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We shall not cease from exploration 

And the end of all our exploring 

Will be to arrive where we started  

And know the place for the first time. 

 
T.S. Eliot  (Four Quartets) 



Über die Symmetrie der Identität von Atomkernen, 
untersucht am Beispiel relativistischer Primärteilchen  

und den daraus gebildeten Sekundärteilchen 

 
Dissertation von Louis Lerman 

(Kurzfassung in deutscher Sprache) 

 
 Es wird die Frage untersucht, ob hadronische Sekundärteilchen die gleichen 
fundamentalen Eigenschaften wie die primären relativistischen Teilchen besitzen, aus denen 
sie durch Kernwechselwirkungen hervorgegangen sind. Es werden zwei sich ergänzende 
Experimente beschrieben. Das erste Experiment bestand aus der Bestrahlung einer 
Kernspuremulsion mit den 1.8 AGeV 40Ar-Ionen des BEVATRONS am Lawrence Berkeley 
Laboratory in Kalifornien und der anschließenden gründlichen Auswertung der Kernspuren  
im Emulsionsstack. Die vollständige Analyse dieser Art von Bestrahlung ist die erste in ihrer 
Art, und es wurden 1418 „Sterne“ (der Wechselwirkung der 40Ar-Ionen als Primärteilchen mit 
den Bestandteilen der Kernspuremulsion) am Mikroskop genau ausgemessen, dazu 1850 
„Sterne“, die von Sekundärteilchen induziert wurden und außerdem über 10.000 
„Schauerteilchen“ und „langsame, stark ionisierende Teilchen“. Diese Ergebnisse bilden die 
experimentelle Datenbasis zur Untersuchung der Symmetrie zwischen Primärteilchen und den 
daraus gebildeten  Sekundärteilchen. Ein Ergebnis dieser Untersuchungen ist die gesicherte 
Feststellung, daß der totale Wechselwirkungsquerschnitt von α-Teilchen sich nicht mit der 
Generationsfolge ändert. 
 Das zweite „Experiment“ ist virtueller Natur und besteht aus Monte Carlo 
Simulations-Rechnungen, die auf den Emulsionsexperimenten aufbauen. Zuerst wird ein 
allgemeines Progamm, RHIP, entwickelt. Dieses ermöglicht die Untersuchung einer Reihe 
von Problemen aus der Teilchenphysik bis hin zu Anwendungen bei der NASA, um den 
Einfluß der galaktischen, kosmischen Strahlung während bemannter Raumflüge zu 
simulieren. Der Hauptteil dieser Arbeit besteht aber in der Entwicklung eines spezielleren 
Programmes, BFHL, das eine sehr detailierte Analyse der kernchemischen Untersuchungen 
(„Kupfer Kalorimeter Experiment“) an Kupfer-Targets ermöglicht, die ebenfalls mit den 
schon erwähnten 1.8 AGeV 40Ar-Ionen bestrahlt wurden. Die sehr bis ins Einzelne gehenden 
analytischen Simulationsrechnungen zeigen, daß die experimentellen Meßergebnisse für das 
wichtigste Reaktionsprodukt dieser Kernreaktion - es ist das Nuklid 24Na - nur erklärt werden 
können, wenn man einen drastisch angewachsenen partiellen Wirkungsquerschnitt für die 
Bildung von 24Na postuliert. Es muß weiter angenommen werden, daß dieses insbesondere für 
solche Reaktionen gilt, die von schweren Sekundärfragmente (Z≥2) in einer Zeit von ca. 10-9 
Sekunden nach ihrer Entstehung induziert werden. Zusätzliche Untersuchungen an den 
relativistischen „Schauerteilchen“ unter Verwendung gleichartig erhöhter partieller 
Bildungsquerschnitte für 24Na ergeben keine Anpassung an die experimentellen Meßbefunde. 
Es ist sehr interessant darauf hinzuweisen, daß ähnliche experimentelle Resultate bezüglich 
Lebensdauer, Energieschwelle und der Produktionsrate für kollektive „seltsame“ („strange“) 
Kernmaterie beobachtet wurden. 
 Was immer die endgültig akzeptierbare Interpretation dieser Phänomene in der 
Zukunft ergeben möge, die vorgelegte Arbeit weist sehr deutlich in die Richtung, daß hier ein 
bisher unvermutetes nicht lineares Verhalten in einer Teilmenge der Reaktionsprodukte bei 
den hier untersuchten relativistischen Kernreaktionen vorliegt. Es scheint eine Asymmetrie in 
den Kernwechselwirkungseigenschaften zwischen den Primärteilchen und den von ihnen nach 
Kernwechselwirkungen ausgehenden Sekundärteilchen vorzuliegen.   
 



 
On the Exploration of the Symmetry of Nuclear Identity 

between Relativistic Primary and Secondary Nuclei 
 

Dissertation by Louis Lerman 
 

 
Do secondary hadrons, freshly created in the collision of a relativistic heavy ion nucleus, 
have the same properties of nuclear interaction as those of an otherwise identical primary?   
 
To explore this question two types of experiments were performed, one in fact and one in 
fiction.  The first was the scanning and measurement of an emulsion stack exposed to a 1.8 A 
GeV 40Ar beam from Lawrence Berkeley Laboratory’s Bevatron.  This emulsion experiment 
is the first full-stack scan of a major exposure ever performed and includes 1418 stars of 
primary interactions, 1850 secondary stars, and tens of thousands of shower and slow heavily 
ionizing particles.  As such it constitutes a dataset uniquely powerful in exploring questions of 
symmetry between primary and secondary populations.  One of the emulsion results is the 
experimental determination (and to a particularly high accuracy for Z=2) that total 
(geometric) cross-section does not change with generation for the secondaries under study. 
 
The ‘fictional’ experiments are a set of Monte-Carlo simulations based on the transport code 
RHIP, itself built upon the results of the emulsions experiment.  RHIP is designed to attack a 
number of problems ranging from particle physics to NASA’s need to model the nuclear 
cascades induced by Galactic Cosmic Rays impinging on manned spacecraft.  The major 
version of RHIP dealt with here is BFHL, a detailed modeling of a 1.8 A GeV 40Ar beam on 
cylindrically symmetric sets of Cu targets.   
 
BFHL was then applied to the Copper Calorimetry Experiments also performed at Lawrence 
Berkeley Laboratory.  The exhaustive simulation and analysis presented here shows that all 
but one of the variables considered can neither quantitatively nor qualitatively explain the 
results of the Copper Calorimetry Experiments.  Amongst many others these failures of fit 
include all transport variables, the total cross-section (i.e. short mean free path), and a higher 
than normal Pt for shower particles.   
 
Instead, the Copper Calorimetry Experiments can only be explained by a significantly 
enhanced partial cross-section for the production of the isotope measured (24Na).  This 
enhancement appears to have a lifetime of 10-9 or 10-10 seconds and to be carried by a 
subpopulation of secondary (Z≥2) fragments. (Simulations of shower particles having 
enhanced production cross-sections do not fit the experimental data as well.)  Most intriguing 
is a congruence of energy thresholds, lifetimes, and production efficiencies between the 
inferred carrier of this enhanced production (partial) cross-section and collective strange 
matter. 
 
Whatever the actual explanation, the results of this work strongly suggests that in a subset of 
relativistic ion collisions… asymmetries in nuclear interaction properties exist between 
primary and secondary populations, and that some form of previously unsuspected non-linear 
behavior exists in the involved collisions.   
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Prologue 
 

All of physics can be looked at as the study of nature’s symmetries, asymmetries, and the 

breaking of these symmetries.  By Noether’s Theorem∗ this is equivalent to saying that 

physics studies those things conserved in physical processes, those that are not, and the 

mechanisms by which particular conservation laws are made and broken.  This approach is 

fundamental to contemporary high-energy physics, and its universality illustrated below by 

application to the classical laws of mechanics and thermodynamics.  

 
Newton’s Laws of Motion 

1) A body in motion tends to stay in motion, and a body at rest tends to stay at rest.  Or 

more usefully… a body in uniform motion tends continues to do so unless acted 

upon by an external force F (as defined in the second law) 

2) F = ma  

3) To every action there is an equal and opposite reaction. 

 

The first law states the symmetry (or invariance) of spatial translation and equivalently 

proclaims the homogeneity of space.  The conserved quantity is of course that of 

momentum.  The second law parameterizes any symmetry-breaking of an object’s motion 

through the manifestation of a force that is itself a measure of the non-conservation of 

momentum.  And the symmetries inherent in Newton’s third law lead to the explicit law of 

the conservation of momentum.  

 
In thermodynamics, by analogy, the first law deals with the time symmetries of processes; 

equivalently stated as the conservation of energy.  And the second law of thermodynamics, 

in similar analogy, deals with the breaking of this symmetry in time and its equivalent  

non-conservation of energy.   

                                                 
∗ Produced in 1905 by Emma Noether, a student of Hilbert, it demonstrates that for every 
continuous symmetry there is a corresponding conserved quantity and for every conserved 
quantity (or ‘law’ of conservation) there exists a continuous symmetry.  
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But there is an even more fundamental symmetry implicit in the first laws of both 

mechanics and thermodynamics: the symmetry of identity ….” a rose is a rose is a rose”  

or more abstractly X=X=X.  This is non-trivial for when the symmetry of identity is itself 

broken, by definition new structures and processes come into being.  And when dealing 

with collective phenomena the breaking of this symmetry of identity invariably involves 

phase transitions of one form or another.  Indeed, in the study of the self-organization of 

nature, the forces and principles underlying this particular symmetry and its breaking are 

often the most fundamental. 

 
The present work is an exploration of this latter symmetry, the symmetry of identity, in the 

regime of relativistic heavy ions.  In particular it examines whether relativistic primaries 

and newly-created secondaries of the same (Z,A) sustain identical nuclear interactions: for 

example, will a newly created (i.e. secondary) 12C nucleus behave identically the same in a 

nuclear collision as a 12C nucleus from a primary beam.  This is not an easy experimental 

problem, for it forces one to look down the center of relativistic beams of heavy ions…  

 

Figure 1.1      Simulation of a Relativistic Heavy Ion Beam 

 

 
 

and to distinguish the collisions of secondary nuclei in a target from those of primaries.  
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1.1 The Experiment and its Conceptual Underpinnings  

 
Aleklett et al (1987, 1988a,b) pioneered an experimental approach that can be used to 

explore this unusually reticent part of phase-space; attempting to differentiate the effects 

and properties of secondary projectiles from the presumed identical ones due to primaries.  

Their approach is in essence a “classical”  beam transport experiment with relativistic 

heavy ions directed against thick metal targets. Thick targets are necessary due to the 

secondary nuclei’s centimeter-scale mean free path.  The chosen targets are cylindrically 

symmetrical copper blocks taken two at a time (Figure 1.2a) and N at a time (Figure 1.2b).  

 

 

Figure 1.2  Basic Experimental Setups   

 
 

 
 

   (a)                                                        (b) 
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Ordinarily, due to the non-separable mixing of generations, experiments using thick targets 

can only look at averaged quantities (as in calorimetry) or at variables representing a 

collective flow.   Hence implicit in conventional thick target experiments is the assumption 

of a symmetry of identity between generations vis-à-vis their behavior in a cascade of 

nuclear collisions.  (The resolution of generations is one of the reasons thin targets are used 

in the majority of experiments examining the characteristics of individual nuclear species.) 

 
But the experimental approach of Aleklett et al actually takes advantage of the mixing 

inherent in thick targets and incorporates an elegant phenomenological twist (illustrated in 

Figure 1.3) to break the symmetry of the collision populations, primary vs. secondary. 

 

 
Figure 1.3  Metalogical Setup 
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Without loss of generality, possible interactions fall into three classes: 

 
< 1-1 >    A primary interacts in Segment 1 (the front)  

and produces a secondary which also interacts in Segment 1. 

 

< 2-2 >  A primary interacts in Segment 2 (the rear)  

and produces a secondary which also interacts in Segment 2. 

 

< 1 – 2 >    A primary interacts in Segment 1 (the front)  

and produces a secondary which interacts in Segment 2. 

 
It is obvious that in the first two classes, <1-1> and <2-2>, the basic nuclear processes 

involved are identical and the amount of identical processes in Segment 2 should be 

reduced only in proportion to the amount of primary beam (exponentially) absorbed in 

Segment 1.  If one then measures in each of the target blocks the activities of any target 

residues, the ratio of activities in these two segments should follow this exponential 

decrease; being one minus the amount of the primary beam absorbed in Segment 1 on the 

way to Segment 2.  For these first two classes any anomalous or unexpected secondary 

behavior will simply scale with the numbers of primary interactions. 

 
Instead it is the third class of interactions <1-2>  that will make apparent any difference 

in the secondaries’ behavior that is manifested in the absolute activity.   For this third 

class breaks the symmetry in an unscalable way.   For example, in class  <1-2>  any 

unusual secondary phenomena which might enhance absolute activity will enhance 

Segment 2’s activity due to the increased number of secondaries born in Segment 1 that 

then interact in Segment 2.   Thus relative to the otherwise expected values, there will be 

an enhancement of the activity ratio  

  

R =
ActivitySegment2

ActivitySegment1

                                                   (1.1) 
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If one knows or can simulate the expected number and effect of such “normally” 

behaving secondaries (born in 1, interacting in 2) then any greater activity in  

Segment 2 (i.e. an enhanced R) must be due to other processes that somehow 

 enhance the production of whatever one is measuring.  

 

 

1.2  Experimental Applications of Activity Ratios 

 
The application of this concept for a two block configuration was first performed by 

Aleklett et al (1987), while that for a 20-block cylinder was done by Haase (1990).   

Both sets of experiments were performed at Lawrence Berkeley Laboratory’s (LBL) 

Bevatron, and confirmatory experiments were subsequently performed at a number of  

other institutions (see Section 5.2).  Both LBL experiments utilized a 1.8 A GeV  40Ar  

beam on a native copper target and are more fully described in Chapters 5 and 10.   

 
What was measured, using Ge(Li)’s, was the 24Na residue of the Cu target nuclei.   

This particular isotope was chosen both because of its clean, easy to detect, γ-lines and 

because the production cross-section curve for 24Na in Cu is almost a step-function with 

a threshold beginning ~1 A GeV and which flattens out ~ 2 A GeV (Figure 1.4).  

 
24Na-production thus acts as a threshold counter for relativistic phenomena.  Only 

(relativistic) projectile fragments will be able to produce 24Na from interactions with the 

Cu target nuclei. This is the first of two particularly elegant aspects of the experimental 

design.  In essence then  24Na-production provides an unusual and extremely useful form 

of calorimetery where the total amount of 24Na produced in a target segment is a direct 

function of the cumulative (target) interactions with relativistic (projectile) primaries and 

secondaries.  Consequently we shall name this class of experiments Copper Calorimetry 

Experiments.  
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Figure 1.4     24Na Production Cross-Section in Copper1 

 

0.01

0.1

1

10

0.1 1 10 100

24 Na Production Cross-Section
Nat Cu Target

Ar-40 Cross-Section
C-12 Cross-Section
Proton Cross-Section

 C
ro

ss
-S

ec
tio

n 
(m

b)

Energy (GeV)
 

 
 
As an additional touch of experimental elegance the authors utilized not just the absolute 

activity of the isotopes under investigation, but the activity ratio Rd:  the ratio of the 

activity of the downstream disk (at a distance d) to the activity of the front disk.  This was 

done in order to finesse as much as possible systematic and experimental uncertainties:  

for each pair of disks shared identical histories, they were exposed to the same beam for 

the same amount of time, and they were measured in the same Ge(Li)’s.  To quote the 

authors of the experiment  

 
 “…this activity ratio for a specific nuclide can be determined to a high 

degree of precision. All uncertainties due to particle fluxes, counting 

efficiencies, uncertainties in the decay scheme for a specific radioactive 

nuclide, etc. cancel out in the activity ratios R.   

                                                 
1 Section 7.1 contains a more complete discussion. 



 
1-8

Essentially, the only experimental uncertainty in this ratio comes from 

counting statistics.  As the number of counts is typically >104 our activity 

ratio R can be determined within ±1%.  Such a precision is comparable only 

to that of large counter experiments or of high statistics bubble chamber 

experiments…”1 

 
It’s worthwhile noting that 15 years earlier a similar use of experimental ratios to 

decrease systematic errors was fundamental to the demonstration of the existence of 

neutral currents2, allowing experimenters the necessary luxury of ignoring the absolute 

flux of neutrinos involved.  The activity ratio R in the Copper Calorimetry Experiments 

offered a similar benefit, but also an additional one… that by itself justified the entire 

experimental effort:  any “new” physics that might be found in the secondaries will 

manifest itself in Rd.     And as this work shows, this seems to be the case. 

 

 
1.3    The Approach to Monte Carlo  

 
As concluded in Section 1.1 in order to establish the existence of something new or 

different it is necessary to know or simulate the expected number and effect of all 

“normally” behaving secondaries.  Hence the creation of truly accurate simulations is 

fundamental to our approach.  In particular Monte Carlo is used, itself invented to model 

a similar problem: the transport of neutrons in a fissionable ‘target’ of complex geometry.  

Indeed, the use of carefully crafted Monte Carlo simulations to accurately establish the 

denominator of the ratio  

 
Observed Events

Events Expected by Conventional Assumptions
                              (1.2) 

 
is fundamental to contemporary high-energy physics.   

                                                 
1  Aleklett et al. (1988a) 
2  Galison (1987), p.190 
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Monte Carlo simulation of potential background and interference effects has become the 

necessary gold-standard against which alternative explanations of new ‘phenomena’ are 

assiduously tested.  This is especially so when dealing with low-probability or low-

incidence phenomena in complex detector scenarios.   For example, experiments to 

establish the existence of neutral-currents used this phenomenological approach; and in 

the past year it was used to demonstrate the reality of the tau-neutrinos in emulsion.    

 
In the early years of its development there was a great debate as to whether Monte Carlo-

based simulations were a poor man’s approach to non-analytically treatable problems or 

were in fact closer to the stochastic reality of nature than analytic methods (which in 

essence deal with the average behavior of the system being analytically treated).   

For problems of the sort dealt with in this study, we follow the latter interpretation: 

believing that an exhaustively explored set of Monte Carlo simulations built upon a solid 

database of physical fact is in essence an accelerator on a desktop; and of particular use in 

the search for phenomena whose existence is only hinted at, much less understood.    

But this requires the database to be physically accurate and statistically meaningful. 

 
The creation of a database capable of supporting such realistic simulations necessitated 

an additional set of experiments: a thorough scanning of an emulsion stack exposed to a 

1.8 A GeV Argon beam as were the Cu targets.  The stack was exposed and developed at 

LBL and then scanned and measured (see Chapter 3 in this study) at the Institute of Space 

Research (Bucharest, Romania).  The multiplicities and angles of the nuclear cascades 

were exhaustively followed through five generations and a database was constructed (see 

Chapter 4).  In fact this enormous effort became the first full-stack scan ever performed.  

The database was then used to construct a Monte Carlo simulation of cascade phenomena 

that is as independent as possible of theoretical models (see Chapter 6) and then applied 

to the interpretation of the experiments of Aleklett et al and Haase (see Chapters 7-9 and 

Chapter 10 respectively).    

 
The ability to apply the emulsion-derived data to the copper simulation is due to an 

enormous simplification that follows the application of two underlying concepts:  

factorization and limiting fragmentation.  The next section shows how these two concepts,  
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derived from Bohr’s Hypothesis of (Nuclear) Independence, allow a complete separation of 

the origins of our input data for the beam and for the target.  Consequently, as will be seen, 

we are justified in applying to our analysis and simulation of a 1.8 A GeV 40Ar beam on Cu 

the detailed information derivable from the study of a 1.8 A GeV 40Ar beam on emulsion 

(Ag and Br).  Similarly the target production cross-sections will be shown to require studies 

that are independent of the beam, this simplification making them experimentally much 

more tractable. 

 

 
1.4 Factorization & Limiting Fragmentation: Bohr’s Declaration of Independence  

 
Bohr’s ‘independence hypothesis’ postulates independence between the processes of 

nuclear collision and emission.  The cause is a short mean free path for intranuclear 

collisions of the participating nucleons, and the subsequent sharing of energy and potential 

excitation states over time-scales shorter than that of the emission of collision products.   

In the words of Bohr himself: 

 

“The phenomena of neutron capture thus forces us to assume that a 

collision between a high speed neutron and a heavy nucleus will in the 

first place result in the formation of  a compound system of remarkable 

stability.  The possible later breaking up of this intermediate system by 

the ejection of a material particle or its passing with emission of 

radiation to a stable final state must in fact be considered as separate 

competing processes which have no immediate connection with the first 

stage of the encounter.” 1 

 

Hence there is a loss of ‘memory’ of the incident collision, and the subsequent evolution of 

the system proceeds independently of these initial conditions subject only to the applicable 

conservation principles.   

                                                 
1 Bohr (1936); This was first experimentally proven by Goshal (1950) at LBL. 
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From this dissociation between the collisional excitation of a compound nucleus and its 

emitting decay come two of the most fundamental and simplifying properties of high-

energy nuclear collisions1, 2:  limiting fragmentation and factorization. 

 
Limiting fragmentation says that above a given threshold of projectile kinetic energy the 

distribution of reaction products (the channels) will vary very little with energy.  Also 

introduced by Feynman as ‘scaling’3, it manifests itself as an asymptotic behavior of the 

distribution of products (or reaction cross-sections) in the rest frame of the projectile or 

target.  Following Friedlander and Heckman (1982) this can be expressed as follows:   

given an inclusive reaction  

 
B(eam) + T(arget) = F(ragment) + X(everything else)    (1.3) 

 
with an invariant cross-section 

E
d 3σ BT

F (s,pL, pT )
d 3 p

= f (s,pL, pT )      (1.4) 

 
where s = (pB + pT )

2 ; PL and PT are the conventional longitudinal and transverse momenta; 

and B,T, and F are the Beam, Target, and Fragments respectively.  Then in the limit as the 

energy E goes to ∞   

lim
p → ∞

f (s,pL, pT ) = f (pll,p⊥ )      (1.5) 

the single-particle inclusive spectrum and cross-sections asymptotically become energy  

independent.  Hence the asymptotic value above 2 GeV seen in Figure 1.4.  (See Section 7.1) 

                                                 
1 Feshbach and Huang (1973) and Goldhaber and Heckman (1978) 
2 Historically, both concepts came to relativistic heavy ion physics from particle physics.  
3 Feynman (1969)    Feynman’s introduction to the paper offers a fascinating look at both the 
concept’s origins as well as his scientific approach: “I have difficulty in writing this note because 
it is not in the nature of a deductive paper, but is the result of an induction.  I am more sure of the 
conclusions than of any single argument which suggested them to me for they have an internal 
consistency which surprises me and exceeds the consistency of my deductive arguments which 
(only) hinted at their existence.” 
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The other simplifying concept, factorization, breaks the production cross-section for a 

secondary fragment into two separable terms.  One depends only on the beam and fragment 

under consideration, and the other is a scaling factor that is a function only of the target.  

Using the same nomenclature as above:   

 σBT
F =σ B

FγT      (1.6) 

where the cross-section depends only on a component σB
F  involving the beam and 

fragment to be measured; along with a scaling factor  γT  depending only on the target.   

Needless to say, beam and target designations may be reversed in this formulation. 

 
Those regions of phase-space where limiting fragmentation and factorization hold can only 

be established by experiment.  But an astonishing simplification occurs in such regions:  

fragmentation channels of the projectile and target nuclei are independent of each other!  

This means that for a given projectile beam the fragmentation cross-sections are essentially 

independent of the mass of the target.  In the words of Friedlander and Heckman1, 

 
“  The practical consequence of…Limiting Fragmentation and 

Factorization is enormous, because the unlimited number of energy/target 

combinations one might conceivably measure for fragment production 

cross-sections is now reduced to only one – once the asymptotic energy 

region is established.” 

 
Friedlander and Heckman present an extensive discussion of the early experiments 

establishing the regions where such fortuitous combinations of limiting fragmentation and 

factorization hold.  This sweet zone of simplification turns out to be in the 1-2 A GeV 

range of beam energies.  The experiments discussed (with experimental errors of  ~1%) 

include Cu targets in this same energy range, establishing our ability to make use of these 

simplifications in our own work.  Compare, for example, the 24Na production cross-section 

of protons on Ag (Figure 1.5) to that of protons on Cu (Figure 1.4). 

                                                 
1 Friedlander and Heckman (1982) 
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Figure 1.5     24Na Production Cross-section1 
                  [ p + AgÆ 24Na ] 

 

 
                                                                                     

  
Hence our approach rests on a strong empirical foundation.  Because of factorization 

and limiting fragmentation we can legitimately separate beam and target.  In particular, 

the richly detailed information about a 1.8 A GeV 40Ar beam’s interactions in emulsion is 

realistically applied to a 1.8 A GeV 40Ar beam on Cu.  The target production (partial) 

cross-sections for 24Na are independent of all this, and can correctly be interpolated from 

Cu data sets as well as those on other metal targets. (See for example Figure 7.1c, “24Na 

Production Cross-section on a Au target”.)  Additionally the mean free path of protons in 

emulsion is ~133 gm/cm2, while that of copper is ~135 gm/cm2.  This means that ‘on 

average’ the mean free paths and the average geometric cross-sections of the two media 

are virtually identical, further establishing the validity of comparing processes that 

depend on the total cross-section.  

 
                                                 
1 Scott (1983) 
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1.5    Simulation and Phenomenology: Results and Discussion 

 
Applying all of this to the Copper Calorimetry Experiments required extensive simulation 

as reported in Chapters (7-11).   All but one class of models failed to qualitatively match 

the experimental data, and this included variations of all model variables representing the 

real-world variables of total cross-section, kinematics, and geometric transport.  

 
The only variable class which offered a ubiquity and robustness of fit was a simple model 

that included an enhanced partial 24Na production cross-section for subpopulations of 

secondary heavy ion fragments.  In other words, the assumed symmetry of identity between 

generations is broken for the nuclear interactions studied.  It was the only model, within 

the context of our simulations, that fit the two-block data (see Chapter 9).  And when 

applied to the entire n-component cylinder, it offers a visibly superior fit as well (see 

Chapter 10).  Figure 1.6 shows a representative fit, explanatory details being found in 

Chapters (7-11).  Note that secondary shower particles with enhanced production cross-

sections were also explored (See Chapter 11), but within the limitations of our current 

models they do not offer as good a fit as do the ones involving heavy ions.   

 
The Monte Carlo approach used in the present work closely resembles those used in the 

search for neutral currents, as well as a variety of more contemporary neutrino problems. 

In our case and these others an initially unseen hypothetical phenomenology is sought to 

be established as physical fact through a complex warren of simulated models and 

backgrounds.  When ‘nothing else works’… the phenomena is taken for ‘virtual’ fact, 

and moves even closer to ‘reality’ when these virtual facts can accurately predict results 

from other more complex sets of experiments (as ours will be shown to do when going 

from the two component target to the n-component one).  

 
This underlines our use of one of the most important approaches developed in the 

exploration of the hidden jungles of particle physics: phenomenology.  The 

phenomenological approach is a time-honored and powerful one in particle physics; 

especially useful when doing initial forays into previously unexplored territories of 

physical phase-space. 
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Figure 1.6    Comparison of R-values between Model Classes and Experiment1 

(1.8 A GeV  40Ar on a Copper Cylinder) 
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1 This is Figure 10.12c , with the different model categories being explained in Chapters (7–10).   
The red diamonds are the experimental results of a 20-unit cylinder [Haase,1990], and the blue 
circles are the predictions of a model incorporating an enhanced production cross-section. 
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In sum then our collective approach to the problem under study is most classical: 

experimentally, computationally, phenomenologically.  And each of these components has 

been approached with decimal-point rigor:   

 

� It is extremely difficult to find fundamental flaws in the experiments as 

performed.  The initial Copper Calorimetry experiments were performed three 

times and for each the subsequent measurements were performed at multiple 

laboratories around the world.  The results were then averaged.  The claimed 

experimental errors are ~ 1%. 

 
� The emulsion scanning and measuring were exhaustively checked and rechecked 

to an accuracy of ≤ 0.1%. 

 
� Like all programming efforts, ours could conceivably have bugs in them that are 

so well hidden as to be virtually ‘immortal’, but the consistency of the results 

after countless rounds of checking and cross-checking from every conceivable 

angle suggest that the fundamentals of our simulation programs work.   

 
� The phenomenology is based on a set of a few basic assumptions.  At the lowest 

level these include the gaussian distributions of beam profiles and the exponential 

absorption rates of relativistic nuclei going through matter; while the next level up 

includes the assumptions of limiting fragmentation and factorization.  

 

Still, our phenomenological explanation may turn out not to be “real”.  The phenomenological 

approach adopted was developed with this possibility in mind, and this case then becomes 

interesting in a very different way.  Because only a few basic assumptions are used, and very 

classical ones at that, a failure of the phenomenological approach would mean that at some 

level the basic assumptions of the approach need to be questioned:  in our case the assumptions 

of linearity and separability, including those of factorization and limiting fragmentation.   
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As will be discussed more fully in Section 10.5 the assumed applicability of both 

factorization and limiting fragmentation to some of the secondary population must then be 

questioned.  This in turn suggests the occurrence of non-linear collective interactions,  

quite possibly related to strange hypermatter or even the still unseen border of the quark-

gluon plasma phase transition. 

 
Regardless of whether this is the correct interpretation, what seems evident is that some 

nuclear interactive properties of freshly-created secondaries are, for a short time  ≤ 10-9 

seconds, different than those of the same (A,Z) nucleus that has been ‘sitting on the shelf’.   

 
The symmetry of identity between primary and secondary appears to be broken,  

and like all other broken symmetry problems in physics is likely to be related to some form 

of critical phenomena or self-organizing system.  In this particular context, if the effect is 

found to be ‘real’ and representative of what is to be found in other interactions, our 

findings could be of fundamental importance.  

 
 

1.6  Other Potential Applications of this Work 

 
The work presented here straddles the border between several regimes of study.  It seeks to 

use high-energy nuclei as macro-laboratories to study particle physics phenomena, while 

utilizing the techniques and approaches of particle physics to better understand relativistic 

heavy ion interactions.  It also uses standard radiochemical techniques to produce what is in 

essence a radiochemically based calorimeter for high-energy physics interactions.  In so 

doing, this radiochemical approach finesses the otherwise small statistics of conventional 

nuclear physics experiments that utilize visually-scanned targets such as nuclear emulsions 

or bubble chambers.  Yet it uses the extraordinary resolution of emulsions to establish a 

database for the Monte Carlo simulations necessary to establish both background and 

inferred effect.   

 
In the pursuit of our scientific goals we have taken advantage of this multi-scale approach 

and the consequent breadth of tools utilized.   Each step of our investigation, in and of 
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itself, was designed to provide the basis for applications to other, quite different, scientific 

problems.  These include the following: 

 
1)   The emulsion experiments were meant to be a significant contribution in and of 

themselves.  The careful and exhaustive measurements performed coupled with the 

exploratory tools developed allow many other explorations of the interaction of 

relativistic heavy ions and emulsion nuclei.  

 
2) Because of the strong experimental underpinnings (Chapters 2, 3) of our 

interpretative approach and the minimalist use of assumptions, it is expected that 

our own results can help to ground (in the narrow regions studied) other more 

theoretically based relativistic heavy ion transport codes. 

 
3) Independent of the ultimate conclusions regarding the interpretation of the copper 

calorimetry experiments, the database and transport code should be of turn-key 

use to NASA.  Since the base of emulsion is made from the bones of bovines the 

response of nuclear emulsion to high-energy nuclei is considered to be within 

20% of that of a living creature’s.  Additionally, copper is often the substance 

used to model the shielding of spacecraft.  Thus for long-duration manned space-

flight missions (International Space Station and missions to Mars) the database 

and code seem directly applicable to modeling shielding concerns from high-

energy galactic cosmic rays (GCR).  

 
The National Academy of Sciences estimates that the differential cost between 

different solutions to this still unresolved GCR shielding problem is in the tens of 

billions of dollars1.  The applicability of our database and simulation model of  

1.8 A GeV 40Ar seems particularly apt since the energy distribution of GCR  

peaks  ~1 A GeV (Figure 1.6a) and the majority of the mass spectrum lies below 

Ar (Figure 1.6b). 

                                                 
1 National Academy of Sciences (1996) “Radiation Hazards to Crews of Interplanetary 
Missions” 
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                 Figure 1.6a     Energy Spectrum of Galactic Cosmic Rays2 

 

 
 
                

Figure 1.6b     Mass Spectrum of Galactic Cosmic Rays 

 

 

                                                 
2 Figures 1.6a,b both come from the National Academy of Sciences (1996) report. 
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3) If the phenomenological results unearthed in this work turn out to be physically 

real, then the unusual production cross-section phenomena of the secondaries of 

relativistic heavy ions (Chapters 9 and 10) could have a considerable impact on 

the modeling of relativistic heavy ions in astrophysical phenomena.  

 
4)  And if indeed this enhanced production due to secondaries turns out to be real 

and generalizable, potential applications may exist with respect to the accelerator-

based transmutation of nuclear waste1.  Depending on the actual physical 

processes underlying the production of 24Na in relativistic argon-copper 

interactions, a more general enhancement of induced fission could play an 

important role in enhancing the ultimate technological feasibility of nuclear waste 

disposal through transmutation by relativistic heavy ions2.  In particular, this 

phenomena may complement the other distinct advantages of heavy ions in 

inducing such transmutations.  But this very much depends on whether the 

underlying causes are local to the relativistic Ar-Cu interaction, or have a more 

general applicability.  

 

 

Chapter 2 that follows presents the background (physical, chemical and historical) for our 

use of nuclear emulsion; for the validity and advantage of our entire approach rests upon 

the precision of vision inherent in emulsion.  

 

 

 

 

 
                                                 
1 This will be more than welcome by many parties, including most of the citizens of my home 
state Nevada… planned home of the United States’ Nuclear Waste Repository. 
2 Bowman (1994) 
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II   Nuclear Emulsions 
 
 
 
2.1 Nuclear Emulsions:  An Introduction 

 
Nuclear emulsion is an amazing substance: silver halide crystals suspended in a gelatin  

of animal-based collagen.  In spite of these seemingly 'low-tech' origins emulsions remain 

the most sensitive of detectors: making visible charged particles and nuclei through a 

chemical amplification of the atomic-scale disturbances caused by the passage of these 

charged particles.  Simultaneous with its role as detector, nuclear emulsion is capable of 

acting as target.  In so doing the use of nuclear emulsions subsumes a ladder of processes 

covering more than 1016 orders of magnitude. 

 
As a matter of chemical fact nuclear emulsion is little different from conventional black 

and white photographic films, differing principally in the size and density of the silver-

halide (mostly Ag-Br) crystals.  Invented in 1871 by the physician Richard Lee Maddox, 

the gelatin-suspension of light-sensitive silver halide crystals was the first ‘dry’ 

photographic medium and rapidly superseded the “wet” colloidon (nitro-cellulose) 

process of photography1.  The crucial difference between gelatin and colloidon (its 

“decisive advantage”  in the words of C.F. Powell) is that gelatin is permeable to water.  

Hence after preparation it can be dried for easy transport and use; but after exposure it 

can be re-wetted, allowing the developing solution and subsequent chemistries access to 

the interior atoms of the emulsion.   But inherent in this critical capability is a tendency 

towards geometric distortion of the emulsion sheet, a problem which must be finessed 

with great care in the laboratory.   

 
The experimental physicist R.J. Wilkes adds that in the 130 years since its invention, no 

artificial substitute has displaced animal-based gelatin as the matrix material of choice;  

                                                 
1 Maddox (1871) This, one of the great industrial revolutions of the 19th century, was announced in 
only 10 short paragraphs and heralded in these modest words: “…a few remarks of another medium 
may perhaps not be uninteresting to the readers of this Journal, though little more can be stated than 
the result of somewhat careless experiments tried at first on an exceedingly dull afternoon.  It is not 
for a moment supposed to be new, for the chances of novelty in photography are small (sic!)…” 
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its superiority depending on “cattle’s taste for an occasional bit of spicy greenery, since 

the trace amounts of sulfur in gelatin are crucial in the solid-state physics of trapping 

photoelectrons in the halide crystals” 1.  

 
Whereas photographic film is by definition photon-sensitive, grains of nuclear emulsions 

are made developable by virtual photons, waves of ionization emanating from a charged 

particle’s electric field as it moves through the emulsion.   But like photographic film, 

nuclear emulsion is chemically developed and stabilized after its ‘exposure’ to charged 

particles.  And like photographic film, under chemical development the initially opaque 

gelatin of the nuclear emulsion “magically” turns transparent:  revealing to a trained eye 

the path of the charged particle…. suspended in the line of its history in space…. traced 

along a trail of shimmering black grains of silver.   

 
Science may well understand the majority of solid-state processes involved, but as one 

who has worked extensively with photographic emulsions… one never tires of watching 

this transformation: that magical moment when translucence and form are together 

sculpted from opacity.    

 
In spite of, partially because of, the complexity and inhomogeneity of the medium  

and process, nuclear emulsions offer the greatest of spatial and temporal resolutions 

(1µ and 10-12 sec).   Comparisons with other detector technologies are seen in Figure 2.1.  

And after solid-state etchable plastics they are the most stable of all particle and nuclear 

detectors.  It is hardly surprising then that emulsions have played an extensive and 

fundamental role in the history of experimental nuclear and particle physics. For as 

Barkas pointed out in his 1963 classic on nuclear research emulsion: 

 
“….emulsion has no great advantage when one is looking for a particle  
of predicted properties.  It is of greatest use [however] for discovering 
utterly new things, the anomalous behavior of which often can be 
recognized unambiguously from a single event.  Thus for example, 
the tau meson was established firmly by a single event, despite the fact 
that it took a long time to find another example of this decay mode.” 2 

                                                 
1 Wilkes (1997) 
2 Barkas (1963), p.5  [All references to Barkas are from this volume] 
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Figure 2.1    Space-Time Resolutions of Detector Technologies1 

 

 
 

                                                 
1 Particle Data Group (1996), p. 132 
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Fermilab’s extensive use of emulsions over the past few years leading to its discovery of 

the tau neutrino is a recent example.  This broader point is well demonstrated in a list of 

fundamental discoveries and their means: 

 

Table 2.1   Discoveries and their Means1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 
 

                                                 
1 The core of this list is taken from tables compiled by Powell (1959) and Barkas (1963).   
  Not surprisingly they could not include the ντ or the doubly strange nuclei. 

Discovery Instrument 
X-rays Fluorescent Screen & Emulsion 

Radioactivity Emulsion (Becquerel) 

γ−rays Emulsion (Villard) 

α Electroscope and Emulsion 

β− Electroscope and Emulsion 

Π+ Emulsion 

Π− Emulsion 

Πο Counters and Emulsion 

Λ Cloud chamber 

Κ+ Emulsion 

Κ− Emulsion 

Κο Cloud chamber 

Σ+ Emulsion 

Σ− Cloud chamber 

Σο Bubble chamber 

Ξ− Cloud chamber 

Ξο Bubble chamber 
p  Counters 

n  Counters 

Λ− Emulsion 

ντ Emulsion 

Doubly Strange Nuclei Emulsion 
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Surprisingly missing from the lists of both, however, was the discovery of radioactivity 

itself in 1896.  For it was the chance juxtaposition of uranium and photographic paper 

(emulsion) that the fields of radiochemistry, atomic, and nuclear physics were initiated by 

Becquerel (Becquerel 1896a,b).  

 
Indeed a reading of the earliest papers of radiochemistry and atomic physics shows that 

the first researchers, from Madame Curie∗ onward continued to rely on emulsions as a 

principal detector; especially for the qualitative authentification of the radioactive 

property itself.   And little recognized is the role played by emulsions in Rutherford’s 

discovery of alpha and beta radiation (then known as  a and b radiation).    

 
 

(from the "The Collected Works of Lord Rutherford of Nelson," vol. I, p. 169) 
 

Uranium Radiation and the Electrical Conduction Produced by It 

 

                                              by E. RUTHERFORD, M.A., B.SC. 
                                                formerly 1851 Science Scholar, 
                                        Coutts Trotter Student, Trinity College, Cambridge; 
                                   McDonald Professor of Physics, McGill University, Montreal.  
 

From the Philosophical Magazine for January 1899, ser. 5, xlvii, pp. 109-163 
Communicated by Professor J. J. Thomson, F.R.S. 

 

§ 1. Comparison of Methods of Investigation  

The properties of uranium radiation may be investigated by two methods, one 
depending on the action on a photographic plate and the other on the discharge of 
electrification. The photographic method is very slow and tedious, and admits of 
only the roughest measurements.  On the other hand, the method of testing the 
electrical discharge caused by the radiation is much more rapid than the 
photographic method, and also admits of fairly accurate quantitative 
determinations.    
 
The question of polarization and refraction of the radiation can, however, only be 
tested by the photographic method. The electrical experiment (explained in §2) to 
test refraction is not very satisfactory.    

 (emphasis LL) 
                                                 
∗ See for example  “Rays Emitted by Compounds of Uranium and of Thorium”  
A Note by Mme Sklodowska Curie presented by M. Lippmann, Comptes Rendus 126, 1101-3 (1898) 
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Rutherford’s paper is remarkable in another less recognized way.  It is the earliest 

discussion of what has become the divergence between solid-state detectors (emulsions 

and plastics) and electronics-based digital detectors1.  In so doing it presages the critical 

point made above by Barkas, and which is fundamental to the present work:  

 
For a critical class of measurements, especially when being used to 

explore phenomena whose properties and parameter remain unknown… 

there is often no satisfactory alternative to (nuclear) emulsions. 

 
 
2.2   The Birth of the Modern2 

 
The emulsions used above were of course the black and white photographic emulsions 

of the time.  A fascinating overview of the history of the photographic emulsion is found 

in C.F. Powell’s classic  “The Study of Elementary Particles by the Photographic 

Method” [Powell, 1959].   Within the field of nuclear emulsions it is simply referred to 

as ‘The Bible’.  The following “pre-history” of nuclear emulsions owes much to this 

source, as well as to Peter Galison’s tour-de-force, “Image and Logic” (1997). 

 
Powell points out that one of the pioneers of photography, Niepce (who first made 

emulsions of silver halides, but with a water soluble matrix of starch and albumen), 

actually observed as early as 1867 “that photographic plates were fogged by salts of 

uranium even when sheets of paper were interposed between them’.  Yagoda (1949)  

has remarked that had this observation been attended to… radioactivity is likely to  

have been discovered thirty years before it actually was. 

 
Most curieously Powell, like Barkas, overlooks the first two decades of emulsion’s 

contributions to atomic physics (Rutherford, Curie, and others); but starting with the 

work of Mugge (1909) and Kinoshita (1910, 1915) he presents an extensive discussion of 

its “development” and uses in nuclear physics.   Emulsions explicitly designed to be 

                                                 
1 This is also the beginning of the divergence between detectors based on visual images  
   and those based purely on numerical outputs; i.e. between Image and Logic…see [Galison 1997] 
2 With thanks to the author Paul Johnson for the expression 
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sensitive to charged nuclear particles began to be developed in 1927 by Myssowsky and 

Tschishow who also made stereo-photographs of alpha-particle tracks, thus anticipating 

by decades the use of stereographic images in bubble chambers.   But the first major 

breakthroughs began in 1935 (Zhdanov and Ilford Limited), followed in 1945 by the 

creation of new more concentrated emulsions (Demers and Ilford).  Then in 1948  

Kodak developed an emulsion sensitive to (an electron’s) minimum ionizing radiation.   

 
The stage was thus set for nuclear emulsions to relinquish their coarse imprecise 

characteristics (“admitting only the roughest of measurements” as Rutherford 

characterized them in 1890) to become the most sensitive of particle detectors.  Whereas 

in the decades prior to 1945, emulsions were used primarily to confirm phenomena or 

particles discovered by other means (Marietta Blau’s work1, nothwithstanding), these 

new modern emulsions rapidly proved their worth in the hands of Cecil Powell and his 

collaborators at Bristol. Within weeks came the discovery of the π-meson by Cesar 

Lattes (1947), followed shortly by the discovery of heavy nuclei in cosmic rays by 

Phyllis Freier (1948)2.  

 
Powell later described the first examination of the new emulsions exposed at high-

altitude as  

" a whole new world. It was as if, suddenly, we had broken into a walled 
orchard, where protected trees flourished and all kinds of exotic fruits had 
ripened in great profusion”.3  

 
 
 Occhialini’s description of the atmosphere at Bristol is more personal: 

" Unshaved, sometimes I fear unwashed, working seven days of the week till two, 
sometimes four in the morning, brewing inordinately strong coffee at all hours, 
running, shouting, quarrelling and laughing, we were watched with humorous 
sympathy by the war-worn native denizens of the Royal Fort. . . . It was a reality 
of intense, arduous and continuous work, of deep excitement and incredibly 
fulfilled dreams. It was the reality of discovery…".4 

                                                 
1 Galison (1997) pp. 146 – 160 
2 Both Lattes and Freier were graduate students at the time. 
3 Owen Lock, CERN Courier, June 1997 
4 Owen Lock, CERN Courier, June 1997  
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A necessary counterpoint is offered by Peter Galison1: 
 
“ These “fruits’ (pions, kaons, the anti-lamda-zero, the sigma plus, a myriad of 
new decay patterns ) helped seed the new field of elementary particle physics, and 
because film was cheap and transportable, it offered the Europeans a chance to use 
mountaintop cosmic rays to compete with American accelerators.  At the same 
time, both in the United States and in Europe, emulsion physicists stood on 
precarious ground… 
 
…..new particles burst on the scene.  Some, like the pion, dramatically altered 
physicists’ notions not only about what kind of entities populated the world, but 
also about underlying conceptions of the forces that bind matter together — 
though some of these new stars of the submicroscopic stage exited just as 
quickly. For the clumps of darkened silver were rife with instabilities, 
immersed in visual noise. Tracks faded over time, while new, spurious tracks 
could conflate with “genuine” ones at any time during the film’s lifetime. 
During development and drying, emulsion and paper backings bent, 
distorting tracks and making one kind of event look like another.  Physicists 
fretted in their notebooks, letters and meetings that scanners might only see 
what was expected in the events.  And all this became even more complex as 
physicists joined in ever larger collaborations where conclusions had to be 
negotiated at far-flung distances.”   (emphasis LL) 

 
 
Nonetheless the development of these “ modern” nuclear emulsions has led to a 

cornucopia of applications well beyond the domains of nuclear and particle physics.  

Biological and in-vitro biochemical autoradiography is but one notable example.   

Some are described in Powell, but many others have been developed only more recently.  

An excellent chronicling of these developments is in successive volumes of the 

International Conferences on Solid State Detectors along with those of Nuclear Tracks 

in Solids.  It is to be hoped that our present use of emulsions will only honor this 

tradition of novel exploration and unanticipated discoveries.  But if we hope to do so,  

we must take sufficient care to understand and compensate for the difficulties inherent  

in this technology; for its complexity is commensurate with its capabilities.  We focus 

now on those aspects of nuclear emulsions integral to our own experiments.  

 

                                                 
1 Peter Galison in “How Do You Track a Cosmic Ray?” 
<www.hrc.wmin.ac.uk/noise/content/materialtracks/texts.html> 
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2.3   Properties of the Modern Nuclear Emulsion 

 
Emulsions share with bubble-chambers a significant experimental capability: to be 

simultaneously both target and detector.  But nuclear emulsions go a remarkable step 

further…they essentially ”take their own picture”. 

 
Each of these three functionalities in emulsions (target, detector, recorder) is due to 

different scales of phenomena acting upon the same atomic ingredients.   Because our 

present work makes use of all three functionalities, they recommend themselves as the 

axes around which to outline the physical/chemical properties of nuclear emulsions.    

For in the end (and especially at the beginning!), the most natural way to deal with our 

experimental design has been to pay attention to emulsion’s basic functionalities and the 

bridges between them.  By bridges we mean the self-organizing bootstrapping of 

functionality between scales.  The ‘bridge’ from target to detector is via the target-like 

attribute of the collective electron density (mediated through ionization effects).  The 

bridge of detector capability to self-recording is provided by the solid-state properties of 

the gelatin matrix which allow the finely tuned balancing acts of silver ion stabilization 

vs. migration to occur.  Ultimately, this 'separation by function' is implicit in our 

collective experimental and theoretical actions.   

 
To make the results of a computer simulation of a beam of particles traveling through a  

stack of nuclear emulsion meaningfully congruent to a similar beam going through a 

stack of copper cylinders… we must deal only with the target-like properties of each.  

Then we must transform the results of scanning and measurement into a sense of the local 

physics that has occurred.  For it is only the detection of the local physics derived and 

inferred from the measurements, and not the measurements themselves, which provides a 

realistic base of our Monte Carlo simulation.  In so doing we must balance emulsion's 

capabilities as a detector against the limitations, errors, and noise induced by emulsion's 

self-recording process, its chemical development. 
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2.4     Nuclear emulsion as ‘Target’ 

All of the above is applicable to nuclear emulsions in general.  Because Ilford’s G5 emulsion 

has been used exclusively in this work, only the specifics of G5 emulsion will be presented in 

any detail.  Table 2.1 shows a number of compositional properties of Ilford’s G5 emulsion. 
 

Table 2.2  Compositional Properties of Ilford G5 Emulsion1 

Concentration  N  ne=NZ σ1  Nσ1  σ2  Nσ2  
 

 

Z 

 

 

Atomic 

Weight g/cm3 atoms/cm3 X 10-22 e-/cm3 X 10-22 barns cm2 x 100 barns cm2 x 100 

Ag 107.880 1.8170 ± 0.0290 1.0150 47.69 1.395 1.4160 1.1025 1.0400 

Br  79.916 1.3380 ± 0.0200 1.0090 35.31 1.144 1.1540 0.8410 0.8480 

I 126.920 0.0120 ± 0.0002 0.0057 0.30 1.558 0.0089 1.1440 0.0065 

C 12.010 0.2770 ± 0.0060 1.3890 8.34 0.323 0.4490 0.2370 0.3300 

H 1.008 0.0534 ± 0.0012 3.1920 3.19 0.062 0.1980 0.0455 0.1450 

O 16.000 0.2490 ± 0.0050  0.9370 7.50 0.391 0.3670 0.2870 0.2690 

N 14.008 0.0740 ± 0.0002 0.3180 2.23 0.358 0.1140 0.2630 0.0840 

S 32.066 0.0072 ± 0.0002 0.0136 0.22 0.623 0.0084 0.4570 0.0062 

 
 
The mean atomic number is 13.30 (close to Al), while the mean atomic number minus 

hydrogen is 21.67 (between the metals Sc and Ti).   According to Shapiro (and Barkas)  

the total geometric cross section of G5 emulsion, including hydrogen, is equivalent to a  

mean free path of 26.9 cm or 103.0 g/cm2 (multiplied by the density  3.8 g/cm3).  But this 

figure is a theoretical one based on the simplistic geometric notion that a nuclear radius  

R= roA1/3, where A is the atomic mass number and ro  is the Compton wavelength of the  

pion (~ 1.4 x 10-13 cm).  The more accurate experimental figure2 for the mean free path of 

protons in G5 emulsion is ~35 cm or 133 g/cm2.  (That this value is close to that of copper, 

135 gm/cm2, will be useful when applying emulsion results to our simulations in copper.)

                                                 
1 Shapiro (1956), p. 382.  
2 Particle Data Group (1978); Otterlund (1975)   
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2.5   The Geometric Interpretation of Nuclear Cross-Section (Bradt-Peters Formalism) 

 
 
We can further divide the component atoms of nuclear emulsion into heavy and light 

elements (along with hydrogen).  These groupings will be critical in our scanning, analysis, 

interpretation, and simulation.  

   

Table 2.3  Relative Weights and Cross-Sections of Emulsion Atoms1 

 

Including Hydrogen Excluding Hydrogen 

 

  Relative weight (%) 
Relative Σι (Niσi) 

(%) 
Relative weight (%) 

Relative Σι (Niσi) 

(%) 

Ag, Br, I 82.7 69.4 83.9 73.3 

C, N, O, S 15.9 25 16.1 26.6 

H 1.4 5.3     

 
 
Due to a saturation of nuclear densities with increasing mass, nuclei larger than alphas 

(especially for Z>5) tend to have a constant volume per nucleon.  This argues for a geometric 

consideration of nuclear cross-sections (above a few hundred MeV).  In such a geometric 

approximation nuclei are spherical and interaction will occur if their impact parameter  

(i.e. spatial separation) is less than the sum of their radii.  Bradt and Peters [Bradt 1950]  

first worked out a formalism for this empirical approach, and which has subsequently been 

applied to both charge-changing and non-charge-changing interactions.  

 
One of many formulations of the Bradt-Peters relationship for the interaction cross-section of 

a projectile nucleus of radius Rp and a target nucleus Rt  is 

 
σ = π (Rt + Rp –R)2                               (2.1) 

where Rt,p = Ro (At,p) 
1/3    and a single nucleon radius is taken to be Ro = 1.45 x 10-13.    
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The latter term, R, has to do with nuclear surface transparency, but is experimentally 

determined and here taken to be  R= 1.17 Ro  . 

 
Particularly useful is the fact that the Bradt-Peters approach predicts the mean free path 

(mfp) as the experimentally measurable quantity as opposed to the cross-section.  In 

particular, for a composite medium such as emulsion made up of different atomic species,  

but with bulk density ρ, the mean free path denoted by λ is 

 
λ =  ( <Α> / Νρ) (Σci σi) –1                            (2.2) 

 
where  <A> is the average atomic number     

                       <Α> = ( Σci ΑΤ,i ) / Σci                                      (2.3) 
 
N is Avogadro’s number, the cross-section for the i-th atomic species is σi , and ci  is the 

atomic fraction of the target species i.  Applying this to G5 emulsion yields the following 

relative frequencies of collisions with the three constituent classes  of emulsion (by mass) 

along with the corresponding interaction lengths.  

 
Table 2.4   Corresponding Interaction Lengths and the Relative Frequencies of 

Collisions of Nuclei Classes as deduced from the Bradt-Peters Formula1 
 

Incident nuclei 
G5 Emulsion  

Target nuclei 

 

H 

 

He 

 

Be 

 

N 

 

Si 

 

Fe 

H 4 8 11 14 17 20 

CNO(S) 24 28 29 30 31 31 

AgBr(I) 72 64 60 56 52 49 

Interaction Length (cm) 28 20 15 13 9.7 7.1 

Interaction Length in Air (g/cm2) 72 45 33 28 20 14 

                                                                                                                                                       
1 Shapiro (1956), p. 383 
1 Powell (1959), p. 606 
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The Bradt-Peters formula is considered in this case to be accurate to ~15%.  Anticipating 

some of our measured results in Chapter 4  we found the average mean free path of He in our 

emulsions to be 22.53 ± 0.91 cm.   This is consistent with a host of other measurements of 

relativistic alphas in emulsions and discussed more fully in Chapter 4.  Hence, for nuclei in 

the regime that we are considering, this experimental agreement offers necessary (though 

hardly sufficient) support for a straightforward interpretation of nuclear cross-sections as 

geometrically-based.  An excellent up-to-date review of both the theoretical and experimental 

approaches to the geometric modeling of nuclear cross-sections is found in Nilsen (1995). 

 

2.6   The Question of the Constancy of Emulsion Compositions 

 
The compositional table (Table 2.2) has been the accepted standard for G5 for almost a 

half-century, and is based upon two communications from C. Waller of Ilford’s Research 

Laboratory1.  Ostensibly at the request of Occhialini, Waller was the actual designer of the 

first modern nuclear emulsions (those used to find the π-meson).  Peter Galison has a 

slightly different, though not inconsistent, take on the origins of these modern nuclear 

emulsions2:  

“ Ever since Marietta Blau began using dental x-ray film to track cosmic rays 
in 1930s Vienna, the making of nuclear emulsions was a delicate, even black 
art somewhere between physics and chemistry. Sensitivity and instability went 
hand in hand as physicists signed a remarkable concord with the industrial 
chemists. Just after World War II, flush with successful production of 
emulsions for the atomic bomb project, Kodak and Ilford made an offer that 
the physicists could hardly refuse.  Roughly: 
 
 “If you physicists agree, we will produce for you an emulsion so 
extraordinarily sensitive that it will register every possible charged particle. 
You will have a nuclear physics instrument more powerful than anything 
anywhere. Nonetheless — and you must pay this heed — emulsion 
manufacture is a highly secretive and proprietary business. Neither now nor 
in the future will you ever know precisely what is in these emulsions nor how 
we prepare them.”   

The physicists signed.” 
          

                                                 
1 My own inquiries to Ilford resulted in claims virtually identical to those listed above. 
2 Peter Galison in “How Do You Track a Cosmic Ray?” 
<www.hrc.wmin.ac.uk/noise/content/materialtracks/texts.html> 
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The above underlines a curiosity about commercially available nuclear emulsions.  Unlike 

the overwhelming majority of scientific instrumentation (which are typically built and 

understood ‘to spec’  by the scientific community at all levels of construction) the actual 

content and manufacture of nuclear emulsions has remained a trade secret.  This is true for  

all the companies that manufacture them (Ilford, Kodak, Fuji), and is hardly an isolated 

perspective. 

 
Barkas puts it thus1,  

“…one cannot assume blindly that the behavior of emulsion gel is the same as 

that of gelatin.  There are many reasons to believe that manufacturers of 

nuclear research emulsions may alter the gel so that it no longer has the 

properties of natural gelatin.”   

 
Proving the larger point here is the relative availability of manufacturing details for the ultra-

fine-grained emulsions of one of the scientific pioneers of the field, Demers.  In practice of 

course there is no reason to consider this ignorance a problem;  especially with the typical 

consistency of mean free paths measured in these emulsions.   But consideration of this 

matter goes beyond a socio-economic curiosity when one must consider all of the variables 

that could potentially effect emulsion-based experiments purporting to show mfp’s 

substantially different than the otherwise accepted norms.   

 
Or as Powell is quoted as saying2,  

‘In all our work we rely on the Principle of Uniformity of Nature; that is, we 

believe that if the same experiment is performed several times in exactly the 

same way, then the results will be the same. However I do not believe that 

there is also a Principle of Uniformity of Nuclear Emulsion, except by the 

grace of the manufacturers.’  

 
 

                                                 
1  Barkas (1963),  p. 65 
2  Galison (1997), p. 225 
 



 2-15

Additional information from Mr. Waller’s early measurements of G5 showed a variation in 

density with a sample of 40 batches, and at various relative humidities: 

           
Table 2.5   Effects of Relative Humidity on Density  for G5 Emulsion1 

 

Density (g/cm3) Relative 
 Humidity 

Lowest Batch Mean Highest Batch 

Dry (HSO) 4.033 4.062 4.113 

32% 3.922 3.962 4.002 

58% 3.811 3.852 3.892 

84% 3.592 3.63 3.671 

 

A 10% variation is evident.  That this has a potential import can be seen in the electron 

density  ne  for emulsions as a function of density ρ  (where the density variations are due 

solely to the relative humidity).  Shapiro derives the following expression2: 

 
ne = (0.1037 + 0.2468 ρ ) x 1024  electrons/cm3                         (2.4) 

which he claims to be good to ~0.1% for most nuclear emulsions.  The importance of the 

electron density for what is essentially a multi-scale set of ionization processes is obvious.  

 
Peter Galison, again3:   

“The other day I was talking to [Ilford],” one American physicist confided, 
“and I told him that we take great care to keep the emulsion packages well 
sealed, so that we can be sure that the water content is always that which 
corresponds to the relative humidity of 50% at which the emulsions are dried 
and packed at Ilford’s”.  
 
Oh, responded the Ilford chemist, “but we don’t have the time to let the 
emulsions reach equilibrium.”  Suddenly the physicist’s interpretations were 
thrown into doubt: the emulsions might vary from batch to batch, package to 
package, or even pellicle to pellicle.  Measuring Nature’s consistency would 
depend on that of the Manufacturer.” 

                                                 
1  Shapiro (1956), p.383 
2  Shapiro (1956), p.386 
3  Galison (1997), p. 224 
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In reality all of this merely requires that which is required by the rigorous methodology of 

science in the first place: sufficiently large error bars to cover potential systematic effects and 

most importantly… alternative checks for any new effect claimed.  The “problem” here, of 

course, is that emulsions have sensitivity limits not easily replicated by other technologies: in 

particular their ability to resolve trajectory information at a length-scale of a micron, and a 

time-scale as fine as 10-12 seconds.   For ultra-short lived phenomena involving charged 

particles, emulsions are unique. 

 

2.7   Nuclear Emulsion as Detector-Recorder 

 
Essentially all charged particle detectors function as a consequence of ionization phenomena.  

The reaction of an emulsion to the passage of a charged ionizing particle depends (somewhat 

simplistically) on the following emulsion characteristics: 

 
1) The distributions of size, density, and spatial packing of silver halide crystals in the 

gelatin matrix 
 
2) The probability of a given ionizing particle to create a latent image due to its  activation 

of a silver halide crystal  
 
3) The development and stabilization processes of the post-exposure emulsion 

 
The most important difference between nuclear and photographic emulsions is the silver 

halide content.  As in standard photographic imaging, nuclear emulsions’ role as a detector 

rests upon the sensitivity of silver halide crystals; in particular their capacity to become 

developable by the addition of only a small amount of energy.   

 
A silver halide crystal which has absorbed sufficient energy to be activated is said to have a 

latent image.  Functionally, activation of a silver halide crystal means that under development 

it is more readily convertible to metallic silver.  Atomically, this is understood to occur in  

the AgBr crystal through the creation of small nucleation sites of at least four atoms of silver.   

But only through the application of a development process, still something of a ‘black art’, 

does latency become reality and activated crystals grow into silver grains 2-3 times their 

original size.   
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Developers can be either chemical or physical.  Chemical developers are typically reducing 

agents with sulfur compounds being especially important.  But physical development by 

itself is also possible.  Physical developers contain silver (or other metal ions such as gold) 

and deposit them directly onto the activated latent image centers.  However, latent image 

centers susceptible to physical development alone need several times the initial exposure or 

activation energy than those developable by chemical agents.  Complicated beasts that they 

are, nuclear research emulsions generally use a combination of both chemical and physical 

development processes1.    

 
In reality, a number of secondary environmental variables can also affect an emulsion’s 

response to an experimental exposure.  These include pre-exposure mechanical handling, 

temperature and humidity variations, exposure to light, and a host of subtle chemical 

treatments (intentional and otherwise).  We will have to come back to these secondary 

variables when discussing possible errors in the measurement process.  But because the  

work being presented here uses emulsions acquired post-exposure and development we  

will not go into detail on these matters, referring the interested reader once again to the 

classic texts by Powell and Barkas. 

 
The above clearly shows that nuclear emulsion’s functional capabilities as detector and 

recorder are intimately connected.  In practice, one does not exist without the other.  That is, 

we do not ordinarily expose emulsions, and then read the history of the events without 

development.  Nor does one normally develop and record tracks without an exposure.   

 

But in the interest of better distinguishing the physics from the chemistry of emulsions, and 

of our subsequent use of each, we shall first treat independently the “detector”  aspect.  We’ll 

do this by first considering only the primary response of emulsions to the passage of ionizing 

particles.  The advantage to us is that the first two sets of processes more closely follow from 

the physics of the interactions of primary and secondary particles with the emulsion.  For it is 

the delineating of this physics that is the true focus of all our emulsion scanning efforts, 

being the experimental core of the Monte Carlo simulations to be described in Chapter 6.  

                                                 
1 see Barkas (1963), p.41 
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Development can then be looked at as a chemistry-based amplification of the physics signal.  

The recording functionality of emulsions is of course dependent on this development 

process, which is in fact the intermediary step (the bridge in previous terminology) from the 

actual physics to our measurements and inferences about the ‘actual’ physics.  Hence our 

focus in the next chapter, on the methodology of the scanning experiment, will in large part 

be dependent on the visual effects, limitations, and artifacts of this development process.  

 
 
 
2.7.1   Nuclear Emulsion as  Detector 
 
An important experimental justification for this separation by functionality is the fact that 

development of conventional photographic emulsions can drastically change the ultimate 

contrast, itself highly dependent on differences of the exposure to light.  But in nuclear 

emulsions the contrast (hence the ease in distinguishing tracks) is relatively insensitive to 

such differences of development.  This directly follows from the way in which grains are 

activated in the first place:  not by the continuous loss of energy (dE/dx) that a charged 

particle undergoes when moving through a ‘sea’ of stationary charges….but instead by the 

local emission of individual energetic delta-rays (‘knock-on’ electrons by any other name).   

 
Details of this process will be discussed much more fully in the next chapter, but for our 

present concern this is a clear demonstration of the local and target-like nature of the 

detection process.  The activation of each silver halide crystal is thus an “undeveloped 

snapshot” of the very local energy emission of the projectile particle moving through the 

emulsion, and with a resolution of the scale of the individual crystals.    

 
In other words, the physics stays local.  

 
In G5 emulsion this means that one has spherically symmetrical detectors, each considerably 

less than 1 µ in diameter. This is nicely seen in the following pictures of undeveloped G5 

emulsion, the spherical objects in both images being undeveloped silver halide crystals.  
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Notice especially the uniformity of its crystal size (Figure 2.2a).  This is not true for all 

nuclear emulsions, G5 being known especially for this property, with its size distribution 

being characterized by1:   

 
Mean Diameter  <D> = 0.275 µ 

Variance of diameter,  σ 2 =  0.0022 µ2 

             Asymmetry of Distribution  < (D- <D>)3> = -1.7 x 10-5 µ3 

 
Note also in Figure (2.2b) the uniformity of the area distribution of the silver halide grains. 

 

Figure 2.2.a   Electron Microscope Image of Undeveloped G5 Emulsion Grains2 

 

  
 

                                                 
1 Grain statistics from Barkas (1963), p. 62 
2 Both Figures (2.2a,b) are from Powell (1959), each at 20K X magnification 
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Figure 2.2.b   Electron Microscope Image of Undeveloped G5 Emulsion Grains  

 

 
 

That this inherent spatial resolution far surpasses any other detector technology is well 

known.  What is rarely recognized however is that this is at the very limit of optically-based 

visualization.  For in Powell’s words1… 

 
“ in its present stage of development, the average grain-size in emulsions 

able to record the tracks of particles of charge e at minimum ionization 

(between 0.1 and 0.4) corresponds approximately to the smallest size of 

grain that can be resolved with optical equipment of the highest quality.”  

 

                                                 
1 Powell (1959), p. 52 
 



 2-21

2.7.2 Nuclear Emulsion as Recorder 

 
Upon development, what we see is opacity.  When properly developed (and thin enough) the 

matrix of the emulsion turns transparent.  Unactivated silver halide crystals are washed out of 

the emulsion, leaving in principle only the activated crystals… now grains of silver.  The 

geometries, topologies, and noises of these remaining grains is the topic of the next chapter, 

but a summary of key track characteristics is of use: 

 
Tracks themselves are microscopic rows of developed silver grains ~0.5 – 0.8  
microns in diameter.  Tracks may be called black, grey, or thin depending on  
the rate of ionization loss of the moving charged particle and the sensitivity  
of the emulsion.  The geometry is straight if made by a fast particle, crooked  
if made by a slow one.  Large deflections are due to nuclear encounters and  
small-scale deflections result from multiple Coulomb scattering. [Shapiro 1956] 

 

All of this suggests to us that classical linear geometry plays a fundamental role.  This is a 

non-trivial conclusion, for it is fundamental to the accuracy of our scanning, a correct 

interpretation of measurements taken, and our construction of a physically meaningful 

geometrically-based simulation. 

 
The length of a track may range from 1 or 2 microns to centimeters, but accompanying  

the idealization just described is an assortment of physical distortions randomly distributed 

throughout the emulsion.  Depending on the emulsion sensitivity, these include a fringe of 

delta rays (secondary electron tracks) clotted about the trajectory.  Additionally, the emulsion 

itself will have undergone a serious contraction in the z-direction, necessitating appropriate 

corrections.   Meanwhile, diffusion-limitations of the development chemistry insures that the 

development process itself will be uneven throughout the emulsion.  This too must be 

‘corrected’ for.   

 
Other problems resulting from the development will be treated in the next chapter on the 

measurement process, but the bottom line is this:  The development process, necessary as it is 

to the very function of emulsions, also adds a considerable amount of noise to the signal of 

the passage of the charged particle. 
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2.8 Limitations of Nuclear Emulsions 
 

Other limitations exist as well, the biggest being an economic one.  The experimental use of 

emulsions requires an ENORMOUS amount of backbreaking, eye-irritating work …. all of 

which must be done by well-trained and experienced workers in a obsessively-careful and 

disciplined manner.  And like any other experimental technique it has its own set of 

measurement problems.  Details will be treated in the next chapter (Methodologies of 

Scanning and Measurement) so the principal sources of error and inherent limitations will 

only be mentioned here by name. 

 
The Physical Emulsion 

Sensitivity issues: 

Detection efficiency  

Intrinsic signal/noise  

Environmentally induced noise 

 
Stability: 

Fading of latent image 

Stability after processing 

 
Geometry: 

 Environmental effects (of humidity) 

 Expansion/Contraction of the gel as a function of processing 

 
Human/Mechanical Factors 

Scanning 

  Efficiency 

Economics  

 
Measurement Errors: 

 Limitations of equipment  (such as the mechanical controls of scanning microscopes) 

Limitations of technique   (such as the measurement of charge for Z>6) 
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2.9 Advantages of Nuclear Emulsions 

 

Along with  Figure 2.1 the following qualitative outline clearly shows why nuclear 

emulsions are still so often resorted to for exploratory and authenticating purposes – 

even in experiments designed around other types of detectors.   

 
1) Stopping power   Resolution in time  

(resolution in space when coupled with #2) 

 
2) Microscopic size of grains    

a)   Resolution in space 

b) Resolution in time 

(time resolution also due to high ionization rate    

observation of short-lived phenomena) 

c) High angular resolution  

d) High information density 

 
3) Continuous sensitivity  

 
4) Stabilization  

(#4 with #3 yields ability to integrate over time… 

and space if the emulsion is moving) 

 
5) Direct observability of the action and path of a charged-particle  

 
6) 3-dimensional 4-π  recording geometry 

(Unlike bubble and cloud condensation chambers the 3-D perspective 

of emulsions is continuous and not ‘reconstructed) 
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These properties, taken together, are little short of amazing for this earliest of all particle 

detectors.  Proper use requires a substantial effort, but offers potentially great rewards.  For 

as Barkas has said with such eloquence,   

 
“(Though) emulsion has no great advantage when one is looking for a particle of predicted 

properties... it is of greatest use for discovering utterly new things. “ 
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III.   Methodology of Scanning and Measurement 
 

In the previous chapter we introduced both the general and the functional properties of 

nuclear emulsions.  We continue now with a description of how our particular emulsion 

experiments were done.   

 
A stack of nuclear emulsions was exposed by Dr. Harry Heckman of Lawrence Berkeley 

Laboratory (LBL) 1.8 A GeV argon nuclei at Berkeley’s Bevalac.  Our stack components 

were identical to those used in Aleklett et al, being Ilford G-5 emulsions (10 x 20 x 0.06 

cm each).  After processing and development at LBL we were provided with the interior 

plates.    

 
In the work described here we have used this stack to perform two different but 

complementary emulsion experiments.  The first was to create a database of stars to act as 

the core of a set of Monte Carlo simulations of a relativistic argon beam directed against 

both emulsion and Cu targets.  The second experiment took advantage of the large 

number of stars being measured in the “first” experiment to examine the mean free paths 

of various secondaries.   

 
Although functionally interdependent, it should be obvious that scanning and 

measurement are not at all the same thing.  Scanning embodies an approach to the finding 

of tracks and stars in the first place.  Measurements are then performed upon the 

discovered stars and tracks.  Because work with emulsions is so time consuming we 

needed to make a priori decisions as to what was to be measured and how.  These initial 

decisions were in turn guided by the information needed for the primary job of the 

scanning team: creation of the Monte Carlo database focusing on the exploration of the 

relativistic components of the relativistic heavy ion interactions. 

 
For example:  one of its principle foci was a simulation of the Copper Calorimetry 

Experiments performed at LBL by Friedlander, Brandt, Seaborg, Hoffman, and 

colleagues [Aleklett et al 1987, 1988].  Because the production of 24Na has a fairly steep 

threshold for production around 1 GeV (see Chapter 7) these experiments used the 



 
 
 

3-2

production of  24Na  as a novel form of threshold counter for relativistic interactions. 

Detailed information on the high-energy components (> 1 GeV) is therefore essential, but 

lower energy particles can essentially be ignored.  This allowed us to seriously limit the 

extent to which the low-energy end of the particle spectrum needed to be examined and 

measured.  Hence, along with a discussion of the scanning and measurement processes 

themselves, this chapter will also discuss more completely those properties of emulsions 

relevant to these initial decisions. 

 

 

3.1  What can we observe….What do we observe? 

 
Observation is the common thread linking scanning and measurement.  So let us back-

track for a moment and ask of emulsions as to what in principle can we observe?  

 
The answer is deceptively simple: after development all that we see is opacity….  

the opacity of the silver grains, sole survivors of the emulsion’s pre-exposure crystal 

population.  All that we observe and measure in emulsions, extrapolate from, simulate 

and infer are based upon simple patterns of opacity -- grain densities, grain topologies, 

and grain geometries.   Indeed, these patterns are so deceptively simple that in essence 

there are only two basic designs… stars and tracks.  

 
This is best illustrated in a style of physics presentation also pioneered by Powell: the 

visual atlas.  Let us examine at successively finer scales a relativistic argon nucleus 

undergoing a central collision with 5 alphas as secondaries∗.   

                                                 
∗ Image from LBL (XBB 771-32)  
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Figure 3.1  Relativistic Argon Track in Emulsion 

 

 
 
 
Evident at first glance in Figure 3.1 are the tracks, clean geometric lines, emanating from a 

topologically distinct central star.  The topological description of stars… singly-connected 

‘hairy’ cores embedded within the multiply-connected family of tracks … becomes 

important when one tries to automate the scanning process.  A human being’s ability to 

easily see such patterns as patterns is biologically hard-wired into us.  Replacing a human 

scanner by a computer is still limited to the act of finding unique and simple, but rare, 

patterns in a large sea of tracks.  The CERN projects Chorus and Opera helped to pioneer 

this approach, as have continuing efforts by the Japanese physics community.  Indeed, 

Fermilab’s discovery of the tau neutrino was done in conjunction with Japanese teams and 

their automated scanning technologies.  But it still took more than three years of scanning! 
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In contrast to this comparatively ‘easy’ finding of topologically unique vertices, the 

mapping and quantitative measurement of every track in relativistic cascades is an 

arduous, unbelievably difficult task.  It requires enormous patience coupled to 

considerable skill and experience.  Stamina and judgement are paramount, along with  

lots of quality control and checks for internal consistency.  Increasing the resolution of 

observation in the argon collision pictured above hints at these challenges (Figure 3.2). 

 

Figure 3.2  Relativistic Argon Track in Emulsion 

 

 
 

At the previous two scales the individual grains making up the figure are less easily seen;  

but upon further enlargement the ‘pointillist’ composition of the lines becomes evident 

(Figure 3.3). 
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Figure 3.3  Relativistic Argon Track in Emulsion 

 

 
 

This is a little larger than the visual scale of scanning.  But quantitative measurements 

require a further enlargement still (Figure 3.4).  At the scale of quantitative 

measurements individual grains have become geometric “points”.  

   

Figure 3.4  Relativistic Argon Track in Emulsion 
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In  Figure 3.4  the 'dot' on the letter i in grain is an individual grain.   Also seen in the 

image are clumps of individually indistinguishable grains, which have been given the 

scientifically ordained and technically accurate name of blobs.  And the spaces between 

blobs, or individual grains, are termed gaps.  These, along with delta-rays, are the stuff of 

quantitative measurements. 

 
Even in this single image it is apparent that the blobs, gaps, and delta-rays along a single 

track encompass considerable statistical variability.  Hence, measurements of these 

characteristics is quite unlike the search for specific visual characteristics.  Instead of the 

comparatively easy search for the overall topology of a star’s vertex we are forced from 

the beginning to be very careful in our statistical and probabilistic reasoning.  The 

transition from geometric points to numerical ones will be discussed later in this chapter.  
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3.2  The Emulsion Stack:  Prelude to Scanning 
 

 

The exposed stack consisted of about 40 stripped Ilford  G-5 emulsions (10 x 20 x 0.06 cm each). 

 

Figure 3.5  Star Formation from a Beam Particle Going through an Emulsion Stack 

 

 
 

 

The stack was exposed to a beam of 1.8 A GeV argon nuclei at Berkeley’s Bevatron,  

under the direction of Dr. Harry Heckman (LBL).  Processing and development was 

performed on-site, and we were provided with 32 of the interior plates (no. 4 - 36).   
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The surface plates of a stack are susceptible to a number of extraneous environmental 

variables, hence it is standard practice to discard from the measurement set a number of 

the outer emulsion plates on both ends.  For a similar concern of boundary effects and 

distortions, when scanning individual emulsion plates the first 2mm from the edges in the 

X-Y plane are ignored. 

 
The act of scanning itself proceeds along two different methods: along-the-track 

scanning and area scanning.  The former is an ‘unbiased’ approach where an incoming 

primary track is followed until it has an interaction.  The latter is a less formal, somewhat 

opportunistic “eyeballing” of the emulsion in the search for ‘stars’.  It is obvious that 

area-scanning will be biased towards the finding of the more spectacular central 

collisions such as the one pictured above.    

 
Single emulsion plates must necessarily be thin, no more than a millimeter (1000µ). 

This is due to the critical need for the diffusion of developing chemistry to be uniform 

throughout the strip, the need to minimize mechanical deformations of the emulsion 

itself, and most importantly the ability to optically follow the track of an individual 

charged particle through the entire depth of the emulsion.  For when emulsions are 

scanned, they are viewed in a transmitted light that backlights the developed grains of 

silver.  To insure sufficient contrast for seeing, these grains must have a high relative 

opacity to that of the surrounding gelatin.   The thickness of a single emulsion plate is 

thus limited by the integrated opacity of the gelatin matrix, and by the cumulative 

scattering of light which increases with emulsion thickness.   

 
With these functional concerns in mind, emulsions have become standardized at pre-

exposure thicknesses of 600µ and 1000µ.  Exposure, development, and drying shrink 

their depth by ~50%.   In our experiment the dried emulsion strips were about 250-270µ 

thick.  But the mean free paths of relativistic nuclei in emulsion is measured in tens of 

centimeters (see Tables 4.5 and 4.6).   To increase both the probability of nuclear 

collisions and the stopping power of the emulsion itself (due to cumulative ionization 

effects) stacks of “stripped” emulsions were developed:   
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After initial manufacture, emulsions are stripped from their mechanical support base 

(glass), and compressed together to make a solid uniform target.  After exposure, the 

individual emulsion ‘strips’ are separated by chemical and mechanical means and 

remounted on glass supports.  

 
A complete tracking of individual relativistic particles will therefore necessitate scanning 

across many individual emulsion plates.  

 

Figure 3.6∗   

Exploded View of a Particle’s Trajectory through Successive Emulsions in a Stack 

 

   
 

The complete mapping and measurement of even a single cascade family (of up to 

several hundred individual particles) therefore requires the scanner to work back and 

forth across successive emulsion plates.  And to get a reasonable statistical sample the 

integrated path length of tracks scanned must be in the thousands of centimeters.   

Registration of position, both relative and absolute, becomes critical. 

 
Additional needs for precision in (and coherence of) the measurement process comes 

from the fundamental optical properties of a microscope capable of scanning nuclear 

emulsion.  As discussed in Chapter 1, there is a happy convergence of the optical and 

emulsion phenomenological scales.  The average grain size of commercial emulsions 

sensitive to minimum-ionizing Z=1 particles is [0.1-0.4] µ.  This is also the scale of 

                                                 
∗ Adapted from a Fermilab image 
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maximum resolution in optical microscopes.  As a consequence of the necessary 

objective strengths to reach this resolution, the depth of field  ∆  about the point of focus 

is at the scale of microns.  In particular, if  

 

∆ =
λ

4nsin2 (α 2)
                                                 (3.1) 

 
for air the depth of field of blue-green light is ~ 8µ, but it is only ~0.5µ in an immersion 

microscope (Barkas p224). 

 
Hence, to follow the trajectory of individual charged particles through a single emulsion 

plate the scanning and measuring must be performed at successive depths of differential  

focus as illustrated in Figure 3.7∗. 

 

 
 

 

                                                 
∗ Image adapted from Fermilab 

Figure 3.7  
 
Optical stages at 
successive points of 
focus in a single 
emulsion plate.  
 
Although the act of 
scanning is in reality  
a continuous change of 
mechanical focus, 
a standard 0.06 cm 
thickness of emulsion 
(one strip) would in 
principle require 
hundreds of separate 
focusings to view 
the entire depth. 

} .5 – 10µ 

300µ {  
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Absolute integrity in the X-Y plane utilizes reference to a rectangular grid imprinted 

photographically on the base of each emulsion strip.  Relative and local planar 

measurements as well as measurements of depth were kept coherent through the 

calibration of the semi-automatic (Jena) KSM microscope used for the measurements. 

 
It must be noted that there is an anisotropy in the mechanical and thermal errors 

associated with the KSM microscope.  In the Y-axis, the error is practically at the optical 

limit, ~ 0.1µ.  In the X-axis, due to the mechanical construction of the mechanical arm, 

the errors have an order of magnitude ~ 1µ.   And in the Z-axis, due to the mechanical 

effects of  gravity the precision ~1-2 µ.  

 

 

3.3   Patterns of Opacity……  …  ..  . origins 
 

In the emulsion’s world of transparency, all that we see is opacity. The unit of this 

opacity is a developed silver halide grain, and it is the local density of these developed 

grains (dots, blobs, and stars) that tells of the past presence of a moving charged particle.  

 
The key word here is local, for the formation of the latent image of a grain is a local 

ionization effect due to the interaction of the emulsion’s atoms with the Coulomb field of 

the moving charged particle.  It is not however a direct function of the average energy 

loss per unit distance, but is instead due to the low-energy electrons (delta rays) that are 

thrown out of the emulsion’s atoms in the wake of the passage of the projectile’s 

electromagnetic field. 

 
To illustrate this Powell (p.43) points out that a minimum ionizing particle of charge Z=1 

has a continuous energy loss of  ~ 700 KeV/mm.  For a 0.3 µ diameter grain this would 

lead to an energy deposit of only ~300 eV.   Considerably more energy is available from 

low-energy electrons that are liberated in the wake of the passage of the projectile’s 

(nuclear) electric field, but whose mean free path is less than the grain diameter.  

Electrons ≤ 5 KeV satisfy this condition and are termed delta rays (δ rays).  
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Electrons above 5 KeV typically escape from the grain and do not contribute to grain 

formation.  Hence the importance of the energy spectrum of the electrons liberated in a 

material due to the actions of a moving charged particle (Figure 3.8∗). 

 

Figure 3.8    Approximate Energy Distribution of δ-Rays 

 

 
  

All usefulness is not lost, however, for those electrons with energies significantly greater 

than the nominal 5 KeV limit for ‘exposing’ individual grains.  Single δ−rays with 

energies greater than 10 KeV can produce the ‘whiskers’ of exposed grains which 

emanate from the saturated core of the track of a higher-Z relativistic particle.  These 

whiskers can in turn be ‘counted’, helping to determine the Z of the particle producing 

the core track.  (See section 3.8) 

                                                 
∗ Powell (1959), p. 48 
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3.4   Bethe-Bloch Equation 

 
For a relativistic charged particle, with a mass much greater than that of an electron, 

the energy through collisions with bound electrons is described by the Bethe-Bloch 

equation∗: 

 

−
dT
dx

= nZz2 4πα 2h2

meβ
2 ln

2mec
2β 2

I(1− β 2)
− β 2 

 
 

 

 
                                   (3.2) 

 
dT
dx

 is the loss of kinetic energy/unit distance 

 
Zp is the charge of the projectile 
 
Zm is the charge of a homogeneous target material  
 
n   is the density of atoms of atomic number Zm 

 
I    is the mean excitation potential and is experimentally determined  
     ( I is approximated by I = 16Z 0.9eV  for Z > 2 ) 
 
 
 

Several important relationships are immediately apparent.   

 
1) The energy loss is proportional to Zp

2 , the square of the projectile’s charge; but is 

independent of its mass.  This will simplify things enormously.   

 
2) For non-relativistic particles (such as target ejecta in the lab frame) there is a β −2  

dependence.  Hence, the slower the particle, the greater the energy loss per unit 

distance.   

 

                                                 
∗ Along with the formaluation used here, Williams (1991) points out that the Bethe-Bloch 
formula can be looked at as an extension of the Mott scattering formula which in turn is 
an extension of Rutherford’s scattering formula, the founding formula of nuclear physics. 
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3) At relativistic velocities the energy loss becomes logarithmically asymptotic. 

However, density effects and shielding due to polarization effects decrease the 

actual rate of increase.  Also, the local ionization effects of the δ−rays leads to a 

relativistic plateau.  

 
 

Figure  3.9   Bethe-Bloch Ionization Curves 

 

  
(Frauenfelder & Henley) 

 
 

 

Tincknell (Tincknell, 1984) discusses the application of the Bethe-Bloch formalism 

specifically to Bevalac energy heavy ions traversing heterogeneous media such as nuclear 

emulsion and CR-39 (at the time he was a member of Buford Price’s group).  A summary 

of some of the background physics relevant to our own exposures is excerpted below: 
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“Nuclear projectiles passing through condensed matter are usually 

fully stripped of orbital electrons for projectile velocities 

ofβ ≥ Z p /137.  Heuristically, this is a consequence of the Bohr 

criterion which states that electron pickup (loss) predominately occurs 

for projectile velocities below (above) the electron orbital velocities of 

the projectile atoms.  Since the first Bohr orbital velocity is about ZPα , 

where α is the fine structure constant ~1/137, all but the heaviest 

projectiles (e.g. Uranium) are fully ionized at energies about 1 A GeV.   

 

The effective charge of a projectile nucleus is approximately a 

function only of the charge Zp and velocity  

 

ZP
* ≈ Z p (1− e

−180β
Z P

2/3

)                                      (3.3) 
 

Due to the Coulomb interaction of this positive charge with the target 

atoms, projectile nuclei lose energy by creating electronic excitations 

in the target matter.  The energy loss per unit distance is described by 

the Bethe energy loss formula: 

 

dE
dx

=
4πNZP

* 2
e4

mev
2 [ln2mec

2β 2γ 2 − ln Iadj − β 2]             (3.4) 

 

Where N ≡ NAvogρZΤ / AΤ is the electron density of the medium, ZP
* e is 

the effective projectile charge, -e is the electron charge, me is the 

electron rest mass, ν = βc  is the projectile velocity, γ 2 = 1/ (1− β 2) , 

and Iadj is the logarithmic adjusted mean ionization potential of the 

absorbing medium.  For compound media, this takes the form 

 

dE
dx

=
4πNZP

* 2
e4

mev
2

ρ
AZ

[ln2mec
2β 2γ 2 − ln < Iadj > −β 2]          (3.5) 
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where AZ ≡
cii∑ AΤ,i

cii∑ ZΤ,i

 is the average nuclear mass per nuclear charge 

of the medium (A per Z), and ln< Iadj>≡
cii∑ ZΤ,i ln Iadj ,i

cii∑ ZΤ,i

 is the average 

adjusted logarithmic ionization potential of the medium.  This 

expression takes an approximate asymptotic value of 2ZP
2  MeV cm2g-1 

for nuclei with Bevalac energies.  Energy losses of this magnitude are 

slight compared with kinetic energies of 1 to 2 A GeV….   

 
For energies of ≥1 A GeV and media with an average atomic charge of 

≤29 (nuclear emulsion or plastic), the projectile range is generally 

greater than the mfp for interaction.     

 

λ = (
< A >
NAvogρ

)( ciσ i)
−1

i
∑                              (3.6) 

 

where NAvog is Avogadro’s number, ρ  is the density, < A >≡
cii∑ AΤ ,i

cii∑
  

is the average atomic number of the medium, ci is the atomic fraction 

of target species.”   

(Tincknell 1984) 

 
 
 
 
One of the most important functional points of the above is the ability to assume a 

constant ionization for relativistic (projectile) tracks being followed through a stack.   

This tremendously simplified the measurement effort enabling, for example, the use of 

photometry for charge measurements.   Details will be discussed in this chapter and the 

next.  
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3.5   Energy Loss and Grain Density…. a Linearity 
 

Given the above one must then relate this energy loss to the actual grain densities.   

One finds for the same velocity, but differing Z, an excellent fit between grain density g 

(number of grains/mm) and Zp
2  dependence (in G5 emulsion).    

 

Figure 3.10  Grain Density vs. Zp
2  in G5 Emulsion* 

 

 
 

 
This near linearity is fundamental to the precision of measurement for which nuclear 

emulsions are known.  Indeed, it is fundamental to their very use.  For Powell strongly 

argues that this linearity directly implies that the overwhelming majority of individual 

seen grains are the creations of a single δ-ray, each exposed grain the “consequence of 

single acts”: 

                                                 
* Powell (1959), p. 47 
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“If an appreciable fraction of the grains were made to develop as a result 

of the joint action of two δ-rays, for them the relation between g  and I  

would be of the form  g ∝ I 2 ;  i.e. g ∝ Z 4 .  The absence of such a group 

of grains in appreciable intensity is proved by the observed linear relation 

between g and Zp
2 .”  * 

 
This isomorphism between grain density and local ionization explains why the response 

of nuclear emulsions to chemical development is so different from that of ordinary 

photographic emulsion.  In the latter, image contrast is proportional to different 

exposures, and can be drastically modified by changes in chemical development.  This is 

not the case for nuclear emulsions which have an extremely wide latitude; offering little 

change in contrast in response to comparatively large changes of chemical development.  

As Powell nicely puts it, “ For low values of the specific ionization, since the blacking is 

proportional to the ionization, ‘gamma’ for the emulsion is equal to unity.” 

 
All of this means that our basic unit of opacity, a single developed grain, when analyzed 

and measured in the context of a distinct pattern of opacity (blobs, stars, and tracks) 

offers the careful observer a potential transparency of physical meaning.  

                                                 
* Powell (1959), p.46 
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Figure 3.11 offers an ‘artistic’ rendering of such a network of patterns.  

 
Figure 3.11 

Artistic Rerendering: Limiting Angles of Projectile Fragments and Relativistic Contraction 

 

 
 

 
 

3.6   Scanning and Classification 

 

In this section we follow, from the scanner’s perspective, a relativistic argon primary 

nucleus as it enters and traverses G.5 nuclear emulsion.  In so doing we will illustrate the 

track classifications and measurements that were made in the emulsion-scanning part of 

our work.   Most of the techniques used are described in great detail in Powell’s “bible” 

on nuclear emulsions (Powell 1959).  The reader should refer to this volume and to 

Barkas (1963) for more of the technical details.   

 
Starting from a scan line 2 mm from the edge of the emulsion plate beam particles 

were followed until they interacted inside the emulsion or until they exited from 

the plate being scanned.  If the argon did not interact in that one plate, its length 

of track scanned was recorded, but it was not followed into the next plate.   
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For if one wants to determine mean free path one can follow a track until 

something happens or one can integrate all of the tracks followed (of a given Z) 

and divide by the number of interactions.  In the latter case one uses the estimator  

     λ* =
Si∑

NZ

                                 (3.7) 

which includes the summation (S) over the total path length of both interacting 

and noninteracting tracks that lead to the N interactions.  (For measured values 

see Table 4.5 in Section 4.3.) 

 
In contrast to the primaries whose scanning ended at the boundary of the plate 

being scanned, all secondaries with Z ≥ 2 were followed throughout the entire 

stack; as were all subsequent generations of interactions and produced particles.  

The angles and charges of secondary particles for all interactions were measured.  

These efforts produced the first full-stack scan ever performed and as such offers 

a unique perspective on questions involving primary vs. secondary populations. 

 
All interactions having as their origin a beam particle were attributed to the same 

family; a family being abandoned only after all the tracks from all the stars were 

followed, and all the interactions inside the stack were found.  And after any 

interaction was found, an additional backward scanning along the track was done 

in order to insure that no interaction was lost.   

 
Each star was cataloged and then drawn by hand before any measurements began.  

Cataloging consisted of 2 numbers assigned to each star:  a family number and the 

ordinal number of the star within the family.  Stars were then organized according 

to family, generation, and primary track; and the following analyses and 

measurements performed:  

 
1) the position of the star within its cascade family  

2) geometric properties of the star’s components 

3) identification of the star’s various components by Z and projectile/target 
origin 
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During the scanning process alone, all stars were examined, confirmed, and cross-

checked by at least 4 different people, each concerned with only one of the 

following:    

 
1) Scanning 

2) Drawing 

3) Assigning of Identification Numbers  

4) Construction of the Geometry 

 
 
A list of the 17-person team along with the responsibility of each is found in 

Appendix A.  One of the many benefits of this “industrialized” cross-checking 

was the extraordinary accuracy and completeness of the scanning.   Statistical 

support for this statement will be found in Chapter 4. 

 

 
 

3.7   Geometry 

 

Length 

 

Distances > 3mm were evaluated using the grid photographically imprinted on the 

emulsion strip by Ilford.  Distances < 3 mm were measured with the eyepiece 

under magnifications:   

 
10 x 1.5 x 15  for distances > 1mm 

 
15 x 1.5 x 100 for distances < 1mm 

 
Corrections were of course made for dip angle. 
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Angle measurements 

 
A semi-automatic microscope type KSM ( Jena- Germany) was used.  A star is 

aligned with the primary along the X-axis of the microscope. The particles 

emitted under a projected angle bigger then 10 0  were measured using the 

goniometer built into the microscope.  Angles of all other tracks were measured 

through use of their coordinates.  The depth in emulsion was evaluated relatively 

to the surface of the emulsion plate. The coordinates (x,y,z) and angles were then 

transferred to an on-line computer. 

 

Geometrical reconstruction 

 
A program was written to transform the readings into angles.  Real emission 

angles are computed relative to the primary track 

 

 

 
3.8   Charge Measurements 

 

Charges were measured by some combination of the standard methods: 

 
1) Counting Grains 

2) Fowler – Perkins (counting blobs or gaps) 

3) Delta rays  

4) Integrated Width Photometry  

 
 
These methods can be collectively looked at as the measurement of an emulsion’s 

linear response to consecutively larger scales of opacity (grains, blobs, and tracks) 

up to the point of saturation for each.   One counts grains until they begin to 

merge into blobs, after which one begins to count blobs (or equivalently… gaps).  
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A continuous track can validly be looked at as a coalescence of blobs, while the 

thickening of a track can correctly be considered a superposition and integration 

of small-scale (low-energy) delta rays.  Hence, as continuity of a track begins to 

occur, one can still count delta-rays.  And as the thickness and development 

‘shadow’ of a relativistic heavy ion track increases, one can usefully measure and 

compare the total integrated opacity of the core of the track.    

 
This is hardly a fortuitous coincidence, and seems a posteori  (to this author at 

least) to follow from the fact that this sequence of methods is in essence sampling 

the energy spectrum of delta-rays (Figure 3.8) at increasingly energetic 

thresholds.  Coupled to this is the linear response of grains across these many 

orders of magnitude of energy.    

 
Furthermore, in each method what we are counting is the boundary of the opacity 

unit under consideration.  Since each such unit, defined by its boundary, is made 

of these linearly responsive grains the local components of each boundary should 

grow linearly in the appropriate pre-saturation regime.  This growth will be 

modulated by the 3-D geometries of delta-ray transport and the subtleties of the 

emulsion’s composition, sensitivity, development, and secondary characteristics.  

(These secondary considerations range from the filamentary structure of 

developed grains to the anisotropy of grain orientations due to settling in a 

gravitational field).   

 
Hence the actual macroscopic entities to be measured will not all be linear.  

Indeed, exponential distributions are frequently to be expected, due to the 

emulsion’s absorption of the emitted delta-rays.  But the linear response of the 

boundary in its local build-up would seem to be the taproot connecting each of 

these methods to the appropriate scattering formalisms (Rutherford, Mott, or 

Bethe-Bloch); and hence the ability to discriminate the charges responsible for the 

specific ionization of the tracks under investigation.  A simple outline of these 

methods follows: 
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Grains 

 
As was discussed in the previous sections of this chapter, the passage  

of a singly-charged particle at minimum ionization through an emulsion  

can expose individual grains which can then be visually discriminated and 

counted.  The charge determination follows from the measured grain density go .  

 
 

Blobs 

 
As the local ionization increases, individual grains become unresolvable and 

multiple grains visually coalesce into ‘blobs’, separated from each other by ‘gaps’ 

of unexposed emulsion.  It is obvious that the number of blobs is essentially equal 

to the number of gaps between them.  Following O’Ceallaigh’s discovery that 

these gap lengths have an exponential distribution, Fowler and Perkins developed 

the ‘law of gap lengths’ which can be summarized in the two relationships: 

 

H(l) = B e (-Γ l) 

(3.8) 

B = g e (-Γ a) 

 

where 

H is the density of gaps greater than a length l 

B is the blob density 

Γ  is the gap length coefficient  

α  is the reciprocal of the developed grain diameter 

 

The gap length coefficient Γ is the reciprocal of the mean gap-length lm, and is 

numerically equal to the slope of exponential distribution (on a log-plot) of the 

gap density vs. gap length.  
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Γ  embodies a number of characteristics of critical importance to experimentalists. 

Γ has been shown to be more than just a function of the grain density, but is itself 

an estimate of the ionization and true grain density.  For a specific ionization Γ  is 

essentially independent of mean grain-size; and for the G5 emulsion used in our 

experiment, Fowler and Perkins have showed that the information derivable from 

Γ is independent of development.  This independence of development is one of the 

great unifiers between different studies done on differently exposed and 

differently developed emulsions.  

 
The Fowler-Perkins method of blob counting embodies one other advantage, 

making it the first choice of techniques when applicable:  55% of the information 

available within a track can be obtained without measurement.. … …. . … . .. … 

simply by counting the blob density of the track along with the number of gaps of 

length greater than ~2.5 lm .   It is this last point, of economic as well as systematic 

value, that makes the technique ‘really work’ in the real-world.  

 

 

 

Delta rays 

 
At still higher ionizations the core of the track becomes ‘clogged’ due to the 

visual saturation of the grains exposed and developed.  At this point however, in 

addition to those lower-energy electrons that expose grains in the actual path of 

the traversing particle, the energy distribution of secondary electrons is such that 

higher-energy delta rays are ejected.  As discussed earlier, single δ−rays with 

energies > 10 KeV  will then produce ‘whiskers’ of exposed grains emanating 

from the saturated core of the track of a higher-Z relativistic particles.  In actual 

fact, according to Powell, the observable (and countable) delta-rays  are 

principally due to knock-on electrons having an energy between 15 and 75 KeV.   
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Following Barkas’ formulation (Barkas p. 349), the differential delta-ray 

spectrum follows from the differential cross section for energy transfer to an 

unbound electron at rest  from a point charge Ze: 

 

dσ
dE

 
  

 
  dE =

2πz 2r0
2mc2

β 2 1−
β 2 E
Emax

 

  
 

  
dE
E 2 cm2                      (3.9) 

 

 
Emax  is the maximum value of these energetically kicked or ‘knock-on’ electrons.  

If Emin is the minimum energy for delta-ray production (from section 3.3), at 

relativistic energies (as β −> 1) then  Emax >> Emin .  Hence the number of delta-

rays greater than Emin is: 

 

nδ ≈ (2πr0
2)

mc 2

Emin
z 2 = constant × z2                        (3.10) 

 

Empirical evaluation of the constant for particles of fixed charge (alphas for 

example) then leads to the ability to determine relativistic charges through  

delta-ray counts.  
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3.9   A Self-Organizing Systems Approach to the Evolution of Structures 

 
If one integrates the differential density of gaps over the length of the track,  

 

L = − l(
dH
dl0

∞∫ )dl                                           (3.11) 

 
L, the lacunarity∗, is that fraction of a track made up of gaps.  It is clear that 

nothing useful will be seen at the two extrema, for if L = 1 then there is nothing 

but background emulsion and if L = 0 then the track is a continuous black band.   

It is easy to see that the track opacity can then formally, if a little too simply,  

be defined as  

O = (1 – L)                                                (3.12) 

 
As the local ionization increases, the lacunarity decreases, the opacity increases 

and the end result is a loss of distinguishable, and hence quantifiable, track 

structures. 

 
But it is critical to recognize that this is only the linear portion of the track 

structure.   As in the previous discussion on the boundaries of opacity (the more 

general meaning of the word again) saturation of information in a given 

dimension creates, by definition, a boundary that is in effect a structure seen in the 

next higher dimension accessible to the system.  This need not be a spatial 

dimension but can be any spanning dimension of the system’s phase space. 

 
The author’s (L2) work on self-organizing systems allows a more general 

perspective still.   By definition, a boundary embodies more structure than a 

homogeneous interior.  Yet this boundary will also by definition entail a lesser 

measure of symmetry than a homogeneous interior.  Hence almost by definition 

                                                 
∗ The lacunarity integrated over the residual range is not only a measure of ionization,  
but a small piece of poetry as well:  it was first named ”the integrated emptiness”   
(Bowker et al, referenced in Barkas)   
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do structure-building and symmetry breaking occur together at a boundary.  This 

can be further generalized to the idea that it is essentially (exclusively as can be 

shown by the author) at boundaries where self-organization of structure and 

dynamic process occurs.  

 
Of course the boundaries are not limited to spatial ones, but can be dynamic 

processes as well.  Applying this perspective to emulsions:  the hierarchical 

structures of grain, blob, gap, and track self-organize through the flow of energy 

and chemical potential that is the mass-transport of delta ray electrons. 

 
Going further, the organization of structure occurring at this boundary means that 

entropy will be decreasing in that locale and hence will embody a greater amount 

of information (This inverse relationship of entropy and information is due to 

Jaynes 1956, who first demonstrated the equivalence of statistical mechanics and 

information theory.)  Information is ‘conserved’ in an additional sense of 

symmetry at this boundary: reflecting as it does the symmetry whereby a greater 

amount of information is needed to describe the boundary, but in the process 

yields that much more information to the observer through its description.   

 
Admittedly all this “might” seem a bit too theoretical and abstract when actually 

in the midst of counting blobs and re-measuring gaps…but it is the very 

abstractness of this somewhat novel approach that offers a deeper understanding 

of the evolution of the different structures actually measured in, and in response 

to, the different ionization regimes.  

 
For example, returning to the more empirical aspects of emulsions, Barkas (1963) 

describes the devolution of information-gathering ability thus: 

 
“When the ionization is low, most of the information content of the 

track granularity can be obtained by blob counting or measurement 

of the gaps.  If the ionization is somewhat higher, however, the blob  
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lengths become a source of information, and near the blob density 

maximum the blob lengths contain more information than the gap 

lengths.  At still higher rates of energy loss, the mean blob length 

provides most of the information in the linear structure of the track, 

but the absolute quantity of information still tends to vanish when 

the lacunarity approaches zero.” 

 
“Fortunately,”  he goes on to say, “…another measurement 

becomes available.  The width of the track rises with increasing 

grain density just in the region where little information remains in 

the linear track structure.” 

 
 
As the previous discussions on self-organization of the boundaries of opacity 

make clear, it is hardly fortuitous!  But obtaining a quantitative understanding of 

the 2-dimensional track-width is not a simple matter.  In going from the zero and 

one-dimensional structures to two-dimensional ones all of the specific emulsion 

characteristics and particle variables play entangled roles.  Nonetheless, 

depending on local calibrations, locally useful charge measurements can be made 

from a careful examination of track width.  Indeed, as discussed next, photometric 

techniques have been expressly designed to do so.  
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3.10   Charge Measurement by Photometry 

 

All photometeters share the basics of an emulsion-scanning microscope 

whose eye-piece image is transmitted to a photomultiplier device.  

 

Figure 3.12  Photometry Scanning Set-up∗  

 

                                      
 

The output signal when amplified is in principle proportional to the light 

absorption through the track.  In our charge measurement work integral 

photometry was used, the system being designed by Andrei Gheata (currently a 

CERN staff member).  Although he did not perform the bulk of the measurements 

per se, over several years it was he who evaluated all of the photometric data to 

establish the fragment charges. The photometric approach as used by Project 

Cascade is described in the following three pages.  The description, graphs, and 

empirical fits are all based on internal project reports written by Dr. Gheata.  

                                                 
∗  Powell (1959) 
 



 
 
 

3-31

 

In essence the integral photometry method compares the integrated 

opacity of the central core of the track to the non-exposed background 

adjacent to the track itself. There are two principle methods of 

measurement that in turn depend on the relative width of the sampling 

slit.   

 
For charges between 4 and 18 (those measured in Project Cascade) 

the charge estimate is defined as the light transmission through a 

track portion, divided by the mean light transmission through the 

corresponding left and right side regions.  This is called the integral 

photometry width and is expressed in slit unit's due to its 

proportionality with the mean track width, if the slit width is properly 

chosen. 

 
Because the track makes a shadow longer than its dimensions, the slit 

width must be greater than the shadow; background measurements 

being made well beyond this region. The slit length is also important. 

A long slit integrates a longer portion of a track, reducing the number 

of measurements. However, in this case we found it difficult to avoid 

observable emulsion irregularities or tracks passing nearby. So, a 

compromise was made by choosing a slit of 5 mm, corresponding to 

about 100 µm of a track. 

 
A different method is used for charges greater than 18 where the track 

width is sufficiently broad that it can be scanned with a slit that is 

narrow compared to the track.  In the Z >18 case the mean track 

width is then calculated directly from the track absorption profiles.   

 
The two forms of measurements are not exactly the same, and are 

most useful when used individually in a given study to provide 

internally consistent relative charge measurements.  In both methods, 
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a number of measurements along the track are necessary to obtain an 

accurate estimate of the charge.  It is important to know how the 

mean track width depends on charge, energy, dip and depth in 

emulsion. Fortunately, the measured fragments are relativistic, which 

by the Bethe-Bloch formalism means the ionization has a weak 

dependence on energy.  It is this constancy of ionization throughout 

the fragments’ range that allows photometry to be used at all. 

 
The particle charge is then calculated from the mean integral widths 

along the track. The standard error amounts up to 0.3 charge units in 

the interval 4 < Z < 18 but it can increase dramatically if certain 

methodological cautions are not taken. 

 
Since no relativistic particles in Project Cascade had Z>18 the 

integral photometry method was used.  In integral photometry the 

mean integral photometry width <IW> is a function of charge, dip 

and depth of track in emulsion: 

 

<IW> = ( )C E S,  f(Z) g(h) cos α           (3.13) 

 

( )C E S,  has a negligible energy dependence, but includes those 

emulsion variables that are inherently unpredictable: sensitivity 

differences, distortions, emulsion shrinkage, causally unrelated tracks 

passing too close to the measured track.  To reduce the unknowns 

embodied in ( )C E S, , measurements were made on both primary and 

secondary tracks of an interaction.  By dividing the corresponding 
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integral widths, relative measurements of reasonable accuracy were 

possible∗.   

<IW>s   =    C(E,S) f(Zs) g(hs) cos pαs          (3.14) 
<IW>p      ( )C E S,  f(Zp) g(hp) cos α 

 

An additional benefit of this approach is an enhanced compatibility 

and internal consistency between measurements taken in different 

plates.  f(Z) is empirically found, and graphed below. 

 

Figure 3.13   f(Z) vs. Z 

 

 
 

                                                 
∗ This is of course analogous to what was done in the Copper Calorimetry Experiments in 
order to ratio out the complex uncertainties of unknown variables. 
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Depth Dependence 

 
 For all primary tracks the mean photometry width varies linearly with 

depth in the emulsion: 

g(h) = A1 + A2 h                         (3.15)                                                      

 
With this comparative method, we can find the integral width 

distribution for secondary fragments, the experimental resolution 

being about 0.3 charge units (for smaller Z).  Along with the rest of 

the empirical fits to (the specifics of) our particular emulsion’s 

exposure and development, this distribution yields a linear 

relationship between charge and photometric width.  

 

Figure 3.14  Integral Photometric Width (DCIW) vs. Charge Z 

 
 

The charge measurements thus follow from the fact that the integral  

photometry width is indeed proportional to the mean track width  

which itself varies linearly with charge.  

 
The above section on integral photometry is based on Project Cascade reports by A. Gheata 
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3.11  Charge Measurements in our Experiment: Trade-offs and Balancing Acts 

 
Charges were determined at first solely by the counting of delta-rays.  For 

Z=3,4,5  the use of delta-rays offers a clean discrimination of charge.  Sufficient 

counts of delta-rays are necessary, but given enough measurements and re-

measurements the result is an empirical peaking that falls into easily definable 

categories.  Hence these charges were easy to distinguish.   

 
But for larger Z the grain density of ~ (15 grains/100µm) suggested that the 

necessary number of delta ray counts to accurately measure all tracks (anywhere 

in the stack) would be difficult to acquire.  An independent technique was then 

introduced, photometry, and all charges that were previously measured by delta 

rays were re-measured.  The charge was re-measured yet again every time there 

was a discrepancy between the values obtained from the two independent 

methods.  Because of the grain density an exact coincidence of charge values 

between the two methods was sometimes difficult to attain.  But Fowler-Perkins 

to the rescue!   

 
The Fowler-Perkins approach was more compatible with the overall state of 

tracks in the emulsion, and was therefore much more consistent with the 

independent values from photometry.  Delta-ray counting was therefore 

abandoned for general use in favor of Fowler-Perkins for Z<7 and blob counting 

for Z>6.   Subsequently all charges with Z< 7 were measured by Fowler-Perkins; 

as well as 50% of those with  Z>7.   

 
In this way every charge was measured at least 2 times and by at least two 

different methods.  Typically, 

 
Z< 5:  Delta rays and Fowler-Perkins (using gap lengths of 1 and 2 µ) 

 
Z >5:  Photometry and Fowler-Perkins (gap lengths of 1 µ and ‘all gaps’)  
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In addition, many more measurements were made due to charge conservation 

requirements.  The balance of charge was analyzed for all stars.   All tracks in a 

star were re-measured using an alternative method any time there was a difference 

of more than 1 or 2 charge units between the incoming charge and the sum of the 

outgoing secondary charges (in the 12-degree inner cone).  

 
The result of all of this was that for most of the secondaries any remaining 

differences in value were no bigger than 1 charge unit, and this only for the larger 

Z secondaries.  For smaller Z, the error is more typically 0.3 charge units. 

This is probably the largest source of experimental error.  It has been taken into 

account in the construction of the database (through the application of baryon 

conservation across stars and families) and through extra simulations in the Monte 

Carlo.  The other major source of scanning/measurement error (at most a few 

percent) is the difficulty at small angles from the projectile path of distinguishing 

grey (slow target) tracks from those of relativistic (projectile) shower particles.   

 
Both of these will be addressed more fully in Chapters 4 and 7 when discussing 

potential sources of errors, systematic and computational.  And the results of these 

measurements will be found in the next chapter, Scanning and Measurements. 
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IV   Scanning and Measurements 

 
The very last run of Lawrence Berkeley Laboratory’s Bevalac was a 1.8 A GeV 40Ar 

beam directed at a stack of Ilford G5 emulsion.  The 30 interior plates were then made 

available to Project Cascade by Dr. Harry Heckman of LBL.  The subsequent scanning 

and measurements were performed by the professional scanners of the High Energy 

Astrophysics group of the Institute of Space Research (Bucharest, Romania).  The 17-

person team, along with their responsibilities, is listed in Appendix A.  Dr. Maria Haiduc 

supervised and coordinated the on-site scanning efforts.  

 

 

4.1 The Primaries Z=18 
 
 
Scanning began 2 mm from the edge of each plate and beam particles were followed  

until they exited from the plate or until they interacted inside the emulsion.   

All secondaries with Z ≥ 2 were followed through the entire stack, as were all subsequent 

generations of interactions and produced particles.  The angles and charges of secondary 

particles from all the interactions were also measured.  The total length of tracks scanned 

was 437.8 meters.   124 meters of primary argon track was followed, in which was found 

1418 stars of primary interactions.  Hence, the mean free path of the primary Argon is:    

 

λ (40Ar) = (124 meters/1418) =  87.51 ± 2.3 mm                             (4.1) 
 

 

A comparison of this value with other studies (Table 4.1) offers a preliminary validation 

of the data.  Note that the starred ( * ) studies were under the same conditions as our own 

work:  Ilford G5 emulsions exposed to the Bevalac’s 1.8 A GeV  40Ar beam.  
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Table 4.1  Mean Free Path of  40Ar Primaries• 

 

Study 
Mean Free Path 

(mm) 
Error 
(mm) 

  Lerman et al 1 * 87.51 2.3 

  Friedlander et al 2 * 90.0 14 

  NRC (Canada) 3 * 83 14 

  Bhanja et al 3 * 89.7 1.6 

  Barbour et al 3 92.0 15 

  Jain et al 3  * 96.0 11 

  Beri (1983) 4 * 92.1 1.6 

 
 

From these 1418 primary interactions, the following particles were found and measured. 

 
17261  slow heavily ionizing particles (black and grey tracks from the target) 
 
13516  shower particles (fast Z=1 particles from the projectile)  
  
1587 alpha particles  (from the projectile) 
 
938 relativistic heavy fragments with Z ≥ 3  (from the projectile)  

 
 

 

 

 
                                                 
1 Current Study 
2 Dr. Erwin Friedlander, private communication 
3 Beri et al in 6th High Energy and Anomalon Conf (Pre-prints, p.9) 
4 Beri et al in 6th High Energy and Anomalon Conf (Proceedings, p.27) 
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From these in turn came 1850 secondary stars, whose distribution by charge follows: 

 

Table 4.2   Secondary Stars 

 
Charge Number of Interactions 

   

2 1043 

3 31 

4 46 

5 38 

6 51 

7 53 

8 60 

9 34 

10 51 

11 48 

12 56 

13 46 

14 48 

15 54 

16 65 

17 37 

18 89 

 

 

As an essential quality control check on the scanning process: after the scanning was 

done and the charges evaluated we followed backwards all secondary tracks in all 

families and found only 3 more interactions that were lost during the first scanning.  

This yields a scanning accuracy of  ~ 0.1%. 
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4.2  Z=2 

 
Of the secondary 2205 alphas followed through the stack (214.5 meters of track) there 

were 1043 subsequent interactions, resulting in a mean free path for these alphas of: 

 

λ (alphas) = 205.6358 ±  6.367318 mm                              (4.2) 
 
 

These figures compare favorably with the study by Heckman et al. (1978) which found   

λ (4He) =  218 ± 7 mm  for a  Bevatron beam of 2.1 A GeV 4He.   It also compares 

favorably with a study of Bhanja which found the mean free path of He to be  

λ (Z=2) = 195.2 ± 6.5 mm.  Although Bhanja et al’s exposure was under seemingly 

identical conditions it should be noted that the biased estimator   λ* = S
N +1

   was used 

to derive their figure rather than the conventional unbiased   λ* = S
N

   used by ourselves.  

This estimator    

  

 λ* = 
Si∑

NZ

                                                           (4.3) 

 
includes the summation (S) over the total path length of both interacting and 

noninteracting tracks that lead to the N interactions.  Applying this estimator to the 

population of alphas as a function of distance from the parent star reveals a striking 

uniformity of estimated mean free path, especially at the closest distances (Figure 4.1). 

 
And as a quality control check of the measurement process we rescanned and 

remeasured all Z=2 tracks.  Only one revision was required.  This yields a 

measurement accuracy for our study of ≤ 0.1%. 
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Figure 4.1 

Mean Free Path of Z=2 Secondaries as a Function of Distance from Parent Star 
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Looking more closely at the first cm reveals a value of λ = 204.92 ± 20.9 mm 

 

Table 4.3 and Figure 4.2 

Mean Free Path of Z=2 Secondaries in First Centimeter from Parent Star 

 
Distance from Parent Star 

(mm) 
# Stars  
 (Z=2) 

Estimated MFP  
(mm) 

Error MFP 
(mm) 

  0.00 – 1.00  10   219.47    69.40  

1.00 - 2.00 8 272.89 96.48 

2.00 - 3.00 7 310.71 117.44 

3.00 - 4.00 4 539.68 269.84 

4.00 - 5.00 13 164.67 45.67 

5.00 - 6.00 15 141.5 36.54 

6.00 - 7.00 13 161.98 44.92 

7.00 – 8.00  16 130.51 32.63 

8.00 - 9.00 9 230.91 76.97 

9.00 - 10.00 9 229.47 76.49 

    

0.00 -- 10.00 104 204.92 20.09 

10.00 -- ∞  939 205.71 6.71 
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As seen in Table 4.4 below, the statistics are strongest for the first few centimeters, where 

any anomalous mean free path behavior (anomalons) would be expected to show up. 

 
Table 4.4   Estimated Mean Free Path  as a Function of Distance from Parent Star 

 
Distance from Parent Star  

(mm) 
# Stars 
(Z=2) 

Estimated MFP  
(mm) 

Error (MFP) 
(mm) 

      

0 – 10 104 204.92 20.09 

10 – 20 100 198.66 19.87 

20 - 30 102 181.32 17.95 

30 – 40 78 221.19 25.04 

40 - 50 95 165.77 17.01 

50 - 60 71 200.83 23.83 

60 - 70 67 195.79 23.92 

70 - 80 41 295.36 46.13 

80 - 90 44 252.17 38.02 

90 -100 48 210.64 30.4 

100 -110 44 208.08 31.37 

110 –120 45 180.42 26.9 

120 –130 35 208.01 35.16 

130 –140 31 210.22 37.76 

140 –150 27 214.49 41.28 

150 –160 24 209.57 42.78 

160 -170 20 218.28 48.81 

170 -180 13 285.78 79.26 

180 -190 19 166.25 38.14 

190 -200 10 274.61 86.84 

200 -210 12 178.15 51.43 

210 -220 8 197.75 69.91 

220 -230 2 516.23 365.03 

230 -240 3 150.4 86.83 

240 -****** 0 0 0 

 

This constancy of mean free path with distance from the parent star offers a strong 

suggestion that in this study at least  no anomalous mean free paths are seen for Z=2 

objects. The ‘conventionality’ of the data set is thus reinforced, supporting its 

applicability as a basis for the created Monte Carlo programs. 
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An Aside on the “Classical” Emulsion-Based Anomalons  

Note that our findings are in sharp contrast to the findings of Friedlander et al (1983),  

seen in Figure 4.3 , as well as other earlier studies such as those by Klein et al (1983). 

 

Figure 4.3    Mean Free Path (Z=2 ) as Measured by Friedlander et al (1983) 

 

 
 
The large population of alphas in the current study, their high accuracy due to rescanning 

and remeasurement, and the industrialized set-up of the scanning team all suggest the 

primacy of this study over these earlier, smaller ones.  If so, broader implication may well 

exist.  For this consistency of mean free path at all distances from the parent star weighs 

against the likelihood of the existence of the emulsion-based anomalon (Karant 1983, El-

Nadi 1983, Klein1983, Killinger 1983, Friedlander 1983).   Bayman and Tang (1987) 

point out in their summary article on the anomalon phenomena that the existence, or not, 

of Z=2 anomalous mean free path particles is likely to be critical to any existence ‘proof’ 

of emulsion-based anomalons.  Nonetheless, our Z=2 results may not be a definitive nay 

by themselves; for Bayman and Tang also suggest that (even if anomalons exist) only 

projectiles lighter than 22Ne might be necessary to produce Z=2 anomalons.  
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4.2 Z≥3   

 
For the heavy secondaries [Z≥3]  encompassing  99274.95 mm of measured tracks 

the interaction parameters are: 

 

Table 4.5    Measured Interaction Parameters of Heavy Secondaries 

 
Charge 
 

Length Scanned
(mm) 

Interactions
 

Lambda 
 (mm) 

Sigma 
(mm) 

     

3 5927.992 31 191.22 34.34 

4 8803.3 46 191.37 28.21 

5 6392.414 38 168.22 27.28 

6 7320.389 51 143.53 20.09 

7 6330.116 53 119.43 16.40 

8 8096.322 60 134.93 17.42 

9 3763.832 34 110.70 18.98 

10 6209.028 51 121.74 17.04 

11 5491.813 48 114.41 16.51 

12 6590.078 56 117.68 15.72 

13 5386.611 46 117.10 17.26 

14 5024.002 48 104.67 15.11 

15 5065.949 54 93.81 12.77 

16 6801.327 65 104.63 12.98 

17 4391.663 37 118.69 19.51 

18 7680.11 89 86.29 9.15 
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Similar studies to that shown in Figure 4.1 were done for all Z≥ 3  secondaries.  No 

anomalous mean free path was observed at any scale.  But due to the fragmentation 

distribution being heavily peaked at Z≤ 2, our statistics for Z≥ 3  offers a less definitive 

experimental answer to the broader question of whether anomalons exist or not.  It should 

be noted however that our sample of Z≥ 3 nuclei is comparable in number to that utilized 

in the major study of emulsion-based anomalons (Friedlander et al, 1980, 1983), but a 

comparably rigorous statistical analysis to theirs has not been performed.    

 
Nonetheless, comparisons of these measured mean-free-paths against predictions offers 

an initial clue.  Shown below in Table 4.6 are the experimental values along with 

theoretical mean free paths derived from the fitted relationship in equation (4.4):  

 

λ = ΛZ−b                                                         (4.4) 
 

where  Λ = Λbeam= 30.14 ± 1.6 cm  and  b=0.44 ± 0.02 
 

The origins of this fit are discussed by Friedlander et al (1983), who in turn utilized work 

by both Karol (the soft-transparency model) and Heckman (Bradt-Peters approach).  For 

Z ≥ 3 the fit for emulsion is seen to be quite good (exceptional even for all charges but 

Z=7) justifying the use of this formulation of λ(Ζ)  to establish the base mean free path 

values in our simulations.  The initial values for Cu predicted by this formula, and used in 

our simulations, are also listed.   

 
As to the predictive fit for Z=7, Heckman et al. (1978) studied Bevatron primary beams 

of Z=(6,7,8) at 2.1 A GeV.  Due to the use of primary beams, their statistics were 

considerably greater than ours which came only from the fragmentation of  40Ar 

primaries.  Table 4.6b shows that our theoretical model fits almost perfectly their data in 

the regime of Z= 7 ± 1.  Recalling that the λtheory is based on a ΛZ-b fit to such past 

measurements it is apparent that the mean free paths of these stars appear quite normal 

and consistent with past measurements performed at LBL.  Other matches with past LBL 

studies are found in Table 4.11. 
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Table 4.6a 

 
Mean Free Path of Relativistic Heavy Ions in Emulsion 

Theory vs. Experiment 
(cm) 

 

Charge 
MFP 

Emulsion 
(experiment)

MFP 
Emulsion 
(theory) 

MFP  
Cu 

 (theory) 

1  32.4 13.8 

2 20.6±0.6 24.05 10.24 

3 19.1±3.4 20.2 8.6 

4 19.1±2.8 17.85 7.6 

5 16.8±2.7 16.22 6.91 

6 14.3±2.0 14.99 6.38 

7 11.9±1.6 14.03 5.98 

8 13.4±1.7 13.25 5.64 

9 11.0±1.9 12.6 5.36 

10 12.1±1.7 12.04 5.13 

11 11.4±1.7 11.55 4.92 

12 11.4±1.7 11.13 4.74 

13 11.7±1.7 10.75 4.58 

14 10.5±1.5 10.42 4.44 

15 9.4±1.3 10.11 4.31 

16 10.4±1.3 9.83 4.19 

17 12.1±2.0 9.58 4.08 

18 8.6±0.9 9.35 3.98 
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Table 4.6b 

 
Mean Free Path of Relativistic Heavy Ions in Emulsion 

Theory vs. Experiment (Z=6,7,8) 
(cm) 

 

Charge 
MFP 

Emulsion 
(Lerman) 

MFP 
Emulsion 
(theory) 

MFP  
Emulsion 

 (Heckman) 

6 14.3 ± 2.0 14.99 13.8 ± 0.5 

7 11.9 ± 1.6 14.03 13.7 ± 0.6 

8 13.4 ± 1.7 13.25 13.0 ± 0.5 

 

 

With regard to the “anomalon”  hypothesis it should be noted that there is no indication in 

any of our studies of systematically lower mean-free-paths in the first few centimeters.  

This is important vis-à-vis the fact that this data set is the base of the Monte-Carlo to 

follow. Note that this contrasts with a data set with essentially the same order of 

magnitude of secondaries per charge bin as presented by Friedlander et al (1983).  This is 

mentioned principally because it was a hunt for such objects that catalyzed what became 

the Copper Calorimetry Experiments, but is not addressed further in this chapter.  

We shall briefly return to the question of these emulsion-based anomalons at the 

conclusion of Chapter 8, where we finish dissociating them (or any other short mean free 

path phenomena) from the results of the Copper Calorimetry Experiments under study. 

 
Note that Λ and b play a larger role than mere fitted constants.  They are capable of 

acting as simulation variables, parameterizing a broad range of Z-dependent interaction 

cross-sections.  Setting Z=1, Λ  is seen to ‘represent’ the inverse of a single nucleon’s 

geometric cross-section.  And b roughly reflects the projection onto an interaction plane 

of the space packing of nucleons in a spherical nucleus.  If the spherical nucleus were 

completely filled by nucleons, b would equal 2/3.  Instead, the fit finds b to be ~ 2/5, 
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suggesting in our crude model that for purposes of geometric cross-sections, nucleons 

collectively fill only 60% of the available nuclear space. 

 

 
 
4.4   Other Statistics of the Database 

 
The charge distribution by generation is as follow, and where Charge=19 are Z=1 

particles between {12 – 20} degrees and Charge = 20 are Z=1 particles between  

{20 - 45} degrees: 

 
Table 4.7    Generations of Secondaries by Charge 

 
Charge Generation 1 Generation 2 Generation 3 Generation 4 Generation 5 

            
1 0 83 0 0 0 
2 0 490 178 37 7 
3 0 20 4 3 1 
4 0 17 11 1 1 
5 0 20 12 3 0 
6 0 30 11 3 0 
7 0 33 6 3 0 
8 0 25 13 4 0 
9 0 15 9 1 0 
10 0 31 8 2 0 
11 0 22 7 3 0 
12 0 31 9 2 1 
13 0 34 9 1 0 
14 0 26 7 1 0 
15 0 37 6 2 0 
16 0 37 8 0 0 
17 0 26 2 0 0 
18 817 63 7 1 0 
19 0 27 0 0 0 

20 0 0 0 0 0 

 
Figure 4.4 

 



 4-14

STARS BY GENERATION AND CHARGE 
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And the Fragmentation Matrix for Z>2 is: 
 
 

Table 4.8  Fragmentation Matrix 
 
CHARGE 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

3 3                
4 2 1               
5 1 4 3              
6 1 2 2 2             
7 1 4 6 2 2            
8 3 2 2 3 3 6           
9 1 1 1 2 3 3 1          
10 2 3 6 3 6 2 4 1         
11 0 1 1 3 4 2 2 1 3        
12 0 4 1 3 5 2 0 5 3 2       
13 3 0 3 4 1 3 1 4 2 2 3      
14 1 3 2 1 3 5 7 1 1 5 3 6     
15 1 2 1 1 2 3 2 2 6 7 5 1 3    
16 3 3 1 2 1 1 1 3 6 6 2 3 8 4   
17 0 0 2 1 0 1 2 3 0 0 1 1 2 3 5  

18 32 44 33 51 44 50 25 61 46 54 53 60 64 79 54 111
  
 

The vertical column of CHARGE represents the charge of the local primary, while the 

horizontal row of CHARGE is the charge distribution of the daughter products that have 

been measured.  Hence the first matrix element has a value of 3 meaning that all local 

primaries of Z=3 had daughter products of charge Z=3; while the second row shows that 

local primaries of Z=4 split 2:1 into daughter products of Z=3 and Z=4.  All Z=2 

daughter products have been ignored in this version of the Fragmentation Matrix for 

beyond the values themselves one of the most important implications of the 

Fragmentation Matrix is its pure diagonal nature: i.e. a zero value for all matrix elements 

(i,j) where j>i.  Also seen graphically below, this is an important quality control check on 

the scanning: for although it is physically impossible that fragments could have a charge 

greater than their parent, mistakes in scanning could indicate otherwise.  
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Figure 4.5 

Fragmentation Matrix 

 

(Z-axis View) 
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4.5   The Analyzer 

 
Other analyses of the emulsion results come from a suite of analytic tools (The Analyzer) 

created to mine the emulsion data set.  It allows one to make cuts amongst a wide set of 

multivariable conditions.   The first stage of (independent) variables includes: 

 
Nz = Charge of the “local” primary 

Nh = Number of ‘heavy” tracks = Nblack + Ngrey 

Ns = Number of relativistic shower particles (Z=1) = Nshower 

Nalf = Number of alphas = Nalpha 

Nf = Number of relativistic fragments with Z≥3 

KZ = charge of the fragment 

Thc = limit of the angle theta for the particles under consideration 

Eta = rapidity 

Theta = polar angle 

Psi = azimuthal angle 

Proj = progected angle 

 

The second stage of conditional variables can be set to run between the limits of [0, 99], 

and include: 

 
Nz = Charge of the “local” primary 

Nh = Nblack + Ngrey 

Ns = Nshower 

Nalf = Nalpha 

Nf = Number of relativistic fragments with Z≥3 

Ntype = Phenomenological classification of tracks as indicated below 

    
 Black = 1  Shower = 3  Fragments = 5   

 Grey = 2  Alphas = 4 
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As a useful example, the charge distribution of the local primaries on the interval [2,18]: 

 

Figure 4.6   Charge Distribution of Local Primaries 
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whose on-screen output presents the following statistics: 

 

 

Table 4.9  Gross Statistics of Charge Distribution of Local Primaries 
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Looking more closely at the region Z=[3,17] reveals:  

  

 

Figure 4.7  Charge Distribution of Local Primaries [3, 17] 
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whose statistics are: 

 

Table 4.10   Gross Statistics of Charge Distribution of Local Primaries 

 

 
 

 

 

 

 



 4-22

This tool, The Analyzer, was used to analyze and compare the critical statistics of our 

sample of over 2000 events to the much smaller sample (less than 100) utilized in the 

original Copper Calorimetry Experiments.   Their results for a 1.8 A GeV 40Ar beam on 

G.5 emulsion are summarized below, along with a comparison to our own.  The detailed 

graphical analyses and statistics are in Appendix A.  

 
 

Table 4.11 

 
Mean Characteristics of Events 

(1.8 A GeV 40Ar Projectiles in Nuclear Emulsion) 

 

  All events 
(Aleklett) 

All events
(Lerman) 

Nh≤ 8 
(Aleklett)

Nh≤ 8 
(Lerman) 

Nh≤ 9 
(Aleklett) 

Nh≤ 9 
(Lerman) 

<Nh>  9.8 ± 1.5 8.9 ± 0.3 3.0 ± 0.3 2.9 ± 0.1 22.6 ± 1.6 21.79 ± 0.5

<Ns>   10.4 ± 1.0 9.8 ± 0.3 7.0 ± 1.0 6.0 ± 0.2 16.7 ± 1.6 17.8 ± 0.6

 <Nα>   1.2 ± 0.2 1.19 ± 0.04 1.2 ± 0.2 1.17 ± 0.05 1.3 ± 0.3   1.2 ± 0.05

 <θs
o>    16.7 ± 0.5 19.8 ± 0.19 14.0 ± 0.7 14.5 ± 0.25 18.8 ± 0.7 23.6 ± 0.26

 <θα
ο>     1.9 ± 0.1 1.9 ± 0.04 1.7 ± 0.2 1.8 ± 0.05 2.2 ± 0.2 2.1 ± 0.08

< ZF,Z>2 > 12 11.49 ± 0.18 13 12.0 ± 0.2 9 8.7 ±  0.36

 

As before 

Nh = Nblack + Ngrey 

Ns = Nshower 

Nα= Nalpha 

 

and from Aleklett et al (1988)  θs
o and θα

ο are the critical angles for shower particles 

and alphas respectively; while ZF,Z>2  is the charge of projectile fragments with  Z > 2.  
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It is apparent that there is an excellent agreement between all values, except for  < θs 

o>  

in the relativistic cone centered about the heavy secondaries.  Although the values for   

< θs 
o >   in  the peripheral regions is about the same ((14.0 ± 0.7 vs 14.5 ± 0.25) the 

value for ‘All Events’ is thrown off by the numerical discordance in the central region.  

This difference could be due to the possibility of our stack having a lower sensitivity so 

that some relativistic particles might have been lost at smaller angles.   

 
We can’t know for sure, since the original plates used by Aleklett et al are not available 

for comparison.  Since everything else is essentially identical, we compensated for this 

possibility in one of the simulations by twinning all charge one particles with angles less 

than 12 degrees.  These results are presented in the simulation results chapters, where it 

will be shown that this does not influence our results at all.  

 
The otherwise near-identicallity of the mean characteristics of the scanned events in the 

two populations (Aleklett et al’s and Lerman et al) has a critical implication. It means that 

the databases of our Monte-Carlo simulations are sufficiently comparable that any 

differences in simulation results will most likely be due to computational approaches and 

variables and not to the details of the scanning per se.  This important point will be dealt 

with in Chapters 7 and 8 when discussing (computational) errors.  It will be shown that 

the computational results and the resulting physical interpretation of Aleklett et al was 

likely due to a computational fluctuation due to having too small an initial database. 
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V   The Argon–Copper Calorimetry Experiments 

 
5.1 Experimental Setup∗ 

 
The basics of these experiments are deceptively simple: two concentric copper disks are 

irradiated by a relativistic 40Ar beam at varying distances apart.  The natural copper disks 

are 1 cm thick cylindrical cross-sections with a 4 cm radius.  The downstream disk was 

surrounded in turn by a “guard ring”, a 7 cm torus with a 4 cm doughnut hole for the 

target disk.  The setup is shown in side-view below.   

 
 

Figure 5.1  Experimental Setup for Copper Calorimetry Experiments 
 

 

                                                 
∗ Aleklett et al (1988a) 
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Separate experiments were performed at LBL’s Bevalac for 3 different separations 

(0,10,20 cm) of the two target disks. A well-focused beam of ~1012   argon ions passed 

through each disk during the 2-4 hour exposures.  The beam was nominally focused to a 

diameter of 1 cm, and post-exposure autoradiography of the targets showed 99% of 

beam-transmuted nuclides to lie within a 2 cm radius.  Following exposure, short-lived 

isotopes were allowed to decay for 12-24 hours after which the samples were measured 

by off-line γ-ray spectroscopy using Ge(Li) detectors with a resolution of 1.8 kev.  

Counting continued for several months.   

 
To decrease systematic errors the results were averaged from three independent 

experiments performed at LBL and with the off-line measurements being performed at 

three separate institutions (LBL, Marburg, Purdue).  Calibrations, counting efficiencies, 

and corrections for potential geometric inhomogeneities of both beam exposures and 

target geometries were measured through the use of ersatz aluminum targets undergoing 

the reaction 27Al(n,α)24Na.  Potential errors were found to be 2 ±1 %. 

 
With a 15.02 hour t1/2 and an easily identifiable 1368.5 kev γ-ray peak 24Na was 

particularly easy to measure.  But of all the nuclides measured, 24Na was critical for far 

more than its calibration abilities.  As seen in Figure 5.2 below, its production cross-

section has a step-function-like dependence on energy.  In particular, production of 24Na 

below 1 Gev per nucleon is minimal.  And by 2 A Gev the production is essentially 

asymptotic.  

 
24Na-production thus acts as a threshold counter for relativistic phenomena.  

Only projectile fragments will be able to produce 24Na from interactions with the Cu 

target nuclei. This is the first of two particularly elegant aspects of the experimental 

design.  In essence then  24Na-production provides an unusual and extremely useful form  

of calorimetery, where the total amount of 24Na produced in a target segment is a direct 

function of the cumulative (target) interactions with relativistic (projectile) primaries and 

secondaries.  
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Figure 5.2  24Na Production Cross-Section in Copper∗ 
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∗ Production cross-section values are courtesy of Professor Dr.’s Brandt and Friedlander; 
and were compiled by them from experimental work that included:  Cumming (1974,1976,1978), 
Cole and Porile (1981,1982), Lund (1981), Hudis (1962,1968), Rudstam (1962), Barr (1957), and 
Friedlander (1954). 
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As an additional touch of experimental elegance the authors utilized not just the absolute 

activity of the isotopes under investigation, but the activity ratio Rd:  the ratio of the 

activity of the downstream disk (at a distance d) to the activity of the front disk.  This was 

done in order to finesse as much as possible systematic and experimental uncertainties:  

for each pair of disks shared identical histories, they were exposed to the same beam for 

the same amount of time, and they were measured in the same Ge(Li)’s.  To quote the 

authors of the experiment1:  

 
 “…this activity ratio for a specific nuclide can be determined to a high 

degree of precision.  All uncertainties due to particle fluxes, counting 

efficiencies, uncertainties in the decay scheme for a specific radioactive 

nuclide, etc. cancel out in the activity ratios R.  Essentially, the only 

experimental uncertainty in this ratio comes from counting statistics.  As the 

number of counts is typically >104 our activity ratio R can be determined 

within ±1%.  Such a precision is comparable only to that of large counter 

experiments or of high statistics bubble chamber experiments…” 

 

It’s worthwhile noting that 15 years earlier a similar use of experimental ratios to 

decrease systematic errors was fundamental to the demonstration of the existence of 

neutral currents2, allowing experimenters the necessary luxury of ignoring the absolute 

flux (sic!) of neutrinos involved. 

 
The activity ratio R in the Copper Calorimetry Experiments offered a similar benefit, but 

also an additional one… that by itself justified the entire experimental effort:  any “new” 

physics that might be found in the secondaries will manifest itself in Rd.     Indeed 

this will be seen to be the case!  The underlying logic is easily seen by referring to the 

diagram below (Figure 5.3). 

 
 

                                                 
1 Aleklett et al. (1988a) 
2 Galison (1987), p. 190 
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Figure 5.3  Metalogical Setup of Copper Calorimetry Experiments 

 
 

 
 

Possible interactions fall into three classes: 

 
< 1-1 >    A primary interacts in Segment 1 (the front)  

and produces a secondary which also interacts in Segment 1. 

 
< 2-2 >  A primary interacts in Segment 2 (the rear)  

and produces a secondary which also interacts in Segment 2. 

 

< 1 – 2 >    A primary interacts in Segment 1 (the front)  

and produces a secondary which interacts in Segment 2. 
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It is obvious that in the first two classes, <1-1> and <2-2>, the basic nuclear processes 

involved are identical.  Since the primary beam is exponentially absorbed in each 

segment the amount of identical processes in Segment 2 should be reduced only in 

proportion to the amount of primary beam absorbed in Segment 1.  Hence the ratio of 

activities in these two segments should follow this decrease, being one minus the amount 

of the primary beam exponentially absorbed in Segment 1 on the way to Segment 2. 

 
For these first two classes any anomalous or unexpected secondary behavior will simply 

scale with the numbers of primary interactions.  This is the one disadvantage 

of the use of activity ratios to finesse the uncertainty of values and the ignorance of 

processes:  any activity due to unusual secondary behavior will be lost in the ratio if the 

3rd class of secondary interactions <1-2> is too small. 

 
Indeed (as will become evident) it’s the third class of interactions <1-2>  that will make 

apparent any difference in the secondaries’ behavior that is manifested in the absolute 

activity.   For this third class breaks the symmetry in an unscalable way.   For example, 

in class  <1-2>  any unusual secondary phenomena which might enhance absolute 

activity will enhance Segment 2’s activity due to the increased number of secondaries 

born in Segment 1 that then interact in Segment 2.   Thus relative to the otherwise 

expected values, there will be an enhancement of the activity ratio  

  

R =
ActivitySegment2

ActivitySegment1

                                                   (5.1) 

 
If one knows or can simulate the expected number and effect of such “normally” 

behaving secondaries (born in 1, interacting in 2) then any greater activity in  

Segment 2 (i.e. an enhanced R) must be due to other processes that somehow 

 enhance the production of whatever one is measuring. 

 
Hence the need to create truly accurate simulations!  
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Indeed, the use of carefully crafted Monte Carlo simulations to accurately establish the 

denominator of the ratio  
Observed Events

Events Expected by Conventional Assumptions
                              (5.2) 

is fundamental to contemporary high-energy physics.  This is especially so when dealing 

with low-probability or low-incidence phenomena in complex detector scenarios.  

The existence of neutral-currents was established in 1973 using this phenomenological 

approach; and in the past year it was used to demonstrate the reality of tau-neutrinos in 

emulsion.    

 

 
 

5.2   The Copper Calorimetry Experiments:  Results  
 

The table and graph below summarize the results of the LBL experiments [Aleklett, 1987 

and 1988].  The experimental set-up was the two-segment cylindrical target discussed 

above with the two segments at various distances Rd from each other.  Extraordinary 

experimental care was taken:  the experiments for R0 were independently performed three 

times, and those for R20 performed twice.   The results of each experiment were then 

averaged yielding total experimental errors at the 2±1 percent level.  These averaged 

results are presented below in Table 5.1 and Figure 5.4.  Other experiments of this type 

were subsequently performed, the most reliable results listed below in Table 5.2.  

Experimental errors for these other, confirming experiments, are also stated to be 1-2%.   

 
Haase (1990), using the Bevatron’s 1.8 A GeV 40Ar beam, performed an identically 

designed experiment against a cylindrical target of 20 such segments.  Chapter 10 is 

devoted to a discussion of Haase’s experimental results, for they seem critical to our 

understanding of the actual physics involved. 
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Table 5.1  Experimental Values of R0  (LBL 1987) 

 

 
0.9 A GeV  

 40 Ar 

1.8 A GeV   
40 Ar 

R0 1.167 ± 0.011 1.501 ± 0.008 

Rring,0 < 0.01 < 0.01 

R10 1.118 ± 0.020 1.373 ± 0.034 

R20 1.102 ± 0.026 1.251 ± 0.020 

Rring,20 0.039 ± 0.002 0.071 ± 0.005 

 
  
 

Figure 5.4   Experimental Values of R0  (LBL, 1987) 
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Table 5.2 

 R0  for the Copper Block Calorimetry Experiments 

 

Primary (Z) Energy (A GeV) R0 Errors Lab Reference 

            

1 0.6 0.91 0.03 SIN      Heck (1992)1 

1 1.3 0.99 0.03 JINR      Heck (1992) 1 

1 2.6 0.96 0.02 Saclay      Heck (1992) 1 

1 4.5 0.98 0.05 JINR      Heck (1992) 1 

1 24 1.1 0.02 CERN      Dersch (1986)1

2 1 0.92 0.01 Saclay      Pille (1990) 2 

2 12 1.21 0.02 CERN      Dersch (1986) 2

6 2.1 1.13 0.02 LBL      Dersch (1986) 2

6 3.6 1.24 0.02 JINR      Heck (1992) 2 

18 0.9 1.17 0.02 LBL      Dersch (1986) 3

18 1.8 1.42 0.05 LBL      Haase (1990) 

18 1.8 1.5 0.02 LBL      Dersch (1986) 3

 

 

In Figures 5.6(a,b) below these experimental R0 values are displayed in successively 

expanded views.   

 
 

                                                 
1 also Brandt et al  (1993) 
2 also Brandt et al  (1992b) 
3 also Aleklett et al  (1988) 
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Figure 5.6a     

R0  for the Copper Block Calorimetry Experiments 
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Figure 5.6b 

R0  for the Copper Block Calorimetry Experiments 
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The key point is readily apparent:   

 
A 1.8 A GeV 40Ar projectile directed at a target of Cu (naturally occurring isotopes) has 

an experimentally determined ratio R0  ~ 1.5.   

 
This value of ~1.5 is  ~ 50% greater than the nominal value of R0 ~ 0.96 for a single 

nucleon (proton) at the equivalent energy.  This 50% differential is also much larger 

than the error bars of a few percent associated with the copper experiments, the 

emulsion experiment described above, and the computer simulations described next.   
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VI    The Simulations 
 

RHIP is an experimentally based Monte Carlo analysis of relativistic heavy ion transport 

that embodies an important simplicity of approach.  To finesse as much as possible 

assumptions and models, we worked backwards from measurements.  The multiplicity 

and angular distribution of secondaries is drawn from the just described experimental 

database.  They are NOT in any first-order sense model-dependent, though baryon 

conservation and azimuthal isotropy is assumed.  The only other major experimental 

finding used is the standard experimentally derived exponential distribution of mean free 

path e- (d/λ).  This relative lack of model dependency seems logically essential to any 

(Monte Carlo) simulation aspiring to provide insight into the physical systems tested;  

or to be a straightforward and valid test of the assumptions made and the variables used.   

 
BFHLis the specific application of RHIP to simulate a relativistic Ar-Cu interaction, 

designed explicitly to understand the results of the suite of Copper Calorimetry  

Experiments were performed initially at LBL, and subsequently at CERN, Dubna,  

and Saclay.  These experiments and their results are discussed in  Chapter 5. 

 
The basic target geometry of BFHL is a set of N cylindrical segments co-linearly 

arranged.  The radii of the segments need not all be the same throughout.  This 

generalization of geometry allows for both the inclusion of “guard-rings” about  

otherwise uniform target segments (see figure 5-1) as well as being readily  

expandable to simulate other azimuthally symmetrical targets.  

 
Beyond the ability to change a large number of input variables (discussed below) a 

number of variations of BFHL exist.  These include two different ways to incorporate 

baryon conservation, as well as a number of different computational approaches which 

taken together supports a far better calibration of the  computational accuracy of the 

whole.  Nor need the interaction variables such as mean free path or production cross-

section be homogeneous.  The program is written such that the effect of variable 

subpopulations is allowed. 
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6.1   Versions of BFHL 

 
 
 Baryon Conservation 

1) Missing Mass : A mass balance of baryons is calculated for all stars  

2) Twinning:  All Z=1 particles are given neutron “twins” 

 

Database Variation 

      1)  The order of stars in the database is varied.   

(For small numbers of runs this can make a considerable difference.) 

 

Simulation Variations (for Computational Convergence and Quality Control) 

1) Only subsets of the random numbers of a given generator are selected 

2) Percentages of subpopulations are generated both by statistical distributions and 

by ‘deterministic’ counters.   

 

Two Disk and Full Cylinder Geometries 

Much of the basic physics is best illuminated in the two disk configurations 

discussed below.  But the full cylinder version is also useful, for it is in essence  

a multi-stage amplifier.  Similar to such an amplifier, the increased gain of the 

cylinder model reveals clearly the essence of what seems a shy and subtle 

phenomena in the two disk configuration. 

 

Visualizations 

A number of visualization programs have been written in order to visually follow 

the physics  

 

 

 

The physical logic common to all versions of BFHL follows: 
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6.2   A Basic Outline of BFHL’s Physical Logic 

 
 

Beam-Target 

 

1) Take a circle of radius R cm 

2) Assume the primary beam has a Gaussian Distribution in X-Y with dispersion σbeam 

3) Take a random point (X0,Y0) for a beam particle to intersect the face of the target 

Case I:    Ideal Beam and Target Orientation (Perpendicular) 

Case II:   Beam is at a non-90º angle to Target 

 
 

Primary Argon-Cu Interaction 

 
4) Mean Free Path (mfp) 

a)  Known mean free path for Argon primaries (Z=18) in Cu 

b)  Following an exponential distribution of e- (d/λ) 

5) Check if the resulting distance is within bounds of target…..if so, then have a star 

6) If not, let it go and pick another from the exponential distribution e- (d/λ) 

 
 

Stars and Secondary Interactions 

 
7) Stars 

a) Take the first interaction from the database  

b) Then follow each secondary with an  e- (d/λ)   interaction 

c) If within the target boundaries then take that interaction in turn from the database 

 

The simulation follows every track from every star 

 

8) When ALL the tracks are outside, go on to the next interaction from the database.   

 

 



 6-4

The basic mathematics of this physical logic are standard and outlined below. 

 

1)  Beam Distribution:  Given X0, Y0, σ  there exists a distribution across the face of the 

target for beam particles to ‘hit’.  The distribution is a product of two independent 

Gaussian distributions in X and Y whose product is: 

 

D(x, y) = 1
2πσ2 e

−x2

2σ 2
 

 
 

 

 
 
e

−y2

2σ 2
 

 
 

 

 
 
dxdy                             (6.1) 

 

where x 2 + y 2 = r 2  and the Jacobian is dxdy = rdrdθ .   Hence 

 

D(x, y) = D(r) = 1
2πσ2 e

−r2

2σ 2
 

 
 

 

 
 
rdrdθ                                          (6.2) 

 

Integrating over the azimuth  dθ
0

2π

∫ = 2π  so 

D(r) = 1
σ 2 e

−r2

2σ 2
 

 
 

 

 
 
rdr                                                     (6.3) 

 

Letting                                                 Q = r2

2σ 2                                                             (6.4)   

 

one gets dQ =
rdr
σ 2   yielding an exponential distribution from  (6.3) 

D = e−QdQ                                                     (6.4) 
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All one needs to do here is to extract an exponentially distributed quantity like  

 

Q = − ln(rnd(u))                                              (6.5) 

 

So                        

r = 2σ 2 Q = 2σ − ln(rnd(u))                                     (6.6) 

 

and given r , one gets X = rsinθ  and Y = rcosθ  

 

 

2)  Generalization to a Cylinder:  In order to simplify the application of the code to a 

cylinder of many sectors all primaries are assumed to be created in an interaction at Z= (0 

– δ) in front of the face of the target.  Sector 1, the first copper block, is then considered 

to be the ‘next’ sector that these newly created Argon primaries are entering. 

 

 

3) Mean Free Path:  The integral distribution of path lengths is 

 

F(x) = e
− x

λ
0

x∫ dx
λ

= e
− x

λ                                                 (6.7) 

 

So x = −ln F(x) .   In our case setting F(x) = rnd(u)   

 

x = −ln rnd(u)                                                             (6.8) 

 

and rnd(u) will be defined later (section 7.5.1) 
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6.3   Classes of Variables Found in All Versions of BFHL 

 
Overall Target Geometries 

1) Radius and height of cylindrical sectors 

2) Full cylinder made up of sequential cylindrical sectors 

3) Two cylindrical sectors, touching (Figure 6-1 below) 

4) Two cylindrical sectors, apart   

 
Beam Variables 

1) Number of particles in a pulse 

2) Number of pulses in a ‘run’ 

3) Central coordinates of the beam’s interaction with the face of the target  

4) The dispersion of the Gaussian beam distribution (see Appendix B, Fig. B2-f,e)  

5) Polar and azimuthal angles of beam’s interaction with target face 

 
Kinematic Variables 

     The total energy Ep and the transverse momentum Pt of shower particles  

 
Interaction Variables 

1) Mean Free Path (absolute values or fitting parameters) 

2) Fragmentation (limited control) 

3) Production Cross-section 

 
Computational Variables 

    Random number generating functions, modulos, seeds, and subsets 

 
Baryon Conservation 

1) Twinned protons (i.e. twinning the shower particles found in each star) 
2) Missing Mass (mass balancing to the atomic number A of each local primary)   

 
Subpopulations 

      1)      Λ, Ep , σp ,  fragmentation, and other variables  of the nucleus 

      2)        Percentage of subpopulation 
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The programming details of BFHL are presented in Appendix B, including: 
 

1. Figures of simulated beam trajectories (example below) 
 

2. Flowcharts of BFHL 
 

3. Variable List 
 

4. Subroutine List 
 

5. Matrices List 
 
 
 

Figure 6.1      Simulations of Argon Beam on Copper Disks (close-configuration) 
Beam Profile Variance σbeam = 2.0 
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VII    Initial Applications of the Simulation Program BFHL 

(Ar-Cu Calorimetry Experiments) 
 

The simulation program BFHL as outlined in Chapter 6 can be applied to a large number of 

specific situations.  Application to 24Na production in a copper target requires an explicit 

formulation of the partial cross-sections for 24Na production. 

 

7.1   24Na Production Cross-section 

 

At the threshold of relativistic energies the production cross-section of 24Na in copper 

behaves like a step-function: 

 

Table 7.1     24Na Production Cross-sections in Copper∗ 
 

Primary Energy (GeV) σ (mb) σ-errors (mb) 
        

40 Ar 80 15 2 
12C 18.5 9.7 1 
12C 1 4 0.5 
12C 0.42 1.5 0.1 
12C 0.3 1.1 0.1 
1H 400 3.83 0.21 
1H 30 3.5 0.25 
1H 3 3 0.21 
1H 1.5 2 0.2 
1H 1 1 0.2 
1H 0.8 0.6 0.1 
1H 0.6 0.1 0.02 
1H 0.5 0.05 0.01 
1H 0.35 0.025 0.005 

 

 

                                                 
∗ Production cross-section values are courtesy of Professor Dr.’s Brandt and Friedlander; 
and were compiled by them from the experimental work of Cumming, Cole, Porile, Lund, Hudis, 
Rudstum, Barr, and G. Friedlander (references with Figure 5.2). 
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Figure 7.1a    24Na Production Cross-section in Cu 
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Hence only projectile fragments will be able to produce 24Na from interactions with the Cu 

target nuclei.  Quite usefully this makes the process of 24Na-production a form of 

calorimetery, where the total amount of 24Na produced in a target segment is a direct 

function of the cumulative target interactions with relativistic (projectile) primaries and 

secondaries.  But the experimental 24Na-production cross-sections available for copper as 

seen in Table 7.1 is comparatively sparse.  Reassurance that the 24Na production cross-

section in Cu behaves in the same step-function-like manner pictured is seen in the following 

two graphs.   
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Relativistic protons on Ag yields a near-identical curve to that for protons on Cu  

(as seen in Figure 7.1a).  

 
 

 Figure 7.1b    24Na Production Cross-section  
 [ p + Ag  24Na ] 

 

 
                                                                                   (Scott 1983) 

 

 

This near-identicality of production cross-section for protons in both Cu and Ag also offers 

critical support for the utilization of the emulsion-measured database as the core of the 

Monte Carlo simulation in copper.    
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Another legitimate concern is the solitary data point for 24Na production from a relativisitic 

Ar beam on Cu.  That a congruent geometry to those of protons and carbon beams is the 

correct one for argon on copper is supported by the much more extensive studies done on 

gold; coupled to the experimental demonstrations that factorization and limiting 

fragmentation seem to hold in these regimes1.   

 

 
Figure 7.1c    24Na Production Cross-section for Au 

 

 
(Aleklett et al 1983) 

                                                 
1 See for example Heckman et al (1978) for work at 2.1 A Gev in emulsion and references therein for 
other Bevatron experiments showing that fragmentation is independent of the target nucleus. 
Also see  Chapter 1 for a much more extensive discussion of both limiting fragmentation and 
factorization. 
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Following Aleklett et al (1987), the data in Table 7-1 has been interpolated through the 

following parameterizations to create the following partial cross-sections (σP and σF) for the 

production of 24Na in a native copper target: 

 

 
1)  For protons and pions with Ek ≤ 3 GeV: 

σ p(Ek ) = e−0.17 + 2.5u −1.22u2
                               (7.1) 

where  u = ln(Ek)  and pions are assumed to behave identically to protons.   

 
 
2)  For protons and pions with Ek  ≥ 3 GeV 

σ p(Ek ) = 2.88Ek
0.0496                                              (7.2) 

 

3)  But for projectile fragments of Z≥ 2 (i.e. A≥ 4), the cross-section σF (A)  

is assumed to be energy independent, and an interpolation between the above data 

yields:   

 

σF (A) ≅ 3.6A0.387                                                       (7.3) 
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7.2   Baryon Conservation 

Neutrons, being neutral, are unseen by emulsions.  But baryon number must be conserved in 

any interaction. Two independent approaches were taken to satisfy this requirement. 

 
1) Twinning:  Each of the observed charge one particles, whether relativistic fragments or 

participants, is doubled.  This is done by assigning to a neutral particle the same polar 

angle as the observed Z=1 particle, but with a randomly assigned azimuthal angle.   This 

follows from observations made by Karol and others that projectile fragments frequently 

are produced with accompanying light secondaries, such as neutrons.  At relativistic 

energies these shadowing secondaries would follow very close trajectories to the 

charged projectile fragment it was born with. 

 
 
2) Missing Mass: A mass balance is done between the incoming and outgoing observable 

tracks, with neutral particles equivalent to charge one (i.e. neutrons) being added to 

balance any missing mass.  When calculating the difference between the ‘known’ mass 

number of the local primary and the sum of the mass numbers of the observed local 

secondaries, the most common isotope for a given Z is assumed. 

 
In so doing, additional geometric constraints are imposed in order to differentiate 

between relativistic fragments and any participating protons or neutrons.  Separate 

distributions of polar angle were created for Z=1 relativistic fragments and participants.  

The polar angle for an added particle is taken at random from the angular distribution of 

protons in the respective interval {0-12} degrees or {12-45} degrees, while the azimuth 

is taken at random from a uniform distribution between  

{0 – 360} degrees.   

 
Of the missing mass added, 90% was added to the interval {0-12} degrees (relativistic 

fragments); while 10% of any missing mass was added to the interval {12-45} degrees 

(participants).  If the 10% is a ‘fraction of charge’, then one particle is added anyway as 

a participating particle.   
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Hence the Missing Mass approach will tend to overestimate the production of shower 

particles and for small numbers of events tends to fluctuate a little more than does Twinning.  

But the two approaches, Missing Mass and Twinning, rapidly converge  

as seen in the two figures that follow.  

 
 
 

Figure 7.2   Comparative Approaches to Baryon Conservation (R0) 
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Figure 7.3   Comparative Approaches to Baryon Conservation (R20) 
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One sees throughout these studies that computational convergence begins to occur ~ 10K 

interactions.  This is not surprising, since it is about ten times the order of magnitude of   the 

number of stars in the database, allowing a proper mixing of the virtual probabilities. 
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7.3   Shower Particles 

 

But the fact that two very different approaches to baryon conservation share this same rate of 

convergence hints that the shower particles play a less important role in whatever is going on 

experimentally.  That this is likely the case is seen in the relative insensitivity of R0 to the 

energy of the shower particles.  A set of typical simulations is shown here using the twinning 

approach of baryon conservation along what will become one of our standard sets of 

geometric parameters  

 
X0 = Y0= σ = θ = φ = 0.0001                                      (7.4) 

 
 From section 6.4 these variables are: 

X0  =  X coordinate of the beam center at the face of the target  

Y0  =  Y coordinate of the beam center at the face of the target 

σ  = Standard deviation of beam distribution at the face of the target 

θ = polar (theta) angle of beam as a whole 

φ = azimuthal (phi) angle of beam as a whole 

 

X0 , Y0 , and σ  are all in cm, while θ and φ are in degrees.  
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As seen below, the higher energy shower particles seem to contribute only a 5% difference in 

the value of R0. 

  
 

Figure 7.4    Effects of Ep of Shower Particles on  R0 
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To  further test the suggestion that high-transverse momentum particles of higher energy 

might possibly explain the results (Aleklett et al. 1987), along with Tolstov’s subsequent 

attempts to explain the results using the same basic idea (Tolstov 1987, 1989), all runs 

in Fig. 7-5 below have the total energy of the shower particles set to the maximum   

Ep = 1.8 GeV.  
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Figure 7.5    Maximum Effects of Shower Particles’ Ep on  R0 
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It seems, however, to make little difference.  The explanation for the experimentally 

observed values would seem to lie elsewhere than high-PT.  Indeed, at a more physically 

reasonable value of 140 MeV for the shower particles of these relativistic heavy ion 

collisions, R0 ~ 0.96.   

 
It may be important that this is the same R0 value observed experimentally for proton 

primaries.  This offers an early hint that the assumptions and interpretations of these heavy 

ion collisions as bags of independently interacting nucleons is not sufficient.   It also hints 

that the simple linear-log fit and scaling of cross-sections seemingly valid for primary 

interactions (Fig 7.1a,b,c,) may be incomplete when dealing with the interactions of 

secondaries. 
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Nonetheless, in order to fully test the high-Pt hypothesis, all simulations in the 

TRANSPORT section immediately following have a total energy of 1.8 GeV assigned  

to shower particles.  For it is at least a priori conceivable that some combination of high PT  

coupled to a pathological beam geometry could somehow increase the value of R0. 

 
This point will be explored more fully later, especially when performing ‘mass 

spectroscopy’ on the secondaries’ transport in a multi-sector cylinder; for one can 

legitimately look at the cylinder configuration as a multi-stage amplifier for R0  

phenomena.  The cylinder as multi-stage amplifier will be shown to be particularly useful  

in differentiating between physical models which might by chance ‘fit’ a two-sector 

cylinder but fail miserably a multi-sector one.  This will be addressed in Chapter 10. 

 

 

 
 

7.4   The Transport Variables: R  0 vs  Beam Characteristics 

 

Taking into account all the above, the following computational results∗ are of exposures  

of a million interacting particles, a twinning approximation to baryon conservation, and 

Ep = 1.8 GeV.  Unless they are the variables under consideration on a given run our standard 

set of geometric settings will be used  (X0 = Y0= σ = θ = φ = 0.0001). 

 

In order to better determine computational errors, these million particles are delivered in ten 

pulses of 100,000 each.   But since the formally computed errors are so very small, they are 

often not shown on the plots below, but are instead included in the size of the data-marker 

chosen.  

                                                 
∗ All computations also have the computational variable RNDP=3, this variable being defined in 
section 7.5.1 (The Role of Random Number Generators). 
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7.4.1   R  0, R  20  vs. Beam Angles 

  
 

As would be expected there is no variation of R0 with azimuthal orientation. 
 

 
Figure 7.6     Azimuthal Dependence of R0   and  R20 

 

 
 

 

But as seen in Figure 7.7 there is the strong theta dependence at the critical angles  

dictated by the geometry of the target configurations (a sharp 12 degrees for R20  

and ~60 degrees for R0 ).  This will be especially relevant when discussing shower particle 

models in Chapter 11.  
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Figure 7.7a     R0  and  R20 Dependence on Angle of Beam to Target (theta) 

 
 

 
Figure 7.7b      R0  and  R20 Dependence on Angle of Beam to Target (theta) 
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7.4.2   R0, R20  vs. Beam Geometry (Xo, Yo, σ) 

 
Variations of the beam centers and dispersion are presented in this section. The choice of 

parameters, solo and in combinations, spans the phase space of beam-target geometric 

possibilities.  Besides being important R0 studies, these runs are representative of the 

exhaustive array of checks that have been performed on the geometry of the simulation.  

(A choice of  σ = .0001, as below, is especially revealing of the Euclidean geometry.)  

 

 
Figure 7.8    R0  and R20  Dependence on Center of Beam Displacement (Y0) 
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Figure 7.9    R0  and R20  Dependence on Center of Beam Displacement (X0) 
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Figure 7.10     R0 Dependence on Displacement and Dispersion of Beam Center 
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Figure 7.11a     R0  Dependence on Dispersion and Polar Angle of Beam  

              (Beam Dispersion σbeam= 1,2,4) 
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Figure 7.11b     R0  Dependence on Dispersion and Polar Angle of Beam 

              (Beam Dispersion σbeam= 1,2,4) 
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The above results yield a two-fold consistency.  Using the standard geometric setting of a 

‘pencil beam’ they provide the necessary demonstration that the dynamic geometry of the 

simulation behaves as would be expected.  Physically, the results show that for all geometric 

variations:    

R0 ≤ 1        for Ep=1.8 GeV 

R0 ≤ 0.96    for Ep=140 MeV 
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7.5 Computational Errors   (Homogeneous Population & Transport Simulations) 

 
 
As seen in Section 7.2  beginning around 10,000 particles (that interact) there is a flattening 

of the convergence of computed values and by one million interactions a stabilization of 

computed values appears.  The errors resulting from a Monte Carlo simulation formally scale 

as N-1/2, but one must ask if the resulting extremely small errors truly reflect the accuracy of 

the simulations.  For a one million star simulation (ten pulses of 100K particles per pulse) the 

computed errors are as small as 10-4, or .01% for the computed values of R0.    

 
But as we’ll see below, across different simulations of the same parameter set, it seems more 

reasonable to set an upper limit on computational errors of ~1%.   

 

 

7.5.1  The Role of Random Number Generators 

 
An investigation of the effects of the random number generator itself is representative of the 

detailed quality control checks to which the code and its methodological approach have been 

subjected.  It also offers insight as to what may be the true computational errors involved, 

beyond Monte Carlo’s theoretical N-1/2 convergence.  The basic random number generator 

selected utilizes a classic large number modulo approach: 
 

function rndm() 
 
        integer*4 idum,m,ia,ic,iy 
        common/seedcom/idum 
          m=714025 
          ia=1366 
          ic=150899 
          rm=1.0/m 
 
          idum=mod((ia*idum+ic) , m) 
 
         iy=idum 
 
          rndm=iy*rm+1e-18 
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Selected subsets of the random numbers were used to better determine true computational 

error, where the selection occurred through the introduction of the computational variable 

RNPD (Random Number Phase Delay) ∗.  For each call of the random number generator… 

RNPD, an integer, spins the random number generator RNPD times before picking a random 

number to use.  (If RNPD = 87 then 87 random numbers are generated before one is chosen 

for use.) 

 
The following chart summarizes the times necessary to compute an exposure of 105 particles 

for a narrow, orthogonal, and central beam distribution (all geometric variables are set equal 

to .0001).  As would be expected, the computational time for an entire calculation increased 

linearly, albeit slowly, with increasing RNPD. 

 

Figure 7.12     Computational Time vs. “Random Number Phase Delay” 
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∗ In keeping with the casino-inspiration for the Monte Carlo technique itself, we shall also 
call this variable the ‘Delayed Spin’ or DS. 
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There is a 20% increase in computational time over the RNPD sequence [1 – 100 ].   

If the choice of RNPD does not influence the end result, a smaller one is desirable.   

And the computational result does appear robust with respect to the choice of RNPD. 

 

 
Figure 7.13     R0  and R20 for Different Random Number Subsets 
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All but five values of R0 lie within ~.02 of each other at values of (.99- 1.00).  The five 

exceptions are listed in Table 7.2 below. 
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Table 7.2     Exceptional Cases of R0 and R20 

 
RNPD 

(Phase Delay) 

Ro Error (Ro) R-20 Error (R-20) 

     

10 0.8722 0 0.8343 0.0001 

23 0.8836 0.0001 0.8523 0.0001 

49 1.0949 0.0001 1.0625 0.0001 

63 1.0448 0 1.0169 0.0001 

88 0.9163 0.0001 0.8686 0 

 

 
The magnitude of their difference is the same as that of the fluctuations seen above for small 

computational samples of perhaps a few hundred events.  Because random number 

generators are actually pseudo-random number generators there are, more frequently than is 

commonly imagined, subsets generated which do not adequately span the space being 

investigated.  Or as von Neumann, the father of modern Monte Carlo methods, has said, “ 

Anyone who considers arithmetical methods of producing random numbers is, of course, in a 

state of sin.” 

 
Hence one obvious possibility for these fluctuations is that they are computational artifacts 

due to such an incomplete sampling.  That this is likely to be the case is confirmed by 

changing the value of the modulo of the random number generator.  After such a change the 

computed values continue (for Ep = 1.8 GeV ) to lie in the range R0 = [.99-1.00].   

 
Additionally, a completely different random number generator was used, the RAN function 

built into the fortran used  (LS Fortran).  This too showed the computed values of R0 to be in 

the range .99 – 1.00, and with a variation of ±0.005. Furthermore, selected sub-sample runs 

were performed on three different machines, with similar results.  Finally, the next section on 

database variations offers additional substantiation that the true source of the 10% 

differences for the 5 cases above (and others of their set) are computational fluctuations.  All 

of this continues to suggest that the true computational error for the transport 

variables is ≤ 1%. 
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7.5.2   Database Variations 

 
Implicit in our approach is the belief that a novel physical observation or effect exists in 

reality only if the experimental phenomenology differs in a statistically non-trivial way from 

all possible (i.e. likely) variations of the theoretical assumptions of normalcy.  This 

normalcy, including fluctuations of both background and computation, is of course 

established through extensive Monte-Carlo simulation.  Just discussed is the variation of the 

random numbers themselves chosen as the guiding footsteps in this computational 

exploration of phase space.   

 
In our particular patois of experiment and simulation, it would seem then that the order 

 of stars from the database chosen by these computational roulette wheels might conceivably 

make a difference in the computational end results.  Indeed, for only a small number of 

computational steps chosen, such a difference in star sequence is likely to have a large effect.  

For in such a case it would only be exploring a limited sub-region, not necessarily different 

from the whole of its phase space.   But if for a large number of stars there is a convergence 

of the final values, then indeed this particular variable can be safely ignored.  

 
To test these hypotheses the database used in the above studies was randomly varied so that 

with the same random number Delayed Spin all stars chosen in sequence would be different1.  

This newly randomized database is referred to as “Database 1”.  A test of these two different 

databases shows exactly what was surmised:  for small samples of stars there are extremely 

large fluctuations of R0 which only begin to converge for samples of stars greater than 100. 

                                                 
1 Maimon's version of Brouwer’s Fixed Point Theorem might have something to say about the basic 
existence of at least one common ordinal point in the newly chosen sequence if it is very large, but 
such matters do not affect the statistical safety of our randomizing approach. 
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Figure 7.14     R0  for Different Databases 
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A closer look at the interval [10,100] for the number of stars in the database shows: 

 

Figure 7.15     R0  for Small Numbers of Stars in Different Databases 
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This limit of 100 stars only beyond which convergence occurs may play an important role in 

why the initial paper (Aleklett et al 1987) found a fit to their experimental data by 

subpopulations of classical emulsion-defined “anomalons” (secondaries with considerably 

increased total geometric cross-sections).  Their database had only 50 stars for 0.9 GeV 40Ar  

while their 1.8 GeV  40Ar had 95 stars.   This will be addressed more fully in when 

considering subpopulations in Chapter 8; with final support for the computational fluctuation 

origin of Aleklett et al’s findings in section 8.2. 
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Before that however, additional evidence is presented for the existence and nature of the 

computational fluctuations discussed in the previous section.  Recall that for DS=10, an  

R0 = 0.87 was found.  Indeed, this is the case for both databases under consideration.  

 

 
Figure 7.16     R0  for Different Databases (DS = 10) 
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Nonetheless, for DS=10 and limiting the beam to 10 particles/pulse (where one would expect 

to find the most fluctuations!) one finds R0  all over the proverbial map of phase space.  
 

Figure 7.17     R0  for Different Databases (DS = 10 and 10 particles/pulse) 
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And referring to Table 7.2  these fluctuations are exactly at the extrema of the 10% range 

around R0 = 1∗  that cover all five special cases of the DS!  

                                                 
∗ Recall that we are keeping Ep = 1.8 GeV to absolutely maximize any possible effects. 
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7.6  Variations on a Fragmented Theme 

 

The fragmentation pattern for the emulsion experiments, embodied in the Fragmentation 

Matrix, was presented in Table 4.8.  In all of the simulations described above the 

fragmentation patterns measured in the Ag and Br of the emulsion were then applied to Cu.  

This assignment of fragmentation patterns from emulsion to Cu may not be completely 

correct.  To better account for both of these concerns simulations were run in which the 

fragmentation patterns were considerably varied from that used in the above simulations.  

 
Instead, simulations were performed in which for a given run, displacements of the correct 

charge Zi were made in increments of (Zi + n), where n = 1 through 8.  For example, in a 

displacement of n = 3, if a charge 4 event should have been selected from the database, a 

charge 7 was picked instead.  For charges in which (Zi + n) ≥ 18 the charges picked were 

assigned to be Z=18 secondaries.  

 
Besides investigating whether alternative fragmentation patterns could in principle effect the 

value of R0, this set of simulations allows an elegant check on the computational error limits 

due to any mismeasurements of the secondary charges.  Although the measurement errors for 

smaller charges were ~1/2  charge unit; charge is assigned, for higher Z, relative to the charge 

measurements of the previous generation.  Hence it is possible in principle to have an error of 

as much as 2 charge units for a given 3rd generation charge measurement∗.   

 
Simulation results are first shown for our canonical setting of an orthogonal pencil-thin beam  

(X=Y=σ=θ=ψ=0.0001) which removes any dependence on the other variables.  Results are 

then shown for more ‘typical’ beams  (X=Y= 0.1; θ=ψ=0.0001) but with  

σ = {.1, 1, 2, 3}.  Results are shown for both Ep=1.8 GeV and Ep=140 MeV. 

 

 

                                                 
∗  The diagonal nature of the Fragmentation Matrix strongly suggests that this is not a real problem, 
but nonetheless this is a worthwhile additional check.  
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Figure 7.29   R0 vs. Fragmentation Displacement (Pencil-Beam) 
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Figure 7.30      R0 vs. Fragmentation Displacement 

(Centered Beam at Sequential Dispersions) 
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σ= 2.0 
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The variation is within R0-values of 0.02, roughly the same as the 1-2 % seen in the other 

computational errors.  To put this in more appropriate scale: 

 

 

Figure 7.31a     R0 vs. Fragmentation Displacement  (Ep=1.8 GeV) 
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And for Ep = 140 MeV it is commensurately smaller with R0 in the range [0.957 – 0.99].   

 

 

Figure 7.31b     R0 vs. Fragmentation Displacement  (Ep=140 MeV) 
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Putting this in proper scale and physical perspective: 

 

 

Figure 7.31c     R0 vs. Fragmentation Displacement  (Ep=140 MeV) 
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 Z-Displacement  

(variations on a variational theme)  

 

The above samples only one of the many possibilities of Z-displacement.  For contrast, another 

variation is presented.  It is similar to the one presented above, but is computationally different 

and has Z-displacements from [0 – 15].   At a Z-displacement = 0 we are starting with the 

database as measured and used.  As this displacement increases the charge families chosen in 

the simulations are displaced upward until Z=18 secondaries are the only ones being used.  As 

before, in order to amplify and hence overestimate any possible effects due to the 

fragmentation variations, Ep=1.8 GeV.   (Note that the computational error bars are smaller 

than the size of the symbols used.)  

 

Figure 7.32a     R0 vs. Fragmentation Displacement  (Ep=1.8 GeV) 
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Putting these changes of R0 in numerical perspective with the experimental values of  

 R0= 1.5 ± 0.02 :   

 

Figure 7.32b     R0 vs. Fragmentation Displacement  (Ep=1.8 GeV) 
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All the above establishes two limits to the computational error: one is derived from the 

maximal possible errors of charge measurement, and the other establishes the order of 

magnitude errors due to variations of the fragmentation pattern itself.  The latter is of 

potential concern for fragmentation patterns measured from the Ag and Br of emulsion and  

used in the simulation of a Cu target.  The asymptotic limit on the computational errors due 

to our versions of fragmentation variation is seen to be ~5%, while the computational error 

due to maximal charge measurement errors is 2-3% (for a Z-displacement = 6, which is 

much greater than could possibly be). 
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And we are still left with no reasonable explanation for the experimental values of R0. 

Neither pathological combinations of transport variables nor numerical fluctuations  

of our computational approach and database are able to go beyond a value of R0 ~ 1,  

and even that is for the extremely unphysical assumption of Ep = 1.8 GeV.   

 

Obviously we must look further.  
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VIII   Changes of Mean Free Path 

(Homogeneous and Subpopulations) 

 

 

8.1   Homogeneous Change of Mean Free Path 

 

As discussed in Chapter 4, the mean free path  λ can be parameterized from experimental 

measurements by 

λ = ΛΖ−b                                            (8.1) 

 
The following table lists the values of Λ and b used by ourselves and others1: 

 

Table 8.1     (Λ , b) Parameters used in Different Studies 

 
Study Λ (cm) b 

Lerman et al 32.4 0.44 

LBL-NRC 30.4 0.44 

Friedlander et al 32.2 ± 2.5 0.44 ± 0.03 

Judek 28.9 ± 2.5 0.43 ± 0.04 

Barber et al 25.1 ± 1.7 0.34 ± 0.03 

Baroni et al 23.3 ± 0.8 0.32 ± 0.01 

Karol 25.2 0.43 

Beri et al 24.1 ± 1.2 0.34 ± 0.03 

Jain et al 33.6 0.45 

Aggarwal et al 35 ± 1.8 0.42 ± 0.024 

 
                                                 
1 The figures from Judek, LBL-NRC, and Friedlander can be found in Friedlander (1983).  The 
others were collected from both the preprint and final volumes of the 5th  and 6th LBL- sponsored 
“High Energy Heavy Ion Study” workshops. 
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In the figure below the mean free path of primary argon is taken to be the conventional 

3.98 cm, but ALL SECONDARIES with Z ≥ 2 have their mean free path vary with the 

change in Λ  (λ = ΛΖ−b), an obviously unrealistic scenario.   For shower particles (Z=1) 

values of Ep   shown are 1.8 GeV, an obvious exaggeration and over-approximation to the 

more experimentally realistic 140 MeV. 

 

Figure 8.1     R0 vs. Λ  
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Only for a small region around Λ=3  is there a significant rise in R0, peaking at a value  

of  ~1.3.  The large drop-off below Λ=3 is easily understood.  For very small values of 

the mean free path, all secondaries interact in the cylinder in which they are created, 

hence there is no contribution in the second cylinder from secondaries created in the first.   

R0 decreases in this case, for the 24Na production in the second cylinder will solely 

be due to the exponentially decreased primary beam and its commensurately decreased 

secondaries.  In the experimental region listed in Table 8.1 (i.e. Λ =  23 − 33)  R0 is in the 

range [1.00- 1.05] for Ep = 1.8 GeV and R0 is [.95 – 1.00] for Ep = 140 MeV. 

 

 

8.2   Subpopulations of Secondaries (Computational Approach) 

 

The above discussion was based on program versions that dealt exclusively with 

homogenous populations of secondaries.  But in the initial papers on the Copper 

Calorimetry  Experiments (Aleklett et al 1987, 1988a,b) it was suggested that the 

experimental results could be explained by subpopulations of secondaries having either 

anomalously larger geometric cross-sections (mean free paths one or two orders of 

magnitude larger than primaries) or by having shower particles with considerably greater 

transverse momentum.   

 
Hence it was important to model the potential effects of such subpopulations, keeping in 

mind that Monte Carlo results can be sensitive to the computational approach chosen.  

Especially because relatively small subpopulations were being modeled several different 

computational approaches were designed in order to insure (as much as possible) the 

actual convergence of the approaches to physically meaningful results.  This approach 

also offered the opportunity to better evaluate the true computational errors inherent in  

our overall approach.   
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The computational variants included, as above, different sequences of the database.   

Also included were the two fundamentally different ways of (computationally) 

contributing subpopulations PERC and COUNT.   

 
PERC:  This approach is statistically analogous to how distance distributions are chosen 

in the rest of the program: a uniform distribution function is created from which the set 

percent P of subpopulation is chosen.  A number X is chosen from a uniform distribution 

[0,1].  If  X < P, then the star has the characteristics of the subpopulation.  If X> P, then it 

has the ‘conventional’ characteristics.  These programs are the PERC series (for percent). 

 
COUNT:  As a check to this first approach at simulating subpopulations, a simulation 

incorporating a simple counter was created: for a population with C percent 

subpopulation, it counts the number of particles in each “pulse” of the beam; and every 

C-times creates secondaries with the appropriate differing characteristics.  These are the 

COUNT programs.   

 
Each of the two statistical approaches was then applied to two different database 

sequences, resulting in four different subpopulation programs.  Hence the PERC  

program uses the original database, while PERC-1 uses the randomly re-ordered one.  So 

does the COUNT-1 program, while COUNT uses the original database∗.  

 
It must be noted that due to the nature of the counter approach, the stars are selected in an 

ordinal fashion from the database.  The statistical approach outlined above randomly 

picks stars each time.  Hence, as seen above, large fluctuations between the two would be 

expected for small samples of stars with a hoped for convergence occurring for large 

samples of stars (that are in essence statistically ‘well-mixed’).   

 
Initial convergence tests between the four program variants led to the results shown 

below: a large fluctuation for very small samples of particles, and an excellent 

convergence of R0 results by runs of {10 x 10,000}. 

 
                                                 
∗ In some of the graphs, the results of PERC routines are abbreviated by perc;  
while those of the COUNT routines are abbreviated cont. 
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Figure 8.2     Computational Convergence of Subpopulation Programs 
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Continuing the discussion on database-dependent fluctuations from the previous section, 

the very large fluctuations seen between 10 and 100 particles offers an extremely 

important insight into why the original experimental paper (Aleklett et al 1987) may have 

gotten the results they did.  The independence of the number of particles chosen is very 

much a function of the actual number of stars, tracks, and particles in the database from 

which one is doing the Monte-Carlo.   
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A large number of pulse particles chosen from a very small number of actual database 

particles is still a small number of particles, thus susceptible to all the potential 

fluctuations inherent in the Monte Carlo process.  And for small numbers of pulse 

particles in our particular case, the order of the star families is seen here to result in the 

largest fluctuations (between cont1 and cont for 10 particles and perc1 and perc for 100 

particles).   The original paper utilized between 50 and 100 stars in their Monte-Carlo 

database…just the region where the fluctuations can do the most damage to the real-

world accuracy of the simulation.  In our case, the database is composed of several 

thousand stars which as the tests clearly demonstrate are in the computationally safe 

region. 

  

 

8.3   Subpopulations of Secondaries with Differing Mean Free Paths 

 
Because of the mutual convergence of the four different versions of subpopulation 

programs we can arbitrarily choose one of them to explore the effects of subpopulations 

in Λ.   In order to best compare the results to the previous simulations the PERC version  

is chosen, for it is closest to the twin programs utilized above and operates on the original 

database is chosen.   In all cases we are taking a subpopulation of P% of the secondaries 

having a value of Λ1 , while the primaries and (1-P)% of the secondaries have a value of 

Λ=32.4.  For the initial conditions of ( X=Y= σ = θ = φ = 0.0001)  and the 

overestimating case of Ep = 1.8 GeV the following results are found: 
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As seen in Figure 8.3 for a 1% subpopulation, R0 is essentially .995; with an almost 

indistinguishable rise above 1.00 for the region Λ1 = 1- 10.    

 
 

Figure 8.3      R0 for a 1% Subpopulation of  Λ1 
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As seen in Figure 8.4, for a subpopulation of 10% this region of Λ1  has a more evident 

peak; but it still only rises to a value of R0 = 1.025 at the maximum for Λ1  = 3. 

 

 

            Figure 8.4      R0 for a 10% Subpopulation of  Λ1 

 

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

0.0001 0.001 0.01 0.1 1 10 100 1000 104

R
0
 vs.  Λ

1

Ro

R
o

Λ
1

  Subpopulation =10%

 
 



 8-9

 

Only for a subpopulation level of 90% is there a significant increase of R0, with a value 

of R0 = 1.29  at Λ1  = 3. 

 

 
Figure 8.5      R0 for a 90% Subpopulation of  Λ1 
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They are shown together on the same scale 

 
 

Figure 8.6      R0 for a Different Subpopulations of  Λ1 
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One of the reasons for going to such large values of Λ1 (up to 6000) was a check on the 

remote but conceivable possibility that rather than a small mean free path, the subpopulation 

had a very large one, and that the experimental values of R0 were the result of a statistical 

‘tail’ effect.  Obviously, this is not the case. 
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Examining Λ1 = 3 more closely for each of the four subpopulation programs  

{and at the initial conditions of ( X=Y= σ  = θ = φ = 0.0001) and Ep = 1.8 GeV }: 

 

Figure 8.7a     R0 for PERC Routines (Λ1 Subpopulation) 
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Figure 8.7b     R0 for PERC-1 Routines (Λ1 Subpopulation) 
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Figure 8.7c     R0 for COUNT Routines (Λ1 Subpopulation) 
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Figure 8.7d     R0 for COUNT-1 Routines (Λ1 Subpopulation) 
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This also allows a comparison between the different subpopulation programs:  

the statistically driven PERC routines vs. the COUNT routines that use counters.  

 

Figure 8.8     R0  for Different Λ1 Subpopulation Routines 
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An excellent convergence is seen within each type and an incremental difference  

(~ 0.03) between the two different types.  Choice of database order makes no difference 

within a given program category.  All in all it is a further demonstration of the 

consistency of the different approaches to modeling subpopulations.  

 

Taking a range of more realistic beam dispersions from  σ = 0.001 up to σ = 2 shows near 

identical results: 

 
Figure 8.9a      R0 vs. Λ1 Subpopulation (σ = 0.001 PERC) 
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Figure 8.9b     R0 vs. Λ1 Subpopulation (σ = 0.1  PERC)  
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Figure 8.9c      R0 vs. Λ1 Subpopulation (σ = 1  COUNT-1) 
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Figure 8.9d        R0 vs. Λ1 Subpopulation (σ = 2   PERC-1) 
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Taking now a 1 cm displacement of the beam center in both X and Y, along with a 

variation of the beam dispersion again shows no real change in the results.  This is readily 

seen in Figures 8.10(a,b).     
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Figure 8.10a    R0 vs. Λ1 Subpopulation (X0 = Y0= 1 ; σ = 0.0001  ; COUNT-1) 
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Figure 8.10b    R0 vs. Λ1 Subpopulation (X0 = Y0= 1 ; σ = 1  ; COUNT-1) 
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Including one of the many consistency checks on the different subpopulation programs, 

the results, to a high computational accuracy, are as before:  even with  Ep = 1.8 GeV 

to even break R0 = 1.1 requires a 50% subpopulation of secondaries with Λ=3 (with a 

mean free path 10 times shorter than expected).  And even with 100% of the secondaries 

having this attribute only takes one up to R0 = 1.3.   

 

Figure 8.11a   R0 vs. Λ1 Subpopulation (100% of Secondaries having Λ=3) 

Ep = 1.8 GeV 
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With the more realistic Ep = 140 MeV, the results for R0 are even less, but just as 

consistent: 

 

Figure 8.11b      R0 vs. Λ1 Subpopulation (100% of Secondaries having Λ=3) 

Ep = 140 MeV 
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Many other simulations have been done, each of the parameters being varied to highly 

unrealistic conditions, singly and in combinations.  Yet the results are the same and 

consistent with the values presented above.   As such they are completely opposite to 

those of Aleklett et al, who explained the experimental values of R0 ~ 1.5  by a 

subpopulation of a few percent (3-6%) having a Λ1 of a tenth or a hundredth of the 

nominal value.  In fact we show that for Λ1 equal to a hundredth of its nominal value 

around 32.4, the value of R0 drops dramatically.  Only for a relatively narrow window 

around Λ1 = 3 is there a significant increase in R0 , maxing out to value of R0 ~1.3 for  

Ep = 1.8 GeV and R0 ~1.28 for Ep = 140 MeV.   

 
As discussed above, it is felt that their results were an unfortunate consequence of 

computational fluctuations due to too small an initial database from which the Monte-

Carlo was performed.  In addition, the large percentage of secondaries required to have 

any significant effect on R0 is a situation that seems without physical substantiation.  And 

even if it existed, it would not be enough to approach the experimental values, themselves 

having small error bars (R0 = 1.5 ± 0.02).   

 
The conclusion seems straightforward:  The results of the Copper Calorimetry 

Experiments have little to do with the so-called ‘anomalon’ effect (short mean free 

paths) which catalyzed these experiments being done in the first place.  Nor did we 

find a serious contribution from the shower particles having a high PT .  

 
So, something seems to be going on.  But it’s not what the initial experimenters were 

looking for.   It was mentioned almost in passing in their initial paper∗ that one of the 

advantages of their experimental approach was that  

 
“ Even if anomalous secondaries either do not exist, or do not contribute 

to the investigated partial cross-section, this method provides a new 

measure for secondary energy flow, and implicitly, may reveal interesting 

features of the reaction mechanism.” 

 
                                                 
∗ Aleklett et al (1988a)  
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This seems exactly the case!  Hence what is investigated next is whether 

the one remaining physical variable, the production cross-section, can play 

a role in reproducing the experimental results.   

 



 9-1

IX   The Production Cross-Section 

(Theme and Variations) 

 

 

So far it has been shown what could not explain the experimental observations.  In the 

process all potential variables have been varied but one -- the production cross-section. 

This section will discuss the potential effects of varying the production cross-section, and 

conclude that the only reasonable explanation for the experimental results is a short-lived 

enhancement of the secondaries’ 24Na production cross-section.  

 

As mentioned above, Aleklett et al (1987)  interpolated experimental findings to obtain 

the following parameterizations (and assuming all Z=1 particles to behave identically): 

 

1)    For projectile fragments of Z≥ 2 (A≥4),  an energy-independent    

σF (A) ≅ 3.6A0.387                                                    (9.1) 

 

2)   For protons and pions with Ek ≤ 3 GeV:   

σ p(Ek ) = e−0.17 + 2.5u −1.22u2
                                         (9.2) 

u = ln(Ek) 

 

3)  For protons and pions with Ek  ≥ 3 GeV: 

σ p(Ek ) = 2.88Ek
0.0496                                                  (9.3) 
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9.1   Variations of ε for Homogeneous Populations  

 

It was seen above that maximizing the shower particles’ energies to a physically 

unrealistic Ep = 1.8 GeV, (and hence optimizing their potential for 24Na production) 

contributed only a 5% increase in R0.  Hence this section will focus only on the potential 

effects of the Z>1 projectile fragments’ production cross-section, σp.1    

 
In the remaining sections our σp is equal to the σF of Aleklett et al. The approach will  

be to vary the exponent in the expression for projectile fragments of Z≥ 2 (A≥4) 

σ p(A) ≅ 3.6Aε , and which Aleklett et al found numerically equal to  0.387.  In principle 

one could also vary the coefficient (equal to 3.6), but any qualitative effect due to the 

variation of this coefficient can be subsumed by a variation of the exponent’s value.  

Variations of the coefficient K, in a more general context, are considered in section 10-2.  

Starting with a broad coverage of the variational phase-space, variations of increasing 

resolution will be presented.  Akin to the exploration of Λ, both uniform and 

subpopulations are investigated.  Ep is taken to be 140 MeV. 

 

                                                 
1 Chapter 11 will present models in which  the shower particles have an enhanced production 
cross-section. 
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A uniform population with the exponent, ε, ranging from [0.001 – 10] is shown below: 

 

Figure 9.1a   R0 vs. Exponent ε of σp  (Ep=140 MeV) 

 

0.5

1

1.5

2

2.5

3

3.5

0.001 0.01 0.1 1 10

R
0
 & R

20
 vs. Exponent of  σ

production
 

Ro
R-20

R
o

Exponent (Production Cross-Section) 

[ X= Y= σ = φ= θ= 0.0001 / Ep = 140 MeV )

(100%  Subpopulation)

 
 



 9-4

Figure 9.1b   R0 vs. Exponent ε of σp  (Ep=140 MeV) 

(100% Subpopulation) 
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For the first time in these simulations, R0   (and R20 for that matter) easily broach a 

value of 1.50.  For populations of secondaries all having the same value of ε the 

interesting region to explore is ε = [ 1 - 2].    Numerical values are in the table below, 

with the conventional experimental value for  ε=0.387  highlighted.   
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Table  9.1    R0 vs. Exponent ε of σp  (Ep=140 MeV) 

(100% Subpopulation) 

 

ε Ro Ro Errors R-20 R-20 Errors 
          

0.01 0.9013 0.0004 0.865 0.0008 
0.05 0.913 0.001 0.8697 0.0005 
0.1 0.9129 0.0008 0.882 0.0006 
0.2 0.8944 0.0007 0.8942 0.0006 
0.3 0.9461 0.0007 0.9397 0.0005 

0.387 0.9637 0.0006 0.9514 0.0008 
0.4 1.0095 0.0022 0.9711 0.0009 
0.5 1.009 0.0005 0.9968 0.0007 
0.6 1.0608 0.0012 1.0434 0.0012 
0.7 1.1369 0.0011 1.0772 0.001 
0.8 1.1765 0.0016 1.1638 0.0019 
0.9 1.282 0.0023 1.2808 0.0035 
1.0 1.3681 0.003 1.39 0.003 
1.1 1.4976 0.006 1.5679 0.0062 

1.11 1.5089 0.0043 1.527 0.0072 
1.12 1.5075 0.0044 1.5742 0.0067 
1.13 1.6282 0.0089 1.5664 0.0059 
1.15 1.6213 0.0205 1.6874 0.0111 
1.2 1.6098 0.0168 1.5168 0.0098 
1.3 1.8779 0.0233 1.6629 0.014 
1.4 1.9674 0.0072 1.8888 0.0126 
1.5 2.068 0.0472 2.0493 0.0099 
1.6 2.0555 0.0446 2.1089 0.0178 
1.7 2.1086 0.0097 2.1338 0.0218 
1.8 2.1287 0.1001 2.5579 0.1139 
1.9 2.5209 0.1018 2.2858 0.1047 
2 2.4958 0.027 2.2787 0.0595 
3 2.875 0.0846 2.7253 0.0422 
4 2.4885 0.1031 2.4585 0.0701 
5 2.503 0.1037 2.4751 0.328 
6 2.8682 0.2046 2.7316 0.2622 
7 2.1788 0.0691 2.8336 0.3499 
8 3.3451 0.5042 2.4455 0.104 
9 2.5425 0.3396 2.3856 0.1328 
10 2.5795 0.2507 2.2174 0.0871 

 

Note that the computational errors quoted above are likely to be less than the true errors.   
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9.2 Subpopulations of the Production Cross-Section  
  

The next broad sweep is to investigate which regions of phase-space might contribute a 

value of R0 ~ 1.5, but having only subpopulations of an elevated ε.   The results are first 

shown in consecutive sweeps by percentage of subpopulation.  Only R0 will be treated in 

this section; the critical role of R20 will be discussed later. 

 

 
Figure 9.2a     R0 vs. Exponent ε of σp    

(90% Subpopulation) 

 

0.5

1

1.5

2

2.5

3

3.5

4

0 1 2 3 4 5 6 7 8 9 10 11 12

R
0

 vs. Exponent of σ
production

 

Ro

R
o

Exponent (Production Cross-Section)

(90% Subpopulation)

 



 9-7

Figure 9.2b     R0 vs. Exponent ε of σp 

(80%Subpopulation) 
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Figure 9.2c     R0 vs. Exponent ε of σp 

(70%Subpopulation) 
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Figure 9.2d     R0 vs. Exponent ε of σp 

(60%Subpopulation) 
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Figure 9.2e     R0 vs. Exponent ε of σp 

(50%Subpopulation) 
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Figure 9.2f     R0 vs. Exponent ε of σp 

(40%Subpopulation) 
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Figure 9.2g     R0 vs. Exponent ε of σp 

(30%Subpopulation) 
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Figure 9.2h     R0 vs. Exponent ε of σp 

(20%Subpopulation) 
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As seen in all the graphs above, there is a steep, almost linear rise between the R0  values 

of 1 and 2, reaching a well-defined asymptotic value of R0  ~ 2.5 for the larger percentage 

subpopulations and an asymptotic value between 2.5 and 3.0 for the smaller percentages 

of subpopulations.  The variation in the latter asymptotic values is almost certainly due to 

greater statistical uncertainties as opposed to any true change in asymptotic value for 

different subpopulations. 
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But at or below a 10% subpopulation there is no chance of R0  > 1  regardless of the  

ε−value, i.e the enhancement of  σp. 

 

 

Figure 9.2i     R0 vs. Exponent ε of σp 

(10%Subpopulation) 
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So what we have is the possibility for subpopulations only as low as 11%, with ε values 

in the range [ 1.7- 1.9 ], offering possible fits to an R0 = 1.5.  It must be noted that as 

before the N-1/2 computational errors are likely to be gross underestimates.  The errors of 

the true ‘correspondence to nature’ are likely to be much greater; but unlike the previous 

sets of simulations here we are in unknown territory:  there is little physical reference 

from which to properly guide or estimate these errors.   Hence these values on production 

cross-section are best used as a qualitative guide to that region of phase-space needing to 

be further explored, rather than as an exact quantitative measure.   

 
The results shown in Figures 9.2 are a simulation of our canonical pencil-beam  

( X=Y= σ = θ = φ = 0.0001).  The results are robust being essentially the same for 

variations of the basic beam parameters: for example the following three higher 

resolution studies in Figure 9.3 have the geometric distribution of the beam across the 

face of the front-target consecutively broadened (σbeam   = 0.0001, 1, 2 ). 
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Figure 9.3a     R0 vs. Exponent ε of σp 

(σbeam   = 0.0001) 
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Figure 9.3b     R0 vs. Exponent ε of σp 

(σbeam   = 0.0001) 
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Figure 9.3c     R0 vs. Exponent ε of σp 

(σbeam   = 1) 
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Figure 9.3d     R0 vs. Exponent ε of σp 

(σbeam   = 0.0001) 
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Figure 9.3e     R0 vs. Exponent ε of σp 

(σbeam   = 2) 
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Figure 9.3f     R0 vs. Exponent ε of σp 
(σbeam = 2) 
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9.3   R  20 
 

We consider now the previously neglected R20, recalling from chapter 5 the experimental 

set-up and results. 

 
Figure 9.4  Experimental Setup for Copper Calorimetry Experiments 

 

 
 
 

And recalling as well that the values listed below are averages of three separate 

experiments for R0  and two separate experiments for R20. 
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Table 9.2  Experimental Values of R0  (LBL 1987) 

 
 0.9 A GeV  40 Ar 1.8 A GeV  40 Ar 

R0 1.167 ± 0.011 1.501 ± 0.008 

Rring,0 < 0.01 < 0.01 

R10 1.118 ± 0.020 1.373 ± 0.034 

R20 1.102 ± 0.026 1.251 ± 0.020 

Rring,20 0.039 ± 0.002 0.071 ± 0.005 

 
  
 

Figure 9.5   Experimental Values of R0  (LBL, 1987) 
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The results displayed in Figure 9.1 and Table 9.41 show that there is little computed 

difference between the values of R0  and R20.  But that was for our canonical ‘pencil-beam’ 

with a  geometric dispersion σbeam   = 0.0001.   More realistic values of σbeam continue to 

show little difference in computed values, for example σbeam = 2: 

 

Figure 9.6     R0  vs. R20 

(σbeam = 2) 
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And for an arbitrary subset (ε = 1.7-1.9) of the above: 

 

Table 9.2    R0  vs. R20 

(σbeam = 2)   

 

Percentage 
(100% = 1.0) 

Exponent  
ε Ro Ro  

Error R-20 R-20 Error 

            
0.1 1.9 0.966 0.0001 0.9522 0.0001 
0.2 1.9 1.7577 0.0319 1.8417 0.027 
0.3 1.9 2.0442 0.02 1.9428 0.0074 
0.4 1.9 2.0172 0.012 1.995 0.0211 
0.5 1.9 2.1366 0.012 2.1813 0.0056 
0.6 1.9 2.2855 0.0128 2.1115 0.0088 
0.7 1.9 2.2512 0.0142 2.1789 0.0062 
0.8 1.9 2.2812 0.0075 2.3576 0.0072 
0.9 1.9 2.3562 0.0052 2.2899 0.0037 
1 1.9 2.3781 0.0077 2.3075 0.0092 
            

0.1 1.8 0.9667 0 0.9446 0.0001 
0.2 1.8 1.6359 0.0047 1.5916 0.004 
0.3 1.8 1.9157 0.0114 1.8652 0.0135 
0.4 1.8 1.9887 0.0089 2 0.0165 
0.5 1.8 2.0726 0.0092 2.0899 0.0085 
0.6 1.8 2.1364 0.0057 2.0548 0.0066 
0.7 1.8 2.1412 0.0103 2.2096 0.0062 
0.8 1.8 2.2634 0.0071 2.1166 0.0049 
0.9 1.8 2.2414 0.0088 2.1777 0.0059 
1 1.8 2.3056 0.0084 2.2493 0.0052 
            
            

0.1 1.7 0.9573 0.0002 0.9596 0 
0.2 1.7 1.5077 0.008 1.4038 0.0046 
0.3 1.7 1.6646 0.0038 1.7114 0.0064 
0.4 1.7 1.9001 0.0044 1.8645 0.0077 
0.5 1.7 2.0296 0.0106 2.0124 0.007 
0.6 1.7 2.0422 0.0066 2.0388 0.007 
0.7 1.7 2.067 0.005 2.0973 0.0055 
0.8 1.7 2.1696 0.0041 2.0928 0.0045 
0.9 1.7 2.1441 0.0082 2.1824 0.0023 
1 1.7 2.2381 0.0084 2.1928 0.0018 
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The experimental set-up is a straightforward and classic approach to the measurement of 

lifetime or time-of-flight.  Assuming for the moment that the enhanced value of the 

production cross-section has physical meaning, the experimental results listed in Table 7.5 

strongly suggest a partial decay of the enhanced production cross-sections that within the 

context of our approach uniquely explain the R0 values.  At 20 cm, the integrated activity 

ratios of the guard rings and the central block is (R20 + Rring,20) =  1.32 ± 0.02.  This is 

about the same value as R10 = 1.373 ± 0.034.   Hence the time-scale for this hypothetical 

decay is no longer than  [10 cm/c ] = 10-9 seconds, and could be as short as 10-10 taking into 

account relativistic dilatation. 

 
Is there an alternative explanation?  An exploration of the simulation phase-space turned up 

the following: it is possible to get reasonably close to the experimental R0, and R20 but not 

Rring,20.  This occurs in a few very narrow windows about (X=Y=1, σbeam= 2 , θ = 3) and 

with large subpopulations of enhanced σproduction such as ε=1.1 at 100%.  But it’s a very 

narrow window in phase-space; and depends on enough of the beam missing the rear block 

due to an off-set beam center coupled to a skewed angle at which the primary beam hits the 

initial target face.  Needless to say, such beam-target misorientations are not likely to have 

occurred in all of the exposures done. And as one would expect this then throws the Rring,20 

values way off, making them an order of magnitude too large.  And it still requires 

enhanced production cross-sections. 

 
Hence, assuming that our fundamental approach is valid (a close shave perhaps by 

Occam’s razor which demands that one always take the simplest explanations and 

reasonings that ‘work’) we are left with the idea that a percentage of the secondaries have 

an enhanced production cross-section analogous to a new channel in low-energy nuclear 

physics; and one that decays in reasonably short order.   

 
One must now ask if this is merely a mathematical nicety or if further experimental 

evidence exists that corroborates this model-derived enhancement of the production  

cross-section for  24Na.   Such evidence does indeed exist and is presented next.  
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X    On the Phenomenology and Calorimetry of Cylinders  
 

It was mentioned earlier that a cylinder composed of similar copper blocks (Figure 10.1) 

could in principle act as a multi-stage amplifier capable of enhancing the signal of any 

unusual effects due to secondaries.  Recalling the schematic of Figure 5.3 it is apparent that 

any block beyond the second will contain interactions due to two sources: the exponentially 

decreasing primary beam and the cascade of secondaries integrated from all preceding 

blocks.   

 
Depending on the nature of the secondaries’ cascade, blocks 3 to N will have an increasing 

ratio of secondaries to primaries.  If there is any property or effect of the secondaries that is 

different from the primaries…such differences should be amplified by the increasing 

cascade of heavy secondaries.  This is the amplifier part of the multiple stages.  

 
Figure 10.1 

Simulated Beam Transport through a Cylindrical Target 
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10.1   Experimental Results vs. Previous Models 
 

Using LBL’s  1.8 A GeV 40Ar beam on a natural copper cylindrical target, similar 

experiments to the ones previously discussed have been performed (Haase 1990), the 

results being presented in Table 10.1 and Figure 10.2. 

 

 
Table 10.1  

 24Na R-values for 1.8 A GeV 40Ar on a Cu-Cylinder 

 
Block # R-value Error 

      
1 1   
2 1.42 0.05 
3 1.727 0.020 
4 2.07 0.019 
5 2.12 0.025 
6 2.203 0.027 
7 2.252 0.03 
8 2.277 0.04 
9 2.083 0.039 

10 2.071 0.04 
11     
12     
13     
14     
15     
16 1.639 0.033 

 

 

In the cylinder geometry the (R0,R20) combination of the 2-block experiments is replaced 

by the concept of the R-value; where the Ri is the ratio of 24Na in the i-th block to that of 

the 1st block.  Hence Haase’s R2 value is equivalent to the R0 value of the previous 

discussions.  And it is numerically equal as well within the overlapping error bars  

(1.42 ± 0.05 vs 1.50 ±  0.008).  It is also easy to see in Figure 10.2 that a cascade 

phenomena is present, peaking at a plateau in blocks [6-8]. 
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Figure 10.2     R-values for 1.8 A GeV 40Ar on a Copper Cylinder 
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The obvious question now is how well do the previous models fit this data?  Figure 10.3 

answers this in principle for both models initially proposed by Aleklett et al – there is no 

fit.  Exploring first the decreased mean free path model, the Λ-subpopulation shown has 

100% of the secondaries set at their minimum possible mean free paths (Λ=3).  After the 

initial rise to a value of R0 =1.28, as seen in the previous sets of simulations, the R-values 

drop off rapidly and monotonically.   
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Figure 10.3    Comparison of R-values between Models and Experiment 

(1.8 A GeV  40Ar on a Copper Cylinder) 
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This is a powerful demonstration that decreased mean free path subpopulations 

cannot be the cause of the R0 values in the two-block experiments.   This is confirmed 

by a detailed studying of the R-values as a function of Λ, conclusively demonstrated in the 

successive graphs of Figure 10.4.  
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Figure 10.4a     Experiment vs. Decreased Mean Free Path (Λ) 

(1.8 A GeV  40Ar on a Copper Cylinder) 
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Figure 10.4b     Experiment vs. Decreased Mean Free Path (Λ) 

(1.8 A GeV  40Ar on a Copper Cylinder) 
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Figure 10.4c    Experiment vs. Decreased Mean Free Path (Λ) 

(1.8 A GeV  40Ar on a Copper Cylinder) 
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Figure 10.4d    Experiment vs. Decreased Mean Free Path (Λ) 

(1.8 A GeV  40Ar on a Copper Cylinder) 
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Figure 10.3 further shows the R-values monotonically decreasing throughout the cylinder, 

even if all the shower particles had an Ep=1.8 GeV.  This is in spite of the large number of 

shower particles (yellow tracks in Figure 10.5 below) created in the course of the cascade. 
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   FIGURE  10.5   Cascade Development in Cylindrical Target  

                 (A simulation of the cascade due to 3 primary interactions1) 

 
                                                 
1 Primary interactions take place at the open red triangles in cylinder numbers (1, 6,7)  
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And as a quality control check, the charge Z is given a patently unrealistic error of ∆Ζ=6, 

the equivalent of assuming that every charge measured was off by 2 charge units per 

generation1. 

 

Figure 10.6    Comparison of R-values between Models and Experiment  

(1.8 A GeV  40Ar on a Copper Cylinder) 
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As expected, there is a monotonic decrease in R-values.  Charge measurement errors 

cannot explain away experimental results or the simulation conclusions presented next. 

                                                 
1 This amount of measurement error is impossible for many reasons, including quality control 
checks like those of the Fragmentation Matrix in Section 4.4. 
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10.2   The σproduction Subpopulation Model Applied to the Cylinder 

 
Recall from equation 9.1 that projectile fragments of Z≥ 2 (A≥4) have an energy-

independent production cross-section σF(A) ≅ 3.6A0.387.  Generalizing this to  

 
σp =ΚAε                                                         (10.1) 

a considerable number of combinations of K and ε are possible.  Trying first those values 

of ε that worked in the two-block case above, along with the commensurate percentages 

of subpopulation, one finds the following remarkable result: 

 

Figure 10.7      R-values of σproduction Subpopulation Model  vs. Experiment 
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An enhanced production cross-section model is a remarkably good fit, especially 

considering the relative crudity of the model (no decay characteristics, for example).    

Indeed the fit is excellent until block 10 (i.e. 10 cm), after which it diverges.  Assuming for 

the moment, the physical reality of the enhanced nuclear cross-sections discussed in the 

previous section, this divergence at 10 cm may be the scale-length for decay, as suggested 

in the R0-R20 set of copper calorimetry experiments.  Exploring other values of ε that 

worked in the two-block case (still keeping the coefficient K=3.6): 

 

 
Figure 10.8    R-values of σproduction Subpopulation Model  vs. Experiment 
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These other combinations of σp subpopulations show a similar fit; and at 10 cm a similar 

divergence from the experimental results, the 10 cm drop-off particularly well illustrated 

below. 

 

  
Figure 10.9     R-values of σproduction Subpopulation Model  vs. Experiment 
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Varying the coefficient K allows a host of other fits, some better than others, but all 

diverging from experimental results at 10 cm.  For example, for ε =1.9 the best fit lies in 

the region Κ= 3 to Κ= 3.6 as seen in Figure 10.10. 

 

 

Figure 10.10    R-values as a Function of Κ   
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While for ε = 1.6, Κ = 4 offers a marginally better fit: 

 

Figure 10.11      Experimental Fit for ε = 1.6 (30%) 
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In summary, a comparison of the different model classes clearly shows that only the 

enhanced production cross-section model has any reason to be considered (Figure 10.12a). 

The enhanced σproduction model used here has a 20% subpopulation of  ε = 1.9, which is 

represented in the legend of the graph as < Exp=1.9 (20%) >. 

 

 
Figure 10.12a    Comparison of R-values between Model Classes and Experiment  

(1.8 A GeV  40Ar on a Copper Cylinder) 
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The above graph used the experimental errors reported in the single experiment done of the 

cylinder (Haase 1990), that reported an equivalent  R0= 1.42 ± 0.05.  Comparing this value 

to the original copper calorimetry experiments that were performed 3 times, and yielded an 

averaged R0= 1.50 ± 0.02, suggests that the true experimental error for Haase’s work is 

~5%.  A similar 5% error is arbitrarily chosen for the ε = 1.9 (20%) simulation results. 

Revising the above graph to include this more realistic error yields a fit by the enhanced 

σproduction model that, under the circumstances, is almost breathtaking.  

 

Figure 10.12b    Comparison of R-values between Model Classes and Experiment  

(1.8 A GeV  40Ar on a Copper Cylinder) 
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Finally, to drive the point home even more, a ‘Normal’ model with 140 MeV shower 

particles is shown.  This latter model is a simulation with variables at the default 

setting…what one would expect to see if everything was ‘normal’. 

 

Figure 10.12c    Comparison of R-values between Model Classes and Experiment  

(1.8 A GeV  40Ar on a Copper Cylinder) 
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The only disparity for the production cross-section model (before block 10) is at block 3.  

Taking at face value the relative accuracies of these measurements and simulation-values  

it is conceivable that this discrepancy may be due to the fact that the posited decay is not 

taken into account.  By the third block the cascade is still in its pre-peak growth phase.   

If there is a simultaneous decay factor then the value would be lower than is simulated.  

Alternatively, the singly-performed experimental results of Haase, compared to the triply-

performed experiments of Aleklett et al may in fact just be too low by ~ 5%.  This too would 

clear up much of this perceived discrepancy.  And recall that the fitted subpopulation chosen 

(20%  with ε = 1.9)  is chosen only to be representative of its potential solution-class.    

A host of more exhaustive and fine-tuned simulations is of course necessary.  

 
An important point must be emphasized: The necessary subpopulation involved seems to be 

in the range of (10 – 20)%.  Hence we must be dealing with an effect which is not exactly 

reticent in showing itself.  It thus offers us a hint that we may be dealing with a variation of 

an otherwise well-known phenomena.  This will be taken up again in Section 10.6.  

 

 

 
10.3 Variations of Κ applied to the Cylinder 
 
From equation (10.1) the production cross-section σp =ΚAε.  Variation of the exponent 

ε led to the extraordinary fit of simulation to experiment seen above.  But one must now 

ask the question if this due only to an increase in the absolute value of σp.  In other 

words, is the Z-variation explored above necessary or can the same results be had by 

increasing σp solely by increasing the coefficient K.  This is a phenomenologically 

important distinction, for a lack of Z-dependence would strongly suggest that no new 

channels have been opened up (and consistent with the ideas of limiting fragmentation).  
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To test this point, simulations have been run over the range of σp values examined in 

previous section, but with ε having the fixed (normal) value of 3.6 and the coefficient Κ 

changing.  The results are seen in Figure 10.13. 

 
 

Figure 10.13     R-values as a Function of K 

                      (secondaries only) 
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This obviously doesn’t work.  The total lack of variation of R-values with Κ, the lack of 

qualitative fit to the experimental data, and the results of the previous section clearly 

demonstrates a Z-dependency of theenhanced  production cross-section increase.  This 

strongly suggests that new channels are being formed, and new varieties of interactions 

are occurring. 

 

 

10.4    Are Secondaries Secondary? 

 
Throughout this chapter we have assumed that, regardless of variable varied, only the 

secondaries were affected.  Much of the physical importance of our findings, as well as 

its overall believability, rests upon this critical assumption that whatever is going on  

is going on only in the population of secondary particles (only Z≥2 considered so far).   

This can be checked.  If we are correct in our assumptions, and in our methodology, then 

the root cause of the effects under study is due to two fundamental asymmetries of the 

secondary population:  

 
1) The ratio R0 and the its more generalized R-values selectively samples the 

secondaries as seen in Figure 5.3 and discussed in Section 5.1. 

 
2) The secondaries themselves have some interaction characteristic which is 

distinctly different from that of otherwise ‘identical’ primaries. 

 

Hence it is fundamental to our logic that any unusual effects will be diluted by any 

decrease of either of these asymmetries.  In our simulations this dilution can be 

accomplished by giving the properties of #2 above to subpopulations of primary nuclei. 

This has been done for both the variables Λ and ε, representing the mean free path and 

production cross-sections respectively.   In Figures (10.14a,b) this dilution is shown to 

occur.  For both variables, a 20% subpopulation of primaries having the same special 

characteristics as do the secondaries completely destroys the effects of the unusual 

secondaries. 
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Figure 10.14a     Primary Subpopulations “Diluting”  Secondaries 

(Λ- Variation) 
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Figure 10.14b below shows the same effect with ε=1.9 (20% of secondaries).   

This strongly suggests that whatever special effects, interactions, or properties are 

involved… they lie in the secondaries.  The magnitude of these dilution effects (10-20%) 

also supports the order-of-magnitude of the subpopulation of secondaries necessary to 

generate the effect in the first place, i.e. (10-20%). 

 



 
10–23

Figure 10.14b     Primary Subpopulations “Diluting”  Secondaries 

(ε=1.9 / 20%) 
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If 10% of the primaries also have ε=1.9 a drop-off of the fit begins after block #6.   

Nonetheless the marginally closer fit to blocks #3-6 is intriguing.  It may be spurious.  

More likely it suggests the existence of non-linearities or complications, quite possibly of 

completely different variables than are considered in this overly simplistic model.
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10.5    Discussion 

 

A complete exploration of the phase-space of potential fits to the cylinder data is not the 

intent of this work.  What is important has been demonstrated: the ubiquity and robustness 

of fit of a simple model that incorporates an enhanced production cross-section for 

secondaries.  It is the only model of those which has been suggested which, within the 

context of our simulations, is able to fit the two-block R0 data.  And when applied to the 

entire cylinder, it offers a visibly superior fit as well.  It seems to fall off faster beyond 10 

cm, but this is the same scale-length that was found in the two-block experiments.  Is this 

additional support for an enhancement of secondary (partial) cross-sections that decays 

over the time-scale of  
10
c

 
 
 

 
 
  = 10-9 seconds?  

 
If so, this dramatic difference in production cross-section in secondaries is most 

unexpected.  Recall from equation 9.1 that projectile fragments of Z≥ 2 (A≥4) have an 

energy-independent production cross-section σF(A) = 3.6A0.387;  and where we’ve 

generalized this to σP(A) = KAε.  For exponents that seemed to fit, those in the 1< ε < 2 

range, the resulting differences in cross-section are mostly factors of 3-10, but can go as 

high as 100.  These factors are reminiscent of resonances in low-energy nuclear processes; 

but what are they doing in these high-energy regimes where factorization and limiting 

fragmentation are supposed to rule? 

 
Considering the scarcity of the cross-sectional data represented in Figure 7-1, one might 

instead question whether there exists a conventional resonance close to the energy of the 

argon primaries.  Ignoring for the moment the question of just why a resonance should 

occur in this high-energy regime, conventional resonances are typically a few hundred 

MeV in width.   Hence the initial experiments to establish the argon-induced 24Na would be 

expected to have seen at least a tail of it since secondary argons, along with the rest of the 

well-focused projectile fragments suffer little change in energy after collision with nuclei;  

a comparable few hundred MeV at most.  If no conventional resonance was found for the 

primary argons, there is no reason to expect one to exist for the secondary argon nuclei.  
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Interestingly, what is predicted with ordinary assumptions matches very well the 

experimental results for protons on copper.  Somewhat simplistically, one would expect 

this if there was in fact a linear separability between target and projectile, and the involved 

nucleons of each. This is because the R-values we’re dealing with are ratios; hence the 

larger absolute value of the relativistic heavy ions production cross-section would cancel 

out. 

 
Instead the inferred enhancement of partial cross-section (at these energies) suggests, like 

in low-energy resonances, that some form of cooperative phenomena is occurring; but for 

seemingly quite different reasons.  If real and generalizable (a big stretch from our one set 

of experiments and interpretations) this cooperative phenomena could mean that for some 

secondary reactions the linear separation of target and projectile described by factorization 

no longer holds.  Nor of course does limiting fragmentation.  

 
The possibility of non-linear effects is further supported by the fact that a production cross-

section exponent of ε=1 gives the ordinary, expected exponential decay; while exponents 

ε=2 and above rapidly hit an asymptotic limit.  The transition to a potential fit to the data at 

just above ε=1 suggests, by definition, that a transition into a non-linear regime is 

occurring.  Meanwhile, the transition to an asymptotic limit at ε=2, just above the values 

for at ε that allow an experimental fit, further suggests  a cooperative effect.   This is 

because one would expect an ε =2 to represent some form of saturation effect based on 

total area of the involved scale; or on a complete set of mutual interactions within the set 

under consideration or between two sets of  (equal) quantity.  Of course such saturation 

effects need not be independent.  Still thinking in abstract phenomenological terms: with 

these exponential values lying somewhere between 1 and 2 the smallest subpopulations 

occur for higher values of ε.  This suggests that a great deal of this mutual interaction is 

occurring (between whatever).  Alternatively, for small values of ε one needs very large 

populations of seemingly less mutual interactions.   
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What might this exponent represent vis-à-vis interactions?    An exponent ε < 1 in the 

expression σp = KA
ε can heuristically be interpreted as the probability for production in a 

collision being dependent only on some subset of the total number of nucleons in the 

projectile nucleus.  This is certainly consistent with the assumption of factorization, 

essentially a linear independence between projectile and target.  

 
Consider now an alternative.  If the production cross-section were due to some mutual 

interaction between all of the nucleons in both target and projectile, σp = KAtargetAprojectile.  
If the target and projectile were roughly the same size OR the projectile’s nucleons only 

interacted with an equivalent number of the target’s nucleons, then  σp ~ KA2
projectile 

would describe the functional relationship if all the projectile nucleons were involved.  

Having an ε such that  1 < ε  < 2  makes eminent sense then, suggesting as it does some 

form of collective interaction between the nucleons of the target and projectile which is less 

than completely saturated (at ε=2) .   

 
What could explain these non-linear collective effects?  The most common cause in nature 

of such non-linearities is to be at the border (one side or the other) of a phase transition.   

One intriguing possibility is that we’re seeing some form of hypermatter induced nuclear 

chemistry.  The time-scales of 10-10 could potentially fit; along with the transition to 

strange matter production lying between 1 and 2 GeV/Nucleon as seen in Figure (10.15)1.  

Section (10.6) discusses this possibility in more depth.  

 
Alternatively, the 1.8 AGeV interactions approach, in principle, the still unseen border of 

the quark-gluon phase transition (Figure 10.16) 2.   Perhaps there is some pre-critical point 

fluctuation that is a zone of metastability.  These two ideas are not necessarily mutually 

exclusive, for both new channels and an increase in strange matter are posited to occur 

close to the quark-gluon phase transition. 

                                                 
1  Fuchs (2001) Experimental data from KaoS [C. Sturm Ph.D. Thesis; Sturm (2001)] 
2  Schaffner—Bielich (2001)  
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Figure 10.15     Excitation Function of K+ Production 

 
 

Figure 10.16    Phase Diagram of Nuclear Matter 
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Might this be what we are seeing… a manifestation of the existence of a quark-gluon 

plasma phase transition?  In particular, is it one of the collective fluctuations that come into 

being as one approaches a phase transition?  Some form of phase transition would seem a  

likely cause for a new ‘channel’.  But 1.8 A GeV is a rather low energy for the actual  

quark-gluon phase transition to manifest itself.  And other experiments in this energy range 

might be expected to have seen indications of this boundary if it indeed was ‘here’.   

Perhaps though we have found a small ‘sweet’ zone where cooperative effects in parts of 

the overlap region are able to come into being as conditions approach this boundary 

without actually arriving at it.   

 
Or perhaps it is something else.  In light of the still unknown demonstration of the quark-

gluon phase transition, and the coincidence of strange lifetimes and energy thresholds with 

what we are seeing in the Copper Calorimetry Experiments… it seems worthwhile to 

explore a ‘hypermatter-induced nuclear chemistry threshold’.   The following section 

presents a brief overview of some of the relevant characteristics of collective strange 

matter, leading to a thought-provoking analogy with what we see in this study.  

 

 

10.6 Is  Something Strange Going On? 

 
The additional degree of freedom due to strangeness makes possible new classes of 

composite matter, termed hypermatter.  Figure (10-17)1 shows several of these 

experimentally found classes of hypermatter.  This first step into S(trange)-space is the 

addition of a single strange particle to an ordinary nucleus which produces the well-

studied class of single hypernuclei.  One step further leads to doubly strange hypernuclei, 

recently confirmed using emulsions2.  

 

                                                 
1 Intermediate Energy Nuclear Physics Laboratory, Physics Department, Seoul University  
2 Ken'ichi Imai of Kyoto University 
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Figure 10.17     Phase Diagram of Nuclear Matter (Experimentally Found) 

     with Strangeness Degree of Freedom 
 

 
 

Steps beyond this point have until recently been more theoretical1 than experimental.  

 

                                                 
1 Gerland (1996), Greiner & Schaffner-Bielich (1998), Greiner (1998, 2001) 
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Figure (10-18) 1 shows several of these new hypothetical classes and their relationship in 

S-space to ‘normal’ nuclear matter which lies in the (S=0) Density-Temperature plane.  

 
 

     Figure 10.18      Phase Diagram of Nuclear Matter 

        (Theoretical with Strangeness Degree of Freedom)  

 

 
 

Extensive calculations suggest that some of the finite or bound matter that is further into 

S-space could in fact have a degree of stability2.  Two classes in particular have been 

shown to potentially be able to exist, MEMO’s and Strangelets.   MEMO’s (Metastable 

Exotic Multihypernuclear Objects) are akin to conventional hypernuclei but with multiple 

strange particles bound within.  Going further still, there is nothing in QCD that would  

seem to exclude the possibility of multi-quark states as opposed to the upper limit of 3 
                                                 
1 Bass et al (1998) 
2 Greiner & Schaffner-Bielich (1998) 
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quarks seen in conventional baryons and mesons.  Such strange multi-quark matter, 

nuclear matter with a number of s-quarks along with the standard u and d quarks, has 

been termed Strangelets. 

 
Until recently such multi-quark hypermatter was purely speculative.  Its existence has 

been made much more probable, however, by the Chandra (X-Ray) Telescope’s 

observations of the stars RXJ1856 and 3C58.  These observations provide the first 

evidence for ‘quark stars’: cool stars half the size of neutron stars, with cores now 

presumed to be made of strange quark matter.  Twisting round a telescope now to make a 

microscope, Schaffner-Bielich (2001) reminds us of the relationship between the 

astrophysics and the heavy ion physics of strange matter:    

 
“If hyperstars exist, strange hadronic matter has to exist and  

 can possibly be formed in relativistic heavy-ion collisions….    

If strange stars exist, Strangelets accessible to heavy-ion experiments  

 are likely to be stable, but they are short-lived…” 1 

 
 
The lifetimes of strange particles varies about the 10-10 seconds of the weak decay.   

Kaons (Κ) have lifetimes from [10-8 – 10-11] seconds, while lamdas (Λ) live from  

[10-10 – 10-13] seconds.  Comparable to that of a solitary Λ, the measured lifetimes of 

Λ−hypernuclei are all ~ 10-10 seconds.  Lifetimes of MEMO’s are of course theoretical, 

but are calculated to similarly be ~10-10 seconds.  Strangelets have been hypothesized to 

be both stable and metastable.  The latter falls into two categories, short and long-lifetime 

depending on the decay mode assumed2.  The short-lifetimes are perhaps  [10-7 – 10-9] 

seconds and due to weak hadronic decay, while the longer-lived ones are hypothesized to 

live [10-4 – 10-5] seconds commensurate with weak-leptonic decays.   

 
 
                                                 
1  Notwithstanding the fact that compact stars and relativistic heavy ion conditions exist in anti-
symmetric regions of Quantum Chromodynamics (QCD) phase-space.   Compact stars are 
regimes of high density and low temperature, while relativistic heavy ion collisions generate 
regions of high temperatures but low densities.  [Schaffner-Bielich, 2001] 
2  Greiner (1998), p. 9, 10 
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Production rates and cross-sections of these hypotheticals are not dealt with here, but 

strange particle production is increasingly prodigious in central collisions above  

1 A GeV.  For example, Greiner and Schaffner-Bielich (1998) estimate that “on average 

the occurrence of 20 Λ’s, 10 Σ’s, and 1 Ξ per event for Au(11.7 A GeV)Au and of 60 Λ’s, 

40 Σ’s, and 5 Ξ   per event for Pb(160 A GeV)Pb are expected to be created.  This would 

seem equivalent to production efficiencies  > 10%.  

 

Applying the above to the Copper Calorimetry Experiments, the quantitatively suggestive 

points are: 

 
1) Energy Thresholds:  The 24Na enhancement that we see in the Copper Calorimetry 

Experiments exists at 1.8 A GeV but does not at 0.9 A GeV.  The threshold for 

strange particle production lies between 1 and 2 A GeV. 

 
2) Time-Scales:  The time-scale for the decay of phenomena we seem to be dealing 

with is ~10-9 or 10-10.  This is also the time-scale for strange hadronic decays. 

 
3) Distance-Scales:  An intriguing correlation with the centimeter-scale resolution of 

the Copper Calorimetry Experiments is the observation by Gerland et al (1996) on 

the experimental difficulties in the search for strangelets: 

 
Experiments geared to proof the (non)existence of strangelets 

therefore should clearly cover such short lifetimes. Unfortunately, 

this is hard due to the large background of charged hadrons at the 

target in violent events with high multiplicities. To date all 

experiments concentrate on long flight-path (to minimize 

background) and large masses, although our prediction is that only 

metastable strange clusters with cm flight path seem to have a 

chance of being created. 1 

                                                 
1 Note how the design of the Copper Calorimetry Experiments not only finesses the ‘background’ 
problems that Gerland speaks about, but actually makes use of them. 
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4) Production Rates:  Production rates for strange particles of [.1 - .3] per central 

collision at higher energies, along with hints of enhanced K production rates at 

sub-threshold conditions leads to the following intuitive leap:  

 
For secondaries of heavy ion collisions greater than ~ 1A GeV 

a sub-threshold strange hadronic complex can come into existence 

for a short period of time (10-9 – 10-10 seconds).  During this brief 

lifetime these sub-threshold complexes have the ability to catalyze 

changes  ‘from the ordinary’ in subsequent nuclear interactions. 

 
Chapters 9 and 10 suggest that to explain the results of the Copper Calorimetry 

Experiments a 10% order-of-magnitude subpopulation of Z≥2 secondaries is 

needed to have an enhanced production cross-section.  Along with a much greater 

production of strange matter, central and near-central events yield a greater 

multiplicity of fragmentation.  It is not inconceivable then that if such short-lived 

sub-threshold strange effects exist, a subpopulation of secondaries having them is 

actually produced in sufficient quantity.  If strange hadronic matter does actually 

exist, it would seem that one of its likely manifestations would be a difference in 

partial production cross-sections (i.e. a redistribution of channel probabilities). 

 

More qualitatively suggestive and intuitive points include: 

  
5) Phase Transitions:  Some form of phase transition may be involved. The 

canonical one to invoke is the still-to-be found Quark-Gluon Plasma phase 

transition, especially since strange particle emission is one of the consequences of 

this transition.  Yet it has also been found that extensive kaon production occurs 

at the border of hot dense regions of nuclear matter (that need not be the QGP).  

And if strange hadronic matter (MEMO’s for example) actually exists in 

relativistic heavy ion collisions it too need not be a direct consequence of the 

QGP, but instead be due to a coalescence of hyperons1.  

                                                 
1 Schaffner-Bielich, (1998) 
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6) New Channels:  Our results can be looked at as the opening of a new channel.  

Having a new degree of freedom (strangeness) allows this to naturally occur. 

 
7) Resonance:  Alternatively, one can look at our results as an analogue to low-

energy resonance-like behavior occurring at higher energies (but in a region 

where it’s not ‘supposed’ to).  This ‘resonance’ may be more ‘acceptable’ if it 

occurs in a region of phase-space where the threshold of a new degree of freedom 

has just been crossed.  (For with regard to that new degree of freedom, such a 

‘resonance’ will be a ‘low-energy’ effect.) 

 
8) Newly Discovered Stars of Strange Quark Matter:  The increasingly likely 

existence of bulk strange matter vis-à-vis ‘quark stars’ does not directly inform 

our particular circumstances; but it does suggest that the existence of cooperative 

strange matter must be taken more seriously.   

 

It must be noted however that the above discussion on the possible role of strangeness is 

a conceptual riff initiated by the seemingly congruent lifetimes, energy thresholds, and 

production efficiencies between strange matter and the phenomena under study.  It need 

not, of course, be the ‘actual’ solution for what is going on in the Copper Calorimetry 

Experiments.  But following one of the classic texts on qualitative measurement1: 

 
Isabella:  Is it not strange, and strange? 

Duke:       Nay, it is ten times strange. 

Isabella:  Then this is all as true as it is strange… 

   (though) I should not think it strange; for 'tis a physic 

 
 

 

 

                                                                                                                                                 
 
1 Shakespeare, (1623) Measure for Measure 
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XI   Alternative Phenomenological Models  

 

Although the fit of the above model seems exceptional and the inferred physics is 

intriguing, alternative phenomenologies must be investigated.  Without for the moment 

saying whether it makes numerical, phenomenological, or physical sense…one other class 

of model could logically exist.  This new model class still requires an enhanced production 

of 24Na; but in this case the property would be carried by the subpopulation shower 

particles rather than the secondary heavy ion fragments.  

 
The line of logic follows from the fact that in the 1.8 A GeV two-block experiment  

R0 >R20.  This can logically come about in two distinct ways.  The first is for the same 

number of particles to pass through both blocks, but with the 24Na-producing enhancement 

restricted to the first blocks due to an appropriately scaled decay time.  This possibility has 

been extensively discussed above.  The alternative logical possibility is that as the second 

block moves away from the first block a different number (or population) of  24Na-

enhancing particles traverses the second block relative to the first.  

 
This particular logic warrants a closer examination due to the observation that for the Z=1 

shower particles (protons, neutrons, and pions) there are two different subpopulations.  The 

shower particles themselves tend to be ‘evaporation’-residues and as such are initially 

isotropically distributed in the projectile-frame; and highly peaked forward in the laboratory-

frame.  The essential difference in subpopulations is the degree of intra-nuclear scattering 

suffered by the shower particle during the projectile-target collision.  The subpopulation of 

shower particles which have not suffered intra-nuclear collisions follows a path essentially 

co-linear with the Z≥2 heavy fragments.  But there is also a subpopulation of  shower 

particles which will have suffered interactions with target nucleons sufficient to change the 

angle of their trajectory.  This latter population is easily seen in Figure 10-3 as the wide-

angle (scattering) yellow trajectories.  Nominally, the dividing line between the two 

populations is a trajectory with a polar angle of ~12 degrees.   
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This is important to our reasoning for particles emitted in the first block with a polar angle 

greater than 12 degrees will miss the second block situated at 20 cm.  If the second block is 

in the adjacent R0 position, a polar angle of >60 degrees of emission is required to miss the 

second block.   

 
Hence one could in principle consider the possibility that (for unknown reasons due to their 

different physical history) only the shower particles >12 degrees have 24Na-enhancing 

properties.  This would allow the production of an enhanced R0 along with a reduced R20..   

 
But before one worries about what could be causing such an effect, we must see if this 

model class can phenomenologically reproduce the observed measurements. 

 
 
 
11.1   The Shower-Particle Model 
 
Preliminary simulations have been done of this conceputal possibility, but the results using 

the current versions of BFHL are considerably less satisfying than those of the heavy-

fragment model.  Two simplified shower particle models were run for each of the two-

block and cylinder geometries.   

 
Only the shower particles are given an enhanced production cross-section, a factor Q times 

their ‘normal’ one  

 
Enhanced Production Cross-Section = Qσ p(Ek )                            (11.1) 

 
where the ‘normal’ one, σp(Ek ) , is 

σp(Ek)=e−0.17+2.5u−1.22u2
                           (11.2) 

 
and where  u = ln(Ek)  and pions are assumed to behave identically to protons.   
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All Z≥2 fragments behave ‘normally’, including having a ‘normal’ production cross-section 

of σF(A)≅ 3.6A0.387.  (See Section 7.1 for the extended discussion of 24Na production 

cross-sections.)   Two populations of shower particles have been considered:   

 
1) All shower particles have an enhanced production cross-section (Qσp) 
2) Only shower particles with a polar angle ≥ 12 degrees have an enhanced 

production cross-section (Qσp) 
 

The first of these models we shall call the All Shower Particles model or ‘ASP’.   

The second is termed the Wide Angle Only model or ‘WAPO’.   

 
Each of the simulations also included: 

i) The twinning approximation to neutron production  

ii) A centrally placed, orthogonal primary beam with a geometric 

dispersion of σbeam=1 

iii) An energy over-approximation of 1.8 GeV per shower particle 

iv) No loss of energy per collision 

 

For comparison, recall the 1.8 A GeV experimental values from Table 9.2: 

 
R0 = 1.501 ± 0.008 

 R20 = 1.251 ± 0.020                                              (11.3) 

      RRing-20 = 0.071 ± 0.005 

 

 
 

All Shower Particles Model 

 
Giving all secondary shower particles a production cross-section enhanced by a factor Q 

yields the results in Figure 11.1.  It is seen that for Q = [10 – 15] there is a rough matching 

of the values of R0 and R20 (though R0 is actually too large for a desired R20).  What is most 

interesting here is that RRing-20 also has the right order of magnitude ( ~ 0.1). 
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Figure 11.1           R0 vs. Production Cross-Section Enhancement 

    (All Shower Particles) 
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 It turns out that for subpopulations of shower particles in this model, a similarly crude 

“matching” of values occurs whenever the product  

 
(% Subpopulation) x (Q-value) = [ 10 –11 ]                                  (10.3) 
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This is explored more explicitly in Table 11.1 below from which a number of interesting 

points can be surmised.  The first is yet another example of the constantly performed 

quality control and consistency checks.  The two highlighted lines of {Subpopulation, Q} 

equal to {0,1} and {1,1} give identical simulation results…as well they should. 

{Subpopulation, Q} = {0,1} means that there is 0% subpopulation, so all secondaries 

behave ‘normally’.  Equivalent to the situation where all secondaries behave ‘normally’, 

{Subpopulation, Q} = {1,1} means that 100% of the subpopulation has an enhancement 

factor equal to one.  The fact that physically identical populations calculated by completely 

different computational routes is a necessary reassurance to the internal consistency of both 

the program and the overall computational approach.  

 
Secondly, it is seen that the experimentally obtained R0 values are almost exactly generated 

by the condition  (% Subpopulation) x (Q-value) = [ 10 –11 ].  This is equivalent to saying 

that there is a necessary integrated enhancement of 24Na of about 10. 

 
Nonetheless, R0 and R20 don’t exactly match up in these results.  (For a given percentage of 

subpopulation the best fit is bold-faced.) For R0 ~ 1.5, R20 is consistently too low by 4 

times the experimental error bars.  (The simulation errors are not listed in Table 10.2 

because they are formally so small,  ≤10-3.)  And the simulation values for the guard rings, 

although ‘in the neighborhood’ of the experimental values are too large by 10 times the 

experimental errors.  Nonetheless, these simulation results demonstrate that this overall 

approach does give ‘ball-park’ figures without relying on a decay phenomena as does the 

heavy-fragment approach.  
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     Table 11.1    Simulations of Production Cross-Section Enhancement 

for All Shower Particles Model 

 
 

Subpopulation 
(1=100%) 

Q (% x Q) Ro R-20 Guard Ring 
(0 cm) 

Guard Ring 
(20 cm) 

              

0 1 0 0.9984 0.9525 0.0002 0.0155 
              

0.1 10 1 1.0573 0.9959 0.0003 0.0279 

0.1 20 2 1.1225 1.007 0.0004 0.0407 

0.1 50 5 1.2805 1.0816 0.0005 0.0753 

0.1 100 10 1.4941 1.1715 0.0008 0.128 

              

0.2 10 2 1.1152 1.0071 0.0003 0.0409 

0.2 20 4 1.2162 1.0539 0.0006 0.0628 

0.2 50 10 1.4974 1.1785 0.0005 0.1189 
0.2 100 20 1.7685 1.2923 0.0008 0.179 

              

0.3 10 3 1.1617 1.0239 0.0004 0.0522 

0.3 20 6 1.3146 1.0946 0.0007 0.0852 

0.3 30 9 1.4423 1.1456 0.0007 0.1109 

0.3 35 10.5 1.487 1.183 0.0006 0.1197 
0.3 36 10.8 1.5173 1.1823 0.0008 0.1251 
0.3 40 12 1.5582 1.2003 0.0008 0.1338 

0.3 50 15 1.6579 1.2354 0.0012 0.1551 

0.3 100 30 1.9571 1.3777 0.0009 0.2213 

              

0.4 20 8 1.4032 1.129 0.0008 0.1023 

0.4 25 10 1.473 1.1775 0.0006 0.1148 

0.4 27 10.8 1.5099 1.1759 0.0009 0.1252 

0.4 30 12 1.5584 1.1988 0.0007 0.1336 

              

0.5 10 5 1.2637 1.0677 0.0006 0.0713 

0.5 15 7.5 1.3754 1.1336 0.0005 0.0941 

0.5 20 10 1.4839 1.1664 0.0007 0.1181 

0.5 21 10.5 1.4972 1.1697 0.0009 0.121 

0.5 22 11 1.5158 1.1775 0.0009 0.1248 

0.5 25 12.5 1.5638 1.2075 0.0007 0.1353 

0,5 30 15 1.6472 1.2334 0,0008 0.1479 
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Subpopulation 
(1=100%) 

Q (% x Q) Ro R-20 Guard Ring 
(0 cm) 

Guard Ring 
(20 cm) 

       

0.6 10 6 1.3084 1.0863 0.0006 0.0804 

0.6 15 9 1.4363 1.1607 0.0006 0.1065 

0.6 17 10.2 1.482 1.1809 0.0006 0.1161 

0.6 18 10.8 1.5062 1.1717 0.0009 0.1221 
0.6 20 12 1.5511 1.1939 0.0008 0.1321 

0.6 25 15 1.642 1.2412 0.0008 0.1508 

0.6 30 18 1.722 1.2667 0.001 0.1647 

              

0.7 5 3.5 1.1739 1.0279 0.0004 0.0519 

0.7 10 7 1.3517 1.1209 0.0005 0.0884 

0.7 15 10.5 1.4953 1.1695 0.0007 0.1198 
0.7 20 14 1.611 1.2271 0.0008 0.144 

0.7 25 17.5 1.7092 1.2585 0.001 0.1625 

              

0.8 5 4 1.1965 1.0378 0.0005 0.0566 

0.8 10 8 1.3917 1.137 0.0005 0.0965 

0.8 13 10.4 1.4876 1.1669 0.0007 0.1181 

0.8 13.5 10.8 1.5011 1.1691 0.0008 0.1201 

0.8 14 11.2 1.5155 1.1899 0.0006 0.1223 

0.8 15 12 1.5448 1.1918 0.0008 0.1301 

0.8 20 16 1.6684 1.251 0.0008 0.156 

0.8 25 20 1.7702 1.2823 0.001 0.1754 

              

0.9 5 4.5 1.2177 1.0469 0.0005 0.061 

0.9 10 9 1.4296 1.1518 0.0005 0.1046 

0.9 12 10.8 1.5001 1.1691 0.0007 0.1201 

0.9 15 13.5 1.5912 1.2088 0.0008 0.1394 

0.9 20 18 1.7182 1.2717 0.0008 0.1668 

0.9 25 23.5 1.8262 1.3034 0.001 0.1874 
       

       
1 1 1 0.9984 0.9525 0.0002 0.0155 

1 5 5 1.24 1.0719 0.0004 0.0657 

1 10 10 1.4672 1.1543 0.0007 0.1131 

1 11 11 1.4992 1.1835 0.0006 0.1201 
1 12 12 1.5393 1.1846 0.0008 0.1285 

1 15 15 1.6295 1.2322 0.0008 0.1488 

1 20 20 1.7661 1.2797 0.001 0.1757 

1 25 25 1.8746 1.3214 0.0011 0.2014 
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Wide Angle Only Model 

 

Applying now the model where only the wide-angle shower particles have the enhancement 

Q > 1 a critical problem becomes evident. 

 

Figure 11.2       R0 vs. Production Cross-Section Enhancement 

        (Wide Angle Shower Particles Only) 
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In this model, Q ~20 for R0 ~1.5, but no possible fit exists for R20.  Indeed, NO value  

of Q generates an R20 > 1.  Based on this alone we should in principle consider the 

 “Wide-Angle Only” shower particle model to be phenomenologically untenable.    
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Interestingly, like the ASP model R0  has the right order of magnitude.  This suggests the 

obvious likelihood that in this class of models the source of the RRing-20 fit are the shower 

particles greater than 12 degrees.   

 
The next critical question is obvious: how well does the general class of shower particle  

models fit the cylinder geometry?  For it is likely that the multi-stage amplifier attribute of 

the cylinder can again be put into service to delineate the phenomenologically possible 

from the impossible.  
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11.2  Shower Particle Models Applied to the Cylinder 

 
Simulations have been done with both shower particle models.  And both the ‘All Shower-

Particle’ and the “Wide-Angle Only” model quantitatively fail the cylinder tests.  The 

problem of each is the same.  Any simulation which matches the R0 value has R-values for 

the other segments much larger in value than observed; qualitatively suggesting a rising 

cascade with a slow dying off only at the end of the cylinder.  This can be seen for the ‘All 

Shower-Particle’ model in Figure 11.3 which has a 100% ‘subpopulation’ with Q=10.   

 

         
Figure 11.3       R -Values for a Cylinder with  ‘All Shower-Particle’ Model 
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The ASP model’s fit to the R-value of the second cylinder block is quite good  (by definition 

of the fits selected!), but beyond that lies a rapid divergence.  As Figure 11.4 clearly shows, 

this is representative of all simulation results for the ASP model∗.  

 
 

         Figure 11.4     R -Values for a Cylinder with  ‘All Shower-Particle’ Model 
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∗  Individual curves can be found in Appendix C. 
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Salient qualitative points are a faster and more sustained rise than experimentally seen, as 

well as a slower drop-off.  This is characteristic of what one would expect from a cascade 

of shower particles that grows nonlinearly faster than its parent (the primary beam and 

secondary heavy ion fragments).  The maximum peak value is greater by ~50% and shifted 

several blocks down-beam.  This lag in position of the shower particles’ cascade-maximum 

behind that of the parent beam (primary ions and fragments) is also what one would expect 

from such a non-linear birth.  Allowing a nominal 5% error for the smallest subpopulation 

examined (10% with Q=100) the lack of fit for the class as a whole is underlined.  

 
Figure 11.5     R -Values for a Cylinder with  ‘All Shower-Particle’ Model 
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Application of the“Wide-Angle Only” model yields similar results.  A 100% 

‘subpopulation’ is shown along with a computational convergence test that further 

demonstrates that the lack of fit is not the result of a computational fluctuation. 

 

 
Figure 11.6       R -Values for a Cylinder with  “Wide-Angle Only” Model 
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Relative to the ‘All Shower-Particle’ model there is a similar fast rise, but a faster drop-off 

after the cascade-maximum.  The cascade maximum of the “Wide-Angle Only” model is 

also shifted to the right of the experimental values but less so than that of the ‘All Shower-

Particle’ model.  This is to be expected as there is no enhancement contribution from any 

of the protons < 12 degrees.  Subpopulations behave in a similar manner with a 

representative illustration below.  Appendix C includes a suite of the other simulations of 

the Wide-Angle Only model for subpopulations ranging from 10% – 100%. 

 

Figure 11.7      R -Values for a Cylinder with  “Wide-Angle Only” Model 
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11.3   Discussion of Shower Particle Models  

 

The All Shower Particle model which gave an enhanced production cross-section to every 

shower particle “sort of” fits the two-block experiment but it doesn’t fit the cylinder.  The 

Wide-Angle Only model DID NOT fit the two-block experiment, insofar as R20 was 

incapable of being reproduced, nor does it fit the cylinder experimental data.   

By itself this might be enough to eliminate from consideration the shower particle 

enhanced production cross-section models.  

 
 But it must be pointed out that in the current set of simulations the secondary particles 

(fragments and shower particles) do not lose energy as they propagate through the target.  

This is a reasonable approximation for the fragments since they lose only a few hundred 

MeV in any collisions.  But this is not so for the wide-angle shower particles which lose 

their initial energy within a few collisions and hence fall below the energy threshold 

required to make 24Na.   

 
Still operating in the fairy tale land of phenomenology we must ask if a quenching of 24Na. 

production due to the energy dissipation of the shower particles might bring the shower 

models into the possibility of a fit?  Could the energy loss of the shower particles offer a 

functional equivalent to the hypothesized 10-9 second decay introduced in the heavy ions 

enhanced production cross-section model?  The next incarnation of the simulation 

programs is already being designed to take these possibilities into account, modelling both 

the energy dissipation of colliding shower particles as well as the time-decay of 

hypothetical cross-sectional properties.    Stay tuned for more.   

 
But the overall shape of the curves we see in this second class of potential solutions (the 

shower particle models) may be immediately useful in a more fundamental way.   

Recall from Figure 10.12  that ‘ordinary’ 1.8A GeV shower particles in a cylinder 

geometry generate a monotonically decreasing curve of R-values.  It is conceptually 

striking that any and all of the models attributing to shower particles an enhanced 

production cross-section transforms their R-value curves into ones qualitatively similar to 

those seen experimentally (Figure 11.8).   
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This qualitative transformation seems to buttress the likelihood that some form of 

production cross-section enhancement is involved.  But for now the evidence seems to 

support the principal role of heavy ions in whatever is going on.  

 

                 Figure 11.8    Experimental Results vs. Enhanced σp Model Classes 

                    (1.8 A GeV  40Ar on a Copper Cylinder) 
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It must be emphasized that we are dealing here with partial cross-sections.  Standard 

conservation principles are assumed to apply.  By baryon conservation, for example, an 

enhancement in one set of production cross-sections must be compensated for by a decrease 

in those of other channels.  An example: looking at the spectrum of R0 values for the target 

residues involved1, perhaps what is being manifested is an increase in the probability for 

symmetric fission (give or take a few alphas and shower particles).  A commensurate 

decrease in other channels would then be expected.  In summary then,  

 

Figure 11.9    Comparison of R-values between Model Classes and Experiment  

(1.8 A GeV  40Ar on a Copper Cylinder) 

 

 
 
                                                 
1 Aleklett et al. (1987, 1988a,b) 
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Whatever is happening and whomever it is happening to, in the context of our basic 

experimental, theoretical, and phenomenological approach:  in the Copper Calorimetry 

Experiments performed, the symmetry of identity of nuclear interactions appears to 

be broken between the primary and secondary populations; and/or there are non-

linear collective effects in these interactions that are doing by conventional standards 

some rather unusual things.  
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Appendix   A 
 

Mean Characteristics of Events 
(Graphical Analyses & Statistics)  

 
 

 

 

Scanning and measurements performed by the  

High Energy Astrophysics Group  

of the  

Institute of Space Research (Bucharest, Romania) 

 

 

 

Dr. Maria Haiduc 

 Group Head and Scanning Supervisor 
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High Energy Astrophysics Group  

of the  

Institute of Space Research (Bucharest, Romania) 

 

 
 

Dr. Dumitru Hasegan:  Director of  the Institute of Space Research 

Dr. Maria Haiduc:  Group Head and Scanning Supervisor 

 

 
Physicists 

Andrei Gheata:  Charge measurements including the design and implementation  
of the methodology for the photometer.  
 
Mihaela Gheata:  Management of the data.  Also transformed data from the computer on-line 
with the microscope to formats usable by the programs. 
 
 
 

Hardware 
 
Mircea Ciobanu:  Built  the electronics for the semi-automatic system for geometry 
measurements under the KSM microscope.  
 
Octav Anghelescu:  Maintenance and improvements of the semiautomatic system, including 
the optics. 
  
Igor Marin (DUBNA):  Kept the KSM microscopes in repair. 
 
 

Scanners 
 

Mariana Boca:  Scanning and drawing events. 
 
Veronica Catrina:  Scanning, delta ray counting, geometry measurements. 
 
Aurelia Cristescu:  Scanning and back scanning.  Measurements on ionization for almost all  
the data (on light nuclei – gap length measurements as well as blob counting; on relativistic 
particles – grain and blob counting). 
 
Anica Georgescu:  Scanning, geometry, multiple scattering. 
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Ana Golea:  Manager of  handling the emulsions, planning the operations, keeping the 
reference book on events.  Data integrity and quality control checks on the computer. 
Scanning and  back scanning. 
 
Sabina Herisanu:  Drew almost every events.  Also geometry. 
 
Valeria Mocanu:  Data entry for geometry (until the semi-automatic system was brought into 
function – about 2 years); then data entry for gap counting. 
 
Ala Neagu: Scanning and geometry measurements. 
 
Lidmila Sava:  Scanning and charge measurements by delta ray counting and  photometer. 
 
Cristina Savu:  Scanning and charge measurements by delta ray counting and  photometer.  
Back scanning and  gap counting on light fragments. 
 
Diaconescu Tereza:  Scanning. 
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Mean Characteristics of Events 

1.8 A GeV 40Ar Projectiles in Nuclear Emulsion 

 
  

All events
(Lerman) 

Nh≤ 8 
(Lerman) 

Nh≤ 9 
(Lerman) 

<Nh>  8.9 ± 0.3 2.9±0.1 21.79 ± 0.5 

<ns>   9.8±0.3 6.0±0.2 17.8±0.6 

 <nα>   1.19 ± 0.04 1.17 ± 0.05   1.2 ± 0.05 

 <θs
o>    19.8 ± 0.19 14.5 ± 0.25 23.6 ± 0.26 

 <θαo>     1.9 ± 0.04 1.8 ± 0.05 2.1 ± 0.08 

< ZF,Z>2 > 11.49 ± 0.18 12.0±0.2 8.7 ±  0.36 

 
 
 

As in Chapter 4 

Nh = Nblack + Ngrey 

Ns = Nshower 

Nα= Nalpha 

and from Aleklett et al (1988)  θs
o and θα

o are the critical angles for shower particles and 

alphas respectively; while ZF,Z>2  is the charge of projectile fragments with  Z > 2.  
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Appendix   A 
 

Mean Characteristics of Events 
(Graphical Analyses & Statistics)  

 
 

 

 

Scanning and measurements performed by the  

High Energy Astrophysics Group  

of the  

Institute of Space Research (Bucharest, Romania) 

 

 

 

Dr. Maria Haiduc 

 Group Head and Scanning Supervisor 
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High Energy Astrophysics Group  

of the  

Institute of Space Research (Bucharest, Romania) 

 

 
 

Dr. Dumitru Hasegan:  Director of  the Institute of Space Research 

Dr. Maria Haiduc:  Group Head and Scanning Supervisor 

 

 
Physicists 

Andrei Gheata:  Charge measurements including the design and implementation  
of the methodology for the photometer.  
 
Mihaela Gheata:  Management of the data.  Also transformed data from the computer on-line 
with the microscope to formats usable by the programs. 
 
 
 

Hardware 
 
Mircea Ciobanu:  Built  the electronics for the semi-automatic system for geometry 
measurements under the KSM microscope.  
 
Octav Anghelescu:  Maintenance and improvements of the semiautomatic system, including 
the optics. 
  
Igor Marin (DUBNA):  Kept the KSM microscopes in repair. 
 
 

Scanners 
 

Mariana Boca:  Scanning and drawing events. 
 
Veronica Catrina:  Scanning, delta ray counting, geometry measurements. 
 
Aurelia Cristescu:  Scanning and back scanning.  Measurements on ionization for almost all  
the data (on light nuclei – gap length measurements as well as blob counting; on relativistic 
particles – grain and blob counting). 
 
Anica Georgescu:  Scanning, geometry, multiple scattering. 
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Ana Golea:  Manager of  handling the emulsions, planning the operations, keeping the 
reference book on events.  Data integrity and quality control checks on the computer. 
Scanning and  back scanning. 
 
Sabina Herisanu:  Drew almost every events.  Also geometry. 
 
Valeria Mocanu:  Data entry for geometry (until the semi-automatic system was brought into 
function – about 2 years); then data entry for gap counting. 
 
Ala Neagu: Scanning and geometry measurements. 
 
Lidmila Sava:  Scanning and charge measurements by delta ray counting and  photometer. 
 
Cristina Savu:  Scanning and charge measurements by delta ray counting and  photometer.  
Back scanning and  gap counting on light fragments. 
 
Diaconescu Tereza:  Scanning. 
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Mean Characteristics of Events 

1.8 A GeV 40Ar Projectiles in Nuclear Emulsion 

 
  

All events
(Lerman) 

Nh≤ 8 
(Lerman) 

Nh≤ 9 
(Lerman) 

<Nh>  8.9 ± 0.3 2.9±0.1 21.79 ± 0.5 

<ns>   9.8±0.3 6.0±0.2 17.8±0.6 

 <nα>   1.19 ± 0.04 1.17 ± 0.05   1.2 ± 0.05 

 <θs
o>    19.8 ± 0.19 14.5 ± 0.25 23.6 ± 0.26 

 <θαo>     1.9 ± 0.04 1.8 ± 0.05 2.1 ± 0.08 

< ZF,Z>2 > 11.49 ± 0.18 12.0±0.2 8.7 ±  0.36 

 
 
 

As in Chapter 4 

Nh = Nblack + Ngrey 

Ns = Nshower 

Nα= Nalpha 

and from Aleklett et al (1988)  θs
o and θα

o are the critical angles for shower particles and 

alphas respectively; while ZF,Z>2  is the charge of projectile fragments with  Z > 2.  
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<Nh>  All Events 
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<Nh>  Central Region (Nh ≥ 9) 
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 <nα>  All Events  
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 <nα>  Central Region (Nh ≥ 9)  
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 <nα>   (Nh ≤8)  
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 <θαo >  All Events 
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 <θαo >  Central Region (Nh ≥ 9) 
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 <θαo >   (Nh ≤8)  
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 <θs
o > Relativistic Shower Particles  (All Events)   
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 <θs
o > Relativistic Shower Particles in the Central Region (Nh ≥ 9) 
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<θs
o> Relativistic Shower Particles  (Nh ≤8) 
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< ZF,Z>2>  Fragmentation Charges (All Events) 
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< ZF,Z>2>  Fragmentation Charges in the Central Region (Nh ≥ 9) 
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Appendix B 
 

 
Simulation and Programming Details of of the Monte Carlo code BFHL1 

 
 
 
 

 
 
 

 
 

1. Classes of variables found in all versions of BFHL 
 
2. Samples of visualizations of simulated beam trajectories   
 
3. Flowcharts of BFHL 

 
4. Variable List 

 
5. Subroutine List 

 
6. Matrices List 

                                                 
1 BFHL = Berkeley Friedlander Haiduc Lerman  and pronounced ‘baffle’. 
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B.1   Classes of Variables Found in All Versions of BFHL 
 
Overall Target Geometries 

1) Radius and height of cylindrical sectors 

2) Full cylinder made up of sequential cylindrical sectors 

3) Two cylindrical sectors, touching (R0 in figure 6-1 below, scale in cm) 

4) Two cylindrical sectors, apart  (R-20 in figure 6-1 below, scale in cm) 

 
Beam Variables 

1) Number of particles in a pulse 

2) Number of pulses in a ‘run’ 

3) Central coordinates of the beam’s interaction with the face of the target  

4) The dispersion of the Gaussian beam distribution (see Figures 6-1, 6-2, 6-3)  

5) Polar and azimuthal angles of beam’s interaction with target face 

 
Kinematic Variables 

     The total energy Ep and the transverse momentum Pt of shower particles  

 
Interaction Variables 

1) Mean Free Path (absolute values or fitting parameters) 

2) Fragmentation (limited control) 

3) Production Cross-section 

 
Computational Variables 

    Random number generating functions, modulos, seeds, and subsets 

 
Baryon Conservation 

1) Twinned protons (i.e. twinning the shower particles found in each star) 
2) Missing Mass (mass balancing to the atomic number A of each local primary)   

 
Subpopulations 

1) Λ, Ep , σp ,  fragmentation, and other variables  of the nucleus 

2) Percentage of subpopulation 
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B.2 

 
Visualizations (simulated) of 1.8 A GeV 40Ar on Cu Disks  

 
 

Figure B.2a   Experimental set-up and beam propagation for σbeam = 0.1  

Figure B.2b   Experimental set-up and beam propagation for σbeam  = 1.0 

Figure B.2c   Simulation of beam propagation for σbeam  = 0.1  (close-up) 

Figure B.2d   Simulation of beam propagation for σbeam  = 1.0  (close-up) 

Figure B.2e   Beam Distribution on Faceplate of Front Disk σbeam  = 0.1 

Figure B2f   Beam Distribution on Faceplate of Front Disk σbeam  = 2.0 
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Figure B.2a   Experimental set-up and beam propagation for beam profile σbeam = 0.1 
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Figure B.2b   Experimental set-up and beam propagation for beam profile σbeam = 1.0 
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Figure B.2c      Simulations of Argon Beam on Copper Disks (close-up) 
 

Beam Profile Variance σbeam=  0.1 
 

 
 
 
The different charges, or charge classes, are color-coded (red = primary, for example).  
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Figure B.2d         Simulations of Argon Beam on Copper Disks (close-up) 
Beam Profile Variance σbeam= 2 
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Figure B.2e   Simulations of Argon Beam on Faceplate of Copper Disk 

 

X=Y= θ = φ = 0.0001      σbeam = 0.1 
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Figure B.2f   Simulations of Argon Beam on Faceplate of Copper Disk 
 

X=Y= θ =φ = 0.0001       σbeam = 2.0 
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B.3   Variables 
 
 
In more detail, those variables able to be set in a given run include: 
 
 
Particle Variables 

p0 = mean value of  
�
P  used to extract P 

p = PT / sinθ  

sect = cross-section of Na for a given track/particle (Z,E) 

e = kinetic energy of a particle 

d = interaction length of a given particle under consideration 

 

 

Nuclear Interaction Variables 

norm = normalization of 24Na production cross-section  

caplam  = capital lamda (Λ) 

caplam1 = capital lamda-1 (Λ1) of the subpopulation 

XXX = percentage of subpopulation 

b = exponent of Z-dependent mean free path relationship 

 

 

 

Beam Run Variables 

nerr = number of beam runs (also the number from which to extract errors) 
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Target Geometry 

imode, kmode = target configuration 

jmax = maximum number of sectors 

j = number of sector [1,2,3…] 

 

 
 

Beam-Target Interaction Geometry 
 

X0  =  X coordinate of the beam (distribution) center at the face of the target 

Y0  =  Y coordinate of the beam (distribution) center at the face of the target 

sigma = Standard deviation of beam distribution at the face of the target 

tbdeg = polar (theta) angle of beam as whole 

abdeg = azimuthal (phi) angle of beam as whole 

 

 
 
Database Constants  

 
allstars ≡ number of stars in database 

nch = number of different charges (equal to 20) 

nig = max number of generations in database (usually cut at 3) 

z1 ≡ mean free path of charge 1 

 

Computational Variables 

 
DS = number of random numbers extracted before one is selected for use (delayed spin) 
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Important variables internal to the workings of BFHL include: 

Target Variables 

nnjj = maximum number of stars of a given primary (run dependant and used to fix the   

dimensions of  matrices) 

nnst = maximum number of stars in a family (in a given run)  

npr = max number of prongs (relativistic) in  a star  

zp ≡ ‘LOCAL’ primary charge {18-1) 

(neutrons also have  zp=1 in order to have the same history as proton) 

nnk = total number of primary collisions throughout entire TARGET  

nk = counter (running number of “nnK”…  nK=0 → nnK) 

ni = counter in DO loop in number of relativistic prongs for a given star (ordinal) 

 

Star Variables 

1 = current star under investigation 

nst = running identification for which star’s in a family (1st, 2nd, 3rd…) 

ig = generation of a star 

jj = ordinal position of a star with a given charge in the DB as a whole 

rint, rcrt  = radius variables when extracting beam components in BeamStar  ?? 

lp = projected length of a given vector (x,y components) in a given ??? 

vnonr (3) = vector components of a track potentially producing an interaction (star 
frame) 

 
vo (3) = vector components of the origin of star in the lab frame 
 
vr (3) = vector components of the track potentially producing interaction in the lab frame  

centered at the origin  of the star 
 
xc (3) = vector component of the new interaction  in lab-frame 
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B.4  Flowcharts 
 

Computationally, the data flow is outlined below.   

(The numbers in the red boxes are flowcharts that successively follow.)  
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FLOWCHART  #1 
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FLOWCHART  #2 
 
 

d= -λ(Ar) ln u

 (u= uniformly distributed  random  number   [0,1] )

Find  (x,y)  entry  point in Sector  1

Find intersections  with the boundaries  of experimental  geometry

Find effective length between  entry  and  exit points

d < L

STAR

Yes

NO

2.1
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FLOWCHART  #2.1 
 
 

 

rint = - ln(u)

rcrt   =  σ  Sqrt(2 rint) 

azi = Rndm [0, 360]

x = x0 + rcrt  sin(azi)

y= y0 + rcrt  cos(azi)

Return
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FLOWCHART  #3 
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B.5  Subroutines 
 

An examination of the subroutines shows how these variables come into play: 

 
 
calc(ig,zp,jj,l,nst,k)  
 

Establishes existence of “actual” stars (collisions) from all possible virtual stars 
due to trajectories of primary and secondary particles 

 
 
rec_charge (ig,nst,zp,jj)  
 

Correlates secondary charges with local (nst) to become local primaries for stars 
 
 
beam2(coef,xc,k) 
 

Sets up primary 40Ar collision with Cu target, initiating a new impact point for a 
beam primary in the z-direction 

 
 
beam3(x,y) 
 

Generates for a primary beam particle a  Gaussian distribution generated (X,Y) 
point  on the face of the target 

 
 
cos_dir(coef,d) 
 

Calculates direction cosines to improve computational ease and accuracy 
(cartesian coordinates are transformed into polar coordinates)  

 
 
coords(ig,zp,jj,v,vnonr,st) 
 
 Finds the coordinates of a vector which is the track under investigation 
 
 
rotation(l,r) 
 
 Transforms from local coordinate system to lab frame 
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vmult(r,vnonr) 
 
 Applies Rotation Matrix 
 
 
crossing(cr1,cr2,kc,index) 
 
 Finds the crossing points for the target geometry for a given vector 
 
 
plane(i,vz) 
 
 Sets intersection points for the faces of the next sector 
 
 
cil(v1,v2,k) 
 
 Finds virtual exit points on next sector 
 (Called only if doesn’t cross flat faces inside, then must cross side) 
 
 
e(v1,v2) 
 
 General equivalence statement 
 
 
load_mfp(clam) 
 
 Loads and calculates mean free paths 
 
 
init_run() 
 
 All Monte-Carlos use 2 vectors and a matrix, initialized here 
 
 
mark_up(ig,zin,n) 
 
 Short-term memory of which star’s been loaded    
  
 
 
translation(v1,xc) 
 
 Frame of reference translation of coordinates 
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translation1(xc) 
 
 Frame of reference translation of coordinates 
 
 
 
translation2(v1,v2,xc) 
 
 Frame of reference translation of coordinates 
 
 
rec_xyz(i1,xc)  
 

  Recording coordinates of a star in a more general matrix 
 

 
 
test_extb(d,coef,k,xc)  
 

Finds the coordinates of the crossing point coming from outside the sectors for 
beam tracks 
 

 
vnew(d,coef,v)   
 

 Reconstructs a vector from direction cosines and distance 
 

 
test_ext(d,coef,k,xc) 
 
 Another exterior test  
 
 
test_int(d,k,xc) 
 
 Finds the coordinates of the crossing point coming from inside the sectors 
 
 
rec_angle(nst) 
 
 Records angle under the (local) number of the (local) star 
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ini_geom(kmode) 
 
 Sets up geometry of different target configurations 
 
 
cos_beam(coef) 
 
 Sets  direction cosines and other angles used in Rotation Matrix 
 
 
 
cross_sect(ist,gamma,sect,p0) 
 
 Finds cross-section for Na, part I 
 
 
na(p,iz,sect) 
 
 Finds cross-section for Na, part II 
 
 
calcsect 
 
 Internal check 
 
  
LoadStar() 
 
 Loads and counts total number of stars 
  
 
ClearStore() 
 
 Initializes all matrices which will load with stars 
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B.6   Matrices 
 
 
 
While the matrices include: 
 
 
zs (nig,nch,nnjj,npr) = charge of a secondary track (ig, Zp, jj, ni) 
 
stars (nig,nch) = charge and generation distribution of total database 
 
mmat (nig,nch,nnjj) = multiplicity of all relativistic particles in a given star 
 
nhmat (nig,nch,nnjj) = multiplicity of slow fragments in a given star 
 
mark (nig,nch) = keeps a count of where in the database you have already been 

      (which stars have already been imported) 
 

tang (nig,nch,nnjj,npr,2) =  angle (_ _ _ _, 1) = theta  and   angle (_ _ _ _, 2) = azimuthal 
 
anglab (nnst,4)  =  angles transformed back into the lab-frame  

        (stored cos sin that are needed for rotations) 
 
xyz (nnst,3) =  X,Y,Z coordinates of stars 
 
axaz (2,2) = geometry of target 
 
mat (imode,3) = resulting number of stars in each sector  
  
sodium (imode,3) = resulting amount of 24Na in each sector 
 
t (i,k,n)  =  matrix containing total number of stars 
  
ts (i,k) =  matrix for 24Na  
 
sodiu (imat, jmat) = used for internal check…should be equal to matrix ts 
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Appendix   C 
 
 

Simulations of a Cylindrical Target Geometry  

with 

Enhanced Production Cross-Section  

for  

Shower Particles 
 

 

 

 

Models 
 

‘All Shower-Particle’ 

“Wide-Angle Only” 
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    ‘All Shower-Particle’ Models 
 

       Figure C.1   ‘All Shower-Particle’ Models 

       (Composite Results) 
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Figure C.2   ‘All Shower-Particle’ Model 

       (Subpopulation = 10%; Enhancement Factor Q = 100) 
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Figure C.3   ‘All Shower-Particle’ Model 

       (Subpopulations = 10, 20, 30%) 

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25

R-Values 

"All Shower Particle"  Model vs. Experiment

Haase's Experiment
[subpop = 0.1 / Q =100]
[subpop = 0.2 / Q =50]
[subpop = 0.3 / Q =35]

R
-V

al
ue

Cylinder Segment #

 
 
 

 



 C-4

Figure C.4   ‘All Shower-Particle’ Model 

       (Subpopulations = 40, 50, 60%) 
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Figure C.5   ‘All Shower-Particle’ Model 

       (Subpopulation = 70, 80, 90%) 
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Figure C.6   ‘All Shower-Particle’ Model 

(Subpopulation = 100%) 
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“Wide-Angle Only” Models 
 

 

Figure C.7   ‘Wide Angle Only’ Model 

(Subpopulation = 10%) 
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Figure C.8   ‘Wide Angle Only’ Model 

(Subpopulation = 20% at 2 different enhancement factors) 
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Figure C.9   ‘Wide Angle Only’ Model 

(Subpopulation = 30%) 
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Figure C.10   ‘Wide Angle Only’ Model 

(Subpopulation = 40%) 
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Figure C.11   ‘Wide Angle Only’ Model 

(Subpopulation = 50%) 
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Figure C.12   ‘Wide Angle Only’ Model 

(Subpopulation = 60, 70%) 
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Figure C.13   ‘Wide Angle Only’ Model 

(Subpopulation = 80, 90%) 
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Figure C.14   ‘Wide Angle Only’ Model 

Computational Convergence Test 

(Subpopulation = 100%) 
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Figure C.15      Experimental Results vs. Enhanced σp Model Classes 

(1.8 A GeV  40Ar on a Copper Cylinder) 
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Figure C.16     Experimental Results vs Model Classes 

(1.8 A GeV  40Ar on a Copper Cylinder) 
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