Über Borelunteralgebren von Quantengruppen

Diese Arbeit beschäftigt sich mit der Klassifikation aller Rechtscoidealunteralgebren C der Quantengruppen bei generischem q, mit der folgenden Eigenschaft: Alle endlichdimensionalen irreduziblen Darstellungen von C sind eindimensional und C ist maximal mit dieser Eigenschaft. Solche Rechtscoidealun...

Full description

Saved in:
Bibliographic Details
Main Author: Vocke, Karolina
Contributors: Heckenberger, Istvan (Prof.) (Thesis advisor)
Format: Dissertation
Language:German
Published: Philipps-Universität Marburg 2016
Mathematik und Informatik
Subjects:
Online Access:PDF Full Text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Diese Arbeit beschäftigt sich mit der Klassifikation aller Rechtscoidealunteralgebren C der Quantengruppen bei generischem q, mit der folgenden Eigenschaft: Alle endlichdimensionalen irreduziblen Darstellungen von C sind eindimensional und C ist maximal mit dieser Eigenschaft. Solche Rechtscoidealunteralgebren nennen wir Borelunteralgebren. Zunächst konstruieren wir eine spezielle Wahl von Erzeugern von einer beliebigen Rechtscoidealunteralgebra. Dann klassifizieren wir unter gewissen Einschränkungen die triangulären Borelunteralgebren unter Verwendung der graduierten Algebra gr(C). Wir formulieren eine Vermutung über die Gestalt beliebiger Borelunteralgebren. Zuletzt arbeiten wir explizit alle Borelunteralgebren der Uq(sl2) und Uq(sl3) ohne Einschränkungen sowie alle triangulären Borelunteralgebren der Uq(sl4) aus.
Physical Description:154 pages.
DOI:https://doi.org/10.17192/z2016.0660