Medical sciences Medicine Medizin 2018-03-26 121 application/pdf 2018-03-22 p53 ths Prof. Dr. Stiewe Thorsten Stiewe, Thorsten (Prof. Dr.) RETRA monograph Müller, Maximilian Müller Maximilian p73 Targeting the interaction between p53 und p73 in cancer 2018 German Philipps-Universität Marburg Publikationsserver der Universitätsbibliothek Marburg Universitätsbibliothek Marburg RETRA Molekularbiologie und Tumorforschung TP53 ist das in humanen Malignomen am häufigsten mutierte Tumorsuppressorgen (Kandoth et al. 2013). Mutationen des TP53-Gens führen meistens zur Expression von mutierten p53-Proteinen voller Länge, die neben einem Funktionsverlust durch onkogenes Potential charakterisiert sind (Oren + Rotter 2010). Dieses Potential wird unter anderem durch die Interaktion von MUTp53 mit dem Tumorsuppressor TAp73 vermittelt (Como et al. 1999). In Übereinstimmung mit der etablierten Datenlage wurde hier demonstriert, dass mutierte p53-Proteine das Transkriptionspotential von WTp53 und TAp73 hemmen. Durch die Substanz RETRA wird die Interaktion von TAp73 mit MUTp53 aufgehoben und TAp73 transkriptionell reaktiviert (Kravchenko et al. 2008). Bestätigend wurde in dieser Arbeit das durch strukturstabile und strukturinstabile p53-Mutanten gehemmte Transkriptionspotential von TAp73 durch RETRA wiederhergestellt. Darüber hinaus erhöhte RETRA das Transkriptionspotential von TAp73. Ob hierbei ein spezifischer Effekt von RETRA auf die Struktur des C-Terminus oder die transkriptionsinhibitorische Domäne von TAp73 ursächlich ist, bleibt zu klären. In der Behandlung einer heterogenen Auswahl von Tumorzelllinien mit RETRA wurden zum Teil ausgeprägte zytotoxische Effekte beobachtet. Die retrospektive Mutations- und Korrelationsanalyse der Ergebnisse ergab zunächst, dass die gemessene Zytotoxizität unabhängig von p53-Mutationsstatus und verschiedenen strukturbiologischen Eigenschaften von p53 war, die die Interaktion mit TAp73 beeinflussen. Die Auswirkungen von RETRA in den behandelten Tumorzelllinien waren dabei auch nicht von der mRNA-Expression der p73-Isoformen TAp73 und dNp73 abhängig. Dieses Ergebnis ist jedoch wegen der heterogenen Zusammensetzung des behandelten Zelllinienpanels und der begrenzten Aussagekraft der p73-Isoformenquantifizierung auf mRNA-Ebene kritisch zu bewerten. Die RETRABehandlung von Tumorzelllinien in Kombination mit dem Topoisomerase-II-Hemmer Etoposid verursachte in Tumorzelllinien unabhängig des p53-Mutationsstatus ausgeprägte additive zytotoxische Effekte. In MUTp53- und p53-negativen Zelllinien wurde zusätzlich ein deutlicher Wirksynergismus von RETRA und Etoposid gemessen. Das Fehlen eines zytotoxischen Stimulus hat somit möglicherweise zu einem unsystematischen Fehler in der Korrelationsanalyse geführt. Die erhobenen Ergebnisse bestätigen in ihrer Zusammenschau, dass RETRA das Transkriptionspotential von TAp73 wiederherstellen und seine tumorsuppressive Funktion aktivieren kann. Die gemessenen chemosensibilisierenden Eigenschaften qualifizieren RETRA als möglichen Kombinationspartner in der Therapie von malignen Tumoren mit konventionellen Chemotherapeutika. Es sind jedoch weitere Untersuchungen in vitro und in vivo nötig, um die Wirkungsweise von RETRA zu bestätigen. Der Einsatz von RETRA könnte dazu beitragen, therapeutisch nötige Dosierungen verwendeter Zytostatika zu reduzieren, um unerwünschte Arzneinebenwirkungen zu minimieren bzw. die Therapieintensität zu erhöhen. Da TAp73 in humanen Malignomen sehr selten mutiert ist, könnte RETRA zudem zur Überwindung MUTp53-bedingter Resistenz von Malignomen auf Radio- und Chemotherapie beitragen. p73 p53 doctoralThesis https://doi.org/10.17192/z2018.0190 p73 opus:8070 Die Interaktion zwischen p53 und p73 als molekulare Zielstruktur in der Tumortherapie p53 urn:nbn:de:hebis:04-z2018-01906 RETRA Engelmann, D. et al., 2015. A balancing act: orchestrating amino-truncated and full-length p73 variants as decisive factors in cancer progression. Oncogene, 34(33), pp.4287-99. Liang, S.-H., 1999. A Bipartite Nuclear Localization Signal Is Required for p53 Nuclear Import Regulated by a Carboxyl-terminal Domain. Journal of Biological Chemistry, 274(46), pp.32699-32703. Marin, M.C. et al., 2000. A common polymorphism acts as an intragenic modifier of mutant p53 behaviour. Nature genetics, 25(1), pp.47-54. Murray-Zmijewski, F., Slee, E. a + Lu, X., 2008. A complex barcode underlies the heterogeneous response of p53 to stress. Nature reviews. Molecular cell biology, 9(9), pp.702-12. Serber, Z. et al., 2002. A C-Terminal Inhibitory Domain Controls the Activity of p63 by an Intramolecular Mechanism A C-Terminal Inhibitory Domain Controls the Activity of p63 by an Intramolecular Mechanism. Bou-Hanna, C. et al., 2015. Acute cytotoxicity of MIRA-1/NSC19630, a mutant p53-reactivating small molecule, against human normal and cancer cells via a caspase-9-dependent apoptosis. Cancer letters, 359(2), pp.211-7. Tazawa, H., Kagawa, S. + Fujiwara, T., 2013. Advances in adenovirus-mediated p53 cancer gene therapy. Expert opinion on biological therapy, 13(11), pp.1569-83. Rosenbluth, J.M. et al., 2008. A gene signature-based approach identifies mTOR as a regulator of p73. Molecular and cellular biology, 28(19), pp.5951-64. Costa, D.C.F. et al., 2016. Aggregation and Prion-Like Properties of Misfolded Tumor Suppressors: Is Cancer a Prion Disease? Cold Spring Harbor perspectives in biology, 8(10), p.a023614. Cino, E.A. et al., 2016. Aggregation tendencies in the p53 family are modulated by backbone hydrogen bonds. Scientific Reports, 6, p.32535. Junttila, M.R. + Evan, G.I., 2009. p53--a Jack of all trades but master of none. Nature reviews. Cancer, 9(11), pp.821-9. Huarte, M. et al., 2010. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell, 142(3), pp.409-19. Stommel, J.M. et al., 1999. A leucine-rich nuclear export signal in the p53 tetramerization domain: regulation of subcellular localization and p53 activity by NES masking. The EMBO journal, 18(6), pp.1660-72. Yu, X. et al., 2012. Allele-Specific p53 Mutant Reactivation. Cancer Cell, 21(5), pp.614-625. Castillo, J. et al., 2009. Amphiregulin induces the alternative splicing of p73 into its oncogenic isoform DeltaEx2p73 in human hepatocellular tumors. Gastroenterology, 137(5), pp.1805-15-4. Foucquier, J. + Guedj, M., 2015. Analysis of drug combinations: current methodological landscape. Pharmacology research + perspectives, 3(3), p.e00149. Luh, L.M. et al., 2013. Analysis of the oligomeric state and transactivation potential of TAp73α. Cell death and differentiation, 20(8), pp.1008-16. Grochova, D. et al., 2008. Analysis of transactivation capability and conformation of p53 temperature-dependent mutants and their reactivation by amifostine in yeast. Oncogene, 27(9), pp.1243-52. Zhao, W. et al., 2014. A New Bliss Independence Model to Analyze Drug Combination Data. Journal of Biomolecular Screening, 19(5), pp.817-821. Rohaly, G. et al., 2005. A novel human p53 isoform is an essential element of the ATR-intra-S phase checkpoint. Bell, H.S. et al., 2007. A p53-derived apoptotic peptide derepresses p73 to cause tumor regression in vivo. The Journal of clinical investigation, 117(4), pp.1008-18. Elmore, S., 2007. Apoptosis: a review of programmed cell death. Toxicologic pathology, 35(4), pp.495-516. Li, Y. + Prives, C., 2007. Are interactions with p63 and p73 involved in mutant p53 gain of oncogenic function? Quellenverzeichnis Oncogene, 26(15), pp.2220-2225. Warren, R.S. et al., 2013. Association of TP53 mutational status and gender with survival after adjuvant treatment for stage III colon cancer: results of CALGB 89803. Clinical cancer research : an official journal of the American Association for Cancer Research, 19(20), pp.5777-87. Gaiddon, C. et al., 2001. A Subset of Tumor-Derived Mutant Forms of p53 Down-Regulate p63 and p73 through a Direct Interaction with the p53 Core Domain. Society, 21(5), pp.1874-1887. Nicholls, C.D. et al., 2002. Biogenesis of p53 involves cotranslational dimerization of monomers and posttranslational dimerization of dimers. Implications on the dominant negative effect. The Journal of biological chemistry, 277(15), pp.12937-45. Ferlay, J. et al., 2013. Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. European journal of cancer (Oxford, England : 1990), 49(6), pp.1374-403. Bensaad, K. et al., 2003a. Change of conformation of the DNA-binding domain of p53 is the only key element for binding of and interference with p73. Journal of Biological Chemistry, 278(12), pp.10546-10555. Quellenverzeichnis Monti, P. et al., 2003. Characterization of the p53 mutants ability to inhibit p73 beta transactivation using a yeast-based functional assay. Oncogene, 22(34), pp.5252-60. Bruno, T. et al., 2010. Che-1 promotes tumor cell survival by sustaining mutant p53 transcription and inhibiting DNA damage response activation. Cancer cell, 18(2), pp.122-34. Irwin, M.S. et al., 2003. Chemosensitivity linked to p73 function. Cancer cell, 3(4), pp.403-10. Robles, A.I. + Harris, C.C., 2010. Clinical Outcomes and Correlates of TP53 Mutations and Cancer Clinical Outcomes and Correlates of TP53 Mutations and Cancer. Robles, A.I. + Harris, C.C., 2009. Clinical Outcomes and Correlates of TP53 Mutations and Cancer. Cold Spring Harbor Perspectives in Biology, 2(3), pp.a001016-a001016. Hofstetter, G. et al., 2011. Clinical relevance of TAp73 and ΔNp73 protein expression in ovarian cancer: a series of 83 cases and review of the literature. International journal of gynecological pathology : official journal of the International Society of Gynecological Pathologists, 30(6), pp.527-31. Ishimaru, D. et al., 2009. Cognate DNA Stabilizes the Tumor Suppressor p53 and Prevents Misfolding and Quellenverzeichnis Aggregation. Biochemistry, 48(26), pp.6126-6135. Weinberg, R.L. et al., 2005. Comparative binding of p53 to its promoter and DNA recognition elements. Journal of Molecular Biology, 348(3), pp.589-596. Weinberg, R.L., Veprintsev, D.B. + Fersht, A.R., 2004. Cooperative binding of tetrameric p53 to DNA. Journal of Molecular Biology, 341(5), pp.1145-1159. Cho, Y. et al., 1994. Crystal Structure of a p53 Tumor Understanding Tumorigenic Mutations. Science, 265(July). Edlund, K. et al., 2012. Data-driven unbiased curation of the TP53 tumor suppressor gene mutation database and validation by ultradeep sequencing of human tumors. Proceedings of the National Academy of Sciences, 109(24), pp.9551-9556. Qian, Y. et al., 2014. DEC1 Coordinates with HDAC8 to Differentially Regulate TAp73 and ΔNp73 Expression Y. Li, ed. PLoS ONE, 9(1), p.e84015. el-Deiry, W.S. et al., 1992. Definition of a consensus binding site for p53. Nature genetics, 1(1), pp.45-9. Zaika, A.I. et al., 2002. DeltaNp73, a dominant-negative inhibitor of wild-type p53 and TAp73, is up-regulated in human tumors. The Journal of experimental medicine, 196(6), pp.765-80. Petrenko, O., Zaika, A. + Moll, U.M., 2003. deltaNp73 facilitates cell immortalization and cooperates with oncogenic Ras in cellular transformation in vivo. Molecular and cellular biology, 23(16), pp.5540-55. Domínguez, G. et al., 2006. DeltaTAp73 upregulation correlates with poor prognosis in human tumors: putative in vivo network involving p73 isoforms, p53, and E2F-1. Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 24(5), pp.805-15. DeLeo, A.B. + Whiteside, T.L., 2008. Development of multi-epitope vaccines targeting wild-typesequence p53 peptides. Expert Review of Vaccines, 7(7), pp.1031-1040. Di, C. et al., 2015. Diallyl disulfide enhances carbon ion beams-induced apoptotic cell death in cervical cancer cells through regulating Tap73 /ΔNp73. Cell Cycle, 14(23), pp.3725-3733. Sayan, B.S. et al., 2010. Differential control of TAp73 and DeltaNp73 protein stability by the ring finger ubiquitin ligase PIR2. Proceedings of the National Academy of Sciences of the United States of America, 107(29), pp.12877-82. Lain, S. et al., 2008. Discovery, In Vivo Activity, and Mechanism of Action of a Small-Molecule p53 Activator. Cancer Cell, 13(5), pp.454-463. Schlereth, K., Beinoraviciute-Kellner, R., et al., 2010. DNA binding cooperativity of p53 modulates the decision between cell-cycle arrest and apoptosis. Molecular cell, 38(3), pp.356-68. Monti, P. et al., 2011. Dominant-negative features of mutant TP53 in germline carriers have limited impact on cancer outcomes. Molecular cancer research : MCR, 9(3), pp.271-9. Chou, T.-C., 2010. Drug Combination Studies and Their Synergy Quantification Using the Chou-Talalay Method. Cancer Research, 70(2), pp.440-446. Hoe, K.K., Verma, C.S. + Lane, D.P., 2014. Drugging the p53 pathway: understanding the route to clinical efficacy. Nature reviews. Drug discovery, 13(3), pp.217-36. Ang, H.C. et al., 2006. Effects of common cancer mutations on stability and DNA binding of full-length p53 compared with isolated core domains. The Journal of biological chemistry, 281(31), pp.21934-41. Marabese, M. et al., 2005. Effects of inducible overexpression of DNp73α on cancer cell growth and response to treatment in vitro and in vivo. Cell Death and Differentiation, 12(7), pp.805-814. Alqumber, M.A.A. et al., 2014. Evaluating the Association between p53 Codon 72 Arg+gt;Pro Polymorphism and Risk of Ovary Cancer: A Meta-Analysis K. Roemer, ed. PLoS ONE, 9(4), p.e94874. Stratton, M.R., 2011. Exploring the genomes of cancer cells: progress and promise. Science (New York, N.Y.), 331(6024), pp.1553-8. Liu, S.S. et al., 2006. Expression of deltaNp73 and TAp73alpha independently associated with radiosensitivities and prognoses in cervical squamous cell carcinoma. Clinical cancer research : an official journal of the American Association for Cancer Research, 12(13), pp.3922-7. Wang, G. + Fersht, a. R., 2012. First-order rate-determining aggregation mechanism of p53 and its implications. Proceedings of the National Academy of Sciences, 109(34), pp.13590-13595. Dunker, a K. et al., 2005. Flexible nets. The roles of intrinsic disorder in protein interaction networks. The FEBS journal, 272(20), pp.5129-48. Butler, J.S. + Loh, S.N., 2006. Folding and misfolding mechanisms of the p53 DNA binding domain at physiological temperature. , pp.2457-2465. Lubin, D.J., Butler, J.S. + Loh, S.N., 2010. Folding of tetrameric p53: oligomerization and tumorigenic mutations induce misfolding and loss of function. Journal of molecular biology, 395(4), pp.705-16. Li, D. et al., 2011. Functional Inactivation of Endogenous MDM2 and CHIP by HSP90 Causes Aberrant Stabilization of Mutant p53 in Human Cancer Cells. Molecular Cancer Research, 9(5), pp.577-588. Function Is Inhibited by Tumor-Derived p53 Mutants in Mammalian Cells. , 19(2). Logotheti, S. et al., 2013. Functions, divergence and clinical value of TAp73 isoforms in cancer. Cancer metastasis reviews, 32(c), pp.511-34. Dittmer, D. et al., 1993. Gain of function mutations in p53. Nature genetics, 4(1), pp.42-6. Lang, G. a et al., 2004. Gain of function of a p53 hot spot mutation in a mouse model of Li-Fraumeni syndrome. Xu, J. et al., 2011. Gain of function of mutant p53 by coaggregation with multiple tumor suppressors. Nature chemical biology, 7(5), pp.285-95. Dahabreh, I.J. et al., 2013. Genotype misclassification in genetic association studies of the rs1042522 TP53 (Arg72Pro) polymorphism: a systematic review of studies of breast, lung, colorectal, ovarian, and endometrial cancer. American journal of epidemiology, 177(12), pp.1317-25. Hanahan, D. + Weinberg, R. a, 2011. Hallmarks of cancer: the next generation. Cell, 144(5), pp.646-74. Lucena-Araujo, A.R. et al., 2015. High ΔNp73/TAp73 ratio is associated with poor prognosis in acute promyelocytic leukemia. Blood, 126(20), pp.2302-6. Wong, K.B. et al., 1999. Hot-spot mutants of p53 core domain evince characteristic local structural changes. Proceedings of the National Academy of Sciences of the United States of America, 96(15), pp.8438-42. Chan, W.M. et al., 2004. How Many Mutant p53 Molecules Are Needed To Inactivate a Tetramer ? Society, 24(8), pp.3536-3551. McLure, K.G. + Lee, P.W., 1998. How p53 binds DNA as a tetramer. The EMBO journal, 17(12), pp.3342-50. Grob, T.J. et al., 2001. Human delta Np73 regulates a dominant negative feedback loop for TAp73 and p53. Cell death and differentiation, 8(12), pp.1213-23. Cai, Y. et al., 2012. iASPP inhibits p53-independent apoptosis by inhibiting transcriptional activity of p63/p73 on promoters of proapoptotic genes. Apoptosis : an international journal on programmed cell death, 17(8), pp.777-83. Walker, K.K. + Levine, A.J., 1996. Identification of a novel p53 functional domain that is necessary for efficient growth suppression. Proceedings of the National Academy of Sciences, 93(26), pp.15335-15340. Vermeij, R. et al., 2011. Immunological and clinical effects of vaccines targeting p53-overexpressing malignancies. Journal of biomedicine + biotechnology, 2011, p.702146. Petitjean, A. et al., 2007. Impact of Mutant p53 Functional Properties on TP53 Mutation Patterns and Tumor Phenotype : Lessons from Recent Developments in the IARC TP53 Database. Human Mutation, 28(February), pp.622-629. Alexandrova, E.M. et al., 2015. Improving survival by exploiting tumour dependence on stabilized mutant p53 for treatment. Nature, 523(7560), pp.352-6. Tada, M. et al., 2001. Inactivate the remaining p53 allele or the alternate p73? Preferential selection of the Arg72 polymorphism in cancers with recessive p53 mutants but not transdominant mutants. Carcinogenesis, 22(3), pp.515-7. Dearth, L.R. et al., 2007. Inactive full-length p53 mutants lacking dominant wild-type p53 inhibition highlight loss of heterozygosity as an important aspect of p53 status in human cancers. Carcinogenesis, 28(2), pp.289-98. Koida, N. et al., 2008. Inhibitory role of Plk1 in the regulation of p73-dependent apoptosis through physical interaction and phosphorylation. The Journal of biological chemistry, 283(13), pp.8555-63. Kehrloesser, S. et al., 2016a. Intrinsic aggregation propensity of the p63 and p73 TI domains correlates with p53R175H interaction and suggests further significance of aggregation events in the p53 family. Cell Death and Differentiation, 23(12), pp.1952-1960. Vassilev, L.T. et al., 2004. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science (New York, N.Y.), 303(5659), pp.844-8. Sabatino, M.A., Previdi, S. + Broggini, M., 2007. In vivo evaluation of the role of DNp73α protein in regulating the p53-dependent apoptotic pathway after treatment with cytotoxic drugs. International Journal of Cancer, 120(3), pp.506-513. Grabovsky, Y. + Tallarida, R.J., 2004. Isobolographic analysis for combinations of a full and partial agonist: curved isoboles. The Journal of pharmacology and experimental therapeutics, 310(3), pp.981-986. Wilhelm, M.T. et al., 2010. Isoform-specific p73 knockout mice reveal a novel role for delta Np73 in the DNA damage response pathway. Genes + development, 24(6), pp.549-60. Shiraishi, K. et al., 2004. Isolation of temperature-sensitive p53 mutations from a comprehensive missense mutation library. The Journal of biological chemistry, 279(1), pp.348-55. Li, Y. et al., 2015. Key points of basic theories and clinical practice in rAd-p53 ( Gendicine TM ) gene therapy for solid malignant tumors. Expert opinion on biological therapy, 15(3), pp.437-54. Friedler, A. et al., 2003. Kinetic instability of p53 core domain mutants: implications for rescue by small molecules. The Journal of biological chemistry, 278(26), pp.24108-12. Schlereth, K., Charles, J.P., et al., 2010. Life or death: p53-induced apoptosis requires DNA binding cooperativity. Cell Cycle, 9(20), pp.4068-4076. de las Alas, M.M. et al., 1997. Loss of DNA mismatch repair: effects on the rate of mutation to drug resistance. Journal of the National Cancer Institute, 89(20), pp.1537-41. Watson, I.R. et al., 2006. Mdm2-mediated NEDD8 modification of TAp73 regulates its transactivation function. The Journal of biological chemistry, 281(45), pp.34096-103. Kubo, N. et al., 2010. MDM2 promotes the proteasomal degradation of p73 through the interaction with Itch in HeLa cells. Biochemical and biophysical research communications, 403(3-4), pp.405-11. Zeng, X. et al., 1999. MDM2 suppresses p73 function without promoting p73 degradation. Molecular and cellular biology, 19(5), pp.3257-66. Mateu, M.G., Sánchez Del Pino, M.M. + Fersht, a R., 1999. Mechanism of folding and assembly of a small tetrameric protein domain from tumor suppressor p53. Nature structural biology, 6(2), pp.191-8. Wang, G. + Fersht, A.R., 2015. Mechanism of initiation of aggregation of p53 revealed by Φ-value analysis. Proceedings of the National Academy of Sciences, 112(8), pp.2437-2442. Di, C. et al., 2013. Mechanisms, function and clinical applications of DNp73. Cell cycle (Georgetown, Tex.), 12(12), pp.1861-7. Karran, P., 2001. Mechanisms of tolerance to DNA damaging therapeutic drugs. Carcinogenesis, 22(12), pp.1931-1937. Donehower, L.A. et al., 1992. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature, 356(6366), pp.215-21. Kruse, J.-P.P. + Gu, W., 2009. Modes of p53 regulation. Cell, 137(4), pp.609-22. Bougeard, G. et al., 2008. Molecular basis of the Li-Fraumeni syndrome: an update from the French LFS families. Journal of medical genetics, 45(8), pp.535-8. Montecucco, A., Zanetta, F. + Biamonti, G., 2015. Molecular mechanisms of etoposide. EXCLI journal, 14, pp.95-108. Kaghad, M. et al., 1997. Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers. Cell, 90(4), pp.809-19. Strano, S. et al., 2007. Mutant p53: an oncogenic transcription factor. Oncogene, 26(15), pp.2212-9. Oren, M. + Rotter, V., 2010. Mutant p53 gain-of-function in cancer. Cold Spring Harbor perspectives in biology, 2(2), p.a001107. Olive, K.P. et al., 2004. Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome. Cell, 119(6), pp.847-60. Solomon, H. et al., 2011. Mutant p53 gain of function is interwoven into the hallmarks of cancer. , pp.475-478. Freed-Pastor, W.A. + Prives, C., 2012. Mutant p53 : one name , many proteins. Genes + development, 26(12), pp.1268-1286. Bykov, V.J.N. + Wiman, K.G., 2014. Mutant p53 reactivation by small molecules makes its way to the clinic. FEBS Letters, 588(16), pp.2622-2627. Kandoth, C. et al., 2013. Mutational landscape and significance across 12 major cancer types. Nature, 502(7471), pp.333-9. Xu-Monette, Z.Y. et al., 2012. Mutational profile and prognostic significance of TP53 in diffuse large B-cell lymphoma patients treated with R-CHOP: report from an International DLBCL Rituximab-CHOP Consortium Program Study. Blood, 120(19), pp.3986-96. Mosner, J. et al., 1995. Negative feedback regulation of wild-type p53 biosynthesis. The EMBO journal, 14(18), pp.4442-9. Klein, C. et al., 2001. NMR spectroscopy reveals the solution dimerization interface of p53 core domains bound to their consensus DNA. The Journal of biological chemistry, 276(52), pp.49020-7. Lee, E.Y.H.P. + Muller, W.J., 2010. Oncogenes and tumor suppressor genes. Cold Spring Harbor perspectives in biology, 2(10), p.a003236. Kern, S.E. et al., 1992. Oncogenic forms of p53 inhibit p53-regulated gene expression. Science (New York, N.Y.), 256(5058), pp.827-30. Müller, M. et al., 2006. One, two, three-p53, p63, p73 and chemosensitivity. Drug Resistance Updates, 9(6), pp.288-306. He, H. et al., 2016. p53 and p73 Regulate Apoptosis but Not Cell-Cycle Progression in Mouse Embryonic Stem Cells upon DNA Damage and Differentiation. Stem Cell Reports, 7(6), pp.1087-1098. Duffy, M.J. et al., 2014. P53 as a target for the treatment of cancer. Cancer Treatment Reviews, 40(10), pp.1153- 1160. Zhou, Y. et al., 2007. P53 codon 72 polymorphism and gastric cancer: A meta-analysis of the literature. International Journal of Cancer, 121(7), pp.1481-1486. Bell, S. et al., 2002. p53 Contains Large Unstructured Regions in its Native State. Journal of Molecular Biology, 322(5), pp.917-927. Timofeev, O. et al., 2013. p53 DNA binding cooperativity is essential for apoptosis and tumor suppression in vivo. Cell reports, 3(5), pp.1512-25. Thanos, C.D. + Bowie, J.U., 1999. p53 Family members p63 and p73 are SAM domain-containing proteins. Protein science : a publication of the Protein Society, 8(8), pp.1708-10. Cairns, C. a + White, R.J., 1998. p53 is a general repressor of RNA polymerase III transcription. The EMBO journal, 17(11), pp.3112-23. Bourdon, J.-C. et al., 2005. P53 Isoforms Can Regulate P53 Transcriptional Activity. Genes + development, 19(18), pp.2122-37. Chène, P. + Bechter, E., 1999. p53 mutants without a functional tetramerisation domain are not oncogenic. Journal of molecular biology, 286(5), pp.1269-74. Hollstein, M. et al., 1991. p53 mutations in human cancers. Science (New York, N.Y.), 253(5015), pp.49-53. Bergamaschi, D. et al., 2003. P53 Polymorphism Influences Response in Cancer Chemotherapy Via Modulation of P73-Dependent Apoptosis. Cancer cell, 3(4), pp.387-402. Whibley, C., Pharoah, P.D.P. + Hollstein, M., 2009. P53 Polymorphisms: Cancer Implications. Nat Rev Cancer, 9(2), pp.95-107. Kim, H. et al., 2012. p53 requires an intact C-terminal domain for DNA binding and transactivation. Journal of molecular biology, 415(5), pp.843-54. Lane, D. + Levine, A., 2010. p53 Research: the past thirty years and the next thirty years. Cold Spring Harbor perspectives in biology, 2(12), p.a000893. Moll, U.M. + Slade, N., 2004. P63 and P73: Roles in Development and Tumor Formation. Molecular cancer research : MCR, 2(7), pp.371-86. Dötsch, V. et al., 2010. P63 and P73, the Ancestors of P53. Cold Spring Harbor perspectives in biology, 2(9), p.a004887. Davison, T.S., 1999. p73 and p63 Are Homotetramers Capable of Weak Heterotypic Interactions with Each Other but Not with p53. Journal of Biological Chemistry, 274(26), pp.18709-18714. Yang, A. et al., 2000. p73-deficient mice have neurological, pheromonal and inflammatory defects but lack spontaneous tumours. Nature, 404(6773), pp.99-103. Melino, G., De Laurenzi, V. + Vousden, K.H., 2002. p73: Friend or foe in tumorigenesis. Nature reviews. Cancer, 2(8), pp.605-15. Vayssade, M. et al., 2005. P73 functionally replaces p53 in Adriamycin-treated, p53-deficient breast cancer cells. International Journal of Cancer, 116(6), pp.860-869. Jost, C. a, Marin, M.C. + Kaelin, W.G., 1997. P73 Is a Simian [Correction of Human] P53-Related Protein That Can Induce Apoptosis. Nature, 389(6647), pp.191-194. Becker, K. et al., 2006. Patterns of p73 N-terminal isoform expression and p53 status have prognostic value in gynecological cancers. International journal of oncology, 29(4), pp.889-902. Wiman, K.G., 2010. Pharmacological reactivation of mutant p53: from protein structure to the cancer patient. Sang, M. et al., 2009. Plk3 inhibits pro-apoptotic activity of p73 through physical interaction and phosphorylation. Genes to cells : devoted to molecular + cellular mechanisms, 14(7), pp.775-88. Sullivan, A. et al., 2004. Polymorphism in wild-type p53 modulates response to chemotherapy in vitro and in vivo. Oncogene, 23(19), pp.3328-37. Hrstka, R., Coates, P.J. + Vojtesek, B., 2009. Polymorphisms in p53 and the p53 pathway: roles in cancer susceptibility and response to treatment. Journal of cellular and molecular medicine, 13(3), pp.440-53. Ishimoto, O. et al., 2002. Possible Oncogenic Potential of ∆ Np73 : A Newly Identified Isoform of Human p73 Advances in Brief. , pp.636-641. Meek, D.W. + Anderson, C.W., 2009. Posttranslational modification of p53: cooperative integrators of function. Cold Spring Harbor perspectives in biology, 1(6), p.a000950. Saha, M.N. et al., 2013. PRIMA-1Met/APR-246 displays high antitumor activity in multiple myeloma by induction of p73 and Noxa. Molecular cancer therapeutics, 12(11), pp.2331-41. Rökaeus, N. et al., 2010. PRIMA-1(MET)/APR-246 targets mutant forms of p53 family members p63 and p73. Ma, B. + Levine, A.J., 2007. Probing potential binding modes of the p53 tetramer to DNA based on the symmetries encoded in p53 response elements. Nucleic acids research, 35(22), pp.7733-47. Hong, B. et al., 2014. Prodigiosin rescues deficient p53 signaling and antitumor effects via upregulating p73 and disrupting its interaction with mutant p53. Cancer research, 74(4), pp.1153-65. Bullock, a N., Henckel, J. + Fersht, a R., 2000. Quantitative analysis of residual folding and DNA binding in mutant p53 core domain: definition of mutant states for rescue in cancer therapy. Oncogene, 19(10), pp.1245-56. Wong, S.W. et al., 2011. Rapamycin synergizes cisplatin sensitivity in basal-like breast cancer cells through up- regulation of p73. Breast cancer research and treatment, 128(2), pp.301-13. Soussi, T. et al., 2005. Reassessment of the TP53 mutation database in human disease by data mining with a library of TP53 missense mutations. Human mutation, 25(1), pp.6-17. Santag, S. et al., 2013. Recruitment of the tumour suppressor protein p73 by Kaposi's Sarcoma Herpesvirus latent nuclear antigen contributes to the survival of primary effusion lymphoma cells. Oncogene, 32(32), pp.3676-3685. Wang, Bei, Z. Xiao, E.C.R. et al., 2009. Redefining the p53 response element. Proceedings of the National Academy of Sciences, 106(39), pp.16890-16890. Weinberg, R.L. et al., 2004. Regulation of DNA binding of p53 by its C-terminal domain. Journal of molecular biology, 342(3), pp.801-11. Conforti, F. et al., 2012. Regulation of p73 activity by post-translational modifications. Cell death + disease, 3(3), p.e285. Oberst, A. et al., 2005. Regulation of the p73 protein stability and degradation. Biochemical and Biophysical Research Communications, 331(3), pp.707-712. Conforti, F. et al., 2012. Relative expression of TAp73 and Δ Np73 isoforms. , 4(3), pp.202-205. Bykov, V.J.N. et al., 2002. Restoration of the tumor suppressor function to mutant p53 by a low-molecular- weight compound. Nature medicine, 8(3), pp.282-8. Sonnemann, J. et al., 2015. RETRA exerts anticancer activity in Ewing's sarcoma cells independent of their TP53 status. European Journal of Cancer, 51(7), pp.841-851. Ishimaru, D. et al., 2004. Reversible aggregation plays a crucial role on the folding landscape of p53 core domain. Biophysical journal, 87(4), pp.2691-700. Lee, A.S. et al., 2003. Reversible Amyloid Formation by the p53 Tetramerization Domain and a Cancer- associated Mutant. Journal of Molecular Biology, 327(3), pp.699-709. Stiewe, T. + Pützer, B.M., 2000. Role of the p53-homologue p73 in E2F1-induced apoptosis. Nature genetics, 26(4), pp.464-9. Vogel, C. et al., 2010. Sequence signatures and mRNA concentration can explain two-thirds of protein abundance variation in a human cell line. Molecular systems biology, 6(1), p.400. Soussi, T. + Wiman, K.G.K., 2007. Shaping genetic alterations in human cancer: the p53 mutation paradigm. Cancer cell, 12(4), pp.303-12. Kravchenko, J.E. et al., 2008. Small-molecule RETRA suppresses mutant p53-bearing cancer cells through a p73-dependent salvage pathway. Proceedings of the National Academy of Sciences of the United States of Issaeva, N. et al., 2004. Small molecule RITA binds to p53, blocks p53-HDM-2 interaction and activates p53 function in tumors. Nature medicine, 10(12), pp.1321-8. Cañadillas, J.M.P. et al., 2006. Solution structure of p53 core domain: structural basis for its instability. Proceedings of the National Academy of Sciences of the United States of America, 103(7), pp.2109-14. Lee, W. et al., 1994. Solution structure of the tetrameric minimum transforming domain of p53. Nature Structural Biology, 1(12), pp.877-890. Peltonen, J.K. et al., 2011. Specific TP53 mutations predict aggressive phenotype in head and neck squamous cell carcinoma: a retrospective archival study. Head + neck oncology, 3, p.20. Brandt, T. et al., 2012. Stability of p53 Homologs D. D. Jones, ed. PLoS ONE, 7(10), p.e47889. Brown, C.J. et al., 2013. Stapled Peptides with Improved Potency and Specificity That Activate p53. ACS Chemical Biology, 8(3), pp.506-512. Joerger, A.C., Ang, H.C. + Fersht, A.R., 2006. Structural basis for understanding oncogenic p53 mutations and designing rescue drugs. Proceedings of the National Academy of Sciences of the United States of America, 103(41), pp.15056-61. Kitayner, M. et al., 2006. Structural Basis of DNA Recognition by p53 Tetramers. Molecular Cell, 22(6), Quellenverzeichnis pp.741-753. Joerger, A.C. + Fersht, A.R., 2008. Structural biology of the tumor suppressor p53. Annual review of biochemistry, 77, pp.557-82. Joerger, A.C. et al., 2009. Structural evolution of p53, p63, and p73: implication for heterotetramer formation. Proceedings of the National Academy of Sciences of the United States of America, 106(42), pp.17705-10. Yoon, M.-K. et al., 2015. Structure and apoptotic function of p73. BMB reports, 48(2), pp.81-90. Fersht, A., 1999. Structure and mechanism in protein science :a guide to enzyme catalysis and protein folding, Floquet, C. et al., 2011. Rescue of non-sense mutated p53 tumor suppressor gene by aminoglycosides. Nucleic acids research, 39(8), pp.3350-62. Joerger, a C. + Fersht, a R., 2007. Structure-function-rescue: the diverse nature of common p53 cancer mutants. Ethayathulla, A.S. et al., 2012. Structure of p73 DNA-binding domain tetramer modulates p73 transactivation. Proceedings of the National Academy of Sciences of the United States of America, 109(16), pp.6066-71. Joerger, A.C. et al., 2005. Structures of p53 cancer mutants and mechanism of rescue by second-site suppressor mutations. The Journal of biological chemistry, 280(16), pp.16030-7. Vogelstein, B., Lane, D. + Levine, a J., 2000. Surfing the p53 network. Nature, 408(6810), pp.307-10. Müller, M. et al., 2005. TAp73/Delta Np73 influences apoptotic response, chemosensitivity and prognosis in hepatocellular carcinoma. Cell death and differentiation, 12(12), pp.1564-77. Tomasini, R. et al., 2008. TAp73 knockout shows genomic instability with infertility and tumor suppressor functions. Genes + Development, pp.2677-2691. Gouas, D., Shi, H. + Hainaut, P., 2009. The aflatoxin-induced TP53 mutation at codon 249 (R249S): biomarker of exposure, early detection and target for therapy. Cancer letters, 286(1), pp.29-37. Dulloo, I. et al., 2010. The antiapoptotic DeltaNp73 is degraded in a c-Jun-dependent manner upon genotoxic stress through the antizyme-mediated pathway. Proceedings of the National Academy of Sciences of the United States of America, 107(11), pp.4902-7. Olivier, M. et al., 2006. The clinical value of somatic TP53 gene mutations in 1,794 patients with breast cancer. Clinical cancer research : an official journal of the American Association for Cancer Research, 12(4), pp.1157-67. Soldevilla, B. et al., 2013. The complex network: Ready for clinical translation in cancer? Genes, Chromosomes and Cancer, 52(11), pp.989-1006. Straub, W.E., Weber, T.A., et al., 2010. The C-terminus of p63 contains multiple regulatory elements with different functions. Cell Death and Disease, 1(1), p.e5. Straub, W.E., Weber, T. a, et al., 2010. The C-terminus of p63 contains multiple regulatory elements with different functions. Cell death + disease, 1, p.e5. Di Agostino, S. et al., 2008. The disruption of the protein complex mutantp53/p73 increases selectively the response of tumor cells to anticancer drugs. Cell Cycle, 7(November), pp.3440-7. Menendez, D., Inga, A. + Resnick, M. a, 2009. The expanding universe of p53 targets. Nature reviews. Cancer, 9(10), pp.724-37. Leung, T.H.-Y. et al., 2013. The interaction between C35 and ΔNp73 promotes chemo-resistance in ovarian cancer cells. British Journal of Cancer, 109(4), pp.965-975. Peirce, S.K. + Findley, H.W., 2009. The MDM2 antagonist nutlin-3 sensitizes p53-null neuroblastoma cells to doxorubicin via E2F1 and TAp73. International journal of oncology, 34(5), pp.1395-402. Momand, J. et al., 1992. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53- mediated transactivation. Cell, 69(7), pp.1237-45. Loh, S.N., 2010. The missing zinc: p53 misfolding and cancer. Metallomics : integrated biometal science, 2(7), pp.442-9. Wade, M., Wang, Y. V + Wahl, G.M., 2010. The p53 orchestra: Mdm2 and Mdmx set the tone. Trends in cell biology, 20(5), pp.299-309. Levrero, M. et al., 2000. The p53/p63/p73 family of transcription factors: overlapping and distinct functions. Journal of cell science, 113 ( Pt 1, pp.1661-70. Zhu, J. et al., 1998. The potential tumor suppressor p73 differentially regulates cellular p53 target genes. Cancer research, 58(22), pp.5061-5. Bullock, A.N. et al., 1997. Thermodynamic stability of wild-type and mutant p53 core domain. Proceedings of the National Academy of Sciences of the United States of America, 94(26), pp.14338-42. Chène, P. + Che, P., 2001. The role of tetramerization in p53 function. Oncogene, 393(21), pp.2611-2617. Joerger, A.C. + Fersht, A.R., 2010. The Tumor Suppressor p53 : From Structures to Drug Discovery The Tumor Suppressor p53 : From Structures to Drug Discovery. Lu, X., 2010. Tied Up in Loops : Positive and Negative Autoregulation of p53 Tied Up in Loops : Positive and Negative Autoregulation of p53. Basse, N., Kaar, J.L., et al., 2010. Toward the Rational Design of p53-Stabilizing Drugs: Probing the Surface of the Oncogenic Y220C Mutant. Chemistry + Biology, 17(1), pp.46-56. Dahabreh, I.J. et al., 2010. TP53 Arg72Pro Polymorphism and Colorectal Cancer Risk: A Systematic Review and Meta-Analysis. Cancer Epidemiology Biomarkers + Prevention, 19(7), pp.1840-1847. Leroy, B., Anderson, M. + Soussi, T., 2014. TP53 mutations in human cancer: database reassessment and prospects for the next decade. Human mutation, 35(6), pp.672-88. Petitjean, a et al., 2007. TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. Oncogene, 26(191170), pp.2157-2165. Matakidou, A., Eisen, T. + Houlston, R.S., 2003. TP53 polymorphisms and lung cancer risk: a systematic review and meta-analysis. Mutagenesis, 18(4), pp.377-85. Bouaoun, L. et al., 2016. TP53 Variations in Human Cancers: New Lessons from the IARC TP53 Database and Genomics Data. Human mutation, 37(9), pp.865-76. Stiewe, T., Zimmermann, S., et al., 2002. Transactivation-deficient DeltaTA-p73 acts as an oncogene. Cancer research, 62(13), pp.3598-3602. Quellenverzeichnis Stiewe, T., Theseling, C.C., et al., 2002. Transactivation-deficient Delta TA-p73 inhibits p53 by direct competition for DNA binding: implications for tumorigenesis. The Journal of biological chemistry, 277(16), pp.14177-14185. Riley, T. et al., 2008. Transcriptional control of human p53-regulated genes. Nature reviews. Molecular cell biology, 9(5), pp.402-12. Lai, J. et al., 2014. Transcriptional regulation of the p73 gene by Nrf-2 and promoter CpG methylation in human breast cancer. Oncotarget, 5(16), pp.6909-22. Flores, E.R. et al., 2005. Tumor predisposition in mice mutant for p63 and p73: evidence for broader tumor suppressor functions for the p53 family. Cancer cell, 7(4), pp.363-73. Zilfou, J.T. + Lowe, S.W., 2009. Tumor suppressive functions of p53. Cold Spring Harbor perspectives in biology, 1(5), p.a001883. Weinberg, R.A., 1991. Tumor suppressor genes. Science (New York, N.Y.), 254(5035), pp.1138-46. Feng, Z. et al., 2011. Tumor suppressor p53 meets microRNAs. Journal of molecular cell biology, 3(1), pp.44- 50. De Laurenzi, V. et al., 1998. Two new p73 splice variants, gamma and delta, with different transcriptional activity. The Journal of experimental medicine, 188(9), pp.1763-8. Kato, S., Han, S.-Y., et al., 2003. Understanding the function-structure and function-mutation relationships of p53 tumor suppressor protein by high-resolution missense mutation analysis. Proceedings of the National Academy of Sciences of the United States of America, 100(14), pp.8424-9. Solomon, H. et al., 2012. Various p53 mutant proteins differently regulate the Ras circuit to induce a cancer- related gene signature. Journal of cell science, 125(Pt 13), pp.3144-52. Farmer, G. et al., 1992. Wild-type p53 activates transcription in vitro. Nature, 358(6381), pp.83-6. Chang, N.-S. et al., 2005. WOX1 is essential for tumor necrosis factor-, UV light-, staurosporine-, and p53- mediated cell death, and its tyrosine 33-phosphorylated form binds and stabilizes serine 46-phosphorylated p53. The Journal of biological chemistry, 280(52), pp.43100-8. Chaudhary, N. + Maddika, S., 2014. WWP2-WWP1 ubiquitin ligase complex coordinated by PPM1G maintains the balance between cellular p73 and ΔNp73 levels. Molecular and cellular biology, 34(19), pp.3754-64. 2018-03-06 Medizin TP53 is the most frequently mutated tumor suppressor gene in human cancer (Kandoth et al. 2013). TP53 mutations cause the expression of full length p53 proteins that are characterized not only by a loss of function but which also exert additional oncogenic features (Oren + Rotter 2010). They are caused in part by the inhibitory interaction of MUTp53 with the tumor suppressor TAp73 (Como et al. 1999). In accordance with established data, here it was demonstrated that mutated p53 proteins inhibit the transcriptional potential of WTp53 and TAp73. The small molecule RETRA disrupts the MUTp53- TAp73 interaction and thereby reactivates transcriptional functions of TAp73 (Kravchenko et al. 2008). In agreement, the transcriptional potential of TAp73 inhibited by mutated structurally stable and unstable p53 proteins was restored by RETRA. Moreover, RETRA increased the transcriptional potential of TAp73 itself. Whether this was the result of a specific RETRA-mediated effect on the structure of the TAp73 C-terminus or transcription inhibitory domain remains to be elucidated. During treatment of a heterogenous panel of tumor cell lines with RETRA varying cytotoxic effects were observed. Retrospectively, analyses of the treated cell lines revealed that the cytotoxicity caused by RETRA was independent of the p53 mutational status and structural features of p53 that influence the MUTp53/TAp73 interaction. There was no correlation with the mRNA expression of TAp73 and dNp73 in the treated cell lines. Yet, this has to be appraised with caution since the treated cell line panel was highly heterogeneous and quantifying the expression of the p73 isoforms at the mRNA level is of limited predictive value in respect to their functional status. The combined treatment of tumor cell lines with RETRA and etoposide, an inhibitor of topoisomerase II, caused additive cytotoxic effects independent of their p53 mutational status. In addition, in MUTp53-expressing or p53 negative cell lines synergistic effects of RETRA and etoposide were observed. Retrospectively, the lack of a cytotoxic stimulus might have caused a random error during the conducted correlation analysis. The presented data confirm the hypothesis that RETRA can reactivate the transcriptional and tumor suppressive activity of TAp73. Additional research in vitro and in vivo is needed to confirm RETRA’s suspected mechanism of action. This could put forward the idea of combining chemosensitizing features of RETRA with conventional chemotherapeutics in the treatment of malignant tumors. This would also provide a possibility to reduce established doses of chemotherapeutics to minimize side effects or to intensify cancer treatment. Additionally, because TAp73 is only rarely mutated in human cancer RETRA may contribute to overcome radio- and chemoresistance mediated by p53 mutations. https://archiv.ub.uni-marburg.de/diss/z2018/0190/cover.png