Realization of a Kerr-lens mode-locked vertical-external-cavity surface-emitting laser

Besides continuous wave (cw) operation, where light is emitted continuously over time, specially designed lasers can also generate short or even ultrashort pulses of light, the latter referred to as ultrafast lasers. So far, ultrafast laser systems have been used in different industrial and research...

Ausführliche Beschreibung

Gespeichert in:
1. Verfasser: Gaafar, Mahmoud
Beteiligte: Koch, Martin (Prof. Dr.) (BetreuerIn (Doktorarbeit))
Format: Dissertation
Sprache:Englisch
Veröffentlicht: Philipps-Universität Marburg 2015
Physik
Ausgabe:http://dx.doi.org/10.17192/z2015.0403
Schlagworte:
Online Zugang:PDF-Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
url http://archiv.ub.uni-marburg.de/diss/z2015/0403/pdf/dmg.pdf
license_str http://archiv.ub.uni-marburg.de/adm/urhg.html
oai_set_str_mv open_access
doc-type:doctoralThesis
ddc:530
xMetaDissPlus
description Besides continuous wave (cw) operation, where light is emitted continuously over time, specially designed lasers can also generate short or even ultrashort pulses of light, the latter referred to as ultrafast lasers. So far, ultrafast laser systems have been used in different industrial and research areas such as biology, metrology or medicine. But these systems are subject to high costs and great complexity, limiting their use in new application areas that demand for low-cost and compact ultrafast laser sources, such as the optical clocking of microprocessors or free-space data communication. Semiconductor laserswould be ideally suited to meet this demand, however conventional semiconductor lasers are edge-emitters and their power cannot simply be scaled. The same is true for microcavity-based surfaceemitters. Moreover, the more powerful edge-emitters feature strongly asymmetric beam profiles, which makes them unsuitable for many ultrafast applications. Vertical-external-cavity surface-emitting lasers (VECSELs), also known as semiconductor disk lasers (SDLs), are powerful and very flexible coherent light sources. They can be considered as a hybrid system between ion-doped solid state lasers and conventional semiconductor lasers. SDLs combines the advantages of semiconductor gain, e.g. wavelength versatility, high gain cross sections, and simple fabrication, with the benefits of the ion-doped bulk lasers, such as a high-Q external cavity and excellent beam quality. Furthermore, due to the 1-D heat flow, resulting from the arrangement as a thin film laser, very efficient heat removal enables power scaling via the pump area as well as the mode size. SDLs have proved to be versatile lasers which allow for various emission schemes which on the one hand include remarkably high-power multimode or single-frequency cw operation, and on the other hand two-color as well as mode-locked emission. Mode-locked SDLs offer numerous advantages over their solid-state pendants, such as their low-complexity, compactness, cost-efficiency, and an extremely wide range of accessible emission wavelengths (from visible to mid-infrared, based on the employed material system) and repetition rates. This makes ultrafast SDLs very interesting for various applications that rely on a compact, cost-efficient and mass-producible laser technology. SDLs can be passively mode-locked using different mode-locking techniques. While previously saturable absorbers such as semiconductor saturable-absorber mirrors (SESAMs)- either external, or even internal, like in a mode-locked integrated external-cavity surface emitting laser (MIXSEL) - and recently novel-material-based carbon-nanotube or graphene saturable absorbers were employed. Up to date, the presented mode-locking techniques have led to a great enhancement in average powers, peak powers and repetition rates that can be achieved with passively mode-locked SDLs. However, the power-sensitive, complex and costly absorber mirrors, which have to be carefully designed for a certain wavelength range, naturally impose limitations on the device performance. Fortunately, on the other hand, a newmode-locking methodwas presented and discussed in recent years which is referred to as self-mode-locking (SML) or saturable-absorber-free operation of mode-locked SDLs. In this context, motivated by the demand for overcoming the aforementioned limitations, the goal of this thesis was to further exploit the potential of mode-locked SDLs. Particularly, focus on the SML or saturable-absorber-free operation technique, which is considered a promising technique for the realization of compact, robust and cost-efficient modelocked devices. In this thesis, experimental results of SML operation of SDLs in the subpicosecond regime will be presented. We show that the SML scheme is not only applicable to quantum-well-based SDLs, but also to quantum-dot-based devices. Moreover, harmonic mode-locking with sub-ps pulses is demonstrated at discrete power levels. Furthermore, to extend the applications of ultrafast SDLs, we realized an ultra-bright single-photon-source by optically exciting a deterministically integrated single quantum-dot microlens using a mode-locked SDL. The compact and stable laser system allows for overcoming the limited repetition rates of commercial mode-locked Ti:sapphire lasers and to excite the single quantum-dot microlens with a pulse repetition rate close to 500 MHz and a pulse width of 4.2 ps at a wavelength of 508 nm, utilizing second-harmonic generation in an external nonlinear crystal.
language English
publisher Philipps-Universität Marburg
topic pulsed laser
Modelocking ,VECSEL
Optisch gepumpter Halbleiterlaser
Kerr-Effekt
Physik
Halbleiterlaser
spellingShingle pulsed laser
Modelocking ,VECSEL
Optisch gepumpter Halbleiterlaser
Kerr-Effekt
Physik
Halbleiterlaser
Gaafar, Mahmoud
Neben dem Dauerstrichbetrieb (engl. continuous wave, kurz CW), bei dem Licht kontinuierlich emittiert wird, können speziell entwickelte Laser auch kurze oder sogar ultrakurze Lichtpulse erzeugen, wobei im letzteren Fall von Ultrakurzpulslasern die Rede ist. Bis jetzt wurden Ultrakurzpulslaser in verschiedenen Industrie- und Forschungsbereichen, wie der Biologie, Metrologie oder Medizin eingesetzt. Aber hohe Kosten und die große Komplexität dieser Systeme verhindern ihren Einsatz in neuen Anwendungsgebieten, in denen günstige und kompakte Ultrakurzpulslaser, wie zum Beispiel bei der optische Takterzeugung für Mikroprozessoren oder beim optischen Richtfunk, benötigtwerden. Halbleiterlaser würden diesen Anforderungen genügen, jedoch sind konventionelle Halbleiterlaser Kantenemitter, deren Ausgangsleistung nicht ohne weiteres gesteigert werden kann. Auch Oberflächenemitter in einer Mikrokavität unterliegen dieser Beschränkung. Zudem besitzen die stärksten Kantenemitter eine stark asymmetrische Strahlcharakteristik, wodurch sie für vieleAnwendungensbereiche von Ultrakurzpulslasern untauglich sind. Oberflächenemittierende Halbleiterscheibenlaser mit externer Kavität (engl. Vertical-external- cavity surface-emitting lasers, kurz VECSEL), auch als Halbleiterscheibenlaser (engl. semiconductor disk lasers, kurz SDL) bezeichnet, sind leistungsstarke und sehr flexible koherente Lichtquellen. Sie können als Hybridsystem aus ionendotierten Festkörperlasern und konventionellen Halbleiterlasern betrachtet werden. SDLs kombinieren die Vorteile eines aktiven Mediums aus Halbleitermaterialien, z.B. Flexibilität der Wellenlänge, hohen Gewinnquerschnitt und einfache Herstellung mit den Vorteilen eines ionendotierten Festkörperlasers, wie externe Resonatoren mit hoher Güte und exzellentem Strahlprofil. Zudem erlaubt der 1-D Wärmestrom, welcher aus dem Aufbau als Dünnschichtlaser resultiert und eine effiziente Kühlung ermöglicht, die Skalierung der Ausgangsleistung durch Veränderung von Anregungsbereich und Modengröße. SDLs haben sich als vielseitige Laser mit unterschiedlichen Betriebsmodi erwiesen, welche auf der einen Seite bemerkenswerte Ausgangsleistungen im multimoden oder einzelfrequenten CW-Betrieb und auf der anderen Seite zwei-Farben sowie modengekoppelte Emission beinhalten. Modengekoppelte SDLs besitzen gegen über Festkörperlasern viele Vorteile, wie ihre geringe Komplexität, Kompaktheit, Kostengünstigkeit und ein extrem weiter Bereich dermöglichen Emissionswellenlängen (vom Sichtbaren bis zum mittleren Infrarotbereich, abhängig vom verwendeten Materialsystem) sowie hohe Wiederholraten. Dadurch werden Ultrakurzpuls- SDLs für verschieden Anwendungen sehr interessant, welche auf kompakte, günstige und massenfertigungstaugliche Lasertechnologie setzen. In diesem Zusammenhang, motiviert durch den Bedarf die beschriebenen Limitierungen zu überwinden, war das Ziel dieser Arbeit das weitere Potential von modengekoppelten SDLs zu erforschen. Insbesondere lag der Fokus auf dem SML oder dem sättigbaren- Absorber-freien Betrieb, welcher als eine vielversprechende Technik zur Realisierung eines kompakten, robusten und kostengünstigen modengekoppelten Systems betrachtet wird. In dieser Arbeit werden die experimentellen Ergebnisse zum SML Betrieb eines SDLs im sub-Picosekunden Bereich präsentiert. Wir zeigen, dass der SML Betrieb nicht nur für Quantenfilm basierenden SDLs, sondern auch auf Quantenpunkt basierenden Systemen möglich ist. Des weiteren wird die Modenkopplung bei höheren Harmonischen mit sub ps Pulsen bei diskreten Ausgangsleistungen gezeigt. Weiterhin wurde zur Erweiterung der Anwendungen von Ultrakurzpuls-SDLs eine ultrahelle Einzelphotonenquelle durch optische Anregung einer deterministisch integrierten Einzelquantenpunkt Mikrolinse mittels eines modengekoppelten SDL realisiert. Das kompakte und stabile Lasersystem erlaubt die überwindung der limitierten Repetitionsraten von kommerziellen, modengekopellten Ti:Sapphir Lasern und die Anregung der Einzelquantenpunkt Mikrolinse mit einer Pulswiederholrate nahe 500 MHz und einer Pulsdauer von 4,2 ps mit einer Wellenlänge von 508 nm, die durch Frequenzverdopplung in einem externen nichtlinearen Kristall erreicht wurde.
Realization of a Kerr-lens mode-locked vertical-external-cavity surface-emitting laser
author Gaafar, Mahmoud
format Dissertation
publishDate 2015
era_facet 2015
physical 180 pages.
contents Neben dem Dauerstrichbetrieb (engl. continuous wave, kurz CW), bei dem Licht kontinuierlich emittiert wird, können speziell entwickelte Laser auch kurze oder sogar ultrakurze Lichtpulse erzeugen, wobei im letzteren Fall von Ultrakurzpulslasern die Rede ist. Bis jetzt wurden Ultrakurzpulslaser in verschiedenen Industrie- und Forschungsbereichen, wie der Biologie, Metrologie oder Medizin eingesetzt. Aber hohe Kosten und die große Komplexität dieser Systeme verhindern ihren Einsatz in neuen Anwendungsgebieten, in denen günstige und kompakte Ultrakurzpulslaser, wie zum Beispiel bei der optische Takterzeugung für Mikroprozessoren oder beim optischen Richtfunk, benötigtwerden. Halbleiterlaser würden diesen Anforderungen genügen, jedoch sind konventionelle Halbleiterlaser Kantenemitter, deren Ausgangsleistung nicht ohne weiteres gesteigert werden kann. Auch Oberflächenemitter in einer Mikrokavität unterliegen dieser Beschränkung. Zudem besitzen die stärksten Kantenemitter eine stark asymmetrische Strahlcharakteristik, wodurch sie für vieleAnwendungensbereiche von Ultrakurzpulslasern untauglich sind. Oberflächenemittierende Halbleiterscheibenlaser mit externer Kavität (engl. Vertical-external- cavity surface-emitting lasers, kurz VECSEL), auch als Halbleiterscheibenlaser (engl. semiconductor disk lasers, kurz SDL) bezeichnet, sind leistungsstarke und sehr flexible koherente Lichtquellen. Sie können als Hybridsystem aus ionendotierten Festkörperlasern und konventionellen Halbleiterlasern betrachtet werden. SDLs kombinieren die Vorteile eines aktiven Mediums aus Halbleitermaterialien, z.B. Flexibilität der Wellenlänge, hohen Gewinnquerschnitt und einfache Herstellung mit den Vorteilen eines ionendotierten Festkörperlasers, wie externe Resonatoren mit hoher Güte und exzellentem Strahlprofil. Zudem erlaubt der 1-D Wärmestrom, welcher aus dem Aufbau als Dünnschichtlaser resultiert und eine effiziente Kühlung ermöglicht, die Skalierung der Ausgangsleistung durch Veränderung von Anregungsbereich und Modengröße. SDLs haben sich als vielseitige Laser mit unterschiedlichen Betriebsmodi erwiesen, welche auf der einen Seite bemerkenswerte Ausgangsleistungen im multimoden oder einzelfrequenten CW-Betrieb und auf der anderen Seite zwei-Farben sowie modengekoppelte Emission beinhalten. Modengekoppelte SDLs besitzen gegen über Festkörperlasern viele Vorteile, wie ihre geringe Komplexität, Kompaktheit, Kostengünstigkeit und ein extrem weiter Bereich dermöglichen Emissionswellenlängen (vom Sichtbaren bis zum mittleren Infrarotbereich, abhängig vom verwendeten Materialsystem) sowie hohe Wiederholraten. Dadurch werden Ultrakurzpuls- SDLs für verschieden Anwendungen sehr interessant, welche auf kompakte, günstige und massenfertigungstaugliche Lasertechnologie setzen. In diesem Zusammenhang, motiviert durch den Bedarf die beschriebenen Limitierungen zu überwinden, war das Ziel dieser Arbeit das weitere Potential von modengekoppelten SDLs zu erforschen. Insbesondere lag der Fokus auf dem SML oder dem sättigbaren- Absorber-freien Betrieb, welcher als eine vielversprechende Technik zur Realisierung eines kompakten, robusten und kostengünstigen modengekoppelten Systems betrachtet wird. In dieser Arbeit werden die experimentellen Ergebnisse zum SML Betrieb eines SDLs im sub-Picosekunden Bereich präsentiert. Wir zeigen, dass der SML Betrieb nicht nur für Quantenfilm basierenden SDLs, sondern auch auf Quantenpunkt basierenden Systemen möglich ist. Des weiteren wird die Modenkopplung bei höheren Harmonischen mit sub ps Pulsen bei diskreten Ausgangsleistungen gezeigt. Weiterhin wurde zur Erweiterung der Anwendungen von Ultrakurzpuls-SDLs eine ultrahelle Einzelphotonenquelle durch optische Anregung einer deterministisch integrierten Einzelquantenpunkt Mikrolinse mittels eines modengekoppelten SDL realisiert. Das kompakte und stabile Lasersystem erlaubt die überwindung der limitierten Repetitionsraten von kommerziellen, modengekopellten Ti:Sapphir Lasern und die Anregung der Einzelquantenpunkt Mikrolinse mit einer Pulswiederholrate nahe 500 MHz und einer Pulsdauer von 4,2 ps mit einer Wellenlänge von 508 nm, die durch Frequenzverdopplung in einem externen nichtlinearen Kristall erreicht wurde.
doi_str_mv http://dx.doi.org/10.17192/z2015.0403
edition http://dx.doi.org/10.17192/z2015.0403
title_alt Verwirklichung einer Kerr-Linsen-Modenkopplung von Halbleiterscheibenlasern
dewey-raw 530
dewey-search 530
genre Physics
genre_facet Physics
topic_facet Physik
institution Physik
title Realization of a Kerr-lens mode-locked vertical-external-cavity surface-emitting laser
title_short Realization of a Kerr-lens mode-locked vertical-external-cavity surface-emitting laser
title_full Realization of a Kerr-lens mode-locked vertical-external-cavity surface-emitting laser
title_fullStr Realization of a Kerr-lens mode-locked vertical-external-cavity surface-emitting laser
title_full_unstemmed Realization of a Kerr-lens mode-locked vertical-external-cavity surface-emitting laser
title_sort Realization of a Kerr-lens mode-locked vertical-external-cavity surface-emitting laser
ref_str_mv references
first_indexed 2016-06-30T00:00:00Z
last_indexed 2016-06-30T23:59:59Z
building Fachbereich Physik
author2 Koch, Martin (Prof. Dr.)
author2_role ths
thumbnail http://archiv.ub.uni-marburg.de/diss/z2015/0403/cover.png
spelling diss/z2015/0403 Besides continuous wave (cw) operation, where light is emitted continuously over time, specially designed lasers can also generate short or even ultrashort pulses of light, the latter referred to as ultrafast lasers. So far, ultrafast laser systems have been used in different industrial and research areas such as biology, metrology or medicine. But these systems are subject to high costs and great complexity, limiting their use in new application areas that demand for low-cost and compact ultrafast laser sources, such as the optical clocking of microprocessors or free-space data communication. Semiconductor laserswould be ideally suited to meet this demand, however conventional semiconductor lasers are edge-emitters and their power cannot simply be scaled. The same is true for microcavity-based surfaceemitters. Moreover, the more powerful edge-emitters feature strongly asymmetric beam profiles, which makes them unsuitable for many ultrafast applications. Vertical-external-cavity surface-emitting lasers (VECSELs), also known as semiconductor disk lasers (SDLs), are powerful and very flexible coherent light sources. They can be considered as a hybrid system between ion-doped solid state lasers and conventional semiconductor lasers. SDLs combines the advantages of semiconductor gain, e.g. wavelength versatility, high gain cross sections, and simple fabrication, with the benefits of the ion-doped bulk lasers, such as a high-Q external cavity and excellent beam quality. Furthermore, due to the 1-D heat flow, resulting from the arrangement as a thin film laser, very efficient heat removal enables power scaling via the pump area as well as the mode size. SDLs have proved to be versatile lasers which allow for various emission schemes which on the one hand include remarkably high-power multimode or single-frequency cw operation, and on the other hand two-color as well as mode-locked emission. Mode-locked SDLs offer numerous advantages over their solid-state pendants, such as their low-complexity, compactness, cost-efficiency, and an extremely wide range of accessible emission wavelengths (from visible to mid-infrared, based on the employed material system) and repetition rates. This makes ultrafast SDLs very interesting for various applications that rely on a compact, cost-efficient and mass-producible laser technology. SDLs can be passively mode-locked using different mode-locking techniques. While previously saturable absorbers such as semiconductor saturable-absorber mirrors (SESAMs)- either external, or even internal, like in a mode-locked integrated external-cavity surface emitting laser (MIXSEL) - and recently novel-material-based carbon-nanotube or graphene saturable absorbers were employed. Up to date, the presented mode-locking techniques have led to a great enhancement in average powers, peak powers and repetition rates that can be achieved with passively mode-locked SDLs. However, the power-sensitive, complex and costly absorber mirrors, which have to be carefully designed for a certain wavelength range, naturally impose limitations on the device performance. Fortunately, on the other hand, a newmode-locking methodwas presented and discussed in recent years which is referred to as self-mode-locking (SML) or saturable-absorber-free operation of mode-locked SDLs. In this context, motivated by the demand for overcoming the aforementioned limitations, the goal of this thesis was to further exploit the potential of mode-locked SDLs. Particularly, focus on the SML or saturable-absorber-free operation technique, which is considered a promising technique for the realization of compact, robust and cost-efficient modelocked devices. In this thesis, experimental results of SML operation of SDLs in the subpicosecond regime will be presented. We show that the SML scheme is not only applicable to quantum-well-based SDLs, but also to quantum-dot-based devices. Moreover, harmonic mode-locking with sub-ps pulses is demonstrated at discrete power levels. Furthermore, to extend the applications of ultrafast SDLs, we realized an ultra-bright single-photon-source by optically exciting a deterministically integrated single quantum-dot microlens using a mode-locked SDL. The compact and stable laser system allows for overcoming the limited repetition rates of commercial mode-locked Ti:sapphire lasers and to excite the single quantum-dot microlens with a pulse repetition rate close to 500 MHz and a pulse width of 4.2 ps at a wavelength of 508 nm, utilizing second-harmonic generation in an external nonlinear crystal. urn:nbn:de:hebis:04-z2015-04037 2015 Neben dem Dauerstrichbetrieb (engl. continuous wave, kurz CW), bei dem Licht kontinuierlich emittiert wird, können speziell entwickelte Laser auch kurze oder sogar ultrakurze Lichtpulse erzeugen, wobei im letzteren Fall von Ultrakurzpulslasern die Rede ist. Bis jetzt wurden Ultrakurzpulslaser in verschiedenen Industrie- und Forschungsbereichen, wie der Biologie, Metrologie oder Medizin eingesetzt. Aber hohe Kosten und die große Komplexität dieser Systeme verhindern ihren Einsatz in neuen Anwendungsgebieten, in denen günstige und kompakte Ultrakurzpulslaser, wie zum Beispiel bei der optische Takterzeugung für Mikroprozessoren oder beim optischen Richtfunk, benötigtwerden. Halbleiterlaser würden diesen Anforderungen genügen, jedoch sind konventionelle Halbleiterlaser Kantenemitter, deren Ausgangsleistung nicht ohne weiteres gesteigert werden kann. Auch Oberflächenemitter in einer Mikrokavität unterliegen dieser Beschränkung. Zudem besitzen die stärksten Kantenemitter eine stark asymmetrische Strahlcharakteristik, wodurch sie für vieleAnwendungensbereiche von Ultrakurzpulslasern untauglich sind. Oberflächenemittierende Halbleiterscheibenlaser mit externer Kavität (engl. Vertical-external- cavity surface-emitting lasers, kurz VECSEL), auch als Halbleiterscheibenlaser (engl. semiconductor disk lasers, kurz SDL) bezeichnet, sind leistungsstarke und sehr flexible koherente Lichtquellen. Sie können als Hybridsystem aus ionendotierten Festkörperlasern und konventionellen Halbleiterlasern betrachtet werden. SDLs kombinieren die Vorteile eines aktiven Mediums aus Halbleitermaterialien, z.B. Flexibilität der Wellenlänge, hohen Gewinnquerschnitt und einfache Herstellung mit den Vorteilen eines ionendotierten Festkörperlasers, wie externe Resonatoren mit hoher Güte und exzellentem Strahlprofil. Zudem erlaubt der 1-D Wärmestrom, welcher aus dem Aufbau als Dünnschichtlaser resultiert und eine effiziente Kühlung ermöglicht, die Skalierung der Ausgangsleistung durch Veränderung von Anregungsbereich und Modengröße. SDLs haben sich als vielseitige Laser mit unterschiedlichen Betriebsmodi erwiesen, welche auf der einen Seite bemerkenswerte Ausgangsleistungen im multimoden oder einzelfrequenten CW-Betrieb und auf der anderen Seite zwei-Farben sowie modengekoppelte Emission beinhalten. Modengekoppelte SDLs besitzen gegen über Festkörperlasern viele Vorteile, wie ihre geringe Komplexität, Kompaktheit, Kostengünstigkeit und ein extrem weiter Bereich dermöglichen Emissionswellenlängen (vom Sichtbaren bis zum mittleren Infrarotbereich, abhängig vom verwendeten Materialsystem) sowie hohe Wiederholraten. Dadurch werden Ultrakurzpuls- SDLs für verschieden Anwendungen sehr interessant, welche auf kompakte, günstige und massenfertigungstaugliche Lasertechnologie setzen. In diesem Zusammenhang, motiviert durch den Bedarf die beschriebenen Limitierungen zu überwinden, war das Ziel dieser Arbeit das weitere Potential von modengekoppelten SDLs zu erforschen. Insbesondere lag der Fokus auf dem SML oder dem sättigbaren- Absorber-freien Betrieb, welcher als eine vielversprechende Technik zur Realisierung eines kompakten, robusten und kostengünstigen modengekoppelten Systems betrachtet wird. In dieser Arbeit werden die experimentellen Ergebnisse zum SML Betrieb eines SDLs im sub-Picosekunden Bereich präsentiert. Wir zeigen, dass der SML Betrieb nicht nur für Quantenfilm basierenden SDLs, sondern auch auf Quantenpunkt basierenden Systemen möglich ist. Des weiteren wird die Modenkopplung bei höheren Harmonischen mit sub ps Pulsen bei diskreten Ausgangsleistungen gezeigt. Weiterhin wurde zur Erweiterung der Anwendungen von Ultrakurzpuls-SDLs eine ultrahelle Einzelphotonenquelle durch optische Anregung einer deterministisch integrierten Einzelquantenpunkt Mikrolinse mittels eines modengekoppelten SDL realisiert. Das kompakte und stabile Lasersystem erlaubt die überwindung der limitierten Repetitionsraten von kommerziellen, modengekopellten Ti:Sapphir Lasern und die Anregung der Einzelquantenpunkt Mikrolinse mit einer Pulswiederholrate nahe 500 MHz und einer Pulsdauer von 4,2 ps mit einer Wellenlänge von 508 nm, die durch Frequenzverdopplung in einem externen nichtlinearen Kristall erreicht wurde. http://dx.doi.org/10.17192/z2015.0403 2015-11-30 Verwirklichung einer Kerr-Linsen-Modenkopplung von Halbleiterscheibenlasern Realization of a Kerr-lens mode-locked vertical-external-cavity surface-emitting laser opus:6460 C. A. Zaugg, A. Klenner, M. Mangold, A. S. Mayer, S. M. Link, F. Emaury, M. Golling, E. Gini, C. J. Saraceno, B. W. Tilma, U. Keller: Gigahertz self-referenceable frequency comb from a semiconductor disk laser. Optics Express 22 (2014) 13, 1332-1334. 2014 Gigahertz self-referenceable frequency comb from a semiconductor disk laser C. H. Henry: Theory of the linewidth of semiconductor lasers. IEEE Journal of Quantum Electronics 18 (1982), 259-264. 1982 Theory of the linewidth of semiconductor lasers A. Yariv: Internal modulation in multimode laser oscillators. Journal Of Applied Physics (1965) 1965 Internal modulation in multimode laser oscillators E. U. Rafailov, Ed., The Physics and Engineering of Compact Quantum Dot-based Lasers for Biophotonics. Hoboken, NJ, USA: Wiley, 2013. 2013 The Physics and Engineering of Compact Quantum Dot-based Lasers for Biophotonics W. Koechner and M. Bass: Solid-State Lasers: A Graduate Text. New York, USA: Springer 2003. 2003 Solid-State Lasers: A Graduate Text Connolly, M. Jansen, F. Fang, R. F. Nabiev: 8 W continuous wave front-facet power from broad-waveguide Al-free 980 nm diode lasers. Applied Physics Letters 69 (1996), 1532-1534. 1996 Nabiev: 8 W continuous wave front-facet power from broad-waveguide Al-free 980 nm diode lasers M. Butkus, J. Rautiainen, O. G. Okhotnikov, S. S. Mikhrin, I. L. Krestnikov, and E. U. Rafailov, " 1270 nm quantum dot based semiconductor disk lasers, " in Proc. 22nd IEEE Int. Semiconductor Laser Conf. (ISLC), Sep. 2010, pp. 71–72. 2010-09 1270 nm quantum dot based semiconductor disk lasers Wilcox, K.G., Tropper, A.C., Beere, H.E., Ritchie, D.A., Kunert, B., Heinen, B., Stolz, W., "4.35 kW peak power femtosecond pulse mode-locked VECSEL for supercontinuum generation," Opt. Express 21(2), 1599–1605 (2013) 2013 kW peak power femtosecond pulse mode-locked VECSEL for supercontinuum generation M. Butkus et al., " 85.7 MHz repetition rate mode-locked semiconductor disk laser: Fundamental and soliton bound states, " Opt. Exp., vol. 21, no. 21, pp. 25526–25531, 2013. 2013 85.7 MHz repetition rate mode-locked semiconductor disk laser: Fundamental and soliton bound states M. Butkus et al., " High-power quantum-dot-based semiconductor disk laser, " Opt. Lett., vol. 34, no. 11, pp. 1672–1674, 2009. 2009 High-power quantum-dot-based semiconductor disk laser J. Rautiainen, I. Krestnikov, M. Butkus, E. U. Rafailov, and O. G. Okhotnikov, " Optically pumped semiconductor quantum dot disk laser operating at 1180 nm, " Opt. Lett., vol. 35, no. 5, pp. 694–696, Mar. 2010. 2010-03 Optically pumped semiconductor quantum dot disk laser operating at 1180 nm K. G. Wilcox, A. C. Tropper: Comment on SESAM-free mode-locked semiconductor disk laser. Laser and Photonics Review 7 (2013) 3, 422-423. 2013 Comment on SESAM-free mode-locked semiconductor disk laser L. Kornaszewski, G. Maker, G. P. A. Malcolm, M. Butkus, E. U. Rafailov, and C. J. Hamilton, " SESAM-free mode-locked semiconductor disk laser, " Laser Photon. Rev., vol. 6, no. 6, pp. L20–L23, 2012. 2012 SESAM-free mode-locked semiconductor disk laser Keller: High-power integrated ultrafast semiconductor disk laser: multi-Watt 10 GHz pulse generation. Electronics Letters 48 (2012) 18, 1144-1145. 2012 High-power integrated ultrafast semiconductor disk laser: multi-Watt 10 GHz pulse generation A. Härkonen: Optically-Pumped Semiconductor Disk Lasers for Generating visible and Infrared Radiation, Ph.D. dissertation, Tampere University of technology, Tampere, Finland, 2008. 2008 Optically-Pumped Semiconductor Disk Lasers for Generating visible and Infrared Radiation R. Kovsh, T. S ¨ udmeyer, U. Keller: Modelocked quantum dot vertical external cavity surface emitting laser. Applied Physics B 93 (2008) 4, 733-736. 2008 Modelocked quantum dot vertical external cavity surface emitting laser O. D. Sieber, M. Hoffmann, V. J. Wittwer, M. Mangold, M. Golling, B. W. Tilma, T. S ¨ udmeyer, U. Keller: Experimentally verified pulse formation model for high-power femtosecond VECSELs. Applied Physics B 113 (2013) 1, 133-145. 2013 Experimentally verified pulse formation model for high-power femtosecond VECSELs O. SIEBER: Scaling high-power ultrafast VECSELs into the femtosecond regime, Ph.D. dissertation, ETH Zurich, 2013. 2013 Scaling high-power ultrafast VECSELs into the femtosecond regime [71] A. Giesen, H. H ¨ ugel, A. Voss, K. Wittig, U. Brauch, H. Opower: Scalable concept for diode-pumped high-power solid-state lasers. Applied Physics B: Lasers and Optics 58 (1994) 5, 365-372. 1994 Scalable concept for diode-pumped high-power solid-state lasers D. Al Nakdali et al., " High-power quantum-dot vertical-external-cavity surface-emitting laser exceeding 8 W, " IEEE Photon. Technol. Lett., vol. 26, no. 15, pp. 1561–1564, Aug. 1, 2014. 2014-08-01 High-power quantum-dot vertical-external-cavity surface-emitting laser exceeding 8 W M. Gaafar et al., " Self-mode-locking semiconductor disk laser, " Opt. Exp., vol. 22, no. 23, pp. 28390–28399, Nov. 2014. 2014-11 Self-mode-locking semiconductor disk laser R. Paschotta, R. Haring, U. Keller, A. Garnache, S. Hoogland, A. C. Tropper: Soliton- like pulse-shaping mechanism in passively mode-locked surface-emitting semiconductor lasers. Applied Physics B 75 (2002), 445-451. 2002 Solitonlike pulse-shaping mechanism in passively mode-locked surface-emitting semiconductor lasers K. G. Wilcox, M. Butkus, I. Farrer, D. A. Ritchie, A. Tropper, E. U. Rafailov: Subpicosec- ond quantum dot saturable absorber mode-locked semiconductor disk laser. Applied Physics Letters 94 (2009) 25, 251105. 2009 Rafailov: Subpicosecond quantum dot saturable absorber mode-locked semiconductor disk laser U. Keller and A. C. Tropper, " Passively modelocked surface-emitting semiconductor lasers, " Phys. Rep., vol. 429, no. 2, pp. 67–120, 2006. 2006 Passively modelocked surface-emitting semiconductor lasers Hoogland, S., Dhanjal, S., Tropper, A. C., Roberts, S. J., Häring, R., Paschotta, R., and Keller, U., "Passively mode- locked diode-pumped surface-emitting semiconductor laser," IEEE Photon. Technol. Lett. 12(9), 1135–1137 (2000). 2000 Passively modelocked diode-pumped surface-emitting semiconductor laser K. G. Wilcox, A. H. Quarterman, Harvey Beere, D. A. Ritchie, A. C. Tropper: High Peak Power Femtosecond Pulse Passively Mode-Locked Vertical-External-Cavity Surface-Emitting Laser. IEEE Photonics Technology Letters 22 (2010) 14, 1021-1023. 2010 Tropper: High Peak Power Femtosecond Pulse Passively Mode-Locked Vertical-External-Cavity Surface-Emitting Laser A. Gamache, S. Hoogland, A. Trooper, I. Sagnes, G. Saint-Girons, J. S. Roberts: Sub- 500-fs soliton-like pulse in a passively mode-locked broadband surface-emitting laser with 100 mW average power. Applied Physics Letters 80 (2002) 21, 3892-3894. 2002 Sub- 500-fs soliton-like pulse in a passively mode-locked broadband surface-emitting laser with 100 mW average power A. C. Tropper, S. Hoogland: Extended cavity surface-emitting semiconductor lasers. Progress in Quantum Electronics 30 (2006), 1-43. 2006 Extended cavity surface-emitting semiconductor lasers Farrer, D. A. Ritchie, A. Tropper: A passively mode-locked external-cavity semiconductor laser emitting 60-fs pulses. Nature Photonics 3 (2009), 729-731. 2009 Tropper: A passively mode-locked external-cavity semiconductor laser emitting 60-fs pulses S. Hoogland, A. Garnache, I. Sagnes, J. S. Roberts, A. C. Tropper: 10-GHz train of sub-500-fs optical soliton-like pulses from a surface-emitting semiconductor laser. IEEE Photonics Technology Letters 17 (2005) 2, 267-269. 2005 Tropper: 10-GHz train of sub-500-fs optical soliton-like pulses from a surface-emitting semiconductor laser L. Fan et al., " Tunable high-power high-brightness linearly polar- ized vertical-external-cavity surface-emitting lasers, " Appl. Phys. Lett., vol. 88, no. 2, p. 021105, 2006. 2006 Tunable high-power high-brightness linearly polarized vertical-external-cavity surface-emitting lasers Liang, H. C., Tsou, C. H., Lee, Y. C., Huang, K. F. and Chen, Y. F., "Observation of self-mode-locking assisted by high-order transverse modes in optically pumped semiconductor lasers," Laser Phys. Lett. 11, 105803 (2014). 2014 Observation of self-mode-locking assisted by high-order transverse modes in optically pumped semiconductor lasers Chen, Y. F., Lee, Y. C., Liang, H. C., Lin, K. Y., Su, K. W. and Huang, K. F., "Femtosecond high-power spontaneous mode-locked operation in vertical-external cavity surface-emitting laser with gigahertz oscillation," Opt. Lett. 36(23), 4581–4583 (2011). 2011 Femtosecond high-power spontaneous mode-locked operation in vertical-external cavity surface-emitting laser with gigahertz oscillation Tschudi, M. J. Lederer, A. Boiko, B. Luther-Davies: Generation of 5-fs pulses and octaves- panning spectra directly from a Ti:sapphire laser. Optics Letters 26 (2001), 373-375. 2001 Generation of 5-fs pulses and octavespanning spectra directly from a Ti:sapphire laser B. Heinen et al., " 106 W continuous-wave output power from vertical- external-cavity surface-emitting laser, " Electron. Lett., vol. 48, no. 9, pp. 516–517, Apr. 2012. 2012-04 106 W continuous-wave output power from verticalexternal-cavity surface-emitting laser S. Ranta, M. Tavast, T. Leinonen, N. Van Lieu, G. Fetzer, and M. Guina, " 1180 nm VECSEL with output power beyond 20 W, " Electron. Lett., vol. 49, no. 1, pp. 59–60, Jan. 2013. 2013-01 1180 nm VECSEL with output power beyond 20 W A. Laurain, C. Mart, J. Hader, J. V. Moloney, B. Kunert, and W. Stolz, " 15 W single frequency optically pumped semiconductor laser with sub-megahertz linewidth, " IEEE Photon. Technol. Lett., vol. 26, no. 2, pp. 131–133, Jan. 15, 2014. 2014-01-15 15 W single frequency optically pumped semiconductor laser with sub-megahertz linewidth A. Garnache et al., " 2-2.7 µm single frequency tunable Sb-based lasers operating in CW at RT: Microcavity and external cavity VCSELs, DFB, " Proc. SPIE, vol. 6184, pp. 61840N-1–61840N-15, Apr. 2006. 2006-04 2-2.7 µm single frequency tunable Sb-based lasers operating in CW at RT: Microcavity and external cavity VCSELs, DFB J. Rautiainen, I. Krestnikov, J. Nikkinen, and O. G. Okhotnikov, " 2.5 W orange power by frequency conversion from a dual-gain quantum-dot disk laser, " Opt. Lett., vol. 35, no. 12, pp. 1935–1937, Jun. 2010. 2010-06 2.5 W orange power by frequency conversion from a dual-gain quantum-dot disk laser Honninger, M. Kumkar, U. Keller: 60-W average power in 810-fs pulses from a thin-disk Yb:YAG laser. Optics Letters 28 (2003), 367-9. 2003 60-W average power in 810-fs pulses from a thin-disk Yb:YAG laser F. Zhang et al., " A 23-watt single-frequency vertical-external-cavity surface-emitting laser, " Opt. Exp., vol. 22, no. 11, pp. 12817–12822, Jun. 2014. 2014-06 A 23-watt single-frequency vertical-external-cavity surface-emitting laser M. Hoffmann et al., " All quantum dot based femtosecond VECSEL, " Proc. SPIE, vol. 7919, pp. 79190X-1–79190X-6, Feb. 2011. 2011-02 All quantum dot based femtosecond VECSEL D. Babic, S. Corzine: Analytic expressions for the reflection delay, penetration depth, and ab- Bibliography 140 Analytic expressions for the reflection delay, penetration depth, and ab- Bibliography 140 Seger, K., Meiser, N., Choi, S. Y., Jung, B. H., Yeom, D.-I., Rotermund, F., Okhotnikov, O., Laurell, F., and Pasiskevicius, V., "Carbon nanotube mode-locked optically-pumped semiconductor disk laser," Opt. Express 21(15), 17806–17813 (2013). 2013 Carbon nanotube mode-locked optically-pumped semiconductor disk laser Walmsley: Characterization of sub-6-fs optical pulses with spectral phase interferometry for direct electric field reconstruction. Optics Letters 24 (1999), 1314-1316. 1999 Characterization of sub-6-fs optical pulses with spectral phase interferometry for direct electric field reconstruction F.-Q. Li et al., " Compact 7.8-W 1-GHz-repetition-rate passively mode- locked TEM 00 Nd: YVO 4 laser under 880 nm diode direct-in-band pumping, " Opt. Commun., vol. 284, no. 19, pp. 4619–4622, 2011. [16] B. Heinen et al., " 106 W continuous-wave output power from vertical-external-cavity surface-emitting laser, " Electron. Lett., vol. 48, no. 9, pp. 516–517, Apr. 2012. 2011-04 Compact 7.8-W 1-GHz-repetition-rate passively modelocked TEM 00 Nd: YVO 4 laser under 880 nm diode direct-in-band pumping 106 W continuous-wave output power from vertical-external-cavity surface-emitting laser Y. Kaneda et al., " Continuous-wave single-frequency 295 nm laser source by a frequency-quadrupled optically pumped semiconductor laser, " Opt. Lett., vol. 34, no. 22, pp. 3511–3513, 2009. 2009 Continuous-wave single-frequency 295 nm laser source by a frequency-quadrupled optically pumped semiconductor laser Hänsch, and F. Krausz: Controlling the phase evolution of few-cycle light pulses. Physical Review Letter 85 (2000), 740-743. 2000 Controlling the phase evolution of few-cycle light pulses G. P. Agrawal and N. K. Dutta: Long-Wavelength Semiconductor Lasers. Van Nostrand Reinhold Co., New York 1986. 1986 Dutta: Long-Wavelength Semiconductor Lasers E. Saarinen, R. Herda, O. G. Okhotnikov: Dynamics of pulse formation in mode-locked semiconductor disk lasers. Journal of the Optical Society of America B 24 (2007) 11, 2784- 2790. 2007 Dynamics of pulse formation in mode-locked semiconductor disk lasers N. Schulz, M. Rattunde, C. Ritzenthaler, B. Rosener, C. Manz, K. Kohler, J. Wagner: Ef- fect of the cavity resonance-gain offset on the output power characteristics of GaSb-based VEC- SELs. IEEE Photonics Technology Letters 19 (2007) 21, 1741-1743. 2007 Effect of the cavity resonance-gain offset on the output power characteristics of GaSb-based VEC- SELs P. Klopp, U. Griebner, M. Zorn, A. Klehr, A. Liero, M. Weyers, G. Erbert: Mode-locked InGaAs-AlGaAs disk laser generating sub-200-fs pulses, pulse picking and amplification by a tapered diode amplifier. Optics Express 17 (2009) 13, 10820-10834. 2009 Erbert: Mode-locked InGaAs-AlGaAs disk laser generating sub-200-fs pulses, pulse picking and amplification by a tapered diode amplifier M. Wichmann et al., " Evolution of multi-mode operation in vertical- external-cavity surface-emitting lasers, " Opt. Exp., vol. 21, no. 26, pp. 31940–31950, Dec. 2013. 2013-12 Evolution of multi-mode operation in verticalexternal-cavity surface-emitting lasers Keller: Experimental verification of soliton-like pulse-shaping mechanisms in passively mode-locked VECSELs. Optics Express 18 (2010) 10, 10143-10153. 2010 Experimental verification of soliton-like pulse-shaping mechanisms in passively mode-locked VECSELs M. Hoffmann, O. D. Sieber, V. J. Wittwer, I. L. Krestnikov, D. A. Livshits, Y. Barbarin, T. S ¨ udmeyer, U. Keller: Femtosecond high-power quantum dot vertical external cavity surface emitting laser. Optics Express 19 (2011) 9, 8108-8116. 2011 Femtosecond high-power quantum dot vertical external cavity surface emitting laser U. Keller, G. W. Hooft, W. H. Knox, J. E. Cunningham: Femtosecond Pulses from a Continuously Self-Starting Passively Mode-Locked Ti:Sapphire Laser. Optics Letters 16 (1991),1022-1024. 1991 Femtosecond Pulses from a Continuously Self-Starting Passively Mode-Locked Ti:Sapphire Laser Mangold, M., Wittwer, V. J., Zaugg, C. A., Link, S. M., Golling, M., Tilma, B. W., and Keller, U., "Femtosecond pulses from a modelocked integrated external-cavity surface emitting laser (MIXSEL)," Opt. Express 21(21), 24904–24911 (2013). 2013 Femtosecond pulses from a modelocked integrated external-cavity surface emitting laser (MIXSEL) A. Rantamäki et al., " Flip chip quantum-dot semiconductor disk laser at 1200 nm, " IEEE Photon. Technol. Lett., vol. 24, no. 15, pp. 1292–1294, Aug. 1, 2012. 2012-08-01 Flip chip quantum-dot semiconductor disk laser at 1200 nm J. A. Lott, A. R. Kovsh, N. N. Ledentsov, and D. Bimberg, " GaAs-based InAs/InGaAs quantum dot vertical cavity and vertical external cavity surface emitting lasers emitting near 1300 nm, " in Proc. Pacific Rim Conf. Lasers Electro-Opt. (CLEO/Pacific Rim), Aug. 2005, pp. 160–161. 2005-08 GaAs-based InAs/InGaAs quantum dot vertical cavity and vertical external cavity surface emitting lasers emitting near 1300 nm Husaini, S., and Bedford, R. G., "Graphene saturable absorber for high power semiconductor disk laser mode- locking," Appl. Phys. Lett. 104(16), 161107 (2014). 2014 Graphene saturable absorber for high power semiconductor disk laser modelocking A. Agnesi, A. Greborio, F. Pirzio, G. Reali, J. Aus der Au, A. Guandalini: 40-fs Yb3+:CaGdAlO4 laser pumped by a single-mode 350-mW laser diode. Optics Express 20 (2012), 10077-10082. 2012 Guandalini: 40-fs Yb3+:CaGdAlO4 laser pumped by a single-mode 350-mW laser diode M. Gaafar et al., " Harmonic self-mode-locking of optically pumped semiconductor disc laser " Electron. Lett., vol. 50, no. 7, pp. 542–543, Mar. 2014. 2014-03 Harmonic self-mode-locking of optically pumped semiconductor disc laser F. J. McClung, R. W. Hellwarth: Giant optical pulsations from ruby. Applied Optics (1962) 1962 Hellwarth: Giant optical pulsations from ruby M. Scheller et al., " Heterodyne detection of intracavity generated terahertz radiation, " IEEE Trans. Terahertz Sci. Technol., vol. 2, no. 3, pp. 271–277, May 2012. 2012-03 Heterodyne detection of intracavity generated terahertz radiation E. Kantola, T. Leinonen, S. Ranta, M. Tavast, and M. Guina, " High-efficiency 20 W yellow VECSEL, " Opt. Exp., vol. 22, no. 6, pp. 6372–6380, 2014. 2014 High-efficiency 20 W yellow VECSEL Keller: Highly efficient optically pumped vertical emitting semiconductor laser with more than 20-W average output power in a fundamental transverse mode. Optics Letters 33 (2008) (22), 2719-2721. 2008 Highly efficient optically pumped vertical emitting semiconductor laser with more than 20-W average output power in a fundamental transverse mode M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, " High-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM 00 beams, " IEEE Photon. Technol. Lett., vol. 9, no. 8, pp. 1063–1065, Aug. 1997. 1997-08 High-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM 00 beams A. Al-Muhanna, L. J. Mawst, D. Botez, D. Z. Garbuzov, R. U. Martinelli, J. C. Connolly: High-power (> 10 W) continuous-wave operation from 100 µm aperture 0.97 µm emitting Al- free diode lasers. Applied Physics Letters 73 (1998), 1182-1184. 1998 High-power (> 10 W) continuous-wave operation from 100 µm aperture 0.97 µm emitting Alfree diode lasers A. R. Albrecht et al., " High-power 1.25 µm InAs QD VECSEL based on resonant periodic gain structure, " Proc. SPIE, vol. 7919, pp. 791904-1–791904-6, Feb. 2011. 2011-02 High-power 1.25 µm InAs QD VECSEL based on resonant periodic gain structure T. Schwarzbäck et al., " High-power InP quantum dot based semiconductor disk laser exceeding 1.3 W, " Appl. Phys. Lett., vol. 102, no. 9, pp. 092101-1–092101-4, Mar. 2013. 2013-03 High-power InP quantum dot based semiconductor disk laser exceeding 1.3 W R. Haring, R. Paschotta, A. Aschwanden, E. Gini, F. Morier-Genoud, U. Keller: High- power passively mode-locked semiconductor lasers. IEEE Journal of Quantum Elec- tronics 38 (2002) 9, 1268-1275. 2002 Highpower passively mode-locked semiconductor lasers M. A. Hadley, G. C. Wilson, K. Y. Lau, J. S. Smith: High single-transverse mode output from external-cavity surface-emitting laser diodes. Applied Physics Letters 63 (1993), 1607-1609. 1993 High single-transverse mode output from external-cavity surface-emitting laser diodes T. Udem, R. Holzwarth, T. W. Hänsch: Optical frequency metrology. Nature(2002) 2002 Hänsch: Optical frequency metrology M. Wichmann, M. Stein, A. Rahimi-Iman, S. W. Koch, and M. Koch, " Interferometric characterization of a semiconductor disk laser driven terahertz source, " J. Infr. Millim. Terahertz Waves, vol. 35, nos. 6–7, pp. 503–508, Jul. 2014. 2014-07 Interferometric characterization of a semiconductor disk laser driven terahertz source A.Aschwanden, D. Lorenser, HJ. Unold, R. Paschotta, E. Gini, U. Keller: 2.1-W pi- cosecond passively mode-locked external-cavity semiconductor laser. Optics Letters 30 (2005), 272-274. 2005 Keller: 2.1-W picosecond passively mode-locked external-cavity semiconductor laser Ebling, U. Keller: 50-GHz passively mode-locked surface-emitting semiconductor laser with 100-mW average output power. IEEE Journal of Quantum Electronics 42 (2006) 7, 838-847. 2006 Keller: 50-GHz passively mode-locked surface-emitting semiconductor laser with 100-mW average output power B. Rudin, V. J. Wittwer, D. J. H. C. Maas, M. Hoffmann, O. D. Sieber, Y. Barbarin, M. Golling, T. S ¨ udmeyer, U. Keller: High-power MIXSEL: an integrated ultrafast semicon- ductor laser with 6.4 W average power. Optics Express 18 (2010) 26, 27582-27588. 2010 Keller: High-power MIXSEL: an integrated ultrafast semiconductor laser with 6.4 W average power T. Brabec, C. Spielmann, P. F. Curley, F. Krausz: Kerr lens mode locking. Optics Letters 17 (1992), 1292-1294. 1992 Kerr lens mode locking M. Arrigoni, B. Morioka, A. Lepert: Optically pumped semiconductor lasers: Green OPSLs poised to enter scientific pump-laser market. Laser FocusWorld, Oct. 2009. 2009-10 Lepert: Optically pumped semiconductor lasers: Green OPSLs poised to enter scientific pump-laser market. Laser FocusWorld S. Kaspar et al., " Linewidth narrowing and power scaling of single- frequency 2.X µm GaSb-based semiconductor disk lasers, " IEEE J. Quantum Electron., vol. 49, no. 3, pp. 314–324, Mar. 2013. 2013-03 Linewidth narrowing and power scaling of singlefrequency 2.X µm GaSb-based semiconductor disk lasers L. E. Hargrove, R. L. Fork, M. A. Pollack: Locking of NeNe laser modes induced by syn- chronous intracavity modulation. Applied Physics Letters 5 (1964). 1964 Locking of NeNe laser modes induced by synchronous intracavity modulation L. A. Coldren, S. W. Corzine, M. L. Mašanovi´Mašanovi´c: Diode Lasers and Photonic Integrated Circuits. Hoboken, NJ, USA: John Wiley & Sons 2012. 2012 Mašanovi´Mašanovi´c: Diode Lasers and Photonic Integrated Circuits R. Bek, G. Kersteen, H. Kahle, T. Schwarzbäck, M. Jetter, P. Michler: All quantum dot mode-locked semiconductor disk laser emitting at 655 nm. Applied Physics Letters 105 (2014), 082107. 2014 Michler: All quantum dot mode-locked semiconductor disk laser emitting at 655 nm R. Bek, H. Kahle, T. Schwarzbäck, M. Jetter, P. Michler: Mode-locked red-emitting semiconductor disk laser with sub-250 fs pulses. Applied Physics Letters 103 (2013), 242101. 2013 Michler: Mode-locked red-emitting semiconductor disk laser with sub-250 fs pulses D. A. B. Miller: Optical interconnects to silicon. IEEE Journal of Selected Topics in Quan- tum Electronics 6 (2000), 1312-1317. 2000 Miller: Optical interconnects to silicon E. U. Rafailov, M. A. Cataluna, and W. Sibbett, " Mode-locked quantum-dot lasers, " Nature Photon., vol. 1, no. 7, pp. 395–401, 2007. 2007 Mode-locked quantum-dot lasers M. Kuznetsov, F. Hakimi, R. Sprague, A. Mooradian: Design and characteristics of high- power (>0.5-W CW) diode-pumped vertical external-cavity surface emitting semiconductor lasers with circular TEM 00 beams. IEEE Journal of Selected Topics in Quantum Electronics 5 (1999), 561-573. 1999 Mooradian: Design and characteristics of highpower (>0.5-W CW) diode-pumped vertical external-cavity surface emitting semiconductor lasers with circular TEM 00 beams M. Kuznetsov, F. Hakimi, R. Sprague, A. Mooradian: High-power (> 0.5-W CW) diode- pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM 00 beams. IEEE Photonics Technology Letters 9 (1997), 1063-1065. 1997 Mooradian: High-power (> 0.5-W CW) diodepumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM 00 beams A. R. Albrecht et al., " Multi-watt 1.25 µm quantum dot VECSEL, " Electron. Lett., vol. 46, no. 12, pp. 856–857, Jun. 2010. 2010-06 Multi-watt 1.25 µm quantum dot VECSEL Moloney, J.V., Kilen, I., Bäumner, A., Scheller, M., and Koch, S.W., "Nonequilibrium and thermal effects in mode- locked VECSELS," Opt. Express 22(6), 6422–6427 (2014). 2014 Nonequilibrium and thermal effects in modelocked VECSELS E. Kuhn, A. Thranhardt, C. Buckers, S. W. Koch, J. Hader, J. Moloney: Numerical study of the influence of an antireflection coating on the operating properties of vertical-external-cavity surface-emitting lasers. Journal of Applied Physics 106 (2009) 6, 063105. 2009 Numerical study of the influence of an antireflection coating on the operating properties of vertical-external-cavity surface-emitting lasers J. Rautiainen, J. Lyytikainen, L. Toikkanen, J. Nikkinen, A. Sirbu, A. Mereuta, A. Cali- man, E. Kapon, O. G. Okhotnikov: 1.3 µm Mode-Locked Disk Laser with Wafer Fused Gain and SESAM Structures. IEEE Photonics Technology Letters 22 (2010) 11, 748-750. 2010 Okhotnikov: 1.3 µm Mode-Locked Disk Laser with Wafer Fused Gain and SESAM Structures J. Rautiainen, I. Krestnikov, J. Nikkinen, O. G. Okhotnikov: 2.5 W orange power by fre- quency conversion from a dual-gain quantum-dot disk laser. Optics Letters 35 (2010) 12, 1935- 1937. 2010 Okhotnikov: 2.5 W orange power by frequency conversion from a dual-gain quantum-dot disk laser Guina, O. G. Okhotnikov: Harmonically mode-locked VECSELs for multi-GHz pulse train generation. Optics Express 15 (2007) 3, 955-964. 2007 Okhotnikov: Harmonically mode-locked VECSELs for multi-GHz pulse train generation O. G. Okhotnikov: Semiconductor Disk Lasers: Physics and Technology, ED. Wein- heim: Wiley-VCH 2010. 2010 Okhotnikov: Semiconductor Disk Lasers: Physics and Technology Hader, J., Wang, T.-L., Moloney, J. V., Heinen, B., Koch, M., Koch, S. W., Kunert, B., and Stolz, W., "On the measurement of the thermal impedance in vertical-external-cavity surface-emitting lasers," J. Appl. Phys., 113(15), 153102 (2013). 2013 On the measurement of the thermal impedance in vertical-external-cavity surface-emitting lasers Heinen, B., Zhang, F., Sparenberg, M., Kunert, B., Koch, M., and Stolz, W., "On the Measurement of the Thermal Resistance of Vertical-External-Cavity Surface-Emitting Lasers (VECSELs)," IEEE J. Quantum Electron., 48(7), 934–940 (2012). 2012 On the Measurement of the Thermal Resistance of Vertical-External-Cavity Surface-Emitting Lasers (VECSELs) L. Fan et al., " Over 3 W high-efficiency vertical-external-cavity surface- emitting lasers and application as efficient fiber laser pump sources, " Appl. Phys. Lett., vol. 86, no. 21, p. 211116, 2005. 2005 Over 3 W high-efficiency vertical-external-cavity surfaceemitting lasers and application as efficient fiber laser pump sources Pacific Rim conference on lasers and electro-optics, CLEO/Pacific Rim (2005), 160-161. 2005 Pacific Rim conference on lasers and electro-optics J. A. Lott, A. R. Kovsh, N. N. Ledentsov, and D. Bimberg, Pacific Rim conference on lasers and electro-optics, CLEO/Pacific Rim 2005, pp. 160–161 (2005). 2005 Pacific Rim conference on lasers and electro-optics, CLEO/Pacific Rim Laurell, V. Pasiskevicius: Carbon nanotube mode-locked optically-pumped semicon- ductor disk laser. Optics Express 21 (2013) 15, 17806-17813. 2013 Pasiskevicius: Carbon nanotube mode-locked optically-pumped semiconductor disk laser M. Scheller, T.-L. Wang, B. Kunert, W. Stolz, S. W. Koch, and J. V. Moloney, " Passively modelocked VECSEL emitting 682 fs pulses with 5.1 W of average output power, " Electron. Lett., vol. 48, no. 10, pp. 588–589, May 2012. 2012-03 Passively modelocked VECSEL emitting 682 fs pulses with 5.1 W of average output power R. Paschotta, U. Keller: Passive mode locking with slow saturable absorbers. Applied Physics B 73 (2001), 653âĂŞ662. 2001 Passive mode locking with slow saturable absorbers R. Haring, R. Paschotta, E. Gini, F. Morier-Genoud, D. Martin, H. Melchior, U. Keller: Picosecond surface-emitting semiconductor laser with > 200 mW average power. Elec- tronics Letters 37 (2001) 12, 766-767. 2001 Picosecond surface-emitting semiconductor laser with > 200 mW average power R. Bedford, M. Kolesik, J. Chilla, M. Reed, T. Nelson, J. Moloney: Power-limiting mech- anisms in VECSELs. Proc. SPIE, 5814 (2005), 199-208. 2005 Power-limiting mechanisms in VECSELs O. Svelto: Principles of Lasers. Boston, MA: Springer US 2010. 2010 Principles of Lasers M. Mangold, C. A. Zaugg, S. M. Link, M. Golling, B. W. Tilma, U. Keller: Pulse repeti- tion rate scaling from 5 to 100 GHz with a high-power semiconductor disk laser. Optics Express 22 (2014) 5, 6099-6107. 2014 Pulse repetition rate scaling from 5 to 100 GHz with a high-power semiconductor disk laser P. Klopp, U. Griebner, M. Zorn, M. Weyers: Pulse repetition rate up to 92 GHz or pulse duration shorter than 110 fs from a mode-locked semiconductor disk laser. Applied Physics Letters 98 (2011) 7, 071103-071103. 2011 Pulse repetition rate up to 92 GHz or pulse duration shorter than 110 fs from a mode-locked semiconductor disk laser Wang, T.-L., Heinen, B., Hader, J., Dineen, C., Sparenberg, M., Weber, A., Kunert, B., Koch, S. W., Moloney, J. V., Koch, M., and Stolz, W., "Quantum design strategy pushes high-power vertical-external-cavity surface-emitting lasers beyond 100 W," Laser Photonic Rev., 6(5), L12–L14 (2012) 2012 Quantum design strategy pushes high-power vertical-external-cavity surface-emitting lasers beyond 100 W Mikhrin, I. L. Krestnikov, D. A. Livshits, E. U. Rafailov: Quantum dot based semiconductor 139 Bibliography disk lasers for 1-1.3 µm. IEEE Journal of Selected Topics in Quantum Electronics, 17 (2011) 6, 1763-1771. 2011 Quantum dot based semiconductor 139 Bibliography disk lasers for 1-1.3 µm M. Butkus: Quantum Dot Based Semiconductor Disk Lasers, Ph.D. dissertation, Uni- versity of Dundee, England, 2012. 2012 Quantum Dot Based Semiconductor Disk Lasers M. Butkus et al., " Quantum dot based semiconductor disk lasers for 1–1.3 µm, " IEEE J. Sel. Topics Quantum Electron., vol. 17, no. 6, pp. 1763–1771, Nov./Dec. 2011. 2011-12 Quantum dot based semiconductor disk lasers for 1–1.3 µm T. Germann et al., " Quantum-dot semiconductor disk lasers, " J. Cryst. Growth, vol. 310, no. 23, pp. 5182–5186, 2008. 2008 Quantum-dot semiconductor disk lasers Rafailov: 85.7 MHz repetition rate mode-locked semiconductor disk laser: fundamental and soliton bound states. Optics Express 21 (2013) 21, 25526-25531. 2013 Rafailov: 85.7 MHz repetition rate mode-locked semiconductor disk laser: fundamental and soliton bound states J. Chilla, Q.-Z. Shu, H. Zhou, E. Weiss, M. Reed, and L. Spinelli, " Recent advances in optically pumped semiconductor lasers, " Proc. SPIE, vol. 6451, pp. 645109-1–645109-10, Feb. 2007. 2007-02 Recent advances in optically pumped semiconductor lasers U. Keller: Recent developments in compact ultrafast lasers. Nature 424 (2003), 831-838. 2003 Recent developments in compact ultrafast lasers L. Kornaszewski, G. Maker, G. P. A. Malcolm, M. Butkus, E. U. Rafailov, C. J. Hamilton: Reply to comment on SESAM-free mode-locked semiconductor disk laser. Laser and Photonics Review 7 (2013) 4, 555-556. 2013 Reply to comment on SESAM-free mode-locked semiconductor disk laser M. Scheller, J. M. Yarborough, J. V. Moloney, M. Fallahi, M. Koch, and S. W. Koch, " Room temperature continuous wave milliwatt terahertz source, " Opt. Exp., vol. 18, no. 26, pp. 27112–27117, 2010. 2010 Room temperature continuous wave milliwatt terahertz source M. Gaafar et al., " Self-mode-locked quantum-dot vertical-external- cavity surface-emitting laser, " Opt. Lett., vol. 39, no. 15, pp. 4623–4626, 2014. 2014 Self-mode-locked quantum-dot vertical-externalcavity surface-emitting laser S. Calvez, J. E. Hastie, M. Guina, O. G. Okhotnikov, and M. D. Dawson, " Semiconductor disk lasers for the generation of visible and ultraviolet radiation, " Laser Photon. Rev., vol. 3, no. 5, pp. 407–434, 2009. [14] Y. Kaneda et al., " Continuous-wave single-frequency 295 nm laser source by a frequency-quadrupled optically pumped semiconductor laser, " Opt. Lett., vol. 34, no. 22, pp. 3511–3513, Nov. 2009. 2009-11 Semiconductor disk lasers for the generation of visible and ultraviolet radiation Continuous-wave single-frequency 295 nm laser source by a frequency-quadrupled optically pumped semiconductor laser W. Chow, S. W. Koch: Semiconductor Laser Fundamentals. Berlin: Springer 1999. 1999 Semiconductor Laser Fundamentals Z. Liau: Semiconductor wafer bonding via liquid capillarity. Applied Physics Letters 77 (2000) 5, 651âĂŞ653. 2000 Semiconductor wafer bonding via liquid capillarity E. U. Rafailov, M. A. Cataluna, W. Sibbett: Mode-locked quantum-dot lasers. Nature Pho- tonics 1 (2007), 395-401. 2007 Sibbett: Mode-locked quantum-dot lasers M. DiDomenico: Small-Signal Analysis of Internal (Coupling-Type) Modulation of Lasers. Journal Of Applied Physics (1964). 1964 Small-Signal Analysis of Internal (Coupling-Type) Modulation of Lasers W. Koechner: Solid-State Laser Engineering. New York, USA: Springer 2006. 2006 Solid-State Laser Engineering sorptance of quarter-wave dielectric mirrors. IEEE Journal of Quantum Electronics 28 (1992) 2, 514-524. 1992 sorptance of quarter-wave dielectric mirrors A. Giesen, J. Speiser: Fifteen years of work on thin-disk lasers: results and scaling laws. IEEE Journal of Selected Topics in Quantum Electronics 13 (2007) 3, 598-609. 2007 Speiser: Fifteen years of work on thin-disk lasers: results and scaling laws T. H. Maiman: Stimulated Optical Radiation in Ruby. Nature 187 (1960) 4736, 493-494. 1960 Stimulated Optical Radiation in Ruby Moloney, M. Koch, W. Stolz: 106 W continuous-wave output power from vertical-external- cavity surface-emitting laser. Electronics Letters 48 (2012) 9, 516-517. 2012 Stolz: 106 W continuous-wave output power from vertical-externalcavity surface-emitting laser K. G. Wilcox, A. C. Tropper, H. E. Beere, D. A. Ritchie, B. Kunert, B. Heinen, W. Stolz: 4.35 kW peak power femtosecond pulse mode-locked VECSEL for supercontinuum generation. Optics Express 21 (2013) 2, 1599-1605. 2013 Stolz: 4.35 kW peak power femtosecond pulse mode-locked VECSEL for supercontinuum generation T.-L. Wang, Y. Kaneda, J. Hader, J. Moloney, B. Kunert, W. Stolz, S. Koch: Strategies for power scaling VECSELs. Proceedings of SPIE, 8242 (2012), 8242091-8242098. 2012 Strategies for power scaling VECSELs J.-L. Oudar: Subpicosecond pulse generation from a 1.56 µm mode-locked VECSEL. Subpicosecond pulse generation from a 1.56 µm mode-locked VECSEL D. Lorenser, H. J. Unold, D. J. H. C. Maas, A. Aschwanden, R. Grange, R. Paschotta, D. Ebling, E. Gini, U. Keller: Towards wafer-scale integration of high repetition rate passively mode-locked surface-emitting semiconductor lasers. Applied Physics B 79 (2004) 8, 927-932. 2004 Towards wafer-scale integration of high repetition rate passively mode-locked surface-emitting semiconductor lasers U. Keller, A. C. Tropper: Passively modelocked surface-emitting semiconductor lasers. Physics Reports 429 (2006), 67-120. 2006 Tropper: Passively modelocked surface-emitting semiconductor lasers C. A. Zaugg, Z. Sun, V. J. Wittwer, D. Popa, S. Milana, T. S. Kulmala, R. S. Sundaram, M. Mangold, O. D. Sieber, M. Golling, Y. Lee, J. H. Ahn, A. C. Ferrari, U. Keller: Ultra- fast and widely tunable vertical-external-cavity surface-emitting laser, mode-locked by a graphene-integrated distributed Bragg reflector. Optics Express 21 (2013) 25, 31548- 31559. 2013 Ultrafast and widely tunable vertical-external-cavity surface-emitting laser, mode-locked by a graphene-integrated distributed Bragg reflector Zaugg, C. A., Sun, Z., Wittwer, V. J., Popa, D., Milana, S., Kulmala, T. S., Sundaram, R. S., Mangold, M., Sieber, O. D., Golling, M., Lee, Y., Ahn, J. H., Ferrari, A. C., and Keller, U., "Ultrafast and widely tuneable vertical- external-cavity surface-emitting laser, mode-locked by a graphene-integrated distributed Bragg reflector," Opt. Express 21(25), 31548–31559 (2013). 2013 Ultrafast and widely tuneable verticalexternal-cavity surface-emitting laser, mode-locked by a graphene-integrated distributed Bragg reflector GrünerGr¨Grüner-Nielsen, T. Veng: Demonstration of massive wavelength-division multiplexing over transoceanic distances by use of dispersion-managed solitons. Optics Letters 25 (2000), 704- 706. 2000 Veng: Demonstration of massive wavelength-division multiplexing over transoceanic distances by use of dispersion-managed solitons D. J. H. C. Maas, A.-R. Bellancourt, B. Rudin, M. Golling, H. J. Unold, T. SÃijdmeyer, U. Keller: Vertical integration of ultrafast semiconductor lasers. Applied Physics B 88 (2007) 4, 493-497. 2007 Vertical integration of ultrafast semiconductor lasers Zorn, M. Weyers: Blue 489-nm picosecond pulses generated by intracavity frequency doubling in a passively mode-locked optically pumped semiconductor disk laser. Ap- plied Physics B 81 (2005) 4, 443-446. 2005 Weyers: Blue 489-nm picosecond pulses generated by intracavity frequency doubling in a passively mode-locked optically pumped semiconductor disk laser A. H. Zewail: Laser femtochemistry. Science 242 (1988), 1645-1653. 1988 Zewail: Laser femtochemistry M. Rahim, M. Arnold, F. Felder, K. Behfar, H. Zogg: Midinfrared lead-chalcogenide verti- cal external cavity surface emitting laser with 5 mm wavelength. Applied Physics Letters 91 (2007), 151102. 2007 Zogg: Midinfrared lead-chalcogenide vertical external cavity surface emitting laser with 5 mm wavelength Albrecht, A. R., Wang, Y., Ghasemkhani, M., Seletskiy, D. V., Cederberg, J. G. and Sheik-Bahae, M., "Exploring ultrafast negative Kerr effect for mode-locking vertical external-cavity surface-emitting lasers," Opt. Express 21(23), 28801–28808 (2013). 2013 Exploring ultrafast negative Kerr effect for mode-locking vertical external-cavity surface-emitting lasers Downloaded From: http://proceedings.spiedigitallibrary.org/ on 03/20/2015 Terms of Use: http://spiedl.org/terms [5] Heinen, B., Wang, T. L., Sparenberg, M., Weber, A., Kunert, B., Hader, J., Koch, S. W., Moloney, J. V., Koch, M. and Stolz, W., "106 W continuous-wave output power from vertical-external-cavity surface-emitting laser," Electron. Lett. 48 (9), 516-517 (2012). 2012 106 W continuous-wave output power from vertical-external-cavity surface-emitting laser C. Borgentun, J. Bengtsson, A. Larsson, F. Demaria, A. Hein, P. Unger: Optimization of a broadband gain element for a widely tunable high-power semiconductor disk laser. IEEE Photonics Technology Letters 22 (2010) 13, 978-980. 2010 Optimization of a broadband gain element for a widely tunable high-power semiconductor disk laser H. Lindberg, A. Strassner, E. Gerster, A. Larsson: 0.8 W optically pumped vertical external cavity surface emitting laser operating CW at 1550 nm. Electronics Letters 40 (2004), 601- 602. 2004 Larsson: 0.8 W optically pumped vertical external cavity surface emitting laser operating CW at 1550 nm A. Haglund, J. S. Gustavsson, J. Vukusic, P. Modh, A. Larsson: Single fundamental-mode output power exceeding 6 mW from VCSELs with a shallow surface relief. IEEE Photonics Technology Letters 16 (2004), 368-370. 2004 Larsson: Single fundamental-mode output power exceeding 6 mW from VCSELs with a shallow surface relief H. Lindberg, M. Sadeghi, M. Westlund, S. Wang, A. Larsson, M. Strassner, S. Marcinke- vicius: Mode locking a 1550 nm semiconductor disk laser by using a GaInNAs saturable absorber. Optics Letters 30 (2005) 20, 2793-2795. 2005 Marcinkevicius: Mode locking a 1550 nm semiconductor disk laser by using a GaInNAs saturable absorber Cundiff: Carrier-envelope phase control of femtosecond modelocked lasers and direct optical frequency synthesis. Science 288 (2000), 635-639. 2000 Cundiff: Carrier-envelope phase control of femtosecond modelocked lasers and direct optical frequency synthesis S. Calvez, J. E. Hastie, M. Guin, O. G. Okhotnikov, and M. D. Dawson, " Semiconductor disk lasers for the generation of visible and ultraviolet radiation, " Laser Photon. Rev., vol. 3, no. 5, pp. 407–434, 2009. 2009 Semiconductor disk lasers for the generation of visible and ultraviolet radiation P. J. Schlosser, J. E. Hastie, S. Calvez, A. B. Krysa, and M. D. Dawson, " InP/AlGaInP quantum dot semiconductor disk lasers for CW TEM 00 emission at 716–755 nm, " Opt. Exp., vol. 17, no. 24, pp. 21782–21787, Nov. 2009. 2009-11 InP/AlGaInP quantum dot semiconductor disk lasers for CW TEM 00 emission at 716–755 nm J. E. Hastie et al., " 0.5-W single transverse-mode operation of an 850- nm diode-pumped surface-emitting semiconductor laser, " IEEE Photon. Technol. Lett., vol. 15, no. 7, pp. 894–896, Jul. 2003. 2003-07 0.5-W single transverse-mode operation of an 850- nm diode-pumped surface-emitting semiconductor laser J. Hastie, S. Calvez, M. Dawson, T. Leinonen, A. Laakso, J. Lyytikäinen, M. Pessa: High power CW red VECSEL with linearly polarized TEM 00 output beam. Optics Express 13 (2005), 77-81. 2005 High power CW red VECSEL with linearly polarized TEM 00 output beam J. E. Hastie, L. G. Morton, A. J. Kemp, M. D. Dawson, A. B. Krysa, J. S. Roberts: Tun- able ultraviolet output from an intracavity frequency-doubled red vertical-external-cavity sur- faceemitting laser. Applied Physics Letters 89 (2006), 061114. 2006 Tunable ultraviolet output from an intracavity frequency-doubled red vertical-external-cavity surfaceemitting laser 2016-06-30 Philipps-Universität Marburg Gaafar, Mahmoud Gaafar Mahmoud ths Prof. Dr. Koch Martin Koch, Martin (Prof. Dr.)
recordtype opus
id urn:nbn:de:hebis:04-z2015-0403
urn_str urn:nbn:de:hebis:04-z2015-04037
collection Monograph
uri_str http://archiv.ub.uni-marburg.de/diss/z2015/0403
callnumber-raw diss/z2015/0403
callnumber-search diss/z2015/0403
callnumber-sort diss/z2015/0403
callnumber-label diss z2015 0403
callnumber-first diss
callnumber-subject diss z2015
_version_ 1563294021291343872
score 9,62055