Finite dimensional Nichols algebras of diagonal type over fields of positive characteristic

In this thesis we classify the rank 2 and rank 3 Nichols algebras of diagonal type with a finite root system over fields of positive characteristic.

Saved in:
Bibliographic Details
Main Author: Wang, Jing
Contributors: Heckenberger, Istvan (Prof.Dr.) (Thesis advisor)
Format: Dissertation
Language:English
Published: Philipps-Universität Marburg 2016
Reine und Angewandte Mathematik
Subjects:
Online Access:PDF Full Text
Tags: Add Tag
No Tags, Be the first to tag this record!

1. Cuntz, M. and Heckenberger I., Re ection groupoids of rank two and Cluster algebras of type A, Combin. Theory Ser. A. 118 (2011), no. 4, 1350-1363. arXiv: 0911.3051.


2. Andruskiewitsch, N.: About nite dimensional Hopf algebras. In Quantum symmetries in theoretical physics and mathematics (Bariloche, 2000), vol. 294 ser. Contemp. Math., pp. 1-57. Amer. Math. Soc. (2002)


3. Schauenburg, P.: A characterization of the Borel-like subalgebras of quantum enveloping algebras. Commun. Algebra. 24 (1996), 2811-2823.


4. Grana, M.: A freeness theorem for Nichols Algebras. J. Algebra. 231(1) (2000), 235-257.


5. Heckenberger, I. and Yamane, H.: A generalization of Coxeter groups, root systems, and Matsumoto's theorem, Math. Z. 259 (2008), 255-276.


6. Gaberdiel, M.R.: An algebraic approach to logarithmic conformal eld theory. In Proceedings of the School and Workshop on Logarithmic Conformal Field Theory and its Applications (Tehran, 2001). 18 (2003), 4593-4638.


7. Angiono, I.: A presentation by generators and relations of Nichols algebras of diagonal type and convex orders on root systems. J. Europ. Math. Soc. 17 (2015), 2643-2671.


8. Kharchenko, V.: A quantum analog of the Poincaré-Birkho -Witt theorem, Algebra and Logic, 38(4) (1999), 259-276.


9. Nichols, W.D.: Bialgebras of type one. Commun. Alg. 6 (1978), 1521-1552. 96 B


10. Andruskiewitsch, N. and Graña, M.: Braided Hopf algebras over non-abelian nite groups. Bol. Acad. Nac. Cienc. (Córdoba). 63 (1999), 45-78.


11. Heckenberger, I.: Classi cation of arithmetic root systems. Adv. Math. 220 (2009), 59--124.


12. Heckenberger, I.: Classi cation of arithmetic root systems of rank 3. Actas del "XVI Coloquio Latinoamericano de Álgebra" 227-252(2005)


13. Mar.2014 Colloquium on Algebra and Representations -Santa Maria, Brazil-Quantum 14


14. Woronowicz, S.L.: Compact matrix pseudogroups. Comm. Math. Phys. 111(4) (1987), 613-665.


15. Woronowicz, S.L.: Di erential calculus on compact matrix pseudogroups (quantum groups). Comm. Math. Phys. 122(1) (1989), 125-170.


16. Heckenberger, I.: Examples of nite-dimensional rank 2 Nichols algebras of diagonal type. Compositio Math. 143(1) (2007), 165-190.


17. Heckenberger, I.: Finite dimensional rank 2 Nichols algebras of diagonal type. I: Examples. Preprint math.QA/0402350


18. Heckenberger, I.: Finite dimensional rank 2 Nichols algebras of diagonal type. II: Classi cation. Preprint math.QA/0404008


19. Andruskiewitsch, N. and Schneider, H.-J.: Finite quantum groups and Cartan matrices. Adv. Math. 154 (2000), 1-45.


20. Cibils, C. and Lauve, A. and Witherspoon, S.: Hopf quivers and Nichols al- gebras in positive characteristic. Proc. Amer. Math. Soc. 137 (2009), no. 12, 4029-4041.


21. Cuntz, M. and Heckenberger, I: Finite Weyl groupoids of rank three. Transac- tions of the American Mathematical Society 364 (2012), no. 3, 1369-1393.


22. Kac, V.G.: In nite dimensional Lie algebras. Cambridge Univ. Press (1990).


23. Lusztig, G.: Introduction to Quantum Groups. Modern Birkhäuser Classics. Birkhäuser/Springer, New York, (2010). Reprint of the 1994 edition.


24. Andruskiewitsch, N. and Schneider, H.-J.: Lifting of quantum linear spaces and pointed Hopf algebras of order p 3 . J. Algebra. 209 (1998), 658-691.


25. Semikhatov, A.M. and Tipunin, I.Yu.: Logarithmic s (2) CFT models from Nichols algebras. I. J. Phys. A46 (2013)


26. Semikhatov, A.M: Virasoro central charges for Nichols algebras. Conformal Field Theories and Tensor Categories: Proceedings of a Workshop held at Bei- jing international center for mathematical research.


27. Heckenberger, I. and Schneider, H.-J.: Nichols algebras over groups with nite root system of rank two I. J. Algebra. 324 (2010), no. 11, 3090-3114.


28. Majid, S.: Noncommutative di erentials and Yang-Mills on permutation groups S n . In Hopf algebras in noncommutative geometry and physics, vol- ume 239 of Lecture Notes in Pure and Appl. Math. (2005), 189-213.


29. Angiono, I.: On Nichols algebras of diagonal type. J. Reine Angew. Math. 683 (2013), 189-251.


30. Andruskiewitsch, N.: On nite-dimensional Hopf algebras. Proceedings of the International Congress of Mathematicians, Seoul 2014. Vol II (2014), 117-141.


31. Andruskiewitsch, N. and Schneider, H.-J.: On the classi cation of nite- dimensional pointed Hopf algebras. Ann. Math. 171 (2010), 375-417.


32. Andruskiewitsch, N. and Schneider, H.-J.: Pointed Hopf algebras. In New Di- rections in Hopf Algebras, vol. 43 ser. MSRI Publications. Cambridge University Press (2002)


33. Rosso, M.: Quantum groups and quantum shu es. Invent. Math. 133 (1998), 399-416.


34. Heckenberger, I.: Rank 2 Nichols algebras with nite arithmetic root system. Algebra and Representation Theory 11 (2008), 115-132.


35. Heckenberger, I. and Schneider, H.-J.: Right coideal subalgebras of Nichols al- gebras and the Du o order on the Weyl groupoid. Israel Journal of Mathemat- ics. 197 (2013), 139--187.


36. Heckenberger, I. and Schneider, H.-J.: Root systems and Weyl groupoids for Nichols algebras. Proc. Lond. Math. Soc. 101 (2010), no. 3, 623-654.


37. Takeuchi, M.: Survey of braided Hopf algebras Contemp. Math., 267(2000),301-323


38. Andruskiewitsch, N. and Heckenberger, I. and Schneider, H.-J.: The Nichols algebra of a semisimple Yetter-Drinfeld module. Amer. J. Math. 132 (2010) no. 6 1493-1547.


39. Semikhatov, A.M. and Tipunin, I.Yu.: The Nichols algebra of screenings. Com- mun. Contemp. Math. 14 (2012)


40. Heckenberger, I.: The Weyl groupoid of a Nichols algebra of diagonal type, Invent. Math. 164 (2006), 175-188.


41. Heckenberger, I.: Weyl equivalence for rank 2 Nichols algebras of diagonal type. Ann. Uni. Ferrara, 51(1) (2005), 281-289.


42. Cuntz, M. and Heckenberger, I.: Weyl groupoids of rank two and continued fractions, Algebra and Number Theory, 3 (2009), no. 3, 317-340.


43. Cuntz, M. and Heckenberger, I: Weyl groupoids with at most three objects. Journal of pure and applied algebra 213 (2009), no. 6, 1112-1128.