Identification and characterization of a novel cell-envelope subcomplex crucial for A-motility in M. xanthus

Myxococcus xanthus is a rod-shaped, Gram-negative bacterium that has two different motility systems: the A- and the S-motility system. A-motility allows the movement of single cells, while S-motility is cell-cell contact-dependent and is similar to twitching motility in other bacteria. If genes of o...

Full description

Saved in:
Bibliographic Details
Main Author: Jakobczak, Beata
Contributors: Søgaard-Andersen, Lotte (Prof. Dr.) (Thesis advisor)
Format: Dissertation
Published: Philipps-Universität Marburg 2014
Online Access:PDF Full Text
Tags: Add Tag
No Tags, Be the first to tag this record!

1. Krogh, A., B. Larsson, G. von Heijne & E.L. Sonnhammer, (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. Journal of molecular biology 305: 567- 580.

2. Pathak, D.T., X. Wei, A. Bucuvalas, D.H. Haft, D.L. Gerloff & D. Wall, (2012) Cell contact-dependent outer membrane exchange in myxobacteria: genetic determinants and mechanism. Plos Genet 8: e1002626.

3. Wolgemuth, C., E. Hoiczyk, D. Kaiser & G. Oster, (2002a) How myxobacteria glide. Curr Biol 12: 369-377.

4. Li, Y., R. Lux, A.E. Pelling, J.K. Gimzewski & W. Shi, (2005b) Analysis of type IV pilus and its associated motility in Myxococcus xanthus using an antibody reactive with native pilin and pili. Microbiology 151: 353-360.

5. Rice, P., I. Longden & A. Bleasby, (2000) EMBOSS: the European Molecular Biology Open Software Suite. Trends in genetics : TIG 16: 276-277.

6. Hodgkin, J. & D. Kaiser, (1979) Genetics of gliding motility in Myxococcus xanthus (Myxobacterales) -genes-controlling movement of single cells. Mol Gen Genet 171: 167-176.

7. Mignot, T., (2007) The elusive engine in Myxococcus xanthus gliding motility. Cell Mol Life Sci 64: 2733-2745.

8. Hoiczyk, E., (2000) Gliding motility in cyanobacteria: observations and possible explanations. Arch Microbiol 174: 11-17.

9. Nakane, D., K. Sato, H. Wada, M.J. McBride & K. Nakayama, (2013) Helical flow of surface protein required for bacterial locomotion. Biophys J 104: 639a-639a.

10. Bulyha, I., S. Lindow, L. Lin, K. Bolte, K. Wuichet, J. Kahnt, C. van der Does, M. Thanbichler & L. Sogaard-Andersen, (2013) Two small GTPases act in concert with the bactofilin cytoskeleton to regulate dynamic bacterial cell polarity. Developmental cell 25: 119-131.

11. Kahnt, J., K. Aguiluz, J. Koch, A. Treuner-Lange, A. Konovalova, S. Huntley, M. Hoppert, L. Sogaard-Andersen & R. Hedderich, (2010) Profiling the outer membrane proteome during growth and development of the social bacterium Myxococcus xanthus by selective biotinylation and analyses of outer membrane vesicles. J Proteome Res 9: 5197-5208.

12. Jarrell, K.F. & M.J. McBride, (2008) The surprisingly diverse ways that prokaryotes move. Nat Rev Microbiol 6: 466-476.

13. Bowden, M.G. & H.B. Kaplan, (1998) The Myxococcus xanthus lipopolysaccharide O-antigen is required for social motility and multicellular development. Mol Microbiol 30: 275-284.

14. Youderian, P., N. Burke, D.J. White & P.L. Hartzell, (2003) Identification of genes required for adventurous gliding motility in Myxococcus xanthus with the transposable element mariner. Mol Microbiol 49: 555-570.

15. McBride, M.J., R.A. Weinberg & D.R. Zusman, (1989) "Frizzy" aggregation genes of the gliding bacterium Myxococcus xanthus show sequence References 118 similarities to the chemotaxis genes of enteric bacteria. PNAS 86: 424- 428.

16. Cole, C., J.D. Barber & G.J. Barton, (2008) The Jpred 3 secondary structure prediction server. Nucleic acids research 36: W197-201.

17. Remmert, M., D. Linke, A.N. Lupas & J. Soding, (2009) HHomp-prediction and classification of outer membrane proteins. Nucleic acids research 37: W446-W451.

18. Dworkin, M. & H. Voelz, (1962) The formation and germination of microcysts in Myxococcus xanthus. Journal of general microbiology 28: 81-85.

19. Bustamante, V.H., I. Martinez-Flores, H.C. Vlamakis & D.R. Zusman, (2004) Analysis of the Frz signal transduction system of Myxococcus xanthus shows the importance of the conserved C-terminal region of the cytoplasmic chemoreceptor FrzCD in sensing signals. Mol Microbiol 53: 1501-1513.

20. Astling, D.P., J.Y. Lee & D.R. Zusman, (2006) Differential effects of chemoreceptor methylation-domain mutations on swarming and development in the social bacterium Myxococcus xanthus. Mol Microbiol 59: 45-55.

21. Yu, R. & D. Kaiser, (2007) Gliding motility and polarized slime secretion. Mol Microbiol 63: 454-467.

22. Inclan, Y.F., S. Laurent & D.R. Zusman, (2008) The receiver domain of FrzE, a CheA-CheY fusion protein, regulates the CheA histidine kinase activity and downstream signalling to the A-and S-motility systems of Myxococcus xanthus. Mol Microbiol 68: 1328-1339.

23. Nan, B., E.M. Mauriello, I.H. Sun, A. Wong & D.R. Zusman, (2010a) A multi- protein complex from Myxococcus xanthus required for bacterial gliding motility. Mol Microbiol 76: 1539-1554.

24. Wei, X., D.T. Pathak & D. Wall, (2011) Heterologous protein transfer within structured myxobacteria biofilms. Mol Microbiol 81: 315-326.

25. Overgaard, M., S. Wegener-Feldbrugge & L. Sogaard-Andersen, (2006) The orphan response regulator DigR is required for synthesis of extracellular matrix fibrils in Myxcoccus xanthus. J Bacteriol 188: 4384-4394.

26. McBride, M.J., (2001) Bacterial gliding motility: multiple mechanisms for cell movement over surfaces. Annu Rev Microbiol 55: 49-75.

27. Baron, D.M., K.S. Ralston, Z.P. Kabututu & K.L. Hill, (2007) Functional genomics in Trypanosoma brucei identifies evolutionarily conserved components of motile flagella. Journal of cell science 120: 478-491.

28. Wartel, M., A. Ducret, S. Thutupalli, F. Czerwinski, A.V. Le Gall, E.M. Mauriello, P. Bergam, Y.V. Brun, J. Shaevitz & T. Mignot, (2013) A versatile class of cell surface directional motors gives rise to gliding motility and sporulation in Myxococcus xanthus. PLoS biology 11: e1001728.

29. Mattick, J.S., (2002a) Type IV pili and twitching motility. Ann. Rev. Microbiol. 56: 289-314.

30. Scheurwater, E.M. & L.L. Burrows, (2011) Maintaining network security: how macromolecular structures cross the peptidoglycan layer. Fems Microbiol Lett 318: 1-9.

31. Evans, A.G.L., H.M. Davey, A. Cookson, H. Currinn, G. Cooke-Fox, P.J. Stanczyk & D.E. Whitworth, (2012) Predatory activity of Myxococcus xanthus outer-membrane vesicles and properties of their hydrolase cargo. Microbiol-Sgm 158: 2742-2752.

32. Behmlander, R.M. & M. Dworkin, (1991) Extracellular fibrils and contact- mediated cell interactions in Myxococcus xanthus. J Bacteriol 173: 7810- 7820.

33. Shi, X.Q., S. Wegener-Feldbrugge, S. Huntley, N. Hamann, R. Hedderich & L. Sogaard-Andersen, (2008) Bioinformatics and experimental analysis of proteins of two-component systems in Myxococcus xanthus. J Bacteriol 190: 613-624.

34. Wei, X., C.N. Vassallo, D.T. Pathak & D. Wall, (2014) Myxobacteria produce outer membrane enclosed tubes in unstructured environments. J Bacteriol.

35. Xie, H., M.A. Pallero, K. Gupta, P. Chang, M.F. Ware, W. Witke, D.J. Kwiatkowski, D.A. Lauffenburger, J.E. Murphy-Ullrich & A. Wells, (1998) EGF receptor regulation of cell motility: EGF induces disassembly of focal adhesions independently of the motility-associated PLCgamma signaling pathway. Journal of cell science 111 ( Pt 5): 615-624.

36. Bradford, M.M., (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry 72: 248-254.

37. McBride, M.J., (2000) Bacterial gliding motility: mechanisms and mysteries. Asm News 66: 203-210.

38. Remis, J.P., D. Wei, A. Gorur, M. Zemla, J. Haraga, S. Allen, H.E. Witkowska, J.W. Costerton, J.E. Berleman & M. Auer, (2014) Bacterial social networks: structure and composition of Myxococcus xanthus outer membrane vesicle chains. Environmental microbiology 16: 598-610.

39. Harshey, R.M., (1994) Bees arent the only ones -swarming in gram-negative bacteria. Mol Microbiol 13: 389-394.

40. Laemmli, U.K., (1970) Cleavage of structural proteins during assembly of head of bacteriophage-T4. Nature 227: 680-&.

41. O'Connor, K.A. & D.R. Zusman, (1991b) Development in Myxococcus xanthus involves differentiation into 2 cell-types, peripheral rods and spores. J Bacteriol 173: 3318-3333.

42. Mignot, T., J.W. Shaevitz, P.L. Hartzell & D.R. Zusman, (2007) Evidence that focal adhesion complexes power bacterial gliding motility. Science 315: 853-856.

43. Spormann, A.M., (1999) Gliding motility in bacteria: Insights from studies of Myxococcus xanthus. Microbiology and molecular biology reviews : MMBR 63: 621-+.

44. Tudyka, T. & A. Skerra, (1997) Glutathione S-transferase can be used as a C- terminal, enzymatically active dimerization module for a recombinant References 121

45. Sambrook, J., Fritsch, E.F., Maniatis, T., (1989) Molecular cloning. A laboratory manual. Cold Spring Harbor, N.Y., Cold Spring Harbor Laboratory Press. References 120

46. Wachi, M., M. Doi, S. Tamaki, W. Park, S. Nakajima-Iijima & M. Matsuhashi, (1987) Mutant isolation and molecular cloning of mre genes, which determine cell shape, sensitivity to mecillinam, and amount of penicillin- binding proteins in Escherichia coli. J Bacteriol 169: 4935-4940.

47. Cuthbertson, L., I.L. Mainprize, J.H. Naismith & C. Whitfield, (2009) Pivotal roles of the outer membrane polysaccharide export and polysaccharide copolymerase protein families in export of extracellular polysaccharides in gram-negative bacteria. Microbiology and molecular biology reviews : MMBR 73: 155-177.

48. Nudleman, E., D. Wall & D. Kaiser, (2006) Polar assembly of the type IV pilus secretin in Myxococcus xanthus. Mol Microbiol 60: 16-29.

49. J Bacteriol 187: 5578-5584. van den Ent, F., L.A. Amos & J. Lowe, (2001) Prokaryotic origin of the actin cytoskeleton. Nature 413: 39-44.

50. protease inhibitor, and functionally secreted into the periplasm of Escherichia coli. Protein Sci 6: 2180-2187.

51. Baker, M.D., P.M. Wolanin & J.B. Stock, (2006) Signal transduction in bacterial chemotaxis. Bioessays 28: 9-22.

52. Reichenbach, H., (1999) The ecology of the myxobacteria. Environmental microbiology 1: 15-21.

53. Ridley, A.J. & A. Hall, (1992) The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70: 389-399.

54. Postle, K. & R.J. Kadner, (2003) Touch and go: tying TonB to transport. Mol Microbiol 49: 869-882.

55. Razin, S., D. Yogev & Y. Naot, (1998) Molecular biology and pathogenicity of mycoplasmas. Microbiology and molecular biology reviews : MMBR 62: 1094-1156.

56. van Geest, M. & J.S. Lolkema, (2000) Membrane topology and insertion of membrane proteins: Search for topogenic signals. Microbiology and molecular biology reviews : MMBR 64: 13-+.

57. O'Toole, G.A. & R. Kolter, (1998) Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30: 295-304.

58. Hager, A.J., D.L. Bolton, M.R. Pelletier, M.J. Brittnacher, L.A. Gallagher, R. Kaul, S.J. Skerrett, S.I. Miller & T. Guina, (2006) Type IV pili-mediated secretion modulates Francisella virulence. Mol Microbiol 62: 227-237.

59. Inclan, Y.F., H.C. Vlamakis & D.R. Zusman, (2007) FrzZ, a dual CheY-like response regulator, functions as an output for the Frz chemosensory pathway of Myxococcus xanthus. Mol Microbiol 65: 90-102.

60. Pelicic, V., (2008) Type IV pili: e pluribus unum? Mol Microbiol 68: 827-837.

61. Nan, B.Y., E.M.F. Mauriello, I.H. Sun, A. Wong & D.R. Zusman, (2010b) A multi-protein complex from Myxococcus xanthus required for bacterial gliding motility. Mol Microbiol 76: 1539-1554.

62. Muller, F.D., C.W. Schink, E. Hoiczyk, E. Cserti & P.I. Higgs, (2012) Spore formation in Myxococcus xanthus is tied to cytoskeleton functions and polysaccharide spore coat deposition. Mol Microbiol 83: 486-505.

63. Petersen, T.N., S. Brunak, G. von Heijne & H. Nielsen, (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nature methods 8: 785-786.

64. Henrichsen, J., (1983) Twitching Motility. Annu Rev Microbiol 37: 81-93.

65. Blatch, G.L. & M. Lassle, (1999) The tetratricopeptide repeat: a structural motif mediating protein-protein interactions. Bioessays 21: 932-939.

66. Stock, A.M., V.L. Robinson & P.N. Goudreau, (2000) Two-component signal transduction. Annual review of biochemistry 69: 183-215.

67. Miyata, M., (2010) Unique centipede mechanism of Mycoplasma gliding. Annu Rev Microbiol 64: 519-537.

68. Dubnau, D., (1999) DNA uptake in bacteria. Annu Rev Microbiol 53: 217-244.

69. Shimkets, L.J., (1999a) Intercellular signaling during fruiting-body development of Myxococcus xanthus. Annu. Rev. Microbiol. 53: 525-549.

70. Esue, O., M. Cordero, D. Wirtz & Y. Tseng, (2005) The assembly of MreB, a prokaryotic homolog of actin. The Journal of biological chemistry 280: 2628-2635.

71. Zaidel-Bar, R., C. Ballestrem, Z. Kam & B. Geiger, (2003) Early molecular events in the assembly of matrix adhesions at the leading edge of migrating cells. Journal of cell science 116: 4605-4613.

72. Craig, L., M.E. Pique & J.A. Tainer, (2004) Type IV pilus structure and bacterial pathogenicity. Nat Rev Microbiol 2: 363-378.

73. Mauriello, E.M.F., B.Y. Nan & D.R. Zusman, (2009) AglZ regulates adventurous (A-) motility in Myxococcus xanthus through its interaction with the cytoplasmic receptor, FrzCD. Mol Microbiol 72: 964-977.

74. Licking, E., L. Gorski & D. Kaiser, (2000) A common step for changing cell shape in fruiting body and starvation-independent sporulation of Myxococcus xanthus. J Bacteriol 182: 3553-3558.

75. Li, Y., V.H. Bustamante, R. Lux, D. Zusman & W. Shi, (2005a) Divergent regulatory pathways control A and S motility in Myxococcus xanthus through FrzE, a CheA-CheY fusion protein. J Bacteriol 187: 1716-1723.

76. Wall, D., S.S. Wu & D. Kaiser, (1998) Contact stimulation of Tgl and type IV pili in Myxococcus xanthus. J Bacteriol 180: 759-761.

77. Seto, S., A. Uenoyama & M. Miyata, (2005) Identification of a 521-kilodalton protein (Gli521) involved in force generation or force transmission for Mycoplasma mobile gliding. J Bacteriol 187: 3502-3510.

78. Uenoyama, A. & M. Miyata, (2005) Identification of a 123-kilodalton protein (Gli123) involved in machinery for gliding motility of Mycoplasma mobile.

79. Maier, B., L. Potter, M. So, H.S. Seifert & M.P. Sheetz, (2002) Single pilus motor forces exceed 100 pN. PNAS 99: 16012-16017.

80. Katz, B.Z., E. Zamir, A. Bershadsky, Z. Kam, K.M. Yamada & B. Geiger, (2000) Physical state of the extracellular matrix regulates the structure and molecular composition of cell-matrix adhesions. Molecular biology of the cell 11: 1047-1060.

81. Raymond, K.N., E.A. Dertz & S.S. Kim, (2003) Enterobactin: An archetype for microbial iron transport. PNAS 100: 3584-3588.

82. Julien, B., A.D. Kaiser & A. Garza, (2000) Spatial control of cell differentiation in Myxococcus xanthus. PNAS 97: 9098-9103.

83. Charest, P.G. & R.A. Firtel, (2007) Big roles for small GTPases in the control of directed cell movement. The Biochemical journal 401: 377-390.

84. Francetic, O., N. Buddelmeijer, S. Lewenza, C.A. Kumamoto & A.P. Pugsley, (2007) Signal recognition particle-dependent inner membrane targeting of the PulG Pseudopilin component of a type II secretion system. J Bacteriol 189: 1783-1793.

85. Leonardy, S., G. Freymark, S. Hebener, E. Ellehauge & L. Sogaard-Andersen, (2007) Coupling of protein localization and cell movements by a dynamically localized response regulator in Myxococcus xanthus. Embo J 26: 4433-4444.

86. O'Connor, K.A. & D.R. Zusman, (1991a) Analysis of Myxococcus xanthus cell types by two-dimensional polyacrylamide gel electrophoresis. J Bacteriol 173: 3334-3341.

87. Miyamoto, S., H. Teramoto, O.A. Coso, J.S. Gutkind, P.D. Burbelo, S.K. Akiyama & K.M. Yamada, (1995b) Integrin function: molecular hierarchies of cytoskeletal and signaling molecules. The Journal of cell biology 131: 791-805.

88. Hartzell, P. & D. Kaiser, (1991) Function of Mgla, a 22-Kilodalton protein essential for gliding in Myxococcus xanthus. J Bacteriol 173: 7615-7624.

89. Nakane, D. & M. Miyata, (2007) Cytoskeletal "jellyfish" structure of Mycoplasma mobile. PNAS 104: 19518-19523.

90. Zusman, D.R., (1982) "Frizzy" mutants: a new class of aggregation-defective developmental mutants of Myxococcus xanthus. J Bacteriol 150: 1430- 1437.

91. Levine, (1988) Toxin, Toxin-Coregulated Pili, and the Toxr Regulon Are Essential for Vibrio-Cholerae Pathogenesis in Humans. J Exp Med 168: 1487-1492.

92. Jakovljevic, V., S. Leonardy, M. Hoppert & L. Sogaard-Andersen, (2008) PilB and PilT are ATPases acting antagonistically in type IV pilus function in Myxococcus xanthus. J Bacteriol 190: 2411-2421.

93. Rosenberg, E., K.H. Keller & M. Dworkin, (1977) Cell Density-Dependent Growth of Myxococcus xanthus on Casein. J Bacteriol 129: 770-777.

94. Wireman, J.W. & M. Dworkin, (1977) Developmentally induced autolysis during fruiting body formation by Myxococcus xanthus. J Bacteriol 129: 798- 802.

95. Sun, H., Z. Yang & W. Shi, (1999) Effect of cellular filamentation on adventurous and social gliding motility of Myxococcus xanthus. PNAS 96: 15178-15183.

96. Clausen, M., V. Jakovljevic, L. Sogaard-Andersen & B. Maier, (2009) High-force generation is a conserved property of type IV pilus systems. J Bacteriol 191: 4633-4638.

97. Berleman, J.E. & J.R. Kirby, (2009) Deciphering the hunting strategy of a bacterial wolfpack. Fems Microbiol Rev 33: 942-957.

98. Bulyha, I., C. Schmidt, P. Lenz, V. Jakovljevic, A. Hone, B. Maier, M. Hoppert & L. Sogaard-Andersen, (2009) Regulation of the type IV pili molecular machine by dynamic localization of two motor proteins. Mol Microbiol 74: 691-706.

99. Mauriello, E.M., F. Mouhamar, B. Nan, A. Ducret, D. Dai, D.R. Zusman & T. Mignot, (2010a) Bacterial motility complexes require the actin-like protein, MreB and the Ras homologue, MglA. Embo J 29: 315-326.

100. Muller, F.D., A. Treuner-Lange, J. Heider, S.M. Huntley & P.I. Higgs, (2010) Global transcriptome analysis of spore formation in Myxococcus xanthus reveals a locus necessary for cell differentiation. BMC genomics 11: 264.

101. Zhang, Y., M. Franco, A. Ducret & T. Mignot, (2010) A bacterial Ras-like small GTP-binding protein and its cognate GAP establish a dynamic spatial polarity axis to control directed motility. PLoS biology 8.

102. Leonardy, S., M. Miertzschke, I. Bulyha, E. Sperling, A. Wittinghofer & L. Sogaard-Andersen, (2010) Regulation of dynamic polarity switching in bacteria by a Ras-like G-protein and its cognate GAP. Embo J 29: 2276- 2289.

103. Nan, B.Y., J. Chen, J.C. Neu, R.M. Berry, G. Oster & D.R. Zusman, (2011) Myxobacteria gliding motility requires cytoskeleton rotation powered by proton motive force. PNAS 108: 2498-2503.

104. Kearns, D.B., (2010) A field guide to bacterial swarming motility. Nat Rev Microbiol 8: 634-644.

105. Sudo, S.Z. & M. Dworkin, (1969) Resistance of vegetative cells and microcysts of Myxococcus xanthus. J Bacteriol 98: 883-887.

106. Berleman, J.E., J.J. Vicente, A.E. Davis, S.Y. Jiang, Y.E. Seo & D.R. Zusman, (2011) FrzS regulates social motility in Myxococcus xanthus by controlling exopolysaccharide production. PLoS One 6: e23920.

107. Luciano, J., R. Agrebi, A.V. Le Gall, M. Wartel, F. Fiegna, A. Ducret, C. Brochier-Armanet & T. Mignot, (2011) Emergence and modular evolution of a novel motility machinery in bacteria. Plos Genet 7.

108. van Teeffelen, S., S. Wang, L. Furchtgott, K.C. Huang, N.S. Wingreen, J.W. Shaevitz & Z. Gitai, (2011) The bacterial actin MreB rotates, and rotation depends on cell-wall assembly. PNAS 108: 15822-15827.

109. Kimura, Y., S. Yamashita, Y. Mori, Y. Kitajima & K. Takegawa, (2011) A Myxococcus xanthus bacterial tyrosine kinase, BtkA, is required for the formation of mature spores. J Bacteriol 193: 5853-5857.

110. Miertzschke, M., C. Koerner, I.R. Vetter, D. Keilberg, E. Hot, S. Leonardy, L. Sogaard-Andersen & A. Wittinghofer, (2011) Structural analysis of the Ras-like G protein MglA and its cognate GAP MglB and implications for bacterial polarity. Embo J 30: 4185-4197.

111. Patryn, J., K. Allen, K. Dziewanowska, R. Otto & P.L. Hartzell, (2010) Localization of MglA, an essential gliding motility protein in Myxococcus xanthus. Cytoskeleton 67: 322-337.

112. Garner, E.C., R. Bernard, W. Wang, X. Zhuang, D.Z. Rudner & T. Mitchison, (2011) Coupled, circumferential motions of the cell wall synthesis machinery and MreB filaments in B. subtilis. Science 333: 222-225.

113. Pathak, D.T. & D. Wall, (2012) Identification of the cglC, cglD, cglE, and cglF genes and their role in cell contact-dependent gliding motility in Myxococcus xanthus. J Bacteriol 194: 1940-1949.

114. Shrivastava, A., R.G. Rhodes, S. Pochiraju, D. Nakane & M.J. McBride, (2012) Flavobacterium johnsoniae RemA is a mobile cell surface lectin involved in gliding. J Bacteriol 194: 3678-3688.

115. Zhang, Y., M. Guzzo, A. Ducret, Y.Z. Li & T. Mignot, (2012) A dynamic response regulator protein modulates G-protein-dependent polarity in the bacterium Myxococcus xanthus. Plos Genet 8: e1002872.

116. Keilberg, D., K. Wuichet, F. Drescher & L. Sogaard-Andersen, (2012) A response regulator interfaces between the Frz chemosensory system and the MglA/MglB GTPase/GAP module to regulate polarity in Myxococcus xanthus. Plos Genet 8: e1002951.

117. Uenoyama, A., A. Kusumoto & M. Miyata, (2004) Identification of a 349- kilodalton protein (Gli349) responsible for cytadherence and glass binding during gliding of Mycoplasma mobile. J Bacteriol 186: 1537- 1545.

118. Skerker, J.M. & H.C. Berg, (2001) Direct observation of extension and retraction of type IV pili. PNAS 98: 6901-6904.

119. Nan, B.Y., J.N. Bandaria, A. Moghtaderi, I.H. Sun, A. Yildiz & D.R. Zusman, (2013) Flagella stator homologs function as motors for myxobacterial gliding motility by moving in helical trajectories. PNAS 110: E1508- E1513.

120. Shrivastava, A., J.J. Johnston, J.M. van Baaren & M.J. McBride, (2013) Flavobacterium johnsoniae GldK, GldL, GldM, and SprA are required for secretion of the cell surface gliding motility adhesins SprB and RemA. J Bacteriol 195: 3201-3212.

121. Ducret, A., B. Fleuchot, P. Bergam & T. Mignot, (2013) Direct live imaging of cell-cell protein transfer by transient outer membrane fusion in Myxococcus xanthus. Elife 2.

122. Friedrich, C., I. Bulyha & L. Sogaard-Andersen, (2014) Outside-in assembly pathway of the type IV pilus system in Myxococcus xanthus. J Bacteriol 196: 378-390.

123. Blackhart, B.D. & D.R. Zusman, (1985) Frizzy genes of Myxococcus xanthus are involved in control of frequency of reversal of gliding motility. PNAS 82: 8767-8770.

124. Bean, G.J., S.T. Flickinger, W.M. Westler, M.E. McCully, D. Sept, D.B. Weibel & K.J. Amann, (2009) A22 disrupts the bacterial actin cytoskeleton by directly binding and inducing a low-affinity state in MreB. Biochemistry 48: 4852-4857.

125. Siewering, K., S. Jain, C. Friedrich, M.T. Webber-Birungi, D.A. Semchonok, I. Binzen, A. Wagner, S. Huntley, J. Kahnt, A. Klingl, E.J. Boekema, L. Sogaard-Andersen & C. van der Does, (2014) Peptidoglycan-binding protein TsaP functions in surface assembly of type IV pili. PNAS 111: E953-961.

126. Kaiser, D., (1979a) Social gliding is correlated with the presence of pili in Myxococcus xanthus. PNAS 76: 5952-5956.

127. Shi, W. & D.R. Zusman, (1993) The two motility systems of Myxococcus xanthus show different selective advantages on various surfaces. Proc. Natl. Acad. Sci. USA 90: 3378-3382.

128. Nunn, D.N. & S. Lory, (1991) Product of the Pseudomonas aeruginosa gene pilD is a prepilin leader peptidase. PNAS 88: 3281-3285.

129. Yang, R., S. Bartle, R. Otto, A. Stassinopoulos, M. Rogers, L. Plamann & P. Hartzell, (2004a) AglZ is a filament-forming coiled-coil protein required for adventurous gliding motility of Myxococcus xanthus. J Bacteriol 186: 6168-6178.

130. Domian, I.J., K.C. Quon & L. Shapiro, (1997) Cell type-specific phosphorylation and proteolysis of a transcriptional regulator controls the G1-to-S transition in a bacterial cell cycle. Cell 90: 415-424.

131. Craig, L. & J. Li, (2008) Type IV pili: paradoxes in form and function. Current opinion in structural biology 18: 267-277.

132. Miyamoto, S., S.K. Akiyama & K.M. Yamada, (1995a) Synergistic roles for receptor occupancy and aggregation in integrin transmembrane function. Science 267: 883-885.

133. Sun, M., M. Wartel, E. Cascales, J.W. Shaevitz & T. Mignot, (2011a) Motor- driven intracellular transport powers bacterial gliding motility. Proc Natl Acad Sci U S A 108: 7559-7564.