanned
by v ®1 —1Q o ,t = 1,....,n . P¢ — (pr“{f@prgg)/f via
R—=Re1+T' =19 R+T".

M xpN regarded as a real P-super manifold is precisely the P-cross product
M xp N of M and N regarded as real P-super manifolds given the unique
"holomorphic structure’ such that the canonical projections Prj and Prf, from
M xp N to M resp. N are holomorphic. Again given three holomorphic
P-super manifolds and P-super morphism ® , ¥ from O to M resp. N then
the P-super morphism (®, ¥) from O to M xp N is holomorphic if and only
if ® and ¥ are holomorphic.

2.4 Super LIE groups and parametrized discrete

subgroups

Again let n € N and P:=A(R") =D <IR0|"> .

Definition 2.42 (P-super LIE groups)

(i) Let G be a real (p,q)-dimensional P-super manifold and p a P-super dif-
feomorphism from G xp G to G . The pair (G, ) , or G for short, is called
a (p, q)-dimesional P-super LIE group if and only if there exist e € G := G

and a P-super morphism ¢ from G to G such that

(Pry,p)
—

GxpGxp§ GxpG
(, Prs3) | %o L (associativity)
GxpG - g

GxpG
(eld) ~ % N\ (neutral property of e )
g = g

and

(¢,Id)
G — Gxpg

! % | p (inversion property of v ) .
{e} = g
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G is called commutative if and only if in addition po (Pra,Pri) = p as a
P-super morphism from G xp G to G . If n =0 equivalently P =R then G
is simply called a super L1E group. If G is a holomorphic (p, q)-dimensional
PC_super manifold then G is called a holomorphic PC-super LIE group if and

only if pu and v are holomorphic.

(ii) Let (G,p) and (H,v) be P-super LIE groups and ® a P-super morphism
from G to H . Then ® is called a P-super LIE group homomorphism if and
only if ¢ : G — H is an ordinary group homomorphism, where ¢ := &% and
H:=H", and

G Xp G (@OPIB}OPI‘Q) H P H
) % lv
G 2 H

If ® is a P-diffeomorphism and at the same time a P-super LIE group ho-
momorphism then it is called a P-super LIE group isomorphism. If ® is an

embedding then we call G a P-sub super LIE group of H .

Clearly all P-super LIE groups together with P-super LIE group homomor-
phisms between them form a category. If G is a P-super LIE group and
P =A (IR"I> =D (]ROW) with n/ € IN then G can also be regarded as a
P X P’ - super LIE group, more precisely the category of all P- super LIE
groups is a sub category of the category of all P X P’- super LIE groups ,
and the category of usual C*°-LIE groups together with C°°- homomorphisms
between them is a subcategory of the category of all super LIE groups.

If G is a P-super LIE group then G := G is an ordinary C*-LIE group with
multiplication m := u# : G x G — G, neutral element e € G and inversion
map i := % : G — G , and if G is commutative then so is G . The body
map is precisely a functor from the category of P-super LIE groups to the
category of usual C*°-LIE groups, and restricted to the category of usual
C°°-LIE groups it is simply the identity functor.

Conversely if n = 0 equivalently P = R and so G is simply a super LIE
group then the canonical embedding (id, (#)U CM open ) from G into G is a

super LIE group homomorphism.

If G is a P-sub super LIE group of H then G can be regarded as an ordinary
C>®-sub LIE group of H := H¥ via the C*®-LIE group embedding ¢ := &7 .

For any g, h €p G let us write gh := u(g,h) €p G . Then clearly
(gh)* = g”h* . Let G be of dimension (p,q) , ' € N such that n’ > 3¢ and

Pi=A (IR”/) . Then by theorem 2.27 (ii) the associativity is equivalent to
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(gh)j = g(hyj) for all g, h,j €Epgpr G , the neutral property of e is equivalent
to eg = g for all ¢ €pgpr G , the inversion property of ¢ to ¢(g)g = e for
all ¢ Epmpr G and finally commutativity is equivalent to gh = hg for all
g,h Epxpr G .

Let g €p G . Define the left translation by g on G as l; := p o (g,id)
and the right translation by g on G as r, := po (id,g) , which both are
P-super morphisms from G to G . Then one immediately sees that [ = Id ,

lgolp =1Igp ,re =1Id and ryory =1py .

Theorem 2.43 Let G be a P-super LIE group, v given as in definition 2.42
and g,h,j €p g.

(i) ge =g and gi(g) =€ . So

GxpG
(Ide) % \ H

g = g

and
(Id,e)

g — g Xp g

L% Lp

{e} = g
as well.

(it) 4 and ly are P-super diffeomorphisms, and l;l =l,g) and r;l =Tyg) -

In particular if gh = gj then h = j and if gj = hj then g =h .
(iii) ¢ is uniquely determined by p , it is a P-super diffeomorphism, and

L_IZL.

(iv) ¢ (gh) = t(h)(g) , and so

GxpG (toPr210Pr1) GxpG
wl %o L
g — g

L

Proof: Let (p, q) be the dimension of G as a P-super manifold and

P = A (R%) .

(i) ge = g and gi(g) = e is proven as in classical algebra. Using P X P’
instead of P, theorem 2.27 (ii) gives the commutativity of the diagrams. O
(ii) trivial using (i) .

(iii) Assume ¢/ is another P-super morphism from G to G having the inversion

property. Then ¢(g) g = e =1(g9) g and so ¢(g) = ¢/(g) by (ii) , furthermore
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gt (9) = ¢ (17(9)) ™M (9) = e = gu(g) by (i) , and so i(g) = ¢"(g) by
(ii) . Therefore using PXP’ instead of P , since g €p G is arbitrary theorem
2.27 (i) gives t =/ and + 1 =1 . O

(iv) ¢t(gh) = t(h)i(g) is proven as in classical algebra using (i) , the
commutativity of the diagram then follows from theorem 2.27 (ii) using
P X P’ instead of P . [

Since given a P-super LIE group G , ¢ is uniquely determined by p and it is
a P-super diffeomorphism, we call it the inversion P-super diffeomorphism

of G . For any g €p G we write ¢! := 1(g) .

Definition 2.44 (P-super actions) Let G be a P-super LIE group , M a
P-super manifold and o : G xp M — M a P-super morphism.

(i) « is called a P-super action of G on M if and only if

G xpGxpM g g xp M
(u, Pr3) | % la (associativity)
G xp M — M
and
G xp M
(eld) % \.® (neutral property of e ) .
M = M

(i1) If o is a P-super action and N is a P-sub manifold of M then N is
called a-invariant (or G- invariant) if and only if there exists a P-super
morphism o from G xp N to N such that

gX’pN — gX'pM
o | % la
N — M

(iii) If o is a P-super action then « is called transitive if and only if there
exists x € M := M¥ such that o o (Id, x) is a super projection from G onto
M.

If « is a P-super action from G xp M to M , G being a P-super LIE group

and M being a P-super manifold, then o# : G x M — M is an ordinary

action, if N is an a-invariant P-sub super manifold of M then N is invariant

under o | and finally if « is transitive then so is a# .

Let g €p G and = €p M . Then we write g= := «a(g,Z) . Let G
/

be of dimension (p,q) and M of dimension (r,s) , let n q + s and
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P=A (IR"I> . Then by theorem 2.27 the associativity in definition 2.44
is equivalent to g(hZ) = (gh)= for all g,h €Epgpr G and = Epgpr M |, so we
write ghZ := (gh)Z = g(hZE) , and the neutral property of e is equivalent to
eZ == for all Z €epgpr M .

Let g €p G . Then a4 := a0 (g,1d) is a P-super diffeomorphism from M to
M , and a;l =g .

Let NV be an a-invariant P-sub super manifold of M and o' be given by
definition 2.44 (ii) . Then ' is uniquely determined by « and N, and o/
is again a P-super action. This can easily be checked using P X P’-points
of G and N . If U is an open sub P-super manifold of M then clearly
U is a-invariant if and only if U := U# is o invariant, and in this case
o = algxpu , and so we write a|gx,n 1= ¢ if N is an arbitrary a-invariant

sub P-super manifold of M .

Let a be a transitive P-super action of G on M and x € M such that
ao (Id,z) is a super projection from G onto M . Then a o (Id,y) is a super

projection from G onto M for all y € M . Let us check it:

Let G be of dimension (p, ¢) . By definition o o (id,z) : G — M
is a projection, and so o is transitive. Therefore there exists
go € G such that y = goz . Let P/ := A(RY) =D (]R0|q> . Then
we obtain gy = ggox for all g €Epxgpr G . So

ao (Id,y) = ao (Id,z) o ry, by lemma 2.27 (ii) . Since 7y, is a
P-super diffeomorphism from G to G we see that again «o (Id, y)

is a P-super projection.

Clearly p is a P-super action of G on itself for each P-super LIE group
G . Given two P-super LIE groups G and H , a P-super LIE group
homomorphism @ from G to H and a P-super action « of H on a P-super
manifold M , a o (® o Pry, Pry) is a P-super action of G on M , and in the

case where ® is an embedding we have oo (® o Pry,Pra) = afgxp -

Let I' be a group, M a C*°-manifold and «.: I' x M — M be a discrete and
fixpoint free C*°-action of I' on M . Then in classical analysis we can form
the quotient I'\ M , which then is again a C*°*-manifold locally diffeomorphic

to M itself. In this case have a canonical sheaf isomorphism

C?‘{M ~ {f eC™ (cp_l(o)) ‘ f F—invariant} ,

where ¢ : M — TI'\M denotes the canonical projection. In super analysis

there is an analogon to this fact.
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Recall that each group I' can be regarded as a discrete P-LIE group, and
conversely each discrete P-super LIE group is nothing but an ordinary group
given the discrete topology. So given a group I' and a P-super manifold M
we have a canonical bijection between all P-super actions o of I' on M and

all mappings

I' = { P - super diffeomorphisms from M to M } , v+ ay

such that a5 = ay oas and a. =1d .

Definition 2.45 Let G be a P-super LIE group, o a P-super action of G
on the P-super manifold M and f € D(M) . f is called a-invariant (or G-
invariant) if and only if ans(f) = Cp(f) , where apy is the unital graded
algebra homomorphism from D(M) to D (G xp M) coming from o and Cpy
is the canonical embedding from D(M) into D (G xp M) .

Let G be of dimension (p,q) , M be of dimension (r,s) , n’ € IN such that
n' >q+sand P :=A (]R"/) . Let f € D(M) . Then by lemma 2.27 (i) f
is a-invariant if and only if f(¢Z) = f(Z) for all g €Epgpr G and = Epxpr .

Theorem 2.46 (quotients of P-super manifolds) Let T be a group, M
be a P-super manifold of dimension (p,q) with structural sheaf S , and let «
be a P-super action of T on M such that o is a discrete and fizpoint free
action of T' on M . Let ¢ : M — T'\M denote the canonical projection, and
let Q be the sheaf on T\M given by

Q:={feS(p () | f a-invariant } .
For all V.C T\M open let Dy : Q(V) — S (¢~ 1(V)) denote the canonical
embedding.
(i) T\M := (F\M, 0, #) is a (p, q)-dimensional P-super manifold, and
b= (cp, (Pv)ver\ar open ) is a P-super projection from M onto T\M .
(i) ® is a local diffeomorphism, more precisely for each x € M there exists
an open sub P-super manifold U of M such that x € U := U and ®|y is

a diffeomorphism from U to V = (d)(U), Q|¢(U),#) , which is actually an
open sub P-super manifold of T\M .

Proof: Since I' acts discretely and without fixpoints on M via a¥ |
from classical analysis we know that I'\ M is a p-dimensional C*°-manifold,
¢ : M — T'\M is an open C*-projection and induces a canonical sheaf

isomorphism

C1‘3<<M ~ {f e C™® (<p_1(<>))‘ f a-invariant } ,
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and so we will identify these sheaves in what follows. Let V' C I'\M be
open. Then clearly ®(f)* = f# oy for all f € Q(V) , and if V' C V open

as well

o) % S(p7i(V))

v | % lo=rvny

oV o S (et (V)

Now let € M . Since o is discrete and without fixpoints there exists an
open neighbourhood U C M of x such that yU N~y'U = () for all v,7 € T,
v # v . Define V := p(U) € T\M . Then clearly ¢|y : U — V is a
C°°-diffeomorphism, and for all W C V open

o1y © Pw 1 QW) — S (¢ ' (W) NU)

is a unital graded algebra isomorphism.

(i): Let () =Tz € T\M , 2z € M and U C M of z such that yUN~'U =0
for all 7,7 € ', v # o' . Without loss of generality we may assume that
Slv 2 Cr @ A(RY) WP . Clearly P — Q , and identifying V' and U via
¢ , and so identifying W with ¢ =(W)NU for all W C V open, we see that
U= (|g0—1(W)ﬂU o @W)ch open is a whole sheaf isomorphism from Q|y to
S|v such that ¥|p = id and

v

Qly — Sly ~C¥ @A (RY)XP
# N\ % O #
v

So I'\M is a (p, q)-dimensional P-super manifold. Since @y |p = id it is
now obvious that ® is a P-super projection from M onto T\M . O

(ii) : now trivial.

The most important example of a discrete and fixpoint free action « of a
group [" on a P-super manifold M is the case where M = G is a P-super LIE
group, I' = T is a discrete P-sub super LI1E group of G and o = pfrxpam -

Recall that a discrete P-sub super LIE group of G is nothing but a subset T
of the set of all P-points of G such that I' := Y# is discrete, v €p Y for all
7,8 €p T and for all ¥ € T' := Y# there exists a unique v/ €p Y such that

y=9"7.
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Chapter 3

Super automorphic and

super cusp forms

3.1 The general setting

Let n,r € IN. Then GL (n,C)xGL (r,C) is an open subset of cri+r? , and so
sGL (n|r) := (GL (n,C) x GL (r, (C))‘QW’% is a complex super open set with
even coordinate functions a;; and dy; € O (sGL (n|r)), and odd coordinate
functions By and yi; € O (sGL (n|r)), , 4,5 =1,...,nand k,l =1,...,7 .
sGL (n|r) is a holomorphic (n2 + 72, 2nr) -dimensional super LIE group with

multiplication

A®A+ﬂ®7‘A®ﬁ+ﬂ®D

Al (Ale
7®A+D®7‘7®5+D®D

V‘D V‘D

where we use ordinary matrix multiplication, neutral element
1 € GL (n,C) x GL (r,C) and inversion super diffeomorphism ¢ given by the

ordinary matrix inversion

-1

by corollary 2.4 . Clearly the body of sGL (n|r) is GL (n,C) x GL (r,C)
together with ordinary matrix multiplication. Now let p,q € IN'\ {0} such
that p+ ¢ = n , and let us now sum up the coordinate functions into blocks

according to



Then using theorem 2.29 one can show that the equations

ABM*IOO A Blpu 1 010
C D|v 0 —-11(0 ¢ Div [ = | 0 =10 |,
p o |FE 0 0|1 p o |FE 0 0|1
A Blpu
Ber | ¢ D|v =1
pa?

or more explicitely

AA-C*C+p'p = 1,
A*B—C*D+p'oc = 0,
B*B—-D*D+o0%c = -1,
wu—vv+ E'E = 1,
A-pE~tp B—uE o
det pEop H — detE,
C—-vElp D—-vE o
A*u—C'v+p'E = 0,
B*u—D'v+¢"E = 0
define a real ((p +q)24+r2—1,2(p+ q)r)-dimensional sub super manifold
of sGL (n|r) , which we denote by sSU (p, g|r) . It turns out that sSU(p, q|r)

is even a real sub super LIE group of sGL(n|r) on which the inversion map

¢ has a nice expression:

*

1 010 A Blu 1 010 A* —=C* | p*
0 —-11]0 C D|v 0O -1/0 | =| -B* D* |—-0o*
0 0|1 p o|FE 0 0|1 w*  —v*| D*

The body of sSU(p, q|r) is

sS (U(p,q) x U(r)) = 910 €U(p,q) xU(r) | detg =det B

0| F

together with ordinary matrix multiplication. We call sSU (p, q|r) the super
special pseudo unitary group. Define the complex (pg, rq)-dimensional super

domain BP4I" ag BPalr .= (BPa)li™T  where
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BP9 .= {7 e CP| Z'Z < 1} C CP*1

open, with holomorphic even coordinate functions z; € O (B’p’q"") o and
holomorphic odd coordinate functions (x; € O (Bp’q'?")1 , 1 =1,...,p,
j=1,...,q,k=1,...,7 . Then we have a super action « of sSU(p,q|r)

on BP4I" given by super fractional linear (MOBIUS) transformations

(AZ + B+ uC) (CZ + D + v¢)
(pZ + 0+ EC) (CZ+ D +v¢) ™

« is holomorphic with respect to ( in the sense that if f € O (Bp alr )
XO B

then f(a) € D (sSU(p,q|r))* K pq“" . Let us check that « is also

transitive.

We claim that a({,0) is a super projection from sSU(p,q|r)
onto BPA" . For a proof define the super morphism ® from

BPA™ to sSU(p, q|r) by

D=

A y/
e) = () el
( 77" | Z¢* E
z | ¢ ’
B Z z\\
)T ) zle )\
_ C)1zz ),
(clv) = (z]c) |- ? (z]c)
- L [ 2z % E
(ol (- (2]

and
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D := 1—<Z*

¢ ) — | —u-zz- SO

Then a simple calculation shows that ® is even a cross section

for a({,0) in the sense that the composition

pralr 2, sSU(p, q|r) A9) pp,glr

gives the identity. So ® is a super embedding from BP4" into
sSU(p,q|r) and « (<, 0) is a super projection from sSU (p, q|r)

onto BPIT |

Now let m € IN and P := A(R™) =D (]RO|m> with the odd coordinate
functions 81,...,8m € D (R0|m) )

The stabilizer sub super LIE group of 0 < BP4I" is K := 55 (U(p|r) x U(q))
which is a real (p2 +¢+r2—1, 2pr)—dimensional sub super LIE group of
sSU(p, q|r) given by the equations

or more explicitely
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0
¢ =0

v = 0
o = 0,
A*A+p'p = 1
DD =1
wWu+EE = 1
det (A - ,LLE_lp) detD = detF,

A*u+p'E = 0

in the sense that if g €p sSU(p,q|r) then g0 = 0 if and only if g €p K .
Clearly the body of K is K :=sS ((U(p) x U(q)) x U(r)) , explicitely

K =

eU(p)xU(q) xU(r)| det Adet D =det E } ,

which is also automatically the stabilizer of 0 in s (SU(p,q) x U(r)) acting
on BP4 via o .

From now on let G := sSU(p,q|r) , B := Bpalr

G :=G% = 5(SU(p,q) xU(r)) and B := B¥ = BP . Then on G x B we

define the function

ji=det(CZ+D+p¢) " € (D (G)° @0(5))0 .
7 fulfills the cocycle property
j (mo (Pri,Pre),Prs) = j (Pri,a 0 (Pre, Pr3)) j (Pro, Pr3) ,

where we compare functions in D (G x G)“KD(B) , or equivalently if
m > 2(p + q)r + gr then

J(gh,=) =j(g,hZ)j(h,E)

forall g h ep Gand =Z€p B .

From now on let k € Z be fixed. Then we have PC-linear continuous graded

injections

146



| : D(B) R PC — D(G)*KD(B) K PC, f— f|:= f(a)j*

and

TiDB)RPC — (DG RP)C, f fi=f(($,0))] (0,0 = fls (0)

respecting B , in other words f|,(2) = f(9%)j(g9,2)* and
flg) = f(90)j(g9,0)" = f|,(0) for all Z €p B and g €p G . Clearly | is
holomorphic in the sense that if f € O(B)RPC then f| € D(G)*KO(B)XPC .

From now on let T be a discrete P-sub super LIE group of G with body
rca.

Definition 3.1 (super automorphic forms) Let f € O(B)XPC . Then
f s called a super automorphic form for T of weight k if and only if

fe (D(G) X P)C is left-Y-invariant or equivalently f|y = f for ally €p T .
We denote the set of automorphic forms for Y of weight k by sM(Y) . It
is a graded sub PC-module of O(B) X PC .

Recall that T\ is a real ((p +q)? 4+ —1,2(p+ q)r)—dimensional P-super
manifold with body I'\G by theorem 2.46 , and f left-T-invariant means
nothing but f € D (T\G)® .

Defining the space of cusp forms for a discrete P-sub super LIE group T
of G needs a notion of integrability in particular square integrability on B

resp. G which seems to be very difficult to develop.

Therefore until the end of section 3.3 we restrict ourselves to
the case where m = 0 equivalently P = R , and we call it the

non-parametrized case.

Then YT =T is nothing but a usual discrete subgroup of the C*°-LIE group
G . Clearly G is a sub super LIE group of G , so G acts on B via a|gxs ,
and so we have a right action of G on D(B) given by

lg : D(B) = D(B), [ flg

for all ¢ € G . This action is clearly holomorphic in the sence that if
f € O(B) then again f|, € O(B) for all g € G, and it respects the splittings

pB)= D DB,

(1) €{0,...,rq}
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where

v =J
D#¥)(B) = D C>(B)¢'¢
LJep(rq), I=p,|J|=v
and so also
oB) = P oW®),
(1)€{0,....7q}
where
OW(B) := O(B)¢ = DO(B)NO(B).

Iep(rq), |I|=p

Now in the case of a usual discrete subgroup I' C G another ’lift’ seems to

be more convenient:

~

:D(B) — C®(G)"®A (C™9) KA (C™9)
~ (G D (COWW) ,

where

for all f € D(B) and g € G , where we denote

j(g,o>j(g, (O)),
¢
&

since j | g, ) ) € O(B) and therefore 'independent’ of ¢ for all g € G .
Clearly again

148



(g¢)
-

Coo(G)(C ® D (Co\rq,ﬁ) Coo(G)(C ®D (CO|rq,W)

<1 % 1
D(B) W D(B)
g

for all g € G , and clearly if f € O(B) then

J'e c®(G)° @ 0 (CO7) = ¢=(G)F @ A (C77) .

f € sM(T) if and only if f € O(B) and f’ € C=(G)C ® A (CT™ ) is left-I'-
invariant.

Even f' € C®(G)C @AW (CT*9)RAM) (C™%9) if and only if f € D")(B) for
all f € D(B) , and so f’ € C>°(G)C ® AW (C™*4) if and only if f € OW(B)
for all f € O(B) .

Since A (C™ )R A (C™*?) ~ A (C?9) canonically we have a canonical scalar
product ( , ) (semilinear in the second entry) on A (C"*9)XA (C"*9) coming
from the standard scalar product on C?"¢ . For all a € A (C"™9) X A (C"*9)

we write |a| := \/{(a,a) .

We have a canonical embedding

G :=SU(p,q) —G,g~— g ,
0

and the canonical projection

G—U(r), (Z E)HE

induces a group isomorphism

G /G ~U(r).

Clearly o extends the action of G’ = SU(p,q) on B by fractional linear
(MOBIUS) transformations.

Since G’ = SU(p, q) is semisimple and U(r) is compact both are unimodu-

lar. Furthermore the left- and right-invariant HAAR measure on G’ is even

invariant under conjugation with elements of G . So a simple calculation

shows that
[ L ([ )t

149



is a left- and right-invariant HAAR measure on G , and therefore G is again
unimodular. As in the higher rank case, chapter 1 , we have a ’scalar

product’

mes= [ ()

for all f,g € D(B) such that <E’, f’> € LY(T\G) and for all s €]0, 0]

L;(T\B):={ f e D(B) | f left-T-invariant and |f’

€ L*(T\G)

Then clearly especially all ( , ) := (, )gy and all Lj(B) are invariant
under the action | , g € G .

Definition 3.2 (super cusp forms in the non-parametrized case)
Let f € sMi(T") . f is called a super cusp form for T' of weight k if and
only if f € L2(I\B) . The C- vector space of all cups forms for T' of weight
k is denoted by sSy (') := sMy,(I') N LE(D\B) = O(B) N L{(T'\B) .

Let m: G — G /K ~ B denote the canonical projection. Then clearly for all
L C B compact 7~!(L) C G is again compact and there exists C’ > 0 such
that for all h = ZJ,JGp(T) hU(IZJ € D(B) ,all hy; € C*(B)* , I,J € p(r) ,
if we decompose b’ = qrn'n? | all qr; € C°(G)C , I,J € p(r) , then

/
h1slloe,r < €, max 1117 lloo (2

for all I,J € p(r) . So we see that convergence with respect to ( , )p
implies compact convergence, and so sSi(I") is a HILBERT space. Since all
AW (€ R AW (C™%9) | p,v = 0,...,7q , are pairwise orthogonal with

respect to ( , ) we have an orthogonal splitting

ssif) = @ s,
ne{0,...,rq}
where

sSW(T) 1= 55,,(T") N OW(B)
forall u=0,...,7rq .

As in the case of a usual bounded symmetric domain we would like to use
relative POINCARE series

> fh

~eI’\T'

for a subgroup I'' C T" .
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Theorem 3.3 (convergence of relative POINCARE series) Let IV C T’

be a subgroup and

fesMy, (I')yn Ly, (T'\B) .
Then
= > flyand @ = Y F(10)
yET\T yEM\T

converge absolutely and uniformly on compact subsets of B resp. G ,

® € sM;, ()N LE(T\B) ,

@ is the lift of ® to G , and for all ¢ € sMy, () N Lge (T\B) we have

((1)780)1“ = (f7 SO)F’ :

Proof: Let go € G and L C G be a compact neighbourhood of gy in G
such that yL N L = () for all v € T'\ {1} . Since the canonical projection
m: G — G/K ~ B is open, 7(L) is a compact neighbourhood of ¢o0
in B . Clearly since L is compact there exists C/ > 0 such that for all
h =3 reom hi¢t € OB) , all hy € O(B) , I € p(r) , if we decompose
B =qm! , all g € C>®(G)® , I € p(r) , then

h < C'" max
” IHOO,T((L) —= Jew(r) HqJHool,

for all I € p(r) and

/
HqJHoo,L <C Ilélpa()ﬁ) HhIHOO,ﬂ'(L)

for all J € p(r) . So by the mean value property of holomorphic functions
applied to each hy € O(B) , I € p(r) , seperately there exists a neigh-
bourhood U C L of gp in G and C' € R such that for all h € O(B) and
gelU

%/

ﬁ’(g)( < C/
L
So forall g e U
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Z ‘]?(79)‘ = Z ‘f‘v

~ET/\T ~yeT\T

IN
Q
g
—
=)

< C

"\G

We see that ®' and, since for all L C B again 7 '(L) is compact, ® as well

converge absolutely and uniformly on compact subsets of B resp. G , and

@’ is the lift of ® to G . So clearly ® € sM(T) .

/F\G‘é’ S/F\G > J?’(VO)‘Z/F,\G

~yeT\I'
and so ® € LL (I'\B) . Now let ¢ € L° (I'\B) . Then '@ € L' (I'\G) ,

and so

f/

< 00,

(@, ¢)r = /F o 2 T0og = /F TP =D

~ED\D
From now on we assume ¢ = 1, and unlike in the higher rank case, where we
had to do with an arbitrary bounded symmetric domain, in the special case
of the unit ball B = BP! € C? now for our purposes it is more convenient
to define classical automorphic resp. cusp forms on B with respect to the
cocycle j € C® (G ®O(B) given by

j(g.2) = (cz+ )"

A b
for all ¢ = € G' and z € B , since it is the restriction of
c d

VS (D(g)cg(’)(lg))() from above to G’x B . Then det (z — gz)’ = j (¢,2)" ™
for all g € G’ and z € B . Again we can use the JORDAN triple determinant
A : CP x CP — C which is given by
A(z,w):=1—w'z
for all z,w € CP . We recall the basic properties:
(i) A(0,0) =1,
(ii) A is a sesqui polynomial, holomorphic in the first and antiholomorphic

in the second variable,

152



(iii) A (z,w) = A(w,z) for all z,w € C? and A (z,2z) >0 forallz € B,
(i) i (9.0)] = A (g0,90)* forall g € G,

(v) A(gz,gw) =A(z,w)j(g,2)j(g,w) for all g € G and z,w € B , and
(vi) fB dVLeb < oo if and only if A > —1 .

Because of (iv) and since |det (z — gz)'| = |j (9,2)|PT! for all g € G and

z € B on B we have the G-invariant volume element A(z, z)*(p“)dVLeb .

x| 0
For all I,J € p(r) ,h€C®(B)* ,z€ Band g = € sSU(p, 1|r)
E

we have

hCT‘]‘g (2) = h(gz) (En)' (En)” j (g,2)" 1L (3.1)

where E € U(r) . So for all s €]0,00] and f =3/ ;o frs¢t C € D(B)
such that f' € C°(G)€ @D (COmTY is left-T-invariant we have fe Li(T\B)
if and only if

E+[1+]J]

f[JA (Z,Z) 2 c LS(F\B)

for all I,J € (r) with respect to the G-invariant measure
A(z,z)_(p+1)dVLeb , and for all f = ZI,JEp(r) f[JCIZJ ,

h= Y1 seotr h1s¢'C’ € D(T\B) such that <E’, f’> e LY(I\G)

E+[1]+]J]
2

(f,h)r = / frohisA (z,z) 0D Vi -

I,Jep(r

In particular for all s €]0,00] and I, J € p(r) there is an embedding

Ly in410/(B) = Lg(B), f !

being unitary in the case s = 2 up to a constant # 0 , and for all s €]0, 00]

= P LB

I,Jep(r)

where in the case s = 2 the sum is orthogonal.

Theorem 3.4 Let I € p(r) and k> 2p+1—|I| . Then for all w € B
A (0, w) I e L(B),

and for all f =3 e, fr¢! € O(B) N LE(B) we have
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(A (0w p) = i (w).

where = denotes equality up to a constant # 0 independent of w and f .

Proof: Since for all f € O(B) N L (B)

(A(O,w)’k’m Cl,f) — (A@0,w) k—|I| ¢l fCI>
k4|1

/A k= |I|f1A(Z Z) 2 7(p+1) dVLob

it is the same calculation as in the proof of theorem 1.17 in the higher rank

case.

Right now we see that there is a trivial special case, namely the case where
rcG =5U(p,1) —G.

Theorem 3.5 Let I' © G' = SU(p,1) — G . Then for all I € p(r) the
embedding

Skair(T) = sSK(T), fr f¢
is unitary up to a constant # 0 , and
s (0) = B Sean(T
Tep(r)

as an orthogonal sum.

Proof: obvious by formula (3.1) . O

In the end let us compare the situation in the super case with that of the
higher rank case in chapter 1 for again arbitrary ¢ € IN'\ {0} . Obviously
K'=KnG = S(U(p) x U(qg)) is the stabilizer of 0 in G’ . Let A denote
the standard maximal split abelian subgroup of G’ given by the image of

the LIE group embedding
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R? — G,

cosh 1 0 sinh t; 0
0
0 cosh t, 0 sinh ¢,
t—ay = 0 1 0
sinh ¢ 0 cosh 1 0
0
0 sinh , 0 cosh t,

Then A is at the same time a maximal abelian subgroup without compact
factors, hence isomorphic to some R” , v € IN | of G since G /G' ~ U(r) is

compact. The centralizer M of A in K is the subgroup of K of all

€1 0
0
0
0 €q
0 U 0
€1 0 ’
0
0 Eq
0 E

where ¢ € U()? , v € U(p—q) and E € U(r) such that
el---eodetu = detE . Let M' = K'NM = G' N M be the central-
izer of Ain K’ .

Again on G we have an analytic multiflow (o) g given by the right trans-

lation by elements of A :

pr:G— G, g—gag.

Th centralizer of G’ in G is precisely

el | 0
Z (@) = ecU1),Ee€U(r), e =detE } C M,
0| FE

and G' N Z (G') is the centre of G’ , which is finite and belongs to M’ .
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Lemma 3.6

G=GZ(d).
910
Proof: Let g = € G . Then there exists ¢ € U(1) such that
0| FE
ePt =detg € U(1) , and so
el] 0
g= et .0
0|F
—_—
e ez(a)

So K = K'Z(G") and M = M'Z(G") . Therefore if we decompose the

adjoint representation of A as

s=Pe,

acd
where for all o € (IRY)"

g% :={¢ € g |Ady, (&) =™}

and

@ = {a € (RY)"| g # 0}

then we see that theorem 1.7 remains true word by word, and we have
g C ¢ for all « € R?\ {0} .

Lemma 3.7
N(A) = ANg(A) = N(AM)C N(M).

Proof: We will use lemma 1.9 . For this purpose let g = Jw € G , ¢ € G’
and w € Z (G') .

'N(A) C ANk (A) : Assume g € N(A) . Then

g, = gwil € Nqv (A) = ANy (A)

by lemma 1.9 , and so g = g/w € ANk (A) .
"ANg(A) C N(AM)’ again trivial since M is the centralizer of A in K .
'N(AM) C N(M)’ : Assume g € N(AM) . Then
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g € Nev (A(MNG")) = New (AM') T New (M)
by lemma 1.9 . So g € N(M) .

'N(AM) C N(A) : Assume g € N(AM) . Then

gl S NG/(AM) C NG’ (AMI) = NG/(A)
by lemma 1.9 . So g € N(4) . O

Again we define the WEYL group W := Nk (A)/ M acting on A via conju-

gation.

Lemma 3.8
W' - W, gM' — gM,

where W' := Ng:(A)/ M" denotes the WEYL group with respect to G, is

an isomorphism.

Proof: Let ¢ : Ng/(A) — W, g — gM , which is clearly a group ho-
momorphism. Let gM € W | g € Ng(A) . Then we can write ¢ = ¢g'w
with ¢’ € Ng/(A) and w € Z(G') T M , so ¢(¢') = gM . Therefore ¢
is surjective. Now let g € ker¢p . Then g € G’ M = M’ . Therefore
kerp=M". 0O

From now on for simplicity we again assume ¢ = 1 . Then the root system
® of G is simply ® = {—2,-1,0,1,2} if p> 1 and & = {-2,0,2} if p=1,
and the WEYL group degenerates to W ~ {1} changing sign on R ~ A .

Definition 3.9 Leta c G .

(i) a is called loxodromic if and only if there exists g € G such that
a€ gAMg"' .

(ii) If a is lozodromic, it is called regular if and only if a = gaywg™! with
te R\ {0} andw e M .

(iii) If a € T is regular loxodromic then it is called primitive in T if and only
if a =a" implies v € {x1} for all lozodromic o' €T and v € Z .

Clearly for all a € I' regular loxodromic there exists a’ € I" primitive regular
loxodromic and v € IN'\ {0} such that a = a .

Theorem 3.10 Let a € G be loxodromic, g€ G , w € M andt € R\ {0}

1

such that a = gaywg™" . Then g is uniquely determined up to Tight transla-

tion by elements of ANk (A) , and t is uniquely determined up to sign.
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Proof: similar to the proof of theorem 1.11 (i) using lemma 3.7 instead of

lemma 1.9 . O

3.2 SATAKE’s theorem in the super case

Let I' © G be a discrete subgroup. The main goal of this section is the

following theorem:

Theorem 3.11 ( SATAKE’s theorem) Assume I'\G is compactor ¢ =1,
p>2and ' C G is a lattice (discrete such that vol T\G < oo , I'\G not
necessarily compact) . Then there exists ko € IN such that

Sk (T) = sMy () N L (T\B)

for all s € [1,00] and k > ko .

If I'\G is compact then the assertion is trivial. In the case of g =1, p > 2
and I' C G being a lattice, not compact, we will give a proof in the end of
this section using the so-called unbounded realization H of B , which we
will develop in the following. As in the higher rank case SATAKE’s theorem
and vol I'\G' < oo imply that sSk(I') is finite dimensional for & > ko via

lemma 12 of [1] section 10. 2 , see section 1.2 .

Solet ¢ =1 . As in the higher rank case define

n= P ¢°,

ae<I>>o
which is a sub LIE algebra of g’ , and N := expn , which is a nilpotent
sub LIE group of G’ . As in the higher rank case we have an TWASAWA

decomposition

G =KAN = NAK .

Clearly the group N is abelian in the case p = 1 and 2-step-nilpotent in the
case p > 1 . Let N’ denote the centre of N . Then N’ = N if p = 1 and
N =[N,N]ifp>1.

Now let R € G’ = SL(p+ 1,C) denote the partial CAYLEY transformation

1 —1
with respect to the tripotent e; = | — € CP | see the end of

0 p—1
section 1.1 . Via MOBIUS transformation it maps B biholomorphically onto

the unbounded domain
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w1 —1
H=J{w=

1
€ CP| Re w1 > *W;WQ ,
Wa Ip—1 2

R0 =e; , and we can compute R explicitely as

1 1
R= 0 [1]o0 p—1
1 1

We see that RG'R™' C G'® = SL(p+1,C) — GL(p+1,C) x GL(r,C) acts
biholomorphically and transitively on H via MOBIUS transformations, and

R commutes with all g € Z (G’) . Explicit calculations show that

et|0] 0 — 1
aé::RatRflz 011] 0 p—1

0(0]et —p+1

for all t € R, RNR™! is the image of

1|u* z')\+%u*u

R x CP~!' - RG'R™, (\u) — n/)\’u =101 u ,

00 1

which is a C*°-diffeomorphism onto its image, with the multiplication rule

/

/ 7
M uuv = My p+Im (u*v),u+v

for all A\, x € R and u,v € CP~! and acting on H as pseudo translations

wy + u*wy + i\ + %u*u
W —

wo +1u

and RN'R™! is the image of the LIE group embedding

R — RG'R™', A=),

acting on H as translations w — w + ileq .

Define j (R, <) € O(B) as j (R, z) = % for all z € B and

j (R*1,<>) € O(H) as j (Ril,w) =7 (R, Pflw)f1 = 1]5)1 forallwe H ,
and for all g € RGR™! define j (g,$) € O(H) as

jlg,w)=j(R,R 'gw)j (R 'gR, R 'w)j (R ', w)
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for all w € H . Then j remains a cocycle in the sense that for all
g,h € RGR™!

and for all g = € RGR™' an explicit computation of

7 (g, <) gives

](g’W):CW+d

for all w € H . Define the complex super domain H as H := HI"" . Then
we have a right action of the group RGR™! on D(H) given by

b DH) = D), f o f | g j (9, 0)"

for all g € RGR™' , which is clearly holomorphic in the sense that if
f € O(H) then f|, € O(H) too. If we define

R :D(H) — D(B). f o f | R j (RO

and

lr-1:D(B) = DH), frf (Rl (j)) J(R7,0)",

then we see that again if f € O(H) then f|r € O(B) , and if f € O(B)
then flgr-1 € O(H) . |r and |g-1 are clearly invers to each other, and for
all g € G

D(H) [rgr; D(H)
R 1 % I |r -

Now define the sesqui polynomial A’ on H x H , holomorphic in the first
and antiholomorphic in the second variable, as

A (z,w) = A (R_lz, R_lw)j (R_l,z)_lj (R‘l,wf1 =z + W1 — W5 29

for all z,w € H . Clearly |det (z+— Rz)| = |j (R,z)|""" forallz€ B . So
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|det (w i gw)'| = [j (R, w)["*"

N

|.] (ga 6‘1)| = A/ (gelvgel)

for all g € RGR™! and A’ (W,W)_(p+1) dViep is the RGR™! -invariant vol-
ume element on H . If f = ZI,JE@(q) fUCIZJ € D(B) , all f;; € C®(B)C,
I,J € p(q) , then

flami= " frr(R0) 5 (R,0) V" e pis),

I,Jep(q)

and if £ = Y7 sep(q 1970 € D(H) , all f15 € C(H)C , 1,7 € p(g) , and

x| 0
g= € RGR™! , E€ U(r) , then
0| E

flo= X f1s(90) i (g, 0 (E9) (EQ)” € D).

I,Jep(q)

Let 0H = {w € C? |Re wy = iwiw } be the boundary of H in C? . Then
A’ and OH are RNR™! -invariant, and RNR™! acts transitively on 0H and

on each

{WGH ‘A’(w,w) :th} = RNa;0,

teR.
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Figure 3.1: the geometry of H .

All geodesics in H can be written in the form

R — H,t— w; := Rga;0 = RgR 'd}e;

with some g € G , and conversely all these curves are geodesics in H . We
have to distinguish two cases: Either the goedesic connects co with a point

in OH , or it connects two points in 0H . In the second case we have

tilimoo A/ (Wt’ Wt) =0 ’

so we may assume without loss of generality that A’ (wy, w;) is maximal for
t = 0, otherwise we have to reparametrize the geodesic using gar , T' € R

appropiately chosen, instead of g .

Lemma 3.12
(i) Let

R—- H,t— w;:= Rga,0= RgR_la;el

be a geodesic in H such that limy oo wy = 00 and limy . € OH with

respect to the euclidian metric on CP . Then for all t € IR
A (wy, wy) = e A (wo, wo) |
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and if instead limy .o Wy = 00 and lim; .o, € OH then

A (wy,wy) = e A (Wo, wo) .

(ii) Let

R—-H,t— w;:= Rga,0= RgR_la;el

be a geodesic in H connecting two points in OH such that A’ (wy, wy) is

mazximal fort =0 . Then

R — Rsq, t — A’ (wy, wy)

is strictly increasing on R<o and strictly decreasing on R>q , and for all
teR

A, (W_t7 W_t) = A/ (Wt, Wt)

and

e 2N (wo, wo) < A (wy, wy) < de 2HA! (wo, wo)

Proof: (i) Since RN R~! acts transitively on 9H and A’ is RN R~! -invariant
we can assume without loss of generality that the geodesic connects 0 and
oo . But in H a geodesic is uniquely determined up to reparametrization by

its endpoints. So we see that in the first case

/
wy = q;re; = e

and in the second case

/ —
wy =a_,xe; =e 2 req

both with an appropriately chosen x € R~q . UJ

(ii) Let u,y € IR and s € CP~! such that y? + s*s = 1 . Then

u e (1 — y*tanh %t + 2iytanh ¢
R—H,t— wgu’y’s) = 26 5 -y Y )
1+ y*tanh ¢ V2tanh t (1 + iytanh t)s

is the geodesic through e?“e; in H since it is the image of the standard

geodesic

tanh ¢
0

R—B,t—a0=
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in B under the transformation

al, R
N—_——
€RARICRG'R! eK'CG
22ty

So we see that 6tw§u’y’s)

= | ——— | € T.2ue H is a unit vector
=0 V2e's

with respect to RGR™! -invariant metric on H .
Now since RNR™! acts transitively on each

{weH|A (w,w) :th} = RNa;0,

t € R, and A’ is invariant under RNR~! we may assume without loss of

2ug) with an appropriate v € IR . Since A’ (wy, wy)

generality that wg = e

is maximal for t = 0 we know that O;w|,_, is a unit vector in

iR®CP~! C Te, H , and therefore there exist y € IR and s € CP~! such that
2ie2ty

V2e's

determined by wo and 0;wy|,_, we see that w; = Wiu’y’s) forallt € R, and

y? +s*s =1 and Wil = . Since the geodesic is uniquely

so a straight forward calculation shows that

1 — tanh %¢
/ _ 2
A (wy,wy) = u—1+y2tanh %
8€2u

(14 y2) (e + e=2t) + 2s*s

The rest is an easy exercise using y> +s*s =1 . 0

For all t € R and n C N define Ay :={a,| 7 <t} C A and
Asi={a; | 7>t} CA.

Theorem 3.13 (a ’fundamental domain’ for I'\G ) If T\G is not
compact then there exist 1 C N open and relatively compact , tg € R and
= C G finite such that if we define

Q= U gnAsi K
geEE

then
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(i) g ' TgNNZ(G") C NZ(G') and g 'TgN N'Z (G') © N'Z(G") are lat-

tices, and

NZ(G') = (¢97'TgnNZ (G"))nZ (&)
forallge =,
(i) G =TQ ,
(111) the set {y € T|vQNQ # 0} is finite.

Proof: We use theorem 0.6 (i) - (iii) of [6] , which says the following:

Let IV € G’ be an admissible discrete subgroup of G’ . Then
there exists ¢{, > 0, an open, relatively compact subset 79 C N,
a finite set Z C G’ , and an open, relatively compact subset §/
of G’ ( Z being empty if G'/T” is compact, and Q' being empty
if G’ /T is non-compact) such that

(i) Forallbe =, T Nb"INThis a lattice in b1 NTh .

(i) For all ¢t > ¢{, and for all open, relatively compact subsets 7
of Nt such that n D ng , if

Q) =2'U (U at,nb> ,

be=
then Q; T" = G’ , and
(iii) the set {7/ €T, Q7' N}, # 0} is finite.

Hereby G’ is a connected semisimple LIE group of real rank 1 , N* = N is
the standard nilpotent sub LIE group of G’ and o, := KA for all t > 0
and 7 C N7 open and relatively compact, where A denotes the standard
maximal non-compact abelian and K’ the standard maximal compact sub
LIE group of G’ . Admissibility is a geometric property of the quotient
I"\G'/K' , roughly speaking I'" is called admissible if and only if I"\G'/K’

has only finitely many cusps.

Let us apply theorem 0.6 (i) - (iii) of [6] with G’ = SU(p, q) — G and

I':= {7’ eqd | there exists w € Z (G’) such that v'w € F} C &,

which of course is again a lattice such that I"\G’ is not compact and so it
is admissible in the sense of [6] by theorem 0.7 of [6] . By lemma 3.18 of [6]
g ' T"gN N’ € N' is a lattice, and by lemma 3.16 of [6] applied with any
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p € "N N\ {1} tells us that (¢~ 'T'gN N)\ N is compact. So we see that
there exist tg € IR , n C N open and relatively compact and Z C G’ finite
such that for all g € =

I"'NgNg~'C gNg™!

is a lattice, I"QY = G’ if we define ' = (Jyc= bnA<s, K’ and

A={y el [/UNQ #0}

is finite.
(i) and (ii) : now trivial by definition of I C G’ . O

(iii) : Let y=~w el , vy €l ,we Z(G),such that yQNQ # @ . Then

VZ(G)NQZ(G) #0.

Since Z (G') NG’ C K’ and € is right-K'-invariant we have v/’ N Q' # ()
as well and therefore v/ € A . Conversely v'Z (G’) is compact and therefore
I'N+'Z (@) is finite for all 4/ e IV . O

Corollary 3.14 Assume I'\G is not compact, and let to € R, n C N and
2 C G be given by theorem 3.13 . Let h € C(D\G)® and s €]0,00] . Then
h € L* (T\G) if and only if h (g{) € L® (nAs, K) for allg € = .

Proof: If s = oo then it is evident since G = I'Q2 by theorem 3.13 (ii) . Now
assume s € R~q , and assume h € L* (T'\G) .

S:={yeTl|[yQ2NQ# D} < oo

by theorem 3.13 (iii) . Then for all g € Z we have

/ rh<g<>>|5=/ \h|5§/|h|5§s/ hJ* < oo.
nAsi K gnAsig K Q NG

Conversely assume h (g¢) € L* (nAs, K) for all g € =. Then since G = I'()
by theorem 3.13 (ii) we obtain

/ Ihlss/lhISSZ/ h (g0 < 00.00
F\G Q QEE T]A>t()K

Assume again T'\G is not compact, and let f € sMy(T") and g € E. Then we
can decompose flglp-1 =3 /e, gt € O(H) ,all g € O(H) , I € p(r)
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and by theorem 3.13 (i) we know that ¢ 'Tg " N'Z (G') i Z (G') . So let
ne€giTgNnN'Z(G)\ Z (G,

1 , el |0
RnR = nAo’O y
0|FE
M €ERN\{0},e€cUQN),EcU(r),eP™ =detE .
j(RnR™') = j(RnR™',w) = ¢! € U(1) is independent of w € H .
So there exists x € R such that j(RnR‘l) = €2™X | Without loss of
generality we can assume that F is diagonal, otherwise conjugate n with an
appropriate element of Z (G’) . So there exists D € R"*" diagonal such that
dy 0

E =exp(2miD) . If D = and I € p(r) then we define
0 d,

try D=3} crdj

Theorem 3.15 (FOURIER expansion of f|y|,_: )

(i) There exist unique ¢y, € O (CP7Y) | T € p(r) ,
m € )\io (Z —tr1D — (k+ |I]) x) , such that

ar (W) _ Z Clm (Wg) eZTrmwl
me 5 (Z—try D—(k+I)x)
for allw € H and I € p(r) , and so
flolgr (W)= > > crm (w2) €79

Iep(r)  me 5 (Z—trr D—(k+1])x)

w1 — 1

for all w = € H , where the convergence is absolute and

AL p—1
compact.
(i) Assume p>2 . Then crym =0 for all I € p(r) and
m € )%O(Z—tr]D —(kE+|I|)x) N Rso (this is a super analogon for
KOECHER s principle, see for example in section 11.5 of [1] ) , and if
tryD + (k+ |I|) x € Z then cr is a constant.

(iii) Assume againp > 2 , and let I € p(r) and s € [1,00] . If
tryD + (k+ |I|) x € Z then

k4|1

q A (w,w) 2

€ LS (R??A>t0 0)

with respect to the RGR™ -invariant measure A’ (w, W)_(p+1) dVien, on H .
Iftr;D+ (k+ |I|) x € Z and k > 2p — |I| then
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k4|1

q A (w,w) 2

c LS (RnA>t0 0)

with respect to the RGR™ ~invariant measure on H if and only if c;o =0 .

Proof: (i) fl, is g7'T'g invariant, so we see that for all w € H

S a9 =l (W)

Tep(r)
= f‘g|n‘R—1 (w)
= Y ar(w+ier) (B9j (RnR™))' j (RnrR™)*
Iep(r)
— 3 gr (Wt idgey) 2R DHEHID T
Iep(r)

Therefore for all I € p(r)

ar = q1 (& + ixgey) 2™ DFEHINN)

Let I € p(r) . Then h € O(H) given by

h(w):=qr (w) o~ 2mixg (trr D+(k+I)x)ws

for all w € H is i\ge; periodic, and therefore there exists h holomorphic on

~ 21 — 1 i
H:=<z= |z1] > 2o %272
Z9 p—1
such that for all w € H
2n
~ e X wy
h(w)=nh
W2

LAURENT expansion now tells us that there exist a3 € C, m' € Z |
1€ IN?~! | such that

E(Z): Z Z am',lzinlzlz

m/€Z1eNP—1

Z1 —1

for all z = cH , where the convergence is absolute and

Z9 p—1
compact. Now let us define d,,,; € O ((Cpfl) as

dpy (z) = Z At 12

leNP—1
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m' € Z . Then for all w € H

/

27 27
qr (w)e *o (trr D (kHIxwr _ (w) = Z Ay (W) €30 1
m'€Z
So taking ¢ := dxgmatr; D4 (k4 1)x » M € )\io (Z —tr;D — (k+ |I]) x) , gives
the desired result. Uniqueness follows from standard FOURIER theory. [

(ii) Step I Show that all ¢ , I € gp(r) , are bounded on
RNO={we H| A (w,w)=2}.

Obviously all g7 , I € p(r) , are bounded on Rn0 since Rn0 is relatively
compact in H . Let C' > 0 such that |¢;| < C on RnO for all I € p(r) . By
theorem 3.13

RNO=R (g 'TgnNZ(G'))n0.
g1] 0

Solet Rn'R™! = n'Mu 1z €g'TgnNNZ(G'),N e R,ueCr,

¢’ e U(1) and E' € (r) . Then again

j(BR'R™Y) =i (R'R™ ', w)="1eU(1)

is independent of w € H .

Z(H’ﬂl = f‘g|R—1
Iegp
= f|g|n/ R-1
= 3 @ (R'RTIO) (') I
Iep(r)

A(CT) = A(CT) , 9 — (E’ﬁ)la’kﬂl‘ is unitary, therefore

lgr] <27 |qr (RW'RTYO)|
We see that |¢r| < 2"C on RNO .

Step II Show that

|C[,m (WQ) 627me1| < HQIHOO,RNO

on RNO for all I € p(r) and m € %(Z—tr[D— (k+ 1) x) -

Let I € p(r) and m € %0 (Z —tr;D — (k+|I|) x) . By classical FOURIER

analysis
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1 [P

X Jo

2Tmw, —2mimA

C[7m (Wg)e = qr (W+i>\e1)6

for all w € H , and since w + i\e; = ni\pw € RNR~'w the claim follows.
Step III Conclusion.

Let I € p(r) and m € )%O (Z —tr;D — (k+|I|) x) . Let u € CP~! be arbi-
trary. Then

1. %
Atsuiu ) v

and so

—mmu*u

lerm (W) < larlloo, rvo €
Now the assertion follows by LIOUVILLE’s theorem . [J
(iii) Let

1+ fu*u+iy
n =< (iy,u) € iR @ CP! 2 € Rno
u

be the projection of Rn0 onto iR @ CP~! in direction of Re w; € R . Then

T+ %u*u—i—iy

VR 2t X 77, — RnA-4,0, (z,iy,u) —
u

is a C*°-diffeomorphism with determinant 1 , and

AT (2, iy,u), ¥ (2, iy, u)) = 22
for all (z,iy,u) € Ry 260 x 0’ . So

k+|1]

qgA' (w,w) 2 € L° (RpA=4,0)

with respect to the measure A’ (w, w)f(p +1) dViep if and only if

E+|1]

(groW)a—2

e’ (R>e2t0 X T]l)

with respect to the measure z~®+)dVi, .

Now assume either tr;D + (k+ |I|)x & Z or tr;D + (k+ |I|) x € Z and
cro # 0. Then in both cases by (ii) we can write
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2
ar (w) = 3 Crm (W) 2701
me 5o (Z—trrD—(k+|I))x)NR<o

for all w € H , where the sum converges absolutely and uniformly on com-

pact subsets of H . Since Rna;,0 C H is relatively compact we can define

c" = e_QﬂMOEQtO Z Hch (Wz) e27rmw1 | ‘

me s (Z—tr; D—(k+[I])x)NR<o

oo,Rna,0
< 0.

If we define in addition

1
My ::maXA—(Z—trID—(k+|I|)X)ﬂ]R<0<0
0

then we see that
a1 (w)] < C7embod (waw)
for all w € RpA~4,0 , so

|q[ o \I/‘ < C//e27rM0x ’

E+|1] .
and so 2 (qroVU) € L*(R..2 x1') with respect to the measure

2= PNV

Conversely assume tryD + (k+ |[I|)x € Z , k > 2p—|I| and ¢r o # 0 . Then

as before we have the estimate

Z Clom (Wg) e2mmw < Clle—TrA/(W7W)
mE%N\{O}

for all w € RnA~;,0 if we define

C' = e Z ||czm (wa) €™ < 0.

00,Rnat,0
me % (Z—tr1 D—(k+|I])x)NR<o

Therefore there exists S € IR>g such that

ler ol

N

Z Clom (WQ) e27rmw1 <
mG%N\{O}

A (w,w) > S . So |(q o ®) (x,iy,u)| > % lcro| for all (x,iy,u) € R>g xn',

and therefore |q; (w)| > 3lcro| for all w € RpA.,0 such that
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k4|1

and therefore definitely 272 gy o ® ¢ L® (Ry 2t x 1) with respect to the

measure z~PTDdV o, . O

Now we prove theorem 8.11 in the case of p > 2 and I' C G being a lattice,
I'\G not compact.

Let & > ko := 2p € IN . Since vol I''G < oo it suffices to show that
f e sM(D) and f € L' (D\G) ® A (C") imply f' € L™ (T\G) @ A (C") . So
let f € sMy(T) such that f € L' (T\G) ® A (C") . Let g € = . By corollary
3.14 it is even enough to show that f’ (g¢) € L™ (nAst, K) @ A(CT) .

Let f|g\R,1 = Zlep(r) g all gr € O(H), I € p(r). Then

flo= 3" ar(RO) !5 (R, Q).

Iep(r)

Since by corollary 3.14 f’ € L' (nA~,K) we conclude that

k+|1]|

a1 (Rz) j (R, 2)" M A (2,2) 2 € L' (nAs4,0)

with respect to the G-invariant measure on B or equivalently
k+|I]
€ L'(RnA=40) for all I € gp(r) with respect to

qr A (w,w) 2
the RGR™! -invariant measure on H . So by theorem 3.15 (iii)
k|1

we see that ¢rA'(w,w) 2 € L>®(RnAs40) as well or equivalently
ket |I]

qr (Rz) j (R, z)kH” A (z,z) e e (nAs4,0) for all I € p(r) . There-

fore

f(g0) € L™ (nAs, K) ® A(C) .0

3.3 A spanning set for the space of super cusp

forms in the non-parametrized case

Again assume ¢ = 1 . Assume I'\G compact or p > 2 and vol I'\G < oo
and k > ko , where kg € IN is given by SATAKE’s theorem, theorem 3.11 .
Let C > 0. Let us first consider a regular loxodromic v € I' . Let g € G,
wo € M and tg € R\ {0} such that g = gay,wog !

There exists a torus T := (v9)\ gAM belonging to vy . As in the higher
rank case, chapter 1 , one can prove that T is independent of g up to right
translation with an element of the WEYL group W = Ng(A)/M using
theorem 3.10 .
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Let f € sSy (T') . Then f € ¢ (I\G)® @ A (C") . Define
heC® (R x M) ®A(C) as

h(t,w) = f (gasw)

for all (t,w) € R x M . Then clearly h (t,w) = j(w)*h (t,1, Enj(w)) , and
so h(t,w) = j(w)* h(t,1,En) it f € sSM(T) for all (t,w) € R x M |

*| 0 x| 0
w = , B € U(r) . Clearly wy = with some
0|E 0| E

Ey € U(r) . So we can choose g € G such that Ej is diagonal without

changing T . Choose D € R"*" diagonal such that exp(2miD) = Ej and

X € R such that j (wp) = e?™X . D and y are uniquely defined by wg up to
dq 0

Z.1IftD= with di...,d, € R and I € p(r) then again

0 d,
we define tr;D =} ., d; .

Theorem 3.16 (FOURIER expansion of h )

(i) h(t+to,w)=nh (t,walw) for all (t,w) € Rx M , and there exist unique
brmeC,Iep(r),me %(Z— (k+|I|) x —tr1D) , such that

h(t,w) = Z j(w)ker Z b17m€27rimt (En)l
Tep(r) me%(Zf(kHIDXftr]D)
x| 0
for all (t,w) € Rx M , w = , E € U(r) , where the sum
0| F

converges uniformly in all derivatives.

(71) If by =0 for all I € p(r) and

m e % (Z — (k+ |I|) x —tryD)N] — C,C| then there exists

H € C® (R x M) @A (C") uniformly LIPSHITZ continuous with a LIPSHITZ
constant Co > 0 independent of vy such that

h=0,H,

H (t,w) = ](w)kH (tv 17E77J(w))

and

H(t+ty,w)=H (t,walw)
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x| 0
forall (t,w) e Rx M , w= ,EcU(r).
0|FE

Proof: (i) Let t € R and w € M . Then

h(t+to,w) = f (ar,arw) = f (70w61atw) = f (atwalw) =h (t, walw) ,

and so

hit+to,1) = h(t,wy!)
= i (wo) ™k (8,1, g 0 (wo) ™)

= j(wo) ™™ D h(t,1)e 2Pyl (1)
Iep(r)
_ Z e—27ri((k+\[|)x+tr1D)h[(t1),0].
Iep(r)

Therefore hy (t +to,1) = e > (FFIIXFTIDIR(¢,1) for all T € p(r) , and
the rest follows by standard FOURIER expansion. [

(ii) Let by, = 0 for all I € p(r) and
me%(Z—(lﬂ—l—m)X—tUD)ﬂ] —C,C[,and fix I € p(r) . Then

hi(O,1) = > brme”™"?

me g (Z—(k+|I))x—tr; D)N] =C,C |

and so we can apply the generalized reverse BERNSTEIN inequality, theorem
1.30 , to hy with ¢ =1, A := tgZ C R lattice,
x:=(k+|I|)x+tr;D € R* =R and v/ =1 . Therefore we can define

— br ;
Hp:=h 1) = OLm_ 2mimé o oo (RC
7i=hi (1) > e € ™ (R)
me i (Z—(k+|I)x—trrD)N] =C,C
By SATAKE’s theorem , theorem 3.11 , since f € sSi(T") ,
‘f" € L*™(G) , and so there exists a constant C’ > 0 independent of yy such

that ||hs]| < C' for all I € p(r) , and now theorem 1.30 tells us that

6

6
!
1H7|| < —5 11 (0. Dl < —5-

Clearly hy ($,1) = 0:Hj .
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Since j is smooth on the compact set M , all ¥ (En)! | I € p(r) , are
uniformly LIPSHITZ continuous on M with a common LIPSHITZ constant C”
independent of 7 . So we see that H € C*°(IR, M)® @ A (C") defined as

H(t,w) = Y (w1 H () (En)!
Tep(r)

for all (t,w) € R x M is uniformly LIPSHITZ continuous with LIPSHITZ
constant Cy := (60” + 1) C’ independent of 7 , and the rest is trivial. [

wC

Let I € p(r) and m € %(Z— (k+|I|)x —tryD) . Since sSi (I') is a
HILBERT space and sSi (I') — C, f + by, is linear and continuous there
exists exactly one ¢, 1m € sSi(I') such that by, = (@ro,1,m, f) for all
fe SSk(F) .

Clearly having ¢ fixed, the family

{er0.1mrep(r) , me i@k mx—te D)0 0.0

is independent of the choice of D and x , but even independent of the choice
of g € G itself up to multiplication with a unitary matrix with entries in C

and invariant under conjugating o with elements of I' . Let us check it.

x| 0
Let ¢ € G, t; € R and wj = €M, E)eU(r)
0| B
diagonal, such that also vy = g’at()wég’_l . Then by theorem
*| 0
3.10 there exist '€ R and n = € Nkg(A) ,
0| E,
E, € U(r) , such that ¢ = garn . Then ay = n~taz,n , and so
th =toifn € M and tj) = —toif n ¢ M , wly = w,, *wowy, , and so

Ey=E,'EoE, . j(w)) = j(wy) = e*™X | and E} = exp (27iD’)
if we define D’ := E,'DE, . Without loss of generality we
may assume that two diagonal elements of D are equal if the
corresponding diagonal elements of Ey are equal. Then D’ is
again diagonal. Let &/ € C® (R x M)® ® A(C") be given by
W (t,w) := f' (¢ayw) for all t € R and w € M . Then

W(t,1) = f (garna)

(
= f/ (gaTat/n)
J

] (n)k .]?/ (gat/+'r, Enn](n))
= G R +T,1, Eami(n)
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where we obtain ¢’ by transforming ¢ with the element nM € W,
sot' =tifne M andt =—tif n¢ M . If we decompose

W(tw)= Y jw) > V€™ (En)'

Tep(r) me - (Z—(k+|I[)x—trrD’)
0

for all (t,w) € R x M , all bg,mEC,IE{p(T),
m € g (Z — (k+|I]) x — tr;D’) , then we get
0

Z Z /I7m€27rimtnl
Tep(r) mG%(Zf(kHIDXftr[D/)

=h'(t,1)

=3 (n)k h (t' +T,1, Ennj(n))

= 3 ) x
Iep(r)

% Z bl,me%im(t/'*j) (Enn)l ) (32)

mG%(Z—(k—i—HDx—tr[D)

Let ¢} ,, € sSi(I') such that b}, = (gp’Lm, f) forall f € sSi(T"),
ITep(r),me %(Z— (k+|I|)x —tryD') .

Without loss of generality we can assume that either
n € Ng/(A)\ M’ or n € M itself and T = 0 , since by lemma

3.8 a general arn is a product of the two types.

In the first case E,, =1, ¢, = —tp and ¢’ = —t forallt € R . So

kHI'eZ”Tb[’m for all

by equation 3.2 we see that b}, = j(n)
m e %(Z— (k+ |I|) x — tr;D) and so
Pt = G T

ing m withnM € W ;som/ = —m .

©~o.Im » Where we obtain m' by transform-

Now let us treat the case n € M and T' = 0 . Then t{ = to
and t' = ¢t for all t € IR . Without loss of generality we can
assume that either F,, is a permutation matrix or F, stabilizes
each eigenspace of Fy , again a general F, is a product of the two
types since E,, € U(r) and Ej) = E,;'EyE, is again diagonal.

In the first case let o € &(r) such that E,e; = e, ;) for all
j=1,...,r . Then we have (E,nj(n))! =em®  @Dj(n)! with
some €7 € {1} and tr,1(yD" = tr;D for all I € p(r) . So

again by equation 3.2 we see that
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Vs (rym = €13 () by

and s0 ¢!y = e13(n) Vg, 1
In the second case, where FE,, stabilizes each eigenspace of Ey we
have E{ = Ey and therefore D’ = D . Since E,, € U(r) there

exists a unitary matrix (1) (ry With entries in C such that

I,Jep

(Ean)' = Y e’

Jep(r)

if e77 # 0 then |I| = |J| , and since E,, stabilizes each eigenspace
of D if 77 # 0 then tr;D = tryD . So by equation 3.2

Z Z bi],me2ﬂ-imt77J

Jep(r) me%(Zf(kHﬂ)xftrJD)

= > i) > brme?™ ) (B,m)!

Iep(r) mé g (Z—(k+|1))x—tr; D)
= > i)
Jep(r)

% § E €IJbI,m€27mmT7]J 7

mé€ ;o (Z—(k+|J)x—tr; D) I€p(r)

50 b{],m = ](n)k—HJI Z[e@(r) 6IJbI,m and

O =) FEN" T rm -
Tep(r)

L' Then clearly

Now let v € " and 7{, := vy~
Yo = Ygar,wo (fyg)_1 , and so, if we define
K e C®(Rx M)® ® A(CT) by K(t,w) = f (vgasw) for all

te R and w € M , then we get

h/(ta w) = f/ (79atw) = h(tv w)

by the left-I'-invariance of ]7’ .

For the rest of the chapter for simplicity we write m €| — C,C'[ instead of

% (Z — (k+|I|)x —tr;D)N] — C,C[ . In the end we will compute

©ro,I,m as a relative POINCARE series.

Now we can state our main theorem: Let  be a fundamental set for all

primitive regular loxodromic vy € I' modulo conjugation by elements of T" .
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Theorem 3.17 (spanning set for sSi (I') ) Assume that the right trans-
lation of A on I'\G is topologically transitive. Then

{SO’YO,I,TTL| o € Qal € @(T)’m 6] - O,C[}
is a spanning set for sSi (') .

Proof- The LiE algebra embedding p : 51(2,C) < g’® of theorem 1.32 in the

higher rank case now has an explicit description:

By theorem 1.32 or by explicit computation one can see that the preimage
of g’ under p is su(1, 1) , the preimage of ¥ under piss (u(1) ®u(l)) ~u(l),
and p lifts to a LIE group homomorphism

al|0 b

a b — | —

p:SL(2,C) — G =SL(p+1,C), =1 0[]0 |0
c d —

c|0 d

such that p(SU(1,1)) C G’ .

Let us now identify the elements of g with the corresponding left invariant
differential operators, they are defined on a dense subset of L? (I'\G) , and
define

0 1
D = p €a
10
0 1
D = p eg
—i 0
1 0 ,
¢ = p et
0 —1

We see that a = IRD , and so as left-invariant differential operator D gen-
erates the flow ¢; . Again the IR-linear span of D , D’ and ¢ is the 3-
dimensional sub LIE algebra p (su(1,1)) of ¢’ = g, and we have the following

commutation relations:

178



(¢, D] =2D', [¢,D'] = -2D, [D,D'] = —2¢.

¢ generates a subgroup of K/ C K , and

et 0
R/277Z — K , t — exp (tp) = p )
e_'L
is an isomorphism. Now define
D=1 (D—iD') , D™ := ! (D+4D') and ¥ := —i¢
2 ’ 2

as left invariant differential operators on G . Then clearly

[V, D"] =2D", [¥, D] = -2D" and [D", D] =V.

As in the higher rank case we see that

(D) =-D, (D7) =-D" and ¥* =0,

and so by standard FOURIER analysis

L*(T\G) = @ H,

vEZ

as an orthogonal sum, where

H,:={F e L*(I'\G)N domain ¥ | ¥F = vF}

for all v € Z . By a simple calculation we obtain

DT (HV N domain D*) C H,42 and D™ (HV N domain D*) CH, o
forallveZ.

Lemma 3.18 For allh € O(B) ~ O(B) ® A (C")

D KW =0.
Proof: Let g € G . Then again h|, € O(B) , and 1 (g0) = iﬂ;, . So
DI (g) =D~ (ﬁ’ (g<>)) (1) = Byhl, = 0.0
Lemma 3.19 Let f € sSk(I") . Then f’ is uniformly LIPSHITZ continuous.
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Proof: similar to the proof in the higher rank case, chapter 1 , using

SATAKE’s theorem, theorem 3.11 . [J

Now let us return to the LIE group G . Choose a left invariant metric on
G such that g% , o« € ®\ {0} , a and m are pairwise orthogonal and the
isomorphism IR ~ A C G is even isometric. Then since the flow (¢¢),cg
commutes with left translations it is partially hyperbolic with constant 1 ,
as one sees immediately in the root space decomposition of g . The corre-
sponding splitting of the tangent bundle of G is the unique left invariant
splitting given by

T'G=g= adm & @ g% D @ g* .

aced, a>0 acd, a<0

Tlajz T = T =
Indeed TO @ T+ , TV @ T~ , T° , T+ and T~ are closed under the
commutator since [ga, 93] C gasp if a+ 6 € ® and [gq, gg] = 0 otherwise for
all a, 8 € & . So we can apply the partial ANOSOV closing lemma, theorem
1.21 , which here is again really convenient since G acts transitively and

isometrically on itself by left translations.
As in the higher rank case for all L C G compact, T, > 0 define

My = {gatgfl | ge L,te[-T, T]}

and

Npre = {g € G |dist (gaML,T) < 5} .

Lemma 3.20 For all L C G compact there exist Ty,e9 > 0 such that
N Npzye = {1} -

Proof: same as in the higher rank case, chapter 1 . [J

Theorem 3.21

(i) For all Ty > O there exist C1y > 1 and €1 > 0 such that for all z € G,
vyel and T > Ty if

e:=d(yr,zar) < &

then there exist z € G , w € M and t € R\ {0} such that vz = za,w ,
d((t,w),(T,1)) < Cie and for all T € [0,T]

d(zar,zar;) < Cie (e_T + e_(T_T)> .
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(i) For all L C G compact there exists eo > 0 such that for allx € L , v €T
and T € [0,Ty] , To > 0 given by lemma 3.20 , if

e:=d(yz,zar) < e

theny=1andT < e .

Proof: same as in the higher rank case. [J

Now let f € sS;(I') such that (¢ 1m,f) = 0 for all o 1m , 0 € T
primitive loxodromic, I € p(r) , m €] —C,C[. We will show that f =0 in

several steps.

Lemma 3.22 There ezists F € C(I\G)® uniformly LIPSHITZ continuous

on compact sets and differentiable along the flow py such that

f = 0,F (0ar)|,_o = DF.

Proof: By assumption the right translation with A is topologically transitive
on I'\G . So there exists g9 € G such that 'gpA C G is dense. Define
seC>®(R)“®A(CT) by

s(t) ::/0 f’(goaT)dT

forallte R .

Step I Show that for all L. C G compact there exist constants C3 > 0
and €3 > 0 such that for allt€ R , T >0 and v € I if gga; € L and

e :=d (vgoas, goar+7) < €3

then |s(t) — s(t+ 1) < Cse .

Let L C G be compact, Tp > 0 be given by lemma 3.20 and
Cy > 1 and &1 be given by theorem 3.21 (i) with T} := Ty . Define
C3 := max (Cl (Co +2¢) ,’ f’ > 0, where Cy > 0 is the LIPSHITZ
o0

constant from theorem 3.16 (ii) and ¢ > 0 is the LIPSHITZ constant of

f’ . Define g3 := min (51,52, %) > (0, where €3 > 0 is given by theorem
3.21 (ii) .

let t ¢ R , T

> 0 and v € T such that gga; € L and
e:=d ('YQOGt,gOa;_,_T) < .
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First assume 7" > T . Then by theorem 3.21 (i) since € < £; there exist
g€ G ,wye M and ty € R\ {0} such that vg = ga,wo ,
d ((to,wo), (T,1)) < Cie , and for all T € [0,T]

d (goai4+r,gar;) < Che (e*T + e*(T*T)) .

We get

s6+1) s = [ T lguryar+ [ (F o) gar))ar

IlZ: 12::

and by the same calculation as in the proof of lemma 1.36 in the higher

rank case |I2| < 2¢Cie .

Since v € T is regular loxodromic there exists 79 € ' primitive loxodromic
and v € IN\ {0} such that v =~ . 7o € gAW g~ ! as well since theorem 3.10
tells us that g € G is already determined by ~ up to right translation with
elements of ANk (A) . Choose w' € M such that v = guw'ay wy, (gw') " with

x| 0

t, € R and wj, = € M , Ej € U(r) diagonal, and let ¢’ := guw' .
0| B,

We define h € € (R x M)® @ A (C") as

h(r,w) := 7 (d'arw) = [ (garw'w)

forall 7 € R and w € M . Then

T
L :/ h (T,w'_l) dr.
0

We can apply theorem 3.16 (i) and, since f is perpendicular to all ¢, 7.m »
Iep(r),me] —C,CJ, 3.16 (ii) as well with ¢’ := gw’ instead of ¢ , and

SO

L = | (T H (0,0
= B (L)~ H (t0, 00 )|
< Cod ((T,1), (to, wo))

< CICQE )

where we used that H (0,w'~!) = H (t{, wiw'~!) and that we have chosen
the left invariant metric on M , and the claim follows.
Now assume T' < Tj . Then by theorem 3.21 (ii) since ¢ < g9 we get T' < ¢

and so
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<e

o0

T ~
|s(t+T) —s(t)| = ’/0 f (goassr) dr

Step II Show that there exists a unique F € C(I'\G)® uniformly

LiPSHITZ continuous on compact sets such that for all ¢t € R
s(t) = F (goar) -

It is the same calculation as in the proof of theorem 1.36 in the higher rank

case.

Step III Show that F' is differentiable along the diagonal flow and
that for all g € G

0-F (gar) |-—o = f'(9).

again the same calculation as in the proof of theorem 1.36 in the higher

rank case. [J

Lemma 3.23

(i) For all L C G compact there exists €4 > 0 such that for all g,h € L if g
and h belong to the same T~ -leaf and d~ (g, h) < 4 then

Jim (F (gar) = F (hay) =

and if g and h belong to the same T -leaf and d* (g, h) < &4 then

lim (F (ga;) — F (hay)) =

t——o0

(i1) F is continuously differentiable along T~ - and T -leafs, more precisely
if

p: 1 — G is a continuously differentiable curve in a T~ -leaf then

8, (Fop) / a.F (p(t)ay) dr

and if p: I — G is a continuously differentiable curve in a T -leaf then

8 (Fop)( / ouf (p(t)ay) dr
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Proof: (i) Let L C G be compact, and let L’ C G be a compact neighbour-
hood of L . Let Ty > 0 be given by lemma 3.20 and €9 > 0 by theorem 3.21
(ii) both with respect to L’ . Define

Lo o) o
€4:= —min | 1,89, — ,
4= 3 1E2 g a

where 1 > 0 and Cy > 1 are given by theorem 3.21 (i) with 77 := Tp . Let

do > 0 such that Us,(L) C L' and let

d € 10, min (dp,e4) [ -

Let g,h € L in the same T~ -leaf such that ¢ := d7(g,h) < 4 . Fix some
T > 0 . By assumption there exists go € G such that I'gpA C G . So

dense

there exist 74,7, € I" and t,4,t, € R such that

d (gas, vg90at,+¢) » d (hat, Yagoat, ++) < 6

for all t € [0,7"] , and so especially vgg90a4,, Vagoas, € L' . We show that
forall t € [0,T"]

|F (vg90at,+¢) — F (yagoat,+¢)| < Cs (ee™" + 26)

with the same constant C% > 0 as in step I of the proof of lemma 3.22 with

respect to L’ .

Without loss of generality we may assume 71" := ¢, —t, > 0 .
Define 7 := 747, ' . Then for all t € [0,7"]

d (’Y’Yggoatg+t7 ’Yggoatg+t+T) <eet426

by the left invariance of the metric on G .

First assume T' > Ty and fix ¢ € [0,7”] . Then by theorem 3.21
(i) since ee™t + 2§ < e + 26 < min (51, %) there exist z € G,
to € R and w € M such that vz = za;,w ,

d((to,w),(T,1)) < Cy (26 +ce7 ),

and for all 7 € [0,7T]

d (Vggoat,+t4+, 2a7) < Cy (ee™" + 20) (e—r . e—(T-q-)) .
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And so by the same calculations as in the proof of lemma 1.36

we obtain the estimate

’F (7990atg+t) - F (’Yggoattht)‘ < C;/; (Ee_t + 25) .

Now assume 7" < Tj . Then by theorem 3.21 (ii) since
Yggoat, € L' and € + 26 < g9 we obtain v = 1 and so by the left

invariance of the metric on G

!

d(1,ar) <ee T 426,

therefore T < ee= 1" 4+ 25 . So as in the proof of lemma 3.22

‘F (VQQOatg+t) - F (ngoath-f—t){ < ‘ ,]?/ - (é“eiT/ + 25)
< Cf(ee™t+20) .

Since F' is left-I'-invariant we have the desired estimate.

The rest goes exactly as in the higher rank case. [

(ii) same as in the higher rank case. [

Lemma 3.24

(i) Fe L2(T\G) ® A(C") ,

(ii) EF € L2 (T\G) @ A (C") for allé e RD @& gN(TT®T™) .

Proof: (i) If I'\G is compact then the assertion is trivial. So assume that
I'\G is not compact. Since vol (I'\G) < oo it suffices to prove that F is

bounded, and by corollary 3.14 it is even enough to show that F (¢<{) is
bounded on NAs; K forallge = . Solet g€ = .

Step I Show that F (g<¢) is bounded on Na; K .

F (g<) is bounded on na, K since na, K is relatively compact. On the other
hand F (g<) is left- g~'T'g -invariant, so it is also bounded on

NayK = (glﬂg_1 NNZ (G') na, K

by theorem 3.13 (i) .
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Step II Show that there exists C’ > 0 such that for all ¢ € NA.; K

Cl
< .
~ A’ (Rg'0,Rg'0)

I (99)

As in section 3.2 let ¢; € O(H) such that flg|p—1 = > rcy0 qr9’ . Then
since f'(g¢) € L2 (nAsy,K) @ A(CT) by theorem 3.15 we have FOURIER

expansions

qr (w) = Z I.m (Wo) 2™ (3.3)
mée 3 (Z—tr D—(k-+I)x)"R<o
w1 —1
forall I € p(I) and w = € H , where ¢, € O (CP71) |
Wo p—1
Iep(r), me s (z—trD— (k+|I|)x) NR<q . Define

1
My :=max | J o (Z—trD = (k+[1])x) N Reo < 0.
0
Tep(r)

Rnay,0 C H is relatively compact, and so since the convergence of the
FOURIER series 3.3 is absolute and compact we can define

_ 2tq
C// — e 2w Mope %

2mmwy
X Il'élg();) g | ‘Cl,m (WQ) e | ‘oo,RnatOO < 0.
me % (Z—tr1 D—(k+|I|)x)NR<o

Then we have
‘QI (W)| < C/lewMgA’(w,w)

0
for all I € p(r) and w € RnA=4,0 . Now let ¢’ = € nAoK
0

E' € U(r) . Then

fl (99/) = f|g’R*1 ‘RgR—l (e1)
e
= flolpo [RIRT =2 |5 (BIR " e)"
n
Rg'0 ) _
f|g|R*1 J(RQ/R 1781)k

Enj (RgR™1)

- Z qr (Rg’O) (En)lj (Rg'R_l,el)
Tep(r)

k+1|
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Therefore since ‘j (Rg’R_l, el)} = /A’ (Rg'0, Rg'0) we get

I (99)

< 2rCl/e7rM0A’(Rg’O,Rg’O) >

k+r

X <A’ (Rg’O,Rg'O)g + A (Rg'O,Rg’O) 2 ) .

So we see that there exists C’ > 0 such that

/' (99) ¢

<
— A’ (Rg'0, Rg'0)

for all ¢’ € nA~4, K , but on one hand f’ (g<) is left- g~'T'g -invariant, and
on the other hand A’ is RNZ (G') R™! -invariant. Therefore the estimate is

correct even for all

g € NAs K = (Tg ' NNZ (G')) nAsi, K

by theorem 3.13 (i) .
Step 11l Conclusion: Prove that

7 (90)] < NIF (90 lo,wagg 1 +2C €

on NA.; K .
Let ¢’ € G be arbitrary. We will show the estimate on ¢ AN NA~; K .

R — H,t— w; := Rg'a;0

is a geodesic in H , and for all ¢t € R we have ¢'a; € NAs, K if and only if

A (wy, wy) > 2e?"0 . Now we have to distinguish two cases.

In the first case the geodesic connects co with a point in OH . First assume
that limy_,oo Wy = 00 and limy—,_ oo wy € OH . Then limy_,o A’ (Wy, wy) =
oo and limy—, o A’ (wy, wy) = 0 . So we may assume without loss of gener-
ality that A’ (wg, wo) = 2?0 | and therefore ¢’ = ¢g'ag € Nay, K and

g'ar € NAsy K if and only if t > 0. So let ¢ > 0. Then

t ~
F(gda) = F (g9) + / 7 (99'ay) dr

and so

f (gg'aT) dr.

t
7 (95a)] < 17 (60 o+ |

By step II and lemma 3.12 (i)
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7 (9g'ar)

t dr
dr < ' _
T /0 A’ (Wr, wr)
Cl t

e 2Tdr

o)

< (e,

The case where lim; ., o, = 0o and lim; ., € JH is done similarly.

In the second case the geodesic connects two points in 0H . Then without
loss of generality we can assume that A’ (Rwy, Rw;) is maximal for ¢ =0 . So
if A" (wo, wo) < 2e we have g/ ANN A, K = () . Otherwise by lemma 3.12
(ii) there exists T € R>q such that A’ (wp, wr) = A/ (w_p, w_1) = 220 |

and since A’ (wp, wy) < ﬁA' (wo, wp) we see that

1
T < B log (2A’ (wr, WT)) — 0.

So ¢g'ar,g'a_p € Nay, K and g'a; € NA~; K if and only if t €] — T,7T'[ .
Let t €] —T,T[ and assume t > 0 first. Then

T
F(g99'ar) = F (99'ar) — /t /' (99'ar) dr,

and so

7' (9g'ar)| dr .

T
7 (95/00)] < I1F (60) vy + |

By step II and lemma 3.12 (ii) now

r

[ (99'ar)

T dr
< -
dr < C/O A (wrows)
C/ T

< T dr
A/ (W(),Wo) /0

< c’ 027

~ 247 (wo, wo)

< 20'e 20,

The case t < 0 is done similarly. [J

(i) Since on one hand 0, F ($ay) |.—o = f' € L2 (T\G) ® A (C") and on the
other hand vol (I'\G) < oo it suffices to show that {F is bounded for all
ac€®\{0}and £ € g*. Solet € ®\ {0} and £ € g . First assume o > 0,
which clearly implies &« > 1 and £ € T~ . So there exists a continuously

differential curve p : I — G contained in the T~ -leaf containing 1 such that
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0el,p(0)=1and Op(t)|,_o =& . Let g € G . Then by theorem 3.23 (ii)

we have

EF) (9) = 9r(t)l1=o

= / af (gp(t Jar)|,_ dr

= - /0 of' (gara_rp(t)ar)

_ /0 ((Adu_.(©)) ') (gar) dr

= = [T (6F) twenyar

dr
t=0

SO

[(€F) (9)] < cll€]ly < o0

where c is the LIPSHITZ constant of f’ . The case a < 0 is done similarly. [J

Therefore by the FOURIER decomposition described above we have

F=>Y Fun,

IepveZ

where Fj, € H, forall I € p(r) and v € Z . D =D" + D~ , and again a
simple calculation shows that Dt and D~ €e RD@® gN (T ®T~) , and so
DYF,D-F € L?(T\G) ® A (C") by lemma 3.24 . So we get the FOURIER

decomposition of f’ as

f'=DF= > Y (D'Fy2+D Fru)n
Iep(r) veZ

with DY Fy o+ D" Fr 42 € Hy, for all v € Z . But since f € sSi(I") the
FOURIER decomposition of f’ is exactly

f=am

with q; € C°(G)¢ N Hj 1), and so for all I € p(r) and v € Z

B q ifv=Fk+|I|
D+FI,V—2 +D FI,V+2 =

0 otherwise

Lemma 3.25 Fy, =0 for I € p(r) andn € Nxpy g -

189



Proof: similar to the higher rank case. Apply the argument for each
I € p(r) seperately. O

So for all I € p(r) we obtain D" Fy . 7—o = q; and finally D~¢; = 0 by
lemma 3.18 , since f € O(B) , so

lar|l5 = (a1, DT Fr—2) = — (Dqr, Fr—2) =0,

and so f’ = 0, which completes the proof of our main theorem. [

x| 0
Fix a regular loxodromic vg € T' , g € G , g = , EelU(r),
0| F
0
such that o = gai,wog~! € gAMg™" | to € R\ {0} and wy =
Ey

Ey € U(r) diagonal, D € R"™*" diagonal such that exp(27iD) = Ey and
x € R such that j(wg) = €™ . Now we will compute 1. € sSk(T) ,
Iep(r),me % (Z — (k+ |I|) x — tr;D) , as a relative POINCARE series
with respect to I'g := (y9) C I' . Hereby again = means equality up to a

constant # 0 (not necessarily independent of 7 , I and m ) .

Theorem 3.26 (computation of ¢ 7, ) Let I € p(r) and
k > max (ko,2p + 1 — |I|) , where ko is given by SATAKE s theorem, theorem
3.11 . Then for all m € % (Z — (k+ |I|) x — tr;D)

(i)
Pryo,Im = Z aly

y€lo\I'

where

> Tim —k=|I 7k — I
q:—/ e? A (O, ga0) k |I|j(gat,0) Hdt (E 1()

€ sMj, (To) N Ly, (To\B) .

(ii) For all z € B we have

10 = (8 (X () () )

where
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1 -1
0 0
Xt:=yg ) and X~ =

0 0

are the two fixpoints of vo in OB , and
vi=¢g lze BCCP.

Proof: (i) Let f € sSi (I') , and define

h=3jepmhsn’ € C°(Rx M)*®A(CT) , all hy € C® (R x M)* and
bim€C,I€p(r),me % (Z — (k+ |I|) x — tryD) as in theorem 3.16 .
Then by standard FOURIER expansion we have

to )
/ e 2mml (¢, 1) dt
0

fo —2mimt 0 . k I
= / e " floa | —| |7(g9ar,0)",n" )dt
0 n
to )
/ e—27rzmt><
0

< (A &, 9a:0)" "¢, f) (En)‘]j(gat70)k+'”7,n[>dt
Jep(r)

bl,m

_ /to o~ 2mimt (A (Q,gatO)ikim (E—IC)I : f) j (gat,O)kHH dt
0

= [ 7o (A (0, gar0) 1 (E*1§)1>Nl x
0 e

x j (gag, 0)* 1t .

Since by SATAKE’s theorem, theorem 3.11 , f’ € L*(G)®A(C") , and

/w/m

B 0 G
=/ ‘51’
G
— [ Jico.01]

G
E/A(z z) 5"
B
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by TONELLI’s and FUBINT’s theorem we can interchange the order of inte-

gration:

b = [ [ (7 (800004 (570 5

x j (gag, 0 at

= / <f’,/t0 ermimt (A (¢, gaz0) " (E—lg)I>N/Mk+IIdt>
G 0

- ( / " exmimt A (6, ga,0) 1 T (gar o)t (B¢ f)
0
= (q/a f)Fo 3

where

fo 2mimt —k—|I| TRt —1 1 ~! 1 r
(/ e A (¢, ga,0) Jj (ga,0) dt (E~'¢) > € L' (G)®A(C") ,
0

to .
/ €2mmtA (O,gatO)_k_mj(gat,O)kH”dt (E_1C)I e O(B)
0

since A ($,w) € O(B) for all w € B and the convergence of the integral is

compact, and so by theorem 3.3

/ o 2mimt —k—|I| Toa 0y -10)!
¢ = 3 [ A0, ga0) MG (gar, 00 ar (B71¢)
'€l 0 !

€ sMj, (To) N L}, (To\B) .

/

Clearly

A ($, gar0) 1 (B-1¢)!
Yo
— A (100, 9a,:0) T (ByET1¢)! j (70, ©)FH
le+|1|

= A ($75 1 9a:0) T (BB G (g L gar0)

so for all z € B we can compute ¢ (z) as
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q’(z) _ Z/ 27rzmtA(<> gatO) k— |I|( IC) (g a:,0 )-H |dt (Z)

VEZ Y

_ Z/ 27r7,mtA(Z 70 gCLtO) —k— H(EVE 1<)
VEZL
X j (yaygat,O)kHI‘dt

™ I or
_ Z/ 2 thA(Z 9ty ) k— |I|( IC) 2 zz/trID

VEZL

—k+|I .
X ] (gat Vt070) +[1] 27rw(k+|[|)xdt

- Z/ it VtO)A (Z gat—vty 0) -y (gat—ytm ) +|I|dt
veZ
X (E_IC)
= = [ A (g0 a0 (B0 = aa).

Again by theorem 3.3 we see that > cp\raly € sMg(I') N L} (T\B) , and
so by SATAKE’s theorem, theorem 3.11 , even € sSi(I") , such that

bI,m = Z q|’77f )

’YEF()\F r

and so we conclude that o, 1,m» = Zwero\r qly . O

(i)

k1|

m —
/ e2mimt A (z, gatO)fkfmj (gat,0) dt
—0Q

— (g 2) k+1|/ 2T (5717, 0,0) k—ll\mkﬂﬂdt

71 k+\1| 27rzmt —k—|I| 1
h -
/ — vitanh t) (cosh ()T dt
2mimt
_ @1Jf+”/ ‘ —"
—o (cosh t — vysinh )**] |
1 Nk 1 1401 \™"
:j(g ’Z) k+|1] <1_U
(-
L k|1 Lkl (14 v\
=i () =) ) (1)

=(AEX)AEX) T ({E) o
o
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3.4 Super cusp forms in the parametrized case

Now we return to the general case where G := sSU(p, q|r) ,

P:=AR"™) =D <IR0|m) , m € IN | with the odd coordinate functions
Biy...,0m €D <IR0|m) and T is a discrete P-sub super LIE group of G with
body Y# =T being a discrete subgroup of G = G# .

Let M be a real super manifold and f € (D(M)RP)C . Then f has a

unique expansion

f= > fp

I,Jep(m)
with f; € D(M)C, I € p(m) , and a notion of a (with respect to P ) relative
body map and also of a relative degree seem to be useful: We define the

relative body map # as

#i=ide?  (DMBP) DM, f= Y 18— = f,
Iep(m)
which is again a unital continuous graded algebra epimorphism, and the

relative degree deg’ as

deg’f::min{ ] ‘ I € p(m) and fU;éO}

for all f € (D(M)RP)® (in particular this implies deg’0 = oo !)
Clearly deg’ (f + h) > min (deg’ f,deg'h) , deg’ (fh) > deg’ f + deg’ h and
deg’ f — f#' >1forall f, g€ (DIM) K P)C . The kernel of #' is precisely

7 ::{fe(D(M)&P)C’ deg’fZl},

which is an ideal of (D(M) X P)® (only contained in the set of nilpotent
elements of (D(M) KR P)¢ ) . For all v € N obviously

T = {f e (D(M) R P)C ‘ deg' f > v}
is the ideal spanned by the elements 3/ , I € p(m) , |[I| =v . SoZ™! =0.
Clearly if M is a holomorphic super manifold then the image of O(M)XPC
under # is O(M) .
Proposition 3.27 Letgep G .

(i) Let f € (D(G)RP)" and f(90) = X repm @B’ with g1 € D(G) for all
I€p(m) . Then f(gO)* = f# (g%0) , deg f(g0) = deg' f , and

ar = J1 (9#0)
for all I € p(m) such that |I| = deg’ f .
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(ii) Let f € D(B) R PC and flg = 3¢ imy @B with g1 € D(B) for all
I € p(m). Then deg’ f|, =deg’ f, and

ar = fl#

for all I € p(m) such that |I| = deg’ f , in particular (f\g)#l = (f#/)

g*
Proof: (i) Obviously it suffices to prove the assertion for f € D(M) K P .

The fact that h(g))# = h# (97 ¢) for all h € D(G) KP can be seen in the

following commutative diagrams: Let

m i PRDG)RP —DG)RP,a®h®b (—1)™h @ (ab),

m be the multiplication on G , which is a super morphism from G to G x G ,
and let

(m) : D(G) — D(G x G) = D(GKD(G), h+ h(m),

(9) : D(G) = P, h— h(g)

and

(g#) :C*(G)—-C,h—nh (g#)

be the 'plugging in’ homomorphisms, which are graded algebra homomor-
phisms. Then

D(G) R P
(m)®id |
D@RDG)RP > (@)&D(G)RP
(g)@id@id | % | (¢#) did @ id
PRD(GRP 245 D(G) R P
m' | % L #
D(G)RP =, D(G)

and
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#/

D(G) WP — D(G)
(m)®id | % ]
DGRD(G)RP 9E9F* D(G)RD(G)
#&id @1id | % | #&id . (3.5)
C(@EDG)RP HEET  co(@)aD(g)
(¢7) ®id®id | % | (g%) &id
D(G)RP an D(G)

The map in the lower left corner of 3.4 maps h € D(G) K P to
h(gO)# € D(B) , the map in the upper right corner of 3.5 maps
h € D(G)XP to h# (97 $) € D(B) , and finally the map in the upper right
corner of 3.4 and the map in the lower left corner of 3.5 , both going from
D(G) X P to D(G) , coincide.

Now let v := deg’ f . Since the map

DG)XP —DG)KRP, h— h(gd)

is P-linear we have

Y a = f(go)

Iep(m)

= Y filgd)s!

Iep(m), |I|zv

= Y filgn)*s

Iep(m), |I|=v

> (filgo) - Silg0)*) 81

Iep(m), |I|=v

+ > filgo)s”,

Iep(m), |[I|>v+1

but all (f1(90) = fr(g0)#) BT, T € p(m) , 1| = v, and f1(g0)B" ,
I€gp(m), [I|>v+1, belong to I"* . So q = f1(g0)* = f1 (g7¢) .
Since therefore ¢y = 0 if and only if fr = 0 we finally obtain
deg' fly, =deg’ f . O

(ii) follows from (i) since l;]vg = h(gd) for all h € D(B) K PC |
f= Z[Ep(m) f18" and f(g$) = ZIE@(m) g8t with all fr, g € D(Q)C . O
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Corollary 3.28 Let f € sMy(Y) . Then fr € sM(T) for all T € p(m)
such that |I| = deg’ f . In particular f# € sM;,(T) .

Because of proposition 3.27 and corollary 3.28 the idea now is to define the
space of super cusp forms sSi(Y) as a sub graded P®-module of sM(Y)
having the following property:

If f =2 rcoim f18t € sSk(Y) , fr € O(B) for all I € p(m) ,
and Iy € p(m) such that |Ij| = deg’ f then f, € sSi(T) .

Assume that we have already successfully defined sSi(Y) . Then in partic-
ular f# € sS,(T") for all f € sS,(Y) , and we have the following theorem:

Theorem 3.29 Let {pxr}ycp be a family in sSi(Y) with the following prop-

erties:

{i} {gpf/})\eA is a spanning set for sSk(T') ,

{wii} all p\ , X € A are homogeneous,

{ii} if {ex}aen @5 a family in C such that )\ c,\gof/ converges with re-

spect to (, )p then Z)\GA ey converges uniformly on compact sets

to a function in sSk(Y) .

Then {@x}yen 15 @ PC-spanning set for sS,(Y) , more precisely if
f € sSk(Y) then there exists a family {ax},c, in PC such that

=Y e,

A€A

where the sum converges with respect to (, )p in all components belonging
to some I € p(m) with |I| = deg’ f and uniformly in all derivatives on

compact sets, and degay > deg’ f for all X € A .

Proof: If f = 0 then the assertion is obvious. Otherwise deg’ f < m , and so
we prove the assertion for f € sSi(Y) \ {0} by reverse induction on deg’ f .
Let f € sSk(T) such that deg’ f = m . Then by corollary 3.28

f= f{1,...,m}ﬂ{1""’m}

with f(1 . my € sSk(I') . So by property {i} there exists a family {cx},cp
in C such that

!
fi,my = chf ;

AEA
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where the convergence is with respect to ( , ) and so also uniformly on
compact sets, even uniformly in all derivatives on compact sets. So if we
define ay := ¢\ B € PC for all A € A then

D enax = ZCMDflﬁ{l”"m}

AEA AEA
+3 e (poa—of) gt
AEA
=+ a (w - cpf,> ptmi,
AEA

but (gpA — gpf) pllmb e 7m+1 and therefore it is = 0 for all A € A .

Now assume v € {1,...,m — 1} and that for all h € sSi(YT) with

deg’(h) > v + 1 there exists a family {b)},c, in PT such that

I = > sea®abx , where the sum converges with respect to (, )p in all
components belonging to some I € p(m) with |I| = deg’ f and uniformly on

compact sets. Let f € sS,(Y) with deg’(f) = v . Then if we decompose

f= > fup,

Iep(m), [I|zv
fr € O(B) for all I € p(m) , |I| > v , by corollary 3.28 we see that
fr € sSk(T) for all I € p(m) such that |I| = v . Again by property {i} there
exist families {CE\])}/\GA inC,Ie€gp(m),|I|=vr,such that

/
fr= Z C(AI)SOf

AEA
for all I € p(m) such that |[I| = v . Let I € p(m) such that |I| = v .
By property {iii} > yca cg\l)gm converges uniformly on compact sets to a
function Fy € sSy(Y) , and F}' = f; . So

h = f- Z Frp!

rp(m), 1l=v
= - > (r-F)s
Tep(m), 1=y

+ > f18"

Iep(m), |I|>v+1
S SSk(T)

with deg’ h > v+1. So by induction hypothesis there exists a family {b) } AeA
such that h = ) ., @aby in compact convergence and degby > v + 1 .
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Therefore by property {ii} f = > <5 ¥aax in compact convergence, since

Z
all ¢y are holomorphic with respect to | —— | even in uniform convergence

¢

in all derivatives on compact sets, if we define

a= Y (~1rAdpl by e PO
Iep(m),|Il=v
for all A € A . Clearly degay > v , and

fo=> e

AEA

= X XA

Iep(m),|I|l=v A€A

+ > > o <<PA - @f) BT+ bagn

Iep(m),|I|l=v A€A AEA

All (Lp,\—apA ),61 and by , I € p(n), |I| =v, X €A, belong to ZV*! .
Therefore we see that the convergence is with respect to ( , ) in all

components belonging to some I € p(m) having |I| =v . O

Now in the end let us consider three special cases where it is possible to

define the space sSk(YT) having the desired property.
First case : I'\G compact.
Then we define sSg(T) := sMy(Y) .

Second case : There exists a discrete subgroup I' C G and a
P-element g €p G such that T = gI'g~!

Without loss of generality we may assume that g# = 1 . Then clearly
L=7%.

Proposition 3.30
& sM(D) RPE — sMy(Y), fr fly
is a PC-linear isomorphism, which respects the grading.

Proof: simple calculation. ®~! : sM(T) — sM(I') X PC is given by
feflg- O

Clearly ® and ®~! are continuous with respect to compact convergence.
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Definition 3.31 The sub graded PC-module

sSL(T) == @ (sSk(F) % PC>
of sMy(Y) is called the space of super cusp forms for Y of weight k .

For proving that this definition is independent of the choice of ¢ €p G one
has to consider a P-point g €p G commuting with all elements of I" and to
show that |, : sM(T') K PC — sM(I') X PC maps sSk(I') X P onto itself.
Unfortunately this seems to be out of reach. However we have the following

theorem:

Theorem 3.32

(i) Let f = 3 repim) f18% € sSp(YX) , f1 € OB) for all I € p(m) , and
Iy € p(m) such that |I| = deg’ f . Then f1, € sSk(T) .

(ii) If {oa}ren 5 a spanning set for sSi(I') then {<p,\|g_1}/\ N fulfills prop-
€

erties {i} , {ii} and {iii} of theorem 3.29 , and so it is a PC-spanning set

for sSk(Y) in the sense of theorem 3.29 .

Proof: (i) Let @7 1(f) = f|, = > Iep(m) qrp’ € sSL(I X PC | all

qr € sSi(I") . Then by proposition 3.27 (ii) f1, = q1, - O

(ii) Properties {i} and {ii} are clearly fulfilled. For proving property {iii}
let {cx} cp be a family in C such that ), ., capa converges with respect
to (, )p. Then f := >\ pcxpn € sSi(I') , where the sum converges
also uniformly on compact sets, and since all ) € O(B) , A € A , even in
compact convergence in all derivatives. |, : D(B) — D(B) is continuous with
respect to the uniform structure of compact convergence in all derivatives,

80 flg =2 yea Paly—1 in compact convergence as well. [J

Third case : p > 2 ,q =1, volI''G < c© , I'\G not compact, and
k > ko , where kg € N is given by SATAKE’s theorem, theorem 3.11 .

We will use the FOURIER expansion given by theorem 3.15 of section 3.2 .

Before we do so we need some tools:

Lemma 3.33 Let @ be a P-super LIE group homomorphism from R to G
(this implies that ®(t) €p G for allt € R ) and h € (D (G) K P)C left-®(1)-
invariant. Then there exists a unique splitting h =Y, b,

bs € (D(G)RP)C , seZ, such that

bs (q)(t)<>) — 627ristb8
for all s € Z and t € R . deg' by > degh for all s € Z , and if h is

homogeneous then all bs are homorgeneous of the same parity.
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Proof: Since h € (D (G) K P)* is left-®(1)-invariant we see that

h(®0) € (D((R/Z) x G)RP)C = (C*(R/Z)ED(G) K P)" .

If h is homogeneous then again h (® ) is homogeneous of the same parity.
By proposition 3.27 (i) we have deg’ h (® ) = deg’h .

Let S denote the structural sheaf of G regarded as a real
((p+1)2+7r*—1,2(p+ 1)r)-dimensional super manifold (this means
DU) = S(U*) for each open sub super manifold U of G )

Then h(®) € (C®(R/Z)ES(G)RP)C , and for all g € G
there exists an open mneighbourhood U C G of g such that
Sly = € @ A (R2H)7) = ¢p @ D (ROPCHT) L Let &, €agpi1)r be

the odd coordinate functions on IRO2@+1)7

Let & be the set of all (U, (ds),cy) such that U C G open, all
ds € (S(U)RP)C | seZ, and

h(®O) lrxu = Y dee®™™T,

SEL
where we denote the coordinate function on R by 7 .

Step I Show that if (U, (ds),cz), (V. (hs),ey) € 6 then dy = hy on
Rx({UNV)forall seZ.

Let ¢ € U NV be arbitrary. Then there exists an open neighbourhood
W CUNV of g such that S|y ~ C3 @ A (]R?(HUT) _ and without loss of

generality we may assume equality. Then if we decompose

h(® Q) [rRxw = > gs1 76",
Sep(2(p+1)r), Iep(m)
ds| gy = > d51 €%

Sep2(p+1)r), I€p(m)

and

h5|]R><W = Z hs,SI é—SﬁI ’
Sep(2(p+1)r), Iep(m)

all gg; € C (R/Z) x W)C = (C(R/Z)&C=(W))©

ds.s1,hs, ST € C°(W)C , then we see that

qsr = § :ds,SI€2mST — § :h575[€2m37-.
SEZ SEZL
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So ds g1 = hg gy forall S € p(2(p+1)r) and I € p(m) by classical FOURIER

analysis.

Step II Show that for all g € G there exists (U, (ds),.;) € 6 such
that g € U , deg’ds > deg’h for all s € Z and if h is homogeneous

then all d; are homogeneous of the same parity.

Let ¢ € G . Then again there exists an open neighbourhood U C G of g
such that S|y ~ CP @ A (]RQ(I’H)T) , and again without loss of generality

we assume equality. So we can decompose

h(® ) [rxv = > qs1&° 8"
Sep2(p+1)r), Iep(m)
with some gg; € C® ((R/Z) x U)® , S € p(2(p+1)r) , I € p(m) . By
classical FOURIER theory we see that there exist unique dgg; € C*(U)C
such that

-
qsr = § ds,sre™,
sSEZ

where the convergence is compact in all derivatives on IR x U . If
I € p(m) such that |I| < deg’'h then all g = 0 and so all ds 57 = 0,
S € pp+1lr),s € Z . Soclarly (U, (ds),y) € 6 if we define
ds = Y gep@pii)) . repm) 45,5165 € SWU)RP , s € Z .

Step III Conclusion.
By step 11
U=aG,
(U(ds) ez ) €S
and so by step I since (S X P)C is a sheaf on G we see that there exist unique
cs € (S(GQ)RP)E = (DG)RP)C |, s€Z, such that

CS|U - dS

for all (U, (ds)sez) € § . Then deg’ ¢, > deg’ h , if h is homogeneous then
all ¢, are homogeneous of the same parity, and clearly ¢, € (D(G) K P)° |

s € Z are unique such that

h ((I) <>) — ZCSeQWiST )

SEZL
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Now for proving existence of by € (D(G)KP)C | s € Z , let by := ¢, for all
s € Z . Then obviously

h=>Y bs,

SEZL

and for all t € R

S b (@()0) X = h(D(r) B(1)0)
SEZL
— h(®(r+1))

— 2 b8627rzste27rzs7' .
SEZL

By uniqueness of ¢; € (DG)RP)C , s € Z , we see that
bs (B(1)O) = cs (®(1)) = bse? ! for all s € Z .

For proving uniqueness assume that bs € (D(G) K P)C , 8 € Z , such that

bs ((I)(t)<>) — e27rz'stbs

forall s€ Zandt € R and h =}, bs . Then

h(@O) =D b (D)= bee®™T.

SEZ SEZL

So by uniqueness of ¢; € (D(G) &P)C , 8 € Z , we see that by = ¢, for all
seZ .U

Now let 7 C N open and relatively compact, tg € IR and Z C G’ finite be
given by theorem 3.13 in section 3.2 with respect to I' . For all g € = let
ng €p g~ ' Tg such that nff € g"'TgN N'Z (G')\ Z (G’) . Then

ggl| 0

RTL#Ril — nl)\g’o
0 | E,

with appropriate Ay, € R\ {0} , e, € U(1) and E,; € U(r) ,
€§+1 =det E; . Let g € Z be arbitrary. As we have already seen in section

3.2, j(Rn#RA) = j(anfRfl,w> = 5;1 € U(1) is independent of
w € H . Let x4 € R such that j (RnffRil,w) = e?™Xs . Again without
loss of generality we can assume that E, is diagonal, and we may assume

Ag >0 . So choose
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D, = e R™"
0 ¥

diagonal such that E, = exp (27iD,) . Then clearly

e—27ritxg 1 ‘ 0
R

g R—=G,t— R_lng/\g’o
0 ‘ exp (2mitDy)

is a C*°-LIE group embedding, and (1) = nf cg'Ty.

Let f € sMy(T) . Then f(g0) € D(G)C is left-4(1)-invariant, and by
lemma 3.33 applied with P = IR we see that there exists a unique splitting

f(g@) = Zbg,57

SEZL

bgs € D(G)® , s € Z , such that

by.s (g (1)) = €*™"by s

for all s € Z and ¢t € IR , and a straight forward calculation shows that for
allseZ

~

bg,s = Z Clmy q (Wg) e27rm],sw1,[9] s
Tep(r) R
where
1 1
Mls = )\*(S*trl Dy — (k+[I]) xg) € /\*(Z*trl Dy — (k+ [1]) xg)
g g

and crm, , € O (CP1) is given by theorem 3.15 (i) for all I € p(r) .

From now on we have to make the additional assumption that for

all g € = we can choose n, , x, and D, such that
try Dy + (k+|I])xg €] —1,0]
and all 49 d\9 —d9 ¢ 7\ {0} , k,l € {1,...,r} .

Proposition 3.34 f € sSi(I') if and only if bys = 0 for all g € Z and
s>0.
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Proof: Let g € Z and I € p(m) . Since s € Z and we assume
tryDg + (k+ |I|) xg €] —1,0] we have s > 0 if and only if ms; >0 .

‘=’ Let f € sM(') and g € E . Let flglp-1 = Xrepm qro! | all
qr € O(H) . Then

flo =3 ar(RO)CTj(R, &)+

Iep(r)
Since f' € L2(I\G) ® A (C") , and so f'(g{) € L% (nAs¢, K) @ A (CT) by

corollary 3.14 of section 3.2 , we conclude that

k4|1

a1 (Rz) j (R, 2)" M A (2,2) 2 € L?(nAs4,0)

with respect to the G-invariant measure A (z, z)f(p +1) dVier, on B or
equivalently grA’ (W,W)HTH‘ € L? (RnAs4,0) for all I € p(r) with respect
to the RGR'-invariant measure A’ (W,W)_(p+1) dVier, on H . So by
theorem 3.15 (ii) and (iii) of section 3.2 we see that cr,, = 0 for all m > 0
and I € p(m) , and so by s =0 for all s >0 .

<=’ : Conversely assume that b, s =0 forallgec Zand s >0 . Let g€ E .
Then we have ¢y, = 0 for all m > 0 and I € p(m) , and by corollary 3.14

it suffices to show that

Fl(g0) € L* (A4, K) ® A (C") .

If we decompose flglp-1 = D cq) qd! , all ¢; € O(H) , we obtain

g (w,w) 2 € L?(RnAs,,0) forall I € p(r) with respect to the RGR™!-
invariant measure A’ (w, W)i(p 1 4V e, on H by theorem 3.15 (iii) of section
3.2, and so

k+]1]

a1 (Rz) j (R, 2)" M A (2,2) 2 € L?(nAs4,0)

with respect to the G-invariant measure A (z,z)f(p ) dVie, on B . So we
see that f/(g¢) € L2 (nAsy K) @ A(CT) . O

Again let g € = .

Theorem 3.35 There ewists a unique P-super LIE group embedding ®g4
from R to G such that ®4(1) = ny and @Zf =g -

Proof: Since we did not introduce the concept of super LIE algebras of super

LiE groups and the concept of a super chart we are only able to give a sketch.
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We use the exponential mapping exp which is a holomorphic super morphism
from C"*+7°[20m207 with even coordinate functions a;; and
dj; € O (sGL (n|r)), and odd coordinate functions 3}, and
Vej € O(sGL(n|r)); , 4,j =1,...,n and k,l = 1,...,r , to sGL(n,r) ,

n=p+ 1, given by

defined via the exponential power series, see theorem 2.5 of section 2.1 .
Since the body (D exp)# (0) of the super Jacobian of exp at 0 is the identity
matrix one sees that exp is locally biholomorphic at 0 € critr? by theorem

2 |2m",2m" :

2.40 (i) . Let us again sum up the coordinate functions of ok in

blocks according to

and let V be the real (n2 +r2—1, 2nr)—dimensional sub super manifold of

2 2 Y. . .
Cn+r?|2nr2nr given by the equations

1 010 A" B |y
= —10 —-1]0 c' D |V
0 01 ) o | E
= 0
or more explicitely
A/* — _A/
C/* — B/
D/* — _D/
E/* — _El

trA' +trD' = trE’,

/% /

p = —H

/ /
o* = .
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Then clearly V is diffeomorphic to R 20 , and exp restricts to a
super morphism exp,, from V to G = sSU(p,1|r) . V# = g is the LIE
algebra of G = G# |, and expﬂE = expg : § — G is the usual exponential
mapping. Again expy, is a local diffeomorphism at 0 € g = V# | and so we
can regard )V as the ’super LIE algebra’ of the super LIE group G .

Since expy, is a local super diffeomorphism and its body exps; maps 0 to
1 we will use expy, as a local chart of G at 1 when talking about super
Jacobians, in other words given an open sub super manifold U of G such
that U7 is a neighbourhood of 1 € G which is small enough we identify ¢/
with the unique super open subset W of V such that 0 € W# and expy |y

is a super diffeomorphism from W to U .
Now let

0] Ag —1
X=R"'[ o]o Ip Reg.
0 2miDy tr

Then ¢, = expg (¢X) , and so especially nf = expqg(X) . It suffices to
show that expy, (X + <) is a local diffeomorphism at O since then there
exists a unique Y €p V with body Y# = X and expy,(Y) = n, , and so
O, := expy, (OY) is the unique P-super LIE group embedding from R to G
such that @# = pg and P4(1) =ny .

Since the left translation [, -1 is a super diffeomorphism from G to G it
g

is even enough to show that [, ,\ -1 0expy, (¢ + X) is a local super diffeo-
ng

morphism at 0 € g . l< )_1 o expy, (X + ¢) has the body

#
Ng

#
Lyopy-10expy (X +O) | =1, s 10expg (X +Q):9—G
(n) (n)
mapping 0 to 1 . So by theorem 2.19 of section 2.2 it suffices to show that

#
D <l<n?]$>l o expy, (X + <>)> (0) is invertible.

#

#)71 oexpy (X +<¢) | (0) only involves terms which are
Ng

Since D l(

constant or linear with respect to the odd coordinate functions we may

replace these odd coordinate functions by even ones.

So let exp’ denote the exponential map from C+)*(+7) which is the LIE
algebra of GL(n + r,C) , to GL(n + r,C) . Then expg is the restriction of
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exp’ to g — CH7)x(+7) going from g to G — GL(n+7,C) . Let V' denote
the ((n+7)? —1)-dimensional R-subspace of C"*")*("+7) containing all

matrices

such that

A/* — _A/
Cl* — B/
DI* — _DI
E/* — _E/
trA' +trtD' = trE’,
P/* — _M/
Q/* — N/ .

Then of course V' is not a sub LIE algebra of C(»*+7)*(+7) Byt still the

image of V'’ under the differential of ( “
g

)71 oexp’ ({ + X) taken at 0 again

liesin V' | and D (l )71 o expy, (¢ + X)) (0)% is equal to the differential

(nd

of [ )71 oexp ({ + X) taken at 0 and restricted to V' . So it suffices to

(nd

show that the differential of [ ( >71 oexp’ (¢ + X) is an automorphism of

#
Ng
C(n+r) X (n+r) )

We use theorem 1.7 of chapter II section 1.4 in [9] , which says the following;:

Let G be a LIE group with LIE algebra g . The exponential
mapping of the manifold g into G has the differential

1— e—adx

Dexpy = D (lexpx), © (X eg).

adX

As usual, g is here identified with the tangent space gx .

Hereby e denotes the unit element of the LIE group G .

So we see that D <l< #>71 oexp’ (<>—|—X)> (0) = 1_;;;%( . We can

g

split X = Xy + X, , where X; € Ct)x("+7) ig 4 diagonalizable and

208



X, € Cl)x(+7) jg g nilpotent matrix. Clearly Xy has the eigenvalues
0, 27m'd§g), e ,2m'd1(F) . So ady = adx, +ady, , adx, is diagonalizable and

adx, is nilpotent. Let S denote the set of eigenvalues of adx, . Then

S c {0, 2m’d§9),...,27rid$9)} U {2m' (d§9> . dg.g)) ‘ ije 1,...,1"} .

l_e—adX
ad x

So again as a linear operator from g to g splits into a sum of a

diagonalizable operator and a nilpotent operator. The diagonalizable sum-
l_efadx

mand of ~— g has precisely the eigenvalues 1_575 , s €. S, which all are

different from 0 since by assumtion S N (2miZ\ {0}) =0 . So

1— efadX

adX

D (l(n#)1 o exp’ ({ —|—X)) (0) =

is indeed an automorphism. [J

Let f € sM(Y) . Then f(g¢) € (D(G) R P)C is left-®4(1)-invariant since
®,4(1) € g7'Tg and f(gQ) is left-g~ 'Y g-invariant. So by lemma 3.33 there

exists a unique splitting

f(g<>) = Z hg,s , (36)

SEZL

hgs € (D(G)RP)C |, s €Z , such that for all s € Z and ¢ € R
g (B(1)0) = 7hy .
deg’ hy s > deg’ f (9¢) = deg f by lemma 3.33 .
Definition 3.36
sSE(Y) :={f € sMp(Y)| hgs =0 in 3.6 for all g € = and s > 0}
is called the space of super cusp forms for Y of weight k .

From lemma 3.33 we deduce that if f is homogeneous then in the splitting
3.6 all hys , g € E and s € Z , are homogeneous of the same parity. So we
see that again sS;(T) is a sub graded PC-module of sM(Y) .

Theorem 3.37 Let [ = Y/ ) f1B" € sS(T) , all fr € O(B) , and
Iy € p(m) such that |Iy| = deg’ f . Then indeed f1, € sSk(T) .

Proof: Let g € E . Clearly f1, € sMy(I") by corollary 3.28 . So we have a

unique splitting
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}};(QO) = Zbg7s ,

SEL

by,s €D(G) , g€ E,s€Z,such that

by.s (10g(t)0) = € "*'by,s

forallg € 2, s € Z and t € R . On the other hand we have the splitting
3.6 , and by proposition 3.34 it suffices to show that b, , = hé{g) forall s € Z

if we decompose

h‘gvs: Z h_((;{sﬂlv

Iep(m)

W eDG)C, Tepm), forallse.

Y g st = Fgo)

— Zh%s

SEZL
- 3z
Iep(m) \s€Z

Therefore since all f7 (g<) ,hé{g € D(G)T we see that f1(g0) = Y sz h;g
for all I € p(m) . On the other hand for all £ € R we have

hys (Bg(0)0) = Y T 'h)s!
Iep(m)
with e%ithé{s) € D(G)® . Therefore by proposition 3.27 (i) since
®,(t)* = p4(t) we obtain

627rith£(7{g) — hé{g) (wg(t)o) .

So by uniqueness of by s € D(G)® , s € Z , we have bys = hé{g) for all
seZ .l

Further research has to show if in the first and the third case it is possible
to find Yy 1.m € $SK(Y) , 0 € Q, I € p(r) and m €] — C,C[, satisfying
¢f0l7]7m = QyoIm > Y0 € Q , I € p(r) and m €] —C,C[, and conditions
{ii} and {iii} of theorem 3.29 , where Q and ¢, 1.m , Y0 € 2, I € p(r) and
m €] —C,C[, are given by theorem 3.17 .
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Chapter 4

Super numbers and super

functions

In chapter 2 we introduced (p, q)-dimensional super open sets Ul? as ringed
spaces, which means in terms of sheaves over their bodies U being ordinary
open subsets of IR? resp. CP , which are interpreted as the sheaves of
C>-functions on U7 itself. The goal of this chapter now is to show that
there also exists a description of super open sets in terms of points using
super numbers, which have been considered for example in section 1.1 of

[17] , which is equivalent to that by sheaves.

Wesetp::{ICZﬁnite},pO::{IEp‘ 2 | ]I|},and
plzz{lep’ 2¢ |]\}.Let]KbeIRor(C.AK::]KP,

AE = {(aI)IE@ € AK‘ ar =0 forall [ € pl} ~ IK*°

and

AK = {(amep c AK) ar =0 forall I € pg} ~ K9

Then clearly AK = A(If@A{( as IK-vector spaces. On AK we use the uniformal
structure of pointwise convergence. So AK is complete, Ag and A]1K form

closed subspaces of AK | and all

| —e,e[? x K\ cQ

with € > 0 and ¢’ C p finite form a basis of neighbourhoods of 0 € AK .
If for all I € p we define Ej := 173 we can write the elements of AK as

(a[)lep = Z CLIE] .

Iep

On A¥ we define a multiplication by
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(aI)Iep (bI)Iego = (Z(—l)J<I\J| anI\J>
Iep

JcIl

with the abbreviation |K < L| := [{(r,s) € K x L|r < s}| for all
K,L € o . Especially for I, J € p this means

. NEASIY ) if INJ =10
BBy — (-1) ug i

0 otherwise

One immediately verifies that this multiplication is continuous and that AK
together with this multiplication is a unital associative algebra over IK with

unit element Fy . In addition one can easily verify

Theorem 4.1 AK = AX & AK is a unital associative graded commutative

algebra, which is called the graded algebra of super numbers.

We can regard K as a subalgebra of Ag via the embedding

]K<—>A5<,x'—>xE@,

which is clearly a homeomorphism onto its image and respects scalar mul-
tiplication, and therefore we will identify 1 = Ej in what follows.

We also have a so-called body map

#:AKHK,ZZZ(L[E['—)Z# =aqagp,
Icp
which is a continuous, open and surjective algebra projection, and it is clear
that #|K = id and #|A{< =0.

For every z := Zlep arE; € AKX we define the degree of z as

degz::min{m ’IEpand(U%O}.

Then we see immediately deg(z + w) > min(deg z, deg w) and
deg(zw) > deg z + degw for all z,w € AK | deg (z - z#) > 2 for all z € A
and degz > 1 for all z € AK .

Lemma 4.2

(i) Let (2n)nen be a sequence in A¥ with the property deg z, ~» oo . Then

zn ~ 0, and

PRE

neN

18 convergent.
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(ii) Let (an)pene € (AK)NP ,ZE (AK)p with deg z; > 1 for alli=1,...,p .
Then

g anz"

neNP
converges.

Proof: (i) Let zn = > ¢, c(In) for allm € IN. Fix an I € p . Then

degz, > |I| and so cgn) = 0 for almost all n € IN . So clearly in the
(n)

n
sum . N Cr

converges. [

only a finite number of terms are # 0 , and therefore it

(ii) For all n € IN? we have deg (anz™) > degan + Y -, nidegz; > |n| , and
we can apply (i) . O

Corollary 4.3 z € A¥ is invertible if and only if 2% # 0 . In this case

1 2 — 2\ "
_1_7
o _Z#Z< —a )

nelN

If z € AK then again 271 € A¥ .

Proof: Let z € A¥ such that z# # 0 . Then convergence of the sum is clear

by lemma 4.2 , and since multiplication in A¥ is continuous we have

- X&) -2

nelN neN
=1

)

n
and by the same calculation Zi# Y neN (zt;'z) z=1.0
Now we have to treat the cases IK = IR and IK = C seperately.

4.1 The real case

Let K := IR and A := AR . We define RPI? := AP x Af for all p,q € IN .

Then again we have a body map

#.  RPM S RP,
(Z7C):(Z1,---,Zpa<17"'7cq)’_>(Z’§># = (Z#,...,Zﬁ) =z,
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Let U C IR” . Then we define U7 := { (2,) € IR”“I’ (2,0 €U} . We

open

have Ul ¢ RRPIY and (U'q)# = U . Conversely if @ C IRP? then clearly

open open

OF ¢ KPand QC (Q#)lq , see figure 4.1 below.

open

A

REI) X /\4

vy

(Ie JARE-Ls

()~

Figure 4.1: Q , Q% and (Q#)‘q

If M C RPY | the set AM = A} @ AM of all functions f : M — A forms
a unital associative graded commutative algebra by pointwise addition and
multiplication, and we consider A as the sub graded algebra of AM containing
precisely the constant functions. Then clearly C (M, A) is a sub graded
algebra of AM containing A .

Theorem 4.4 For each U C IRP we have an algebra embedding

osen
Tl e C (U‘O,AO) fe T

where for all z € U

floy = >0 s () (%)

nelNP
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in multi-index language. Clearly ﬂU = f, and if O"fr ~> O"f pointwise

for all n € INP then again fi ~~ [ pointwise.

Proof: The sum is convergent by lemma 4.2 (ii) . Injectivity is clear by the

property f = f‘U . So let us prove the conservation of multiplication. For

all f,g € C®(U) and z € U!° we have

f(z)?y(z) = ( Z ﬁamf (Z#) (z z#)m> X

meNP

. <ZN 3 () (o))

Since restricted to any fixed component in both sums only a finite number

of terms is # 0 we can interchange the order of summation. So

F(2)j(z) = Z Z m!(kl_m)!ﬁmf (z#) ok—mg (z#) X

keNP \meNP m<k
(om?)"
= Z % Z (rl:1> omf (z#> 8k*mg (z#) (z — Z#)k

keNP  \meNP m<k

—

= Y 509 () (2-2*) = Toa),
keN?

where we used LEIBNIZ’ rule in multi-index language.
To see that fis continuous let z € U | T ¢ p , and let F7 be the I-th
component function of f Then since deg (zi — zl#) >2.,i=1,...,p, we

have
po- X L) (o)), o
neNP,ng('—Q)p '

More precisely we have a sheef embedding Cg» — C (<>|0, Ao) since if V

is an open subset of U then V10 ¢ U and ﬂ; = ﬂv\o .

RP

Lemma 4.5 LetU C RP, f € C®(U) andb € U . Then for allz € RPP

open

with z# = 0



Proof: Let z € R with z# = 0 . Then

flb+2z) = Zi@“f(b#) (b—l—z—b#)n

nelNP
_ n;p ianf (b#> mEsz;mq <:r‘l) (b _ b#>“ Tm

Since restricted to any fixed component in the summation over n only a
finite number of terms is # 0 we can interchange the order of summation.

So

fo+z) = > (Z (mik)!amkf (b#) (mr:; k) (b—b#>k> z™

meNP \keNP
_ 1 1 k oam # # k m
= ¥ m(Zk!aa 7 (#) (b-b%)" )2
meN? keNP
1 —
= Y —omf(b)z™.0
m!
meNP
Lemma 4.6 Let f(x) :== > e & (x — )" be a power series convergent

in U C RP with c € RP and all ay € R . Then for all z € U0
fa) =3 Z@-or
N n! '

Proof: Let z € U . Then

fio = 5 Lo () (o )"

neNP
1 Ontk (4 k #\"
- a (T ) )
nelN? keNP

Since restricted to any fixed component in the summation over n only a
finite number of terms is # 0 we can interchange the order of summation

again. So we have

f(z) = Z am Z n'(rnl_n)' (z# — c) m (Z - z#)n

meNP neNP n<m

- ()T e

meN? " neN? n<m
a
= g 2 (z—c)™.O
m!
meN
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In the following we will discuss more in detail mappings from @ C RPI? to
open

A, and we will always use the following notations:
We set (z,() = (21,...,%,C1,...(g) € Qwith foralli = 1,...,p respectively

J=1 5 =Y e wisEy e RN G =3, v By € RO all
z;7,Y57 € IR . We define

¢% =G,
forall S = {s1,...,8.} C{l,...,q} and s1 < --- < s, . And if there is no

danger of confusion we denote by the same symbols the projections

2t Rp‘q - Rl‘ov (Z7 C) = Zi

fori=1,...,p,

G R =R, (2,0) = ¢
forj=1,...,q and

¢C R AL (2,¢) (O
forall S C {1,...,q} .
If f e A% then we write f = dore o FrEr with uniquely determined compo-
nent functions Fy : Q@ — R . Let (b,8) € Qand [ € p . If i € {1,...,p}
and J € po , and Fj(z,() differentiable with respect to z;; at (b, ) then

we define

0,,Fi(b, 3) = T12)

0%is | (2.0)=(0.5)
And also if j € {1,...,q} , J € g1 and Fj(z,() is partially differentiable

with respect to y;s at (b, 3) we define

0F(z,
9 F1(b, B) == 81(- ‘) :
Yil  1(2,0)=(b,8)
Definition 4.7 Let @ ¢ RPY | f: Q — A and (b,8) € Q . [ is called
open
differentiable at (b, 3) if and only if there exist Q' C Q such that (b, 3) €

open

and A, XY — A ,i=1,....p,j=1,...,q, continuous at (b, 3) such
that for all (z,¢) €

(2

F(2,0) = f(b,8)+ > (2 = b)Ai(2,0) + D (G — Bi) Z(2,C) -
j=1

=1
If f is differentiable at (b, 8) then we call 9; f(b, 3) := Ai(b, 3) ,
i=1,...,p, and 9;f(b,B) := ¥;(b,3) , j = 1,...,q , the partial deriva-
tives of f at (b,B3) . If f is differentiable at each (b, ) € Q then f is said
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to be differentiable, and 0;f : Q@ — A, (z,¢) — 0;f(z,¢) ,i=1,...,p,
and O);f : Q@ — A, (z,() — 0;f(2,¢) , j =1,...,q , are called the partial

derivatives of f .

In general the functions A; , i € {1,...,p} , X; , 5 € {1,...,q} , are not
uniquely determined by f and (b, 3) . Let us check that however 9; f(b, 3) ,
i€{l,...,p},0;f(b,B),j€{l,...,q} , are well-defined:

Let i € {1,...,p} . Then Ayb,B) = 0.f (b+te;,B)|,—o »

t € R, is independent of the choice of Ay,..., A, , ¥q,...,%, .

Now let j € {1,...,q} and I € p, and let X;, : 2 — IR be the I-
th component function of ¥; . Choose J € g1 such that J <1 .

Then ¥j,(b,8) = 0;Fius = OFius(b,B+1tEse))|,_ »
t € R, is independent of the choice of Ay,..., A, , ¥1,...,3,
as well.

If @ ¢ RP? | then clearly the set of all differentiable mappings 2 — A
open

forms a sub graded algebra of C (2, A) containing A , all 9; and J); are 0 on
A , and the super product rule holds:

@uf) =1 0uf) =Ff+1,

0 (fg) = (@'\f) g+ f (81'\9)

and

0 (f9) = (9;1) g+ (-1)/ £ (99)
for all differentiable f,g:Q — A, f homogeneous.

If Q@ ¢ R then we define D(Q, A) to be the set of all f € A that are

open
continuous with respect to z and partially differentiable with respect to all

Zi s

t=1,...,p,and ¢; ,j=1,...,q.

Then D(Q, A) is a sub graded algebra of A containing A and, as we will
see, of C(2, A) as well.

One goal of this chapter is the following theorem, which we will prove later.

Theorem 4.8 Let Q C RP such that Qy := {(2,0) €Q|(z,)* =x} is

open

connected for all x € QF | see figure 4.2 below. Then we have isomorphisms
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(A (RY) ® (Q#)) KA ~ € <<Q#> “ ,A> ~ D(Q, A)

as unital graded algebras, where on C*° (Q#) we use the uniformal structure
of compact convergence in all derivatives and on C™ ((Q#)|q,A> that of
pointwise convergence.

The first isomorphism is the unique R-linear and continuous map given by
S @ f@E— (SfE; for all f € C°(Q#) , S € p(q) , I € ¢, and the

second is given by the restriction map.

F q
&b lREI) X A
eP\irt

A

Figure 4.2: Qx in theorem 4.8 .

Let @ ¢ RPI. Wesay Q is of cube type if and only if there exist ¢ C p\{0}

open
finite and € > 0 such that for all (z,() € (Q#)lq :
(z,¢) € Qif and only if w;7,y;7 €] —e,e[foralli=1,....,p,7=1,...,q,
Tegpngpy,Jepngp: .

In this case clearly 4 C Rﬁ'q for all x € Q# and Q# C Q. Clearly

open , convex

U9 is of cube type for all U ¢ RP .

open
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Theorem 4.9 Let Q C RPI be of cube type and f € A2 . Then there are

open
equivalent

(i) f is differentiable,
(i) f € DELA),

(iii) all Fr , I € p , are continuous and fulfill the following system of

differential equations

8 Fy — ()N Fpy if JC T
i JET =
| 0 otherwise

foralli=1,....p, I €pand J € g,

(iv) there exists a family (f1) e, € (C* (Q#))p such that

lIep

flz) =Y fr(2)Es

Iep

forallz € Q .

In this case f* := >/, fiE; - (Q#)‘O — A is the unique extension in
D ((Q#)lo) of f, f* is differentiable, 9; f* € D ((Q#)m) , and

" = Z‘i]?[EI
Icp

foralli=1,...,p.

Notice that fr = Filg# , I € o , but in general ]/‘} #+ F7 since j?[(z) ¢ R
for z € Q\ Q% . Theorem 4.8 will show that the family (f1)ep in (iv) is
uniquely determined by f .

Proof: (i) = (i) : Let U ¢ RY, (f1)e, € C=W))Y , f = ey J1ED
and b e Ul Letg::f(<>+b—b#) (U0 S AL

First we prove that g is again of the form g =), o Jx Ex with

(9K) ey € (C=(U))”

Soletz € Ul and al” € R, J € gy, n € NP, such that for all
n e NP

(b-b#)" =3 aVEy.

J€po
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So by lemma 4.5

g(z) = Zﬁ(z+b—b#>E1

Icgp

-y 3 %a/nE(z) (b—b#)nEI
IcpneN?

=y ¥ 7anf, ) S aVEE .
IegoneNp JE€po

Since deg (b —b#) > 2 we have aSn) = 0 for all n € IN? |
J € p with |n|] > I—‘2]| . Therefore for each fixed component
the summation is finite, and so we can interchange the order of

summation. So

9(z)

- Z Z (_1)|K\J<J\ Z 7aj)8an\J< ) | Ex
Kepo \ JE€po,JCK ne]NP7|n‘§‘K\

= Z g/l\((Z)EKv
Kep

if we define for all K € p

I (n
JK = Z (—1)lFA=7 Z *,afj )3an\J ec>(U).0O

J€po,/CK neN?, ‘n| | K|

2

Now we would like to show that f is differentiable at b . Since all
g € C*(U) , K € p , there exist Ajgx € C*°(U) ,i=1,....,p, K € g,
such that for all x € U and K € p

9K (%) = gk (b#) + zp: (xi - bf) Ak (x) .
i=1

If we apply ~ to these equations we obtain for all z € U°

flz) = g(z—b+b#) - Zg/f<<z—b+b#>E

Kep
- ZgK(b#>EK+ZZ ZK(z—b—i—b#)
Kegp i=1 Kegp



where

Ai:U|O—>A,ZI—>ZKi;((Z—b+b#)EK
Kegp

is a continuous function because all A/;{ are continuous, and restricted to
any fixed component in the sum only a finite number of terms is # 0 . So f

is differentiable at b , and for alli =1,...,p

01f(b) = Au(b) =" Auc (b¥) Exc = Y digic (b¥) Bic

Kep Kegp
= (_1)|K\J<J‘ ianazf b# a(n)E
Kze;pJEpg;ch nENPZln:SI; n! K\J ( ) J K
= > > i,31“81‘1'} <b#) > aMEE;
Iep neNP n: Jepo
1 n
= — "0, fr (b* b-b#) E
>3 oo (%) 3 (b b)
= Y aifi(b)E; .0

Iep

(i) = (ii) : trivial.

(ii) = (iii) : Let f € D(R2) , which means differentiable with respect to all
zi , 1 =1,...,p, and continuous. Then clearly all F; are continuous. For
proving the system of differential equations let b = (by,...,b,) € Q and
i€{1,...,p} be arbitrary , b; = 3, birEr , allby € R . Q C RP and

open

f is differentiable at b with respect to z; . Therefore there exist ' C R
open

such that b; € Q" and (by,...,bi—1,2i,biy1,...,bp) € Q for all z; € Q' and

A : Q' — A continuous at b; such that

f1, - bic1, 20y bigr, - bp) = f(B) + A(zi) (21 — bs)

for all z; € ' . Let A be the J-th component function of A for all J € p .
Then for all z; € O

> Fi(by,. .. b1, 20, bigt, -, bp) Er

Iep
:ZFI(b)E1+ Z (xiK_biK)EKZAJ(Zi)EJ
Iep Kepo Jep

ZZ Fr(b) + Z (—1)|I\K<K| (i — bix) A[\K (z) | Er.
Icp Kegpo,KCI
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So for all I € p and z; €

IG‘(bl,...,bifl,Zi,bﬂ¥1,...,bp)

= Fr(b)+ Y (DI i —bire) Apg (20) -
Kepo,KCI
We see that Fy is partially differentiable at b with respect to x;; for all
ITep,Jep,and

oy — | CUBany(b) it T
i|J =
| 0 otherwise

Especially, if we set J = () , we obtain A;g(b) = 0;yFgr(b) forall R € p . O

(ili) = (iv) Assume that all F; are continuous and fulfill the system of

differential equations.

Step I Show that all F; are affine linear with respect to z;; ,

JCI,J+#0,and C* with respect to xg := (zg,...2,) € Q7 .

Let i e {l,....p} , T €p,Je€p\{0}withJCI. ThenJ ¢ I\J,
and therefore 0; 7 F1 = (—1)|I\J<J|8Z-|@FI\J is independent of z;; . So FT is

affine linear in z; s .

Now we prove by induction on n that all 7 are C" with repect to xp for

arbitrary n € IN .

Since f is continuous, all F are continuous with respect to xp .
Now let i € {1,...,p} , n € IN such that all Fr are C" with
repect to xg , and let I € p , b € Q. Choose S € gy \ {0} such
that S < I .

Since @  RPI? | thereexiste > 0and Q' C Qsuch thatb e

open open

and ' + [0,e] Ese; C Q. So for all z € &

Doli(z) = 0OysFrus(z)
Frus (z+ eEge;) — Frus(z)

9

€
because Fjg is affine linear with respect to z;g .

By assumption the right hand side is C" with respect to xg , and
so is the left hand side. This means Fy|q is C"*! with respect
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to xy . Since b was arbitrary, the Fy itself is C" ™! with respect
to xg . O

Step II Show that all F; and so f are determined by f|g# .

Since the system is linear, we only have to prove that f|o# = 0 implies
f=0.8olet flop =0.

We will show that Fr = 0 for all I € p by induction on |I| . This of course
will imply f=0.

Assume n € IN with the property that Fx = 0 for all K € g with
|K| <mn,and let I € p with [I[| =n . For any i € {1,...,p},
J € po \ {0} with J C I we have by (ii)

Oy Fr = (—1)INV <o, Fp 5,

which is 0 by assumption, since [I\ J| < |[I| =2 <n . So FJ is
independ of all z;7 ,i=1,...,p, J € po \ {0} , and so for all
VASEY)

Fr(z) = Fy (z#> =0,

because z#* € Q# . [

This automatically proves the uniqueness of f* as well, because Ul? is of
cube type for all U ¢ RPI0 .

open

Step III Conclusion .

Define fr := Fi|gs € C® (Q#) by step II for all T € ¢ , and
9= reo f1E; : (Q#)‘O — A, which then fulfills (iv) . So, since we proved
already (iv) = (i) = (iii) , we know that g is differentiable and fulfills (iii)

as well. Finally we have

9lo# :ZJ?I’Q# Er=Y_ fiEr=Y_ Filo#Er = flo# -

Icp Iep Iep

So we can apply step II , which tells us f = g|lq . O

A similar result holds for Q ¢ R :
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Theorem 4.10 Let Q@ C R be of cube type and f € A? . Then there

open
are equivalent

(i) f is differentiable,
(i) Fr , I € ¢, fulfill the following system of differential equations
(71)\I\J<J|+\I\J<K|aKF(I\J)UK Zf JcT

OrFr =
0 otherwise

foralll € p,JeE€p and K € p; with KNI\ J)=0,
(iii) there exist a,d € A such that f(¢) =a+ (d for all{ € Q .

In this case f* : RO — A, ¢ — a—+ ({d is again the unique differentiable
extension of f , and O f* =d .

Proof: (iii) = (i) : It is obvious that every f : RM — A, ¢ — a+ ¢d where
a,d € A is differentiable with 0, f = d . Since f*(0) = a = f(0) and

I f*(0) = d = 01 f(0) clearly f* is uniquely determined by f . O

(i) = (ii) : Assume f differentiable and let 8 € Q be arbitrary. As in the
proof of theorem 4.9 we get: F7 is partially differentiable at 3 with respect
toall yy forall I € p,J € p1 , and

8, F1(3) = (—)INV<IISp 4(8) it T C T

0 otherwise

Soif K € p; with KN (I\J), we get

S (B) = (1)Kl Fip ok (8) .0

(ii) = (iii) : Let Fr , I € p fulfill the system of differential equations.
Step I Prove that all 0;F; are constant .

We show 0gOrFr =0foralll € o, ST €@, ST ClI.

Let Tep,ST¢€p withS,TCI.

First assume SNT # () . Choose K € p; such that K < I .
Then K < I\T and S ¢ (I\T)U K . Therefore by (ii)

orFr = (_1)|[\T<T‘8KF([\T)UK

is independent of yg , and so dsOrFr = 0 . Especially if we set
S =T := J we see that F7 is affine linear with respect to y; for
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allep,Jep,JCI.

Nowlet I € p , S, T € o1 with S, T C I and SNT = () . Choose
L, M € p; such that M < L < I . Then we have L < I\ S, and
so by (ii)

dsFr = (~)INI<Slg, Fp gy -

Since all Fx , K € g are affine linear with respect to all y; ,
J € p1,J C K, we can interchange partial derivatives. Clearly
M < (I\(SUT))UL, and so again by (ii) , since

|L < T|=|L||T| is an odd number,

9sorF; = (—1)IN<519,00F sy

(—1)NS<SHINSUDIOL<T g, 9 By (suryyumom

(—1) \I\S<S|+|I\T<T|+|S<T|+18L8MF(1\(suT))uLUM :

But S and T are arbitrary, so this holds again when S and T are

interchanged. So we get

dsOpFr = 0pdsFy = (—1)5<THT<Slggop Fy = —ds0r Fy

because |S < T|+ |T'< S| = |S||T| is again an odd number.
And this implies 0g0rFr =0 . O

Step II Conclusion .

For all I € p we have {min (/ U{0}) — 1} € p; , so we can define

dr = Ofmin(10{0}) -1} F1ufmin(rufoy) -1} E R, d =3 e diEr € A .
Let I € p,J € p; and K := {min((/\ J)U{0}) —1} < I\ J . Then by

(i)
OyFr = (—1)INV <o Fop pow = (1)1 <ldp

so for all I € p and ¢ € 2

Fi(Q)=Fi(0)+ Y (—=1)"<ly;dp,,
Jepr,JCI
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and finally, if we define a := f(0) € A,

Q) = O+ Y () ydp B

Iep Jepr,JCI

= a+ Y yE; ) dkEk

JEp1 Kegp
= a+(d.]

Corollary 4.11 Let Q C R?!9 be of cube type and f: Q — A . Then there

are equivalent

(i) f is arbitrarily often differentiable,
(it) f€D(ELA),

(iii) there exists a family (frs) (@) € (c> (Q#))pxmq) such that for

all (z,¢) € (#)"

Iep,Sep

=> > ¢* frs(z)

Icp Sep(q)

Again the function
~X X (@) (a9)" -
ITep Sep

s the unique extension in D ((Q#)lq) of f . f* is arbitrarily often differ-

entiable, for alli=1,...,p we have

o =33 Soifrsk

Iep Sep(q)

and forallj=1,...,q

0,1 = Z Z (—1)IS\<il S\ oy

ITep Sep(q),j€S

Proof: (i) = (ii) : trivial.

(ii) = (iii) and uniqueness: by induction on ¢ . If ¢ = 0 then it follows
immediately from theorem 4.9 .

So let us assume Q C IRPI9F! of cube type and f € D(Q,A) . Then there
exist ' C RP17 and Q7 ¢ R both of cube type such that Q = Q' x Q” .
So for all (z,(’) € Q' we have a differentiable function f (z,{’, ) : Q" — A,
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and so by theorem 4.10 there exist unique g,h : " — A such that for all
(z,¢) = (2,{, (g41) € Q

f(zvé-) =g (Zvcl) + Cqulh (Z7</) :
9= florxgoy € (', A) . Now we prove that h € D (', A) .

For all (z,¢) = (z,¢’, (g+1) € © we have

> Fi(z,Q)F;
Iecp

= ZGI (z,¢') Er + Z Yg+1,0E Z Hg (z,¢'
Icp JEp1 Kep

= Z GI(Z’ CI) + Z (_1)|I\J<J‘HI\J (Zv C/) Yq+1,J Er,

Iep Jep1,JCI

and so

FI(Za C) =Gy (Za C,) + Z (_1)|I\J<J‘HI\J (Zv C,) Yq+1,J -

Jepr,JCI

Finally we get

Hg = O)g41,5Fkus

for all K € p and § € p; with S < K , and therefore one
can easily verify that H; , I € g , fulfill (iii) of theorem 4.9
with respect to z and (ii) of theorem 4.10 with respect to all
Ci,...,¢q ,and so h € D(Q, A) by theorems 4.9 and 4.10 .

By induction hypothesis there exist families (g1r)e,, Rep(q) and
(h1R>I€p,REp(q) € (c> (Q#))@Xp(q) such that for all (z, (') € &

Z Z C/RQ/I\R

Icp Rep(q)

and

=3 > (Fhir(z)Br

Iep Rep(q)

So since ¢ = ¢® and ¢,y 1¢f = (—1)IBI¢RUT for all R € p(q) , we have
for all (z,() € Q
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f(z,¢) = g(2,¢) +ah(2.0)
= > > Fhis@E,

Tep Sep(q+1)

if we define

f o (—1)'5\{Q+1}|h1’5\{q+1} if qg+1¢e S
IS -—

gis otherwise

By the same argument it ca be seen that if f* € D ((Q#)|q+1 ,A) is an
extension of f then f* = ¢* + (44+1h* where g* and h* are the unique
extensions of g and h , and so f* is uniquely determined by f . [

(iii) = (i) and partial derivatives: by induction on ¢ . If ¢ = 0 then it follows
directly from theorem 4.9 .

Now let us assume U C IRP and (frg)

open

that for all (z,() € Ulat!

Tep.Sepiarl) € (Coo(U))gDXKJ(Q+1) such

=3 Y Chs@E

Icp Sep(g+1)

Then f(2,¢) = g(2,’) + (gi1h (2, ¢) for all (z,¢', Cgr1) € U with

g = :g:: :E:: CJ?}§;%IEIa

Iep Rep(q)

h = Z Z l |C fRu{q+1}EI Ul — AL

Iep Rep(q)

Let (b,3) = (b,#,84+1) € Ulet! | By induction hypothesis ¢ and h
are differentiable. So there exist Aq,..., A, , ¥q,..., 5, , Al,... AL,
Yoo, Ul4 — A continuous at (b, 3) such that

p q
9(2.¢) =g [®.0) + D (2 =) A (2,¢') + D (¢~ ) Zi (2,¢)
=1 7=1
and
h(z,¢)=h(b.B)+ > (2 —b) A (z.¢) + > (G- B) % (2.
=1 7j=1

for all (z,¢") € U9 . So for all (z,¢) = (,{',Cye1) € UPlIT!
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f(Z7 C) = g (Z7 CI) + <q+1h (Z7 C/)
= g(b,8) + Bys1h(b, B) + D (zi = bi) (Ai (2,¢) + (1A} (5,('))

=1

q
+ Z G — Bi) (8 (2,¢) = 1% (2,¢))
7=1
=+ (Cqul ﬁq+1) h(b, ﬁ) .
So we see that f is differentiable at (b, 3) ,
0y f(b,8) = 939 (b, B') + Bg410;h(b, B) for alli =1,....p,
a|jf(b7/6) = 8\]9( 7ﬁ) ﬁqula\] ( 75) forall j=1,...,q and

a|q+1f(bvﬂ) = h(b>ﬁ) :
By induction hypothesis

0yg (b,8) =>_ Y 3'%9; frr(b)Er,

Iep Rep(q)
d;h (b, ) Z Z 1)/R g’ 8fRu{q+1}(b)
Iep Rep(q)
foralli=1,...,p,
89 (b Z Z (—1)IRMaI<il g B\ 7, p (b)Y By

Iep Rep(q),jeR

=Y S (C)RGIHIRgRGY T  b)E

ITep Rep(q),jeR

forall j=1,...,¢. Soif j € {1,...,q} one has

ofb.g) = >3 >0 ()MUEIFRO fg(b) By

Iep Rep(q),jER

— Bys1 Z Z (_1)IR\{j}<jI+\R|5/R\{j}fIJ{q\H}(b)El

ITep Rep(q),j€R

= Z Z (—1)IS\<il gs\U} £, ¢ (b) By

ITep Sep(q+1),5€8

With similar calculations in the cases ¢ = 1,...,p and j = ¢ + 1 the rest

follows as well. [J

Corollary 4.12 Let Q C RP1Y such that Qyx = { ) €Q ‘ (z,0)7 = X}

open

is connected for all x € Q# . Then the same holds as in corollary 4.11 .
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Proof: (i) = (ii) : again trivial.
(ii) = (iii) and uniqueness: Let a be the set of all (U, g) where U C QF

open
andgeD(U'q,A) such that g = f on U1 N Q .
Step I Show that if (U,g) and (V,h) € a then g=h on (UNV)7 |

Let (z,¢) € (UN V)7 (Q#)1 . Then there exists (2, (') € QN (UN V)l
such that z# = z# . Since QN (UN V) c RPI there exists Q' c RPl
open open

of cube type such that 0 € ' and

.Y+ canUnv).
Therefore g ( + (ZI’C/))‘(Q’#)‘Q and h(O+ (Z/’C/>)’<Q/#)|q both are

|
differentiable extensions of f ({4 (2,¢))|o to (Q’#>q , and so

g+ (#.¢) = h(&+(Z,{) on (Q’#>‘q by the uniqueness in

corollary 4.11 . Since (z,() — (2, (') € (Ql#>‘q , we have ¢(z,() = h(z,() .

Step II Show that for all (b, 3) € Q2 there exists (U, g) € a such that
b# €U .

Let (b,3) € © . Since Q C RPl9 | there exists  C P of cube type

open open

such that 0 € ' and (b,8) + Q' C Q. Let U := ((b,8) + V¥ c Q.
open

lq
Then clearly b# € U . By corollary 4.11 there exists h € D (Q’#) , A

such that h = f($+ (b, 3)) on ', because f(O+ (b, 3))|lor € D(Q,A) . So
if we define g := h({ — (b, 8)) € D (U!4,A) we have g = f on (b, ) + Q' .

Now let us prove g = fon U1 NQ .

So let (z,¢) € UYNQ and x := z# € U . Since
U = ((b,3) + )% there exists (2, ') € (b, ) + Q' such that
x = z'# . Let X be the set of all (z”,¢") € Q such that

87;1|J1 . .8iT|JT8‘j1K1 .. .8USKS (F[ — G[) (Z”,CH) = 0

for all i1,...,4, € {1,...,p}, J1,..., Jr € 0o \ {0} ,

Jiy--rds €{1,...,q} , K1,...,Ks € p1 , I € p . Then clearly

X C Q,,and (Z,{) € X since (b,8) + Q' C Q is a neigh-
closed open

bourhood of (z’,¢’) . But since f and g both fulfill the systems

of differential equations given in theorem 4.9 (iii) and theorem
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4.10 (ii) for each (1,...,¢; , all F7 , Gr, I € p , are locally affine
linear with respect to all x;7 , i = 1,...,p, J C o \ {0} and
yjK,jZL...,q,KCpl. So X C Q.

open
And since Q is connected we have X = Qx , so (z,() € X and

S0 f(Z7C) :g(Z,C) .4

Step III Conclusion.

Since by step 11

U Uld — (Q#>|q ’

(U,9)ea

g = h on (UﬂV)‘q for all (U,g) and (V,h) € « by step I there exists a
unique function f* € D ((Q#)‘q) such that f*|;, = g for all (¢,U) € a .

So f = f*|g , and f* is the only function in D ((Q#)lq) which has this

property. Since (Q#)|q is of cube type, we see that f* has the required
form by corollary 4.11 . [J

(iii) = (i) : same as in in the proof of corollary 4.11 . OJ

Now we prove theorem 4.8 .
Let U := Q# and

O : (A(RY) © C®(U)) KA — C® (Ulq, A)
be the unique IR-linear and continuous map given by
eS®f®Er— ({Sf)EI forall feC®U),Se€plq) ,I€p. Then & is

surjective by lemma 4.11 since U4 is of cube type. To prove injectivity let

fi=>" > @ fig®Er € (AR @ C®(U)) KA
Iep Sep(q)

such that

0=0(f =Y Sfiskr.

Iep Sep(q)

and let x € U. We prove by induction on |S| that all f;g(x) =0,1 € g,
S e plq) -
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Let n € IN such that fxr(x) =0 for all K € p, R € p(q) with
|IR| < n,andlet I € p and S € p(¢g) with |[S| = n . Define
G = Ejtmaxry forall j =1,...,q . Then (x,() € Ule | and

0 = => Y Erimecifrr(x)Ex

Kep Rep(q)

— Z Z (_ )|L\(R+maxl)<R+maxI| %

Lep Rep(q),R+maxICL
X fL\(R—i—maxI),R(X)EL :

Since all fxkr(x) € R, K € p, R € p(q) this implies

Z (_1)|L\(R+max I)<(R+maXI)|fL\(R—i—maxI),R(X) -0
Rep(q),R+max ICL

for all L € p . If we set L := IU(S + max I) we see that for all
R € p(q) : R+ maxI C L implies R C S and so either R = S
or |R| < n . By induction hypothesis we obtain frs(x) =0 . O

For proving the conservation of multiplication and grading let e ® f @ E;
and e° ® g® Ex € (A(R?) ® C®(U)) XA and (z,¢) € RPI? . Then we have

—1)IS<EIRUS if RN S =0

0 otherwise

R_S _ (

and since all ; € Aq

RS — (—1)IS<BI¢RYS it RN S =0

0 otherwise

as well.

Of course since A is a graded algebra ¢ = |S| and E; = |I|] mod 2 . So
Ei¢S = (=D)MISICSEy . This all implies

® (("® f o By) (¢F @ g® Bk)) (2,¢)

= (( 1)IH1Is| R€S®f9®E1EK>( ,¢)

= (—1)ISICRCS f(2)g(2) Er Ex

("f(2)Erg(2)°Ex = (® (°® f @ Er) @ (" © g ® Ex)) (z,¢).

)
(
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ef' ® f ® E; is homogeneous of parity = |S|+ |I| mod 2 by definition of
the graded tensor product, and

d(e® © f @ Er)(z,¢) = (°f(z)Er € A

is clearly homogeneous with parity = |S|+ |I| mod 2 as well.

Now let |q : C*(UlY) — D(Q) be the restriction map. Then it is
clearly a graded algebra homomorphism, and by corollary 4.12 we have
*: D) —C> (U‘q) , [ — f* as an inverse homomorphism. [J

Now we will deduce a lemma which will be useful in what follows.

Lemma 4.13 Let U C RP and f € D(U'q,A) .

open
(i) For all (b,3) € Ul there exist Ay, .. Ay Y, 8,€D (U'q,A) such
that for all (z,¢) € Ul

P

F(2,0) = f(b,8)+ > (2 — bi) Ai(2, Q) + Y (G — B)) (2, C) -
i=1 j=1

(ii) f is determined by the functions (8‘]-1 ...8|jrf)‘U € C*¥U)® A,
{1y s dr} CH{L, o0 q) with j1 < -+ <y .

Proof: By corollary 4.11 and theorem 4.8 we can write

=Y. ¢ frsEr

Tep Sep(q)
with uniquely determined frs € C*°(U) ,I € g, S € p(q) because
Ule ¢ RP19 is of cube type.
(i) Since f (¢ + (b—Db#,8)) € (U‘q A)) we can say without loss of gen-
erality b = b#* € U and f = 0 . Since all f;p € C®(U) there exist

ApeC®U),Ie€ep,i=1,...,p,such that
p
Fro(x) = fro(b) + > (i — bi) Asi(x)
i—1

forall I € p and x € U . If we apply ~ to these equations we obtain

[0 = Y f®Er+> (2 —b) ZZ;(Z)EI

Iep =1 Iep

+Z@Z S OV @) By

j=1 IE@ S€ep(q),j=min S

= f(b,0) + Z (20— bi) Di(2,0) + Y G5(z
i=1 Jj=1
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for all (z,¢) € UM with A, == Y, ApEy

ZJ = ZIEpZSEW((])J:minSCS\{j}fIS € D(UquA) ) i = 17---717 )
7=1,...,q. 0

(i) Since all 9;| are linear it suffices to show that if (95, ...9);, f)}U =0
forall r € N, (j1,...,Jr) € p(q)" then f =0 . So assume all

@y 0. )], =0 Let R = {ji,....J:} € p(g) with j; < --- < j .
Then for all x € U by the derivation rule given in corollary 4.11

0=0y ...0; f(x,0) =Y fir(x)E].

Iep
But all frr(x) € R , so since x € U was arbitrary all fijg = 0 , and this
implies f=0.0

IffeD (U'q) then especially z#¥ = b# implies f(z, ()" = f(b,3)? for all
(2,¢). (b, ) €U

From now on let @ C RP!? and ¢ < R’® such that Q, and Y, are con-

open open
nected for all x € Q7 resp. x’ € U'# . We define
D) =¥ ((ARY) 2™ (0F)) @ 1) € D@,A),

where U : (A (RY) ® C*>® (Q#)) KA — D(Q, A) is the isomorphism given by
theorem 4.8 . Then D(12) is a sub graded algebra of D(Q2, A) not containing
A, more precisely D(©2) N A =R . We can characterize D(£2) as follows:

Theorem 4.14
a) D(Q) is closed under derivation.

b) Let f € D(Q,A) . Then there are equivalent

(1) f€DOQ),
(i) there exists a family (fs)gepq) € C (Q#)@(q) such that
=3 s,
Sep(q)

(i11) f*(z,¢) € (z,C) for all (z,¢) € (Q#)|q , where (z,() is defined to be

the smallest closed sub graded algebra of A containing all

ZiyeeeyZp Cia"'va )
(iv) 9y, ... 0}, f*(x,0) € R for all {j1,...,j-} €{1,...,q}" and
x € OF .
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¢) A(R?) ® C™ (Q#) ~ D () as graded algebras where the isomorphism is
the unique R-linear map given by e° ® f +— CS]? for all f € C* (Q#) and
S €plq) -

d) D(Q,A)=D(Q) XA , where on D (Q, A) we use the topology coming from
(A(R?) @ C> (%)) XA via the isomorphism U .

Proof: b) (i) < (ii) : trivial.

a) Let f € D(2) . Then by b) (i) < (ii) there exists a family

(f$)sep(q) €C™ (Q#)p(q) such that f* =3 e SFs -
So

@) =auf = Y oifs € DR
Sep(q)

foralli=1,...,p and

@) =0, = Y (-1)FINIFg e D)

Sep(q),j€S

for all j =1,...,q by corollary 4.11 . O

b) (ii) = (iii) : trivial.
(iii) = (iv) : By (iii) we have g*(x,0) € (x,0) = R for all g € D(Q) and
x € Q% . Since D(Q) closed under derivation by a) we get (iv) . O

(iv) = (ii) : By corollary 4.12 we can write

=33 Chiskn,

Icp Sep(q)

where (£15) repsep) € (€ (2F))77 . Solet B = {ji,....j:} € p(q)
with j; < --- < j, and x € Q7 . Then

Ay -9, I° => firx)Er € R
Icp

by (iv) . Since all frr(x,0) € R this means fir(x) =0for all I € p\ {0} .

Because R and x are arbitrary we have

> Ffps.O

Sep(q)

¢) trivial since it is the restriction of the isomorphism ¥ .
d) trivial since ¥(1® 1 ® Ey) = Er . O
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The next two theorems show that (Q#)‘q is essentially determined by the
algebra D(Q2) .

Let U ¢ R™ and S(C*>*(U)) be the spectrum of C*(U) , which is the set

open
of all unital algebra homomorphisms 7 : C*°(U) — IR . Then from analysis

we know that there is a canonical bijection

U—S8(*(U)),ar1a

with na(f) := f(a) for all f € C>°(U) and a € U . There is an analogous
result for D(Q) :

Let S (D(£2,A)) be the set of all graded algebra homomorphisms
¥ : D(Q,A) — A being the identity on A , and let S (D(2)) be the set of all
unital graded algebra homomorphisms 1 : D(2) — A .

Theorem 4.15 We have bijections

|
(2%)" = S @@N) . (b,5) = Ys)
where Y, 5)(f) := f*(b, B) for all f € D(Q,A) , and

|
(%) = S(DQ) , (b.8) = 1w
where N, )(9) := g*(b, 3) for all g € D(Q) and (b, 3) € (Q#)|q .

Proof: For proving surjectivity let first v € S (D(Q, A)) ,

b = Y(z) € No,i=1,....,p, b= (b1,....,by) , B = Y(G) € A,
j=1,....,q,and 3 := (B1,...,0) . Since C* (Q#) — R, h — ¢ (ﬁ>#
is again a unital algebra homomorphism, there exists a € Q# such that
" @# = h(a) for all h € C®(U) . So b#* =a , and so (b, 8) € (%)
Now let f € D(2,A) . Then by lemma 4.13 (i) there exist Ay,..., A, ,
S1,...,8, €D ((Q#)|q,A) such that for all (z,¢) € (%)

(G = B)) 2(z,Q).

p q
=1

FH(2.0) = f*(b,5) + Y (2 — bi) Di(2, () + ’

i=1 j
We see that ¢(f) = f*(b,3) . This proves ¢ = 9, g) -
Now let n € S(D(2)) . Then by A-linear extension there exists

Y € S(D(, A)) such that n = 9|p(q) - So there exists (b, 3) € (Q#)|q such
that ¥ =Y, gy , and so n =N ) -
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Injectivity is clear because all coordinate functions zi,...,2, , Ci,...

belong to D ((Q#)‘q) . O

Definition 4.16 Let p: Q — Q' .

G

(i) ¢ is called a D-map if and only if all component Junctions p; : @ — R° ,

i=1,...,r, and p); : Q—-RM,j=1,. , belong to D(R2) .

(ii) ¢ is called a diffeomorphism if and only if ¢ is bijective and ¢ and ¢~

are D-maps.

1

Clearly if ¢ : © — Q' is a D-map then there exists a unique extension
p* (Q#)|q — (Q'#)|S of ¢ which is as well a D-map. For all i =1,...,r

and j =1,...,s we have (¢"); = ;) and (") = I

In the super case a chain rule holds as well:

Proposition 4.17 Let f € D(Q) and

80:(801|7---74,07:\,80‘1,-..,90‘5):Q—>Q/

be a D-map. Then fop € D(Q) , and foralli=1,...,pand j=1,...

we have
00729 = 3 @) (G0 =) + 3 o) ((Au) =)
and
97 29) = 3 @) (0uf) 29) + Y- @e0) (1) o)

Proof: Let (b,3) € Q. Then p(b,3) € Q' , and so by lemma 4.13 (i) there

exist Ar,..., A, Xy,..., 8, € DY, A) such that for all (z',{’) €

f(#.¢) = ) + Z — ou(b,5)) A (2,¢)
+ Z (¢ —eub, 8)) X (2, ('),
=1

and there exist Ry; , Skj , Tj; and Uj; € D(Q,A) ,i=1,...,p,

j=1....q,k=1,...,r , 1l =1,...,s, such that for all kK = 1,...,r

l=1,...,sand (z,() € Q

p

q
on)(2,C) = o (b, B) + > (2 — b)) Rai(z, ) + D (¢ — By) Skj(z,C)
7=1

=1
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and

p

on(z,¢) = ou(b, B) + > (2 — bi) Thi(z, Q) + Y _ (¢ — B;) Uiy ().

i=1 j=1

So for all (z,() € Q we get

T

(fop)(z,0) = (fop)(b,B)+ > (vr(z ) — wr (b, 8)) Ak (¢(2,C))

=1
+Z ou(z,¢) — eu(b, 8)) Xy (¢(2,¢))

= (f ° <P) (b, B)

+> (z <Z Ryi(z (e(2,0) + > Tii(2, )% (@(LQ))
i=1 =1

+> (G- 8) (Z (2, Q) Ak (9(2,0) + > Uij(z, ()% (@(%C))) ;
k=1 =1

so f o is differentiable and so fop € D(Q,A) . Foralli=1,..., p and

9y (fop)(b,f) = Zkab,ﬁ)Ak(@(b,ﬁ))+2Th<b,ﬁ>zz<w<b,ﬂ>>
=1
= Zaqsom B)0 f (¢(b, B))

+Zaz|sa|l Bt (p(b,B))

and

9 (fop)(b,B) = Zskj<b,ﬂ>Ak<so<b,ﬂ>>+ZUu<b,ﬁ>El(so<b,ﬂ>>
=1
= Za|g<ﬁk| 5k|f( (b, )
+Za|mz 3)duf (p(b,B)) -

For proving fop € D(Q) let (z,¢) € Q. Then since all component functions
of ¢ belong to D(2) and f € D(Q') we have
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(f 0 90) (Z7C) S <901|(Z7C)7 s 7(pr\(Z7<)790\1(Z7()7 s 7(P|5(Z7C)> - <Z7€> 0

So every D-map ¢ : Q — Q' induces a unital graded algebra homomorphism
O :D(Q)— D), f— fop. The converse is almost true.

Theorem 4.18 Let ® : D(Q') — D(Q) be a unital graded algebra homo-

morphism. Then

(i) there exists a unique map @ : Q — (Q'#)lS such that ®(f) = f* oy for all
feDE),

(i1) ¢ is a D-map, and ®(f)* = f* o * for all f € DY),

1) D is an isomorphism if and only if ©* is a diffeomorphism.
2

Proof: (i) For proving uniqueness let

|s
Y= (801|""7‘)07’\780\1’---790|5) Q- (Q/#)

with component functions ¢y, ..., ¢, € Ag and @|1,...,¢|s € A$! such that
O(f) = fropforal feDEQ). Let z; ,i=1,...,7, and (; € D),
j=1,...,s, be the coordinate functions on ' . Then ¢, = z;" 0 p = ®(])

and<p|j:Cj’-*o<p:<D(C]’-) foralli=1,...,rand j=1,...,s.

For proving existence notice that since ® is a unital graded algebra homo-

morphism it induces a map

S(D)) —S (D(Q/)) ,m—nod

and so by theorem 4.15 a map ¢ : (Q#)‘q — (Q’#)‘q such that
N3 © L = Ngmp for all (b,F) € (Q#)Iq . So for all f € D() and
(b,8) € ()"

()" (,8) = (nw,g) ©®) (f) =Nz, (f) = f* (@(b,5)) ,
and so ®(f)* = f*op . If we define p := p|g we get ®(f) = f* o ¢ for all
feDE). 0O

(i) Let

B=(Pfs- - Py Pl Pls) (9#)|q - (9'#)‘8

with component functions ¢yj,..., 9, € Al and D1y Ps € A . Let
zi,i=1,...,r,and (j € D((Q#)lq) ,j=1,...,5, be the coordinate

7
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functions on (Q’#)ls . Then ¢; = 70§ = O(z)" € D((Q#)‘q) and

(2

@(ﬂ.:@o&:@(@‘)* ED((Q#)|q> foralli=1,...,rand j=1,...,s.
So ¢ is a D-map, and since ¢ = @l , ¢ is again a D-map and ¢ = ¢* . O

(iii) By theorem 4.8 we have D(Q) ~ D ((Q#)‘q) and
DY) ~D ((Q’ #) |s) via * | which are unital graded algebra isomorphisms.

So @ induces a unital graded algebra homomorphism

VD <(Q’#>|s> D <<Q#)q> .
U(g) =goy* forall ge D <(Q’#)‘S) as we saw in the proof of (i) .
'=": Let ® be an isomorphism. Then so is W .
By (i) and (ii) there exists a D-map p : (Q’#)‘s — (Q#)‘q such that
U—Y(h)=hopforal h €D ((Q#)|q) . SoforgeD ((Q’#)|S> we have

g="V(2(g)) =goyop.

So by the uniqueness in (i) we obtain ¢*op = id and by the same calculation
poy*=id.

1

<" : Let ¢* be a diffeomorphism. Then ¢~ induces a unital graded algebra

isomorphism

=D <(Q#>|S> ) ((Q’#>|q) B hog .
For g € D ((Q’#)Is> we have

(U(g)) =gopoyp '=g.

[1]

So =Z o ¥ =id and by the same calculation ¥ o = = id . Therefore ¥ and so

® are isomorphisms. [J

To conclude this section we make the following definition:

Definition 4.19 Let Q C R?!Y . Q is called super open in RP!Y if and only
if O C RP and Q = (%) .

open
In this case we regard D (Q) ~ A (R?) ® C* (Q¥) as the natural analogon
of C*>°-functions for the super open set {2 . There are two reasons for doing
so. The first is: if U C IR"™ then

open
C®(U,A) = C®(U)@A.
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The second is: in the case Q C R we have D(Q) ~ C*® (Q#) .
For all f € C*® (Q#) we identify fand f,and if f € D(Q) we write

F=> <dn

Tep(q)

with uniquely determined f; € C* (%) , I € p(q) . On D(Q) the body

map now simply occurs as the restriction map

#:D(Q) = ¢ (%) = flas

which is a continuous unital graded algebra epimorphism.

4.2 The complex case

Now let IK := C . Then A® is the complexification of A . There is a graded

involution on AC :

7:AC—>AC,w:ZCL[E[H@:ZG_[E[.
Iep Iep

Clearly ~ is a homeomorphism. degw = degw for all w € A® | —
commutes with the body map # , and restricted to C it is just the complex

conjugation.

By the way: Let  be the involution on A€ given by theorem 2.8 (i) , in
particular W' = w if w € Ag and W' = iw if w € Ay . Then an easy calcu-
lation shows that there exists a unique unital bicontinuous graded algebra

automorphism p : A© — A® such that

Eqn —iE_,
p (Bay) = g )

forallneZ.

—1 .
p~ (Bpny) = Bpny +1iB;_n)
for alln € Z , and
AC 2, AC

- % 1"

AC 2, AC

Let A, = (AC)R be the real part of AC with respect to the graded invo-

lution . Then p|p : A — A, is a bicontinuous unital graded isomorphism.
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Now we define CPI9:4 .= (Ag)p X (A(E)q for all p,q € IN . Then again we have
a body map

#. Crlet _ cp,

(W, 0) = (Wi, ..., wp, D1, ..., 0) — (w,0)# = (w#,...,w;f) .-

Let U C CP . Then we define Ul%7 := {(w,d) € crled| (w,9)# e U} .

open
We have U199 C CPl4 and (U/199)" = U . Conversely if @ C CPl9 then
open open
clearly Q% C CP and Q C (2#)7 .
open

If M C CPI97 | the set (A(C)M = (Ag)M @ (A(lc)M of all functions
f : M — AT forms a unital associative graded commutative algebra by
pointwise addition and multiplication, and we consider AC as the sub graded

algebra of (AC)M containing precisely the constant functions. Then clearly
C (M , A(C) is a sub graded algebra of (AC)M containing AC .

Theorem 4.20 For each U C CP we have an algebra embedding

open
T ) = (U AF) L f e F
where for all w € U00
T

m!n!
m,neNP

Clearly again f|U = f, and if O™ fy ~ O"F and D" fj, ~ O f pointwise for
all n € IN? then again ﬁc ~ fpomtwise.

Proof: same as in the real case since deg W = degw for all w € AC .
Again we have a sheef embedding (C@%)C — C (O‘O’G, Ag) .

Lemma 4.21 Let U C CP, f € C®°(U)C and b € UI%0 . Then for all

open

w € CPIO0 with w# =0

- L Soan m—n
fo+w)= > 00 (b) Wi
m,neNP o

Proof: same as in the real case.

Lemma 4.22 Let




be a power series convergent in U C CP with ¢ € CP and all amn € C. Then
for all w € U100

fony= 3 S (w—o)"w—c).
m,neN?P o

Proof: same as in the real case.

There is a canonical restriction of this construction to (A,), :

Lemma 4.23 Let U C CP and f € C®°(U)C . Then

open

(1) if UNRP # 0 and g := f|ynrr we have

o1 5 s () ()’

neN?
for all w € U0 (A,)P .
(ii) ?:}A, and so if f(U) C R then f (U‘O’a) C (M) -

Proof: (i) Let w € U199 0 (A;)f . Then

~ 1 m=n 4 4 m-+n
fw) = Z m!n!a 8f<w )(w—w > '
m,neNP
Since for each fixed component the sum over m and n is finite we can

interchange the order of summation. So

) = XY T (w) (v w)’

reNP neN? n<r

S a2 L)) )

reN? =" neNP n<r

- 5 Loear () (v w)

relN?

— Z %arg (W#> (w —w#>r g

relN?

r

(i) Let w € U!%0 . Then

T = 3 T () ()
m,neN?

= Y T () (o wh) ()
,neNP o
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As in the real case for the following we need some notations:

We set (w,V) = (wi,...,wp,01,...9;) € Q with for all i = 1,...,p respec-
tively j=1,...,q: w; = ZJepoziJEJ e o0 ,

v = EJepl rigEy € COLL all zij,1mj5 € C . We define

95 =g, -V

T

forall S = {s1,...,s,} C{1,...,¢} and s1 < --- < s, .

If f e (A(C)Q then we write f = Zlep FrE; with uniquely determined
component functions F7: 2 — C . Let (b,f) e Qand I € p . If

i€ {l,---,p} and J € gpo , and Fj(w,?) is partially differentiable with
respect to z;; at (b, 3) then we define

OF(w, ¥
9y, F1(b, B) := 18()‘
il l(w,9)=(b,B)
and
— OF(w, v
9i7F1(b, B) == g()' :
Zid - (w,9)=(b,B)

And also if j € {1,--- ,q} , J € 1 and Fr(w, ) differentiable with respect
to ;7 at (b, 3) we define

OF(w, 9
07 F1(b,B) == ({)()‘
T3 Nw9)=(b,8)
and
= OF(w,?
9)j,F1(b, 3) := é()’ .
T3d l(w9)=(b,)

Definition 4.24 Let Q C CPl9d | f:Q — AT and (b,3) € Q . f is called

open
differentiable at (b, 3) if and only if there exist Q' C Q such that (b, 3) €
open

and Ai,Ai,Ej,Z; QY - AC L i=1,....p,j=1,...,q, continuous at
(b, B) such that for all (w,9) €

q q
Y (Wi = Bi) Ti(w, )+ > (s — Bi)E(w, ).
Jj=1 j=1
If f s differentiable at (b,3) then we call 0;f(b,8) = Aib,B) ,
g‘jf(b,ﬂ) = E;(b,ﬂ) , j = 1,...,q , the partial derivatives of f at
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(b, ) . Ifgi‘f(b,ﬁ) :5|jf(b,ﬂ) =0 foralli=1,....,p,j=1,...,q then
f is called complex differentiable at (b, 3) .

If f is differentiable at each (b, 3) € Q then f is said to be differentiable, and
8i|f,5i‘f Q= AC i=1,...,p, anda‘jf,ajf Q- AC j=1,...,q,
are called the partial derivatives of f . If f is complex differentiable at each
(b, ) € Q then f is said to be holomorphic.

Notice that again 9; f(b, ) , 5i|f(b,ﬁ) ;i €4{l,...,p} , and 9;f(b,B) ,
g‘jf(b,ﬂ) , J € {1,...,q} , are well-defined. This can be proven by

calculations similar to that in the real case.

If @ C CPl97 | then clearly the set of all differentiable mappings © — AC

open
forms a sub graded algebra of C (Q,AC) invariant under ~ , which

contains the holomorphic mappings @ — AC as a graded sub algebra, both

containing AC .

All 9y, gi‘ , 05 and 5‘ ; are 0 on AT | and again a super product rule holds:

(0uf) = (a1 f) = £, (9;f) = 9;F) = F+1,
0 (fg) = (00f) g+ [ (9y9) » 93 (fg) = (04f) 9+ f (9yy9)

8 (f9) = (0;£) g+ (1) f (9;9)

and

3 (f9) = Byf) g+ (=1) £ (9;9)

for all differentiable f,g:Q — A, f homogeneous.

IfQ C CPl9d then we define as in the real case D (Q, AC) to be the set of all

open

fe (A(C)Q that are continuous with respect to w and partially differentiable
with respect to all w; , 4 = 1,...,p, and ¥; , j = 1,...,q . We define
O (Q,AC) to be the set containing all f € D (Q,AC) that are partially
holomorphic with respect to each w; and ¥; .

Then D (Q,AC) is a sub graded algebra of (A(C)Q invariant under ~  and
containing A€ | and O (Q, AC) is a sub graded algebra of D (Q, A(C) contain-
ing A but of course not invariant under

The main goal in the complex case is:
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Theorem 4.25 Let Q C CPlO@ sych that

open

Q, = {(W,ﬁ) €N ’ (W,ﬁ)# = z} for allz € OF is connected.

(i) We have isomorphisms

AC)RA(C) o= (0#)) AT ~ o= ((a#) ™ AC
( (24)) @ == (2)"".°)
:D(Q,AC>

as unital graded algebras, where on C*° (Q#)C we use the uniformal structure
giwen by fn, ~ 0 if and only if 8k51fn ~ 0 compact for all k,1 € NP and
pointwise convergence on C™ ((Q#)m’a,AC) .

The first isomorphism is the unique C-linear and continuous map given by
S @el @ f® By 950 B for all f € C® (%),

S, T € p(q) ,Ic€gp, and the second is given by the restriction map.

(i) The above isomorphism restricts to an isomorphism
(A0 (9#))8AS ~ 0 (2,4%) .

Let Q C CPl9 | Now we say Q is of cube type if and only if there exist

open
© C o\ {0} finite and € > 0 such that for all (w,?) € (Q#)‘q’q:
(w,9) € Qif and only if |z, |rjs| <eforalli=1,....,p,5=1,...,q,
TepNpo,Jep Nepr .

In this case clearly €, C Cé)'q’q for all z € QF |, and Q#F C Q .

open , convex

Clearly U194 is of cube type for all U ¢ CP .

open

Theorem 4.26 Let Q C CPIO0 pe of cube type and f € (AC)Q . Then

open
there are equivalent

(i) f is differentiable,
(i) f€D(Q,A%) ,

(iii) all Fr , I € p , are differentiable with respect to all zjy , i =1,...,p,
J € po , continuous, and they fulfill the following system of differential

equations

BBy ()N Fpy if JC T
i|J -
| 0 otherwise
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and

dyyrr = 4 O ey T el
0 otherwise

foralli=1,....;p, I €pandJ € g,

(iv) there exists a family (f1)re,, € <C°° (Q#)C)p such that

Fow) =3 Fiw)E;

Iep

for allw € Q.

In this case f* := Zlep }}El : (Q#)lo’ﬁ — AC s the unique extension
in D <(Q#)|0,0) of f, f* is differentiable, 0;f* and 51»‘]”* are again in
D ((Q#)Io’ﬁ) , and

01 = 0if1E;
Iegp

and

9y f" = Z@J}Ez
Icp

foralli=1,....p.

Proof: almost the same as the proof of theorem 4.9 in the real case. Step [

of (iii) = (iv) is different:

Show that all I} are affine linear with respect to z;; , J C I ,
J#0,if —J ¢ I, affine antilinear with respect to z;; , —J C I ,
J#0,if J ¢ I and C>® with respect to zg := (219, ..., 2,) € Q7 .

Let i € {1,...,p} and I € pog . Let J € o\ {0} such that J C I and
—J ¢ I. Then J,—J ¢ I\ J, and so O F; = (—1)I\/<JlgyFp ; is
independent of z;;7 . So F7 is affine linear with respect to z;; .

Now let J € po\ {0} such that —J C T and J ¢ I . Then J,—J ¢ I\ (—J),
and so again 5k|JF[ = (—1)'1\(_‘])<_J|5k|@F[\(_J) is independent of z;; . So

here F7 is affine antilinear with respect to z;; .

Now we prove by induction on n that all F; are C" with repect to zy for

arbitrary n € IN .
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Since f is continuous, all Fy are continuous with respect to zy .
Now let n € IN such that all Fr are C™ with respect to zp , and
letie{l,....p} , I €p,beN.

Choose S € g \ {0} such that —S <I < S .

Since 0 C CPI90 | there exist ¢ > 0 and € C  such that

open open

be and ¥ + [0,e] Ege; C Q. So for all w € €

Dplr(w) = 0j_sFru—s)(w)
Fry—s) (W +eE_ge;) — Frus(w)

I

9

because Fry_g) is affine linear with respect to w; —s , and

ai‘@F[(W) = ai|sFIUS(w)
Frus (w + eEge;) — Frus(w)
8 )

because Fyg is affine antilinear with respect to z;g .

By assumption in both cases the right hand side is C™ with
respect to zg , and so is the left hand side. That means Ffl|g,
is C"*! with respect to zy . Since b was arbitrary, Fy itself is
C"*1 with respect to zg . O

A similar result holds again for 2 C CORI .

Theorem 4.27 Let 0 C COLT pe of cube type and f € (A‘C)Q . Then

open
there are equivalent

(i) f is differentiable,

(i) Fr , I € g , are differentiable with respect to all vy and fulfill the

following system of differential equations

- (_1)|1\J<J\+\I\J<L|aLFU\J)UL if JC I
JLT =
0 otherwise

forallI € p,J€p and L € oy with LN(I\J)=0, and

Bep, = | CONCOTHNEOa By ooy K € -1
0 otherwise

forallI € p, K€ p; and L € p1 with (-L)N(I\ (-K))=0,
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(i4i) there exist a,b,c,d € AC such that f(9) = a + 9b + Jc + 99d for all
e,

In this case f* : COLT — AC 9 — a + 9b + Jc + 99d is again the unique
differentiable extension of f , 01 f* (V) = b+ Jd and 5|1f*(19) = c—¥d for
all 9 € COLT

Proof: almost the same as the proof of theorem 4.10 in the real case. Now
(ii) = (iii) is different:

Let Fr , I € p fulfill the system of differential equations.

Step I Show that all 9;F; , J C I , are independent of

rig if K ¢ —(I\ J) and antiholomorphic in rx if K C —(I\ J) , that
all OxF; , K C —I , are independent of r; if J ¢ I\ (-K) and
holomorphic in r; if J C I\ (=K) and that all 8;0xF; = 09 F; ,
JcIl,Kc—-I,Jn(—K)=10, are constant.

First we show 0gdrFr =0forall I € p, S,T € p1, S, T C I and
0s0rFr=0forallI € p,S,Tcp ,S,TcC—I.

First assume SNT # (0 . Then 0307F; = 0 and 0g07Fr = 0
follow as in the real case. Since J # () for all J € p; we see
that F7 is polynomial in r; and 7 of partial degrees < 1 for all
Ie€p,Jep . And so as in the real case we can interchange

partial derivatives.

Now assume SNT = () . Then d¢0rF; = 0 and 0307 F; = 0
follow again as in the real case since we can interchange partial

derivatives. [J

So clearly all 3;0xF; , J C I, K C —I are constant.

It remains to show that all 9gd;F; =0, JCI, KC—I,JN(-K)#0.
Solet I € p, JJK € py suchthat JC I, K C —Iand JN(—-K) # 0 .
Choose M € g; such that M < I . Then K ¢ —((I \ J)U M) and so

00 F = (—1)|[\J<J‘3M5KF(1\J)UM =0.
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Step II Conclusion .

For all I € p we have {min (/ U{0}) — 1}, {min (/ U{0}) — 2} € p1 , so we

can define

br := 6{min(IU{O})—l}F‘Iu{min(lu{0})—1}’TKZOJ(C—I eC,
b= rc, brEr € AT,

cr = 5{_ mjn(Iu{O})—i-l}FIU{min(IU{O})—l}’TKZO,KCI eC,
c:= ZIE@CIEI e AC ,

dr = Ofmin(10{0})—2} 01— min(1U{0})+1} F1U{min(1U{0}) -2} U{min(1ufo}) -1} € C ,
d:=3rc,diEr € A®.

Let I ep.
Let J € p1 with J C [ and S := {min ((/ \ J)U{0}) —1} < I\ J . Then

(—D)IN <N F p pyuslrge=o0.xc— (1)
(—)N<lpy

Qs F1lr =0,k c—(1\J)

Let K € p; with K € =] and T := {—min ((/ \ (=K))U{0}) — 1} . Then
—T < I\ (—K) and so

Ok Frlry—ogenrxy = (DINTOTEIOLE N Ciopyorylry=oscn (K

- (—1)'1\(*K)<*K|b1\(,K) )

Now let J, K € p3 such that J C I, K C —I and JN(—K) =0 . We prove
that

anKFI _ (*1)l_K<J‘+|I\(JU(_K))<JU(_K)|d[\(JU(—K)) )

We define S := {—min(7 \ ((-K)UJ))+ 1} and

T = fmin(1\ (=K) UJ) — 2} < (I\ (=) UJ)) U (=) .
Choose M, N € p; such that M > (—=I)UT and N < [U(—M) .
Then
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0,0k Fr = (—1)INCR<KIG 00 Fin Cryyomn
_ (L NCRS KRN

X ONOMF(\ (JU(~K))u(~M)UN
_ ()INERIS RN (RN

X ONOMEF(I\(JU(=K))U(=M)UN »

since —-M <I\(-K),N<(I\(-K))U(-M) , and
|-M < J| =|M]||J] is an odd number. Further

INOMF(\(u-rpu-aoy = (1IN IV

X ONOTF(1\(Ju(=K))UNU(=T)
= ONOTF(I\(JU(—K))UNU(-T)
= 9sOTF(1\(Ju(—K))USU(-T)
= dnuu-K))>

since —M,-T < I\ (JU(-K)),
IN < —M|+|N < =T| =|M||N|+ |N| is an even number, and
N,S<(-T)u(\ (JU/(—K))) . Finally we have

I\ (-K) < —K|+|[I\(JU(-K)) < J|+1
=|I\(JU(-K)) < -K|+|J < —-K|

+ N ((=K)uJ) < J[+[J]|K]|
=|I\(JU(=K)) < JU(=K)|+|-K < J| mod 2.0

So for all I € p and ¥ € 2

= FO)+ Y ()",

Jepr,JCI
LY (N Ry
Kep1,KC—-1
+ Z (_1)|—K<J|—HI\((—K)UJ)<JU(—K)\ «

JKep,JCI,KC—I,JN(—K)=0

X T TRA(\(JU(-K))) »

and finally, if we define a := f(0) € A® ,
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f0) = f(0)+2 Z (—1)IN <l sbp By

Icp Jepr,JCI

2 > (RO o By
Iep Kepy, KC—1

+Z Z (_1)|—K<J|+|I\((—K)UJ)<JU(—K)| x
Icp JKep:,JCI,KC—I,JN(—K)=0

X TITRA(n\(u(-K)) E1

= a-+ Z TJEJZbLEL—‘r Z TRE _K Z b En

Jep1 Legp Kepr Mep
+ Y rE; Y TkE_x Y _drEr
JEp1 Kepy Tep

= a+9b+dc+99d.0

Corollary 4.28 Let Q C CPIo7 be of cube type and f : Q@ — A€ . Then

there are equivalent

(i) f is arbitrarily often differentiable,
(ii) f € D(Q,A),

xp(q)?
(iii) there exists a family (frsT)req smepq € <C<>0 (Q#)C)P plar

that for all (w,?) € (Q#)‘q’q

Fow, ) =" S 959" frsr(w)Er.

Iep 5, Tep(q)
Again the function
=YY 900 frerkr (Q#) — AC
Iep S,Tep(q)
1s the unique extension in D ((Q#)‘q’q> of f . Foralli=1,...,p we have
* a7 —
onf =YY 950 0ifrsrEs

Iep 5, Tep(q)

and

_ N iTi/\
Oyf*=>_ Y. 099 difrsrEr,
Iep S,Tep(q)

and forall j=1,...,q
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;" _Z Z Z IS\{J}<J|195\{J},9 fISTEI

Tep Scp(q),jeS Tep(q)

and
a;f :Z Z (—1)ISHIT\G}<ilySg \{J}fISTEI-
ITep Sep(q) Tep(q).j€T

Proof: similar to the proof of theorem 4.11 in the real case.

Corollary 4.29 Let Q C CPI99 such that

open

Q, = {(w,9) €Q |(W,19)# =1z} is connected for all z € Q¥ . Then the

same holds as in corollary 4.28 .

Proof: similar to the proof of theorem 4.12 in the real case.
Now we prove theorem 4.25 .
(i) similar to the proof of theorem 4.8 in the real case.

(ii) We prove that O (Q,AT) = @ ((A (CHY 10 (QF)) gAC> .
So let first

=Y Y fedofisrobre (A (CT) KA (CY) @ C® (Q#>C) KAC

Iep 5, Tep(q)

such that ®(f) = > /¢, > s rep(q) 959" frsrEr € O (2,A%) |, let
R e p(q) \ {0} and j := min R . Then since ®(f) € O (Q,AC)

=900 =Y Y Y (el R,

Tep Scp(q) Tep(q),i€T

which is the image of

S S (CY)SHTMBSIES @ TV @ fror @ By

ITep Sep(q) Tep(Ca),j€T

under @ . Since ® is an isomorphism and j € R we obtain frgr = 0 for all
Seplg)and I € p. But R € p(q) \ {0} was arbitrary, so since e’ = 1 we
get

T_Z Z s ®1®fjsq)®E[.

Iep Sep(Ca)
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Now let i € {1,...,p} . Then since ®(f) € O (€2, A®)

950() =S S 50 frseEr

Iep Sep(q)

And so by the same reason all 9;f;gp =0, 1 € p, S € p(q) . That means

all frsg, I €p,S € p(q), are holomorphic.

Now let

=3 > fefisebe(AC)e100 (o)) RAC.

Tep Sep(q)

Then it is easy to check that 9;®(f) = 9;®(f) = 0 for all i = 1,...,p

7=1,...,q. 0O

?

Especially we see that if @ C CPl97 then O(Q,AC) is closed under

open

derivation, and if in addition €, is connected for all z € Q¥ then f € O (9)

implies f* € O ((2#)*7) .
Here again we have a useful lemma:

Lemma 4.30 Let U C CP and f € D (U147, AC) .

open

(i) For all (b,B) € U9 there ewist A1,..., A, , Ay, ...,AL S, ...

° p

¥,..., 5, €D (U‘q’a, AC) such that for all (w,9) € Uled

P P
Fw,9) = f0,8)+ Y (wi—b) A(w,9) + Y (@i — bi) Alw
=1 i=1
q q
+D (05— 8) Ti(w, 0) + > (95— B;) Tj(w,0).
7j=1 7j=1

(ii) If f € O (U199, AC) then for all (b, 3) € Ul%T there ewist Ay, ...

S1,..., 8 € O (U3, AC) such that for all (w,d) € U449

p

7§:q ’

1)

,pr )

Fw,9) = f(b,B)+ > (wi — b)) Ai(w,9) + > (9 — B;) B(w, ).
Jj=1

i=1
(iii) f is determined by the functions
(O -0, Oty - O, ) | € C¥(U)T @ AT,

{1 ydr} , {1, kst C{L, .o q with 1 < - < Jp
k<o <k .
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Proof: similar to the proof of theorem 4.13 in the real case.

From now on let Q C CPl47 and Q' < C'$% such that Q, and ), are

open open

connected for all z € QF resp. z’ € V% . We define

DQ) = T ((A (CT) R A (C?) @ C*® <Q#))C ® 1> cD (Q,A‘C) ,

where ¥ : (A(C?) KA (C?) ®C>® (Q#))C XAC — D (2, A%) is the isomor-
phism given by theorem 4.25 (i) , and O(2) := D(2) N O (2, A®) . Then
D(Q) is a sub graded algebra of D (€2, A®) invariant under ~ , and O(() is
a sub graded algebra of O (Q, A(C) , both not containing A® , more precisely

DO)NAC=0@Q)nAC=C.

We can characterize D(£2) and O(Q?) as follows:

Theorem 4.31
a) D) and O(Q) are closed under derivation.
b) Let f € D (Q, AC) . Then there are equivalent

(i) f€DE),

2

(@)
(it) there exists a family (fs1)grep(q) € (COO (Q#)C>p " such that

=Y 950 fer,

S,Tep(q)

(iii) f*(w,9) € (w,w,0,0) for all (w,0) € ()", where (w,w,0,0)
is the smallest closed graded subalgebra of AT invariant under

containing all w;, ..., w, and ¥4, ..., ,

(iv) 9, ...8‘]-T5‘k1 ...5|k5 f*(z,0) € C for all
Goovode) € (L@ (i k) € {1} and 7€ OF

c) Let f € O (Q,AC) . Then there are equivalent

(1) feO),
(i) there exists a family (fs)gep(q) € O (Q#)W(Q) such that
=30 0%,
Sep(q)
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(i) f*(w,9) € (w,d) for all (w,¥) € (Q#)‘q’q , where (w,v) is the
smallest closed graded subalgebra of AC containing all w;, . . ., wp and
Dy g,

(iv) 85, ...0);, f*(2,0) € C for all (j1,...,jr) €{1,...,q}" andz € QF .

d) A(CT) B A(C?) ® €= (Q#)° ~ D(Q) and A(CT) @ O (Q#) ~ O(Q) as
graded algebras where the isomorphisms are the unique C-linear maps given
byeS@el @ f — 19555}\ for all f € C= (Q#)C , S and T € p(q) resp.
eS@ frs05F for all f € O(Q#) and S € p(q) .

e) D (2,A%) = D(Q)NAC and O (2, A%) = O(XAC , where on D (Q, A°)
we use the topology coming from (A (C?) ®C= (Q#)C> XAC via the isomor-
phism U .

Proof: similar to the proof of theorem 4.14 in the real case.

The last two theorems show that again in the complex case (Q#)‘q’q is

essentially determined by the algebra D() .

LetU Cc C*, S (COO(U)C) be the spectrum of C>(U)® | more precisely the
open

set of all unital algebra homomorphisms 7 : C>(U)® — C which respect

. Then from analysis we know that there is a canonical bijection

U—>S<C°°(U)C) LA T,

where 7, (f) := f(a) for all f € C*°(U)* and a € U . There is an analogous
result for D(Q) :

Let S (D (Q, AC)) be the set of all graded algebra homomorphisms

¥ : D (Q,A%) — A® respecting ~  and being the identity on AC , and let
S (D(Q2)) be the set of all unital graded algebra homomorphisms

n:D(Q) — A® respecting

Theorem 4.32 We have bijections

(o) s (D (2A%)) . (0,8) = v

where Y, 3)(f) == f*(b, 8) for all f € D (Q,AC) , and
0d
(Q#> " - S (D(Q>) ) (baﬁ) = Nb,3) >
where 1w, )(g9) := g*(b, 3) for all g € D(Q) and (b, 3) € (Q#)Iq’q .
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Proof: similar to the proof of theorem 4.15 in the real case.

Definition 4.33 Let p: Q — Q' .

(i) ¢ is called a D-map if and only if all component functions
HERY, — C!o0 si=1,...,r, and p; : Q — CoIL1 ,i=1,...,s, belong
to D(Q) .

(ii) ¢ is called a diffeomorphism if and only if ¢ is bijective and ¢ and o~ !

are D-maps.

(iii) ¢ is called holomorphic if and only if all component functions of ¢ belong
to O(Q) .

(iv) ¢ is called biholomorphic if and only if  is bijective and @ and o~ ' are

holomorphic.

Clearly again if ¢ : Q — ' is a D-map then there exists a unique extension
e (Q#)\q,ﬁ — (Q’#)‘s’g of ¢ which is again a D-map. If ¢ is holomorphic
then again ¢* is holomorphic. For all i =1,...,r and j = 1,...,s we have
(90*)1‘\ = @;ﬁ and (SD*)U = ‘P\*j .

Here again we have a chain rule:

Lemma 4.34 Let f € D(Y) and ¢ = (gpl‘,...,90T|,g0|1,...,<,0|s) Q= O
be a D-map.

(i) fopeDQ), and foralli=1,...,p and j=1,...,q we have

T s

Oy (foe) = (9em) (Ouf)oe) + D (0er) ((Ouf) o)
k=1

k=1

+Z(8i|§0|l) (8uf) o +Z dijen) ((Opf) o)
=1 I=1

<

i (foe) =D (90m) ((Onf) o@) + > (9em) ((Orf) © @)
k=1

k=1

»

+3 @) (O0) ) + 3 @) (@uf) o)

=1

T T

O5x1) (On1f) 0 0) =D (B50%1) ((Dk f) 0 )
k=1

9 (fop)

B
Il
—

+
hE

@590) (Ouf) o)+ @en) ((Ouf) o )
=1

N
Il
—

258



and

s T

0 (fow) =) (90k) ((Bkf) @) Za\]SOk\ (O f) o)
k =1

I
_

WE

+> (@500) ((0uf) 0 0) + > (O500) ((Opf) 0 0) -
=1

l

(i) If f € O () and ¢ holomorphic then fop e O(Q) .

1

Proof: similar to the real case.

So every D-map ¢ : Q — € induces a unital graded algebra homomorphism
®:D(Y)— D), f— fop, which respects , and if ¢ is holomorphic
then ® (O () C O(Q) . The converse is almost true.

Theorem 4.35 Let ® : D(Q') — D(Q) be a unital graded algebra homo-
morphism which respects . Then

(i) there exists a unique map ¢ : Q — (Q'#)‘S’g such that ®(f) = f* oy for
all f € DY) |

(i1) ¢ is a D-map, and ®(f)* = f* o * for all f € DY),

(iii) P is an isomorphism if and only if ¢* is a diffeomorphism,

(iv) ®(O(Y)) C OR) if and only if ¢ is holomorphic,

(v) ® is an isomorphism and ® (O (V)) = O () if and only if * is biholo-

morphic.

Proof: (i) , (ii) and (iii) : similar to the proof of theorem 4.18 in the real
case.

(iv) '=": Let @ (O () € O(Q) and let wi,...,w. , ¥,..., 9, € O () be
the coordinate functions on ' . Then we have ;| = w'; o = ®(w}) € O(Q)
and ¢; :19’3%(,0:@(29}) eOQ) foralli=1,....r,j=1,...,8. Sop
is holomorphic.

<’ : trivial since if f € O () then f* € O ((Q#)‘SS) . g

(v) apply (iv) to ¢* and (¢*)~' . O

Definition 4.36 Let Q C CPlI97 . Q is called super open in CPI9T if and
only if W* C CP and Q = (#)"7 |

open

In this case for the same reasons as in the real case we regard
D(Q)=C*Q) ~A(CHKA(CY) @ C> (Q#)C as the natural analogon of
C>-functions resp. O () ~ A(CY) ® O (%) as the natural analogon of
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holomorphic functions for the super open set €2 .

For all f € C™ (Q#)C we identify f and f , and so if f € D (Q) we write

f= > 99 f1

I,Jep(q)

with uniquely determined fr; € C® (Q#)(C , 1, J € p(q)

the body map simply occurs as the restriction map

#:(@) - ¢ ()", F o flas.

which is a continuous unital graded algebra epimorphism.

In terms of f =3/ ;e ﬁI@JfU € D(Q) we have
— AHID AT+ =1)
F= 3 (-t

I,Jep(q)
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Zusammenfassung der

Hauptresultate

Ausgangspunkt der in der vorliegenden Dissertation vorgestellten For-

schungsarbeit bilden zwei Artikel von Svetlana KATOK und Tatyana FOTH:

e FotH, Tatyana and KATOK, Svetlana: Spanning sets for automorphic

forms and dynamics of the frame flow on complex hyperbolic spaces,
5],

e KATOK, Svetlana: Livshitz theorem for the unitary frame flow, [11] .

In diesen Artikeln werden Erzeugendensysteme fiir den Raum der Spit-
zenformen (cusp forms) konstruiert fiir den Fall eines beschrénkten sym-
metrischen Gebietes B in C" vom Rang 1 , welches nach Klassifikation
biholomorph zur gewohnlichen Einheitskugel in C™ ist, und eines Gitters
I' C G = Aut;(B) . Dabei ist nach einem berithmten Satz von H. CARTAN
die 1-Zusammenhangskomponente Aut;(B) der Automorphismengruppe ei-
nes komplexen beschrinkten symmetrischen Gebietes B stets eine halbein-
fache L1E-Gruppe vom Hermiteschen Typ, und wir nennen eine diskrete Un-

tergruppe I' von G = Aut;(B) ein Gitter genau dann wenn vol I'\G < oo .

Definition 0.1 (Automorphe Formen und Spitzenformen) Sei G ei-
ne LIE-Gruppe, welche transitiv und holomorph auf B operiert, in der Regel
G = Auty(B) , und sei I' ” G eine diskrete Untergruppe. Seien k € IN und
j € C®(G x B)® ein Kozykel, holomorph in der zweiten Variablen. In der
Regel ist j(g{) = det ¢’ fiir alle g € G .

(i) Eine Funktion f € O(B) heifit eine automorphe Form vom Gewicht k

bzgl. T' genau dann wenn gilt

f|v =f
fiir alle v € T' oder dquivalent f € C®(G)C ist links-T'-invariant, wobei
flo (Z) := f(92) 5 (9,Z)* und f(g) := fl, (0) fiir alle g € G und Z € B .
Der C-Vektorraum der automorphen Formen vom Gewicht k bzgl. T' wird
mit My (T') bezeichnet.



(i) Eine automorphe Form f € My(T') heifst Spitzenform vom Gewicht k
bzgl. T genau dann wenn gilt f € L*(I'\G) . Der C-Vektorraum aller Spit-
zenformen wird mit Sy (I") bezeichnet. Sk (T') ist ein HILBERT-Raum mit dem
Skalarprodukt

(fh)yp= [ Fh

NG
fir alle f,h € S(T) .

ForH und KATOK benutzen einen neuen geometrischen Ansatz basie-
rend auf dem Konzept hyperbolischer Fliisse auf Mannigfaltigkeiten.
Dieses Konzept stammt urspriinglich aus der Theorie der dynamischen
Systeme, siche z. B. [10] . Grob gesagt, nennt man einen FluB (¢¢),cg
auf einer Riemannschen Mannigfaltigkeit M hyperbolisch, wenn eine
orthogonale und (p;),cg-stabile Zerlegung TM = T+ & T~ & T% des
Tangentialbiindels T'M existiert, sodass (¢¢),cg gleichmifig expandiert
auf T | gleichméfBig kontrahiert auf T~ , das Differential von (¢;),cp
auf T° isometrisch wirkt und schliefllich 7° von Oppy erzeugt wird. Das
beriihmte ANOSOV-SchlieSungslemma (closing lemma) besagt, dass im Falle
eines hyperbolischen Flusses auf einer Riemannschen Mannigfalitigkeit sich
,neben” einer ,fast” geschlossenen Bahn eines Punktes von M stets eine
komplett geschlossene Bahn befindet. In der Tat folgt aus der Theorie der
halbeinfachen LIE-Gruppen von Hermiteschem Typ, insbesondere aus der
Wurzelzerlegung der L1E Algebra g von G = Auty(B) bzgl. einer CARTAN-
Unteralgebra, dass der geoditische Fluss auf dem Einheitstangentenbiindel
S(B) eines komplexen beschrinkten symmetrischen Gebietes B vom Rang

1 hyperbolisch ist.

Ziel der vorliegenden Arbeit ist es nun, diese Artikel auf komplexe
beschrinkte symmetrische Gebiete B vom Rang > 1 sowie auf super-

automorphe Formen und Super-Spitzenformen zu verallgemeinern.

In Kapitel 1 beschéftigen wir uns mit beschrinkten symmetrischen Gebie-
ten hoheren Ranges. Dabei ist nach Klassifikation jedes beschrinkte sym-
metrische Gebiet B C C" biholomorph zur Einheitskugel in C" , C" be-
trachtet als ein Hermitesches JORDAN-Tripelsystem. Es gelingt mit Hilfe
des Forn/KATOKschen Ansatzes ein Erzeugensystem fiir Si(I") zu konstru-
ieren fiir den Fall eines Produktes B = By x - - - x B, komplexer beschrénkter
symmetrischer Gebiete By, ..., B, vom Rang 1 ( B besitzt damit Rang ¢ )
und kokompakter diskreter Untergruppe

rcGg= Autl(B) = Auty (Bl) X -+ x Auty (Bq)
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unter Zusatzbedingungen (Satz 1.31 in Abschnitt 1.4 ). Hierfiir miissen
zunéchst Hilfsmittel bereitgestellt bzw. auf den hoheren Rang verallgemei-

nert werden. Zu diesen zahlen insbesondere:

e Eine Klirung des Zusammenhangs zwischen maximal flachen total
geoditischen (MFTG) Untermannigfaltigkeiten von B und maximal
Abelschen Untergruppen ohne kompakten Anteil (maximal split Abe-
lian subgroups) von G . Maximal Abelsche Untergruppen ohne kom-
pakten Anteil von G stehen in Einszueinsbeziehung zu CARTAN-
Unteralgebren der LiE-Algebra g von G vermoge exp .

Hierfiir benotigen wir die volle Theorie halbeinfacher Lik-
Gruppen vom Hermiteschen Typ sowie die Hermitescher JORDAN-
Tripelsysteme.

e Eine Verallgemeinerung der Theorie hyperbolischer Fliisse auf parti-
ell hyperbolische Fliisse. Hierbei nennen wir einen Fluss (¢),cg auf
einer Riemannschen Mannigfaltigkeit M partiell hyperbolisch, wenn
eine orthogonale und (i), g-stabile Zerlegung TM =T+ & T~ & T°
des Tangentialbiindels T'M existiert, sodass (¢¢),cg gleichméBig ex-
pandiert auf T7 | gleichméBig kontrahiert auf 7~ , das Differential
von (¢4),cg auf T isometrisch wirkt und lediglich Oy in T enthal-
ten ist. Wir entwickeln ein partielles ANOSOV-SchlieBungslemma fiir
partiell hyperbolische Fliisse, welches besagt, dass sich ,,neben” einer
Bahn, die sich modulo der Ty-Blétterung ,fast” schliefit, stets eine
Bahn befindet, die sich modulo der Ty-Blatterung komplett schlief3t
(Abschnitt 1.3 ).

Im zweiten Teil der Arbeit nun beschéftigen wir uns mit super-automorphen
Formen und Super-Spitzenformen. Zu diesem Zweck befassen wir uns in
Kapitel 2 zunéchst mit (Zg-) graduierten algebraischen Strukturen, insbe-
sondere graduierten Algebren, sowie mit der allgemeinen Theorie der Su-
permannigfaltigkeiten. Dabei heifit eine Algebra A iiber einem Koérper K
der Charakteristik # 2 eine graduierte Algebra genau dann wenn sie als K-

Vektorraum in eine direkte Summe A = A; @ A, zerfillt mit der Eigenschaft

.Ai.Aj C AH_]'

fiir alle 4, j € Zy . Das Hauptbeispiel einer unitalen assoziativen graduierten
(sogar graduiert-kommutativen) Algebra ist die GRASSMANN-Algebra A(V')
iiber einem K-Vektorraum V . In diesem Fall haben wir eine sogenannte
Rumpfabbildung (body map) # : A(V) — K , welche jedem Element aus

A(V) seinen konstanten Term zuordnet, und welche ein Algebraepimorphis-
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mus ist.

Fine Supermannigfaltigkeit ist kurz gesagt ein Objekt mit einem Paar
(p,q) € IN? als Dimension. Charakteristisch fiir eine Supermannigfaltigkeit
M der Dimension (p, g) sind:

(i) M besitzt einen sogenannten Rumpf (body) M = M# | welcher eine
gewOhnliche C*°-Mannigfaltigkeit der Dimension p ist.

(ii) M zugeordnet ist die graduierte Algebra D(M) der Superfunktionen
auf M . Ihre Elemente sind die globalen Schnitte einer Garbe S , der
sogenannten Strukturgarbe von M , iiber M , welche lokal isomorph
zu CY7 ® A (IRY) ist.

(iii) Es gibt eine Rumpfabbildung # : S — C55 , und diese ist ein Garben-

epimorphismus.

Besonders einfache Supermannigfaltigkeiten sind die super-offenen Mengen.
Eine super-offene Menge U4 der Dimension (p, ¢) ist eine Supermannigfal-
tigkeit, deren Rumpf U eine offene Teilmenge des IR? , und deren Struk-
turgarbe gerade S = CfF ® A (IR7) ist. Auf einer super-offenen Menge Ula
der Dimension (p,q) haben wir also die geraden Koordinatenfunktionen
Z1,...,2p €C®U) — D (U |q)0 und die ungeraden Koordinatenfunktionen
(1i=e1,...,( =€ € A(R?) = D (Ul), .

In dieser Arbeit wird nun das Konzept einer Parametrisierung eingefiihrt,
wobei die ,,Parameter” die (ungeraden) Koordinatenfunktionen ay, ..., ay,
aus einer GRASSMANN-Algebra P := A(R") = D (]R‘”) , n € N,
sind. Dieses Konzept ist offenbar neu. Hier die Definition einer P-

Supermannigfaltigkeit bzw. eines P-Supermorphismus:

Definition 0.2

(i) Seien M eine p-dimensionale C*°-Mannigfaltigkeit und ¢ € IN . Sei S
eine Garbe unitaler graduierter Algebren iiber M mit einer Garbeneinbettung
P — S und einem Garbenhomomorphismus # : S — Cy7 - Dann heifit das
Tripel M := (M, S, #) eine (p, q)-dimensionale iber P parametrisierte (oder
kurz P-) Supermannigfaltigkeit genau dann wenn fiir alle xo € M eine offene
Umgebung U C M sowie ein Garbenisomorphismus
P:Sly=Cr @ A(RY) X P existieren, sodass ®|p = id und

Sy 2 o ARY)RP
# N\ 7 S #
g
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M = M7# heifit dabei der Rumpf (body) und S die Strukturgarbe der Su-
permannigfaltigkeit M . Wir schreiben D(M) := S(M) .

(i) Seien M = (M,S,%) wund N = (N, 7,%) 2wei P-
Supermannigfaltigkeiten, ¢ : M — N eine C>®-Abbildung und
(Pw)wen offen  €ine Familie wvon unitalen graduierten Algebrahomo-
morphismen @y : T(W) — S (¢~ Y(W)) mit der Eigenschaft, dass fir alle
W' Cc W C N offen

TW) 5 S(p7'(w))
lwr | %0 Llo=1own)
T(W') - S (7' (W)

(das heif§t gerade, dass das Paar ® := (gp, (®PW)wenN offen ) ein Morphismus
der geringten Riume (M,S) und (N,T) ist). Dann heifit das Paar
P = (go, (Pw)wen oﬁen) ein P-Supermorphismus von M nach N genau
dann wenn fiir alle W C N offen ®w|p = id und fir alle f € T (W)

(@w(/))F = f# ol

gilt.

Setzen wir n = 0 (dquivalent P = IR ) , so erhalten wir die Definiti-
on einer gewohnlichen Supermannigfaltigkeit bzw. eines gewOhnlichen Su-
permorphismus zuriick. Es zeigt sich, dass die P-Supermannigfaltigkeiten
zusammen mit P-Supermorphismen eine Kategorie bilden, welche eine
echte Erweiterung der Kategorie der Supermannigfaltigkeiten mit Super-
morphismen darstellt. Als Hauptresultat der Untersuchungen iiber P-
Supermannigfaltigkeiten léasst sich sicherlich das Ergebnis bezeichnen, dass
auch in der Kategorie der P-Supermannigfaltigkeiten ein Kreuzprodukt
existiert (siehe die Sétze am Schluss von Abschnitt 2.2 ): Sind némlich
M = (M,8,#) und N' = (N,T,#) zwei P-Supermannigfaltigkeiten der
Dimension (p, q) bzw. (r,s) , so ist eine Realisierung ihres Kreuzproduktes

gegeben durch

Mxp N = (M x N, (prTS@prgT)/I,#> ,

wobei Z die Idealgarbe von priS @prz’f bezeichnet, welche von allen
aj®1—-1®«a;,j=1,...,n,erzeugt wird, und X das graduierte Ten-
sorprodukt bezeichnet. P wird eingebettet in die Garbe (pr“{S@prgT) / A

geméf

P — (pr”{S@prET)/I,RI—>R®1+I=1®R+I-



M xp N ist also eine (p + r,q + s)-dimensionale P-Supermannigfaltigkeit
mit Rumpf M x N .

Der Grund, warum wir das Konzept der Parametrisierung einfiihren ist
- abgesehen von der Eleganz der Theorie selbst - der folgende: Fiir die
Definition von super-automorphen Formen bzw. Super-Spitzenformen
bendétigen wir analog zum klassischen Fall eine diskrete Untergruppe einer
Super-L1E-Gruppe, welche auf einem beschrinkten symmetrischen Superge-
biet operiert. Eine Super-LIE-Gruppe G besitzt als Rumpf eine gewohnliche
C>®-LIE-Gruppe G := G# , und es zeigt sich, dass eine diskrete Untergruppe
I" von G nichts anderes ist als eine diskrete Untergruppe ihres Rumpfes
G . Betrachten wir stattdessen parametrisierte diskrete Untergruppen
von G , so erhalten wir eine echt groflere Klasse von Untergruppen, nicht

notwendigerweise im Rumpf G enthalten.

In Kapitel 3 untersuchen wir nun super-automorphe Formen und Super-
Spitzenformen. Wir beschranken uns dabei auf den Fall eines beschrénkten
symmetrischen Supergebietes B := Brar pgre N, pq>1, welches
die eindeutig bestimmte komplexe super-offene Menge von komplexer Di-
mension (pg,rq) ist mit der Matrizeneinheitskugel B := BP¢ C CP*? als
Rumpf, und der super-speziellen pseudounitaren Gruppe G := sSU (p, q|r) .
sSU (p, q|r) ist eine reelle ((p +q)?+r?—1,2(p+ q)r)—dimensionale Super-
Lie-Gruppe mit Rumpf

sS(U(p,q) xU(r)) := 919 €U(p,q) xU(r)| detg=det E » ,

0| FE

und sie operiert transitiv auf B durch gebrochen rationale (MOBIUS-) Trans-
formation. Da zur Zeit noch unklar ist, wie das Kozept eines Fundamental-
bereiches einer diskreten Untergruppe I' einer gewohnlichen LiE-Gruppe auf
parametrisierte diskrete Untergruppen einer Super-LIE-Gruppe zu verallge-
meinern ist, konnen wir bislang nur fiir den Fall einer nicht-parametrisierten
diskreten Untergruppe eine Definition des Raums der Spitzenformen als
HiLBERT-Raum geben. Im Falle einer nicht-parametrisierten diskreten Un-
tergruppe I' gelingt es uns, mit Hilfe des FOTH/KATOKschen Ansatzes ein
Erzeugendensystem fiir den Raum sSi(I") der Super-Spitzenformen zum Ge-
wicht k zu konstruieren fiir ¢ = 1 und I'\G kokompakt oder ¢ =1, p > 2
und vol I'\G' < oo unter der Zusatzvoraussetzung, dass die Rechtstransla-
tion der maximal Abelschen Untergruppe A von G ohne kompakten Anteil
(da g =1also A~ TR ) auf I'\G topologisch transitiv ist (Satz 3.17 in Ab-

schnitt 3.3 ). Zu diesem Zweck wird zunéchst ein Analogon des Satzes von
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SATAKE fiir super-automorphe Formen gewonnen (Satz 3.11 in Abschnitt
3.2):

Sei I'\G kompakt oder ¢ =1 ,p > 2 und I' C G ein Gitter.

Dann existiert ein kg € IN mit der Eigenschaft, dass

5S3,(T) = sMy(T) N L* (D\B)

bzgl. eines geeigneten MaBes auf I'\ B fiir alle s € [1,00] und
k > ko , wobei sMy(T") den Raum der super-automorphen For-

men zum Gewicht k bzgl. I' bezeichnet.

Im ersten Fall ist die Aussage trivial, und dort sSk(I') = sMy(T") fur alle
k € Z . Im zweiten Fall liuft der Beweis analog zum klassischen Fall iiber
die FOURIER-Entwicklung einer super-automorphen Form an den Spitzen
des Quotienten I'\ B , und wir erhalten ky = 2p .

Fiir parametrisierte diskrete Untergruppen (also diskrete P-Untergruppen
mit einem geeigneten P = A (IR") , n € IN ) T von G erzielen wir partielle
Resultate indem wir Y als eine Stérung ihres Rumpfes I' := Y# betrachten.
In drei Spezialfillen gelingt es uns, den Raum sSi(Y) der Spitzenformen
vom Gewicht k bzgl. T als PC-Untermodul des P®-Moduls sM(Y) der
super-automorphen Funktionen vom Gewicht k£ bzgl. T zu definieren. Es

sind die folgenden Fille:

(i) I'\G kompakt. In diesem Falle definieren wir sS;(Y) := sMy(Y) ,

1) Es existiert ein parametrisiertes Element g €p G mit der Eigenschalit,
D E . . .. El G mit der Ei haf
dass T = gl'g~! . In diesem Falle definieren wir sS;(Y) als das Bild

von 55 (T") ¥ PC unter dem Isomorphismus

@ : sMy(T) K PE — sMy(Y), fr flgr-

(iii) g =1, p > 2, vol (T\G) < o0 , jedoch T'\G nicht kompakt unter
einer Zusatzbedingung. Dieses ist der deutlich schwierigste Fall, und
hier benutzen wir wieder die FOURIER-Entwicklung einer Spitzenform
f € sS(I') an den Spitzen des Quotienten I'\B .

Ziel ist es nun ausgehend von einem Erzeugendensystem (¢x),c, von
sSk(I") , die Spitzenformen ¢y € sSi(I') so zu Elementen ¢y € sSk(YT) zu
deformieren, dass (1/x)yc, €in Erzeugendensystem des PC-Moduls darstellt.
Dies gelingt im Fall (ii) : Wir definieren hier 1 := ¢,|,-1 und weisen nach,

dass tatsdchlich in einem gewissen Sinne (1)), ein Erzeugendensystem
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von sSk(T) ist (Satz 3.32 (ii) in Abschnitt 3.4 ). In den Féllen (i) und (iii)

besteht hier weiterer Klarungsbedarf.

In Kapitel 4 schlieBlich wird eine punktweise Realisierung von super-offenen
Mengen gegeben unter Benutzung von Superzahlen im Unterschied zu Ka-
pitel 2 , wo wir super-offene Mengen als geringte Rdume beschreiben. Auch
dieser Aspekt der Theorie der Supermannigfaltigkeiten ist augenscheinlich
neu, obwohl Superzahlen z. B. von B. DE WITT in [17] betrachtet werden.
Wir zeigen, dass fiir eine super-offene Menge Ul? die graduierte Algebra
D (Ul7) = ¢>®(U) ® A (RY) der Superfunktionen auf Ul? nichts anderes ist
als die in einem gewissen Sinne reduzierte graduierte Algebra der stetigen
und partiell differenzierbaren Funktionen auf dem topologischen Raum U
(Satz 4.8 in Abschnitt 4.1 ), und dass die Algebra D (U‘q) die Menge U7 bis
auf Diffeomorphismen eindeutig bestimmt (Sétze 4.15 und 4.18 in Abschnitt
4.1 ). Bemerkenswert in diesem Zusammenhang ist, dass D (U |q) gleichzei-
tig die (reduzierte) graduierte Algebra aller unendlich oft differenzierbaren
Funktionen auf U9 ist.

Mit Hilfe der punktweisen Realisierung von super-offenen Mengen wird es
moglicherweise in der Zukunft gelingen, Fundamentalbereiche fiir parame-

trisierte diskrete Untergruppen beschreiben zu kénnen.

Ich mochte an dieser Stelle noch einmal allen Mitgliedern des Fachbereichs,
die mich wohlwollend wéhrend meiner Zeit in Marburg begleitet haben, fiir
ihre Unterstiitzung danken, dazu zéhle ich insbesondere meinen Betreuer
Prof. Dr. H. UPMEIER sowie den Zweitgutachter der Dissertation Prof. Dr.
F. W. KNOLLER .
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