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Zusammenfassung

In dieser Arbeit werden verschiedene Aspekte des Quantenchaos untersucht.
Die Wellengleichung fiir flache Mikrowellen-Resonatoren ist mathematisch
aquivalent zur Schrodingergleichung in der Quantenmechanik. Daher bieten
Mikrowellenmessungen einen experimentellen Zugang zum Quantenchaos.
Die Experimente werden mit Hilfe der Streutheorie beschrieben, um die
Ankopplung der Antennen, sowie die Dissipation in den Billardwénden zu
beriicksichtigen.

Im ersten Teil wird die Streumatrix verschiedener Mikrowellen-Resonatoren
im Bereich tiberlappender Resonanzen analysiert. Sowohl die Autokorre-
lationsfunktionen der selben, als auch die Kreuzkorrelationsfunktionen ver-
schiedener S-Matrixelemente zeigen charakteristische Unterschiede zwischen
klassisch reguldren und chaotischen Systemen. Im Einklang mit der Literatur
zeigen die Kreuzkorrelationen diesen Unterschied deutlicher. Die Absorption
in den Resonatorwanden wird dabei mit unendlich vielen schwach gekoppel-
ten Kanélen modelliert.

Im zweiten Teil geht es um die Stabilitat der Zeitentwicklung in der Quanten-
mechanik. Die Fidelity-Amplitude ist dabei eine Standardgrofie zur Charak-
terisierung der Storempfindlichkeit eines Quantensystems. Sie ist definiert
als Uberlapp-Integral der gestorten und ungestorten Zeitentwicklung des
selben Anfangszustands. Exakte theoretische Ergebnisse im Rahmen der
Zufallsmatrix-Theorie werden mit numerischen Simulationen und den linear-
response Ergebnissen verglichen. Fiir starke Storungen bildet sich ein lokales
Maximum der Fidelity-Amplitude bei der Heisenberg-Zeit aus. Eine intu-
itive Erklarung fiir dieses Phianomen bietet die Analogie zum Debye-Waller-
Faktor aus der Festkorperphysik. Desweiteren werden im dritten Teil der
Arbeit experimentelle Ergebnisse zur Fidelity-Amplitude vorgestellt fiir zwei
Mikrowellen-Resonatoren mit klassisch chaotischer Dynamik. Die Storung
wurde dabei durch das Verschieben einer Wand bewerkstelligt. Die Ergeb-
nisse lassen sich im Rahmen der linear-response Theorie beschreiben.

Im vierten Teil werden Mikrowellen-Messungen an dielektrischen Quadrupol-
billards mit gemischtem Phasenraum vorgestellt. Die interne Dynamik wird
mit Hilfe von Husimi-Verteilungen analysiert, wahrend im Auflenbereich der
Poynting-Vektor das Abstrahlverhalten liefert. Dieses ist bei Quadrupolbil-
lards stark von den Strukturen des klassischen Phasenraums gepragt.






Abstract

In this work several aspects of quantum chaos are studied in the time domain.
The wave equation for flat microwave cavities is equivalent to the Schrodinger
equation in quantum mechanics. Therefore microwave measurements provide
an experimental approach to quantum chaos. The experiments are described
in terms of scattering theory, to take the coupling of the antennas to the
system as well as the dissipation in the cavity walls into account.

In the first part the scattering matrix of several microwave cavities is analyzed
in the regime of overlapping resonances. The difference between regular and
chaotic systems can be observed both in the autocorrelation functions of the
same S-matrix elements, and in the cross-correlation functions of different
S-matrix elements. In accordance with literature, this difference is more
pronounced in the cross-correlation functions. To describe the experimental
correlation functions, the absorption in the cavity walls is modeled by an
infinite number of weak decay channels.

In the second part the focus is shifted to the stability of quantum time-
evolution. The fidelity amplitude is a standard benchmark for the stability
of a quantum system against a change of the Hamiltonian. It is defined as the
overlap of the perturbed and unperturbed time-evolution of the same initial
state. Exact theoretical results for a random matrix model are compared with
numerical simulations and the linear-response results. For strong perturba-
tions a partial recovery of the fidelity amplitude is found, and an intuitive
explanation for this behavior is given in terms of a spectral Debye-Waller fac-
tor. Further, in the third part, experimental results for the fidelity amplitude
are presented for two microwave cavities with classically chaotic dynamics.
The perturbation of the systems is realized by applying small changes to their
geometry. The results are well described by the linear-response expression,
and the perturbation strength can be related to the change of the geometry
of the cavities.

In the fourth part microwave measurements on dielectric quadrupole billiards
with mixed phase space are discussed. The internal dynamics is analyzed by
means of Husimi distributions, while for the outer region the Poynting vector
is determined to obtain the emission pattern. The emission pattern of the
quadrupole billiard is strongly influenced by the structures of its mixed phase
space.
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Chapter 1

Introduction

In classical mechanics the stability of a system with respect to the initial con-
ditions determines whether we call the dynamics regular or chaotic [Sch84].
For chaotic systems the difference in initial conditions grows exponentially
with time, while for regular systems this difference grows much slower, often
only linearly with time.

However, completely regular or chaotic systems are only the extreme cases. In
general a system can show both regular and chaotic dynamics depending on
the initial conditions. In this case the phase space is mixed, since it contains
both regular and chaotic regions. A trajectory starting near a stable fix-point
in phase space will stay in its vicinity for all time, while a trajectory starting
in a chaotic part of phase space will cover this chaotic part completely. In
a fully chaotic system almost every trajectory (apart from periodic orbits
which are of measure zero) will cover the whole phase space - this is called
ergodicity.

For the study of regular and chaotic motion one often considers two-
dimensional billiard systems, where the motion of a point-like particle is
confined by elastic reflection on the billiard walls. The dynamics of these
systems is thus completely determined by the shape of the billiard boundary.
The study of billiard systems is quite popular, because they are very simple
on the one hand, but still complex enough to show all the features of interest.

In the field of quantum chaos, which emerged in the early 1980s, one investi-
gates how these notions of chaotic and regular motion can be transferred to
quantum mechanics. This is not straightforward, since the time-dependence



2 CHAPTER 1. INTRODUCTION

of the Schrodinger equation is linear. Therefore quantum dynamics is always
stable against small variations of the initial state [Cas86]. However, there
are many statistical quantities of quantum systems that show signatures of
whether the dynamics of the corresponding classical system is regular or
chaotic. Spectral properties that are often studied include the distribution
of the distance between neighboring eigenenergies and the number variance,
i. e. the variance of the number of eigenenergies in intervals of a given length.
In the statistics of wavefunctions, e.g. the distributions of amplitudes and
intensities, one also finds signatures of the underlying classical dynamics of
the system.

According to a conjecture by Bohigas, Giannoni and Schmit [Boh84] (BGS-
conjecture) the statistical properties of quantum systems with chaotic classi-
cal dynamics can be described by random matrix theory (RMT), which has
been developed in the 1950s and 60s by Wigner, Dyson, Mehta and others to
describe the statistical properties of the spectra of complex nuclei [Por65].

The basic idea of RMT is that the statistical properties of complex systems
are universal and solely determined by the symmetries of the system [Meh67].
The elements of the considered matrix ensembles are Gaussian distributed
and uncorrelated. Three universality classes of chaotic systems are distin-
guished: The Gaussian orthogonal ensemble (GOE) describes time-reversal
invariant systems without spin-interactions; its matrices are real symmet-
ric. The Gaussian unitary ensemble (GUE) describes systems which are not
invariant with respect to time-reversal; its matrices are complex unitary.
Finally, the Gaussian symplectic ensemble (GSE) describes time-reversal in-
variant systems with spin interaction.

To allow a comparison with regular systems, the Poisson orthogonal ensemble
(POE) is often used. It combines random, statistically independent eigen-
values [Ber77b] with orthogonally invariant eigenvectors [Dit91]. Regular
systems behave very individualistic, especially the statistics of the wavefunc-
tions, thus the POE does not have the universal implications of the Gaussian
ensembles.

The BGS-conjecture has been substantiated by many numerical [Boh84,
Ber86] and experimental results, e. g. for microwave billiards [St690, Alt95].
The study of quantum chaos in microwave systems is possible, since the
Helmholtz equation for flat microwave cavities is equivalent to the corre-
sponding Schrédinger equation with Dirichlet boundary conditions [St699].
In this work, microwave systems are treated as scattering systems to take
the influence of the antennas and wall absorption into account.
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Figure 1.1: Spectral form factor k(t) = 1—bs(¢) for the GOE (dashed-dotted),
the GUE (dashed), the GSE (solid) and the Poisson spectrum (dotted). The
time ¢ is in units of the Heisenberg time.

One of the important fluctuation measures in quantum chaos studies is the
two-point form factor by(t) [Meh91]. Many statistical quantities like the
number variance and the spectral rigidity can be expressed in terms of the
two-point form factor, and we shall see that this is also true for correlation
functions and fidelity decay.

The spectral form factor k(t) = 1—by(t) can be obtained directly by a Fourier
transform of the discrete spectrum. While the form factor is 1 for Poisson
spectra, the correlations of the Gaussian ensembles cause the form factor
to start from zero. This difference to the uncorrelated spectra is called the
correlation hole. It is illustrated in figure 1.1.

In experiments one cannot study a closed system, but instead has to open the
system for the measurement. This leads to a finite width of the resonances
and thus to continuous intensity spectra.

Gorin and Seligman studied the correlation functions of intensity spectra
using scattering theory [Gor02], and found that the correlation hole can also
be observed in open systems, even in the regime of overlapping resonances.
Their work was the starting point for the experiments presented in chapter
2. The scattering matrix was measured for microwave cavities with two
antennas. It was analyzed in the regime of overlapping resonances. The
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theoretical description in terms of a statistical scattering matrix (S-matrix)
and the rescaled Breit-Wigner approximation has been applied to this regime.

The correlation hole could be observed both in the autocorrelation func-
tions of the same S-matrix elements, and in the cross-correlation functions
of different S-matrix elements. As predicted in reference [Gor02], the cross-
correlation functions display a more pronounced difference between regular
and chaotic systems.

The absorption in the cavity walls was modeled by additional decay channels.
For a finite number of channels scattering theory predicts an algebraic decay,
while our experimental results clearly suggest an exponential decay. This
behavior can be described by infinitely many weakly coupled channels.

The major part of chapter 2 has already been published [Sch03]. In addition
to the results of this paper, a generalization of the autocorrelation function
to additional channels and the GUE case is given in appendix 2.A.

In chapters 3 and 4 the focus is shifted to the stability of quantum time-
evolution. While the stability of a classical system is usually analyzed with
respect to a change of the initial conditions, Peres proposed to study the
stability of a quantum system against a change of the Hamiltonian [Per84],
i.e. the underlying dynamics. As a simple benchmark for the stability of
quantum motion, he proposed the overlap of the perturbed and unperturbed
time-evolution of the same initial state.

The fidelity amplitude for some initial state ¥(0) is defined as

f(t) = ((0)] exp(2miHt) exp(—2miH't) [1(0)) (1.1)

and the fidelity by F(t) = |f(t)|?, where H is the Hamiltonian of the unper-
turbed system, and H’ the Hamiltonian of the perturbed one.

In the 1990s spin-echo experiments by H. Pastawski et al [Pas95] spawned a
lot of interest in this field. T. Prosen formulated a general linear-response
approach to calculate the fidelity [Pro02a, Pro03], and a semi-classical treat-
ment was published both by Prosen and Znidari¢ [Pro02b] and by Cerruti
and Tomsovic [Cer02] in 2002.

The linear-response approach was later used by T. Gorin et al [Gor04a] to
calculate the Gaussian average of the fidelity amplitude in the regime of small
perturbation strengths,

Ft) = e TN CO (1.2)



where \ is the perturbation parameter, and C(t) is given by

Clt)y=—=+=-— /t Tb2(7/>d7'/d7'. (1.3)

0o Jo

[ is the universality index, i.e. § = 1 for the GOE, g = 2 for the GUE,
and 0 = 4 for the GSE. Equation (1.2) describes correctly the change from
Gaussian to exponential decay with increasing perturbation strength.

It also shows that the fidelity decay is governed by the two-point form fac-
tor. And in particular, we see directly that for regular systems with by(t) = 0
the decay is much faster than for chaotic ones. As pointed out in reference
[Pro02b], this has important implications for quantum information process-
ing, where a high fidelity is crucial.

In chapter 3 the exact results of the Gaussian average are compared with
numerical random matrix simulations and the linear-response results. For
strong perturbations a partial recovery of the fidelity amplitude is found,
and an intuitive explanation for this behavior is given in terms of a spectral
Debye-Waller factor. Again the two-point form factor is important to fully
explain this phenomenon. This chapter is based on a letter submitted for
publication; a preprint [St604a] is already available.

In chapter 4 the fidelity amplitude has been studied experimentally. The
scattering matrix was measured for two flat microwave cavities with classi-
cally chaotic dynamics, one with and one without marginally stable orbits.
The perturbation of the systems was realized by a small shift of one wall.

The experience with correlation functions discussed in chapter 2 leads to a
definition of the fidelity amplitude for scattering systems, which approaches
the fidelity amplitude of the closed system under certain conditions.

The experimental results for the fidelity amplitude are in good agreement
with the linear-response results (1.2). The perturbation strength extracted
from the fidelity decay is in accordance with that obtained from the variance
of level velocities. In the system with bouncing-ball orbits we observe strong
variations of the perturbation strength, which can be directly associated with
the marginally stable orbits. This chapter is based on a draft for a paper
which has not been submitted yet [SchO4a].

In chapter 5 microwave measurements on dielectric billiards with mixed phase
space are presented. Dielectric billiards with quadrupolar shape have received
a lot of attention because of their highly directed emission patterns [N6c97]
which is a welcome effect in the design of microdisc lasers.
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In the microwave experiment transmission spectra were measured from a
fixed antenna inside the billiard to a moveable antenna, thus scanning both
the inside and outside region of the billiard. A Fourier transfrom of the
transmission spectra yields the pulse propagation, which was used to study
the long-time dynamics of the system.

The Poynting vector, which describes the energy flow of the microwaves, was
obtained from the measurement for each time step of the pulse propagation.
Close to the boundary of the billiard it reveals a characteristic directionality
of the microwave emission, which is in accordance with measurements of the
far-field intensities of microdisc lasers [Sch04c].

To achieve a direct comparison to the internal dynamics of the classical sys-
tem, the Husimi distributions of the pulse propagation were calculated. Av-
eraging the Husimi distributions for the long-time dynamics provided a very
clear picture of the internal dynamics in phase space. The results show very
good agreement with classical simulations.

Since each chapter of this work is largely based on a paper already published,
submitted or close to submission, there are some repetitions, in particular of
introductory explanations and the description of the experimental technique.
These were not eliminated to keep each chapter comprehensible on its own.



Chapter 2

Correlation functions of
scattering matrix elements

2.1 Introduction

The correlation hole as seen in the Fourier transform of the stick spectrum of
a closed Hamiltonian quantum system is particularly sensitive to long range
spectral correlations, typical for random matrix models. This behavior in
turn is indicative of chaos in the classical equivalent of the system via the
quantum chaos conjecture [Cas80, Boh84]. Extensive work on the detection
of such correlations using the correlation hole has been done in molecular
physics [Lev86, Lom91, Lom93], nuclear physics [Lom94], and in the analysis
of spectra from microwave cavities [Alt97] and optical resonators [Din02].
As the energy spectrum often is not available, Jost and Lombardi have early
focused attention on the analysis of intensity spectra (see e.g. [Jos86]).

The Fourier transform 6,(t) of the intensity spectrum o, (E) = >, af 6(E —
E;) for a system with eigenenergies E; and a state with amplitudes «; yields

eat) = 6a() =D ol + > af af STEE (2.1)
i i#]

The inverse participation ratio Y, af is 3/(N 4 2) for a random state. Aver-

aging over a Gaussian orthogonal ensemble (GOE) in the large N-limit leads

to N¢éa(t) = 3 — ba(t). Here N is the dimension of the matrices and by (¢)

is the two-point form factor of the GOE [Meh91]. For the corresponding

stick spectrum 1 — by(t) is obtained instead. For intensity spectra the cor-

7
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relation hole is thus reduced to 1/3 of its full value. This reduction makes
the detection of the correlation hole difficult. Reference [Alt97] discusses
different ways to overcome this basic problem, which becomes more acute if
cross sections are considered. Indeed, in the case of cross sections, the use of
autocorrelation functions was shown to be of very limited efficiency.

The cross-correlations of independent intensity spectra, by contrast, display
the full correlation hole. Indeed, performing the GOE average we find, in-
stead of an inverse participation ratio, the product of two vector norms, i.e.

eo(t) = 67(t) Ga(t) = Y of B+ ) af B PR (2.2)
i i#]
where (3; refers to the component of the second state. Therefore the cross
correlation behaves as 1 — by(t).

This simple fact has led to a detailed study of the possibility to observe the
correlation hole in correlation functions of total and partial cross sections
[Gor02]. To allow a comparison with regular systems, the Poisson orthogo-
nal ensemble (POE) was used. It combines random, statistically independent
eigenvalues [Ber77b| with orthogonally invariant eigenvectors [Dit91]. The
POE does not have the universal implications of the GOE, both because the
assumptions about spectral statistics are less well founded, and because we
easily may encounter situations of preferred coordinate systems. Neverthe-
less, it is the best random matrix model for integrability that is available.
Indeed cross-correlations prove to be the tool of choice to detect the corre-
lation hole. Clearly the main interest of such an analysis results when the
total absorption, i. e. the sum over all transmission coefficients, is fairly large,
which implies that the average total width I' is large compared to the mean
level spacing d.

In this chapter we analyze the total cross sections of several normal-
conducting microwave resonators with two antennas, obtained from mea-
surements of the scattering matrix (S-matrix) via the optical theorem. The
spectra of the studied systems exhibit different types of statistics, ranging
from POE to GOE behavior. The wall absorption is significant and either
comparable to or much larger than the transmission of the antennas. This
leads us from resonances with small overlap to such with very strong overlap.
Absorption channels are not directly accessible to experiments.

Our experiments address two interesting and quite general questions: On
one hand, we test the use of cross-correlation functions to identify the ef-
fect of correlations in the spectrum of a chaotic Hamiltonian in the case of
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overlapping resonances. The results of reference [Gor02] are compared with
the data. On the other hand, we investigate whether absorption has to be
included in terms of many weak or few strong channels, or whether the two
cases cannot be distinguished. For this purpose we extend the results of
[Gor02] to include an infinite number of weak channels, which we shall show
to cause an exponential decay of the correlation functions.

In section 2 we recall some basics of random matrix scattering theory and
some results of [Gor02] that are essential to our analysis, and we discuss the
effect of a large number of channels with small absorption. In the following
section the experimental setup and the studied billiards are explained. In
sections 4 and 5 we shall see that the signatures of chaos are more pronounced
in the cross-correlation than in the autocorrelation. Further we show that
a description of absorption in terms of many channels is essential to obtain
agreement with the experiment even in cases where the total absorption is
of order one.

2.2 Basics of scattering theory and theoreti-
cal developments for absorption channels

There is an exact correspondence between the stationary classical wave equa-
tion of an ideal quasi-two-dimensional microwave cavity and the stationary
Schrodinger equation for a two-dimensional quantum billiard of the same
shape. This correspondence includes the scattering situation, by taking the
antennas explicitly into account [St699], and ultimately even absorption phe-
nomena.

The S-matrix for this situation is frequently used to describe resonant scat-
tering arising e. g. in nuclear, atomic or mesoscopic systems [Guh98|:

S(E)=1-iV7T V., Hag= Hp — % vvT. (23)

E — Heyg
Here, H;, is the Hamiltonian describing the closed billiard, and V' is a N x M
matrix, which couples the N interior wave functions to M decay channels. For
each antenna we need one channel or column vector, where the components
Vja are proportional to the amplitude of the billiard eigenfunction at the
position of the antenna,

Ve o U5 (7). (2.4)
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provided that the diameter of the antennas is small compared to the wave-
length. This approximation may only be used in regions far from any thresh-
olds, and the proportionality “constant” typically varies slowly with fre-
quency [St602]. If symmetry-equivalent positions of the antennas are avoided,
then typically the column vectors of V' are approximately orthogonal to each
other. Though not essential, this assumption simplifies the theoretical anal-
ysis.

It is convenient to work in the eigenbasis of the closed system Hj,;. Then the
scattering matrix depends on the eigenvalues of H;,; and on the coupling am-
plitudes, defined in equation (2.4). The analysis of the experiment is carried
out in the framework of random matrix theory, where chaos is represented
by a GOE and integrability by a POE. The two ensembles differ only in
the distributions of the eigenvalues, while orthogonal invariance implies in
both cases that the columns of the matrix V' are distributed according to the
invariant measure of the orthogonal group. In practice we use independent
random Gaussian variables for the matrix elements, an approximation which
becomes valid for large V.

We first present some elementary results of scattering theory using the no-
tation of [Gor02]. From equation (2.3) the cross sections are derived as

Uab(E) = |5ab - Sab(E)|2 . (25)

Note that the experimental setup allows to measure Sy, directly. This avoids
the difficulties related to the measurement of total cross sections. The optical
theorem establishes a linear relation between the S-matrix elements and the
total cross sections:

o"Y(E) =2 (1 — Re S,) - (2.6)

The first quantity to study is the average S-matrix. The average can be a
spectral average (denoted by (...)), an ensemble average ( ...), or a combi-
nation of both. For the average S-matrix all these averages must coincide.
In [Mel85] it has been shown that

_1—/@1

Sua(B) = 1+ &

: (2.7)

if S(E) is real and diagonal in the block of observable channels. The x, are
real and positive parameters and relate to the coupling constants Vj, and the
transmission coefficients T, respectively, via

4 K,

o
n (14 kKq)?

- (2.8)

Rq <‘/ﬁ;> ) T, =
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The analysis will be performed in terms of correlation functions in the time
domain,

Cloled o)) = 7 {681 600 — (50 (500} . 29

where & are Fourier transforms of the cross sections. The Fourier transforms
are taken over a window of size L. It should be large compared to the average
level distance d but sufficiently small so that the average S-matrix may be
assumed constant.

Note that due to the optical theorem (2.6) the correlation function between
total cross sections is equal to the correlation function between the corre-
sponding S-matrix elements:

Clol) a)(t) = ClSua, S5l (1)) - (2.10)

For the GOE the correlation function can be calculated exactly, as will be
shown below. For the general case we rely on the rescaled Breit-Wigner
approximation (RBWA) [Gor02].

The rescaling is necessary, as soon as the transmission coefficients are not
extremely small. In the standard Breit-Wigner approximation, the average
width of the resonances is given by:

(r) = Q?def»c- (2.11)

Yet Ericson showed that in the limit of many channels of comparable coupling
strength, the correlation function of S-matrix elements or cross sections is
proportional to exp(—I'¢t). According to this derivation [Eri66, Bro81] I'c
should be equal to (I'), but actually

r —diT (2.12)
0—27021 ¢ '

gives the correct value for the correlation width. The two expressions coincide
only in the limit where S22 T, <« 1. Thus the standard Breit-Wigner
approximation is not valid in the range we are interested in. Fortunately,
it turns out that the rescaling k. — T./4 compensates for this defect up
to rather strong overlaps [Gor02]. The rescaled Breit-Wigner approximation
has already been applied in the regime of non-overlapping resonances [A1h98],
but without mentioning the difference to the usual Breit-Wigner result.
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In the case of the correlation functions (2.10), we first write the S-matrix
elements (2.3) in terms of the standard Breit-Wigner approximation. Then
we plug this into equation (2.9) and average over the spectrum of Hy. At
last we perform the rescaling to obtain

Clotel, ot (£) = TuTy {(gags € ) = (ga ™) (g5 9 %) Ba(0)}
(2.13)
with G = 3™, T. g.. The normalized squared amplitudes V;2/(V;2) are
replaced by random variables g.. Due to the orthogonal invariance of the
ensembles considered, these variables are assumed to be Porter-Thomas dis-
tributed [Bro81]. Note that different situations may occur in the case of
symmetries or integrable dynamics.

We account for wall absorption by introducing My, additional channels. The
transmission summed over all of them must equal the wall absorption,

Mw
Tw = ZTMAJrC ) (2.14)

c=1

where M4 = 2 is the number of antennas. If My, is small, the correlation
functions depend on all transmission coefficients individually, and no simpli-
fication is possible. However, if My, is large, we may use that asymptotically

C[Sap, SE] (1) — e Wt Sy, S5)(t) as My — oo, max(T,) — 0,

c>Mp
(2.15)
where Sy, describes the scattering system with only M, channels, obtained
by eliminating the last My, columns in the coupling matrix V (see equa-
tion (2.3)). For the rescaled Breit-Wigner result (2.13) this proposition fol-
lows from the central limit theorem.

For later use we produce the result for the correlation function in the case
of two antennas with equal transmission coefficients T} = T, = T)4. If the
absorption in the walls is taken into account in the many channel limit via
equation (2.15), the ensemble averages in equation (2.13) involve two random
variables g; and go only. Assuming that both are uncorrelated Porter-Thomas
variables, and using that G = T4 (g1+g2)+Tw, one can evaluate the ensemble
integrals analytically. This yields

Clol o) = T3 ™™ {(1 4 20,) (1+2Tat) > — (1 + Tat) " ba(t)} .
(2.16)
In appendix 2.A the autocorrelation function is calculated for a more general

case, both for the GOE and the GUE.
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In the GOE case, expression (2.15) can also be verified for the VWZ integral
[Ver85], which gives an analytical expression for the exact correlation function
in equation (2.10). The Fourier transform of the VWZ integral reads [Gor02]:

O[S, SE1(1) = }1 /m A GLIEREY [0 -7 —n) UG,
(2.17)

e=1
where
5ab50d AQAC + (5a05bd + 5ad6bc) Hab

Ulr) = 2 ' dz
/0 (12 — 72 + x)2 \/m\/ni\il(l—i—QTer—l—Tgx)

(2.18)

T, t—
A, = 2Ta\/1—Ta( kel LR r ) (2.19)

1+T,2r+Tox) 1-T,(t—r)

Y

T.Tyx* + [T, Tyr + (T, + Tp)(r +1) — Nz +r(2r + 1)
(1+2T,r + T22)(1 + 2Tyr + Tix)

(t—r)(r+1-1) )
L =Tt =n) L =Tt =7)])

Iy = 2,-Z—‘a]ﬁb<

+ (2.20)

We split the products occurring in expressions (2.17) and (2.18) and consider
that part running over the absorption channels. In the asymptotic limit of
equation (2.15), we find

Mw
[T = Tae(t = )] — e 07 (2.21)
c=1
My
[0+ 2Tpper + T o] ™2 — e (2.22)
c=1

The r-dependent exponentials cancel, which proves our conjecture for the
GOE case.

It will be useful to investigate the effect of the number of absorption channels
My, on the correlation function. For this purpose, we assume the total
wall absorption to be fixed, Ty, = 1, and distributed equally among the
absorption channels Ty, . = Tw /My . Figure 2.1(a) shows the behavior of
the autocorrelation function for the case of two antennas with Ty = T} =
T, = 0.26 for different values of My,. Note the significant changes in the
shapes of the curves when My is varied. There are two previous microwave
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Figure 2.1: Autocorrelation functions for the GOE case with two accessible
channels (antennas) with equal transmission coefficients 74 = 0.26 and total
transmission for the wall absorption: Ty = 1, where the wall absorption is
equally distributed over My, channels. In (a) the VWZ result is shown as
dotted lines for My, = 1,4, 16,64, 128, and as a solid line for My, = oo. In (b)
we compare the exact VWZ result (solid line) with the rescaled Breit-Wigner
result (dotted line) for My = oc.

experiments where the channel number dependence of the autocorrelation
function was studied. The first one by Doron et al. [Dor90] failed to see
any difference between exponential and algebraic decay behavior [Lew92].
However, in the more recent work by Alt et al. [Alt95] an algebraic decay of
the autocorrelation function was observed.

In figure 2.1(b) we compare the exact result with the result from the rescaled
Breit-Wigner approximation for My, = co using the same values for Ty and
Tw as in figure 2.1(a). The difference between the RBWA and the exact
result is very small. This permits us to use the much simpler and more
flexible RBWA in the analysis of our experimental data. For larger values
of Ty the RBWA is less accurate than in the example above, but it can still
be used to determine Ty, reliably from the autocorrelation function. The
accuracy of the RBWA is discussed in detail in reference [Gor02].

2.3 Experiment

Since the experiment is described in detail elsewhere [Kuh00], we concentrate
on the aspects relevant in the present context. Reflection and transmission
measurements have been performed in microwave cavities of various shapes.
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All cavities are flat, with top and bottom plate parallel to each other. The
cavities are quasi-two-dimensional for frequencies v < Vo, = ¢/(2h) (h:
height of the billiard). In this regime there is a complete equivalence between
the stationary wave equation and the corresponding stationary Schrodinger
equation, where the z component of the electric field corresponds to the
quantum mechanical wave function,

2

AV(r,y)+ EV(z,y) =0, FE= (27TTV> : (2.23)
with Dirichlet boundary conditions. The antennas consisted of copper wires
with a diameter of 1 mm, projecting /[, = 2 or 4mm into the resonator. An
Agilent 8720ES vector network analyzer was used to determine the complete
S-matrix. Measurements were taken in the frequency range from 1 to 16 GHz
with a resolution of 0.5 MHz.

The unwanted contribution of the cables to the S-matrix was removed by
standard calibration procedures. It was not possible, however, to get rid
of the contribution of connectors and antennas in this way. This posed a
problem in particular for the reliable determination of the phase, which is
vital for the cross-correlation measurements. Therefore, the phase shift from
the antennas was determined from a reference measurement, where the cav-
ity was removed, and only the antennas and the supporting top plate were
present. We checked that the average S-matrix is in good approximation real
and diagonal.

Four different cavities were used, which are presented in table 2.1. The
rectangular and the Robnik billiard both have fixed geometries. Therefore,
no ensemble average can be taken for these systems. Instead, we performed
10 measurements with different antenna positions on each system. By this
we obtained 10 spectra of essentially the same system (it is slightly altered by
the change of the antenna positions), but with different intensities for each
of the resonances.

The billiard with threefold symmetry has been discussed in detail in [Sch02].
It is composed of an outer part and an insert, both with C'3, symmetry. By
rotating the insert we get an ensemble of systems all displaying C'3 symme-
try. However, configurations with Cj5, symmetry have been avoided. We
performed 30 measurements with different rotation angles and fixed antenna
positions. The two antenna positions were in symmetry equivalent or non-
equivalent positions, alternatively.

The fully chaotic billiard is a variant of the C billiard, where the insert was
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’ billiard type \ shape \ material ‘ A /cmg ‘ L/cm ‘ ho/mm ‘ A Toom ‘
rectangle
34 % 24 cm? brass 816 | 116.0 8 9

Robnik billiard brass 474 77.5 8 2
A=04

billiard with
C5 symmetry

aluminum 2580 | 358.5 10 4

fully chaotic

lumi 2 . 1 4
billiard aluminum 580 | 358.5 0

D

Table 2.1: Details of the studied billiards, with A: area, L: circumference,
h: height of the billiard, and [,: the projection length of the antennas into
the billiards.

placed out of the center avoiding any symmetry. We performed 50 measure-
ments for different positions of the insert. The classical dynamics for the
latter two billiards is completely chaotic.

As described in section 2.2, the transmission coefficients T4 of the antennas
are obtained from the average S-matrix (see equations (2.7) and (2.8)). In
figure 2.2 the results for Ty as a function of frequency are shown for the
rectangular and the fully chaotic billiard. One notices a strong frequency
dependence of the coupling. Such a behavior is typical for wire antennas.
For each system, the two antennas yield approximately the same transmission
coefficients. In view of the frequency dependence of Ty and a comparable one
of Ty to be discussed in section 2.4, we examined frequency intervals with a
width of 1 GHz to assure that the average S-matrix and the total absorption
are approximately constant.

The frequency dependence of the wall absorption is mainly due to the skin
effect [Jac62]. The additional width acquired by the resonances is

Tw(a) = 86% V2 &}IL/) <1 + % f(a)) , o(v)= % : (2.24)

where §(v) is the so-called skin depth, and py and o are the susceptibility and
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Figure 2.2: Transmission coefficient T4 obtained from the average S-matrix
for (a) the rectangular and (b) the fully chaotic billiard.

the conductance of the cavity walls, respectively. The dimensionless quantity
&(a) is of order one. It depends on the particular resonances, indexed by «.

To describe the wall absorption within our statistical model, we consider the
average ['y and the variance (AT',)? of the absorption width. The number
of absorption channels Mg! (with equal transmission coefficients) can be
determined taking into account that in the statistical model I'y is the sum
of MgE random Porter-Thomas variables. In order to reproduce the average
absorption width and its variance, it must hold:

1 ATy )2 hL\?
w

where (A€)? is the variance of &(a) as it fluctuates for different reso-
nances. As {(«) is of order one, its variance cannot be larger. Therefore,
MEE > [2A/(hL)]?, which is greater than 200 for the studied cavities. This
is certainly indistinguishable from an infinite number of channels.

2.4 Autocorrelation function

In this section we examine the Fourier transform of the autocorrelation func-
tion Clo'), o)](t) as given in equation (2.9). Figure 2.3 shows logarithmic
plots of the autocorrelation functions for the rectangular and the fully chaotic
billiard together with the rescaled Breit-Wigner approximation for GOE and
POE - assuming an infinite number of weakly coupled channels for the ab-
sorption in the walls (see equation (2.16)). The results for the rectangular
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Figure 2.3: Logarithmic plot of C[o'%),o{]/T? for (a) the rectangular and
(b) the fully chaotic billiard obtained from Fourier transforms over the fre-
quency ranges 13 to 14 GHz and 14 to 15 GHz, respectively. The insets show
the corresponding linear plots for small times . The theoretical prediction
from the RBWA is shown for the GOE (solid line) and the POE (dashed
line). The parameters were Ty = 0.261, Ty = 1.38 for the rectangle, and
Ty = 0.848, Ty = 14.92 for the fully chaotic billiard.

billiard do not allow us to distinguish between GOE and POE behavior due
to their large fluctuations. At most we can see a hint of the fact that the
autocorrelation function for rectangular billiards tends to 2.25 instead of 3
as t — 0. For rectangular billiards the squared amplitudes (entering into
equation (2.13)) are not Porter-Thomas distributed, leading to an autocor-
relation function that is closer to the prediction for GOE than to the one for
POE.

The ensemble averaged autocorrelation function of the fully chaotic billiards
shows much smaller fluctuations, of course, and we observe a very good
agreement with the GOE prediction. The correlation hole can be seen in
particular in the linear plot shown in the inset of figure 2.3(b). However, the
correlation hole is reduced to 1/3 of its full value (see section 2.1), and the
difference to integrable systems may be even smaller.

The experimental autocorrelation function follows the theoretical curve for an
infinite number of absorption channels over five orders of magnitude. Then
the autocorrelation deviates from the theoretical curve. This is a consequence
of the finite frequency interval used in the Fourier transform. The long-time
behavior is dominated by the Welch filter applied. Comparison with figure
2.1 shows that more than 100 weakly coupled channels have to be assumed
to explain this behavior, but the simplifying assumption of infinitely many
channels is in accordance with the experiment as well. Further, we observe
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Figure 2.4: Transmission Ty, into the walls, obtained from a fit to the auto-
correlation function for (a) the rectangular and (b) the fully chaotic billiard.

that the rescaled Breit-Wigner approximation is sufficient to describe the
experimental results.

As the antenna transmission 74 has been obtained independently, the wall
transmission Ty, can be determined by fitting the experimental autocorrela-
tion function with the corresponding rescaled Breit-Wigner expression. This
procedure works well for a large frequency range, and all results presented
in this chapter have been obtained in this way. In the low frequency regime,
however, a two-parameter fit of the autocorrelation function, treating both
Ty and T4 as free parameters, yielded somewhat better results. Figure 2.4
shows the frequency dependence of Ty, as determined from the autocorrela-
tion function, both for the rectangular and for the fully chaotic billiard.

2.5 Cross-correlation function

We now present cross-correlation functions C [at(gt), at(ﬁ{](t) of the total cross
sections, which are equivalent to the ones of the respective diagonal S-matrix
elements, see equation (2.10). Figure 2.5 shows Clo'%), o\")]/T? for the fully
chaotic billiard. The dotted and the dashed lines correspond to the expecta-
tion from the rescaled Breit-Wigner approximation.

Even after averaging over 50 realizations, the fluctuations are still quite
strong. Therefore we apply a smoothing over an interval of size In2/Tyy,
leading to the smooth behavior displayed in figure 2.5(b). All results pre-
sented below are smoothed in this way.
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Figure 2.5: Cross-correlation function Clo'%),o")]/T?2 for the fully chaotic
billiard, averaged over 50 realizations, (a) before smoothing and (b) after
smoothing. The Fourier transform was taken over the frequency range of 14
to 15 GHz. The RBWA is shown for the GOE (dotted line) and for the POE
(dashed line) with T4y = 0.848 and Ty, = 14.92.

Figure 2.6 shows the smoothed results for the fully chaotic billiard both in
linear and logarithmic plots for three different frequency regimes. In contrast
to the expectation for integrable systems, the cross correlation is suppressed
for small times t. The measurement thus clearly exhibits the correlation hole
expected for chaotic systems. In particular the logarithmic plots demonstrate
that the experimental results are in good agreement with the rescaled Breit-
Wigner approximation for the GOE over several orders of magnitude, and
clearly distinguishable from the POE expectations. For higher frequencies
the absorption increases, resulting in a higher value for Ty, and thus a sharper
decline of the cross-correlation.

As an example for an integrable system, we present the cross-correlation
function for the rectangular billiard in figure 2.7(a) together with the rescaled
Breit-Wigner approximation for the GOE and the POE. The difference to
chaotic systems is clearly seen. The discrepancy of our results from the
POE is not surprising, because the antennas disturb the system, leading to
a shift of resonance positions and thus to correlations in the spectrum. The
intermediate situation is shown in figure 2.7(b) for the Robnik billiard with
mirror symmetry and non-symmetric antenna positions. For A\ = 0.4 the
classical phase space of the Robnik billiard is chaotic [Rob83], apart from
possible tiny stability islands [Dul01]. Additionally, the theoretical result for
the superposition of two GOE is plotted as dash-dotted line. In this case the
two-point form factor by(t) for the GOE in equation (2.16) has to be replaced

by b2(2t)
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Figure 2.6: Cross-correlation function C[o\%),")]/T?2 for the fully chaotic
billiard, plotted linearly (left column) and logarithmically (right column),
where the Fourier transform was taken over three different frequency regimes.
(a), (b): ¥=8.5t09.5GHz, Ty = 0.234, Tyy = 6.79; (c), (d): v=11 to 12 GHz,
Ty = 0.52, Ty = 8.26; (e), (f): v=14 to 15GHz, Ty = 0.848, Ty = 14.92.
The RBWA is shown for the GOE (dotted line) and for the POE (dashed
line).
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Figure 2.7: Cross-correlation function €' [awt ) atot] for (a) the rectangular and
(b) the Robnik billiard with the Fourier transform taken over the frequency
range 13 to 14 GHz. Dotted and dashed lines are the RBWA results for
GOE and POE, respectively. The dash-dotted line in (b) corresponds to the
RBWA for two GOE (see text). The parameters were T4 = 0.261, Ty = 1.38
for the rectangular, and 7'y = 0.254, Ty, = 1.39 for the Robnik billiard.
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Figure 2.8: Cross-correlation function ¢ [awt : O'tot] for the Cj billiard with (a)
asymmetric and (b) symmetric antenna positions, with the Fourier transform
taken over the frequency range 14 to 15 GHz. Dotted and dashed lines are
the RBWA results for GOE and POE, respectively. The dash-dotted line in
(b) corresponds to the RBWA for the Cj billiard (see text). The parameters
were Ty = 0.877, Ty, = 15.84 for (a), and T4 = 0.860, Ty = 15.61 for (b).
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In systems with point symmetries caution is commanded with respect to
the antenna positions, because the amplitudes at symmetric antenna posi-
tions are strongly correlated. This is illustrated in figure 2.8 showing the
cross-correlation for the billiard with C'5 symmetry both for symmetric and
asymmetric antenna positions. In addition to the POE and GOE curves,
the rescaled Breit-Wigner expectation for the C5 billiard is shown. For the
two-point form factor in equation (2.16) the results from reference [Sch02]

are used:
1

1) = & (bgOE(gt)+2bg (%)) , (2.26)

where b$OF (t) is the two-point form factor for the singlet GOE spectrum and
by(t) = —e ST 4 ge AT AT GUE (1) (2.27)

is the one for the doublet GUE spectrum. The parameter A = 0.125 accom-
modates the splitting of the doublet spectrum due to symmetry breaking.

For asymmetric antenna positions, a good correspondence between experi-
ment and theory is found, but for symmetric positions there are dramatic
deviations. In the ideal case one would expect a result which is much closer
to the autocorrelation function, but small deviations from symmetry induce
uncontrollable variations.

2.6 Summary and Outlook

We have measured the diagonal S-matrix elements of two channels as a func-
tion of frequency for a variety of different microwave cavities with and with-
out symmetries, and with integrable or chaotic classical dynamics. They
displayed different amounts of resonance overlap and antenna coupling. Via
the optical theorem the diagonal S-matrix elements contain the same infor-
mation as the total cross sections.

We discuss the experimental results in terms of autocorrelation and cross-
correlation functions in the time domain. The wall absorption of the billiards
is expressed in terms of unmeasurable channels. We find that an exponential
decay of correlations, corresponding to infinitely many channels, describes the
experimental results adequately. Comparison with the rescaled Breit-Wigner
approximation for random matrix models shows good agreement with exper-
iment, if we use the wall absorption as a fit parameter. The cross-correlation
was expected to display the difference between integrable and chaotic systems
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more clearly than the autocorrelation. Indeed, our experiments confirm that
the correlation hole is more pronounced in the cross-correlation function.

Due to the optical theorem, total cross sections are accessible via the mea-
surement of reflection matrix elements for microwave cavities. This is in
contrast to particle scattering experiments, where total cross sections can
only be measured in exceptional cases and their measurement in two dif-
ferent entrance channels is even more difficult. In these experiments only
partial cross sections are available. Theory [Gor(2] suggests that the corre-
lation hole should be best observable in correlations between cross sections
without any coinciding channel indices. The simplest case of this type is the
cross-correlation function of different elastic cross sections.

2.A Autocorrelation for additional channels

The result for the autocorrelation function, given in equation (2.16), holds
for the case of two channels with the same transmission coefficients and an
absorbing wall. This can easily be generalized to an arbitrary number of
channels.

Starting with expression (2.13) for the correlation functions in the rescaled
Breit-Wigner approximation, we are going to calculate the Gaussian average
of the autocorrelation function for additional channels. To this end we set

M M
G=> T.go=Tuga+ Y _ T g, (2.28)
c=1 c=2

where the index a corresponds to the antenna used for the measurement,
and the indices 2,..., M to additional antennas or other decay channels.
Inserting this into equation (2.13) yields

M
clod i) = 12 { e I )
c=2

—ba(t) {ga e Ta0m 0/2)" T (e oo t/2>2} . (2.29)

As mentioned in section 2.2 the variables g, and g. are Porter-Thomas dis-
tributed in the GOE case. Thus the averages in equation (2.29) can be
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calculated analytically, yielding

1
(1+2T.t)1/2

a 3
Clol®, o) = Tz{(l+Tt>5/2

- LHEs

bGOE M

_ ) 2.30
H} @

c=

This result can be used to explore the effect of a finite number of additional
absorption channels as shown in figure 2.1(a) in section 2.2, but it can also
be used to describe cases where the antenna transmissions are not equal or
where there is only one antenna involved.

In the GUE case the variables g, and g. are exponentially distributed. This
leads to the following result

A a a 2 1
C[Oéozvo—t(o‘z](t) - T112 { (1 +Tt)3 1 _|_Tt
a 9 c

C1605VE() T 4 }

2+ T Uo7y (2:31)




Chapter 3

Fidelity recovery in chaotic
systems and the Debye-Waller
factor

3.1 Introduction

The concept of fidelity has been developed by Peres as a tool to characterize
the stability of a quantum-mechanical system against perturbations [Per84].
It was introduced as the squared modulus of the overlap integral of a wave
packet with itself after developing forth and back under the influence of two
slightly different Hamiltonians [Per84]. Very similar concepts had been ap-
plied already in the old spin-echo experiments of nuclear magnetic resonance
half a century ago (see reference [Abr61] for a review). The renewed interest
in the topic results from the idea to realize quantum computers by means
of spin systems, where stability against quantum-mechanical perturbations
obviously is of vital importance [Fra04].

Roughly speaking there are three regimes. In the perturbative regime, where
the strength of the perturbation is small compared to the mean level spacing,
the decay of the fidelity is Gaussian. As soon as the perturbation strength
becomes of the order of the mean level spacing, exponential decay starts to
dominate, with a decay constant obtained from Fermi’s golden rule [Cer02,
Van03]. For very strong perturbations the decay becomes independent of the
strength of the perturbation. Here, in the Loschmidt regime, the decay is still
exponential, but now the decay constant is given by the classical Lyapunov

26
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exponent [Jal01]. Exactly such a behavior had been observed experimentally
in a spin-echo experiment on isolated spins coupled weakly to a bath of
surrounding spins [Pas95].

Gorin et al. [Gor04a] calculated the fidelity decay within random matrix
theory in the regime of small perturbations and could correctly describe the
change from Gaussian to exponential behavior with increasing perturbation
strength. The Lyapunov regime is non-universal and thus not accessible in a
random matrix model.

Intuitively, one would expect that in chaotic systems the fidelity decay is
stronger than in integrable ones. The opposite is true. Prosen et al. [Pro02b]
showed that a chaotic system is much more fidéle than a regular one, and
suggested to use chaotic systems in quantum computing to suppress chaos.

It will be shown here that the situation is even more favorable, and that for
chaotic systems there is a partial recovery of the fidelity at the Heisenberg
time. This work extends the results by Gorin et al. [Gor04a] to the regime
of strong perturbations using supersymmetry techniques. It is stressed that
our result is generic and not restricted to random matrix systems. E.g. in a
spin-chain model the fidelity recovery has been observed recently [Pin].

Using the Brownian-motion model for the eigenvalues of random matrices
introduced by Dyson many years ago [Dys62], it will be shown that this
behavior has its direct analogue in the Debye-Waller factor of solid state
physics. We shall sketch the calculation for the GUE only, and will just cite
the result for the GOE. More details will be presented in a forthcoming paper
[St604b).

3.2 Exact results

Let Hy be the unperturbed Hamiltonian and

H, :H0+£V (3.1)
2m
the perturbed one. This somewhat unusual definition of the perturbation
strength ¢ has been applied for later convenience. The fidelity amplitude is
given by

fe() = (¥(0)| exp(2mH ) exp(—2mHo7)|10(0)) , (3.2)
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where 1(0) is the wave function at the beginning. It is assumed that Hy has
a mean level spacing of one, that the variance of the off-diagonal elements
of V' is one, and that € is of the order of one. This guarantees that the shift
of the levels due to the parameter variation is of the order of the mean level
spacing. The squared modulus of f.(7) yields the fidelity F.(7), originally
introduced by Peres [Per84]. The calculation of the average of F,(7), however,
is technically more involved, and therefore not considered here.

In the paper by Gorin et al. [Gor04a] the Gaussian average of the fidelity am-
plitude was calculated in the regime of small perturbation strengths, correct
up to O(e),

fo() ~ e, (3.3)

where C(7) is given by

2 T t
C(r) = %+ % - /0 /0 bo(t))dt'dL (3.4)

and by(7) is the two-point form factor. (3 is the universality index, i.e. =1
for the Gaussian orthogonal ensemble (GOE), 8 = 2 for the Gaussian unitary
ensemble (GUE), and 3 = 4 for the Gaussian symplectic ensemble (GSE).
Equation (3.3) describes correctly the change from Gaussian to exponential
decay with increasing perturbation strength.

It is a disadvantage of the Hamiltonian (3.1) that its mean density of states
changes with e. The more it is somewhat inconvenient that the variances
of the matrix elements of Hy and V differ. We therefore adopt a slightly
different parameter variation,

Hy = Hycos¢ + Hysing (3.5)

where the Hamiltonians are truncated to a finite rank N. We assume that
the matrix elements of Hy and H; have zero average, are uncorrelated, and
are Gaussian distributed with a variance given by

Q) = 5% {

It follows that the mean density of states in the band center is one, indepen-
dent of ¢ [Meh91]. The transition from equation (3.1) to equation (3.5) is
achieved by means of the substitutions

1, k1

k] n=0,1. (3.6)

2
B 3

™

Hy — cos¢ Hy, V —
0 ¢ 0 \/N

cos ¢ Hy , (3.7)
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where tan ¢ = /5% ¢ is thus of (’)(\/Lﬁ), and € is given in the limit of large
N by
€ = 4N ¢? (3.8)

The fidelity is invariant to a shift of ¢ as is easily seen. This can be used to
get an expression that does not dependent on the sign of ¢. The average of
the fidelity amplitude may then be written as

fo(r) = % (Tr [e2m(cHotsH)r g =2m(cHo—sH)T] (3.9)

where ¢ = cos(¢/2), s = sin(¢/2).

Equation (3.9) may now be transformed into
f(r) = / dB\ dEye®™ Br=B)7 R (B, By) (3.10)

where

Ry (B, Ey) ~

1 1 1
— (T
N< r(El_—cHO—sHl E2+—cHo+sH1)> :

(3.11)

with By = F £+ . Using standard supersymmetry techniques [Ver85|, this
can be written as

R (E17E2
5 / (Trm = &n&m) YmYn — M)

% e—z [XT Eq x—yTEzy]

v <ezc[xTH0x—yTH0y]> <ezs[xTH1x+yTH1Y]> , (312)
T T
where x = (21,&,...,én)" , Yy = (y1,m,-..,nn) ", and

= [ dwnda;, déy dss, . dly) = [ [ dyn dy;, dn,, dn;, .

We adopt the usual convention using latin letters for commuting, and greek
ones for anticommuting variables, respectively. Now the Gaussian average
over the matrix elements of Hy and H; can be performed elementary.
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The subsequent steps (Hubbard-Stratonovich transformation, integration
over the x, y variables, saddle point integration etc.) are essentially the
same ones as for the calculation of the spectral form factor (see e.g. chapter
10 of reference [HaaO1] for the GUE case). Details will be presented in our
forthcoming publication [St604b]. In the limit N — oo all integrations can
be performed for the GUE and lead to the particularly simple result

B e~ 3€T [8(1672) — 78/(1672)} , <1
felr) = { e~z 8(2%67') — %s’ém’)] , r>1" (3.13)
where '
s(x) = Sm};(I) . (3.14)

We have thus obtained an analytic expression for the GUE average of the
fidelity amplitude for arbitrary perturbation strengths. In the limit of small
perturbations it is in complete accordance with the result obtained by Gorin
et al. [Gor04al.

The calculation for the GOE is done in exactly the same way. It is technically
much more involved, but fortunately most of the work for this case has
already been done by Verbaarschot, Weidenmiiller, and Zirnbauer in their
disseminating work [Ver85]. In this way we get for the GOE average of the
fidelity amplitude

[ [ vdv
(7)) = 2 du
f ( ) Max(!T_l) 0/ \/[uz _ U2][(u + 1)2 _ U2]
o 3.5

X [(QU + 1)7' -4 Uz]e_%e[(2“+1)7—72+v2] ‘

3.3 Comparison with linear-response and nu-
merical simulations

In this section we present random matrix simulations to affirm the analytical
findings for the Gaussian orthogonal and unitary ensembles. Further we show
numerical results for the Gaussian symplectic ensemble which has not been
treated analytically.
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In our simulations the Hamiltonians Hy and H; are random matrices of di-
mension N x N with variances of the diagonal and off-diagonal elements given
by equation (3.6). To calculate the fidelity amplitude, we write expression
(3.9) as
1 T HP T »— —2mHPT p—
) = ~ <Tr [R¢,e2 "5 R Rye 2™ Ry 1}>
1

— N <TI' |:627r7,H¢DTRe—27r'LHODTR—1i| >

1 (¢) _ (0)
- N<Ze2“”“fk K >|le|2>’ (3.16)

kl
where HP = Ry'HyRy and HY = R;1H¢R¢ are diagonal, and R = R;lRO.

In the numerical simulations the trace in equation (3.16) was restricted to
20 percent of the eigenvalues in the center of the spectrum where the mean
level density is still about constant. The average was taken over up to 8000
random matrices for Hy, and for each of them over 50 random matrices for
H,. For larger values of the perturbation strength e it became more and
more important to choose the dimension N of the matrices large enough to
avoid finite-size effects. N = 500 proved to be sufficient for ¢ < 10. The
influence of the finite dimension N on the fidelity amplitude is discussed in
appendix 3.B.

The results are shown in Figure 3.1. For the GOE and the GUE the numer-
ical simulations are in perfect agreement with the analytical results for all €
values shown. For comparison, the fidelity amplitudes in the linear response
approximation (3.3) are presented as well. For small perturbation strengths
or small values of 7 the linear response result is a good approximation, but
the limits of its validity are also clearly illustrated.

For small perturbation strengths e the decay of the fidelity is predominantly
Gaussian which changes into a behavior showing a cross-over from an expo-
nential to a Gaussian decay at € ~ 1, in accordance with literature. The
most conspicuous result of this chapter, however, is the partial recovery of
the fidelity at the Heisenberg time 7 = 1 which has not been reported pre-
viously to the best of our knowledge. This recovery is most pronounced for
the GSE and least for the GOE. This is illustrated in Figure 3.2 showing a
direct comparison of the fidelity amplitudes of the Gaussian ensembles for
e = 30.

The way the recovery emerges with increasing perturbation strength is illus-
trated in figure 3.3 for the GOE and the GUE.
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Figure 3.1: Fidelity amplitude f.(7) for the GOE (a), the GUE (b), and
the GSE (c) for e = 0.2, 1, 2, 4 and 10. The solid lines show the results of
the numerical simulations, and the dotted lines those of the linear response
approximation. For the GOE and the GUE the numerical results are in
agreement with the analytical results within the limits of the line strength.
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Figure 3.2: Fidelity amplitude f.(7) for ¢ = 30. The dashed and dashed-
dotted lines show the analytical results for the GOE and the GUE, respec-
tively. The solid line corresponds to the numerical simulations for the GSE,
reliable up to 1072, For the GOE and the GUE there is again a perfect
agreement with the numerical results (not shown).

3.4 Debye-Waller factor

What is the origin of the surprising recovery? We believe that there is a
simple intuitive explanation in terms of Dyson’s Brownian motion model
[Dys62]. Since the mean density of states is kept constant during the param-
eter change, the eigenvalues of H, may be written as E,(f) =k+ 5,(:5), where
5,(f) fluctuates about zero. A corresponding expression is obtained for the
eigenvalues of Hy. Let us assume for the sake of simplicity that for strong
perturbations the eigenvectors of the perturbed and unperturbed system are
uncorrelated; details about this assumption are discussed in appendix 3.C.
In this case we obtain from equation (3.16) for the ensemble average of the
fidelity amplitude

fe(r) ~ % > (IRu)?) et (3.17)
kl

where W is given by

W = <€27FZT(§’(€¢)_§Z(O))> ~ 6—(271'7')2 <52> ) (318)
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Figure 3.3: Fidelity amplitude f.(7) for perturbation strengths e =
2,4,...,40 for (a) the GOE and (b) the GUE.
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In the second step a Gaussian approximation was applied. Within the frame-
work of the Brownian motion model (%) is interpreted as the mean squared
displacement of an eigenvalue from its equilibrium position. It is propor-
tional to “temperature” T', which is just the reciprocal universality factor 3,
whence follows

W =eo"T (3.19)

with some constant a. It follows from equation (3.17) that there is a revival
of the fidelity at the Heisenberg time 7 = 1 decreasing with “temperature”
proportional to e=®T. This is exactly the behavior illustrated in Figure 3.2.

There is a perfect analogy to the temperature dependence of X-ray and neu-
tron diffraction patterns in solid state physics. Caused by lattice vibrations
the v. Laue interference maxima decrease with increasing temperature ac-
cording to the Debye-Waller factor

Wow = e 79T (3.20)

where 3 is another constant, and ¢ is the modulus of the reciprocal lattice
vector characterizing the reflex (see e.g. appendix A of reference [Kit96]).
This is our justification to call W a spectral Debye-Waller factor.

One may argue that due to equation (3.17) there should be revivals for all
integer multiples of the Heisenberg time, which are not observed. This can
be understood by considering the analogy between the spectral form factor

1
K(r) = D it (3.21)

n,m

and the structure factor in condensed matter,

S(k) = % 3 e (o fin) (3.22)

where the R, are the positions of the atoms, and ¢'is a point in the reciprocal
lattice. (The factor 27w, absent in the usual definition of S(§), has been
introduced to be in accordance with the conventions used in this chapter.)
For a perfect crystal S(g) consists just of an array of delta functions at the
positions of the reciprocal lattice vectors g. In liquids and glasses these peaks
are smeared out, and the structure factor depends only on the modulus ¢ of
d. The typical liquid structure factor S(q) is shown in figure 3.4; it starts at
zero for ¢ = 0, climbs up to two to three at the ¢ value corresponding to the
reciprocal atomic distance, oscillates about one with decreasing amplitude
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Figure 3.4: Typical liquid structure factor S(q).
From Ziman: Models of disorder [Zim79]. Copyright 1979 by Cambridge University Press.

for larger ¢ values, and approaches one in the limit ¢ — oo [Zim79]. There
is a striking similarity with the spectral form factor k(7) for the GSE, the
eigenvalue “crystal” with the lowest available temperature (see figure 1.1).
k(T), too, starts at zero for 7 = 0, has a logarithmic singularity at the
Heisenberg time 7 = 1, and approaches one for 7 — oo. The oscillatory
behavior found in the structure factor, however, is absent in the spectral form
factor. With increasing temperature the similarities disappear. Whereas for
the structure factor the oscillations are just weakly damped with increasing
temperature, for the spectral form factor the peak at the Heisenberg time
vanishes completely for higher “temperatures”, and only a slope continuity
remains for the GUE, and an unstructured increase for the GOE.

Both spectral Debye-Waller factor and spectral form factor have thus in
common that they do not show any structure at multiple integers of the
Heisenberg time, in contrast to the corresponding condensed-matter quan-
tities. The explanation is straightforward: Pauli’s principle prevents the
atoms from approaching too closely, whereas in the eigenvalue “crystal” a
lower limit for the closest approach does not exit. Real crystals, even liquids,
are just much more rigid than an eigenvalue “crystal”. This is supported by
calculations of the fidelity amplitude in the picket-fence model, where the
eigenvalues of Hj are equidistant and H; is taken from the GOE. For this
system the similarity to a one-dimensional crystal is much closer than for the
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Gaussian ensembles, and consequently fidelity recoveries have been observed
for all integer multiples of the Heisenberg time [Gor04a)].

This is also illustrated in appendix 3.A, where the fidelity amplitude of a
picket-fence spectrum with a GUE perturbation is studied numerically.

3.A The picket-fence spectrum

The fidelity amplitude of the picket-fence spectrum with a GOE perturbation
has been studied already in reference [Gor04a]. To evaluate the correlation
integral (3.4) the authors also derived the two-point form factor for the picket-
fence spectrum:

Wity =1-> 6(t—n) (3.23)

n#0

Inserting this result and § = 2 for a GUE perturbation into the linear-
response expression for the fidelity amplitude (3.3) yields

fe(T) =exp (—6%2 —[7] (r - [T]T—Fl)) (3.24)

In figure 3.5 the results of the random matrix simulations are shown for the
picket-fence spectrum with GUE perturbation. They are compared with the
exact results for the GUE (equation (3.13)) shown in the left column, and
with the corresponding linear-response results.

As a direct consequence of the form factor 1 — bgf, which is a sum of delta
functions just like the structure factor of a perfect crystal, the fidelity am-
plitude shows kinks for all integer multiples of the Heisenberg time.

For small perturbation strengths (e = 0.2) the numerical results are still in
good agreement with the linear-response approximation. With increasing
perturbation strength we observe stronger and stronger deviations from this
approximation, comparable to the deviations of the exact GUE result from
the corresponding linear-response approximation. Only for small times 7 we
still observe a good agreement with linear response.

A conspicuous feature of the results is the fact that the fidelity amplitude
of the picket-fence with GUE perturbation is always above the GUE curve
with the same perturbation strength. In the linear-response approximation
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the relative deviation can be written as

() 1) = e (e [ [ (00 0 ) avar) -
(3.25)

This quantity is plotted in figure 3.6 for three different perturbation
strengths. Again we see deviations for larger perturbation strengths. In
particular the periodicity of the linear-response result is not reproduced ex-
actly. In the numerical simulations we made sure that this deviation is no
finite-size effect.

3.B Finite-size effects

The exact expressions for the fidelity amplitude are valid in the limit N — oc.
In this appendix we shall illustrate the deviations due to finite dimension N
of the matrices.

This finite-size effect also depends on the strength of the perturbation. For
small perturbation strengths (¢ < 1) it is sufficient to consider matrices of
dimension N = 100. However, for larger perturbation strengths it becomes
increasingly difficult to achieve good agreement with the asymptotic result.

Figure 3.7 shows the results of numerical random matrix simulations for
the GUE, where the dimension of the matrices was varied from N = 20 to
N = 100.

For € = 10 we find quite reasonable agreement with the asymptotic curve for
N = 100, while for e = 20 the deviations are still quite noticeable for this
size of the matrices, and we have to go to N = 1000 (not shown) to achieve
an agreement within the limits of the line width.

3.C Perturbation of eigenvectors

In section 3.4 we gave a simplified expression for the fidelity in the case
of strong perturbations (see equation (3.17)). However, we had to make the
assumption that the eigenvectors are so strongly affected by the perturbation
that the matrix R as defined in equation (3.16) is basically a full random
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Figure 3.5: Fidelity amplitude for the picket-fence spectrum with GUE per-
turbation (black line). Left column: comparison with the exact result for the
GUE (grey line). Right column: comparison with linear-response results for
picket-fence + GUE (grey line) and GUE (dotted).
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matrix. Only in this case we can average separately over the |R;|? in equation
(3.16).

To study under which conditions this assumption is valid, we calculated
the matrix R for different perturbation strengths. The dimension of the
Hamiltonians was N = 200.

Figure 3.8 shows a visualization of the results for e = 10, 20, 100, 200, 1000
and 2000. The grey-scale of the plots corresponds to the values of |Ry|?,
white for zero and black for the maximal value.

In the perturbative regime the eigenvectors are only weakly affected by the
perturbation, and thus the matrix R is close to the unit matrix. In this
regime equation (3.17) does not describe the fidelity amplitude, but instead
yields the form factor, multiplied by a Gaussian decay due to the fluctuations
of the spectrum.

For larger perturbation strengths the matrix R becomes a banded matrix,
which is illustrated in figure 3.8. For a given finite dimension N of the
Hamiltonians, we can indeed reach the point, where the matrix R becomes
a full matrix.

Instead of going to such huge perturbation strengths, we can also restrict
the double sum in equation (3.17) to the center of the spectrum, and thus
stay within the bandwidth of R. This was done for N = 100 and ¢ = 10
to see whether equation (3.17) does indeed reproduce the recovery of the
fidelity amplitude. The results are presented in figure 3.9. There was no
exact agreement with the GUE results to be expected, because the double
sum was not restricted to the extend necessary to stay within the bandwidth
of R. Nevertheless, the simulations are able to reproduce the fidelity recovery
at 7 = 1, which is even more pronounced than for the exact result.
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Figure 3.8: Visualization of the matrix R for e = 10, 20, 100, 200, 1000 and
2000. The grey-scale of the plots corresponds to the values of | Ry |?, white
for zero and black for the maximal value.
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Figure 3.9: Simulation of equation (3.17) for N = 100 and ¢ = 10. For
comparison, the dashed line shows the exact result for the GUE.



Chapter 4

Fidelity amplitude of the
scattering matrix in microwave
cavities

4.1 Introduction

The analysis of the stability of dynamics under perturbations of initial con-
ditions or the laws of motion was a central concern in a controversy between
Loschmidt and Boltzmann [Los70]. A brief summary of these arguments can
be found in [Zni04]. In quantum mechanics attention is usually focused on
perturbations of the dynamics, as the evolution under the Schrodinger equa-
tion is always globally stable. The overlap of the perturbed and unperturbed
time-evolution has become a benchmark for the reliability of quantum in-
formation processing, as well as for the stability analysis of integrable and
chaotic motion [Per84]. Following the overview [Pro03] we shall use the term
echo dynamics and define two unitary time evolution operators U’(t) and
U(t) for the perturbed and unperturbed time evolution, respectively. The
fidelity amplitude for some initial state ¥(0) is defined as

F(t) = W)U () U'(1) [2:(0)) (4.1)

and the fidelity by F(t) = |f(t)]*>. In other words, the fidelity amplitude
is the cross-correlation function of an initial state ¥(0) evolving under two
different Hamiltonians.

The first realization of a quantum Loschmidt echo is due to Hahn [Hah50]. In

45
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this key experiment the unperturbed dynamics is simply the free precession
of an ensemble of nuclear spins in a not very homogeneous magnetic field.
Hahn showed (and more clearly Carr and Purcell [Carb4]) that it is possible to
revert the dynamics by an appropriate short radio frequency pulse. However,
the longer one waits with the application of the refocussing pulse, the weaker
is the echo signal one obtains. This is due to residual interactions which are
not reverted by the radio frequency pulse, the most prominent one being the
spin-spin coupling. About forty years later Zhang et al [Zha92] demonstrated
that it is also possible to revert the dynamics due to free precession and spin-
spin coupling. This was a much more surprising achievement, because at the
time the reversion is initiated one has a truly many body system which
for many purposes can be considered as a thermally equilibrated gas. This
success triggered many more experiments in NMR [Pas95, Lev98] as well as
a series of experiments with classical waves [Der95, Ler04]. Finally there
are some proposals [Gar97, Gor04b, Sch] and first experiments on trapped
atoms [And03, Kuh03].

The purpose of this chapter is to present experiments for the stability of echo
dynamics in flat electromagnetic cavities, using the equivalence of Helmholtz
and stationary Schrodinger equation [St699]. We shall use two chaotic bil-
liards, one with and the other without bouncing-ball states. The systems are
perturbed by slightly changing one length in the billiards.

In the determination of the fidelity from equation (4.1) we face one problem.
To map the wave function, an antenna has to be moved through the system
(see e. g. chapter 2 of [St699]). This gives rise to another perturbation which
may be of the same order of magnitude as the one caused by the shift of the
wall. Thus a direct experimental determination of the fidelity amplitude is
not feasible, or at least difficult. The situation is very common and has been
encountered in previous experiments on NMR [Pas95, Lev98| and ultrasound
propagation [Der95] as well. We therefore take a scattering point of view from
the very beginning, and analyze the stability of the scattering matrix under
perturbation of the time evolution. At the very end we ask ourselves, under
which circumstances the result approximates standard fidelity.

Since the scattering matrix S(E) is a time-independent quantity, we use its
Fourier transform S(¢) to obtain a time dependent signal, i.e. we consider
S (t) as an evolution operator in the Hilbert space of the open channels of
the system. Then, the obvious candidates for constructing signals analogous
to the fidelity amplitude for closed systems, are cross-correlation functions
of the same scattering matrix element of the perturbed and the unperturbed
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system:

ClSur Sia) (1) = (S (1) S5 (1)) . (4:2)

where the brackets denote an average over an energy window, or an ensemble,
or both. This quantity has the drawback, that it is dominated by the decay
of the autocorrelations. We therefore define the scattering fidelity amplitude
with the heuristic normalization as

A

C'[Sab, Sab) (1)

farlt) = —= A .
V ClSun S (0C1SLy, St (1)

(4.3)

In chaotic billiards this definition approaches the usual fidelity amplitude in
the weak-coupling limit as we shall see later.

Here, we restrict ourselves to the measurement of f,,(¢) for chaotic billiards,
comparing our results with the linear response theory for closed systems de-
veloped by Prosen and coworkers [Pro03, Gor04a]. As it turns out, in our
experiment we cannot reach situations where linear response theory would
cease to be valid. In fact, we are restricted to the perturbative and the
golden rule regime, but we are not able to go beyond that or approach the
Lyapunov regime [Jal01] (this regime is known to be difficult to reach [ref
Prosen]). Recently, the linear-response results by Gorin et al. have been ex-
tended to arbitrary perturbation strengths using supersymmetry techniques,
predicting a revival of the fidelity at the Heisenberg time (see chapter 3 and
reference [St604b]). But we shall see that for the interpretation of all exper-
imental results presented in this chapter the linear-response approximation
is completely sufficient.

In the next section we shall present the experimental setup, to proceed to a
discussion of the relevant correlation functions of S-matrix elements in the
third section. We then discuss the experimental results combined with an
extensive discussion of the parameter characterizing our perturbation. The
scaling properties of this parameter follow theoretical expectations very well,
and interesting results about the effects of bouncing-ball states are found.
We finally summarize our results and give an outlook on the perspectives of
sensitivity of the S-matrix.
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Figure 4.1: Geometry of the billiards. In the right billiard bouncing balls
have been avoided by inserting additional elements (see text for dimensions).

4.2 Experimental setup

Since a detailed description of the general experimental technique can be
found e.g. in [Kuh00], we concentrate on the aspects relevant in the present
context. Reflection and transmission measurements have been performed in a
flat microwave cavity, with top and bottom plate parallel to each other. The
cavity is quasi-two-dimensional for frequencies v < V4, = ¢/(2h), where
h is the height of the billiard. In this regime there is a complete equiva-
lence between the stationary wave equation and the corresponding stationary
Schrédinger equation, where the z component of the electric field corresponds
to the quantum mechanical wave function,

2T v

(A+BE)U(z,y)=0, E= (—)2 , (4.4)

c

with Dirichlet boundary conditions.

There were two antennas at fixed positions consisting of copper wires with a
diameter of 1 mm, projecting 3mm into the resonator. An Agilent 8720ES
vector network analyzer was used to determine the complete S-matrix. Mea-
surements were taken in the frequency range from 3 to 17 GHz with a reso-
lution of 0.5 MHz.

The geometries of the billiards studied in this chapter are shown in figure 4.1.
One billiard consisted of a rectangular cavity of length L = 475 mm, width
B = 200mm and height h = 8 mm, a quarter-circle insert of radius R; =
70mm, and a half-circle insert of radius Ry = 60 mm placed at the lower
boundary. The position of the latter was changed in steps of 20 mm to get 15
different systems for the ensemble average. The perturbation of the system
was achieved by moving the left wall in steps of 0.2mm. For each of the
15 positions of the half-circle we performed 11 measurements for different
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perturbation strengths.

The other billiard consisted of the same rectangular cavity, but with length
L = 438 mm. It also shares the quarter-circle insert of radius Ry = 70 mm,
and on the lower boundary the half-circle insert of radius Ry = 60 mm, which
again was moved to realize an ensemble of 15 systems. Additional elements
were inserted into the billiard to avoid bouncing-ball resonances: two half-
circle inserts with radius R3 = 30 mm, and a wedge on the upper boundary.
Again the perturbation of the system was realized by moving the left wall in
10 steps of 0.2 mm.

The classical dynamics for the geometry of the billiards is dominantly chaotic,
and since these are time-reversal invariant systems, we are going to compare
the experimental results with random matrix predictions for the Gaussian
orthogonal ensemble.

4.3 Measuring fidelity in a scattering setup

To describe the experiments adequately, it is essential to take into account
that the microwave system is in fact an open system. The microwave field
in the cavity has been constantly fed via one of the antennas, while the
second antenna and, most importantly, the non-ideal billiard wall act as
sinks. Scattering theory, originally developed in nuclear physics [Mah69],
can be applied directly to open microwave billiards as well [St699, Sch03].
With Hjy being the Hamiltonian of the closed billiard, and two antennas
projecting into the resonator at the positions 77 and 75, the scattering matrix
for the quantum equivalent can be written as:

1

Sup(E) = 6y — V@O ——
b(E) = dab o ia

VO Heg=Hy — (i/2)VVH,  (4.5)

where V(@ is the column vector of V corresponding to the antenna at position
7. For antenna diameters small compared to the wavelength the matrix ele-
ments Vj, are proportional to ;(7,), the wave functions of the unperturbed
system at the antenna positions.

We are now going to construct time dependent echo signals from appropriate
correlation functions of scattering matrix elements obtained from stationary
measurements. We shall define the “scattering fidelity” and discuss its rela-
tion to the usual fidelity of closed billiard systems. Consider a one parameter
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family of closed billiard systems with the Hamiltonian H;,(A). Let us denote
two slightly different Hamiltonians by Hi,, = Hin (A1) and H!, = Hin(N2),
and the corresponding S-matrices as defined in (4.5) by Sy and S!,. Their
Fourier transforms read:

Ed%

Aab( ) /dE e—27r1Et V
1

Aab( t) = /dE SEmE e W VO = _omigt) Ve )T g2mi Hlg t 17(0) ’
T eff

L v@ Z o g(—t) v o 2mittlst @

where (t) is the Heaviside function. The vector V() describes the coupling
of antenna a. For point-like coupling its matrix elements in the eigenbases of
Hin and Hj, are given by \/w, (¥;|7a) and \/w, (¥}|7%), respectively. The
real parameters w, give the norm of the channel vector V() and measure
the strength of the coupling of the antennas to the closed billiard.

Following previous works on correlation functions of scattering matri-
ces [Sch03, Gor02] we write the correlation function of the perturbed and
the unperturbed system as

C1Su Szl (8) = (S (1) S35 (1))
— 42 (9(t> <wa w, <7;;7’627riHm t—nVVie ‘Fa> <7;»a‘ e7271-iHi’nt t—mVVtt ’7;;)>> '

(4.6)

In contrast to the usual definition of the fidelity, the projector |7%,) (7| sep-
arates forward and backward evolution. In chaotic billiards and if |7,) and
|Tp) are statistically independent, the energy-window or ensemble average
converts the projector |r,) (7| into the unit matrix. An additional average
over antenna positions is not needed. We then obtain

ClSaps Si)(t) = dn® 6(t) wa wy (7] Uerr(t) Uz (1) [73) (4.7)

where Ueg(t) and Ulz(t) are the sub-unitary propagators for Heg and Hlg,
respectively. This formally looks like a fidelity amplitude for the effective
Hamiltonians of the system. However, for vanishing perturbation, A = 0,
this quantity is not constant, it yields the autocorrelation function instead.
This is the motivation to define the scattering fidelity f,;, for both diagonal
and off-diagonal S-matrix elements via the relation

C[Sapy SE)(E) = Fan(t) C[Saps S5 (2) - (4.8)
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The thus defined scattering fidelity approaches the well known fidelity of the
closed system in the limit of weak coupling to the antennas. In this case the
wall absorption is the dominant effect leading to a resonance width I', which
is approximately constant. As shown in chapter 2, the operator VVT may
then be replaced by the scalar I'. Hence, we obtain from equation (4.7):

ClSan, Sepl(t) = 4m® 6(t) wa wy ™™ (74| Usne(£) U ()" |73)
472 0(t) w

Lwpe 2T F(1)

= f(t) (C[Sar, Sip) (1)) - (4.9)

This argumentation assumes that (¢;|7,) and (¢;|r,) are uncorrelated, i.e.
a # b. The same result holds, however, for the case a = b as well, provided
that the (;|r,) are Gaussian distributed. Equation (4.9) is still true in the
perturbative regime, i. e. as long as the perturbation does not change the wave
functions. This can be shown in the context of the rescaled Breit-Wigner
approximation [Sch03, Gor02], which is also valid for stronger coupling of
the antennas. All experimental results presented below have been obtained
in this regime.

4.4 Perturbation parameter for shifting of a
billiard wall

In billiard systems the parameter variation is not due to a change of the
Hamiltonian, but of the boundary condition. It was shown in chapter 5 of
reference [St699] that both situations are equivalent for the case that the
parameter variation in the billiard is due to a shift of a straight wall. In this
case the matrix element of the equivalent perturbation is given by

Lan ) am Y
(Hl)nmzl/o Un(0,y) 9¢bm (0 y)dy

4.1
ox ox ’ (4.10)

where [ is the shift of the wall (in z-direction) and L is the length of the
shifted wall. It follows for the perturbation strength:

o= <[(Hl)nm]2>

L L 8¢n(07 yl) ad}n(oa y2) 5¢m(0, yl) awm(oa y2)
_ 2
=1 /0 @ /0 dy2 < Ox Ox > < Ox Ox >

(4.11)
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This is true for n # m, but again the result can be generalized easily to the
case n = m. The averages can be calculated by means of Berry’s random
superposition of plane waves conjecture [Ber77a]. Close to a straight wall
with Dirichlet boundary conditions, it yields

(U (1, Y1)V (T2, Y2))

- % [JO (k\/(x1 —9)? + (Y1 — 92)2) = <k\/(x1 +x2)” + (3 — y2)2>]
(4.12)

for the spacial correlation function, where A is the billiard area. Inserting
this into equation (4.11) we obtain for the case n # m:

o= <[(H1)nm]2>

4k21?
_ / dy1/ dyg [Jo (klyr — )]

AK212 Lo
_ / dy, / dyp— = Uy )

4k21?
/ dyl/ dy— (T4 (y

4K212L 8
A% 37

Q

The approximation works well for large wave numbers k. Since the mean
level distance is normalized to one, we can insert A = 4x for the area of the
billiard, and finally end up with:

2L
N = 3P 4.1

The variance of the diagonal matrix elements, <[(H1)nn]2>, shows up to be
twice as large. Exactly the same expression was obtained by Lebceuf and
Sieber in a completely different approach [Leb99] using periodic orbit theory
and the ergodicity assumption. It is interesting to note that two seemingly
unrelated assumptions, one on the random wave superposition, and the other
on the ergodicity of long periodic orbits, yield identical results.
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4.5 Experimental results

4.5.1 Correlation function and fidelity amplitude

We start with a discussion of the Fourier transform of the correlation function
C[S11, S1%)(t) as given in equation (4.6). Figure 4.2 shows a logarithmic plot
of C[S11, S%](t) in comparison to the autocorrelation function C[Syy, S%](t).
The change of area and surface due to the shift of the billiard wall was taken
into account by unfolding the spectra to a mean level distance of one. The
frequency window of the Fourier transforms was 1 GHz wide, and a Welch
filter was applied. The correlation functions were averaged over an ensemble

of 15 billiard geometries.

The autocorrelation follows the corresponding theoretical curve nicely, where
the parameters for the wall absorption and the coupling of the antennas had
been determined as described in chapter 2. Minor deviations from the theo-
retical curve can be attributed to the small number of levels in this frequency
interval. Furthermore, small slits between the inserts of the billiards may act
as additional decay channels. This is in contrast to the more or less homoge-
nous absorption by the billiard wall, which can be described by infinitely
many weak channels (see chapter 2).

With increasing time, the correlation function C[Syy, S}%](t) deviates more
and more from the autocorrelation function. This behavior can be described
by a product of the autocorrelation function and the fidelity amplitude f(t)
of the closed system, thus confirming expression (4.9).

For the fidelity amplitude, we used the linear-response approximation derived
by Gorin et al. [Gor04a],

ft) = e N C® (4.14)

For the Gaussian orthogonal ensemble C(t) is given by

t T
C(t) =t*+ % — /0 /o be(7")dr'dr (4.15)

where by(t) is the two-point form factor. Equation (4.14) describes the fidelity
amplitude both in the perturbative regime, where the Gaussian decay is
dominant, and in the Fermi golden rule regime, showing an initial exponential
decay.
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Figure 4.2: (top): Logarithmic plot of the correlation function C[Syy, St for
the billiard with bouncing balls (left), and for the one without bouncing-balls
(right). The experimental results for the autocorrelation are shown in black,
while the correlation of perturbed and unperturbed system are shown in
grey. The smooth solid curve corresponds to the theoretical autocorrelation
function, and the dashed curve to the product of autocorrelation function and
fidelity amplitude. (bottom): Logarithmic plot of the corresponding fidelity
amplitudes. The smooth curve shows the linear-response result (4.14), where
the perturbation parameter A\ was obtained from the variance of the level
velocities.
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All fidelity amplitudes presented in the following have been obtained by di-
viding C[Sa, S%)(t) by the geometric mean of the corresponding autocorre-
lation functions using equation (4.3). There are two reasons for dividing by
the experimental autocorrelation function: there is no need to fit the auto-
correlation function, and the influence of non-generic features in the Fourier
transform is reduced.

The plots in the lower row of figure 4.2 show that this procedure works very
well. For the frequency range shown in this figure, the perturbation strength
was determined directly from the measured spectra via the variance of the
level velocities. Thus we can describe the experimental results for the fidelity
amplitude by the linear-response expression without any free parameter.

As expected, the billiard with bouncing balls shows systematic deviations
from the random matrix prediction. Only at small times ¢ we find good
agreement. We therefore concentrate on the results of the billiard without
bouncing balls in the following subsections.

4.5.2 Agreement with the linear-response prediction

In our experiment the values for the perturbation parameter \ vary from
A=001forn =1and v = 3 to 4GHz up to A = 0.5 for n = 10 and
v = 17 to 18 GHz. Figure 4.3 shows the fidelity amplitude for four different
frequency windows. The perturbation parameter A\ has been fitted to the
experimental curves. To improve statistics, experimental results for fi1, foo
and f1o have been superimposed. The individual curves for these quantities
were not discernible within the limit of error.

For small perturbation strengths, the linear term in the exponential is still
close to one and thus we observe essentially a Gaussian decay of the fidelity
amplitude, as seen in figure 4.3 for Ao, = 0.01. With increasing pertur-
bation strength the linear term is getting more pronounced, leading to an
exponential decay for small times. However, for larger times the Gaussian
decay again becomes dominant.

In the range accessible to our experiment (limited by the small ensemble) we
find good agreement with the linear-response prediction of the random matrix
model. For the strongest perturbation strength realized in our experiment,
deviations of the linear-response result from the exact result for the Gaussian
ensemble (see equation (3.15) of chapter 3) become noticeable only below
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Figure 4.3: Fidelity amplitude of the billiard without bouncing balls, ob-
tained by superimposing results for fi1, foo and fi2. The smooth solid line
shows the linear-response result (4.14), while the dashed line shows the ex-
act result [St604b]. The perturbation parameter Aey, has been fitted to each
experimental curve.

107, These deviations could not be detected by our experiment.

4.5.3 Scaling behavior of the perturbation strength

The experimental fidelity amplitude was studied for 10 different shifts of the
billiard wall (Al = n-0.2mm, with n = 1...10), and a frequency window of
width 1 GHz was moved through the spectrum. The perturbation strength A\
entering the fidelity amplitude (4.14) was fitted to the experimental results.

Figure 4.4(a) shows the experimental perturbation strength A2, in depen-

dence of the number of steps n for three different frequency regimes. We
observe an excellent agreement with the scaling A\? oc n? as predicted from
equation (4.13). The experimental results for )‘pr in dependence of the fre-
quency range shown in figure 4.4(b) do not look quite as nice as the previous
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Figure 4.4: Perturbation strength A? as a function of n (left), and as a
function of frequency v (right). The slopes of the straight lines are 2 in the
left, and 3 in the right hand figure. The results are shown for the billiard
without bouncing balls.

Figure 4.5: Average of the ex-
perimental fidelity amplitude on a
rescaled axis z = 472\?C(t). The
solid line corresponds to g(x) =
exp (—az) with o = A2 /A% = 0.36.
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results, but they still confirm the scaling \? oc 3.

The scaling of the perturbation strength works perfectly well over the whole
parameter-space. This is illustrated in figure 4.5, where we averaged the ex-
perimental data of the fidelity amplitude on a rescaled axis 472\?C (). How-
ever, the slope of the resulting curve is not in accordance with the prediction
and yields a A\2_ deviating from the theoretical expectation of equation (4.13)

exp

by a factor of 0.36.

This deviation is caused by the fact that we are far from the semi-classical
limit, for which the expression for A\* was derived. This is in accordance with
numerical calculations for the Sinai billiard done by H. Schanz in Géttingen
[Sch04b]. In cases where we determined the variance of level velocities di-
rectly from the measured spectra, we found the same deviation from equation
(4.13). This shows that the experiment can be described in a self-consistent
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Figure 4.6: Correction factor A2, /A* as a function of frequency v. Results are

for the billiard without (left) and with bouncing balls (right). The dashed-
dotted lines in the right hand figure correspond to the eigenfrequencies of
the associated bouncing ball states.

way.

4.5.4 Influence of bouncing-ball modes

To study the frequency dependence of the perturbation strength in some
more detail, we took a smaller frequency window of 0.5 GHz for the Fourier
transform and moved it in finer steps through the whole frequency range.

In Figure 4.6 the ratio )\gxp /A% is plotted both for the billiard with and with-
out bouncing balls, where A\? is the theoretical value of the perturbation
strength according to equation (4.13). In the right hand plot, the frequen-
cies of the (vertical) bouncing ball resonances are plotted as vertical lines,
revealing the origin of the peaks in the frequency dependence of A2. The ver-
tical bouncing ball remains nearly unaffected by the perturbation, but the
unfolding of each spectrum takes the change of area into account, and thus
introduces a constant drift to these resonances. This leads to a faster decay
of the fidelity, thus resulting in the strong peaks visible in the figure.

Note that the result for the billiard without bouncing balls still shows fluctu-
ations. The influence of the eigenmodes in the individual frequency window
is thus visible for this billiard as well. However, there are no systematic peaks
like the ones for the bouncing-ball modes.
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4.6 Conclusions

It was shown in this chapter that the fidelity amplitude f.,(t) of scatter-
ing matrix elements S, is an easily accessible quantity which in the weak-
coupling limit approaches the ordinary fidelity amplitude f(¢). It is stressed
that it is not necessary to vary the antenna position for this purpose. This
is essential, since every change of the latter gives rise to additional, hardly
controllable perturbations. In integrable systems, however, an average over
the antenna positions is indispensable to obtain f(t). Therefore a determi-
nation of the fidelity f(¢) from the scattering fidelity f,;(t), as illustrated in
this work for chaotic systems, is probably not feasible for integrable ones.

All results of this chapter could be described within the limits of the linear-
response approximation [Gor04al, allowing a nice scaling of all data onto one
single curve. Deviations of the decay constant of the such scaled fidelity from
the predicted universal value could be quantitatively traced back to limits of
the semiclassical approximation.

It remains an open question, whether the predictions of the exact theory
described in chapter 3, in particular the conspicuous revival of the fidelity
amplitude at the Heisenberg time, will be verified in a future experiment.



Chapter 5

Dielectric quadrupole billiards

5.1 Introduction

Disc-shaped dielectric cavities are of interest as compact, high-quality opti-
cal resonators to be used in micro-lasers and integrated optics applications
[Cha96]. The waves can escape the dielectric cavity along its boundary, if
the angle of incidence is below the critical angle of total internal reflection,
sin x. = 1/n (n the index of refraction of the dielectric, assumed to be sur-
rounded by air). The modes with the longest lifetime (high-Q modes) are
the so-called ”whispering gallery modes” which circulate along the boundary
and always stay above the critical angle. Actually, the waves can also escape
the cavity above the critical angle, since for finite wavelengths the reflection
coefficient at a curved interface does not have a critical angle, but instead is
a smooth function of the angle [Hen02].

For dielectric discs with a circular boundary the emission pattern of the
waves is homogenous in all directions due to the rotational symmetry. How-
ever, both for the design of micro-lasers, and for other optical applications,
it is desirable to have a directed emission pattern or coupling to the out-
side. It was shown by Nockel, Stone and Chang [N6¢94, N6c¢97, N6c00] that
smooth deformations of the circular shape lead to anisotropic whispering
gallery modes, which have a directional emission pattern with quality factors
that are tunable by the degree of deformation.

For an ellipse the strongest emission is expected to be tangential at the
points of highest curvature. The situation is more complex and thus more

60
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Figure 5.1: Whispering gallery mode® for the dielectric quadrupole billiard
with € = 0.10, calculated numerically by J. U. Nockel. The eigenmode shows
a highly directional emission pattern.

1 Published by J. U. Nockel in the Yearbook of the MPI-PKS 1996-1997 (1998)

interesting for a quadrupolar deformation of the circle, described by
r(¢) =14 €cos2¢ , (5.1)

where € is the deformation parameter. This deformation leads to a mixed
phase space, i.e. partly regular and partly chaotic dynamics, which has im-
portant consequences for the internal dynamics and the emission behavior of
the system.

Figure 5.1 was published by J. U. Nockel in the Yearbook of the MPI-
PKS 1996-1997 (1998) and shows a calculated eigenmode of the dielectric
quadrupole billiard for e = 0.10. The index of refraction was n = 1.55, which
yields for the critical angle sinx. = 1/n & 0.65. Obviously, the strongest
emission does not occur at the points of highest curvature; still the emission
pattern is highly directional.

Nockel and Stone developed a ray model description for asymmetric resonant
cavities, which tries to explain the emission of deformed whispering gallery
modes as refractive escape of rays which are initially trapped by total internal
reflection. Due to their chaotic dynamics, these rays diffuse chaotically until
they reach the critical angle and leave the cavity.

Figure 5.2(left) shows the Poincaré section of the classical phase space for
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Figure 5.2: (left) Poincaré section® for the quadrupole billiard with € = 0.10.
(right) Shape of the quadrupole billiard, showing the stable diamond-shaped
orbit, and the unstable rectangular orbit. x is the angle of incidence of a ray
with respect to the local normal.

L Published by J. U. Nockel in the Yearbook of the MPI-PKS 1996-1997 (1998)

the corresponding quadrupole billiard. To obtain a Poincaré section only the
points of reflection at the boundary are considered instead of the continuous
trajectory. For each reflection point its position, parametrized by the angle
¢, and the sine of the angle of incidence y are plotted. This is illustrated in
figure 5.2(right).

The presence of stable islands intersecting the line of the critical angle for a
long time was assumed to be the main reason for the characteristic emission
behavior of the quadrupole billiard, because the islands prevent the escape of
rays at the points of highest curvature, = 0 and ¢ = 7. This phenomenon
was called ”dynamical eclipsing” [N6c96].

However, Schwefel et al found in a detailed study of the classical dynamics
[Sch04c] that the characteristic emission behavior persists even for strong
deformations, where the stability islands have already vanished. They found
that the unstable manifold of the rectangular periodic orbit (see figure 5.2)
dominates the short-time dynamics of the system, which determines the emis-
sion behavior. In section 5.2 this unstable manifold is discussed in detail.

Discussions with J. U. Nockel have initiated our microwave experiments on
dielectric quadrupole billiards, where the dielectric micro-disc is substituted
by a teflon disc with n = 1.44. The experimental setup is described in section
5.3. We measured transmission spectra using two antennas, and obtained the
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pulse propagation by a Fourier transform of these transmission spectra.

For each time step of the pulse propagation we determined the Poynting
vector in the near-field. Thus we were able to study the directionality of
the emission behavior. In laser experiments one usually examines the light
intensity in the far-field to extract the same information.

To achieve a direct comparison to the internal dynamics of the classical sys-
tem, we determined the Husimi distributions of the pulse propagation (see
section 5.5). By averaging the Husimi distributions over four periods of the
circulating wave-packets, we achieve a very clear picture of the internal dy-
namics in phase space. The results are presented in section 5.7. They show
very good agreement with classical simulations for the long-time dynamics,
and illustrate the importance of the unstable manifold for the emission be-
havior.

5.2 Hyperbolic fix-point

It is convenient to analyze the dynamics in terms of the Poincaré surface of
section; then the dynamics from one reflection at the boundary to the next
one can be described by a discrete map. We denote position and direction
by (s,u) = (¢,sinx), then the map which propagates the ray to the next
position and direction is defined by

T:(s,u) — (s1,u1) . (5.2)

A point (sp,u,) of the surface of section is called a fixed point of order N, if
it satisfies
TN(Spyup) = (8p,Up) - (5.3)

It corresponds to a periodic orbit in real space.

The motion in the vicinity of a fixed point can be described by the mon-
odromy or stability matrix M, which is a linearization of the map TV around

the fixed point:
Osn(s,u)  Oun(s,u)
M= 851\?(?97u) 8uNa(Ss,u) ) (54)

ou ou

where (sy,uy) =TV (s,u).

For Hamiltonian flows M is always an area-preserving map, i.e. det M = 1.
The eigenvalues of M can be either in complex conjugate pairs on the unit
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circle or they are purely real and reciprocal to each other. If the eigenvalues
of the monodromy matrix M are complex, the fixed point is stable (elliptic)
and nearby points oscillate around the fixed point. The modulus of the
eigenvalues is 1 in this case.

In the case of real eigenvalues the fixed point is unstable (hyperbolic). The
eigenvector corresponding to the eigenvalue larger than 1 describes the unsta-
ble direction; in this direction deviations from the fixed point grow exponen-
tially. The eigenvector belonging to the eigenvalue smaller than 1 describes
the stable direction; in this direction deviations relax exponentially towards
the fixed point. This behavior can be inverted by reversing time. Then devi-
ations in the unstable directions relax towards the fixed point and deviations
in the stable direction will increase.

By iterating a set of points on the unstable eigenvector (but still very close
to the fixed point), we can visualize the unstable manifold of the fixed point
which is defined as the set of points that approaches the fixed point arbitrarily
closely as t — —oo. As the unstable manifold deviates further from the fixed
point, it begins to have larger and larger oscillations. This is necessary to
preserve phase space area while at the same time have exponential growth
of deviations.

The short time dynamics in the vicinity of a hyperbolic fixed point is domi-
nated by its unstable manifold, because a generic deviation will have at least
some component along this unstable manifold. This was demonstrated e. g.
in reference [Sch04c| for the quadrupole billiard.

While the quadratically-shaped periodic orbit in the circle billiard is stable,
the quadrupolar deformation of the circle leads to the creation of a stable
diamond-shaped orbit, and an unstable rectangular orbit (see figure 5.2).

Figure 5.3(top) shows the unstable manifold for the rectangular orbit in the
quadrupole billiard with ¢ = 0.08. The four fixed points (of order 4) are
located at ¢, ~ 0.2m, 0.8m, 1.27 and 1.87, respectively. Their angle of
incidence is x, = 7/4, yielding sin x,, ~ 0.707. Thus they are just above the
critical line of total internal reflection, sin x. ~ 0.69. The manifold encloses
the stability islands of the diamond-shaped orbit.

For a larger deformation, ¢ = 0.13, the stability islands of the diamond-
shaped orbit have shrunk considerably, while the unstable manifold of the
rectangular orbit has become very dominant (see figure 5.3(bottom)). The
positions of the fixed-points are in this case ¢, ~ 0.187, 0.827, 1.187 and
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1.827, respectively. Again, their angle of incidence is x, = 7/4, and thus
sin x, ~ 0.707.

In section 5.5 we will compare these results of the classical billiard with the
dynamics of the microwave system by means of Husimi distributions.
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Figure 5.3: Poincaré section of the quadrupole billiard for ¢ = 0.08 (top),
and € = 0.13 (bottom). The unstable manifold of the rectangular orbit is
shown as the dark curve. The horizontal line denotes the critical angle at
| sin x| = 0.69.
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5.3 Microwave measurement

The microwave systems studied in this chapter consisted of a ground plate
made of brass with rounded corners and dimensions 380 x 260 mm. On this
ground plate the teflon discs were fixed with an adhesive (see figure 5.4(left)).
Teflon has an index of refraction of n = 1.44 and is particularly well suited
for microwave studies, since it does not attenuate the microwaves noticeably.
The height of the discs was h = 8 mm, and their shape is given by equation
5.1, scaled with the mean radius R = 100 mm. We are going to present the
results for two deformation parameters, ¢ = 0.08 and € = 0.13.

The upper part of the system consisted of a brass plate supporting an antenna
which could be moved with respect to the ground plate, thus allowing to scan
the system. The top plate was large enough to cover the whole bottom plate
for any position of the scanning antenna. In order to scan the system in the
region of the teflon disc, we had to cut the antenna flush with the top plate
(see figure 5.4(right)). This led to a noticeable reduction in the signal-to-noise
ratio, but it was still possible to obtain reasonable results. More details on
the set-up and the technique can be found in references [Kuh00, Sch01].

Figure 5.5 shows a typical transmission spectrum from the fixed antenna in
the bottom plate (z, = —15mm and y, = —76.5 mm) to the movable antenna
in the top plate. Up to 13 GHz the spectrum shows a very regular spacing of
resonances, because only the whispering gallery modes have long life-times.
All other eigenmodes are not bound by total internal reflection and leave the
teflon rather rapidly. At the edge of the ground plate the microwaves are
reflected only very weakly.

The situation is different for frequencies above 13 GHz, where we observe
a rich spectrum of sharp resonances. The reason is the difference in the
index of refraction inside and outside the teflon disc. For frequencies below
v = ¢/(2nh) only TMy modes without z-dependence can be excited, because
the wavelength is too large. In this case the billiard is called quasi-two-
dimensional. For higher frequencies also TM; modes with one node in z-
direction are allowed. Due to the higher index of refraction of teflon, this
is already possible above v, ~ 13 GHz, while in air the cut-off frequency is
v, =~ 18.75 GHz. Since in this intermediate frequency range between 13 and
18.75 GHz the TM; modes in the teflon cannot couple to equivalent modes in
the outside region, they are trapped inside the teflon irrespective of the angle
of incidence at the teflon-air interface. Therefore the teflon disc acts like a
closed system for these modes leading to the spectrum discussed above.
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In the following we shall only consider the frequency range below 13 GHz,
since we are interested in the teflon disc as an open system.

teflon air

Figure 5.4: (left) Picture of the experimental setup showing a teflon disc
mounted on the ground plate. (right) Illustration of the measuring technique
showing the antenna that is cut down to the height of the top plate.
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Figure 5.5: Transmission spectrum showing almost equidistant resonances
below 13 GHz, which correspond to whispering gallery modes. Above 13 GHz
the spectrum shows a multitude of sharp resonances.
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5.4 Pulse propagation

The measurements presented in this chapter were done using an Agilent
8720ES vector network analyzer, yielding directly the scattering matrix S of
the system. The non-diagonal elements of S are given by the transmission
amplitudes S;; between antennas ¢ and j, and the diagonal elements by the
reflection amplitudes S;; at antennas i. Scattering theory yields a relation
between the scattering matrix S and the Green function G of the billiard
(see e.g. chapter 6 of reference [St699)):

Sij = 51'3‘ — 21")/G(7“l, 7"]') . (55)
For the case of isolated resonances the Green function can be written as

U (13)n 7“])
T’L)ij Z k2 + kz + F (56)

where the complex widths I',, lead both to a broadening and to a shift of
the resonances due to absorption and coupling to the antenna. Also the
wavefunctions 1, (r) are not exactly the ones of the closed system, but are
slightly perturbed due to the presence of the antenna.

By a Fourier transformation of the transmission spectra S;;(v) we directly
obtain the electromagnetic propagator

1

K(ri,rj,t) = —_/G(Ti,rj, k)e“dw w=kc. (5.7)

2m

It is also possible to calculate the quantum-mechanical propagator by taking
the corresponding dispersion relation into account.

Since in our experiment one antenna position was fixed, we did not measure
the complete Green function. Thus the Fourier transform yields a pulse
propagation with a fixed initial condition, corresponding to a circular wave
that is emitted from the fixed antenna.

For each teflon billiard, transmission measurements were performed for alto-
gether 2632 positions of the scanning antenna on a square grid with 5mm
resolution in the frequency range 0.5 to 18.24 GHz. In the following we will
discuss in detail the results for the teflon quadrupole billiard with a defor-
mation € = 0.13. Only at the end, we will compare these results with the
ones for a smaller deformation, e = 0.08.
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Figure 5.6: (left) Whispering gallery mode at v = 10.4GHz for the
quadrupole billiard with e = 0.13. (right) Pulse at ¢ = 405 ps for the same
billiard, as it spreads from the fixed antenna in the bottom plate.

Figure 5.6(a) shows a whispering gallery mode for the resonance at v =
10.4 GHz. The plot of the wavefunction has been obtained by averaging the
transmission amplitude (including the phase) in a small frequency window
for every position of the scanning antenna.

In figure 5.6(b) we present a snapshot of the pulse propagation at an early
time t = 404 ps, when we still see the emergence of the circular pulse from
the fixed antenna. Further we observe the different wavelengths inside and
outside of the teflon, caused by the different indices of refraction. And already
at this early stage, we see the development of two wave packets supported
by the whispering gallery modes, one running clockwise the other counter-
clockwise along the boundary.

A sequence of snapshots of the pulse propagation is presented in figure 5.7.
The first few time steps show a circular wave that is emitted from the fixed
antenna. In the second row of the figure we see how most of the initial wave
packet escapes the teflon disc due to a very steep angle of incidence. The
remaining part of the pulse is almost completely concentrated on the two
wave packets described above.
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Figure 5.7: Sequence of the pulse propagation for some initial time steps:
t =162, 324, ..., 1944 ps.
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Figure 5.8: Gaussian wave packet for ¢ = 37” and siny = 0.

5.5 Husimi distribution

To compare the internal dynamics of the teflon system to the classical
Poincaré section, we shall use the Husimi distribution [Hus40, Biac04, MB02],
which is the quantum analogue to the classical phase-space probability den-
sity. It is the projection of a given quantum state |¢)) onto a coherent state
of minimum uncertainty, i.e. a Gaussian wave packet.

Making the same restrictions on position and momentum as in the Poincaré
section, where only reflections on the boundary of the billiard are considered,
we can write the Husimi distribution as

H(g,x) = | (o, x¥) 7, (5.8)

where |¢, x) denotes the coherent state at the boundary. In figure 5.8 such a
coherent state is shown for ¢ = 37” and sin y = 0.

For the calculation of the Husimi distribution we only consider the region
inside the teflon disc by setting the wavefunction on the outside to zero.
The Husimi functions at dielectric interfaces have been studied in detail
by Hentschel et al [Hen03], where they considered both inside and outside
regions.

Instead of analyzing the Husimi distribution of eigenmodes, we shall con-
sider the pulse propagation. The time evolution of phase space densities has
been studied theoretically by, e. g., Manderfeld et al [Man01] and Prosen and
Znidaric [Pro02b].
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Figure 5.9: Pulse at ¢t = 162 ps (top), and its Husimi distribution (bottom).
The pulse is well localized in space, but spreading in every direction.

Figure 5.9(a) shows the measured pulse at t = 162 ps, when the microwaves
just start to spread from the antenna. Its Husimi distribution shows the
pulse at a well localized position, but spreading in every direction.

5.6 Pulse sequence

While in laser experiments the directionality of the emission pattern was
obtained by measuring the light intensity in the far-field, we are going to
extract this information from the field distribution in the near-field of the
teflon disc.

To this end we have to calculate the Poynting vector S (7) which describes
the energy flow of an electromagnetic wave. In our case of a quasi-two-
dimensional microwave system the Poynting vector reduces to

S = g (EX(FVEL®) - (5.9)

The Poynting vector is equivalent to the probability density current in quan-
tum mechanics

i) = Lt v (5.10)

A more detailed description of the Poynting vector in microwave systems is
provided in references [Bar01, Vra02].
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We are now going to take a closer look at later times of the pulse propagation,
when only the two wave packets are remaining which are supported by the
whispering gallery modes.

In figure 5.10 we present a sequence of the pulse at times t = 4935, 5097,
5744 and 6067 ps. In the left column the absolute square of the pulse is
plotted with the Poynting vector in the near-field of the teflon disc. The
right column shows the corresponding Husimi distributions. In addition the
unstable manifold of the rectangular orbit is plotted.

The wave packet circulating counter-clockwise is always located in the upper
part of the Husimi plot, corresponding to positive values of sin y, while the
other wave packet is located in the lower part. Even when the two wave
packets interfere in position space, they are well separated in momentum
space (see third row of figure 5.10).

The plot of the pulse at t = 4935 ps shows the point of strongest emission
for the wave packet moving counter-clockwise. This is evident from the
Poynting vector indicating a strong transport out of the teflon, tangentially
to the disc’s boundary. Also the intensity of the pulse gives an indication,
accordingly. The corresponding Husimi plot gives even more insight into
the emission behavior as it shows clearly that the transport to the outside
happens along the unstable manifold of the rectangular orbit. Only at these
points the pulse reaches far beyond the critical line of sin y = 0.69, allowing
an escape of the wave according to Fresnel’s law. The plot for ¢ = 5097 ps
shows the wave packet on the left at the point of highest curvature. At this
point the emission is rather weak. The Husimi plot shows that the wave
packet stays well over the critical line at this position.

The last plot of figure 5.10 shows a point of strong emission for the clockwise
moving wave packet. Again the corresponding Husimi plot indicates the
importance of the unstable manifold.

In figure 5.11 we present for both billiards a histogram of the angle « of the
Poynting vectors, weighted with their absolute value. This yields directly
the directionality of the energy flow escaping the teflon disc. Horizontal
vectors correspond to o = 0 or aw = %7, while vertical vectors correspond to
a = £7/2. A tangential emission at the points of highest curvature would
correspond to vertical Poynting vectors, but the histograms clearly show that
the vertical directions are suppressed. Instead the highest emission is found
at angles corresponding to the emission pattern shown in figure 5.1.
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Figure 5.10: (left column) Absolute square of the pulse at t = 4935, 5097,
5744 and 6067 ps. In addition the Poynting vector is shown outside the teflon.
(right column) Husimi distribution of the pulse at the same time steps. In
addition the unstable manifold of the rectangular orbit is shown.
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Figure 5.11: Histograms of the energy flow in dependence of the emission
angle a. The histograms were averaged over four periods of the revolving
wave packets. The deformation of the billiard was e = 0.08 (left), and € =
0.13 (right).

The histograms were averaged over four periods of the revolving wave pack-
ets, corresponding to the long-time average discussed in section 5.7. Only
the Poynting vectors close to the boundary were taken into account, more
precisely those between 1.027(¢) and 1.08 r(¢).

We observe a very high directionality of the Poynting vector for both geome-
tries of the billiard. This is in accordance with measurements of the far-field
intensities of micro-disc lasers [Sch04c].

5.7 Long-time dynamics

To simulate the microwave experiment in the ray-optical limit, we applied
initial conditions matching those in the experiment. The rays are started
at the position of the antenna and spread uniformly in every direction (see
figure 5.12). Each ray i is associated with an amplitude a;, which decreases
with every reflection at the boundary according to Fresnel’s law

A3 m+1 = Qim R(Xz‘,m) (5-11)

starting with an initial amplitude a;o = 1. For the reflection coefficient R
the curvature corrections for curved dielectric interfaces [Hen02] were taken
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into account, leading to

2

cos x + iF
_ 5.12
cosy — iF ( )
where
. 1 K. 3
g feosn N - 2/3(2) 1 . 2= —ikr, CO.S 277 . (5.13)
n n?sin® x \ K1/3(2) 3sin”n

In this expression K, are modified Bessel functions, n = arcsin(n sin x) is the
angle of refraction, r. is the radius of curvature, and £ is the wavenumber.

After a few iterations only those rays with a large angle of incidence still have
high amplitudes. In figure 5.13 we show the Poincaré sections of the rays with
amplitudes a;,, > 10~® for m > 30. For the billiard with € = 0.08 all the
rays remaining after 30 iterations are concentrated just above the unstable
manifold. The escape due to small values of | sin x| then happens exclusively
along this unstable manifold. It can barely be seen in the plot that the lighter
dots for the simulation are also scattered on the lower part of the manifold.
In the phase space of this billiard there is a separatrix preventing the rays
from reaching larger values of |sin y]|.

The situation is similar for the billiard with ¢ = 0.13. Here the separatrix
is very close to |sin x| = 1 and the unstable manifold has a rather complex
structure. But still the ray simulation reproduces all its details and the
escape clearly follows this manifold.

The classical ray-simulations are compared with the long-time dynamics of
the microwave system. To this end the Husimi distributions of the pulses
were averaged over four periods of the circulating wave packets. The results
are presented in figure 5.14. The averaging greatly enhances the quality of
the Husimi plots and we find a compelling agreement with the results of the
classical simulation, both showing the importance of the unstable manifold
of the rectangular orbit. However, there are differences due to the finite wave
lengths in the microwave measurement. While in the classical simulations the
separatrix prevented the rays from reaching larger values of | sin x|, the waves
can reach this region by dynamical tunneling. And for the same reason the
wave dynamics can penetrate the stability islands, as seen in figure 5.14(top)
for e = 0.08.
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Figure 5.12: Initial conditions for the ray-simulations, starting at the position
of the fixed antenna and spreading uniformly in every direction.
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5.8 Conclusions

In our microwave experiments on dielectric quadrupole billiards we were able
to reproduce the characteristic emission behavior found in the far-field in-
tensities of microdisc lasers. We studied the Poynting vector close to the
boundary of the teflon disc to obtain the directionality of the microwave
emission.

We obtained the pulse propagation by a Fourier transfrom of the transmission
spectra, and thus were able to concentrate on the long-time behavior.

The Husimi distributions of the pulse propagation provided a visualization of
the internal dynamics of the system. By averaging the Husimi distributions
over four periods of the circulating wave-packets, we achieve a very clear
phase-space picture. The experimental results agree very well with classi-
cal simulations for the long-time dynamics, and clearly illustrate that the
characteristic emission behavior is caused by the unstable manifold of the
rectangular orbit.
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Figure 5.13: Poincaré sections of the ray-simulations for e = 0.08 (top), and
¢ = 0.13 (bottom). Only rays with amplitudes a;(k) > 107 are plotted; the
first 30 iterations have been omitted. For comparison, the unstable manifold
of the rectangular orbit is plotted.
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Figure 5.14: Average of the Husimi distributions over four periods of the
circulating wave packets; for the quadrupole billiard with ¢ = 0.08 (top),
and with € = 0.13 (bottom). For comparison, the unstable manifold of the
rectangular orbit is plotted.



Bibliography

[Abr61]

[A1L9S]

[Alt95]

[AL697]

[And03]

[Biic04]

[Bar01]

[Ber77a]

A. Abragam. The Principles of Nuclear Magnetism. University
Press Oxford (1961).

Y. Alhassid and Y. V. Fyodorov. The spectral autocorrelation func-
tion in weakly open chaotic systems: Indirect photodissociation of
molecules. J. Phys. Chem. A 102, 9577 (1998).

H. Alt, H.-D. Graf, H. L. Harney, R. Hofferbert, H. Lengeler,
A. Richter, P. Schardt, and H. A. Weidenmiiller. Gaussian or-
thogonal ensemble statistics in a microwave stadium billiard with
chaotic dynamics: Porter-Thomas distribution and algebraic decay
of time correlations. Phys. Rev. Lett. 74, 62 (1995).

H. Alt, H.-D. Graf, T. Guhr, H. L. Harney, R. Hofferbert, H. Re-
hfeld, A. Richter, and P. Schardt. Correlation-hole method for the
spectra of superconducting microwave billiards. Phys. Rev. E 55,
6674 (1997).

M. F. Andersen, A. Kaplan, and N. Davidson. Echo spectroscopy
and quantum stability of trapped atoms. Phys. Rev. Lett. 90,
023001 (2003).

A. Backer, S. Fiirstberger, and R. Schubert. Poincaré Husimi rep-
resentation of eigenstates in quantum billiards. Phys. Rev. E 70,

036204 (2004).

M. Barth. Mikrowellen-Ezxperimente zu Leveldynamik und Wirbel-
bildung. Dissertation Philipps-Universitat Marburg (2001).

M. V. Berry. Regular and irregular semiclassical wavefunctions. J.

Phys. A 10, 2083 (1977).

82



BIBLIOGRAPHY 83

[Ber77b] M. V. Berry and M. Tabor. Level clustering in the regular spec-

[Ber86]

[Boh84]

[Bro81]

[Carb4]

[Cas80]

[Cas86]

[Cer02]

[Cha96]

[Der95]

[Din02)

[Dit91]

trum. Proc. R. Soc. Lond. A 356, 375 (1977).

M. V. Berry and M. Robnik. Statistics of energy levels with-
out time-reversal symmetrie: Aharonov-Bohm chaotic billards. J.

Phys. A 19, 649 (1986).

O. Bohigas, M. J. Giannoni, and C. Schmit. Characterization of
chaotic spectra and universality of level fluctuation laws. Phys.
Rev. Lett. 52,1 (1984).

T. A. Brody, J. Flores, J. B. French, P. A. Mello, A. Pandey, and
S. S. M. Wong. Random-matrix physics: spectrum and strength
fluctuations. Rev. Mod. Phys. 53, 385 (1981).

H. Y. Carr and E. M. Purcell. Effects of diffusion on free precession
in nuclear magnetic resonance experiments. Phys. Rev. 94, 680

(1954).

G. Casati, F. Valz-Gris, and 1. Guarneri. Lett. Nuov. Cim. 28, 279
(1980).

G. Casati, B. V. Chirikov, 1. Guarneri, and D. L. Shepelyansky.
Dynamical stability of quantum ”chaotic” motion in a hydrogen
atom. Phys. Rev. Lett. 56, 2437 (1986).

N. R. Cerruti and S. Tomsovic. Sensitivity of wave field evolution
and manifold stability in chaotic systems. Phys. Rev. Lett. 88,
054103 (2002).

R. K. Chang and A. K. Campillo, editors. Optical Processes in
Microcavities. World Scientific Singapore (1996).

A. Derode, P. Roux, and M. Fink. Robust acoustic time rever-
sal with high-order multiple scattering. Phys. Rev. Lett. 75, 4206
(1995).

J. Dingjan, E. Altewischer, M. P. van Exter, and J. P. Woerdman.
Experimental observation of wave chaos in a conventional optical
resonator. Phys. Rev. Lett. 88, 064101 (2002).

F. M. Dittes, I. Rotter, and T. H. Seligman. Chaotic behaviour of
scattering induced by strong external coupling. Phys. Lett. A 158,
14 (1991).



84

[Dor90]

[Dul01]

[Dys62]

[Eri66]

[Fra04]

(Gar97]

[Gor02]

[Gor04a]

[Gor04b)]

[Guh9sg]

[Haa01]

[Hah50]
[Hen02]

[Hen03]

BIBLIOGRAPHY

E. Doron, U. Smilansky, and A. Frenkel. Experimental demonstra-
tion of chaotic scattering of microwaves. Phys. Rev. Lett. 65, 3072
(1990).

H. R. Dullin and A. Béacker. About ergodicity in the family of
limagon billiards. Nonlinearity 14, 1673 (2001).

F. J. Dyson. A Brownian-motion model for the eigenvalues of a
random matrix. J. Math. Phys. 3, 1191 (1962).

T. Ericson and T. Mayer-Kuckuk. Fluctuations in nuclear reac-
tions. Ann. Rev. Nucl. Sci. 16, 183 (1966).

K. M. Frahm, R. Fleckinger, and D. L. Shepelyansky. Quantum
chaos and random matrix theory for fidelity decay in quantum com-
putations with static imperfections. Fur. Phys. J. D29, 139 (2004).

S. A. Gardiner, J. I. Cirac, and P. Zoller. Quantum chaos in an ion
trap: The delta-kicked harmonic oscillator. Phys. Rev. Lett. 79,
4790 (1997).

T. Gorin and T. H. Seligman. Signatures of the correlation hole in
total and partial cross sections. Phys. Rev. E 65, 026214 (2002).

T. Gorin, T. Prosen, and T. H. Seligman. A random matrix for-
mulation of fidelity decay. New J. of Physics 6, 20 (2004).

T. Gorin, T. Prosen, T. H. Seligman, and W. T. Strunz. Decoher-
ence alias Loschmidt echo of the environment. Phys Rev A in press
(2004). quant-ph/0405011.

T. Guhr, A. Miiller-Groeling, and H. A. Weidenmiiller. Random
matrix theories in quantum physics: common concepts. Phys. Rep.
299, 189 (1998).

F. Haake. Quantum Signatures of Chaos. 2nd edition. Springer
Berlin (2001).

E. L. Hahn. Spin echoes. Phys. Rev. 80, 580 (1950).

M. Hentschel and H. Schomerus. Fresnel laws at curved dielectric
interfaces of microresonators. Phys. Rev. E 65, 045603 (2002).

M. Hentschel, H. Schomerus, and R. Schubert. Husimi functions
at dielectric interfaces: Inside-outside duality for optical systems
and beyond (2003).



BIBLIOGRAPHY 85

[Hus40]
[Jac62]

[Jal01]

[Jos86]

[Kit96]

[Kuh00]

[Kuh03]

[Leb99)]

[Ler04]

[Lev6)

[Levos]

K. Husimi. Proc. Phys. Math. Soc. (Jpn.) 22, 246 (1940).
J. D. Jackson. Classical Electrodynamics. Wiley New York (1962).

R. A. Jalabert and H. M. Pastawski. Environment-independent
decoherence rate in classically chaotic systems. Phys. Rev. Lett.
86, 2490 (2001).

R. Jost and M. Lombardi. Survey of correlation properties of poly-
atomic molecules vibrational energy levels using ft. analysis. In
T. H. Seligman and H. Nishioka, editors, Quantum Chaos and Sta-
tistical Nuclear Physics. Lect. Notes Phys. 263. pp. 72-90. Springer
Berlin (1986).

C. Kittel. Introduction to solid state physics. Wiley New York
(1996).

U. Kuhl, E. Persson, M. Barth, and H.-J. Stockmann. Mixing of
wavefunctions in rectangular microwave billiards. Fur. Phys. J. B
17, 253 (2000).

S. Kuhr, W. Alt, D. Schrader, I. Dotsenko, Y. Miroshnychenko,
W. Rosenfeld, M. Khudaverdyan, V. Gomer, A. Rauschenbeutel,
and D. Meschede. Coherence properties and quantum state trans-
portation in an optical conveyor belt. Phys. Rev. Lett. 91, 213002

(2003).

P. Lebceuf and M. Sieber. Universality in quantum parametric
correlations. Phys. Rev. E 60, 3969 (1999).

G. Lerosey, J. de Rosny, A. Tourin, A. Derode, G. Montaldo, and
M. Fink. Time reversal of electromagnetic waves. Phys. Rev. Lett.
92, 193904 (2004).

L. Leviandier, M. Lombardi, R. Jost, and J. P. Pique. Fourier
transform: A tool to measure statistical level properties in very
complex spectra. Phys. Rev. Lett. 56, 2449 (1986).

P. R. Levstein, G. Usaj, and H. M. Pastawski). Attenuation of
polarization echoes in nuclear magnetic resonance: A study of the

emergence of dynamical irreversibility in many-body quantum sys-
tems. J. Chem. Phys. 108, 2718 (1998).



86

[Lew92]

[Lom91]

[Lom93]

[Lom94|

[Los70]

[Mah69)]

[Man01]

IMB02]

[Meh67]

[Meh91]

[Mel85)

[NGc94]

BIBLIOGRAPHY

C. H. Lewenkopf, A. Miiller, and E. Doron. Microwave scattering
in an irregulary shaped cavity: random-matrix analysis. Phys. Rev.
A 45, 2635 (1992).

M. Lombardi, J. P. Pique, P. Labastie, M. Broyer, and T. H. Selig-
man. Chaos in molecules by statistical Fourier transform spec-

troscopy. Comments on Atomic and Molecular Physics 25, 345
(1991).

M. Lombardi and T. H. Seligman. Universal and nonuniversal
statistical properties of levels and intensities for chaotic rydberg
molecules. Phys. Rev. A 47, 3571 (1993).

M. Lombardi, O. Bohigas, and T. H. Seligman. New evidence of
GOE statistics for compound nuclear resonances. Phys. Lett. B
324, 263 (1994).

J. Loschmidt. Private communication to Boltzmann, 1870. In
C. Cercignani, editor, Ludwig Boltzmann: The man who trusted
atoms. University Press New York (1970).

C. Mahaux and H. A. Weidenmiiller. Shell-Model Approach to
Nuclear Reactions. North-Holland Amsterdam (1969).

C. Manderfeld, J. Weber, and F. Haake. Classical versus quantum
time evolution of (quasi-) probability densities at limited phase-
space resolution (2001).

J. A. Méndez-Bermtdez, G. A. Luna-Acosta, P. Seba, and K. N.
Pichugin. Understanding quantum scattering properties in terms
of purely classical dynamics. two-dimensional open chaotic billiards
(2002).

M. L. Mehta. Random Matrices, Statistical Theory of Energy Lev-
els. Academic Press New York (1967).

M. L. Mehta. Random Matrices. 2nd edition. Academic Press San
Diego (1991).

P. A. Mello, P. Pereyra, and T. H. Seligman. Information theory
and statistical nuclear reactions. I. general theory and applications
to few-channel problems. Ann. Phys. (N.Y.) 161, 254 (1985).

J. U. Nockel, A. D. Stone, and R. K. Chang. Q-spoiling and direc-
tionality in deformed ring cavities. Opt. Lett. 19, 1693 (1994).



BIBLIOGRAPHY 87

[N6c96]

[IN6c97]

[NGc00]

[Pas95]

[Per84]

[Pin]

[Por65]

[Pro02a]

[Pro02b]

[Pro03]

[Rob83]

[Sch]

[Sch&4]

[Sch01]

J. U. Nockel, A. D. Stone, G. Chen, H. L. Grossmann, and R. K.
Chang. Directional emission from asymmetric resonant cavities.
Opt. Lett. 21, 1609 (1996).

J. U. Nockel and A. D. Stone. Ray and wave chaos in asymmetric
resonant cavities. Nature 385, 45 (1997).

J. U. Nockel. Laser aus dem Quantenchaos. Physik in unserer Zeit
31, 79 (2000).

H. M. Pastawski, P. R. Levstein, and G. Usaj. Quantum dynamical
echoes in the spin diffusion in mesoscopic systems. Phys. Rev. Lett.
75, 4310 (1995).

A. Peres. Stability of quantum motion in chaotic and regular sys-
tems. Phys. Rev. A 30, 1610 (1984).

C. Pineda, R. Schafer, T. Prosen, and T. H. Seligman. to be pub-
lished.

C. E. Porter. Statistical Theory of Spectra: Fluctuations. Academic
Press New York (1965).

T. Prosen and T. H. Seligman. Decoherence of spin echoes. J.
Phys. A 35, 4707 (2002).

T. Prosen and M. Znidari¢. Stability of quantum motion and cor-
relation decay. J. Phys. A 35, 1455 (2002).

T. Prosen, T. H. Seligman, and M. Znidari¢. Theory of quantum
Loschmidt echoes. Prog. Theor. Phys. Suppl. 150, 200 (2003).

M. Robnik. Classical dynamics of a family of billiards with analytic
boundaries. J. Phys. A 16, 3971 (1983).

W. P. Schleich and T. H. Seligman. to be published.

H. G. Schuster. Deterministic Chaos: An Introduction. Physik
Verlag Weinheim (1984).

R. Schafer, U. Kuhl, M. Barth, and H.-J. Stockmann. Spectra and
wavefunctions in a ray-splitting Sinai microwave billiard and their
semiclassical interpretaion. Foundations of Physics 31, 475 (2001).



38

[Sch02]

[Sch03]

[Sch04a]

[Sch04b)]

[Sch04c]

[St590]

[St599]

[St502]

[St604al

[St504D)]

[Van03

[Ver85)

BIBLIOGRAPHY

R. Schéafer, M. Barth, F. Leyvraz, M. Miiller, T. H. Seligman, and
H.-J. Stockmann. Transition from gaussian-orthogonal to gaussian-

unitary ensemble in a microwave billiard with threefold symmetry.
Phys. Rev. E 66, 016202 (2002).

R. Schafer, T. Gorin, T. H. Seligman, and H.-J. Stockmann. Corre-
lation functions of scattering matrix elements in microwave cavities
with strong absorption. J. Phys. A 36, 3289 (2003).

R. Schafer, T. Gorin, T. H. Seligman, and H.-J. Stockmann. Fi-
delity amplitude of the scattering matrix in microwave cavities
(2004). To be published.

H. Schanz. Numerical calculations for the sinai billiard: variance
of level velocities at low energies. Private communication (2004).

H. G. L. Schwefel, N. B. Rex, H. E. Tureci, R. K. Chang, A. D.
Stone, T. Ben-Messaoud, and J. Zyss. Dramatic shape sensitivity
of directional emission patterns from similarly deformed cylindrical
polymer lasers. J. Opt. Soc. Am. B 21, 923 (2004).

H.-J. Stockmann and J. Stein. “Quantum” chaos in billiards stud-
ied by microwave absorption. Phys. Rev. Lett. 64, 2215 (1990).

H.-J. Stockmann. Quantum Chaos - An Introduction. University
Press Cambridge (1999).

H.-J. Stockmann, E. Persson, Y.-H. Kim, M. Barth, U. Kuhl, and
I. Rotter. Effective Hamiltonian for a microwave billiard with at-
tached waveguide. Phys. Rev. E 65, 066211 (2002).

H.-J. Stockmann and R. Schéfer. Fidelity recovery in
chaotic systems and the Debye-Waller factor. Preprint (2004).
nlin.CD/0409021.

H.-J. Stockmann and R. Schafer. Recovery of the fidelity amplitude
for the gaussian ensembles. Preprint (2004). math-ph/0409058.

J. Vanicek and E. J. Heller. Semiclassical evaluation of quantum
fidelity. Phys. Rev. E 68, 056208 (2003).

J. J. M. Verbaarschot, H. A. Weidenmtiller, and M. R. Zirnbauer.
Grassmann integration in stochastic quantum physics: The case of
compound-nucleus scattering. Phys. Rep. 129, 367 (1985).



[Vra02]

[Zni04]
[Zha92]

[Zim79)]

M. Vranicar, M. Barth, G. Veble, M. Robnik, and H.-J. Stockmann.
‘Persistent currents’ and eigenfunctions in microwave resonators
with broken time reversal symmetry. J. Phys. A 35, 4929 (2002).

M. Znidaric. Stability of quantum dynamics. Dissertation Univer-
sity of Ljubljana (2004).

S. Zhang, B. H. Meier, and R. R. Ernst. Polarization echoes in
NMR. Phys. Rev. Lett. 69, 2149 (1992).

J. M. Ziman. Models of Disorder. University Press Cambridge
(1979).






Acknowledgements

My thanks go to everybody who has contributed to this work or supported
me during my time in Marburg.

First of all, to Prof. Stéckmann for all valuable help and guidance and for
giving me the opportunity to do my PhD in his group. I also thank him
for a good collegial relationship, and for providing me with the best working
conditions I can think of - starting with an insanely great computer.

Prof. Eckhardt as the second advisor for his kind interest in this work.

Prof. Seligman for many valuable discussions and wonderful collaborations,
and for his hospitality in Mexico during two very interesting workshops in
Cuernavaca.

Thomas Gorin for many helpful discussions concerning our collaborations
and for a very pleasant working relationship.

Tomaz Prosen for many insights and valuable discussions concerning the
fidelity amplitude.

Holger Schanz for his numerical calculations of the Sinai billiard, shedding
light on the deviations found in our experiment.

Carlos Pineda for interesting discussions on our joint project and for his
hospitality in Mexico City.

Thomas Gubhr for helpful discussion on the RMT aspects of fidelity and for
the invitation to the RMT gathering in Cuernavaca.

Horacio Pastawski and Doron Cohen for providing further insights to
Loschmidt echos.

Ulrich Kuhl, Michael Barth, Hendrik Schanze, Young-Hee Kim and Ruven
Hohmann of the quantum chaos group in Marburg for a very pleasant working
atmosphere.

Prof. Ackermann, Bernd Ittermann, Frank Kroll, Dirk Peters and Martin



Fiillgrabe for the enjoyable tea sessions with interesting discussions beyond
quantum chaos.

And last, but not least my personal thanks go to my parents for supporting
me during my whole time in Marburg, to Susanne for our good time living
together in Marburg, and to Mathias for a great friendship.



Lebenslauf

Name
Vorname

Geburtsdatum
Geburtsort

Familienstand

Schulbesuch

Studium der Physik

Berufstatigkeit

Schéafer
Rudi

14.07.1975
Lauterbach (Hessen)

ledig

Eichberg-Grundschule Lauterbach 1982-1986

Forderstufe der Haupt- und Realschule Lauterbach 1986-1988
Alexander-von-Humboldt Schule Lauterbach 1988-1995
Allgemeine Hochschulreife am 12.06.1995

Philipps-Universitat Marburg, 1995 - 2000
- Vordiplom am 31.10.1997
- Diplom am 28.09.2000

Wissenschaftliche Hilfskraft 2000 - 2001,
Wissenschaftlicher Angestellter 2001 - 2004
am Fachbereich Physik

der Philipps-Universitat Marburg



