Statistical Analysis of Audio Signals using Time-Frequency Analysis

In this thesis, we provide nonparametric estimation of signals corrupted by stationary noise in the white noise model. We derive adaptive and rate-optimal estimators of signals in modulation spaces by thresholding the coefficients obtained from the Gabor expansion. The rates obtained using the class...

Olles dieđut

Furkejuvvon:
Bibliográfalaš dieđut
Váldodahkki: Tafo Noutseche, Idris Pavel
Eará dahkkit: Holzmann, Hajo (Prof. Dr.) (BetreuerIn (Doktorarbeit))
Materiálatiipa: Dissertation
Giella:eaŋgalasgiella
Almmustuhtton: Philipps-Universität Marburg 2023
Fáttát:
Liŋkkat:PDF-ollesdeaksta
Fáddágilkorat: Lasit fáddágilkoriid
Eai fáddágilkorat, Lasit vuosttaš fáddágilkora!
Govvádus
Čoahkkáigeassu:In this thesis, we provide nonparametric estimation of signals corrupted by stationary noise in the white noise model. We derive adaptive and rate-optimal estimators of signals in modulation spaces by thresholding the coefficients obtained from the Gabor expansion. The rates obtained using the classical oracle inequalities of Donoho and Johnstone (1994) exhibit new features that reflect the inclusion of both time and frequency. The scope of our results is extended to alpha-modulation spaces in the one-dimensional setting, allowing a comparison with Sobolev and Besov spaces. To confirm the practical applicability of our methods, we perform extensive simulations. These simulations evaluate the performance of our methods in comparison to state-of-the-art methods over a range of scenarios.
DOI:10.17192/z2023.0666