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Zusammenfassung

Im Zusammenhang mit Halbleitern wird oft zundchst an die Trans-
porteigenschaften der Ladungstriger gedacht. Durch die charakteristische Grofie
der Bandliicke von etwa einem Elektronvolt stellen insbesondere direkte Halb-
leiter wie Galliumarsenid aber auch ein interessantes Modellsystem fir die Wech-
selwirkung mit Licht dar. Im Gegensatz zur atomaren Optik macht die Coulomb-
Wechselwirkung zwischen den optisch erzeugten Ladungstragern den Halbleiter
zu einem echten Vielteilchensystem, der sich theoretisch durch die Halbleiter-
Bloch-Gleichungen beschreiben lasst. Dies gilt auch, wenn man, wie in dieser
Arbeit, Wechselwirkungen der Ladungstriger mit anderen Quasiteilchen wie
z. B. Phononen vernachlassigt. Aufgrund des entstehenden Hierarchieproblems
kann ein solches System prinzipiell nur naherungsweise beschrieben werden. Die
Entwicklung und Anwendung solcher Naherungsverfahren zur Untersuchung des
Einflusses von Vielteilcheneffekten auf die (nichtlineare) optische Antwort von
Halbleitern ist wesentlicher Gegenstand der Halbleiteroptik.

Die epitaktische Herstellung von niedrigdimensionalen Halbleiter-
Heterostrukturen wie Quantenfilmen zum einen und die Entwicklung von
ultrakurzen Laserpulsen von wenigen Femtosekunden Dauer zum anderen
machen Zeitskalen im Subpikosekundenbereich, also unterhalb der Relaxations-
zeit der Ladungstrager, experimentell zuganglich. Sei langerem ist bekannt, dass
zur korrekten Beschreibung der koharenten Ladungstragerdynamik in diesem
Regime Vielteilcheneffekte jenseits der dynamischen Hartree-Fock Entkopplung
beriicksichtigt werden miissen. Die dazu hier verwendete Methode, das soge-
nannte Dynamics Controlled Truncation Scheme (DCTS) wird in Kapitel 1
vorgestellt. Sie basiert auf einer storungstheoretischen Entwicklung im (klassis-
chen) externen elektrischen Feld und wird entsprechend der zur Berechnung des
nichtlinearen Signals herangezogenen maximal auftretenden Potenz n des Feldes
als x(™-Entwicklung bezeichnet. Sie beinhaltet die kohiirenten Anteile von n+ 1-
Teilchen-Korrelationen. In unterster Stufe (x(®) konnen also Biexzitonen (zwei
Elektronen und zwei Locher), in x(®)Triexzitonen beschrieben werden. Diese
vergleichsweise aufwendige Behandlung der Coulomb-Wechselwirkung verlangt
auf der anderen Seite ein relativ einfaches Modellsystem. FEinfach heifit in diesem
Zusammenhang vor allem: eindimensional, sollen doch zunachst vor allem
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iv ZUSAMMENFASSUNG

Experimente an Quantenfilmen, also zweidimensionalen Strukturen, beschrieben
werden. Als Realisierung eines nichtlinearen optischen Experiments dient in
dieser Arbeit durchweg die sogenannte Pump-Probe Spektroskopie. Beobachtet
wird hierbei die Anderung der Absorption eines schwachen Teststrahls bei (in
der Regel vorheriger) Anregung durch einen spektral scharfen (Pump-)Puls.

Kapitel 1 stellt somit den die Arbeit umfassenden gemeinsamen Nenner
dar. Im folgenden wird die dort erlauterte Theorie-Modell-Kombination auf ver-
schiedene experimentell realisierte (oder zumindest realisierbare) Konfiguratio-
nen angewandt. In Kapitel 2 wird der von uns bereits in fritheren Arbeiten
untersuchte exzitonische Stark-Effekt in Quantenfilmen erneut betrachtet. Die
Gleichungen bleiben hier zuniichst auf der vorgestellten x(®-Ebene. Es wird
allerdings gezeigt, dass mehr Elemente der Bandstruktur mit in Betracht gezo-
gen werden miissen, um experimentelle Befunde zu erklaren. Kapitel 3 verwen-
det bereits - eingeschrankt - die fiinfte Ordnung der DCTS-Gleichungen mit dem
Ziel, (pump-)intensitdtsabhingiges Verhalten genauer zu beschreiben. Experi-
menteller Gegenstand sind erneut Quantenfilme, diesmal allerdings im Regime
starker Kopplung in Halbleiter-Mikroresonatoren. Es wird gezeigt, dass, wie
schon in fritheren y(®)-Rechnungen, sich Ergebnisse fiir freie Quantenfilme auf die
Situation in solchen Microcavities iibertragen lassen. Schliellich wird in Kapitel 4
die komplette fiinfte Ordnung der Gleichungen mit einbezogen. Insbesondere wird
der Einflufl der nun mit beinhalteten Drei-Exzitonen-Koharenzen untersucht. Ein
mogliches experimentelles Materialsystem zur Veranschaulichung dieser Effekte
stellen die relativ neuartigen Halbleiter-Nanoringe dar.



Chapter 1

The coherent X(”)-expansion

When confronted with semiconductors, most people think of their transport prop-
erties first, them being the basis of all our every-day microelectronic devices.
However, their band-gap with its energy of about one electron volt makes semi-
conductors! an ideal model system to also study the interaction with light [1]. In
a first approximation, one can draw analogies to the optics of atoms, however, the
Coulomb interaction between the excited carriers (electrons and their negative
counterparts, holes) makes the proper description of the processes in a semicon-
ductor much more intriguing. The arising many-body problem can for principle
reasons only be tackled approximatively. To find and apply such approximation
schemes is the main object of semiconductor theory.

The creation and development of, on the one hand, low-dimensional semi-
conductor structures like quantum wells, wires or dots, and, on the other hand,
ultrashort laser pulses of a duration of only a few femtoseconds, made time scales
experimentally accessible which are below the relaxation times of the carriers. In
this regime, one can - for not too high an excitation intensity - expect the sys-
tem for off-resonant excitation to follow the driving (almost classical) laser light
coherently, i. e. to keep its phase information. This work concerns itself with the
description of optical excitations on such ultrashort time scales; as mentioned
above, it is effects due to the many-body Coulomb interaction that present both
the challenge and the interest.

Describing a real many-body system like a semiconductor presents a lot of
difficulties. Any interaction between different (quasi-)particles in a system leads
to an infinite hierarchy of equations, e.g. between electrons and phonons [2]
or electrons and photons in a semiconductor. In this work, only one kind of

'While nearly all transport devices are still made of silicon, for optics the standard material
is gallium arsenide due to its direct bandgap, which requires no additional mechanism (like
phonons) for optical carrier excitation.
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particles, electrons, is considered. The Coulomb repulsion between these carriers
works as a true many-body interaction, also giving rise to this hierarchy structure.
The famous semiconductor Bloch equations (a generalisation of the optical Bloch
equations) with a factorisation on the Hartree-Fock level have long been the
standard tool in the analysis of semiconductor optics, i. e. the interaction of
carriers created by means of laser light. To describe phenomena on ultra-short
timescales, which require a treatment beyond the Hartree-Fock approximation,
in the following we apply the so-called dynamics controlled truncation scheme
(3, 4, 5, 6], a perturbative expansion in the external electric field. It is thus only
adequate for low excitations, and generally used in the coherent limit, where all
occupation-like quantities are expressed by transition-like quantities.

Starting point is the Hamilton operator of the system,
H = Hy+ H¢ + Hj, (1.1)

which we formulate in the language of second quantization and also right
from the start in the multiband electron-hole picture?. Thus, ¢! (c%) creates
(destroys) an electron of quantum number 7 in the ’electronic’ level e, d/' (dl)
creates (destroys) a hole of quantum number ¢ in the ’valence’ level h. Hy is the

one-particle operator (containing the bandstructure),

Hy=3_ < Tieies + Zi’}’;dffd?> : (1.2)
€ h

ij

The matrix 7" in our (real space based, see below) case consists of the site
energies (on the diagonal), and the coupling of the sites (off the diagonal). H¢
contains the many-body Coulomb interaction?,

1 / 7 ! ]
He = 3 > Vi (Z TesTed e + 3 datd tdhal — 2y chd?Td;-‘cf> . (1.3)
i ee! hh' eh

Finally, H; describes the explicitly time-dependent interaction with a classical
electromagnetic field E (in dipole approximation, reasonable enough e. g. for a
quantum well):

Hi=-E-P=-E-Y (uldc +cc) (1.4)
ijeh

2For reasons shortly becoming clear.
3In so-called monopole-monopole approximation.



Without H;, the semiconductor is in its ground state, i. e. there are no elec-
trons and no holes. We distinguish between conduction and valence electrons
(or eventually electrons and holes), as in H; the electric field couples to inter-
band transitions only. The optical excitation creates pairs of electrons and holes.
Starting from the ground state, one can consider first one e-h-pair to be created,
then another, and so on. In that sense [ %dt is treated as small parameter in the
perturbation expansion. Physically, it is connected to the pulse area (neglecting
dephasing). One could call it the ’amount of excitation’ of the material. The
material couples back to the light field via the macroscopic polarisation P of the
system:

1 e, he
Nz'jh,e

where N is a normalization volume. The aim is thus to derive an equation
of motion for the interband coherence* plf = (dc5) by means of the Heisenberg
equation —i%- = [H,-]. One finds that p couples to other one-particle density
matrices ng; = (cf%j} and nj; = (dﬁ”dg}, and also to two-particle density matrices.
Factorising these four-operator quantities into products of two-operator quantities
(and neglecting the remains) yields the semiconductor Bloch equations in the
Hartree-Fock limit [1, 7] with the dynamical variables p, n¢, and n*. When
one wants to include terms beyond this dynamical Hartree-Fock approximation
(called correlations), one is confronted with the typical hierarchic structure, as
six-point quantities appear in the equations for the four-point quantities, and so
on. However, the ”dynamics controlled truncation scheme” tells us how to expand
these matrices into the purely coherent contributions (p (”one transition”) on the
two-point, and B = (dedc) ("two transitions”) on the four-point level), and also,
which terms to consider, if one wants to include terms of a certain order in the
electric field. Thus, in the coherent limit, one doesn’t need equations for n°
and n*. In third order (x®) in the exciting field (with which we start here),
we also don’t need any higher transitions beyond the four-point level [8]. The
system of equations can therefore be closed by formulating the equation for B and
neglecting all terms higher than third order therein. We end up with equations
for the dynamical quantities p and B, which are coupled via the external electric
field E and the Coulomb interaction V':

(—ih0; + hwy) piy = mGE

— S { Wi v pis + BB v v
kY
4Often also referred to as (microscopic) ’polarisation’.
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+ > (Vi — Vij — Vii + Vij) {ng Bijkﬁ}a (1.6)
Kt

(=ih0, + hwg) Bijui = WG E pre — RioE prj — B B Die + preE pij{1.7)

In this notation, the indices now include both site and band® information.
In equation 1.4, it is already implied that intraband excitations are ignored,
i. e. p¢ = p™ = 0. The homogenous parts of the equations contain the band-
structure and all possible Coulomb interactions between the involved particles.
While the only driving terms for B are of the form Ep, the p-equation has both
phase-space filling (’Pauli-blocking’) E(1 — p*p) and Coulomb inhomogeneities
Vp*B. In earlier publications [9, 10], we made a point of separating B into the
Hartree-Fock part pp and a remaining (”correlation”) part B. Leaving out B,
which is driven by Vpp, then directly leaves the Semiconductor Bloch Equations.
Further analysis revealed large compensations between those two Coulomb con-
tributions.

When, in the course of this work, we proceed to the next higher order (X(5)),
two things happen. First, we have to include more terms in the equations for p
and B, see chapter 3; second, the coherent three-transition type quantity, W =
(dcdcedc), appears, which requires its own equation, see chapter 4.

This coherent picture only allows for destructive interference as opposed to
an (incoherent) scattering picture. So far, no dephasing processes have been
included in the model. For all practical purposes, however, one needs a decaying
time-dependent signal in order to obtain spectra by Fourier transform. This can
arise from scattering processes, either with external sources (phonons), or internal
(carrier-carrier) scattering. Here, all such mechanisms are thrown into dephasing
rates I') and I'g, corresponding to a polarisation dephasing time 75 = rl_p These
rates are treated as independent parameters. To fit the data to experiments, often
I's =T, is used. Only when factorising the four-point quantity B according to
B = pp + B, one has to satisfy the relation 'z = 2T, to be consistent.

Another neglected aspected is the radiative decay of p and B arising from the
selfconsistent coupling of light and matter®. This corresponds to taking in the

5From the position of the index it follows whether it requires a summation over valence or
conduction bands, respectively.

6Stimulated emission; spontaneous emission is only contained in a quantum mechanical
description of the light field.



Hamiltonian H; not only the external field E, but also the internal field arising
from P:

Hrpew = Hi + Hp = —(E + iaP) - P (1.8)

While taking the expectation value of P in the additional interaction Hamilto-
nian Hp would simply yield a diagonal decay dependent on the coupling constant
«, using the operators leads to additional contributions in the equations of mo-
tion:

. alp/’ ’ .
Doy = =2=1= (O D Pig + 2 (PymBynis + PryBimyis) + Pmn) (1.9)
J JY
alpl’

Babcd|HI/ = _2T (Z (5aijjcd+5chabjj+5adijcj+5chajjd)_2Babcd)(1-10)
J

The arising lifetimes of the unbound states, however, are much larger than
the inverse dephasing rates ' U and I'z" used in the model. This mechanism is
therefore neglected in the following.

How does the theory thus outlined compare to other approaches? The second-
order Born approximation [11, 12] is an example of an alternative approach to
tackle many-body correlation effects in a semiconductor. Based on the formal-
ism of nonequilibrium Green’s functions, see e. g. [13], it is of arbitrary order in
the exciting field, but uses an expansion in the (screened) Coulomb interaction
V, describing multiple (in second order two) scattering events. It thus can be
said to represent the ’high-density side’ of the matter, and has successfully been
applied to describe phenomena like Rabi-flops [14], exciton saturation, and exci-
tation induced dephasing [15]. In the language of density-matrix formalism, the
second-order Born level corresponds to factorising the driving terms of the two-
exciton correlation into products of two-point functions only’. Schematically, the
equations look like:

—ithp = —(wp, —Vn)p
+(1—n—n)(uE + Vp)

"The screening of the Coulomb interaction, however, doesn’t enter the picture in this case.
In the framework of Green’s functions, the screened potential in principle has to be treated
explicitly (plasmon Green’s function); it is mostly approximated, e. g. by the Lindhard formula.
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—ihn = =2 [(uE + Vp)*p]
—i%im (1= ) + iSeut 1 — i Spol (1.12)

Without the last lines, one again recovers the semiconductor Bloch equations.
Here, various scattering rates appear (U'p, Top, Yin, Zouts Lpot)®. These are of the
type n+p*p+nn, making the 2nd Born approximation in a way comparable to the
x®)-level, where n = p*p. The full scattering contributions can be found in [12].
Additionally, in the scattering integrals, in most cases a Markov approximation
is used, consisting of taking the slowly varying parts out of the scattering time-
integral, and thus ignoring a 'memory’. The second order Born equations can
numerically be applied to two-dimensional model systems. Scattering in one
dimension is generally suppressed, since both energy and momentum conservation
have to be satisfied.

Several attempts have been made to unify the approaches. Theories exist that
contain the two extreme situations as limiting cases [16]. The so-called ’cluster
expansion theory’ (CET) follows an ansatz similar to the x™-theory, in that it
truncates the hierarchy according to correlation functions. In analogy to molec-
ular physics, these are taken to present real physical (singlet, doublet, triplet,
...) states. It does not use the coherent limit, but is instead used in the oppo-
site regime of quantum optics, where the hierarchy of photonic operators then is
treated on the same footing (one bosonic (photon-)operator corresponding to two
fermionic ones). In the language of CET, the second order Born approximation
is inconsistent, in completely factorising the driving terms of the correlations into
singlets instead of keeping the full doublet contribution.

In the following, the theory outlined above will be used to describe various
kinds of experiments. In chapter 2, the excitonic Stark effect in quantum wells
featured in [9] will be further analysed. Calculations here are performed on
the x®)-level. It is shown that more details of the band structure have to be
taken into account in order to explain all of the experiments. In chapter 3,
we stick to experiments on quantum wells, this time, however, in the regime of
strong coupling of light and matter. This regime exists, for example, in VCSEL®-
type semiconductor microcavities, where the light propagates sufficiently often
through a resonator structure. We will see that earlier theoretical predictions
have meanwhile been confirmed by experiments, and discuss further intensity-
dependent effects up to fifth order. Finally, in chapter 4, we properly expand the

8The incoherent limit (vanishing p) reduces the equations to Boltzmann-like scattering of
the occupations.
9Vertical cavity surface emitting laser.
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equations up to the x(®-level, which we, for the first time, include without any
approximations for the three-exciton amplitude W. The increasing numerical
complexity here leads us to leave the subject of (infinitely extended) quantum
wells and concern ourselves with the up-to-date topic of semiconductor nanorings.
This material system is closest to making the effects of W appear in an actual
experiment.

E ™ .® -

= Jau,

— J
d

Figure 1.1: One-dimensional real-space tight-binding model.

Due to the numerical complexity of the advanced treatment of the Coulomb
interaction, we use a one-dimensional model system. Partly for historic reasons,
but also for easy accessibility, we also use a real space representation. The model
is sketched in fig. 1.1. A ’site’ represents a part of real space with at least two
electronic ("valence’ and ’conduction’, denoted by A and e for ’holes’ and ’elec-
trons’, respectively) levels. The N sites are a distance d apart from each other,
and connected to their two next neighbours via a coupling of strength J. The
matrix T;; of equation 1.2 thus has non-zero elements only for | — j| < 1. Apply-
ing periodic boundary conditions (T1x = Ty = J) takes care of unwanted finite
size effects. This so-called ’tight-binding’ model gives rise to cosine-shaped en-
ergy bands, that can be approximated near the gap by parabolas, corresponding
to an effective mass of the quasi-particles. This system thus models a GaAs-like
(direct-gap) semiconductor. Despite its dimensionality, it has been shown to be
able to qualitatively describe near band-gap processes also in quantum wells [9].
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Since the tight-binding bands also end at some point on the far side of the gap,
which is unphysical for these kinds of material systems, this model makes sense
only in a regime where the bandwidth AW of the transitions (AW = 4(J, + J3))
exceeds the other energy scale present in the system given by the excitonic bind-
ing energy arising from the Coulomb interaction V. This model strictly keeps to
the electron-hole picture and makes no assumption about excitonic eigenstates
as for example is done in [17], or in the one-time popular theories on few-level
systems [18]. It has originally been invented partly with the aim of implementing
spatial disorder [10, 19]. This, of course, may easily be done by varying the site
energies F ('diagonal’ disorder AU, as indicated in fig. 1.1) or couplings. This
work, however, concerns itself only with an ordered (homogeneous) system. Fur-
thermore, the system’s ezcitation is taken to be homogeneous also (as opposed
to exciting a single site and monitoring the propagation of the excitation), which
in the numerical treatment allows for eliminating one of the spatial indices, mak-
ing it in x® (x®) an N3 (N®) problem, where N is the number of sites. This
assumption comes quite close to using a k-space representation and restricting
oneself to the relative coordinate. An additional factor of two can be gained by
exploiting the mirror symmetry of the system?°.

The model is further extended in that multiple bands are included. Each site
is no longer a simple two-level system but instead consists of four levels and the
corresponding selection rules, see fig. 1.2. These levels model the conduction band
and the heavy-hole valence band of a direct-gap semiconductor. Excitations are
possible via circularly polarised light, u%l] = 0ijo0 T, u%ﬂ = 0ij o0, lJ’E;'Q] =
“1[31] = 0. The indices in square brackets now denote the two optical subspaces
1 and 2 (left- and right-circularly polarised), which are separated optically. The
carriers in both subspaces are, however, coupled via the many-body Coulomb

interaction.

|-1/2> 11/2>

+

0)

-3/2> 13/2>
Figure 1.2: Optical selection rules for a typical GaAs-like semiconductor.

The Coulomb interaction between the electrons and holes is given by a regu-

0For the simulations, this has been successfully applied for the x(3)-case, but not for x(®)-
calculations because of the large increase in code that would have been required.



larised potential

e? 1
= . 1.13
" 47T€€0‘7;—j|d+d0 ( )
One can connect the prefactor to a typical energy U, via 4;;0 = Upd. The

rather arbitrary cutoff length dy has sometimes been related to the thickness of
the one-dimensional quantum wire [20]. The linear spectrum of such a model
system is shown in fig. 1.3. This linear response can be properly described by
the polarisation equation, i.e. the low-density limit (ne = np, = 0) of the semi-
conductor Bloch equations [1], with the Coulomb interaction being responsible
for the excitonic resonance. To tackle the many-body effects beyond, one has to
enter the regime of nonlinear optics.

Linear absorption (arb.units)

. 1 . 1 . 1 . 1 . 1 . 1 .
-10 0 10 20 30 40 50 60

AE (meV)

Figure 1.3: Linear spectrum of the model system showing the exciton and the
whole band of width 4(J, + J,). The fewer the sites from which the model is
built, the more discrete the ’continuum’ appears.

The following approach is another common denominator of the following sec-
tions: The experimental method modelled will generally be the so-called pump-
probe spectroscopy (fig. 1.4). A weak, ultrashort light pulse is focused onto the
system in question. Since it is taken to be short (10fs in the simulations, which
today is also possible to achieve experimentally), its spectrum can be considered
white in the spectral region of interest. Another (the so-called 'pump’) pulse,
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hitting the sample under a small angle slightly different from that of the probe,
usually pre-excites the system a delay time 7 beforehand. The pump pulse is
longer and thus can be tuned to well-defined spectral positions. The measured
signal then is the differential absorption dc«, defined by the difference in intensities
of the output field with (E) and without (E,) pumping. On the x(®)-level, where
the only change to the field is given by the (small'") third order polarisation P(®),
it can be approximated by the imaginary part of this third order polarisation in
probe direction e:

|E? — | Ey|?
| By
|Ey +iP®) 2 — | Ey|?
| Eo |
(Eo + iP®) (E; — iP®*) — ||
| Eol?
(PO 2 4B P® — By PO
[ Eol?

—25 (E;P®)

| By
—2S (e*P®)

| Ey|
x S (e'P®) (1.14)

oo =

Q

Q

Q

When calculating the pump-probe signal, we have two fields (pulses) E trav-
elling in different directions. We then calculate p (and B) for each direction and
order seperately, which means we have primarily a first order p®% in pump
direction k; and a first order p'(®) in probe direction k. created by the external
fields. Here, the first index denotes the order, and the following ones denote the
Fourier components in pump (k1) and probe (k;) directions, respectively. The
output signal yielding the differential absorption is given by the polarisation in
probe direction in presence of the pump field. To calculate this p*©") iteratively,
one finds from equation 1.6 that B%() is the required second order quantity,
as pBO0) = 1y phillo« (L) " Since we only keep the contributions linear in the
probe field, i. e. p*(0) = pl-11)  the assumption of a weak probe pulse explicitly
enters the equations, independent of the actual numeric values for E. As a conse-
quence of the multiband structure, we have polarisations for both subspaces 1 and

111 PG)|2 is neglected in the fourth line of equation 1.14.
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2, pl' and pl??| as well as both pure and mixed two-exciton states BI!'1  BI2222],

and B2l The indices in square brackets again denote the optical subspaces
(left- and right-circularly polarised). The relation B??'] = B[22 is exploited to
keep the numerics simple. This scheme will be extended to fifth order in 4.

PP -

\’cﬂ\ ’,/sz
— >

-
-

jv

~0
V

Figure 1.4: Schematic representation of two common nonlinear (third-order) con-
figurations: pump-probe spectroscopy (above) and four-wave mixing (below).

Alternative nonlinear configurations are, of course, thinkable, and have been
performed. At this point, just the four-wave mixing geometry (fig. 1.4) shall be
briefly mentioned [21]. Two pulses of comparable magnitude propagate through
the sample; the nonlinear signal is monitored in the background-free scattering
direction 2k2 — k4, which is an advantage since the nonlinearities are not obscured
by the (large) linear signal. However, it follows from the selection rules that no
FWM signal exists for cross-circular excitation [22]. To study spin dependencies,
in FWM one therefore often works with linearly polarized pulses in parallel (xx)
or perpendicular (xy) configuration. This general setup can also be extended
to higher orders. Six-wave mixing [23] or four-wave mixing with an additional
prepulse [24] have been performed both experimentally and in simulations. We
will see later that since the differential absorption is sensitive to third order, three-
pulse pump-probe experiments might also be better suited to highlight fifth order
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effects.

The numerical code has been written in FORTRAN. A leapfrog algorithm
is used to straightforwardly integrate the ordinary differential equations. The
leapfrog is preferable to the slightly more sophisticated 4th order Runge-Kutta
method, since it only accesses the equations once per time step instead of four
times; since the magnitude of the time steps for fast oscillating functions has
to be taken very small anyway, the higher accuracy of the Runge-Kutta solver is
not required. The most demanding part in terms of numerical resources clearly is
chapter 4. The amount of memory required is mainly determined by the number
of W in the equations. Each W is a floating point number of double precision
(16Byte), needed fourfold for integration; the outlined selection rules give rise to
four different spin types of W. We have thus, depending on the number of sites
N: N3x4x4x16Byte. N = 18 yields 484MB, and is thus the maximum number
allowed for the full problem on a 500MB machine. Using separate programs for
each (co- or cross-) circular polarisation configuration takes out the fourfoldness
in spin, thus allowing for a maximum N of 20.



Chapter 2

Influence of light holes on the
excitonic optical Stark effect

Since its first observation [25], the excitonic Stark effect has been extensively
discussed in the literature. A blue shift of the excitonic transition in GaAs quan-
tum wells [26] and bulk CuyO [27] was reported when pumping the system below
those resonances, and analysed on the basis of the semiconductor Bloch equa-
tions [28]. In contrast, a subsequent experiment in a thin film of CuCl displayed
for co-linearly polarized pulses also a redshift when the pump-laser was tuned
to a very narrow spectral region slightly below the exciton to biexciton transi-
tion [29]. The latter effect was found to be caused by bound two-exciton states
[30]. Only a considerable time later, it has been shown that in InGaAs quantum
wells a redshift can be observed even for detunings well below the exciton and
exciton-to-biexciton transitions when pump and probe pulses are anti-circularly
polarized [9].

This effect, very much unlike the Stark shift in atoms, was analysed by in-
cluding in the microscopic calculations not only the Hartree-Fock terms but also
higher-order Coulomb correlations. Using the DCTS approach on the x®)-level
and the model discussed in the previous paragraphs, we arrived at the following
results: Resonant pumping leads to a differential absorption as depicted in fig. 2.1.
One finds bleaching at the excitonic resonance and excited state absorption above,
and for cross-circular excitation also below the resonance (the bound two-exciton
state, the biexciton). No biexciton exists for cross-circular excitation, since the
spin wave function of B in this case is symmetric, so that the real space part
has to be antisymmetric (= typically no bound states, as in the Heitler-London
model of the Hydrogen molecule). Separating into the three distinct contribu-
tions due to phase-space filling (Pauli-blocking), first order Coulomb terms and
pure Coulomb correlations (responsible for the excited state absorption), it was
found that the bleaching was mainly due to strong compensations between the

13
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(first order Coulomb) blue shift and a red shift (due to correlations), and had
only a weak phase-space filling contribution. When pumping below the exciton®
the following signatures were observed (fig. 2.2): For co-circular excitation, the
usual blue shift was found. The correlation terms here produce a small red shift,
which is easily compensated. In the case of anti-circularly polarized pulses, the
Hartree-Fock contributions, i.e. the first-order Coulomb and the Pauli-blocking,
vanish and the correlation-caused red shift becomes the leading contribution.
Further analysis revealed, that this red shift also remains if the bound states are
artifially switched off, and can therefore not be attributed to the biexciton alone.
Furthermore, it could not be reproduced by a calculation in second order Born
and Markov approximation, showing it to be a Coulomb memory effect [9, 31].

10 T T T T T T

o

N
o

Diferential absorption (arb. units)

1
N
o

AE (meV)

Figure 2.1: Differential absorption for resonant excitation when only heavy holes
are taken into account.

Since the redshift for cross-circular excitation is purely caused by correlations,
it is also independent of the detuning A of the pump pulse?. Of course, the
magnitude of the signal decreases with increasing A - the general shape, however,
stays constant, see fig. 2.3. How is it, then, that this behaviour has not been seen
in experiments earlier? The answer to this will be given in this section.

In real semiconductor structures (quantum wells), the near-gap bandstructure

1To be truly off-resonant means to be well outside the excitonic linewidth.
2This is not quite as simple for co-circular excitation, where various terms compete.
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Figure 2.2: Differential absorption for excitation below the exciton when only
heavy holes are taken into account.

looks like the one schematically shown in figure 2.4. At k = 0, heavy-hole and
light-hole valence band are separated by a few meV (A geet)- At the points
of the dispersion indicated by circles, these originally parabolic bands undergo
an anticrossing®. The split-off band, on the other hand, is located energetically
well below, and thus is ignored in the following considerations. The effects of
these light-hole levels in onlinear optics have been described by phenomenological
models [32, 33]. However, the inclusion of light-hole transitions into our model is
straightforward and has been discussed in refs. [34, 35]. The strength of the light
hole transition (ug ) is taken to be one third of that of the heavy-hole transition.
This leads to linear absorption spectra as shown in figure 2.5.

The selection rules for this extended model are sketched in fig. 2.6. We first
use a set of parameters where Ayp,_;, is small compared to the binding energies
Ey, and Ejy,. Fig. 2.7 shows the differential spectra for resonant pumping of the
heavy-hole exciton. The situation at the light hole is reversed, as the biexci-
ton now appears for co-circular excitation [36]. Light hole and heavy hole are
thus coherently coupled, which is identical to the ’intervalenceband coherences’
prominently pointed out in [37]. Returning to our original parameters, we now
consider excitation below the heavy-hole exciton (fig. 2.8). For oo™, we just

3Note that thus ’heavy’ and ’light’ hole change places near the gap in a quantum well as
opposed to bulk GaAs.
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Figure 2.3: Detuning dependence of the Stark effect when only heavy holes are
taken into account.

find a decrease of the blue shift. For o7o~, however, the red shift eventually
disappears and becomes a blue shift when detuning even further.

These results are consistent with experiments performed on high-quality In-
GaAs quantum wells [38]. For anti-circular polarization of pump and probe pulses
and a moderate negative detuning of the pump energy, a redshift of the heavy-hole
resonance is observed. However, with increasingly negative detuning a transition
from this redshift to a blueshift is found. Thus, the approximation of ignoring
the light holes is justified only as long as the detuning A is much smaller than the
heavy-light-hole splitting App_;,. Once these two energies become comparable,
the influence of light holes has to be included.

Can these numerical results also be understood analytically? To get more
insight into the physical side of the matter, we consider a system consisting of
only a few levels. If only a few exciton and two-exciton states are relevant the full
equations can be projected onto these levels [10]. For our purposes it is sufficient
to consider the simplest case where the system consists of a ground state with
zero energy, one single-exciton state with polarization p and energy fiw,, and one
two-exciton state with amplitude B and energy hwpg, see fig. 2.9. The reduced
equations then are as follows [10]:
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Figure 2.4: Typical structure of the energy bands for a direct semiconductor
quantum well close to the gap. e (conduction) electrons, hh heavy hole, [h light
hole, so split-off band.

—i0p = (—wp+iv)p
+u E(1 = bp*p) — Vpp"pp + Vap* B, (2.1)

—i0,B = (wp + ivB) B + pp, (2.2)

where b, V,, and Vp denote the strengths of the optical nonlinearities which
are due to phase-space filling, first and higher order Coulomb contributions, re-
spectively. p is the optical dipole matrix element, and -,, yp are constant phe-
nomenological dephasing rates.

In order to solve these equations analytically, we also have to simplify the light
fields. In [10], we have used delta-pulses to model the resonant case for different
delay times 7 between pump and probe pulse. A delta-pulse per definition has
a white spectrum, and thus excites the whole system and is not able to describe
detuned excitation. The simplest way to analytically consider the excitation
energy is to get rid of the actual pulse shape and use continuous wave (‘cw’)
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Figure 2.5: Linear spectra for systems including only heavy holes, only light holes,
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Figure 2.6: Typical selection rules for a direct semiconductor quantum well in-
cluding heavy and light holes.

0)

A A A

excitation by a plane wave of a certain frequency wy, *. The probe pulse is still
taken to be delta-shaped. The light fields are thus modeled as follows:

Epump(t) = Epumpe_ith= Eprobe(t) = Eprobeé(t)- (2.3)

4Since the pumping in that case is ’continually’ present, the concept of delay time doesn’t
make any sense. However, it is not needed for an analysis of the Stark effect.
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Figure 2.7: Differential absorption for resonant excitation of the heavy-hole ex-
citon. Here, A gset has been reduced by a factor of 2, while the Coulomb in-
teraction strength has been enhanced by a factor of 2. The inset shows the
corresponding linear spectrum.

Using these simple descriptions for the fields allows the analytic solution of
the simplified (projected) equations. The result for third-order probe polarisation
is as follows:

op(t) = (M*Epump) (IU’ENI;ump) (U*E’pmbe) o(t)
X[ b 1 - t e(_iwp—’Yp)t
(wp — wr) + i
1 )
—1b e(*“"p*’YP)t
(wp —wr)? + ’Yz
1 )
+V te(—zwp—'yp)t
? (wp — wr)? + 'Y;g
1 1 )
-V : t e(Ziwp—1)t
i (wp —wr)? + 73 (wp —wp —wr) —i(vB — M)
+iVg 1 1 e(—ilwp—wr)—7p)t

(wp —wr)? + 75 (W = wp —wi) = i(y8 = 7))?



20CHAPTER 2. INFLUENCE OF LIGHT HOLES ON THE STARK EFFECT

0.2

0.0
)
c
= 02
L
= ———A=-4meV
- -=-=-A=-8meV
o f + —..... A=-12 meV
g. 0.05 ——--A=-16 meV
@ ————- A=-20 meV
o - 2
= o
5 0.00 - - =
g '\’/’
=)
-0.05 T
1 1 L
2 1 0 1 2
AE (meV)

Figure 2.8: Differential absorption for various detunings A below the heavy-hole
exciton. In the lower panel, the signals for detunings larger than 4meV have been
multiplied by a factor of 10.

1 1

(wp — wr)? + 71% (wp —wp —wr) —i(ys —7))?

e(_i‘*’p —Tp)t ] .

—iVp
(2.4)
The differential absorption d« is approximately given by the imaginary part of

the third-order polarization dp in pump-probe geometry [10], which is calculated
as

1 s ~ . F
op(w) = = (1 Epump)(NEpump) (1 Eprobe)
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Figure 2.9: Just one excitonic and one two-excitonic level each are included for
the analytic calculations.

x| b L !
(Wp —wr) + p ((w— Wp) + i'Yp)Q
+b 1 1
(wp —wr)? + 73 (W —wp) + i
v 1 1
Po(wp—we)?+ 92 (W —wp) + i)
1 1
+V; .
" (wp —wr)? + ’Yﬁ (W — wp) +ip)?
y 1
(wp —wp —wr) —i(vB — V)
1 1
+V; -
? (wp —wr)? + 73 (w— wp) + 1
y 1
(wp — Wp — wr) — (v — ’Vp))z
v 1 1
7wy —we)?+ 2 (w— (ws —wr)) + 7
1
X ]. (2.5)

(wp —wp —wr) —i(v8 —7p))?

In Eq. (2.5), the first two terms are due to Pauli-blocking, the third one
is the first-order Coulomb contribution. The sum of these three terms defines
the Hartree-Fock approximation. The remaining three terms are introduced by
transitions to two-excitons and are thus caused by Coulomb correlations. In
terms of the detuning A = wy — wp, which is taken to be much larger than the
dephasing constants 7, the leading contributions to each of these nonlinearities
are given by the first, third and fourth terms, which show a detuning dependence
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of A=!, A2 and A3 (since wp & 2w,), respectively. The imaginary part of the
dominant contributions yields the shift of the exciton line

27p(w — wp)
(FEPREEAD

da(w) x (2.6)

The behaviour of the phase-space filling (oc A™') and mean-field Coulomb
(< A™?) terms, has been a well-known fact. A new result is the explicit form of
the correlations (oc A™). From these dependencies, the numerical results may
easily be verified: For cross-circular excitation, with increasing detuning from the
heavy hole exciton, the correlation terms responsible for the red shift disappear
fast®, compared to the slowly varying Pauli blue shift contribution of the light
hole exciton, which eventually dominates the signal.

In conclusion, we have shown numerically and analytically, that the redshift
for anti-circular polarization of pump and probe pulses depends critically both
on the detuning of the pump pulse and the heavy-hole to light-hole splitting. It
is thus only observable in samples with a large heavy-hole to light-hole splitting
and even then only within a certain range of moderate detunings of the pump
pulse. The most important features of the polarization-dependent absorption
changes can be well described by a theory including Coulomb correlations on the
x®)-level. The underlying physics can be qualitatively understood on the basis
of analytical results which show that the different contributions to the signal
diminish with different power laws as function of the detuning between the pump
and the excitons.

5Compare again fig. 2.3.



Chapter 3

Nonlinearities in the strong
coupling regime - intensity
dependence of normal mode
spectra

Resonator structures on the basis of semiconductor heterostructures have been
developed and examined for the past couple of years. Such a semiconductor
microcavity (fig. 3.1) consists of two mirrors and a spacing between them. The
mirrors are so-called Bragg reflectors, i. e. alternating slabs of an optical thickness
of %. Light spectrally close to the corresponding frequency is reflected back
and forth at every single interface, resulting, for a high number of layers with a
sufficient difference in their refractive index, in a net total reflection of close to
100 per cent. This is the so-called stop band, discernible in the upper panel of
fig. 3.2. A resonator spacing of a multiple of % between the mirrors gives rise to a
narrow cavity resonance. This setup is also the basis of a VCSEL (vertical cavity
surface emitting laser).

When a quantum-well (QW) exciton transition is resonant with a single
mode of such a high quality microcavity, the linear response of the coupled
system may be described in terms of normal modes or cavity polaritons [39].
The regime of strong coupling of light and matter is defined by the relation
0? < (Ve — 72)?, where Q denotes the coupling, and the v are the linewidths
of cavity mode (c) and exciton (x), respectively. If cavity resonance and ab-
sorber, e. g. quantum well exciton, are in resonance, they thus split up according
to wy = Yette \/92 + 1(we — wy)?. This is the so-called normal mode split-
ting NMS, see fig. 3.2, for typical GaAs parameters of the order of some meV.
For a simple harmonic oscillator, also the lineshapes of the two coupled modes

23
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Figure 3.1: Schematic representation of a microcavity containing two quantum
wells at the antinodes of the field.

should average; however, the asymmetry of the semiconductor spectrum leads to
an asymmetric distribution of the normal modes also [40].

The linear regime is thus understood by linear response theory [41]. When
it comes to nonlinear optics of the coupled quantum-well-cavity system, vari-
ous features have been reported, e. g. shifts of the normal mode peaks [42, 43].
Signatures of the biexciton transition in a microcavity have also been observed.
Pump-probe measurements with cross-circular polarization clearly show the effect
of the biexciton transition on the microcavity spectrum. A transfer of oscillator
strength from the exciton to the biexciton transition has been seen [44]. The
nonlinear response due to induced absorption from the lower mode polariton to
the biexciton has been reported [45]. The nonlinear luminescence of bare quan-
tum wells and microcavities has been addressed in [46]. Quantum correlations
between the cavity light field and the QW carriers have been observed via their
effect on the nonlinear response of normal-mode microcavities [47]. For an ex-
tensive review see [48]. Here, the changes in the reflection spectrum of a weak
probe pulse are analysed for various pumping conditions. The dependence on
the pump intensity is studied for both co- and cross-circular polarisation config-
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Figure 3.2: Strong coupling between cavity mode and excitonic resonance leads
to the normal mode splitting. The cavity reflection in the upper panel shows the
broad stop band and oscillating structures on the far sides.

urations. In these calculations, we proceed one step further in the DCTS, and
include terms of fifth order. While x®)is the lowest correction to the linear signal,
one hopes by including the next higher order to extend the analysis to slightly
higher intensities.

To account for the nonlinear response, we adapt the microscopic theory previ-
ously developed for Coulomb correlation-induced nonlinearities of bare quantum
wells to the microcavity system. The quantum well is placed at the position of
one of the antinodes of the cavity mode, where it interacts with a classical electro-
magnetic field E, which propagates through the cavity as shown in [12]. E at the
quantum well position then takes the part of the outward pulse. Its polarisation
couples back to the external light field via Maxwell’s equations. This coupling
gives rise to a radiative decay of the polarization [49], which until now had to be
included phenomenologically. Two pulses are in that manner propagated through
the cavity structure to model the experimental pump-probe situation. The equa-
tions are solved separately for different orders and (pump and probe) directions of
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the optical field. As usual, we assume the probe pulse to be weak, and therefore
neglect the influence of the probe on the pump field, and also all terms higher
than linear in the probe field. We get the output signal E . by adding the
different orders of the reflected probe field [10]:

) - E(l) + aE(3) + a2E(5)

ref — Hprove probe probe* (31)

The factor o corresponds to the intensity of the pump field. Unlike in the
case of direct pulsed excitation, the differential (reflection) signal R has now to
be calculated explicitly by subtracting the intensities of the reflected field with or

E 2_ E(l) 2
without pumping, respectively, i. e. R = | reg(l)l‘z ‘ . What’s more, the higher
order fields now also appear as driving source for the material, when the lower

(first of third) order terms are solved up to fifth order.

So far, we have closed the system of equations at the third order level. We
now proceed to the next level in the description of the (quantum well) material.
In fifth order, additional terms contribute to the equations for p and B [50];
also, one has to include the coherent six-point correlation, i. e. the three-exciton
amplitude W = (dedcdc). However, W is neglected in the following for numerical
simplicity. This is at least partly justified as bound states of W (triexcitons) are
not supposed to play an important part in these systems. What’s more, even the
unbound two-excitons contained in B can not be properly resolved due to the
smallness of our model system; this problem would become even more prominent
for unbound three-excitons. This procedure of ignoring (or approximating) W,
inconsistent as it may seem, is in accordance with many publications of (-
results [51, 52, 53, 54]. W is taken into account fully, and its influences are
examined, in section 4, for a slightly different model system. For now, one ends
up with the following equations of motion:
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FE mediates new transitions to B of fourth order and p of fifth order. Also,
new ways of coupling B back to p via the Coulomb interaction arise.

Previous work of ours on the x(®-level has been able to reproduce changes in
the NMS [43]. In [10], where this work is presented, we have further predicted the
appearance of the biexcitonic peak in the nonlinear normal mode spectra. Now,
we again simulate co- and cross-circular pump-probe configurations for pumping
of the lower normal mode. Fig. 3.3 shows the spectra for co-circular excitation.
With increasing pump intensity, both modes shift blue, the lower one more so,
giving rise to an overall decrease of the splitting. What’s more striking, however,
is the positive differential reflection (gain) just below the lower mode. In fig. 3.4,
the cross-circular case is shown. Here, the lower mode undergoes a very slight red
shift, giving rise to an increase of the splitting for very low intensities. For higher
intensities, the biexcitonic resonance appears below the upper mode. Oscillator
strength is transferred to it from the upper mode, which shifts blue.

The appearance of the biexciton below the upper normal mode, when the
lower mode has been pumped, might at first glance seem surprising. It can be
understood by looking at the energetic situation depicted in figure 3.5. If, as is
the case in both simulations and experiment, Ayjss is sufficiently larger than
the biexciton binding energy Epx, pumping of the lower mode requires an upper
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Figure 3.3: Cavity reflection for co-circular excitation of the lower mode with

different pump intensities.
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Figure 3.4: Cavity reflection for cross-circular excitation of the lower mode with

different pump intensities.
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Figure 3.5: Simplified diagram illustrating the relevant energies as compared to
the excitonic frequency wx.

mode probing, and vice versa. The time evolution of the spectra is depicted in
figs. 3.6 and 3.7. For the co-circular case and negative delay, one recovers the
well-known spectral oscillations at the lower mode [55], gradually evolving into
the gain-like structure for pulse overlap, which then quickly decays. Both mode
pumping (not shown) leads to additional oscillations in time, corresponding to
an energy transfer between both normal modes. For cross-circular excitation,
the biexciton also has both the greatest oscillator strength and distance from the
lower mode for pulse overlap.

All these features have been found in experiments on InGaAs quantum wells
in an AlAs/GaAs microcavity. The main difference to the experimental signa-
tures is the magnitude of the shifts, which is significantly larger and was found
to be better described by high-density theories. On the other hand, the second-
order Born formalism, making use of a complete factorization into two-particle
functions, is not able to describe bound states consisting of more than two par-
ticles [56], and is therefore not able to cover the biexcitonic signatures for the
cross-circular case.

In conclusion, we have shown that the results for the bare quantum well
may be carried over to the strong coupling situation, where the cavity field at the
quantum well position takes the place of the exciting laser pulse. The appearance
of the biexciton in the normal mode spectra, the gain-like structure, and the
directions of the various shifts of the normal modes can be reproduced. The
magnitude of the shifts is strongly underestimated, which is, however, an intrinsic
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Figure 3.6: Reflection for co-circular pumping of the lower mode. Pump area 2.5
Eg, and pump delays of -4 ps (bottom) to +2.5 ps (top). Delayed spectra have
been displaced vertically.
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Figure 3.7: Reflection for cross-circular pumping of the lower mode. Pump area
5 Eg, and pump delays of -4 ps (bottom) to +2.5 ps (top). Delayed spectra have
been displaced vertically.

problem of the theory. High-density scattering approaches like the second order
Born theory are better suited once one leaves the low-density limit. This problem
can also not be overcome by including fifth order terms.



Chapter 4

Three-exciton signatures in
semiconductor nanorings

Semiconductor nanorings are circular-shaped objects with a diameter of about
100nm. They come into existence when self-assembled quantum dots on a sub-
strate literally explode and only leave a ring-like crater behind [57]. One remark-
able feature arises when a magnetic field along the ring axis is applied. In what
is known as the Aharonov-Bohm effect [58, 59|, the spectra change periodically
as function of the magnetic flux [60, 61]. We will see how this material system
could also be a good representation to show coherent fifth order effects.

By applying periodic boundary conditions to the one-dimensional quantum
'wire’ model system, in a way one can say we have been concerned with such
ring’-like structures all the time. So far, however, the aim was to model an
ideal infinite semiconductor structure, like a quantum wire, or even, by analogy,
a two-dimensional quantum well. Now, we take the system’s finite size seriously.

To illustrate this difference, we start with a model system (see fig. 4.1) as used
in sections 2 and 3 (only heavy holes taken into account). As a first difference, we
note that we now take the distance between sites (entering the Coulomb matrix
elements) across the ring rather than along its circumference. This is motivated
by the assumption of the interaction being mediated via the substrate. The
effect of this change®, however, isn’t that big, as can be estimated from looking
at fig. 4.2. We also use slightly different (more ’'physical’) parameters, in that
we use a background dielectric constant € = 13 instead of the arbitrary Coulomb
energy Up; the distance between sites is taken to be d = 70A, so that the fixed
values of J, = 11.69meV and Jp;, = 3.34meV correspond via J = % to effective
masses of m, = 0.0665mq and my, = 0.234mg. The Coulomb cutoff reflecting

!This choice of potential also has the advantage of an existing derivative at the opposite
site.
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the geometry is dy = 35A. These parameters give rise to an excitonic ”binding
energy” of Ex = 16.8meV, as is found in an ideal two-dimensional GaAs quantum
well (four times the bulk binding energy of Ex(3d) = 4.2meV).

We increase the size of such a system simply by increasing the number of sites
N. Since J is fixed, the bandwidth stays constant, and in the linear spectra we
see more states contributing to the ’continuum’. The excitonic position becomes
constant quite early on, as soon as the system is big enough to incorporate its
spatial extension. The same holds for the biexcitonic bound state in the nonlin-
ear (X(3)—)spectra; again, the unbound states approach a continuous distribution
for N — oo. To properly describe an extended semiconductor in this spectral
region, one therefore has to use a large number of sites. Also note that for these
parameters, the first unbound two-exciton state is very close to the exciton, so
that this applies even for a quantitative analysis of the resonant situation. As
we will see, also the influence of W is most pronounced in this region, but these
states avoid physical interpretation as long as no convergence is achieved.

Figure 4.1: Semiconductor nanoring model.

If, on the other hand, we want to describe a system of a certain physical
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Figure 4.2: Comparison of Coulomb potential in the 'wire’ and 'ring’ models,
respectively.

size, the value of Nd is fixed, and with increasing N one has to simultaneously
decrease d. This, however, is unphysical, since the constant value of J would then
give rise to a change in effective mass of electrons and holes, and therefore would
not describe the same physical configuration. So in this case, it is adequate
to use effective mass as parameter and adjust the couplings between the sites
according to the spatial resolution of the system. The effect encountered here
then is opposed to the one above: there, with growing N, more and more states
are stuffed into a fixed energy range, and so contribute more or less equally to
the system; here, we also do have more states, but since J o d=2 oc N2, the
increase in bandwidth makes up for that. This means: if we can find a system
of sufficiently small spatial extension Nd, that enables us to spectrally resolve
at least the lowest unbound states at a numerically feasible /N, we can make an
analysis of that actual physical system. This, of course, has an influence on the
numerical requirements also: The high energies of unbound states do require a
high temporal resolution as well as the extremely short probe pulse needed to
scan the whole system. Again: the circumference of the ring is approximately
given by Nd, where N is the number of sites, and d is the distance between the
sites. Since a ’site’ bears no physical meaning, we have to ensure that our spatial
resolution is sufficiently high. As usual, the Coulomb cutoff length dy remains a
rather dubious parameter, arising from projecting the three-dimensional potential
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into a certain lower-dimensional geometry, thus including effects like finite ring
thickness, etc. Linear spectra for rings of various sizes are shown in fig. 4.3. In
all cases, convergence in terms of spatial resolution (fig. 4.3) is achieved at about
d =10A. Thus, a ring of 200A circumference can be resolved with 20 sites, which
is the highest number currently feasible? when including W.

220 sites still demand a vast amount of calculation time. The calculations shown here are
therefore performed for smaller systems on the cost of an error in the spectral positions of a
few percent.
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So far, as has already been pointed out in chapter 3, x(®-calculations in the
literature have been performed neglecting or only approximatively including W
3. For the resonant pump-probe situation, it was found that the x(®)-signatures
basically look like the x(®-contributions with a negative sign, so that a slight
increase in pump intensity gives rise to a decrease of the differential absorption
signal [62]. The complete x(®)-equations are as follows [8]:

-2 {#feE Pre Prj + By B Dry pie}
I,

* 1 *
- Z {IJ’ME ( 5 anké ank:j
kfmn

* *
— Pmn Pre ankj
*
- ankzé Pmn Pkj

+ pjrm pZZ Pmn pkj)

1
+I~";‘(kE ( 9 B:rmkl Binie

- pjnn PZz Bmm’(i
- B:rmkl Pmn Die
+ Prn Pre Pmn pw) }

+ > (Vi = Vig — Vii + Vi)
Y
{p};e Bijke
mn
+ Dkt Prn Prn Bijke
1 *
+ 5 Bkémn I/Vijkfmn

— Dkt Prn I/Vijkfmn}} (4.1)

3Though sometimes even x(7)-features have been pointed out [23, 54].
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+ Z {(Vm - an + Vnk - an

mn

_Vmi + ij - mG + Vmé) p:nn I/I/vijlclrrm} (42)

(—ihdy + hww) Wijkimn = 135EBrtmn — 13 EBijmn + i EBijme
= M;EBitmn + Mo B Bijmn — By B Bijme

In analogy to the lower orders, the homogenous part of W * contains the 15
possible Coulomb interactions between the six concerned particles. W is created
solely from existing B-states. One also finds additional terms containing W in
the Coulomb part of the p-, and also for the first time in the B-equations. The
factors of 0.5 in terms containing no p are due to the multiband formalism. For
the fifth order p, W of third order contributes. What’s more, for the pump-
probe signal, only W31 is needed. Due to the structure of the re-coupling, one
also needs additional B* and p®. Evaluating these equations for the four-band
(GaAs heavy-hole) case, one is confronted with four different types of W, namely
] Sy 2] pn2222] - and WI222222 0 All other combinations can be gained
by exploiting the symmetry. It is indicated to simulate each circular pump-probe
configuration separately, since in both cases, only one of these four W is required
(WU for co-circular and W22 for anti-circular, respectively), meaning
a significant advantage in calculation time, and a small advantage in memory
requirements, see also the appendix.

This time, we start by considering the off-resonant situation. Fig. 4.4 displays
the contributions of the different orders, the third order exhibiting the excitonic
Stark effect as usual. In fifth order, for cross-circular excitation the signature is a

4 As has been explicitly investigated in [10] for B, one could also factorise W and write an
equation for the pure correlations W. This however, is a formidable task, and has not been
performed here.
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blue shift giving rise to a slight compensation of the third order red shift. As has
been pointed out in [62, 63], co-circular excitation yields a (slightly asymmetric)
broadening of the excitonic resonance. The contribution of W to the fifth order
signals is so small it can only be distinguished by subtracting the results obtained
with and without it. In the cross-circular case, it simply is a small additional
fraction of blue shift. In the co-circular case (displayed separately in fig. 4.5),
however, it also is responsible for a pure dispersive (red shift) shape.
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Figure 4.4: Influence of x®-contributions on the excitonic Stark effect. The
influence on W is so small that it keeps within the linewidth. The inset shows
the shape of the extracted contribution of W for cross-circular excitation.
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Figure 4.5: Extracted contribution of W for co-circular detuned excitation.

Since the effect of W is so very small, when investigating the resonant case for
these parameters, we now drastically increase the strength of the Coulomb inter-
action by putting € = 1 3. This gives rise to an about ten times larger excitonic
binding energy which actually is not that far from experimental observations.
We first consider excitation with a pump pulse of length At = 100fs. Fig. 4.6
displays the y(®)-results. The first unbound two-exciton state now is clearly sep-
arated from the exciton. Fig. 4.7 shows the x(®-contributions. Comparing the
upper and the lower panel, one sees that W has hardly any influence on the one-
and two-exciton resonances. However, there appear to be some signatures both
above and below the exciton (highlighted with arrows). Since the pump pulse is
rather broad, an interpretation of these spectra is not quite clear. Fig. 4.8 shows
the corresponding results for excitation with a long pump pulse, restricted to the
(one-)exciton resonance, i. e. no spectral overlap with the two-exciton state at
+12meV. In this case, no additional signatures attributed to W can be found.
(Comparing fig. 4.6, one can see that the difference in pumping has no influence
on the qualitative shape of the x(®-spectra. When analysing B by the pump-
probe mechanism, one always can excite single one-exciton resonances. Exciting
single (unbound) two-exciton resonances to create a W, however, is not possible
in the extended semiconductor structures of chapters 2 and 3, for two reasons:

5Unlike, for example, changing the cutoff length dy, this has no bearing on the required
spatial resolution.
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first, the continuum can not be resolved with a finite (small) set of discrete sites,
and second, the lowest site is too close to the excitonic energy.)
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Figure 4.6: Lowest order differential absorption (x®)).
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Figure 4.7: x®-contribution for resonant excitation with a short pump pulse.
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Figure 4.8: x(®-contribution for resonant excitation with a long pump pulse.

A three-pulse configuration is thus indicated to yield further information
about the three-exciton states. The next logical step therefore is to use two
spectrally sharp pump pulses, one of which excites the exciton, while the other®
remains freely tunable. Depending on whether this second pump pulse hits a
two-exciton state, corresponding three-exciton states should become visible in the
differential absorption spectrum of the broad probe pulse. This non-degenerate
three-pulse pump probe spectroscopy’ is a work still in progress. In a first inves-
tigation, zero delay 75 between the pump pulses can be assumed, and one can
concentrate on the polarization configurations + + 4+ and + — +. The Fourier-
components needed for the calculation of the fifth-order pump-probe contribution
p%001) are as follows:

o pHO0D)

)

o BHO0I) (o)1)

?

o p3(001)  p3:(0L[0) - 1y3i(1]010) " y3i(201=1) " pp3s(1IL[=1) - py3i(012(=1).

° W3;(2|0\1)’ W3;(1|1\1)’ W3;(0|2\1);

6This second pulse having a different (third) Fourier-component kpymps -
"In analogy to the so-called non-degenerate four-wave mixing used in coherent excitation
spectroscopy [64].
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Figure 4.9: x(®-contribution for excitation with two pump pulses.
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The three indices in brackets denote the three pulse directions Kpymp,,
Kpumps, and Kprope, respectively. All terms with a zero for the middle index
appear also in the two-pulse configuration. Physically, the complexity arises
mostly from the many additional scattering (FWM-like) contributions in third
order. Numerically, the three-fold increase in W-terms is the most important
point. The results from the two-pulse case, however, seem to indicate that W-
resonances made from twice the same spectrally sharp pump-pulse may possi-
bly be ignored, whereas the mixed terms W3 ") may be of importance. This
would then allow for calculations of about the same computational resource level.
Fig. 4.9 shows a first result for a three-pulse configuration for the one-spin case,
i. e. all three fields being o -polarised. Degenerate excitation (with both spec-
trally sharp pump pulses tuned resonantly at the exciton) is compared to the
case where one of the pulses is centered at the first two-exciton resonance at
about 12meV. As we have expected, the three-exciton resonance appears for the
nondegenerate case only.

In conclusion, we have shown that semiconductor nanorings can serve as a real
physical system that allows us to investigate coherent fifth order effects without
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further approximations, i. e. fully including the three-exciton coherence W. While
the effects of W on (intrinsically third-order) phenomena like the biexciton and
the excitonic Stark effect are indeed very small, new induced resonances due to
three-exciton states - maybe even bound ones - should exist in these systems. To
access and interprete these new features, it seems plausible, and would in practice
probably be necessary, to use optical methods sensitive to fifth order effects, like
higher-order wavemixing or the proposed three-pulse pump and probe method.
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Chapter 5

Conclusions

In this work, various phenomena of nonlinear semiconductor optics have been
modelled using the DCTS formalism. Since the first successful applications of
the x®-equations to explain the resonant [10] and off-resonant [9] response of
semiconductor heterostructures, both the numerical coding and the computa-
tional capacities have significantly improved. Concerning this particular theoret-
ical approach, this could have led in three directions. First, the complexity of
the model could be increased. This has been done here in 2 by including more
bands. Secondly, and related to the first point, one could attempt a proper two-
dimensional description (of quantum wells). Due to the larger phase space, this
might bear an effect on the relative magnitude of Coulomb compared to Pauli
terms. Finally, one can stick to the same level of modelling but relax the level
of approximation, i. e. include more orders in the description. This has been
the main line of this work, first in a rather arbitrary, albeit common, way, ne-
glecting W, and connected to the strong coupling situation, in 3, underlining the
fact that the results for bare quantum wells may be applied to quantum wells in
microcavities as well. Then, for the first time, in 4, the complete x(®-equations
have been investigated. The effect of W on present signatures was found to be
small. However, new three-excitonic resonances should exist in those systems.
Overall, the theory seems to have reached its limits, since one has to go quite
a long way both numerically and experimentally, to access signatures explicitly
connected with higher orders in the field. Unlike the striking x(®-effects in the
low-intensity limit, these higher order effects are both small per definition and
valid in a small intensity range only. However, the theory paved the way for the
density-matrix formalism as opposed to the - perhaps harder to be accessed -
procedure of Green’s functions and Feynman diagrams. The ansatz of the CET
of basically sticking to the ordering in terms of correlation functions, but leaving
the coherent limit behind, seems promising.

47
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List of parameters

2 3 4
Light Holes | Strong Coupling | Nanorings
N 20 10 10
d/A 50 50 70
me/my — — 0.0665
J./meV 8 8 —
mhh/mo — — 0.234
Jpn/meV 4.75 0.8 —
th/meV 2.52 — —
Ho,ih / Ho \/?_> - -
Apffset/meV 12 — —
Uo/meV 8 8 -
e/eo — — 13
do/A 25 25 35
T,/ps 3 3 2
Tg/ps 3 1.5 2
Tw /ps — — 2
Atpump/ps 1 1.56 1
Atprobe/f5 10 10 2
T/ps 0 0 1
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