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Chapter 1

Introduction

In linear algebra there is the fundamental concept of linear dependence. The
situation turns out to be quite simple due to the fact that all vectorspaces V'

over a field k are free k-modules. In particular, a set of vectors vy, ... ,v, € V
is maximaly independent if and only if it is minimally generating.

The concept of dependence of polynomials py, ... ,p, € k[z1,... , 24| Over
the polynomial ring k[z, . .. , x4 is much more complex. Especially, maximal

independence and minimal generation are not equivalent in this case.

In order to measure dependence we are led to the consideration of (min-
imal) free resolutions of the ideal I = (p1,...,p,) generated by the poly-
nomials p;. These are very difficult to find. It is even an open problem to
construct minimal free resolutions of arbitrary monomial ideals I, that is, of
ideals in the polynomial ring that are generated by monomials.

A reasonably well developed approach to this problem consists of studying
so-called cellular resolutions. If the ideal under construction is Z%graded
these are formed by homogenizing the cellular chain complex of a Z%-graded
CW-complex.

The classical example of a free Z%graded cellular resolution is the Taylor
resolution. The Z4%graded CW-complex supporting the Taylor resolution is
the standard simplex A, with vertices given by the monomial generators
mi,...,m, of the ideal I. Here, A, is Z%graded by lem, that is, for all
simplices o = {m;,,... ,m;, } € A, the Z%grading is given by a € Z%, where
x* =lem{m;,,... ,m; }.



In general, cellular resolutions like the Taylor resolution are far from
minimal. This thesis provides a general method to minimize given cellular
Z%-graded free resolutions. For this, we use techniques from combinatorial
topology, namely discrete Morse theory. The main feature of this theory
developed by Forman [13, 14] is the following (here we use a version due to
Chari [9]):

Given a CW-complex X and an acyclic matching on the directed cell
graph of X there exists a CW-complex X4 (called the Morse complex) that
is homotopy equivalent to X and the cells of which are in one-to-one cor-
respondence with the A-critical cells of X. The transition from X to X4
can be regarded as a process of making the CW-decomposition of X more
efficient.

The central original idea of this thesis is to transfer this process from CW-
complexes to cellular free resolutions: It is shown that, given a cellular Z4-
graded free resolution of a module M supported by a Z?graded CW-complex
X and a homogeneous acyclic matching A on the directed cell graph of X,
the Morse complex X 4 also supports a Z%graded free resolution of M. Since
the CW-complex X4 consists of fewer cells than X the cellular resolution
supported by X 4 is smaller than the one supported by X.

Applying this method we are able to produce minimal Z4-graded free res-
olutions for certain classes of monomial modules. These include all generic,
stable and squarefree stable monomial ideals, all Stanley-Reisner ideals cor-
responding to a simplicial complex with shellable Alexander dual as well
as a very special class of p-Borel fixed ideals. Also, for a special class of
affine semigroups A C N?, we are able to produce minimal Z%graded free
resolutions of the field £ over the affine semigroup ring k[A].

The idea of applying discrete Morse theory to cellular resolutions has
been presented before in [3] which is joint work with Volkmar Welker. Here,
also the application to obtain a minimal Lyubeznik resolution for generic and
shellable co-Artinian monomial modules as well as the cellular minimal Z4-
graded resolution of the field k over an affine semigroup ring k[A] satisfying
a certain condition of shellability can be found.

The structure of the thesis is as follows:

In Chapter 2, we set the stage by presenting definitions, basic facts and



examples of cellular Z%graded free resolutions. In particular, we present
the well-known fact that the Betti-numbers of a Z%-graded module M (that
is, the exponents 8¢ of the free modules F; = @, k21, .. ,zd" ()
appearing in the minimal Z%graded free resolution of M) can be calculated
from any given Z%graded free resolution of M. We show that in consequence
for a cellular Z%graded free resolution of a Z%graded module M supported
by a Zd-graded CW-complex X the Betti-numbers of M can be calculated
from the homology of the topological space X.

We list known examples of cellular Z9graded free resolutions includ-
ing the Taylor resolution (presented by Taylor in [23]), the Scarf resolution
(Bayer, Peeva and Sturmfels, [4]), the Hull resolution (Bayer and Sturmfels,
[5]) and resolutions via rooted complexes (Novik, [18]), show that certain
known algebraic Z%graded free resolutions like Lyubeznik’s resolution (see
[16]) and the Bar resolution are cellular and present new cellular Z%graded
free resolutions namely the LCM- and LCM*-resolutions and the hypersim-
plicial resolution for powers m™ of the maximal ideal m C k[zy, ... , z4].

Also, we show that quotients M /N of co-Artinian monomial modules can
be resolved using a relative version of the Taylor resolution.

In Chapter 3 we review discrete Morse theory and expand it to Z4-graded
CW-complexes in order to obtain a discrete Morse theory for cellular reso-
lutions. We follow the approach of Chari using acyclic matchings on the
directed cell graph of the CW-complex X. In order to achieve the expan-
sion to Z%graded CW-complexes we give an explicit description of the Morse
complex X 4.

In [13] Forman also presents a differential complex M generated freely by
the critical cells of X which he shows to be chain homotopic to the cellular
chain complex of the CW-complex X. We show that, as expected, this
differential complex actually coincides with the cellular chain complex of
the Morse complex X4, this way achieving explicit formulas for the maps
in cellular Z%graded free resolutions derived via discrete Morse theory for
cellular resolutions.

Chapter 4 consists of applications:

1. We introduce a new class of monomial modules called shellable mono-
mial modules. These include all stable and squarefree stable monomial
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modules as well as all Stanley-Reisner ideals corresponding to a simpli-
cial complex with shellable Alexander dual. We present an application
of discrete Morse theory for cellular resolutions to the LOCM*-resolution
of shellable co-Artinian monomial modules M that yields a minimal cel-
lular Z4-graded free resolution of M. Parallel to our work Skéldberg
has constructed by algebraic means minimal free resolutions for a class
of ideals that includes the shellable ones.

. We provide a general method to apply discrete Morse theory for cel-
lular resolutions to the Taylor resolution. The resulting resolution is
called Lyubeznik resolution (since it can be regarded as a generaliza-
tion of Lyubeznik’s resolution). We show that for generic and shellable
co-Artinian monomial modules there exist minimal Lyubeznik resolu-
tions, this way presenting a second proof for the existence of a cellular
minimal free Zd-graded resolution of shellable co-Artinian monomial
modules. For generic monomial ideals the given resolution is the res-
olution determined by the Scarf-complex as shown by Bayer, Peeva &
Sturmfels (see [4]). For stable and squarefree-stable monomial ideals
the minimal resolution had been determined by Eliahou & Kervaire re-
spectively Aramova, Herzog & Hibi and Peeva by algebraic means (see
[12] and [2]).

. We give a application of discrete Morse theory for cellular resolutions to
the hypersimplicial resolution for powers m”™ of the maximal ideal m C
k[z1,...,x4] which yields a cellular minimal Z%graded free resolution
of m™. Using the formula for the differential of the Morse complex, we
show that this minimal resolution is isomorphic to the one given by
Eliahou and Kervaire (see [12]).

. We show that the cellular resolution via rooted complexes can be ob-
tained from the Taylor resolution via discrete Morse theory for cellular
resolutions.

. For p-Borel fixed ideals I generated by a monomial 27, (generated in the
sense that I is the smallest p-Borel fixed ideal such that z}, € I') we show



that an application of discrete Morse theory for cellular resolutions
yields a cellular minimal Z4-graded free resolution of I.

6. We show that for an affine semigroup A with the property that all order
complexes A(0, \), A € A, over open intervalls (0, \) are shellable, there
exists a cellular minimal Z%graded free resolution of the field k over
the affine semigroup ring k[A]. This is achieved by an application of
discrete Morse theory for cellular resolutions to the Bar-resolution of &
over k[A].

Even though we have subsumed most cases of monomial ideals in which
the minimal free resolution was known before and constructed new ones, still
there are results not covered here. Notably in [19], Novik, Sturmfels and
Postnikow give a beautiful geometric construction of polyhedral complexes
minimally resolving matroid and oriented matroid ideals. We believe there
is still large potential for combinatorial and geometric constructions in the
theory of cellular free resolutions.



I want to thank my advisor Volkmar Welker for excellent working support:
He provided the original idea for this thesis and was open for discussions al-
most any minute. This way I was able to benefit from his great mathematical
knowledge and intuition in a pleasurable and relaxed atmosphere.



Chapter 2

Cellular resolutions

In this chapter we define the concept of a cellular resolution, which lays the
ground for the application of discrete Morse theory in commutative algebra.
Section 2.1 gives the definitions of free resolutions, CW-complexes, simpli-
cial complexes, cellular free resolutions, monomial modules and co-Artinian
monomial modules. Section 2.2 presents some basic facts about cellular reso-
lutions. Section 2.3 lists some well-known and some new examples of cellular
resolutions. In Chapter 4 these will act as starting points for applications of
discrete Morse theory to cellular resolutions.

2.1 Definitions

2.1.1 Z%%graded free resolutions
Throughout the thesis, we denote by N the integers including 0.

Definition 2.1.1. 1. A ring R is called Z4graded if there is a direct sum
decomposition

R= PR,

a€Zd

of R as abelian group with subgroups R,, a € Z9, such that

RoRg C Roip.



I R=8,,:R:is a Z4-graded ring, the R-module M is called Z%
graded if there is a direct sum decomposition

M:@Ma

a€cZd

as abelian groups such that
RaMﬂ C MOH—ﬂ-

If

N:@Na

acZd

is another Z4-graded R-module and
¢: M — N

is an R-linear map, we call ¢ homogeneous if for all o € Z¢ we have

#(M,) C N,.
. An affine semigroup A is a finitely generated (i.e., A = N)\; +---+N),
for some elements \i,...,\, € N%) sub-semigroup of the semigroup
N¢.

. For a given affine semigroup A we order Z? by o < j if and only if
a+v = 3 for some v € A. We write (Z%, A) for the poset Z? with the
order induced by A.

. Let k be a field. A ring R is called affine semigroup ring if R = k[A] is
the subring of S := k[x1,... ,x4] with k-basis given by the monomials
x* = 21 - - z)? for elements A = (\y, ..., \g) € A, where A C N is an
affine semigroup. Note that R = k[A] is naturally Z4-graded.

. Let R = k[A] be an affine semigroup ring. We denote by m C k[A]
the maximal homogeneous ideal in k[A]. This is the ideal generated
by all monomials x* = z}'---z)* for elements A = (Ay,...,\;) €

A={(0,...,0)}.
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For the majority of applications in this thesis this framework will be
specialized to A = N and R = S. This is done by setting r := d and
\i := e;, with e; the i-th standard unit vector in N¢. For A = N? the partial
order as defined above is the usual partial order given by a < g if and only
if ; < B; for all 2 = 1,...,d. The more general framework is used for
resolutions of the field £ over an affine semigroup ring k[A].

Definition 2.1.2 (Z%graded free chain complex). Let R be a Z%-graded
ring, C; for all i € N a free Z%graded R-module and

041 8; 91 i)
C= —+)C,—) 171—>...—1)CO

a sequence such that all maps 9; : C; — Ci_1, i € N — {0}, are Z%
homogeneous and 0; 0 0,41 = 0 for all ¢ € N — {0}. Then C is called a
Z4-graded free chain complex (over R).

Remark 2.1.3. Note that if R = k[A] is an affine semigroup ring and

is a Z%graded free chain complex over R then C; = @, ;. Cy* where C =
R(—a)?? is the free R-module of rank 3¢ with generators in multidegree a.

Definition 2.1.4 (Z%graded free resolution). Let R = k[A] be an affine
semigroup ring. Let M = @, ;4 M, be a Z-graded R-module. A Z*-graded
free resolution F of M is a Z%graded free chain complex

0; ; 8
F= ... 5% 5,5 N7
over R, satisfying the following properties:

1. F is exact, that is,

Kerd; = Img;; for all i € N — {0},

2. Coker 0, =2 M.

11



Remark 2.1.5. Let R = k[A] be an affine semigroup ring and

9;

0; Oi— 3]

a Z%graded free chain complex. Then F is a free resolution of the Z%graded
R-module M if and only if there is a homogeneous map 9 : Fo — M, such
that

e WA G NN

1s exact.

Definition 2.1.6 (Minimality of a Z‘-graded free resolution).
A Z%-graded free resolution

0; 0; 0i— 1o}
F = i)f;—)ﬂ_l—l)—l)fo,

Fi = ®,cza FE F = R(—a)? of the Z%graded R-module M is called
minimal if for all i € N — {0} the image of 0; is contained in mF; ;. The
numbers

B (M) = B}
are called the Betti numbers of M.

Remark 2.1.7. Existence and uniqueness up to chain-complex isomorphisms
of the minimal free resolution are well known facts (see [11]) from com-
mutative algebra. The term minimal comes from the fact that a minimal
resolution

9 0 0 d
B FR S FL L SR

of the R-module M simultaneously assumes minimal values for all ranks 3,
where F; = @, 7« F® and F® = R(—a)?.
2.1.2 CW-complexes

Definition 2.1.8. A topological space is called an (open) cell of dimension
d (or d-cell) if it is homeomorphic to the d-dimensional open ball

o

d
B'={z = (21,... ,xs) €R' | ) a7 < 1}.
=1
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Definition 2.1.9 (CW-complex). We call a topological space X a CW-
complez, if there exists a collection X*) = {g; | i € I} of disjoint open cells
such that

X = U Oi,
satisfying the following properties:

1. X is Hausdorff,

2. for every open cell ¢ € X®) of dimension d, there exists a continuous
map

d
fr: Bt :={x = (z1,... ,24) € R | foﬁl}—)X

i=1

such that the restriction f; := f"‘é’d is a homeomorphism

fs :B' =5 o

and such that f,(S¢"!) intersects only finitely many cells nontrivially,
all of which have dimension at most d — 1,

3. asubset A C X is closed in X if and only if AN& is closed in & for all
oge X®,

For a cell 0 € X™®_ we call the map
fr:BT— X

the characteristic map of o and & = f,(B?) the closed cell that belongs to o.

For d € N we denote by X¢ C X the union of all cells of dimension at
most d and call X¢ the d-skeleton of X. By X(® we denote the set of all cells
of dimension d.

A subcompler of X is given by a subset of the cells of X that forms a
CW-complex with the same characteristic maps. We say (X, A) is a pair of
CW-complezes (or CW-pair) if X is a CW-complex and A a subcomplex of
X.
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If (X, A) is a pair of CW-complexes then we denote by (X, A)@ the set
of d-cells of X that do not belong to A. We set (X, A)®) := 5, (X, 4)@.

There is a natural way to view (X, 4)® (X®) respectively) as a partially
ordered set: For cells o/,0 € (X, A)® (X® respectively) we set o/ < o if
and only if the closed cell o’ is a subset of the closed cell . We say that o'
is a facet of o if ' # o and for 7 € (X, A)®) the inclusion ¢’ < 7 < ¢ implies
7 € {0,0'}. We say that o is a facet of X if o is maximal with respect to
the above partial relation on X®.

Remark 2.1.10. 1. Note that in all constructions mentioned above, a sin-
gle CW-complex X can also be regarded as the CW-pair (X, ). In the
remainder of this thesis we will sometimes implicitly identify X with

(X, 0).

2. The letters “CW?” in the term “CW-complex” stand for “closure - finite-
ness” (refering to property 2.) and “weak topology” (refering to prop-
erty 3.).

Definition 2.1.11. If X and Y are topological spaces, A C X closed, f :
A — Y a continuous map, we denote by X U; Y the quotient space of
the disjoint union XUY by the equivalence relation that is generated by the
relations a ~ f(a) for all @ € A. X U; Y is endowed with the quotient
topology induced by this equivalence relation.

Lemma 2.1.12. A topological space X is a CW-complex if and only if it can
be obtained by the following process of attaching cells of increasing dimen-
stons:

Let X° be a discrete set of points. These points form the 0-skeleton.
Assume the d — 1-skeleton X% is constructed. Let UUeId
union of balls BE = B¢ x {o} of dimension d, o ranging over some index
set Iy. For all o € Iy let fo, : S = OB — X% be a continuous map.
These maps induce a continuous map

. ‘ d—1 __ . d d—1
f ) UU’EIdSU - a(UUEIdBU) — X ’

8471 denoting the sphere that bounds BE. We construct the d-skeleton of X
by setting

B2 be a disjoint

d.__ . d d—1
X4 .= (UUEIdBU)qu .

14



Note that the map f carries the information of how the d-dimensional balls
B¢ are attached by their boundaries S4 to X*~1. The map fa, is called the
attaching map of o.
We set
X=Jx
deN

We define the topology of X by setting for A C X: A is closed in X if and
only if AN X? is closed in X% for all d € N.

Proof. 1f a topological space X is given by a construction as described above,
the cells of X are in one-to-one correspondence with the elements of [ :=
Ugen Ia : The characteristic map f, of the cell corresponding to the index
o € 1; is given by the composition

B! —=Bi—]J _ Bi—(, _ B X" '"—x.
o€ly

o€ly

The cell itself is given by f,(B%). On the other hand, if X is a CW-complex
and 0 € X® a cell, f, : B — X its characteristic map, we define the
corresponding attaching map by

foo = frlgi-1 : ST = 0B — X471

Using the properties of the quotient map

) d," d—1 ) d d—1
UUE[dBUUX — (Uaedeo) Uy X4,

it is straightforward to check that the identity map between two copies of
X, one endowed with the topology according to the definition of the CW-
complex and one with that according to the attaching construction, is con-
tinuous in both directions. This proves the assertion. O

2.1.3 Cellular homology

For a pair (X, A) of CW-complexes there is an elegant way to compute sin-
gular homology with coefficients in & (see [8]):

15



Definition 2.1.13 (Cellular chain complex). Let (X, A) be a CW-pair.
For i € N let C;(X, A) be the k-vectorspace freely generated by the i-cells of
X that do not lie in A. The following construction defines the differentials
of a chain complex

CX,A) = ... 2% ¢c(x, A) 2 (x, A2 2 e(x, 4) S0

called the cellular chain complex of the pair (X, A).
For i € Nlet m; : X* — X*/X ! be the canonical projection. Note that

Xi/x—t= \/ S,
oeXx (@)
with S = S* x {0} denoting a sphere representing the image of the closed
cell f,(B!) under the projection 7;. Here the wedge is taken by choosing a
base point * € S* and by identifying all (x,0), o € X®.

For i € N let v; : B® — S* be any continuous map collapsing the
bordering sphere S*~! of B* to the base point of S* such that the restriction
to the interior of B’ is a homeomorphism onto its image. For o € (X, A)®
define p, : X* — 5% such that p, o f, = 7; and p, o f is the constant map
onto the base point of S? for all o’ € (X, A)®, o # o'. We call p, the cellular
projection map corresponding to the cell o.

Recall that for amap f : S — S’ it is common to define the degree deg f
to be the unique integer such that the induced homomorphism in homology
fo: Hi(S%; Z) — H;(S%Z) is multiplication with degf.

Let o be an i-cell. We set,

with
[7: 0] := deg(p; o foo)-
This defines the differential 0; : C;(X, A) — C;—1(X, A) .

Theorem 2.1.14. (see [8], p. 204) The singular homology H.(X, A) of the
pair (X, A) is isomorphic to the homology of the chain complex C(X, A).

16
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fr

X' =

T

X1/X0 =

)
-

Example of a 2-dimensional CW-complex X with two maximal cells, both

2

1%

Figure 1.
of dimension 2. The righthand one is denoted by o. The figure illustrates
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how to find the coefficient [ : o] for the 1-dimensional cell 7 which forms
the lefthand border of o.

Definition 2.1.15 (Acyclic CW-complex). Let k£ be a field. A CW-
complex X is called acyclic if we have:

k fori=0
0 otherwise.

Hi(X;k) = {

2.1.4 Simplicial complexes

CW-complexes form a generalization of spaces called (geometric) simplicial
complezes. These are built from affine simplices in the following way:

Definition 2.1.16 (Simplicial complex). 1. Let vy,...,v; € R¢ be a
finite set of points in Euclidian space. wvy,...,v; are called affinely
independent if Zf/:o A, = 0 and Zizo A, = 0 implies all A\, = 0.
(This is equivalent to the property that the smallest affine subspace of
R? which contains the points v, ... ,v; has dimension 4.)

2. An (affine) simpler o = (vp, ... ,v;) is defined as the set of all linear
combinations Y. _, A, v, such that Y. _ A\, =1 and all A, > 0, where

Vo, ... ,v; is a set of affinely independent points in some R¢. The affine
simplex o = (vg, ..., v;) is then equal to the convex hull of vy, ... ,v;.
3. For a simplex o = (vo, ... ,v;) we refer to 7 as the dimension of o.

4. We regard () = () as the unique simplex of dimension —1.

5. Note that if o = (vg,...,v;) is an affine simplex then (v,,,...,v,,)
is an affine simplex for any 0 < 1y < ... < 1, < 7 as well. We call
(Vgy - - - > V) & k-face of 0.

6. A set X of affine simplices is called simplicial complez if

(a) 0 € ¥ and 7 a face of o implies that 7 € ¥,
(b) 0 € ¥ and 7 € ¥ implies that o N 7 is a face of both o and 7.

7. Simplices of ¥ that are inclusionwise maximal are called facets of 3.

18



Remark 2.1.17. An abstract simplicial complex is a set 3 C P(V') of subsets
of a given set V such that for all A € ¥ and all B C A we have B € .. In
the theory of combinatorial algebraic topology the following facts (see [17])
are well known:

1. For every abstract simplicial complex ¥ there exists a geometric sim-
plicial complex X' and an isomorphism

= 3

of partially ordered sets, that is, for all A, B € ¥ such that A C B we
have ®(A) C ®(B). In this situation we say ¥’ is a geometric realisation
of X.

2. Two geometric simplicial complexes are linearily isomorphic if and only
if they are isomorphic as partially ordered sets.

In the remainder of this thesis we will not distinguish between abstract and
geometric simplicial complexes.

To see that indeed simplicial complexes can be viewed as a special class
of CW-complexes consider the following

Proposition 2.1.18. (cp. [8], p.245-247) Let ¥ be a simplicial compler.
Then there exist characteristic maps f, : B® — X = Uyes 0 that turn
X into a CW-complex. The closed cells of this CW-complex are the affine
stmplices of . One can choose the characteristic maps f, such that the
coefficients [T : o] of the cellular homology of X are given in the following
way: Ifo = (vgy .- ,03), T= Vg, -,V 1,Vps1,---,0;) then [T : 0] = (=1)%

2.1.5 Graded CW-complexes

Definition 2.1.19 (Graded CW-complex). 1. For a (not necessarily
finite) partially ordered set (P, <) and a map f : (X, A)®*) — P we call
(X, A, f) a P-graded CW-pair if f is order preserving. (See Definition
2.1.9 for the definition of the partial order on (X, A)*).)

2. If (P,=) is a partially ordered set, (X, f) a P-graded CW-complex
and p € P, we denote by X<, the P-graded sub-CW-complex of X
consisting of all cells ¢ € X such that f(o) < p.
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2.1.6 Cellular chain complexes and cellular resolutions

Z4%-graded free chain complexes and in particular free resolutions can be
constructed from graded CW-complexes in the following way:

Definition 2.1.20 (Cellular chain complex, cellular resolution). Let
R be a ring. We call a Z4-graded free chain complex

Oi+1 ; Oi—1

C=..28¢ 20 "3 e, 6= @ Cp, 0f = R(-a)*

a€Zd

cellular if there is a (Z4, A)-graded CW-pair (X, 4, gr) such that:

(a) For all i € N there is a basis e, of C? indexed by the i-cells o in
(X, A)% such that gr(o) = a,

(b) for alli € N— {0}, 0 € (X, A)® we have

6160' = Z [o', : 0-] Kgr(o—)fgr(o—l) 60"7

o.Za.leX(i—l)

where [0’ : o] is the coefficient of ¢’ in the differential of ¢ in the cellular
chain complex of the pair (X, A).

In this situation we write C(g;( 4) for the given chain complex and say
that C(g)r(, 4y is supported by the (74, A)-graded CW-pair (X, A, gr). When the
Z%graded free chain complex C is a Z%graded free resolution C = F, we
say that F = Ffx , is a Z%graded free cellular resolution supported by the
(Z4, A)-graded CW-pair (X, 4, gr).

Example 2.1.21. Consider the ideal M = (z3xy, T3x3, 173, T17273) in S =
k[x1, z2,x3]. The multigraded minimal free resolution of M over S is given
by:
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T3 0 0
0 =z o |5(=(210)

SCLD)| o 0 B
& oy —my —my ) S(=(0,2,1)
F:0—= S(=(1,2,1)) B —— M —=0
©® S(—(1,0,2))
S(—(1,1,2)) ©®
S(—(1,1,1))

This resolution is easily seen to be cellular with F = F¥5 for the following
graded complex (X, gr):

0,2,1) (1,0,2)

Figure 2.

2.1.7 Co-Artinian monomial modules

Definition 2.1.22. 1. We denote by

T :=k[zf',... of'] = EB kx®
a€Zd
the ring of Laurent polynomials generated by all monomials x* = z{" -

xgd for a = (o, ... ,qq4) € Z°

2. An S = k[x1,... ,z4-module M is called monomial module if it is a
submodule of T' generated by monomials x for o € Z¢.

3. A monomial module M is called co-Artinian if for each x* € M there
are only finitely many x? € M such that x*? € S.
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4. Let M be a monomial module. A monomial x* € M is called minimal
if %—a ¢ M for all i = 1,...,d. We denote by MinGen(M) the set of
minimal monomials in M.

Lemma 2.1.23. (/5/) A monomial module M is co-Artinian if and only if
it is generated by the set MinGen(M) of its minimal elements.

An ideal in S = k[z1,..., x4 that is generated by monomials is called a
monomial ideal. Of course, any monomial ideal is an example of a co-Artinian
monomial module.

Definition 2.1.24. A subgroup L C Z¢ of the additive group Z¢ is called
integer lattice.

The following obvious Lemma provides another class of examples of co-
Artinian monomial modules:

Lemma 2.1.25. Let L C Z% be an integer lattice. Let M C T be the mono-
mial module generated by all monomials x* such that « € L. Then M 1is
co-Artinian if and only if LNN¢ = {(0,...,0)}.

2.2 Some basic facts about cellular resolu-
tions

Definition 2.2.1. Let

Ci = B pera CF, CF = R(—)? be a Z*-graded free chain complex over the
affine semigroup ring R = k[A]. Recall that A induces a partial order on Z¢4
by a < § if and only if a + v =  for some v € A.

1. We denote by C=* (C=“ respectively) the subsequence of C consisting
of the submodules C2 := Ds=a clo(cre = Dsa CP respectively).
These are again Z%graded free chain complexes. They are the sub-
chain complexes of C generated by all generators with multidegree < «
(respectively < «).
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2. Consider the decomposition C; = €,.54(Ci)a of C; as a k—module.
That is, for all & € Z%, (C;), consists of all elements of C; of multidegree
a. By C, we denote the k—chain complex of k—vectorspaces given by
the degree o € Z¢ components (C;),. We call C, the degree o strand of
C.

Note that (C;)o # Cf. In general neither one is a subset of the other.

Remark 2.2.2. Since the differentials 0; in Definition 2.2.1 are homogeneous
and R—linear, they restrict to differentials of C=%, C2* and C,, so the above
chain complexes are well-defined.

2.2.1 A criterion for a CW-complex to support a cel-
lular resolution

It is helpful to establish the following criterion for a (Z¢ A)-graded pair
(X, A, gr) to support a cellular resolution. The following Proposition was
first formulated in [5].

Proposition 2.2.3. Let R = k[A] be an affine semigroup ring.

1. The (Z% A)-graded CW-pair (X, A, gr) supports a cellular resolution
of a Z4-graded R-module if and only if for all « € Z* we have that
Hi(XjaaAja; k) =0 fOT all i 2 1.

2. The (Z% A)-graded CW-complex (X, gr) supports a cellular resolution
of a monomial R-module if and only if for all o € Z¢ the subcomplex
X<a 18 acyclic over k or empty.

3. A cellular resolution supported by a (Z% A)-graded pair (X, A, gr) is
minimal if and only if for all cells 0,0' € (X, A)®, o' < o and dimo’ =
dimo — 1 we have either gr(o) # gr(o’) or [0’ : 0] = 0.

Proof. For any multidegree o the degree « strand (Fx 4), is supported by ba-

sis elements e, for cells o in (X<q, A<q)®. Let 2 := Z 0y, XY 8%.¢,.
aE(Xja,Aja)i

Then ;2 = 0 if and only if the coefficient b, of any ey, 0’ € (X<q, A<a)™Y,
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in 0;z is zero. Now b, = x@ &' Z ay - [0’ : o]. Thus b,y = 0 if and
0€(X<a,A42a)®
only if Z @y - [0 : o] = 0. But this is equivalent to the fact that
7€(X<a,42a)?
Z a4y - 0 is a cycle in the cellular chain complex of (X<q, A<q) with

O'E(Xja,Aja)i
coefficients in k.

Similar arguments show that z := Z Oy-X
ae(XjaaAja)(i)

a—gro

-e, is @ boundary

z = 0j417" if and only if Z ay -0 is a boundary in the cellular chain
(X< Aza)®
complex of (X4, A<y) with coefficients in k.

It follows from Definition 2.1.6 that a resolution Fx 4 is minimal if and
only if no entry in the matrix describing the differential is a non-zero con-
stant. For cellular resolutions this condition directly translates into the last
assertion of the proposition. ]

2.2.2 Betti numbers from given resolutions

By the following lemma the Betti-numbers 8%, o € Z%, of the minimal Z%-
graded free resolution of M can be computed from any given Z?graded free
resolution F of M:

Lemma 2.2.4. Let M be a Z%-graded R-module, F a Z.%-graded free resolu-
tion of M. Then:

B (M) = dimH;((F=*)a, (F~*)a)-

Proof. If F = Fnin is minimal, the assertion follows from the fact that all
differentials of the chain complex ((F=%),, (F<%),) vanish. For general F
there is a direct sum decomposition F = Fin @ R, where R is a direct sum
of exact sequences

i times

o
Ropit--—0—=8(-a)” = S(—a)” -0 =0,
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a € Z%, i,y € N. This gives:

Hi((F**)a, (F**)a) = Hi((Fain ® R™)a, (Fai ® R%)a)

min

= H;(Fam)ar (Fam)a) © Hi((R*)a, (R¥)a)

and the assertion follows because the sequence ((R3%),, (R*%),) contributes
no homology. O

Starting with a cellular resolution Fx 4 of a Z%-graded R-module M and
following the idea of Lemma 2.2.4 it is possible to describe the Betti-numbers
of the minimal free Z4-graded resolution of M in terms of the homology of
the underlying (Z<, A)-graded CW-pair (X, A, gr). We write H;(X, A4; k) for
the i-th cellular homology group of the pair (X, A) with coefficients in k£ and
H;(X; k) for the reduced homology of X with coefficients in k. As usual
H;(0;k) =0 for i # —1 and H_{(0; k) = k.

Proposition 2.2.5. Let R = k[A] be an affine semigroup ring. Let M be
a Z4-graded R-module and (X, A, f) a Z*-graded CW-pair supporting a Z4-
graded free resolution of M. Then:

BEM) = dim Hy(X<a, X1 U Ao k)

dim Hifl(X-<aaA-<a; k') if Aja # 0
dim H;_1(XZq; k) if Az =0

where the first equation holds for all © > 0, the second for all i > 2. If in
addition X<, and A<, are acyclic or empty, the second equation also holds
for i =1. Note that for i = 0 the righthand side of the first equation is easy
to calculate.

In particular, B* = 0 in case there is no i-cell in (X, A)® of degree a.

Proof. Denoting the i—th cellular chain group of a CW-pair by C;(X, A), the
chain-complex ((.7-}'(55“4)&, (FX%)a) reads as follows:

CH—I(Xja, Aja) N Cz (Xjaa Aja) N Cifl(Xjaa Aja) N
Ci+1(X<aa A<a) Cz'(X<ou A<a) Ci—l(X<aa A<a) ’
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with induced differentials. Since we have:

Ci(X<a, A<a) ., Ci(X<a)/Ci(A<a)
Ci(Xza Aza)  Ci(X2a)/Ci(Asa) — (2.2.2.1)

~ Ci(X<a) ~ Ci(Xz)

1%

Ci(X<a, Xoa U AL,
CiXa) + C(Azy) - CGXaaUAgy - Cil¥zeXcaUdz)

and the induced differentials are the same as those of the cellular chain
complex of the pair (X<4, Xzo U A<,), applying Lemma 2.2.4 proves the
first equation.

Applying equation (2.2.2.1), the long exact sequence of the pair
(Co(X<arAza), Co(X<a, A<q)) can be written as follows:

e Hi—l—l(XjaaAja) — Hi+1(XjaaX-<a U Aja) —
— Hi(X20,Aza) — Hi(Xz4,A<4) — ..

This proves the second equation for 7 > 2.
Assume now X<, and A<, to be acyclic or empty. The long exact se-
quence for pairs yields the exact sequence:

0= ﬁl(Xja; k) — [:jl(XjaaX<a UAzaik) —
— ﬁo(X<a UAzaik) — F[O(onﬁ k)=0

If A<y =0, we have fIl(Xja,Xm UAzys k) = ﬁo(Xm; k) as stated.

If A<, is acyclic, considering that X_,NA<, = A, , the Mayer-Vietoris-
sequence for X., U A<, yields ro(Am;k) — ﬁo(Xm;k) — ﬁo(Xm U
Azni k) — H 1(Asa;k) = H 1(X<q; k), while the long exact sequence for
the pair (Aza, X<q) yields Hy(A<q; k) = Ho(X<as k) — Ho(X<a, Azas k) —
H_1(Asq; k) = H_1(X<a; k). The assertion follows from the five lemma.

If there is no i-cell of degree v in (X, A)® then H;(X<a, X<aUA<q; k) =
H;(X<a,X<a; k) = 0. This proves that 3* = 0 in case there is no i-cell of
degree o in (X, A)®. O
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2.2.3 Quotients

In a situation where we have a Zd-graded free resolution F of a Z%graded
module M and an exact subsequence G — F resolving the submodule N —
M, passing to quotients yields a Z%—graded free resolution of the quotient
M/N if and only if the modules G; are direct summands of F; for all i > 0.
The following cellular situation fullfills this condition:

Proposition 2.2.6. Let the CW-pair (Y, A) support a Z4-graded cellular free
resolution of the Z%-graded S-module M which restricts to a Z%-graded cel-
lular free resolution of a submodule N — M supported by the CW-subpair
(X, A) of (Y, A). Passing to quotients yields a Z-graded cellular free resolu-
tion of M/N supported on the CW-pair (Y, X).

2.3 Examples of cellular resolutions

In this section we present several classes of cellular resolutions. The examples
in Sections 2.3.1 - 2.3.5 and 2.3.8 have been known for a while. The examples
in Sections 2.3.5 and 2.3.6 are new contributions by the author.

2.3.1 Taylor resolution

Recall that for a co-Artinian monomial module M we denote by MinGen (M)
its uniquely defined minimal set of monomial generators (See Definition
2.1.22).

Definition 2.3.1 (Taylor-complex). 1. For a co-Artinian monomial
module M let T(M) be the simplicial complex on the ground set
MinGen(M) and simplices the finite subsets of MinGen(M). We grade
the simplices o € (M) by lem(o) := lem{m|m € o}. Via the corre-
spondence a <+ x*, we also regard this grading as a Z%—grading. (M)
is called the Taylor-complex of M.

2. Let more generally N C M be two co-Artinian monomial modules.
Then we denote by (M, N) the simplicial complex on the ground
set MinGen(M) U MinGen(N) and simplices the finite subsets of
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MinGen(M)UMinGen(N). Again, we grade the simplices o € T(M, N)
by lem(o) := lem{m|m € o}.

Lemma 2.3.2. Let M and N be two co-Artinian monomial modules such
that N C M. Then T(M,N) and T(M) define cellular resolutions of the
monomial module M.

Proof. By Proposition 2.2.3 it suffices to show that T(M, N)<, and T(M)<,
are acyclic or empty complexes for all @ € Z% If T(M, N)<o # 0 or
T(M)<q # 0, then the simplex which contains all points of multidegree «
or less is the unique maximal simplex of the complex. Thus T(M, N)<, or
T(M)<q is contractible and hence acyclic. O

Definition 2.3.3 (Taylor-resolution). 1. For a co-Artinian monomial
module M the cellular resolution supported by T(M) is called the
Taylor-resolution of M.

2. Let N C M be two co-Artinian monomial modules. The cellular reso-
lution supported by T(M, N) is called the Taylor-resolution of the pair
(M, N).

R
h
! Y
[y [
oy \ 1
! N PIR]
I N o
VY 1
. it
i n I
\
\

(2,1,0) 0,2,1) (1,02) (1.1,1)

Figure 3. Taylor resolution for Example 2.1.21
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Theorem 2.3.4. Let N C M be co-Artinian monomial modules.

Then there ezists a cellular Z4-graded free resolution of M /N supported by
the pair ($(M,N),%(N),lcm). In particular, for the Betti-numbers (M /N),
a € Z4, of the minimal Z%-graded free resolution of M/N we have for i > 0:

£0
=0

,BZOZ(M/N) — dlm]?z—l((z’(Ma N)<aa(3:(N)<aak) Zf(’-{(N)ja
dim Hi_l(if(M, N)<a, k) Zf S’(N)ja
Proof. Follows immediately from Lemma 2.3.2, Proposition 2.2.6 and Propo-
sition 2.2.5. O

Definition 2.3.5. We call the cellular resolution of M /N supported by the
pair (T(M, N),%T(N),lecm) the Taylor-resolution of M/N.

In order to formulate a condition for a monomial module under which
the Taylor-resolution is minimal we need the following definition and obvious
remark:

Definition 2.3.6. 1. Let py,...,p, € S = k[x1,... ,x4) be polynomials.
P1,- .-, Py is called a regular sequence if (p1,...,p;—1) # S and if for

alls=1,... ,n we have that p; is not a zerodivisor in S/(p1, ... ,pi_1)-
Here, (p1,...,pi—1) C S denotes the ideal generated by the polynomials
Py 5 Di-1-

2. If p1,...,pn is a regular sequence, the ideal (pq,...,p;) C S is called
complete intersection.

Remark 2.3.7. Let I C S be a monomial ideal. I is a complete intersection
if and only if the elements of MinGen(/) have disjoint supports, that is, if

m, m' € MinGen(I), m # m' and xr‘m for some variable z,, then xr*m’.

Proposition 2.3.8. 1. Let N C M be co-Artinian monomial modules.
The Taylor-resolution of M/N is minimal if and only if for all o €

T(M,N) and all m € o we have that m‘lcm(a\{m}) implies o\{m} €
T(N). In particular the Taylor-resolution of M is minimal if and only
if for all o € T(M) and all m € o we have m* lem(o\{m}).
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2. Let I C S = k[z1,...,24] be a monomial ideal which is a complete
intersection. Then the Taylor-resolution of I is minimal.

Proof. Minimality of the Taylor-resolution of M /N occurs if and only if for all
simplices 0 € (M, N) and all m € o either the coefficient lcm o /lem(o\{m})
is an element of the maximal homogeneous ideal m or o\{m} € T(N). This
proves the first part of the Proposition. The second part is an easy applica-
tion of the first part. O

2.3.2 Scarf resolution

In search of smaller resolutions Proposition 2.3.8 suggests the following strat-
egy: Start with the Taylor-resolution and remove those simplices that ob-
struct minimality, namely the simplices ¢ with the following property:

There exists a monomial m € o such that m|lem(o\{m}). (2.3.2.1)

Not very surprisingly minimality is not so easily achieved. The reason is
that in general the resulting simplicial complex is not acyclic. Consider the
following simple example:

Example 2.3.9. Let I be the ideal in klxi,z5] generated by the monomials
22,22 and T,7,.

(L1

(2.2)

(2,0)

(2.2) 02)

Figure 4. Taylor complex for example 2.3.9

Here, the simplex o = {z?, 73, 7175} has property (2.3.2.1) with m =
x1x9. Thus, above strategy calls for removing . But since no other simplex
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fullfills property (2.3.2.1) the resulting simplicial complex forms the boundary
of a triangle which is not acyclic. In this example this can be fixed by also
deleting the simplex o’ = {z%, z3}. The result is a minimal resolution.

(1.1)

(2,1) (1,2

(2.0) (0.2)

Figure 5. Scarf complex for example 2.3.9

Thus, the next idea is not only to remove the simplices o = {mq, ... ,ms}
with property (2.3.2.1) but also the corresponding simplices o = {my, ... ,ms}
—{m}. That is we delete all simplices o = {my, ... ,ms} with the property:

There exists m € MinGen(M) such that m|lem(o\{m}). (2.3.2.2)

The resulting simplicial complex is called the Scarf complex:

Definition 2.3.10 (Scarf-resolution). 1. Let M C T = k[z{',... 2"
be a co-Artinian monomial module. The simplicial subcomplex of the
Taylor-complex of M that is given by the set of those simplices o such
that there is no other simplex 7 # ¢ with lem ¢ = lem 7 is called the
Scarf-complex of M.

2. If the Scarf-complex of M is acyclic, we call the resolution supported
by it, the Scarf-resolution of M.

Unfortunatly, the Scarf-complex in general does not provide a resolution.
Consider the next simple example:

Example 2.3.11. Let I be the ideal in k[x1,x2, x3] generated by the mono-
mials T1T9, T1x3 and xox3.
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The resulting Scarf complex consists of three points. Again, this is not
an acyclic complex.

(1,0,1)
o

(1.10@ ® (0.1.1)
Figure 6. Scarf complex for example 2.3.11

There is the following obvious, but noteworthy property of the Scarf-
resolution:

Proposition 2.3.12. Let M C T = k[27',... , 23] be a monomial ideal. If
the Scarf-resolution of M exists (that is, if the Scarf-complex of M is acyclic),
then it s minimal.

Proof. The condition of the second part of Proposition 2.2.3 is obviously
satisfied, which proves minimality. O

In [5], Bayer and Sturmfels prove existence and therefore minimality of
the Scarf-resolution for the class of generic co-Artinian monomial modules.
Here is the definition:

Definition 2.3.13. Let M C T = k[z{',... ,23'] be a co-Artinian mono-
mial module. Let

Oy : @ Se,, — M

meMinGen(M)
be a presentation of M, that is, d(e,,) = m for all m € MinGen(M).

1. A binomial n,,em,m — € € @meMinGen( M) Se,, is called generic if no
variable z;, 1 = 1,... ,d appears in m and m’ with the same exponent.
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2. M is called generic if there exists a basis of generic binomials for ker 0.

Theorem 2.3.14. (see [5], Theorem 2.9) Let M C T = k[zi',... 23] be
a generic co-Artinian monomial module. Then the Scarf-complex supports a
cellular minimal free 74— graded resolution of M.

In [4] Bayer, Peeva and Sturmfels prove the same result for a more re-
strictive version of genericity:

Theorem 2.3.15. (see [4], Theorem 3.2) Let I C S = k[zy,...,z4] be a
monomial ideal such that for any m,m’' € MinGen(M), m # m’', no variable
appears in m and m' with the same non-zero exponent. Then the Scarf-
complex supports a cellular minimal free Z.2—graded resolution of I.

2.3.3 Hull resolution

In [5] Bayer and Sturmfels introduce another cellular resolution called the
Hull-resolution.

Definition 2.3.16. 1. For a co-Artinian monomial module the Hull-
resolution is the cellular resolution supported on the polytopal Z4-
graded subcomplex Xy, of R¢ whose faces are the bounded faces of
the polyhedral complex which is the convex hull of (%, ...  t%) € R
for x* € M and ¢ sufficiently large. (See [5, Theorem 2.3] for details.)

2. For a face ¢ of Xy its degree lem(c) is given by « such that x® is the
lecm of the monomials in M corresponding to the vertices of the face c.

Since by [5, Example 3.11] the Hull complex is in general not a locally
finite polytopal complex, its topology differs from the one induced by the
topology of R?, see 8, Theorem 8.2]. But it is locally finite in the important
case of co-Artinian monomial modules defined by lattices [5, Theorem 3.14].

The Hull-resolution can be viewed as a generalization of the Scarf-
resolution, since it always exists and there is the following Theorem:

Theorem 2.3.17. (See [5], Theorem 2.9) If M C T = k[zF',... 23] is
generic, the Hull-resolution coincides with the Scarf-resolution and is there-
fore minimal.
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2.3.4 Lyubeznik’s resolution

There is another way to continue the approach discussed in Section 2.3.2.
Starting from the Taylor-resolution we discussed the two strategies of either
deleting all simplices with property (2.3.2.1) or even deleting all simplices
with property (2.3.2.2). What we found in Examples 2.3.9 and 2.3.11 suggests
to do “something in between”: In Example 2.3.9, deleting all simplices o
with property (2.3.2.1) was not enough. In Example 2.3.11 deleting even all
simplices with property (2.3.2.2) was too much.

Lyubeznik presents in [16] a nice procedure to delete some simplices with
property 2.3.11 from the Taylor-resolution according to a given linear order
on MinGen(M) which he shows always results in an acyclic subcomplex of
the Tylor-complex and therefore gives rise to a cellular free resolution of M:

Definition 2.3.18 (Lyubeznik-resolution). 1. Let < be a linear or-
dering of MinGen(M). Then the Lybeznik complex is defined to be the
simplicial complex on the ground set MinGen(M) that consists of all
simplices 0 = {myg, ... ,ms}, mg <m; < ... < my that satisfy:

for all t < s and m € MinGen(M) s. t. m < m; we have

m* lem{my, ... ,ms}.

2. Lyubeznik’s resolution is the Z4-graded cellular free resolution sup-
ported by the Lyubeznik complex.

Above definition means that one gets the Lyubeznik complex from the
Taylor complex by deleting those simplices ¢ = {my,... ,ms}, my < my <
. < mg with property (2.3.2.2) that contain a “tail” {m,...,ms} for
which there exists a monomial m € MinGen(M) such that m < m, and

mlem{my,... ,ms}.
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(1,0,2)

(111

(1,1,0) ® (0,1,1)
(1.1.1)

Figure 7. Lyubeznik’s complex for example 2.3.11 when using
the ordering x179 < 1123 < X913

2.3.5 Resolutions via rooted complexes

Definition 2.3.19. A partially ordered P set is called a lattice if for all
x,y € P there exists both

e an element z € P such that z,y < z and for all u € P such that
z,y = u we have z < u, called the join z Vy of z and y, and

e an element 2z’ € P such that 2/ < z,y and for all v € P such that
u < x,y we have u < 2/, called the meet x Ay of x and y.

For co-Artinian monomial modules we will frequently make use of the
following lattice associated to it:

Definition 2.3.20. Let M C k[zi',... ,z7'] be a co-Artinian monomial
module. We define LCM (M) to be the lattice consisting of all lem’s of finite
subsets of MinGen(M).

Note that 1 = lem(()) € LCM(M) garantees that this really is a lattice.
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%

1
Figure 8. LCM-poset for example 2.3.9

Novik presents in [18] a generalisation to Lyubeznik’s resolution which
is constructed via rooted compleres. These were introduced by Bjorner and
Ziegler in [7].

Definition 2.3.21. 1. A rooting map for a monomial ideal I is a function
7 : LCM(I) — MinGen(I)
such that for all m € LCM(I) we have

m(m) ‘ m (2.3.2.3)

W(m)‘m' m = 7w(m') =m(m) for all m" € LCM(I) (2.3.2.4)

2. Given a rooting map m and a nonempty subset S of MinGen([), we
define
7(S) := w(lem(S))

We say that a subset S of MinGen([) is unbroken if 7(S) € S. We call
S rooted if all nonempty subsets of S are unbroken. The rooted subsets
of MinGen(/) obviously form a simplicial complex which is called the
rooted complex RC (I, ) of I (with respect to the rooting map 7).
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Novik proves in [18]:

Theorem 2.3.22. Let I be a monomial ideal, ™ a rooting map for I. Then
the rooted complex RC(I,m) supports a Zlgraded cellular free resolution of
1.

This indeed is a generalisation of Lyubeznik’s construction: Let < be a
linear order on MinGen([). Define a rooting map by setting

m(m) := min<{m' € MinGen(I) | m'|m}. (2.3.2.5)

It is easy to see that under this choice of the rooting map 7 the rooted
complex RC(I,7) coincides with the Lyubeznik complex.

Novik also presents a condition under which the resolution given by rooted
complexes is minimal.

For the statement we need the following definition:

Definition 2.3.23. A finite lattice L is called geometric if it is atomic, that
is, every element is a join of atoms, and semimodular, which means that if
for elements x,y € L there exists no element z € L such that rt Ay < z < x
then there also exists no element z € L such that y < z <z Vy.

Theorem 2.3.24. Let I be a monomial ideal, such that LCM(I) is a geo-
metric lattice and let m be a rooting map for I. Then the rooted complex
RC(I,m) supports a cellular free resolution of I.

2.3.6 LCM- and LCM*- resolutions

In this section we introduce new cellular resolutions of monomial modules
derived from their LCM-lattices. Consider the following example:

Example 2.3.25. Let M C k[z1,... ,xz4] be the monomial module generated
by all d monomials of the form xy...x;i1%iy1...2q, © = 1,...,d. There
15 a cellular resolution of M given by a onedimensional simplicial complex
consisting of d + 1 0-cells and d 1-cells.

37



Proof. Consider the following Z%graded simplicial complex X: There are
d 4+ 1 points, the first d of them correspond to the minimal generators of M
and are graded accordingly. The last point is graded by (1,...,1) € Z%. For
each of the first d points there is a line connecting it with the last point. All
these lines are graded by (1,...,1) € Z% It is easily seen that this graded
simplicial complex satisfies the condition of Proposition 2.2.3 since for all
a € 7% the subcomplex X<, is empty, consists of one point or equals the
whole complex X. 0

Although the above resolution has one 0-cell more than the Taylor-resolution
and therefore does not qualify for minimality it has much fewer cells of all
other dimensions. The above resolution is an example of the following class
of resolutions which we will call LCM-resolutions:

Definition 2.3.26. 1. Let P be a partially ordered set. The simplicial
complex A(P) that consists of all finite chains in P, that is all finite
subsets of P that are totally ordered by the partial order of P, is called
the order complex of P.

2. Let M C k[zF',... ,23'] be a co-Artinian monomial module. Denote
by Xrcm(M) the order complex of LCM (M) —{1} (see Definition 2.3.20
for the definition of LCM(M)). We refer to this complex as the LCM-
complex of M. We grade the simplices of Xp,cm(M) in the obvious way
by lem.

Proposition 2.3.27. Let M be a co-Artinian monomial module. Then there
is a Z%-graded cellular free resolution of M supported by Xicm(M).

We call this resolution the LCM-resolution of M.
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(2.2)

(2,0) (0,2)
(L1

(2.1) (1.2)

Figure 9. LCM-complex for example 2.3.9
All simplices that contain the point corresponding to the monomial z?z2
are graded with (2,2) € Z2.

Proof. For all a € Z there exists a unique O-chain {x*} graded with . For
all simplices o of the subcomplex (Xcm(M))<q one of the following is true:

1. x* € 0 and 0 — {x*} € (Xpem(M))<a,
2. x* ¢ 0 and 0 U {x*} € (Xrcm(M))<a-

Hence (Xrcm(M))<q forms a cone, therefore is contractible and acyclic. The
assertion follows with Proposition 2.2.3. O

We now introduce another class of cellular resolutions which is similar to
the class of LCM-resolutions:

Definition 2.3.28. Let M C k[zi',... 23] be a co-Artinian monomial
module. Let LCM*(M) be the partially ordered set consisting of all mono-
mials in M that devide lem o for some finite subset ¢ C MinGen(M). We
set A(LCM*(M)) to be the order complex of LCM*(M) graded by lecm in the
obvious way. We refer to this complex as the LCM*— complex.
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Note that LCM*(M) is the convex hull of LCM(M) — {1} in the set of
all monomials in k[zF',...,z3'] in the sense that we get LCM*(M) from
LCM(M) — {1} by adding all monomials m € k[zi", ... ,x3'] with the prop-
erty that there exist monomials m;, my € LCM(M) such that m,

m‘mQ.

Proposition 2.3.29. Let M be a co-Artinian monomial module. Then there
is a Z%-graded cellular free resolution of M supported by A(LCM*(M)).

Proof. The proof is the same as for Proposition 2.3.27. O

2.3.7 Hypersimplex-resolution of the maximal homo-
geneous ideal

In this subsection we present a new Z%graded cellular free resolution of the
powers m™ of the maximal homogeneous ideal m = (z1,...,z4) C S =
k[.fEl, ce ,iEd].

Definition 2.3.30. Let C} be the polytopal CW-complex with

d
A, =n-A%1 :{ (y1,...,yq) €RY | Zyi:n, y; >0, 1=1,... ,d}
i=1
as underlying space and CW-complex-structure induced by intersection with
the cubical CW-complex-structure on R? given by the integer lattice Z¢.
That is, the closed cells of C} are given by all hypersimplices

Copr = AuN{ (41, ... ,y4) € R? |y,~ =a; 1 €[d\J, y; € [aj,a;+1] :j€J}

= Conv(g—i—Zejej ‘ e; € {0,1}, Zej =d— g )
JjeJ jeJ
withae € N4, J C [d] :={1,...,d}, |a| := > iclq @i € the i-th unit vector in
R?, either subject to the conditions |a| = n and J = (), (these are the 0—cells
Cap = {a},) or the condition 1 < n — |a| < |J| — 1. The CW-complex C} is
naturally multigraded by setting lem(C, ;) := a + ZjeJ e;. We refer to Cj
as the hypersimplicial complex.
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(0,0,3,0)

(3,0,0,0)

/ (0,0,0,3)

(0:3,0,0)

Figure 10. The hypersimplicial complex C}

Lemma 2.3.31. Considering canonical orientations of these hypersimplices

and denoting J = {jo, - .-

of C} 1is given by

T

v=0
r

8CQ,J = Z(_l)u a,Jy

v=0
r

0Cas =Y (~1)""'Cures,i.:

v=0
acga{jO;jl} = CQ"'ejla@ -

Cop =0,

CQ-FEJ'O 05

41

acg,J = Z(_l)y(cg,lu - Cg+ej,,,Ju)a if

ety Jo < oo < ry = J\{4v}, the differential

2<n—|af < |J[ =2

l=n—la <|J]=2



Proposition 2.3.32. C} defines a multigraded cellular free resolution of m™.

Proof. The 0-cells of C} are in one-to-one-correspondence with the set of
minimal generators of m”, so the fact that (C})<q = A N { (Y1,...,%4) €
R? | y; < ay,i=1,...,d } is contractible or empty for all & € Z? proves (use
Proposition 2.2.3) the assertion.

U

2.3.8 Bar-resolution

Definition 2.3.33. Let k[A] be an affine semigroup ring. We set Ay := A\
{0}. The (normalized) Bar-resolution of k as an R- module is the multigraded
resolution

9; 0; 0;— 1}
F=..8F 5 F_ 1= ... =5 F,

Fi = @, eza FY such that F is the free R-module with basis given by the
set

Af = {ol -+ IN] TN €A, 05 <, A4+ X = a}.

The differential is given by
Bi[Xol -+ - [Ni] = %[\ - - |)\]+Z )Pl -+ [Xjr 4 Xy AL

To see that this really defines a Z?graded free resolution of k, consider
the following Lemma:

Lemma 2.3.34. The Bar-resolution is cellular. It is supported by the (Z%, A)-
graded order-complex A(Ag) of Ay.

Proof. For 0 = (Xo,...,N) € AA)®, that is \g < ... < \;, we set
gr(o) := A;. By Definition 2.1.1 it is obvious that this really provides a
(74, A)-grading for the order-complex A(Aq) of Ag. We set A(Ao)g) ={o €
A(Ag)® | gr(o) = a}. Consider the following maps
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P Ag — A(Ag)W

2

[)\0,... ,)\z] '—)()\ia)\i—1+)\ia-" ,)\0++)\Z)

For all « € N the map ®! provides a one-to-one correspondences between
A% and A(Ag)¥. The differential of the simplicial complex A(Ao) induces
the following map:
Dol -+ A 7= Pl IA] + D (=17 Dol - Ao+ Agl -+ A

j=1

The given differential comes from homogenising this map. This proves the
assertion.
]
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Chapter 3

Discrete Morse theory

In this chapter we discuss discrete Morse theory. This is the fundamental tool
from combinatorial topology used in this thesis. Section 3.1 presents parts of
Forman’s discrete Morse theory for regular CW-complexes. Section 3.2 ex-
pands this theory to not necessarily finite graded CW-complexes. In Section
3.3 we develop a discrete Morse theory for cellular resolutions. Section 3.4
discusses Morse differentials.

3.1 Discrete Morse theory for CW-complexes

The fundamental tool from combinatorial topology applied in this thesis is
discrete Morse theory as developed by Forman [13, 14]. In this section, we
review parts of this theory.

Definition 3.1.1. Let X be a CW-complex, 0,7 € X® cells in X such that
o is a face of 7, dim(o) =i — 1, dim(7) =i. Let
f,:B"!' s Xand f,: B" =5 X

be the characteristic maps for o and 7. We say that o is a regular face of 7
if there exist homeomorphisms

g, : B — B’
and

Jo Sgol ={(zy,...,2;) €S|z, >0} =, B!
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such that the following diagram commutes:

i—1 9o -
S>0 Bt 1

—[ \
9r . f‘r

B! B X

The central idea of discrete Morse theory is to construct for a given CW-
complex a new CW-complex that is homotopically equivalent to the original
one but is built from less cells. The condition needed for such a construction

is the existence of a discrete Morse function.

Definition 3.1.2 (discrete Morse function). A discrete Morse function

on the CW-complex X is a function
f:X® =R
such that
1. for every cell o € X

{7 € X | 7 is a facet of o, f(T)
| {TeX(*) | 0 is a facet of 7, f(7)

and

2. if 0,7 € X® are cells in X, ¢ a facet of 7, such that

flo) = f(7),

then o is a regular facet of 7.

(3.1.3.1)
(3.1.3.2)

Trivial examples of discrete Morse functions are all functions on X *) that

increase strictly with dimension. Discrete Morse functions can be regarded

as functions that increase with dimension up to one exception locally.
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Definition 3.1.3 (critical cells). Let X be a finite CW-complex, f a dis-
crete Morse function on X. A cell o of X is called f-critical, if

| {re X® | risafacet of o, f(1)> f(0)}| = 0 (3.1.3.3)
| {7 € X® | gisafacet of 7, f(7) < f(0)}| = 0. (3.1.3.4)

We set
Xc(r*izical(f) ={o € X&) | o is f-critical}

For every dimension ¢ the number of f-critical cells in dimension ¢ is called
the Morse number m;(f) .

As one main result Forman shows (see [13], Theorem 10.2):

Theorem 3.1.4. Let X be a finite CW-complex, f a discrete Morse function
on X. Then X is homotopy equivalent to a CW-complex with ezactly m;(f)
cells of dimension 1.

3.2 Discrete Morse theory for graded CW-
complexes

In this section we expand discrete Morse theory to graded and not necessar-
ily finite CW-complexes. In [9], Chari reformulates discrete Morse theory in
terms of acyclic matchings. In this section we review his results. On the way
we show that his approach leads in a natural way to the consideration of grad-
ings by partially ordered sets. As main result of this section (see Theorem
3.2.14) we prove a version of Theorem 3.1.4 for graded CW-complexes.

3.2.1 Acyclic matchings

Definition 3.2.1 (cell graph). Let X be a CW-complex. Consider the
directed graph Gx on X whose set Ex of edges is given by

Ex :={r — 0| o is a facet of 7}.

We call Gx = (X®), Ex) the cell graph of X.
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Definition 3.2.2 (acyclic matching). Let X be a CW-complex, Gx =
(X®), Ex) its cell graph. Let A C Ex be a subset of edges 7 — o € FJ,
such that o is a regular face of 7 for all 7 — 0 € Ex.

1. We denote by G4 = (X®) E4) the induced graph with edge set
E$ = (Ex\AU{o =7 |7—0€ A}

that is built from G x by reversing the direction of all edges 7 — ¢ that
lie in A.

We call an edge 0 — 7 € E4 an A-edge if for its reversed edge 7 — o
we have
T— o€ A.

2. We call A a matching on X, if each cell o € X™ occurs in at most one
edge of A.

3. We call A an acyclic matching on X, if A is a matching and if the
induced graph G% is acyclic, that is, contains no directed cycle.

4. A cell of X is called A-critical if it does not occur in any edge 7 — o €
A.

5. We set

Xc(zzical(A) = {0 € X | 0 is A-critical}

6. We denote by G4 = (X®, E4) the induced graph with edge set
E{:=ExU{o—71|T—=0€A}

that is built from Gx by adding for all edges 7 — ¢ that lie in A their
reversed edges o — T.

Lemma 3.2.3. Let X be a CW-complex, A an acyclic matching on X and
A" € A. Then A’ is an acyclic matching on X.
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Proof. Suppose
Y=Vy —=> ... Vg, UVp =1

isa cyclein A’. Note that no two consecutive edges v; = v; 1 and v; 11 — Vj;2
can be A’-edges, because A’ is a matching. Since the dimension of the cells
involved decreases strictly along edges that are not A’-edges and increases
by 1 along A’-edges it follows that

Y=Tg 200> ... > Tk — Ok — Tk+1, Tk+1 = T0,
where all
0; = Tix1, 0=0,...,k
are A'-edges and all
T =0, 1=0,...,k

are not A’-edges (or the other way around). It follows that vy also is a cycle in
G4, since none of the edges involved that are not A’-edges can be an A-edge
(this would violate the property of A of being a matching). Consequently A’
must be acyclic. O

Lemma 3.2.4. Let X be a CW-complex, A an acyclic matching on X. Then
the only cycles in the graph G% consist of evactly one edge e € A and its
reversed edge.

Proof. 1f v is a cycle in é}“(, it must contain one edge e € A and its reversed
edge. (Reason: If not, v can be viewed as a cycle in G4 for some A’ C A.
This conflicts with Lemma 3.2.3.) These two edges cut 7 into two parts
that again are cycles, so by induction v only consists of pairs of oppositely
directed edges. From the fact that A is a matching it follows that ~ consists
of only one such pair. O

The above Lemma justifies the following

Definition 3.2.5 (The matching poset (A®),<,)). Let X be a CW- com-
plex, A an acyclic matching on X.
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1. We define
AW = A0 xB.(A).

For a,b € A® we set a =<, b :& there exists a path in é’)“( from b to
a. Here, if a =7 — 0 € A, we mean a path in é‘;‘( from b to either o
or 7,if b=T — 0 € A, we mean a path in G% from either o or 7 to a.
We call the partially ordered set (A™), <) the matching poset of A.

2. We call the function
gry: X® — A0

, o i 0€Xih
=71 if ce{r,r}andr -717€A

the A-universal grading of X. We denote the subcomplexes X<, that
arise from this A®) —grading by X<, a-

3.2.2 The correspondence between discrete Morse func-
tions and acyclic matchings

We present the following definitions and lemmas to clarify the connection
between discrete Morse functions and acyclic matchings.

Definition 3.2.6. Let X be a CW-complex, Gx = (X®, Ex) its cell graph
and f: X® — R a discrete Morse function on X. We set

Ap:={r 2 0€ Ex |oisafacet of 7, f(r) < f(0)}.
We call Ay the acyclic matching on X corresponding to f.

The above denotation is justified by

Lemma 3.2.7. Let X be a CW-complez, f : X*) — R a discrete Morse
function on X. Then

1. Ay is an acyclic matching and
2' Xc(:;zical(Af) = ijizical(f)'
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This also justifies to denote the set of critical cells just by X C(zzical as long
as only one acyclic matching and its corresponding discrete Morse functions
is involved.

Proof. 1. By [13], Lemma 2.5, not both conditions (3.1.3.3) and (3.1.3.4)
of Definition 3.1.3 can be violated for a single cell ¢ € X®. This
proves that all cells o € X®) occur in at most one edge of A, so Ay
is a matching. Acyclicity of Ay comes from the fact that f decreases
on paths in G and decreases even strictly along edges o — 7 that are
not A-edges, of which at least one must occur in any cycle.

2. Obvious from the construction of Ay.
O

Lemma 3.2.8. Let X be a CW-complex, A an acyclic matching on X. Then
there exists a discrete Morse function on X such that

A=A
Proof. Let < be any linear extension of <, and
f o A® R
strictly <-order preserving, that is, for a,b € A® we have
a<b= fYa) < fH0).
We define the discrete Morse function f : X®*) — R by

Fo) = { f@) i o=aeX

f*(a) if a=7—>veAdando € {r,v.}
It is easy to check that f is a discrete Morse function on X and Ay = A. [
The above leads to the following reformulation of Theorem 3.1.4:

Theorem 3.2.9. Let X be a finite CW-complex, A an acyclic matching on
X. Then there is a CW-compler X 4 whose i-cells are in one-to-one corre-

spondence with the A-critical i-cells of X such that X 4 is homotopy equivalent
to X.
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3.2.3 Discrete Morse theory for graded CW-complexes

In the remainder of this section we give an explicit description of the Morse
complex X 4 corresponding to an acyclic matching A on X, extend the theory
to not necessarily finite CW-complexes and show that the Morse equivalence
is, in a canonical way, compatible with gradings.

Definition 3.2.10. Let P be a partially ordered set, (X,gr) a P-graded
CW-complex.

1. We call the grading gr : X*) — P a compact P-grading of X if X1,
is compact for all p € P. X is then called compactly P-graded.

2. We call an acyclic matching A of X proper if the corresponding A-
universal grading gr, : X®*) — A®) is compact.

We now make some preparations for the construction of the Morse com-
plex X 4 corresponding to a proper acyclic matching A on X:

Lemma 3.2.11. Let X be a CW-complex.

1. Let o,7 € X, dim =i, dim7 =i+ 1, o a reqular face of . Then
there exists a deformation retraction

h”T—)O’ : 77— —> U E.
o”EX(*),

o! a face of T,

o'¢{o,7}

2. Let A be an acyclic matching on Gx, a € A®. Ifa = (1 — o) € A,
then

hT—m:XjAa, — X-<Aa
x if 47
—
! {hw(x) if zef,

1s a deformation retraction.

Proof. Obvious from Definition 3.1.1 O
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Definition 3.2.12. Let A, X,Y and Y’ be topological spaces, A C X, ¢ :
Y —Y'and f: A — Y continuous maps. We denote by

ide¢:XUfY—)XU¢OfY,
the unique map that makes the following diagram commutative:

idUg

XUy XUy’

id
XU,y e

X U¢Of Y!

Definition 3.2.13 (Morse complex, Morse equivalence). Let X be a
CW-complex, A a proper acyclic matching on X.

Recall (see Definition 3.2.5) that <, denotes the partial order of the
matching poset A®). For all ¢ € A® we define inductively a CW-complex
(Xa)<,a @ € A™ and a map

H(A)< 0 X<,0 — (Xa)< 0
1. Let a € A® be <,-minimal. We set
(XA)jAa =X<1,.=a
(note that a < ,-minimal = a € Xc(:;zical) and
H(A)< 0= idxg -
2. Let a € A®. Suppose for all b <, a, the CW-complexes (Xa)<,» and

the maps H(A)<,»: X< 5 — (Xa)<,s are constructed such that for
all b,b' € A® b <, b=, a, we have

(Xa)<,» C (Xa)<,0

and the diagram

H(A) ’
X<,y A (Xa) <
H(A) [
X< b “a? (Xa)<,b



commutes.
Denote by (X4)<,q the union

and by
H(A)< 0t Xapo — (Xa)< 0
the map induced by the maps
H(A)<,p: X<,p — (Xa)< 5, b <, @

e Case l: a=17—0€ A

We set
(Xa)<,a = (Xa)<,a
and define
H(A)< 0 X< 0 — (Xa)<,a
by
H(A)< 0 = H(A)< 00 hroro:

e Case 2: a=0 € X%

critical

Let dimo =i and f,: B, — X< ,a be the characteristic map
of the cell 0. Recall that

X<,0=BiUp, X2 a
We set,
(Xa)=< 0 = By Un(a).  aofa, (Xa)<,a
and

H(A)< o = idp Uy, H(A) 0
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We define

and
HA): X — X,y
to be the map induced by the maps
H(A)<,0: X<,0 — (X4)<, 0

We call X4 the Morse complez of X with respect to A and H(A) the corre-
sponding Morse equivalence.

Theorem 3.2.14. Let X be a CW-complex, A a proper acyclic matching
on X. Let X4 be the corresponding Morse complex, H(A) : X — X4 the
corresponding Morse equivalence. Then

1. for all i € N, the i-cells of X4 are in one-to-one correspondence with
the A-critical i-cells of X and

2. the Morse equivalence H(A) : X — X 4 is a homotopy equivalence.

Furthermore, there is a canonical A®-grading gr , XS) — A® of X,
given by the composition

ng*) i) Xc(:izical — X(*) % A(*)

For all a € A® the subcomplex (X 4)<q with respect to this A®)-grading is
given by the subcomplex

(Xa)<a = (Xa)<,a

from Definition 3.2.18. Also the Morse equivalence H(A) : X — X4 re-
spects these A® -gradings, that is:

3. For alla € A® and alli € N, the i-cells of (X4)<,a are in one-to-one
correspondence with the A-critical i-cells of X< . and
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4. for all a € A®) the restriction H(A)<,o = H(A)|X5Aa is a homotopy
equivalence

H(A)jAa . XjAa i} (XA)jAa-

Proof. The fact that the A-universal grading gr, : X*) — A® of X induces
a canonical A®-grading gr , : Xg*) — A® of X4 can be seen from the defi-
nition of the Morse complex (see Definition 3.2.13) which is by done induction
over the matching poset A®): Every new cell o4 € Xj(:) corresponding to a

critical cell o € Xc(:zzical, say gry(o) = a is attached to the complex (X4)< a4

so that for all faces 74 € X4 of 04 corresponding to critical cells 7 € Xf,:zical
we have that gr,(7) <, gru(o).

Also parts 1. and 3. are immediate consequences of the inductive con-
struction of the Morse complex: For every element a € A® that is a critical
cell a = 0 € Xc(:zical, we attach a cell of the same dimension. For every el-
ement a € A® that is an element a = 7 — o € A, we do not attach any
cells.

For parts 2. and 4. we use [24]: From Proposition 3.1 (Projection Lemma)
and Proposition 3.7 (Homotopy Lemma) we derive the fact, that the induced

maps
H(A)<,0: X<,0 — (Xa)<,a
and
HA): X — X,
are homotopy equivalences. O

Definition 3.2.15. Let X be a CW-complex, P a partially ordered set,
gr: X® — P a P-grading of X and A an acyclic matching on X. We call
A homogeneous with respect to the P-grading gr : X®*) — P if we have:

gr(r) =gr(o) for all 7 — o € A.

Remark 3.2.16. Let X be a CW-complex, P a partially ordered set, gr :
X® — P a P-grading of X and A an acyclic matching on X. Then the
following are equivalent:
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1. A is homogeneous with respect to the P-grading gr : X — P,

2. the A-universal grading of X is compatible with the P-grading gr :
X&) — P, that is, there exists an order preserving map ¢ : A®) — P
such that the diagram

A

e
)
gr

X&) ——PpP
commutes.

This is why we call gr, : X®*) — A® the universal A-grading of X.

Remark 3.2.17. Let X be a CW-complex, P a partially ordered set, gr :
X® — P a compact P-grading of X and A an acyclic matching on X
which is homogeneous with respect to gr : X*) — P. Then A is proper.

Proof. We use again the following commutative diagram:

A
8ra ‘/
9

If gr : X®*) — P is compact then so is the A-universal grading gr, : X®*) —
AR, O

Corollary 3.2.18. Let X be a CW-complex, P a partially ordered set, gr :
X® —s P a compact P-grading of X and A an acyclic matching on X
which is homogeneous with respect to gr : X®*) — P. Then the P-grading
gr: X® — P of X induces a compact P-grading gr : XI(:) — P of the
Morse complex X4 and the Morse equivalence H(A) : X — X4 respects
these P-gradings, that is:

1. For allp € P and all i € N, the i-cells of (Xa)<p are in one-to-one
correspondence with the A-critical i-cells of X<, and
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2. for all p € P the restriction H(A)<, := H(A)|x_, is a homotopy equiv-
alence

H(A)<p: X< = (Xa)=<p-

Proof. There is the following commutative diagram:

A
gra L
g
Xxsl*) - X(g;’;zical( X(*) = P

Here, the composition gr of the maps in the lower row is the induced P-
grading of X 4 which is order preserving because it factorizes into

gr=gogry

where gr, : XX‘) — A® is the canonical A®)-grading of X 4.
To prove the remaining assertions, note that

ij: U XfA“
aeA(*),
g(a)=p

and

Xa)x= U Xa)z,a

aeA(*),
g(a)=p

Now we use again [24]: From Proposition 3.1 (Projection Lemma) and Propo-
sition 3.7 (Homotopy Lemma) it follows that the induced maps

H(A)<p: X<p — (Xa)=p

are homotopy equivalences. O
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3.3 Discrete Morse theory for cellular reso-
lutions

Now we are in position to formulate the main result of this chapter which
makes discrete Morse theory applicable to cellular resolutions.

Theorem 3.3.1. Let R = k[A] be an affine semigroup ring and M a Z.°-
graded R-module. Assume (X, gr) is a compactly (Z°, N)-graded CW-complex
which supports a cellular resolution F5 of M. Then for a homogeneous
acyclic matching A of X the (Z¢, A)-graded CW-complex (X 4, gr) supports a
cellular resolution F§  of M.

For the proof of Theorem 3.3.1 we need the following lemmas:

Lemma 3.3.2. Let C§ be a cellular complex supported by the (Z%, A)-graded
CW-complex X. Then, for i > 0 and o € Z¢

Hi(cg(r)a = Hi(Xja§ k)a
as k-vectorspaces.

Proof. For a fixed « an i-cell ¢ € X™*) gives rise to an a-homogeneous piece
x* Ve, v = gr(c), in homological degree 7 if and only if gr(c) = v < «. There-
fore, as a sequence of k-vectorspaces, C, is isomorphic to the cell-homology
chain complex of X~,, which proves the assertion. O

Proposition 3.3.3. Let C§ be the cellular complex supported by the com-
pactly (Z2, \)-graded CW-complex X. Let A be a homogeneous acyclic match-
ing on X. Then (Xg4,gr) supports a cellular Z%-graded chain complex C§(TA
such that H;(C%,) = Hi(C%), i > 0.

Proof. By Lemma 3.3.2 we have
Hi(CX,)a = Hi((Xa)<a: k), Hi(CK)a = Hi(X<ask).

By Corollary 3.2.18 H;(X<4; k) = H;((X4)<a; k) and the assertion follows.
U

The proof of Theorem 3.3.1 now follows easily.

o8



Proof. Since F% is a resolution of M we have H;(C%) = 0 for ¢ > 1 and
Hy(C%) = M. Now by Proposition 3.3.3 X4 defines a cellular chain complex
with H;(CY,) = Hi(C%) =0, > 1 and Hy(C¥,) = Ho(CX) = M. Thus X,
and gr support a Z%graded free resolution of M as an R-module. O

3.4 Morse differentials

For a finite CW-complex, Forman presents in [13], Chapter 8, a differential
complex

9, d
M= 25 M, =5 Myy — ... — Mg
with the following properties:

1. For all p € N the module M, is the free module generated by the
critical p-cells of X.

2. The homology of M is the same as the homology of the underlying
CW-complex X.

In Theorem 8.10, he gives an explicit formula for the differential of this com-
plex. In this section we confirm that, for the corresponding acyclic matching
A, the differential complex presented by Forman in fact coincides with the
cellular chain complex corresponding to the Morse complex X 4. This enables
us to present in Chapter 4 explicit formulas for the differential of resolutions
derived via discrete Morse theory for cellular resolutions.

Definition 3.4.1. Let X be a CW-complex, A a proper acyclic matching
on X and X4 the corresponding Morse complex.

1. We denote by

A 9 ot oy of
C :—)CZ(XA)—1>CZ_1(XA)—)—)C()(XA)
the cellular chain complex of X4 and by [ : ]a the corresponding

coefficients of the differential 04, that is, for 7 € Xj(:) we have

04(r) = Z [0:7T]a o

ofacet of T
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2. Foro € X, o' € X\..., we define

T4(0,0") ;= {v | v is a path in G%4 from o to o'}.

3. Foroe X®, o' € X&) dimo = dim o’ = 1,

criticaly
Y=00g =T =01 — ... >0k 1 —Tx = 0 € La(0,0"),
(that is, og = 0, o) = 0', dimo; =4, dim7; =i+land7; - 0,1 € A
forallj=1,...,k), we set

k

m(y) == (—1)* H[ai,l 1 - ot T

=1

Theorem 3.4.2. Let X be a CW-complex, A a proper acyclic matching on

X and X 4 the corresponding Morse complex. Let o,T € Xc(fiz,-m,, OA,TA E XI(:)

their corresponding cells in X,(q*)- Then
(04 Ta)a = Z [0 : 7] Z m(7).
O'Ifacet of T ’YEFA(O",G’)

For the proof of Theorem 3.4.2 we need the following lemmas:

Lemma 3.4.3. Let X be a CW-complez, oo, 70 € X®, A = {1, = 00} a
proper (acyclic) matching on X and X the corresponding Morse complet.
Let o,7 € X(*-ziml, OA,TA € X1(4*) their corresponding cells in X 4. If 0 is not

cre

a facet of Ty or oq is not a facet of T, then
[0a:Tala=[o: 7]
If 0 is a facet of 7y and oy is a facet of T, then
[0a:Tala=[o:7] —[o0:7] [0 70

Proof. Note that, from Definition 3.2.13, for all critical cells ¢ € X&), .., the
restriction of the Morse equivalence H(A) to o is a homeomorphism onto the
cell o4 in the Morse complex X 4:

H(A)|y: 0 —> o4
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These homeomorphisms induce an inclusion
Py X XY
of the j-skeletons. For every j-cell o € XU), we get the following commu-

tative diagram, where p, : X ix — 7 is the cellular projection map for the
cell o (see Definition 2.1.13):

X4 Xh/X5
i
A
X Xi/xi1 =~ \/ 55'4>5j

o’ eXx ()
Po

Note that, although if;l is not continuous in general, the map
X4 /X0 e XTI/ x0T
is. For o4 € Xﬁlj), we define p,, : Xf;‘ — 57 by
Doy = Pg O zf4

For 0,0’ € Xc(:zzical, we get the following commutative diagram:

paf4

Jfoa

g
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Here, f, and f,, are the characteristic maps for the cells o and 04. Note
that, although this diagram cannot be extended commutatively by adding
the identity map id : X/ — X7, it is commutative with both maps X/ —
X7 /X971 defined as the canonical projection maps. We therefore get

pa'A ofO'A = Po’ Ofa-

This proves that the p,, define cellular projection maps for the cells o4 €
x4

Now we are ready to calculate, for critical cells o,7 € Xc(r*izical, dimo =
j, dimT = j + 1, the coefficients [04 : 7a4|a. For this, we consider the
following commutative diagram:

Po
fBTA N
Xy
H(An/
R . ¢ Xi———X1 /X —— \| 8/, ———0
for o eX ()

Do

Using this diagram, straightforward considerations show that if ¢ is not
a facet of 79 or oy is not a facet of 7, then we have

Do,y © f@TA = Pg © f@T
and therefore
[0a:Tala=[o: 7]

Let now o, 7 € X% | dimo = j, dim7 = j 41, such that o is a facet of 7y

criticaly

and oy is a facet of 7. We get the following commutative diagram:
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f Ot Poa

Here, ¥ is defined to be the unique map such that the diagram

_ h”ro—)o’o |50 ,
0o U 2
o’ face of g
ol #o
Doy Do
: )\ :
S7 S7

commutes. The fact that oy is a regular face of 75 shows that
deg¥ = —[og : 7] - [0 : Tol-
It follows

[0a:Tala=]o:7T] —[00: 7] [0: T
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Lemma 3.4.4. Let X be a CW-complez, 0,7 € X®) | A an acyclic matching
on X, 7 = o € A such that 7 — o is <,-minimal in A. Let A" :== A —
{T — o}, X4 and X4 the corresponding Morse complexes. Then, for the

corresponding cells o a1, Ta € X(f), o 18 a reqular facet of Tar, thus {Ta —

oa'} is an acyclic matching on X 4, and for the corresponding Morse complex
(Xar)r, >0, we have

(XA’)TA/%O'A/ = XA-
Furthermore, for the Morse equivalences

H(A): X = Xy,

H(A): X = X
and
H(ty — ow): Xa — (Xar)r =045

we get the following commutative diagram:

X
o H(A)
XAI H(TAI —)UA’) .XA = (XA’)TAI _)UA’

Proof. We use induction over the matching poset A®). For all a <, 7 — o,
the assertion is trivial. For 7 — ¢ =< a, the assertion follows from the
definition of the Morse complex (see Definition 3.2.13). O

We are now ready to prove Theorem 3.4.2.

Proof. We can assume that X(f;izical is finite, since for the coefficient [0 : 7] we
only need to consider X< . which are compact. We proceed by induction:
Let 09,70 € X®, 7y — 0y € A such that 7y — oy is < ,-minimal in A.
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Let A':= A — {1y — 0o}, X4 and X4 the corresponding Morse complexes.
Then, by induction hypothesis, we have

owmale= Y [o':7] Y, my),

o' facet of T ’yEFA/(G",O')

where T 4/(0’, o) is the set of paths in G4 from ¢ to o.
Note that the following are equivalent:

o 'y (0',00) = 0 for all facets o' of 7
e 0y 4 is not a facet of 74 or o4 is not a facet of g 4.
We consider the following cases:
1. If 094 is not a facet of 74 or o4 is not a facet of 74, we have
Ta(o',0) =Ta(o,0)
and, on the other hand, by Lemma 3.4.3, we have
(04 ) r0 a 000+ (Tar) 70 41001 1o g1 0040 = (047 & Tar]ar,

so applying Lemma 3.4.4 shows that the asserted formula for [o4 : T4]a
is fullfilled.

2. If og4 is a facet of 74 and o4 is a facet of 754/, we have
Ca(o’,0)=Ta(c',o)U{y* (0o > 10— 0) | yeET(c00)}
We learn from Lemma 3.4.3 that

[(GAI)TOAI—)O'OA/ : (TA’)T0A1—>0'0A/]T0A/—)0'0A/ =

= [O’AI 2TAI]AI _[UOA' ITA/]A/ -[O'AI ZT()A/]A/.

Application of Lemma 3.4.4 and considering the definition of m(y)
proves the formula.

O
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We are now able to give the following criterion for minimality:

Corollary 3.4.5. Let (X,gr) be a compactly (Z,A)-graded CW-complex
which supports a cellular resolution F5. Let A be a homogeneous acyclic
matching on X. Then F¥, is minimal if there is no triple of cells o' < o
and 0" of X such that o, 0" are A-critical, gr(o) = gr(c”) and dimo’ =
dimo” = dimo — 1 for which there is a gradient path v € T'4(c’,0"). In
particular, the resolution is minimal if for all A-critical cells o and o' < o,
dimo’ = dimo — 1 we have gr(o’) # gr(o).

Proof. The assertion follows from Theorem 3.4.2 together with Proposition
2.2.3. The second part of the corollary follows from the first together with
the fact that gr is weakly decreasing along gradient paths. O

66



Chapter 4

Applications

This chapter consists of applications of Theorem 3.3.1 to produce cellular
minimal Z%graded free resolutions of certain classes of monomial modules
and of the field k£ over certain affine semigroup rings k[A].

4.1 Shellability

In this section we construct free resolutions of co-Artinian monomial modules
satisfying an additional property which we call shellability. We present an
application of Theorem 3.3.1 to the LCM™-resolution (see Subsection 2.3.6) to
obtain cellular free minimal resolutions for all shellable co-Artinian monomial
modules. We will take advantage of the following proposition.

Proposition 4.1.1. [10] Let X be a CW-complex, P a poset.
Let X ()

be a commutative diagram of poset maps such that (X,gr) is a compactly
(Z4, A)-graded CW-complezx and (X, f) a P-graded CW-complex. For each
p € P let A, be an acyclic matching of the restriction of Gx to f~(p).
Then A = Upep A, is an acyclic homogeneous matching of Gx, in particular
H;(C%) = H(CX,)-
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Proof. An argument independently found by Chari, Forman and Jonsson [10,
Proposition 2.2] says that if the cells of the CW-complex X are partitioned
into sets (B,),cp indexed by a partially ordered set P such that ¢ € By,
c € B, and ¢ < ¢ implies p’ < p then any sequence A,, p € P, of acyclic
matchings of the restriction of Gx to By, p € P, defines an acyclic matching
A= UpeP A, of Gx. Now the result follows by Proposition 3.3.3. O

Definition 4.1.2. A monomial module M is called shellable if there is a
total order “C” on MinGen(M) such that:

For m,m' € MinGen(M), m' C m there is an m" € MinGen(M)
such that m" C m and (4.1.4.1)

M - Ty(mmy = lem(m"”, m)|lem(m’, m) for some index g(m,m").

We list examples of shellable monomial modules. By “Ceviex” We under-
stand the reverse lexicographic order on monomials. Thus 2" -+ 25? Ceviex
aﬁfl---xgd if and only if oy = By, ... ,ix1 = Biz1 and «; > [; for some
ied:={1,...,d}.

e (Stable Modules) A monomial module M is called stable if for any mono-
mial x* € M, a = (a1,...,0q) and j = max{i | a; # 0} we have for
all | < j that x; - %—a € M. We demonstrate that a shelling order
for a stable monomiafl module is given by the order dual of “Ceyex”-

Assume m = XP Crenex M = X°.

If 4 is the maximal index such
that xf‘m’ , z¥fm for some k € N and j the maximal index such
that a; # 0 then set m := m/z; - z;. By stability m € M and

hence there is a monomial m” € MinGen(M) such that m"|m and

lem(m,m") = m - xi‘lcm(m, m'). Clearly, m Creyer m” and hence
(4.1.4.1) follows. Moreover, if M = M, is given by a lattice L then the
order dual of “Cevex” is an L-equivariant shelling order for M. A min-

imal free resolution for stable ideals was first constructed by Eliahou
and Kervaire [12].
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e (Shellable Stanley-Reisner Ideals) If A is a simplicial complex on [d] then
the Stanley-Resiner ideal In of A is the monomial ideal whose gen-
erators are the monomials ],  , #; for the minimal non-faces A of A.
Now if A* = {o C[d] | [d]\ 0 & A } is the combinatorial Alezander-
dual of A, then the minimal non-faces of A are the complements of the
maximal faces of A*. Lateron in this section we discuss the concept
of shellability for simplicial complexes. From the characterisation in
Lemma, 4.1.4 the reader will see that A* is shellable if and only if I, is
shellable. See also Remark 4.1.7 for details on this subject.

e (Squarefree Stable Modules) A monomial ideal M generated by square-
free monomials is called squarefree stable if for any monomial x* € M

and j = max{i | a; # 0} we have for all [ < j with z *50‘ that

- %—a € M. Again the order dual of “C e e’ gives a shelling order

satisf;fing (4.1.4.1). The proof is analogous to the stable case.

The concept of shellability is fundamental in the theory of simplicial com-
plexes. Our definition of shellability for monomial modules can be viewed as
a generalisation of this concept. In order to explain this and also in order
to provide the tools that will be used to prove the main result in this sec-
tion let us recall some of the theory of shellability of simplicial complexes as
formulated in [6].

The dimension of a simplicial complex is defined to be the maximal di-
mension of its simplices. A simplicial complex ¥ is called pure if all maximal
faces of ¥ have the same dimension. If F is a face of 3, we denote by F the
simplicial complex consisting of all subsets of o.

Definition 4.1.3. A simplicial complex ¥ is called shellable if there exists a

total ordering Fi, ..., F), of its maximal faces such that for all k =2,... | n
k—1

F,n U F; is a pure subcomplex of Fy of dimension dim Fj, — 1. (4.1.4.2)
i=1

An ordering F1, ... , F, of the maximal faces of ¥ satisfying property 4.1.4.2
is called a shelling of X.

69



Figure 11. A shellable simplicial complex
with 4 maximal faces F}, F5, F3 and F}, all of dimension 2.

The following Lemma gives an equivalent way to express shellability:

Lemma 4.1.4. A simplicial complex ¥ is shellable if and only if there exists
a total ordering Fy, ..., F, of its maximal faces such that

fori ke {l,... ,n},i <k thereisaje€{l,... ,n}
such that j < k and (4.1.4.3)
FNF, CFNF,=Fy—{x4k} for some point zy¢;) € Fy.

For an ordering Fi, ..., F), of the maximal faces of a simplicial complex
Y we define the so-called restriction function R : {Fi,...,F,} — 3 by
setting R(Fy) = {z € Fy | F, — {z} € Uf;ll F;}. In terms of the restriction
function Fi,...,F, is a shelling of ¥ if and only if for all £k = 2,... ,n
we have Fy N U F; = Uzer(e) Fr — {z}. Since F}, is the disjoint union

of U,er(r,) Fr — {z} and the intervall [R(Fy), Fi] of all subsets of F}, that
contain R(Fy) we also have:

Lemma 4.1.5. Let ¥ be a simplicial complex, F', ..., F, an ordering of its
mazimal faces with restriction map R. Then Fi, ..., F, is a shelling of ¥ if
and only if
o= U [RF),E] (4.1.4.4)
ke{l,...,n}
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We are now ready to present the following well known but crucial fact
about shellable complexes:

Theorem 4.1.6. Let X be a shellable finite simplicial complex. Then there
exists an acyclic matching A on % such that the resulting Morse-complex 3 4
15 a wedge of spheres.

Proof. Every intervall [A,B] = {0 € ¥ | A C ¢ C B} of simplices of ¥
such that A # B and A # () admits a perfect acyclic matching: Choose an
element x € B — A and match according to the rule o U {2z} — o — {z}.
With the characterisation of shellability according to Lemma 4.1.5 we obtain

a matching on ¥ where the critical cells are exactly those maximal faces F'
such that

R(F) = F. (4.1.4.5)

Therefore, the homotopy that transforms 3 into its corresponding Morse-
complex consists of contracting everything to a single point except for the
interiors of the faces satisfying 4.1.4.5. This proves the assertion. O

Remark 4.1.7. Via Stanley-Reisner ideals, Definition 4.1.2 can be viewed as
a generalisation of the concept of shellability for simplicial complexes: For
a simplicial complex ¥ on the vertex set V = {v1,... ,v4} its Alexander-
dual ¥* is defined to consist of all complements of sets S C V such that
S ¢ Y. Especially, the maximal faces of X* are the complements of the
minimal non-faces of ¥.. For a set S € ¥ we denote by zg € k[z1,..., 24
the monomial x5 := [[,.¢ #;. The Stanley-Reisner ideal Iy, C k[z1,... ,24] is
per definition generated by the monomials zg such that S ¢ ¥. This implies
that the correspondence S — xy_g is a one-to-one-correspondence between
MinGen(Iy) and the maximal faces of ¥*. From Lemma 4.1.4 it is easily
checked that for Stanley-Reisner ideals I, shellability of ¥* and shellability
of Iy, are equivalent.

We obtain the following Theorem by applying Theorem 3.3.1 to the
LCM*-resolution (see Subsection 2.3.6):

Theorem 4.1.8. Shellable co-Artinian monomial modules admit cellular min-
imal free resolutions.
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Recall (see Definition 2.3.26) that for a partially ordered set P the order
complex A(P) is defined to be the simplicial complex consisting of all finite
chains in P, that is all finite subsets of P on which the partial order of P
induces a total order. By means of this construction topological properties
can be transferred to posets. For example, we say that a partially ordered set
P has the homotopy type of a wedge of spheres if this is true for A(P). Bjorner
and Wachs introduce in [6] a theory for so-called lexicographical shellability
of partially ordered sets, which makes it possible to read off shellablibilty
of the order complex directly from the underlying poset. We review some

of this theory here in order to provide the tools we need to prove Theorem
4.1.8.

Definition 4.1.9. A poset P is called bounded if there exist elements 0,1 €
P such that 0 < z < 1 for all z € P — {0,1}. For a bounded poset P we set
P := P —{0,1}. For elements z,y € P , y is said to cover z if z < y and
there is no z € P such that x < z < y. We also write x — y for this. An
element a € P of a bounded poset P is called atom if it covers 0. We use the
following denotations:

E(P) = {lzy) e PxPlz—y}
M(P) := set of maximal chains in P,
ME(P) = {(m,z = y) e M(P)xE(P) | z,y € m}.

Definition 4.1.10. A chain-edge labeling of a poset P is given by a map
A: ME(P) — A, with A some poset, which satisfies:

If m,m' € M(P),

m={xo,...,Ts},xi1 > x;fori=1,... s,
m' ={xg,..., .}, 2, =zt fori=1,...,1, (4.1.4.6)
such that z; =z} forall i =0,... ,d
then A(m,z;—1 = x;) = AX(m/,2}_, —» z}) foralli=1,... ,d.
For elements z,y € P we denote by [z,y]| the interval [z,y] := {z €

P |z < z < y}. For a maximal chain 7 in [0,z] we write [z,7], for the
so-called rooted intervall [z,y], :== ([x,y],7). Let A* be the set of all tuples
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of arbitrary length with entries in A. Consider the lexzicographic partial order
on A* defined by

(o -+ ms) <p, (xg, ... ,2}) (4.1.4.7)
if and only if
1. z;=a; foralli=0,...,sand s <t or
2. there exists i € {1,...,s} such that z; = 2’ for all j <4 and z; < z].

Definition 4.1.11. Let P be a bounded poset, A a poset and A : ME(P) —
A a chain-edge labeling. For every rooted interval [z,y|, of P and every

maximal chain m = {zg,... ,zs},x; 1 = x;,i = 1,..., s of the interval [z, y|

define

Ar(m) == (A(m, g — 1), ..., A(Mm, z5-1 — 4)).
A is called a CL-labeling (chain lexicographic labeling) if

1. for every rooted interval [z,y], of P there is a unique maximal chain
M = Mgy, = {Z0,--. ,Ts},Ti-1 — T5,¢ =1,..., ssuch that A(m,zo —
x1) < ...<Am,zs_1 — ) and

2. Ar(myzy),) <r Ar(m') for all maximal chains m’ # my, of the interval
[z, y]-
A bounded poset that admits a CL-labeling is called CL-shellable.

Bjorner and Wachs prove in [6] (Theorem 5.8) the following

Theorem 4.1.12. If a bounded poset P is CL-shellable, then A(P) is
shellable.

There is a different way to express CL-shellability which is more conve-
nient for our needs:

Definition 4.1.13. A bounded poset P is said to admit a recursive atom
ordering if P = {0,1} or if there is an ordering ay, ... ,a, of the atoms of P
such that:
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1. Foralli=1,...,n the interval [a;, 1] admits a recursive atom ordering
such that the atoms of [a;, 1] that belong to [a;, 1] for some j < i come
first.

2. For all i < k, if a;,a; < y for some y € P, then there exists a j < k
and an atom z of [a, 1] such that a; < z < y.

Bjorner and Wachs prove in [6] (Theorem 5.11) the following

Theorem 4.1.14. A bounded poset P admits a recursive atom ordering if
and only if P is C'L—shellable.

For our situation we get the following

Proposition 4.1.15. Let M C k[xy,...,x4] be a co-Artinian monomial
module. We write LCM := LCM(M) and for o € Z¢ we set LCM%,, := {0 €
LCM* | lem(o) < a}. If M is shellable then LCM%, U {1} is CL-shellable
for all o € Z°. -

Proof. There is a unique maximal 3 € Z? such that 8 < a and gﬁ‘lcm(a)

for some finite 0 C MinGen(M). Therefore we have x? € LCM*(M) and
LCOMZ, = LOCMZ4. Thus we can assume that x* € LCM™.

Let o € Z% such that x® € LCM*, in particular this means that x® is
the unique maximal element in the bounded poset LCMZ,. Let C be an
ordering on MinGen(M) satisfying condition 4.1.4.1. Let MinGen(M)Sa =
{m € MinGen(M) | lem(m) < «a}.

As a first step we note that for all m € LCMZ , we have that any order-
ing of the atoms of the interval [m,x?] is a recursive atom ordering of this
interval. The proof proceeds by induction on the total degree of x*/m: If
the total degree of x*/m is 1 this means that [m, x*] = {m,x*} and there is
nothing to prove. Assume now that the assertion is correct for all intervals
[m/, x%] such that the total degree of x*/m’ is smaller than the total degree
of x*/m. We need to verify conditions 1 and 2 from Definition 4.1.13. Con-
dition 1 is fullfilled by induction hypothesis. Condition 2 is fullfilled because
for atoms a # b of the intervall [m,x®] there are variables z;, z;, i # j such

that a = x;m, b = z;m, so that for any y € [m, x®] such that a, by there is

the atom z := z;z;m of [b,x] with a|z.
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As a second step we show that C defines a recursive atom ordering on
MinGen(M)<,: Again we verify conditions 1 and 2 from Definition 4.1.13.
Condition 1 is guaranteed by the first step of this proof. Condition 2 fol-
lows from property 4.1.4.1: For atoms m,m' of LCMZ, U {1} with m C m/
and y € LCMZ, such that m, m"y we have lem(m, m’)‘y as well. So,
by property 4.1.4.1 there exists a m” in LCM* such that lem(m”,m) =
xg(m,mu)m‘lcm(m, m'). This implies that m" € LCM*(M)<, and that z :=

Tg(mmrym is an atom of [m, x*] with m”|z. O

We are now ready to prove Theorem 4.1.8:

Proof. Let M be a shellable co-Artinian monomial module. By Proposition
4.1.15 the poset LCMZ%,U{1} is CL-shellable for every o € Z? and therefore,
by Theorem 4.1.12, the ordercomplex A(LCMZ,) is shellable. Hence, by
Theorem 4.1.6, there exists an acyclic Morse-matching A, on A(LCMZ,),
such that the resulting Morse-complex is a wedge of spheres. In particular,
for all 7 € N the number of critical cells in dimension ¢ in this matching is
given by the Betti-number dim H;(A(LCM?%,)) of this complex.

Consider now the set of simplices 0 € A(LCMZ ) with grading lem(o) =
o, which we denote by A(LCM%,)q : Since for 0 € A(LCM%,) we have
lem(o) = « if and only if X® € o we get: -

A(LCML,)a = {0U{x"} | 0 € A(LCMZ,)}. (4.1.4.8)

Therefore, for every o € Z¢ the above matching A, induces an acyclic
matching on A(LCMZL,), such that the number of critical cells in dimen-
sion ¢ is given by dim_I:Ii,l(A(LCMia)). Proposition 4.1.1 shows that A :=
Uaezd Aq is an acyclic matching on A(LCM*). Since the Z?—graded sim-
plicial complex supports a cellular resolution of M, we get, by Proposition
2.2.5, that the Betti-numbers of the minimal resolution for M are also given
by dim H; ;(A(LCMZ,)). This proves the assertion. O
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4.2 The Lyubeznik Resolution

In this section we describe a general method to reduce the Taylor resolution
of a monomial module by finding suitable homogeneous acyclic matchings of
XTaylor- The construction translates and generalizes an algebraic construction
given by Lyubeznik [16] for monomial ideals.

If f: X® — Pis a map satisfying the assumptions of Proposition 4.1.1
then we call f a gr-compatible P-grading of the (Z%, A)-graded CW-complex
X.

Theorem 4.2.1. Let M be a co-Artinian monomial S-module and
(Xaylor, lcm) the Z%-graded complex supporting the corresponding Taylor res-
olution. Let P be a poset, f a lcm-compatible P-grading of Xtayior and
(=p)pep a sequence of total orderings of MinGen(M). Assume for allp € P
and all finite 0 C MinGen(M) such that f(o) =p, 0 = {mo <, ... <, m;}
the condition

m| lem(my, ... ,m;) for some 0<t<i, m=<,m (4.2.4.1)
= flo\{m}) = fleU{m}) = f(o) =p.

Then there exists a cellular resolution F$™ of M supported by a Z%-graded
CW-complex X , whose i-cells are indexed by all finite simplices 0 = {mgy < (o)
. <f(c) mi} € MinGen(M), such that

m* lem(my, ... ,m;) for all 0 <t <i and m <jf) my. (4.2.4.2)

Proof. First, we note that if M is a co-Artinian monomial module then the
Z4-graded CW-complex (XTayior, lcm) is compactly graded.
For 0 = {mg <j() --- <f(e) mi} we define

v(o) = sup {k €N

There exists m € MinGen(M) satisfying }

m < (o) Mi—k and m‘lcm(mi_k, cee,My)
and if v(o) # —oo let

m(0) :=ming, {m € MinGen(M), such that m‘lcm(mi_y(a), . ,mi)} .
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We claim that for each p € P the set of edges

4, = {oU{m(e)} > \{m(0)}| f(0) = p and v(0) # —oo}

defines an acyclic matching on the restriction of G Xragor 1O the set of vertices
f7(p). This follows by:

1. Condition (4.2.4.1) assures that all edges in A, are within the vertices

().

2. For any simplex 0 = {my, ... ,m;} and monomial m such that f(o U
{m}) = f(o) = p we have

v(cU{m}) > v(o).
Proof: If v(0) = —o0, there is nothing to prove. Thus we can assume
m(o) ‘lcm(mi_y(g), Cee ).
But this implies
m(o) ‘lcm(mi_u(a), e, Mg, m),

and we are done.

3. If floUu{m}) = f(o) = p and v(o U {m}) = v(o) # —oo, then
m(o U {m}) = m(o).
Proof: As seen in the proof of 2., we  have
m(o)|lem(mi—y(o); ... ,mi,m). Hence for v(c U {m}) = v(o), we
need m <j,) Mi_ye) and m(oc U {m}) to be the <j,)-minimal
element of MinGen(M) dividing lem(mi_y(o), ... ,m;). This implies
m(o U {m}) =m(o).

4. Whenever v(o) # —oo, we have

v(oU{m(o)}) = v(o) = v(a\{m(0)}).
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Proof: If m(o) € o, then

v(o\{m(a)}) = v(0)

follows from

{mi (o), --- ymi} Co\{m(o)}.

If m(o) ¢ o, v(c U{m(o)}) < v(o) follows from the fact, that for any

k > v(o) and m <y mi_, such that m|lem(m;_, ... ,m;, m(o)), we
have m|lem(mi_g,... ,m;), so k = v(o) and m(c) <) m.

By 3. and 4. the set of edges A, defines a matching. The facts 2. and
4. imply that v is constant on cycles, which in turn gives us acyclicity by
the following argument: By 3., all elements 7 of a cycle have the same m(7).
Thus m(7) is the only element that possibly can be taken out in direction of
the cycle. But taking it out again produces an arrow in direction opposite
to the cycle. This proves that there cannot be any cycles at all.

By Proposition 4.1.1 the union |J . p A, defines an acyclic matching on

pcP
G X1, The critical cells o = {mg <) ... <f() m;} of this matching are
exactly those satisfying condition (4.2.4.2). O

Definition 4.2.2. We call a cellular resolution that is constructed from the
Taylor resolution using the method exhibited in Theorem 4.2.1 a Lyubeznik
resolution.

Remark 4.2.3. Lyubeznik’s original result from [16] is achieved when one
takes a monomial ideal M, P = Z% f = lecm and <, a fixed linear order
independent of p.

For applications to lattice ideals we need the following equivariant version
of the Lyubeznik-resolution.

Definition 4.2.4. Let L C Z¢ be an integer lattice such that LNN? = {0}.
Let My, be the monomial module spanned by {x* | a € L}.

1. We define an action

LXML—>ML
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(7, x%) = y(x%) = x*.
2. A poset P is called L-posetif L acts on P as a group of order preserving
automorphisms. Note that in our situation L acts freely as a group of
cellular homeomorphisms on Xt,yior and Z%is an L-poset.

3. Let P and @ be two L-posets. We call an order preserving map f :
P — @@ an L-equivariant poset map if f respects the L-actions, that
is, if for all v € L and all p € P, we have

4. For an L-poset P we say that an L-equivariant poset map f : X%)ylor —
P is equivariantly lcm-compatible if there is a L-equivariant poset map

g: P — Z%such that lem = g o f.

Theorem 4.2.5. Let L C Z% be a lattice such that L N N¢ = {0}. Let
(XTaylor, lem) be the Z2-graded simplicial complex supporting the correspond-
ing Taylor resolution of M. Let P be an L-poset and let f be an L-
equivariantly lem-compatible P-grading of Xtayior- Let (=Xp)pep be an L-
equivariant sequence of total orderings of MinGen(M), that is: For m,m’ €
MinGen(M) and v € L we have m =<, m' = y(m) =,p) y(m'). As-
sume condition 4.2.4.1 for all finite 0 C MinGen(M) such that f(o) = p,
o={my <, ... <, m;} . Then the free action of L on Xtayor induces
a free action of L on the CW-complex X which supports the corresponding
Lyubeznik-resolution F<™ of M.

Proof. The assumptions of L-equivariance of the poset map f and the se-
quence (=,)pep assure that the matching A, as constructed in the proof of
Theorem 4.2.1, as well as condition 4.2.4.2, are L-invariant. This proves the
Theorem. Moreover, X is L-equivariantly homotopy equivalent to Xtayior. [
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4.2.1 Applications to Classes of Monomial Modules

Proposition 4.2.6. For a generic co-Artinian monomial module M there
15 a minimal free Lyubeznik-resolution. In particular, there exists a homo-
geneous acyclic matching A of Xtayior for Xtayior such that (Xtayior 4,lcm)
= (Xscarf, Icm). Moreover, Xscar is a strong deformation retract of Xtayior-

Proof. Choose P = (Z% N%) and f = lcm in the construction of Theorem
4.2.1. Let a = (o, ... ,aq) € Z*be the lcm of some simplex from Xayior. Let
o1, ... ,0% be the minimal simplices of Xt,yior such that lcmo; = «. Choose an
ordering <, on MinGen(M) such that the elements of 3, := o, U...Uoy, come
last. Condition (4.2.4.1) of Theorem 4.2.1 is obviously satisfied. Consider
the following cases:

1. If k = 1, then there exists o € lem™'(«) satisfying condition (4.2.4.2)
of Theorem 4.2.1 if and only if lem™' () = {01}

2. Suppose k > 1. Take any simplex 0 = {mg <, ... <o My} with
lcmo = «. By minimality o contains at least one of the o;. Moreover
there is an index j such that m; € ¥, if and only if [ > j. Let oy # o;
be another minimal simplex with lcm equal to «. There must be a
variable z, and monomials m € o;, m' € o;, such that m # m' and
both m and m' assume the exponent «, on the variable z,. Clearly, the
binomial first syzygy corresponding to m and m' is not generic. Now
by [5, Lemma 2.7] there is a monomial 7 which divides lem(m, m')
in each variable properly. In particular, m is not contained in X, so
m|lem(m;, ..., m,) and condition (4.2.4.2) is violated. In particular,

there exist no o € lem™' () satisfying condition (4.2.4.2) of Theorem
4.2.1.

The construction of Theorem 4.2.1 yields a cellular resolution Fi™ where
X equals the Scarf-complex Xscaf. In particular, there is a homogeneous
acyclic matching A of Gx,,,, such that (Xtayior 4, lcm) = (Xscarf, lcm). Since
A deletes an upper order ideal from X,y it follows by [13, Theorem 3.3] that
Xscarf 15 @ collaps of Xt,yior and therefore a strong deformation retract. [

For a lattice L we denote by I, = {x* —x" | a — v € L} C S the
corresponding toric ideal.
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Corollary 4.2.7. [5, Ezample 3.12] Let L C Z% be a lattice such that LN
N¢ = {0}. If My, is generic then Xscas/L supports a minimal free cellular
resolution of Ir.

Proof. By Proposition 4.2.6 the complex Xscaf supports a minimal free cel-
lular resolution of M. It is simple to check that the linear orders <, con-
structed in the proof of Proposition 4.2.6 can be chosen to fulfill the assump-
tions of Theorem 4.2.5. In particular, Xscs is L-equivariantly homotopy
equivalent to Xayior. Thus by [5, Corollary 3.7] Xscarf/L supports a minimal
free resolution of I7,. O

It was shown in Theorem 4.1.8 that for shellable co-Artinian monomial
modules M Theorem 3.3.1 can be applied to the LCM*-resolution of M to
produce a cellular minimal free resolution of M. We now present a second
approach to this situation:

Proposition 4.2.8. Let M be a shellable co-Artinian monomial module.
Then there is a minimal free Lyubeznik-resolution for M.

Proof. Let C be a total order on MinGen (M) satisfying (4.1.4.1). For each
multidegree o € lcm(Xgillor) C Z4, let M, be the set of all m € MinGen (M)
such that there exists o € lem™'(a) with m € o being its maximal element
with respect to C. Let P := {(a,m) | a € lcm(ng,lor),m € M,}, with
partial order given by (o, m) < (¢/,m') & a<d’ or (o = o and m T m/).
For 0 € Xvuyior, we define f(o) := (lem(o), maxc(c)). For m €
MinGen(M), there is a unique set .J, consisting of all those indices j
such that there exists a monomial n}* € MinGen(M) with n* C m and
lem(nf*, m) = x;m. After choice of these n7", we define for p = (o, m) € P a

total ordering <, on MinGen (M) by setting

o N, :={n7|j € Jn},

o N, <, MinGen(M)\N,,,

for ', nf} € Ny, 2 0" <, nf} & < j',

P | MinGen(M)\ N MinGen(M)\Np,
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Condition (4.2.4.1) of Theorem 4.2.1 is satisfied. (Reason: Let 0 € Xayior
be such that f(o) =p, 0 = {mg <, ... <, m; <, m}. If there are 0 < ¢ <
i, T <, my, such that fn‘lcm(mt, .o ,mg,m), we get m C m, so f(oU{m}) =
flo) = flo\{m}).)

We claim that the simplices 0 € Xtayior satisfying condition (4.2.4.2) of
Theorem 4.2.1 are just those of the form o = L,, U{m}, L, C Np,p =
(a,m) € P. Proof: Let o € f~'(a,m),m € o,m & N, U{m}. We have
m C m, so there is by (4.1.4.1) a m" € MinGen(M), m" = m, such that

lem(m", m) = zym/|lem(m, m) for some index j. We can choose m" := n7'

and get: nJ* <, m, ngn‘lcm(m, m), so o does not satisfy condition (4.2.4.2)
of Theorem 4.2.1.

Now we verify minimiality by Corollary 3.4.5: Note that for all p =
(a,m) € P the total degree deg(n) of n is (weakly) smaller than deg(m)
for all n € N,,. Furthermore, for every o € X%i,lor
(a,m), we have, by the choice of <, (using notation of proof of Theorem
42.1): v(o) # —oo = m(o) € Ny,. Let 0 = L, U{m},L,, C Ny, be a
simplex satisfying condition (4.2.4.2), and let ¢/, ¢” be such that dim(o’) =

with lem(o) = a,p =

dim(¢”) = dim(o) —1, ¢’ < g, lem(0”) =lem(o’) = lem(o) and 7 a gradient
path from ¢’ to ¢”. We denote by m” the C-maximal element of ¢” =
Ly U{m"}, Lyn C Ny p" = (o, m"). We need to show that ¢” cannot
satisfy condition (4.2.4.2).

The above implies that the total degree of all monomials of all simplices
on 7y is (weakly) smaller than the total degree of m. In particular, deg(m”) <
deg(m). We have: dimo = |L,,| = deg(a) —deg(m). If " satisfies condition
(4.2.4.2), we get dimo” = |L»| = deg(a) — deg(m”). But this contradicts
dim¢” = dimo — 1. O

Remark 4.2.9. For the Lyubeznik-resolution of a shellable co-Artinian mono-
mial module M as given in Proposition 4.2.8, ¢ = L,, U {m}, L, =
{njo,---,nj,} C Np a critical simplex, jo < ... < j;, the differential Oe,
is given by:
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t

des = S (=1)"as,eormp )+ (~1)1H-

- lem(o
> 3 o o P

o' critical PeGradPath(a\{m},0’)
dim(¢') = dim(o) — 1

Here m(P) is defined as in Definition 3.4.1.

Proof. Considering the fact that the o\{n]'} are critical the assertion follows
from Theorem 3.4.2.
]

In Particular, we have the following corollaries.

Corollary 4.2.10. For a stable co-Artinian monomial module M there is a
mainimal free Lyubeznik-resolution.

Corollary 4.2.11. Let A be a simplicial complex with shellable dual complex
A*. Then there is a minimal free Lyubeznik-resolution for In. In particular,
there is a minimal free Lyubeznik-resolution for squarefree stable monomial
ideals.

Proof. The existence of minimal free Lyubeznik-resolutions is a direct conse-
quence of Proposition 4.2.8. The fact that squarefree stable monomial ideals
are particular cases of Stanley-Reisner ideals of complexes with shellable dual
can be found in [15]. O

Let L be a lattice such that M; is co-Artinain and shellable. We call a
linear order C on MinGen(My) L-equivariant if x* C x°, a, o/ € L, implies
x¥ 7 T x*t7 for v € L.

Corollary 4.2.12. Let L C Z be a lattice such that LNN? = {0}. If My, is
shellable with an L-equivariant shelling order then there is a cellular complex
Xsny on which L acts vellularly and which supports a minimal free Lyubeznik
resolution of My,. Moreover, Xsy/L supports a minimal free cellular resolu-
tion of Ir.
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Proof. Analogous to the proof of Corollary 4.2.7. One has to use Proposition
4.2.8 and the same choices as made for the description of the differential
above. O

4.3 Hypersimplex resolution of powers of the
maximal homogeneous ideal

In subsection 2.3.7 we presented a cellular Z%graded free resolution of the

powers m” of the maximal homogeneous ideal m = (x4, ... ,x4) C k[z1,... , 24
which is supported by the polytopal complex C}. In this section we apply

Theorem 3.3.1 to obtain cellular minimal Z4-graded free resolutions for m”.

We use the denotations from Definition 2.3.30.

Proposition 4.3.1. Matching Co,; — Cayep,yy,t\{maxs} for all a € N4, J C
[d] such that 2 < n—|a| < |J]—1 and max J > max @ := max{i € [d] | a; #
0} yields an acyclic homogeneous discrete matching A on Cj. Here we set
max ) = 0. We denote by C? := (C?)a the corresponding Morse complex.
The A-critical cells of C™ are all the 0-cells Cpp, a € N* N A, and all the
cells Cy 5 such that max J > max a and |a| =n — 1.

Proof. A is a matching: Cells C, ; on the left-hand side of a matching satisty
max J > max a, while cells Cy 5 on the right-hand side satisfy max J' <
max a'.

Acyclicity of A: On cycles, lem(Cy, ;) is decreasing, so it must be constant.
This implies that max J is constant on cycles which is a contradiction to the
existence of nontrivial cycles. O

Proposition 4.3.2. Denoting by d the differential of the Morse complex
C := (C})a and by Coy the cell in this Morse complex corresponding to
the A-critical cell C, y of C}, we have for J = {jo,... ,Jr}, || > 3:

If max a < max (J\{max J}), then

r

0Ca; = (-1)"Cay,. (4.3.4.1)

v=0
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If max @ > max (J\{max J}), then

r—1

5éﬂaJ = Z(_l)u(é&]ﬂ/ - CN'Q—emax atej, (J\{max J}U{max g}),,)- (4342)

v=0

For J = {jo, j1} we have, as in C}

Caijon} = Catejy 0 = Catejo 0-

Proof. Let C,,; be A-critical, (so max J > max a), J = {jo,... ,jr},7 > 2.
For v = 0,...,r — 1, the cells C, j, are critical, and if max ¢ < max J,,
so0 is Cg 7. If max @ > max J,, C, j, is matched with Cy_... . 7,U{max a}-
Again, for v = 0,... ,r—1, the cells Cy_c,.,, o+¢;,,(J-U{max a}), are A—critical,
while the cells Cy ... ., (J,Ufmax a}),, ¥ =0,... ,7—1yield no gradient paths,
because they are matched “down” with the cells Cy (s,),. Finally, C

G—€max Q;J'r

also yields no gradient paths, because |@ — emax o] = 7 — 2, which leaves
no possibility for a gradient path to a critical cell Cy y, |d'| = n — 1),
while, if max J, = j,_1 > max (@& — €max a), it is matched 'down’ with

C,

G—€max g+ej,,‘_ 1

(J;)r_.- Considering orientations proves the assertion. O

Proposition 4.3.3. C’g defines a multigraded cellular minimal free resolu-
tion of m™.

Proof. Corollary 3.4.5 together with Proposition 4.3.2 proves the assertion.
]
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(0,0,3,0)

(0,0,0,3)

(0,3,0,0)

(3,0,0,0)

Figure 12. The complex C}

Remark 4.3.4. The multigraded cellular minimal free resolution of m” defined
by ég is isomorphic to the one resulting from the Lyubeznik-construction
(see Corollary 4.2.10). Both are isomorphic to the one given by Eliahou and
Kervaire [12].

Proof. We establish a one-to-one-correspondence between the cells of the two
Morse complexes by mapping the Lyubeznik-critical cell

m m

o= {n;-g,... ,n;-':,m} = { .’Ejom,.. . ,.Tjrxmax m,m }
of the Taylor-complex Xtayior (that is & = degm+>", _, e;,. For the definition
of n" see proof of Proposition 4.2.8,) to the A-critical cell Cy y of C2, with
a = deg(—=—), J' := {jo,- .-, Jr,max m} (of course sending the 0—cells

Tmax m

o = {m} to the 0-cells C, g, where ¢ = deg m). Analysing the gradient paths
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of the Lyubeznik-matching shows that the Lyubeznik-differential is given by:

,
o{ny,...,n;,m}p = Z(—l)”{n;-’;,... Iy, my
v=0

+(=1)" g, . 0

if t :== max o' = max (—=—) < j,, and

Tmax m
T
o{ng,... ,n;',m} = Z(—l)”({n%, c,nf o nlt m}
v=0

_ Jv Jv Jv m
.o mgl, . m i ),

where o' = & — emax m, if t > j,. Proof: Let o = {n},... ,nT',m} be

a Lyubeznik-critical cell, 7 > 1. The cells o, = {n7,... ,n},... ,nT',m},
v=0,...,r are critical. & = {n],... ,n]'} is critical if and only if
t := max ( ) < Jrs (4.3.4.3)
ml'l'la,X m

which is the translation of the condition max a¢ < max (J\{max J}) (see
4.3.4.1) under the given one-to-one-correspondence. This proves equality of
the differentials if this condition is satisfied. In what follows we suppose that
condition 4.3.4.3 is violated. We use the following notations:

e {:=max (—2—),

Tmax m

m m

® n(ju, Jr) = n(iv, ) = 25,5, - 0— = n:j,” = n;‘f”’, for 0 < v <
V<,
° O-}icl — { n(jOa]:l)a .- an(ji—lajll)’,r.b(ji:jl—l—l)a s } and
’ 7n(]k:.jl+1)7"' :n(.jkajv")anjka"' » T,

T,i’l :za};,lu{n(ji,jl)} for0<i<k<l<randfor0<i=k<l=r.
(Undefined symbols n(j,, jr+1) are to be omitted, T,i’l only defined for
i #1)
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Consider the following gradient paths:

— 40 0 1 1 k-1 k — :
® Qp:=0h, > To, >0, 2T, .. T 1, =05, k=0,...,7

— 5k k 0 0 k—1 k
T.

We claim that there exist exactly the gradient paths

Py:=RgpoRppi10...0 Ry 10Q

from ag,r to a Lyubeznik-critical cell of same dimension. (When

P=o—...20,, Q =o0s — ... > 0514, we denote Qo P := 07 —
cee > Ositl)

Since the P, start at 08# = ¢ and end at U;’i,k = {n(jo, jx),- -+ y n(Jk—1, Jr),
n(Jks Jk+1)s - - - » (Jks Jr), 1, }, considering orientations proves the assertion.
Proof of the claim:

Forall 0 <i<k<I<randall 0 <i=Fk<I[=rsuch that i # [, there
is a matching

ali,l — Tli,l’
because in O-]Z;;l — { n(]Oa.Zl)? .- an(]i—laj'l)’ ﬁ(]’iajl-kl)a e }’ the maxi-
’ an(]knjl—l—l)a"' :n(]ka]’r)anjka"' y g,
mal ’tail’ (see proof of Theorem 4.2.1) whose lcm is devided by a = (a'mj,)"
smaller element is {n(j;, ji+1),--- , "k, Ji+1), - - - » n(Jks Jr)s Mjys - - -, Mj, } and
IS <(a/n;,)-minimaly devided by n(jj, ji).
1. For 0 <i1=k <l =r, we have
T]::-,l = T]:;c,r,- = {n(j07j1")7 S an(jkajr)a gy - - - 7njr}'

The next matching will be taking out again n(j, j,), (which won’t give
us a gradient path to a critical cell, because these always alternate in
dimension between the dimensions of & and o) unless we at once get
rid of either n;, or n; :
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o Tlf,r\{njk} = Jllzi%,r = {n(j07j7“)7 < an(jk’jr)’ Mjpgrs--- ’njr}’

® Tlf,r\{njr} = O-l(c),rfl = {n(j()’.jr)’ s ’n(jkajr‘)’ Mgy - - - ’njr—l}'

These two possibilities represent the possibilities to either go on in some
Qj., k > k, or to switch over to Ry, ;.

2. For0<i<k<l<r i+#1, we have

7_1' = { n(jo’jl)"" ’n(jiajl)an(jiajl+1),... }
kol ey 0k J1g1)s - (G, Jr) s s - - - 5 Y,

Here the next matching will be taking out again n(j;, j;), unless we at
once get rid of either n;, or n(ji, ji+1)-

(a) If © < k, we cannot take out n;,, because eventually (grin!), we
would be forced to take out all n;,, but: Since, for a critical cell
7, we have dim 7 = degr — deg (max 7), and since in the case of
m? all monomials have the same degree, deg 7 must be constant
on gradient paths, so at least one of the n;, must stay. So we take
out n(j;, ji+1), which leaves us with

) ) n(jOvjl): s 7n(ji7jl)7
0-119'51 = Tlé,l\{n(jiajl-i—l)} = n(ji-l-l:jl-l-l)a s :n(jkajH-l)a ce.
. ,n(jk,jr),njk, e ,Tle

(b) If i = k < [, we cannot take out n(jj;, ji+1), because with n; =
nj, € T;;, the next matching would still be taking out n(js, ji). So
we take out nj,, which leaves us with

n(jO:jl)a HE an(jkajl): )
02,l—1 = Tllcc,l\{njz} = { .

oy (ks Jr)s Ms -+ - My

This proves existence and uniqueness of the given gradient paths, as
claimed.
Since, if ¢ > j,, the above correspondence takes

—

Jv Jv Jv m
{'I’Ljo,...,njy,... n n }
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to Cgueﬁej Loreesforimtys 1t follows that it also identifies the two differen-

tials. On the other hand, by mapping {n”, ..., n7, m} to e(jo,... ,jr;m)

Jo? 7 e
there is a one-to-one-correspondence between the Lyubeznik-critcal cells and

the admissible symbols of Eliahou and Kervaire [12], which identifies the
differentials up to a sign (up to choice of orientations, respectively). O

4.4 Resolutions via rooted complexes revis-
ited

In this section we show that there exists a suitable matching for the Taylor
complex so that Theorem 3.3.1 recovers the cellular free resolution via rooted
complexes as presented in Section 2.3.5 (see 2.3.5 for definitions concerning
the rooted complex).

Proposition 4.4.1. Let I be a monomial ideal,
7 : LCM(I) — MinGen(I)
a rooting map on its LCM-lattice. Then there exists an acyclic homogeneous
matching A on Xtayior Such that X4 = RC(I, 7).
We need the following Lemma:

Lemma 4.4.2. Let B and B' be broken subsets of MinGen(I). Then BU B’
s broken as well.

Proof. Since B and B' are broken, we have: #(B) ¢ B and 7(B') ¢ B'.
Assume 7(B U B') € BU B', say 7(B U B') € B. This implies 7(lem(B U
B'))‘lcmB‘lcm(B U B') which again implies 7(lem(B)) = 7(lem(B U B))
by the properties of Definition 1. But this is a contradiction to B being
broken. O

Now we prove Proposition 4.4.1:

Proof. By Lemma 4.4.2, for every simplex 0 € Xtayior, there is a maximal
broken subset B, C 0. We define the following matching on G x,,,:

o U{F(B,)} = 0 — {#(B,)}. (4.4.4.1)
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To see that A is well defined we must check that
1. if ﬁ(Bg) € o then Baf{ir(BU)} = B, and
2. if ﬁ'(BU) §é o then Bgu{ﬁ(Ba)} = B,.

The first assertion follows from the fact that 7(B,) ¢ B,, the second one
from the fact that B, U{7(B,)} is not broken. Condition 4.4.4.1 implies that
A is a matching. Acyclicity follows from the fact that along directed paths in
(G X1ayr )4 the maximal broken subset decreases. Therefore, Theorem 3.3.1,
yields a Morse complex (Xtayior)a consisting of cells that are in one-to-one
correspondence to those cells of X,y that dont contain a broken subset,
that is those cells of X,yior that are rooted. Beyond that, (Xtayior) 4 emerges
from Xtaor by elementary collapses of maximal simplices, so therefore we
have X4 = RC(I, ). O

4.5 p-Borel fixed ideals

In this section we study monomial ideals that are p-Borel fixred. We ob-
tain cellular minimal resolutions for a special subclass, namely the class of
monomial ideals that are principal p-Borel fixed such that the generator (gen-
erator in a sense defined below) is a power of one single variable. Here are
the definitions:

Definition 4.5.1. Let p € N be a prime. Define the partial order <, on
5 i

N by setting a <, b if and only if the p—adic expansions a = ). a;p
and b = >0, bip* fullfill a; < b; for all 4 = 0,...,s. A monomial ideal

I C k[x1,...,xq4] is called p-Borel fixed if for all monomials m € I and all
variables x; € k[xy,... ,z4] we have
at|m, 2ttt *m, j<iand k <, 1= (z;/z)'mel (4.5.4.1)

It is known (see [1]) that this property only needs to be checked for the
set MinGen(/) of minimal generators of I:

Lemma 4.5.2. Let I C k[z1,...,24] be a monomial ideal. Then the follow-
ing conditions are equivalent:
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1. I is p—Borel fized

2. Condition 4.5.4.1 is fullfilled for all minimal generators m € MinGen([I).

Definition 4.5.3. Let m € k[zy,...,z4] be a monomial. Then we call the
smallest monomial ideal I such that I is p-Borel fixed and such that m € I
the p-Borel principal ideal generated by m. We write (m) := I.

For the class of p-Borel principal ideals generated by a monomial of the
form z!, Aramova and Herzog find in [1] explicit minimal multigraded free
resolutions. The goal of this section is to show that there also exist cellular
minimal free multigraded resolutions for this class of monomial ideals. We
produce these cellular resolutions by again applying Theorem 3.3.1 to the
Taylor-resolution of the respective ideals.

Without loss of generality, we can assume that for I = (zt) C k[z, ... , 4]
we have ¢ = d. Let | = )7, l;p* be the p—adic expansion of [. As usual,
we denote by m := (z1,...,2z4) the maximal homogeneous ideal and write

max(m) = max{i s.t. z;\m} for monomials m € k[z,...,xz4]. To state

the main result of this section, we define for a fixed ideal I = (z)) for all
i=1,...,d—1 the following sets So(I),...,Sq 1(I):

1<t <s,
SZ(I) = (Ut,... ,Us,{j(),... aji—l}) U, € mb for r =1%,...,8,
1<j; <...<ji1 <maz(u)

We set S(I) := %, Si(1).

Theorem 4.5.4. Let I = (z%)) C k[xy,... ,z4] be the p-Borel principal ideal
generated by !, There is a cellular minimal free resolution of I, the cells of

dimension © of which are in one-to-one correspondence with the elements of

S, (1).

Proof. We prove the Theorem in three steps. Step 1 consists of constructing
a matching on Xayior(f), step 2 proves acyclicity of this matching and step 3
shows that the critical i-cells with respect to this matching are in one-to-one
correspondence with the sets S;(I).

Step 1: We construct maps

® 1 Xayior ™ (1) — S(I),

92



and
U2 S(I) — Xrayior (1),

such that ® o U = idg(py:
Construction of @ : XTayk,,(*)(I) — S(I) : For 7 C MinGen(I) we define
®(7) to be the unique S = (uy, . .- , us, {jo,--- ,Ji—1}) € S(I) satisfying

L J[,s;ut |m for allm € 7,

m for all m € T,

2. There is no u;, € m" such that [, u?’

3. If u € m* and m € 7 such that u?' [],.,u?"|m, then
(2) U <reviex ut and
(b) z§|u, x?*ut for some power a = j € {jo,...,Ji-1},
4. There exists m € 7 such that []..,ul"|m,
5. For all j € {Jo,...,ji_1} there exists m € 7, u € m* and a € N such
that u?’ [],., u?" ‘m and x?‘u, but ¢ *ut.

Construction of ¥ : S(I) — XTayk,,(*) (I) : For
S = (uta <oy Us, {jOa s aji—l}) € SZ(I)
define U(S) := {ho,...,h;} C MinGen(I) by setting:

hy = z=r<tt (g p’ A 1
L xmaw(ut) (x]k/xmaw(ut)) U, , J=U,...,0—1,
r>t
—— zr<tl"'pr p"
hi = Lo Hur
r>t

We make now another preparation for the construction of a suitable
matching on Xrayior(£):

For 7 € MinGen(/) and ¥(®(7)) := {hg, ..., h;} C MinGen([) as defined
above, define j, to be the minimal integer, such that for all j, < 7 < i we
have:
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1. b e,
2. B(r — {h}) £ B(r).
We obtain the following fact for all 7 C MinGen([) such that j, # O:
O(1 — {hj,—1}) = (T U {hj._1}). (4.5.4.2)

Proof: If h; _y € 7 the equation is obvious from the definition of j,. But if
h;.—1 ¢ T checking the list of conditions shows that ®(7) fullfills all required
conditions to equal ®(7 U {h; _1}) because of the definition of h; ;.

Construction of the matching: Now we are ready to define the following
matching A C Gxy,,,(n: For all 7 € MinGen([) such that j, # 0, with
U (®(7)) :={ho,---,hi} C MinGen(I) as defined above, we match

TU {hj.,—l} — T — {h'T—l}-

Equation 4.5.4.2 implies that this indeed is a matching.

Step 2: We show acyclicity of the above defined matching A by verifying the
conditions of Proposition 4.1.1:
Define

P:={(S,a) | SeS{),acz.
Endow P with the structure of a poset by setting
(S,a) < (58, d) & 76 C 79 and a < .

Here, for S € S(I), 75 is defined to be the maximal element 7 € Xayior(1)*)
such that ®(7) = S. Such maximal elements exist because for 7,7" €
Xaylor (1)), such that ®(7) = ®(7'), we have ®(r U7') = ®(7).

Define a map f : XTayk,,(*) (I) — P by setting

f(7) = (@(7), lem(7)).
Since

lem(7 — {hj,_1}) =lem(r U {hj,_1}), (4.5.4.3)
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we have A = [J,cp Ay, where A, is the restriction of the above matching to
f~(p). The definition of the map ® and that of the 75, S € S imply that f
is order preserving. We now check that the A,, p € P are acyclic: A cycle
within f~*(p), p = (S, o) must consist of adding and removing some elements
of ¥(S). But removing some such element does not change the value of j,,
so it is always the same h; _; that could be added via a matching, leaving no
possibility for a cycle. We have checked the conditions of Proposition 4.1.1
and have thereby proven acyclicity of A.

Step3: We show that the critical i—cells with respect to the matching
A are in one-to-one correspondence with the elements of S(I);: The only
situation in which a simplex 7 is not matched, is when 7, = 0. This im-
plies U(®(7)) = 7. Therefore, the critical i-cells are, via ¥, in one-to-one
correspondence with the elements of S(I);. O

4.6 Application to the Resolution of £ over
Semigroup-Rings

For an affine semigroup A C N? and A € A we denote by A(0, \) the order
complex of the open interval (0, \) in the poset A. Note that

A0, A) = A(Ag)<x
for the ordercomplex A(Ag) (see Lemma 2.3.34).

Proposition 4.6.1. Let A C N¢ be an affine semigroup such that A(0Q, ) is
shellable for all A € A. Then there is a cellular minimal free resolution of k
as an R = k[A]-module.

Proof. We set
A(M)Y = {o € A(A)™) | gr(o) = A}
The maps

A(A)S) — A0, N
(/\0, e ,/\1;1, )\z = /\) — (/\0, e ,/\Z',l)
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are isomorphisms of posets for all A € A. According to Theorem 4.1.6, since
A(0, A) is shellable there exists a matching Ay on A(0,A) such that the
number of critical i-cells is given by dim H;(A(0,))) = dim H;(A(Ag)<»)-
The above maps carry these matchings A, over to matchings A, on A(AO)E\*) .
By Proposition 4.1.1

A= U[l,\
AEA
is again an acyclic matching and the number of critical i-cells of multidegree A
is given by dim H;_;(A(Ag)<y). By Proposition 2.2.5 these are also the Betti
numbers of the minimal free multigraded resolution of k£ as k[A]-module, so
the cellular resolution supported by the Morse complex A(Ag)4 is minimal.
]

Remark 4.6.2. The above Proposition and Theorem 4.1.8 share the following
background: Given a cellular Z%graded resolution of a module M supported
by a CW-complex X such that for all o € Z? the subcomplex X _, is shellable
and such that the partially ordered sets XSZ and X§ = {0 € X | gr(o) =
a} are isomorphic, there exists a cellular minimal free resolution of M.

Proof. The proof is the same as for Proposition 4.6.1. O
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Kapitel 5

Deutsche Zusammenfassung

5.1 Einleitung

Diese Arbeit ist ein Beitrag zur kombinatorischen kommutativen Algebra,
und zwar zur Theorie der zelluldren multigraduierten Auflésungen monomi-
aler Moduln.

Aus der linearen Algebra kennt man das grundlegende Konzept der lin-
earen Abhangigkeit. Kennzeichnend ist die Tatsache, dass jeder Vektorraum
V iiber einem Korper k ein freier k-Modul ist. Insbesondere sind Vektoren
V1,...,0, € V genau dann maximal linear unabhangig, wenn sie minimal
erzeugen.

Das Konzept der Abhéngigkeit von Polynomen p1,... ,p, € k[z1,... ,24]
iber dem Polynomring k[z1, . .. , 4] ist sehr viel komplexer. Zum Beipiel sind
hier maximale Unabhangigkeit und minimales Erzeugen nicht dquivalent.

Ein Mass fiir die Abhéngigkeit sind (minimale) freie Auflésungen des von
den Polynomen py, ... ,p, erzeugten Ideals I = (p;,...,p,). Allerdings sind
diese sehr schwierig zu konstruieren. Selbst das Problem der Konstruktion
minimaler freier Auflésungen monomialer Ideale (das sind Ideale, die von
Monomen erzeugt werden) ist nicht gelGst.

Ein vielversprechender Zugang zu diesem Problem ist das Studium soge-
nannter zellulirer Auflésungen. Ist das aufzulosende Ideal Z?-graduiert, so
entstehen diese durch Homogenisieren des zelluldren Kettenkomplexes eines
Z4-graduierten CW-Komplexes.
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Das klassische Beispiel einer zelluliren Z%graduierten freien Auflosung
ist die Taylor-Aufldsung. Der zugrundeliegende Z?-graduierte CW-Komplex
ist hier der Standard Simplex A,,, dessen Ecken die monomialen Erzeuger des
Ideals I bilden. Die Z?Graduierung erfolgt durch das kleinste gemeinsame
Vielfache, das heisst der Multigrad « € Z¢ eines Simplex o = {m;,,... ,m;,}
€ A, ist dasjenige o mit x* = kgV{my,,...,m; }.

5.2 Uberblick iiber die Arbeit

Im Allgemeinen sind zellulare Auflosungen wie die Taylor-Auflosung bei
weitem nicht minimal. Die vorliegende Arbeit liefert eine allgemeine Meth-
ode zur Minimalisierung gegebener zelluldrer Auflosungen. Wir verwen-
den hierfiir als Hilfsmittel aus der kombinatorischen Topologie die diskrete
Morsetheorie. Die Hauptaussage dieser von Forman [13, 14] entwickelten
Theorie ist wie folgt (wir verwenden die Theorie in einer Version von Chari
[9]):

Hat man einen CW-Komplex X und ein azyklisches Matching A auf dem
gerichteten Zellgraphen von X, so existiert ein zu X homotopieaquivalenter
CW-Komplex X4 (der sogenannte Morsekomplex), dessen Zellen in Bijektion
zu den A-kritischen Zellen von X stehen. Diesen Ubergang von X zu X4
kann man ansehen als Ubergang zu einer effektiveren CW-Zerlegung von X.

Die zentrale neue Idee dieser Arbeit besteht darin, diesen Prozess von
CW-Komplexen auf zelluldre Auflosungen zu iibertragen. Wir zeigen das
folgende: Hat man eine zellulire Z4-graduierte freie Auflésung eines Moduls
M mit zugrundeliegendem Z%graduiertem CW-Komplex X und ein azyk-
lisches Matching A auf dem gerichteten Zellgraphen von X, so liefert der
Morsekomplex X4 seinerseits eine Z?-graduierte freie Auflosung desselben
Moduls M. Da der CW-Komplex X4 aus weniger Zellen besteht als X, ist
die Auflésung, die aus X4 entsteht, kleiner als die urspriingliche, die aus X
entstand.

Ein Grossteil der Arbeit besteht darin, durch Anwendung dieses Ergeb-
nisses minimale Zgraduierte freie Aufldsungen fiir gewisse Klassen monomi-
aler Moduln zu konstruieren. Diese beinhalten alle generischen, stabilen und
quadratfrei-stabilen monomialen Ideale, alle Stanley-Reisner Ideale, deren
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zugehoriger simplizialer Komplex ein schilbares Alexanderdual besitzt, sowie
eine sehr spezielle Klasse von p-Borel-fixed Idealen. In einer weiteren An-
wendung prasentieren wir unter speziellen Vorraussetzungen an eine affine
Halbgruppe A minimale Z4graduierte freie Aufldsungen des Korpers & iiber
dem Halbgruppenring k[A].

Die Idee, diskrete Morsetheorie auf zellulire Auflosungen anzuwenden,
wurde bereits in [3] vorgestellt. Hierbei handelt es sich um eine gemeinsame
Veroffentlichung mit Volkmar Welker.

5.3 Struktur der Arbeit

5.3.1 Kapitel 1

Das 1. Kapitel enthalt die Einleitung. Diese ist inhaltlich ahnlich dieser
Zusammenfassung in deutscher Sprache.

5.3.2 Kapitel 2

Das 2. Kapitel besteht aus Definitionen, elementaren Tatsachen iiber und
Beispielen von zelluldren Z%graduierten freien Auflsungen.

Abschnitt 2.1

In diesem Abschnitt werden folgende mathematischen Objekte definiert:
1. Affine Halbgruppenringe k[A],
2. Z%graduierte freie Kettenkomplexe,
3. Z4graduierte freie Auflésungen,
4. Minimalitit Z%graduierter freier Auflésungen,
5. CW-Komplexe,
6. zellulare Homologie,

7. simpliziale Komplexe,
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8. Z%-graduierte CW-Komplexe,

9. zellulare Kettenkomplexe und zelluldre Auflésungen,
10. monomiale Moduln und deren Eigenschaft, co-Artinsch zu sein, sowie
11. ganzzahlige Gitter.

Wir geben hier ausschnittsweise die wichtigsten dieser Definitionen wieder:

Definition 5.3.1 (Z%graduierte freie Auflésung). Es sei R = k[A] ein
affiner Halbgruppenring, M = ;4 M, ein Z%-graduierter R-Modul. Eine
Z%-graduierte freie Auflésung F von M ist ein Z9-graduierter freier Ket-
tenkomplex

i ; 0;—
F= g o g %y o g
iiber R mit den folgenden Eigenschaften:
1. F ist exakt, das heisst,

Kerd; = Img,; fiir alle s € N\ {0},

2. Coker 0, =2 M.

Definition 5.3.2. Ein topologischer Raum heisst (offene) Zelle der Dimen-
sion d (bzw d-Zelle) falls er homéomorph ist zur d-dimensionalen offenen
Kugel

o

d
B'={z=(21,... ,xs) €R' | Y a7 < 1}.
i=1

Definition 5.3.3 (CW-complex). Wir nennen einen topologischen Raum
X einen CW-Kompler, falls es eine Menge X®) = {o; | i € I} disjunkter
offener Zellen gibt, so dass gilt:

1.

X:UO'Z',
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2. X ist Hausdorffsch,

3. fiir jede offene Zelle ¢ € X® der Dimension d gibt es eine stetige
Abbildung

f,:Bf— X

o
so dass die Einschrankung f := f"‘é’d ein Homoomorphismus

fU:Bdi o

ist und so dass f,(S% 1) nur mit endlich vielen Zellen einen nichtleeren
Schnitt besitzt. Alle diese Zellen haben hochstens die Dimension d — 1,

4. eine Teilmenge A C X ist in X abgeschlossen, genau dann wenn AN o
in & abgschlossen ist fiir alle 0 € X,

Definition 5.3.4 (Graduierter CW-komplex). 1. Es sei (P, <) eine
partiell geordnete Menge, (X, A) ein CW-Paar und f : (X, A)®) — P
eine Abbildung. Wir nennen (X, A, f) ein P-graduiertes Paar, falls f
ordnungserhaltend ist.

2. Ist (X, f) := (X,0, f) ein P-graduierter CW-Komplex und p € P, so
bezeichnen wir mit X<, den P-graduierten Unter-CW-Komplex, der
aus all denjenigen Zellen o € X besteht, fiir die gilt: f(co) < p.

Definition 5.3.5 (Zellulire Auflosung). Es sei R = k[A] ein affiner Hal-
bgruppenring. Wir nennen eine Z%graduierte Auflésung

F=  F5%F 25 2 F Fi= D F, Ff = R(-a)

VA
zelluldr falls ein (Z4, A)-graduiertes CW-Paar (X, A, gr) existiert, so dass gilt:

(a) Es existiert eine Basis e, von C{ indiziert mit i-Zellen o aus (X, A)®
mit der Eigenschaft gr(o) = a.
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(b) Fiir 0 € (X, A4)® gilt:

dea= Y. [0 0] xFOEE ¢y i> 1,

o>o'eX (1)

wobei [o' : o] der Koeffizient von ¢’ im Differential von ¢ im zelluldren
Kettenkomplex von (X, A) ist.

Abschnitt 2.2

In diesem Abschnitt werden einige Grundlegende Tatsachen iiber zellulére
freie Auflosungen aufgefiihrt:

1. Es wird ein Kriterium von Bayer und Sturmfels ([5]) zitiert, welches be-
sagt, dass ein Z%graduierter CW-Komplex X genau dann eine zellulire
Auflésung unterstiitzt, wenn gilt, dass alle Unterkomplexe X<,, a € Z°
azyklisch oder leer sind.

2. Es wird die allgemein bekannte Tatsache gezeigt, dass sich die Betti-
Zahlen der minimalen Z?graduierten freien Auflésung eines Moduls M
aus jeder Z4-graduierten freien Auflosung F dieses Moduls vermoge der
folgenden Formel berechnen lassen:

B (M) = dimH;((F=%)a, (F**)a)-

3. Es wird gezeigt, dass auf dhnliche Weise die Betti-Zahlen der mini-
malen Z%-graduierten freien Auflésung eines Moduls M sich auch aus
der Homologie eines einer zelluldren Auflésung von M zugrundeliegen-
den graduierten CW-Paares (X, A) berechnen lassen. Die Formel ist:

,BZOZ(M) = dim Hi(Xja; X<a U Aja; k)
[ dimH,; (X4, Aiaik) falls Ac, #0
| dim Hmy (X <as k) falls Az, =0’

wobei die erste Gleichung fiir alle 7 > 0 gilt und die zweite fiir alle
1> 2.
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4.

Es wird gezeigt: Falls das graduierte CW-Paar (X, A) eine graduierte
zellulare freie Auflosung des Moduls M unterstiitzt, ¥ C X ein Un-
terkomplex von Y ist, der eine graduierte zellulare freie Auflosung
des Untermoduls N C M unterstiitzt, dann unterstiitzt (X,Y") eine
graduierte zellulére freie Auflésung des Moduls M/N.

Abschnitt 2.3

In diesem Abschnitt werden Beispiele graduierter zellularer freier Auflosungen

aufgefiihrt. Bekannte Beispiele sind:

1.

2.

5.

6.

Taylor-Aufldsung [23],
Scarf-Auflésung [4],

Hull-Auflésung [5],

. Lyubeznik’s Auflésung [16],

Auflsungen via Wurzelkomplexen (rooted complexes) [18] und

Bar-Auflosungen.

Als neue Klassen graduierter zelluldrer freier Auflosungen werden aufge-

fihrt:
1.
2.

3.

LCM-Auflésungen,
LCM*-Auflésungen und

hypersimpliziale Auflosungen fiir Potenzen des maximalen homogenen
Ideals im Polynomring k[z1, ... , z4].

Die LCM-und LCM*-Auflésungen eines monomialen Modules M entste-
hen aus dem Ordnungskomplex iiber dem LC M-Verbandes von M bzw eines

vom LCM-Verband abgeleiteten Verbandes. Die hypersimplizialen Auf-

l6sungen fiir Potenzen des maximalen homogenen Ideals entstehen aus einer

zelluliren Wiirfelstruktur im R? und ihrer hypersimplizialen Unterteilung.
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5.3.3 Kapitel 3

In diesem Kapitel wird Formans diskrete Morsetheorie vorgestellt und fiir
unsere Bediirfnisse erweitert. Die entscheidende Aussage ist:

Theorem 5.3.6. Es sei R = k[A] ein affiner Halbgruppenring und M ein
Z4-graduierter R-Modul. Es sei (X, gr) ein kompakt (Z%, A)-graduierter CW-
Komplex der die zellulire Auflosung Fy von M unterstiitze. Weiterhin sei
A ein azyklisches Matching auf X. Dann unterstiitzt der (Z4, A)-graduierte
CW-Komplex (X4, gr) eine zellulire Auflésung FS, von M.

Hierbei assoziieren wir zu X den gerichteten Graphen G, dessen Eck-
enmenge die Menge der Zellen von X ist und dessen Kantenmenge aus all
denjenigen 7 — o besteht, wo o maximale Seite von 7 ist. Ein azyklisches
Matching A auf X ist gegeben durch eine Menge von Paaren (7, 0) von Zellen
von X, derart dass

1. o ist regulire Seite von 7 fiir alle Paare (7,0) aus A,
2. keine Zelle o kommt in zwei verschiedenen Paaren von A vor und

3. der gerichtete Graph G4, der aus Gx durch Umdrehen der Richtung
aller Kanten aus A entsteht, ist azyklisch.

Gemiss den Resultaten von Forman ist der Morsekomplex X4 wiederum
ein CW-Komplex und seine Zellen stehen in Bijektion mit den sogenannten
kritischen Zellen von X, das sind diejenigen Zellen von X, die in keinem der
Parre von A vorkommen.

Inhalt des 3. Kapitels ist, neben der Darstellung von Formans Ergebnis-
sen:

1. Die Verallgemeinerung dieser Ergebnisse auf graduierte CW-Komplexe
und

2. der Beweis (im Abschnitt 3.4 {iber Morsedifferentiale), dass es sich bei
dem von Forman beschriebenen differentiellen Morsekomplex um die
Homologiesequenz des (topologischen) Morsekomplexes X4 handelt.
Dies liefert uns im Folgenden die Moglichkeit, Differentiale in zellularen
Auflésungen, die von Morsekomplexen unterstiitzt sind, explizit zu bes-
timmen.
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5.3.4 Kapitel 4

In diesem Kapitel wenden wir die diskrete Morsetheorie auf konkrete zellulare
Auflosungen an und erhalten auf diese Weise minimale zelludre Auflosungen
fiir mehrere Klassen von Moduln:

1. In Abschnitt 4.1 zeigen wir, dass fiir schialbare monomiale Moduln M
mit geeigneten Matchings aus der LC' M*-Auflosung eine zelluldre min-
imale Auflésung konstruiert werden kann.

2. In Abschnitt 4.2 konstruieren wir eine allgemeine Methode, aus der
Taylor Auflosung eines co-Artischen monomialen Moduls M und einer
Menge linearer Ordnungen auf den Erzeugern von M mit gewissen Vo-
raussetzungen eine neue zellulare Auflosung zu erhalten. Diese Meth-
ode kann als Verallgemeinerung von der Auflésung von Lyubeznik ange-
sehen werden. Wir zeigen, dass auf diese Weise fiir generische co-
Artinsche monomiale Moduln und wiederum fiir schilbare co-Artinsche
monomiale Moduln zellulare minimale Auflésungen konstruiert werden
konnen.

3. Abschnitt 4.3 wendet die diskrete Morsetheorie auf die hypersimpliziale
Auflosung der Potenzen des maximalen homogenen Ideals an und erhalt
auch hier eine zellulare minimale Auflésung.

4. Abschnitt 4.4 zeigt, dass die Auflosungen via Wurzelkomplexen sich
durch Anwendung der diskreten Morsetheorie auf die Taylorauflosung
realisieren lassen.

5. In Abschnitt 4.5 wird gezeigt, dass fiir “p-Borel fixed”-Ideale, die von
einem Monom der Form z; (im geeigneten Sinne) erzeugt werden, eben-
falls eine zellulare minimale Auflésung durch Anwendung der diskreten

Morsetheorie auf die Taylorauflosung erhalten werden kann.

6. Zuletzt wird in Abschnitt 4.6 gezeigt, dass fiir einen Halbgruppenring
k[A] mit der Eigenschaft, dass alle Ordnungskomplexe A(0, \) iiber of-
fenen Intervallen (0, \) schilbar sind, der Korper k eine zelluldre min-
imale Auflsung iiber k[A] besitzt.
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