Nanoparticle Nanoparticles: Synthesis, Surface Modification and Functionalization for Biological and Environmental Applications Neben der Beschaffenheit des Kernmaterials von Nanopartikeln (NP) spielt ihre Oberfläche eine wichtige Rolle, da durch diese die physikalisch-chemischen Eigenschaften des Nanopartikels maßgeblich beeinflusst werden, was insbesondere die Wechselwirkung mit umgebenden Medien, biologischen Systemen oder der Umgebung beeinflusst, über die Art von möglichen Oberflächenmodifikationen entscheidet und letztendlich damit die Anwendungsbereiche der Nanopartikel definiert. Das Hauptaugenmerk dieser Dissertation liegt auf der Synthese, der kontrollierten Oberflächenmodifikation, der Funktionalisierung, der Aufreinigung und schließlich der Charakterisierung von unterschiedlichen Arten von Nanopartikeln (plasmonische, magnetische und Halbleiternanopartikel) um am Ende Kolloide in hochgradig stabilen wässrigen Suspensionen zu erhalten, die sich gleichermaßen für umweltbezogende als auch für biologische Anwendungen eignen. Der größte Teil der ihm Rahmen dieser Arbeit hergestellten Partikel wurde aus anorganischen Materialien hergestellt (5 nm große Au NP, 12 nm große magnetische NP aus Eisenoxid, 3 nm große Eisen-Platinum Partikel, 8 nm große Kobalt-Platinum NP, CdSe/ZnS Hybridpartikel unterschiedlicher Größenverteilungen von 3-5 nm und 7 nm große Quantenpunkte aus ZnO) und durch hydrophobische organische Moleküle, auch Surfactant- order Ligandenmoleküle genannt, stabilisiert. Diese Liganden spielen außerdem eine wichtige Rolle um Form und Größe der Partikel während der Synthese zu kontrollieren und verhindern zusätzliche durch stabilisierende Eigenschaften, dass die NP agglomerieren. Wasserunlösliche (durch hydrophobische Liganden stabilisierte) Nanopartikel, wurden mit Hilfe amphiphiler Polymere, nach einem bereits etablierten Verfahren, von der organischen Phase in wässrige Lösung überführt. Dieses Verfahren ist notwendig, da insbesondere für die meisten bekannten biologischen Anwendungen die Nanomaterialien wasserlöslich sein müssen. Die Stabilisierung der NP in wässriger Lösung basiert dabei auf der Wechselwirkung hydrophober Seitenketten des amphiphilen Polymers, die sich an den ebenfalls hydrophoben NP anlagern, während das hydrophile Rückgrat des Polymers Wasserlöslichkeit garantiert. Dank freier Carboxylatgruppen eignet sich das verwendete Polymer zusätzlich um die nun hydrophile Oberfläche der NP weiter mit beliebigen biologisch aktiven Molekülen zu funktionalisieren. Die erhaltenen, Polymer-umhüllten NP wurden aufgereinigt und mit Hilfe unterschiedlicher Techniken wie Agarosegelelektrophorese, Größenausschluss-Chromatographie, UV-Vis Spektroskopie, Fluoreszenzspektroskopie (im Falle fluoreszierender Materialien), Transmissionselektronenmikroskopie (TEM) und dynamischer Lichtstreuung (DLS) charakterisiert. Eine schmale Größenverteilung der hydrodynamischen Durchmesser zusammen mit negativer Oberflächenladung (Zeta-Potential) lassen dabei auf eine hohe Qualität und kolloidale Stabilität der synthetisierten monodispersen Nanopartikel schließen. Des Weiteren wurde die Oberfläche einiger wasserlöslicher, Polymer-umhüllter Nanopartikel entweder mit Fluoreszenzfarbstoffen (z.B. Dy-495, DY-647 oder Rhodamin), oder mit Polyethylenglycol, Folsäure oder Methotrexat modifiziert mit dem Ziel, multifunktionale Nanopartikel zu erzeugen, und dadurch ein großes Anwendungsspektrum in biologischen Bereichen zu ermöglichen wie Tracking, Markieren von bestimmten Strukturen, multimodale Bildgebung und gezielter Wirkstofftransport. doctoralThesis https://doi.org/10.17192/z2014.0420 opus:5793 2014-10-28 2014-11-18 Publikationsserver der Universitätsbibliothek Marburg Universitätsbibliothek Marburg Modifikation In addition to the type or nature of the nanoparticles (NPs) core, the surface of the obtained nanoparticles plays a crucial role and has great impact on the physicochemical properties of the nanoparticles which reflect in turn on the nanomaterials interactions (with the surrounding medium, biological systems and environment), functionalities and their possible applications. The general focus of this doctoral dissertation has been paid to the synthesis, controlled surface modification, functionalization, purification and characterization of different types of (plasmonic, semiconductor and magnetic) nanoparticles providing water soluble and highly colloidally stable nanoparticles proper for environmental and biological applications. Most of the as synthesized nanoparticles are inorganic particles (e.g. 5 nm Au NPs, 12 nm magnetic iron oxide NPs, 3 nm iron platinum NPs, 8 nm cobalt platinum NPs, CdSe/ZnS core/shell QDs of different sizes from 3-5 nm to 7 nm ZnO QDs) stabilized by hydrophobic organic molecules known as the surfactant or ligand which play an important role to control the shape and growth of the during the nanoparticles synthesis in addition to its role as stabilizing agents preventing the nanoparticles to be agglomerated. In case of water insoluble (hydrophobically capped) nanoparticles (not suitable for the biological applications), they were transformed from organic phase to aqueous environment using a very general protocol known as amphiphilic polymer coating which is based on the hydrophobic interaction between the hydrophobic ligands on the surface of the nanoparticles and the hydrophobic side chains of the used polymer. The polymer coating of originally organic-solvent soluble nanoparticles converts them to water soluble ones (thanks to the free carboxylate groups on surface) which have the ability to be further functionalized with extra functional and/or biologically active molecules of interest. The obtained polymer coated nanoparticles were purified and characterized using different techniques, such as agarose gel electrophoresis, size exclusion chromatography, UV-Vis spectroscopy, fluorescence spectroscopy (in case of fluorescent materials), transmission electron microscopy (TEM) and dynamic light scattering (DLS). Monodisperse different types of polymer coated nanoparticles were obtained with a high quality and colloidal stability as inferred from their physicochemical properties such as narrow hydrodynamic diameter distribution and the negative surface charges expressed as zeta potential. Furthermore, the surface of some water soluble polymer coated nanoparticles was modified with different functionalities such as some fluorophores (e.g. Dy-495, DY-647 and rhodamine), polyethylene glycol, folic acid and methotrexate to obtain multifunctional nanoparticles that could be useful for a wide range of biological applications such as tracking, labeling and multimodal imaging and targeting drug delivery. Physik ths Prof. Dr. Parak Wolfgang J. Parak, Wolfgang J. (Prof. Dr.) Johnston APR, Kamphuis MMJ, Such GK, Scott AM, Nice EC, et al. 2012. Targeting cancer cells: controlling the binding and internalization of antibody-functionalized capsules. Am. Chem. Soc. Nano 6:6667–74 Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA. 1997. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277:1078–81 Lasne D, Blab GA, Berciaud S, Heine M, Groc L, et al. 2006. Single nanoparticle photothermal tracking (SNaPT) of 5-nm gold beads in live cells. Biophys. J. 91:4598–604 Abbasi AZ, Gutierrez L, del Mercato LL, Herranz F, Chubykalo-Fesenko O, et al. 2011. Magnetic capsules for NMR imaging: effect of magnetic nanoparticles spatial distribution and aggregation. J. Phys. Chem. C 115:6257–64 Lehmann AD, Parak WJ, Zhang F, Ali Z, R ¨ ocker C, et al. 2010. Fluorescent-magnetic hybrid nanoparti- cles induce a dose-dependent increase in proinflammatory response in lung cells in vitro correlated with intracellular localization. Small 6:753–62 Colombo M, Carregal-Romero S, Casula MF, Gutiérrez L, Morales MP, et al. 2012. Biological appli- cations of magnetic nanoparticles. Chem. Soc. Rev. 41:4306–34 Hathaway HJ, Butler KS, Adolphi NL, Lovato DM, Belfon R, et al. 2011. Detection of breast cancer cells using targeted magnetic nanoparticles and ultra-sensitive magnetic field sensors. Breast Cancer Res. 13:R108 McFarland AD, Van Duyne RP. 2003. Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett. 3:1057–62 Stone N, Kerssens M, Lloyd GR, Faulds K, Graham D, Matousek P. 2011. Surface enhanced spatially offset Raman spectroscopic (SESORS) imaging—the next dimension. Chem. Sci. 2:776–80 Jamieson T, Bakhshi R, Petrova D, Pocock R, Imani M, Seifalian AM. 2007. Biological applications of quantum dots. Biomaterials 28:4717–32 Pankhurst QA, Connolly J, Jones SK, Dobson J. 2003. Applications of magnetic nanoparticles in biomedicine. J. Phys. D 36:R167–81 Wang C, Irudayaraj J. 2008. Gold nanorod probes for the detection of multiple pathogens. Small 4:2204– 8 Zhang F, Lees E, Amin F, Rivera-Gil P, Yang F, et al. 2011. Polymer-coated nanoparticles: a universal tool for biolabelling experiments. Small 7:3113–27 Sperling RA, Pellegrino T, Li JK, Chang WH, Parak WJ. 2006. Electrophoretic separation of nanopar- ticles with a discrete number of functional groups. Adv. Funct. Mater. 16:943–48 Zhang F, Ali Z, Amin F, Feltz A, Oheim M, Parak WJ. 2010. Ion and pH sensing with colloidal nanopar- ticles: influence of surface charge on sensing and colloidal properties. ChemPhysChem 11:730–35 Rivera-Gil P, Jimenez de Aberasturi D, Wulf V, Pelaz B, del Pino P, et al. 2012. The challenge to relate the physicochemical properties of colloidal nanoparticles to their cytotoxicity. Acc. Chem. Res. In press. doi:10.1021/ar300039j Jiang X, Weise S, Hafner M, R ¨ ocker C, Zhang F, et al. 2010. Quantitative analysis of the protein corona on FePt nanoparticles formed by transferrin binding. J. R. Soc. Interface 7:S5–13 Peteiro-Cartelle J, Rodríguez-Pedreira M, Zhang F, Rivera-Gil P, del Mercato LL, Parak WJ. 2009. One example on how colloidal nano-and microparticles could contribute to medicine. Nanomedicine 4:967–79 Jakhmola A, Anton N, Vandamme TF. 2012. Inorganic nanoparticles based contrast agents for X-ray computed tomography. Adv. Healthc. Mater. 1:413–31 Freeman R, Finder T, Willner I. 2009. Multiplexed analysis of Hg 2+ and Ag + ions by nucleic acid functionalized CdSe/ZnS quantum dots and their use for logic gate operations. Angew. Chem. Int. Ed. 48:7818–21 Geissler D,Charbonnì ere L, Ziessel R, Butlin N, L ¨ ohmannsrohmannsr¨ohmannsröben HG, Hildebrandt N. 2010. Quantum dot biosensors for ultrasensitive multiplexed diagnostics. Angew. Chem. Int. Ed. 49:1396–401 Hwang DW, Ko HY, Kim S-K, Kim D, Lee DS, Kim S. 2009. Development of a quadruple imaging modality by using nanoparticles. Chem. Eur. J. 15:9387–93 Katz E, Willner I. 2004. Integrated nanoparticle-biomolecule hybrid systems: synthesis, properties, and applications. Angew. Chem. Int. Ed. 43:6042–108 Willner I, Willner B, Tel-Vered R. 2011. Electroanalytical applications of metallic nanoparticles and supramolecular nanostructures. Electroanalysis 23:13–28 Lipka M, Semmler-Behnke M, Sperling RA, Wenk A, Takenaka S, et al. 2010. Biodistribution of PEG- modified gold nanoparticles following intratracheal instillation and intravenous injection. Biomaterials 31:6574–81 Xing H, Bu W, Zhang S, Zheng X, Li M, et al. 2012. Multifunctional nanoprobes for upconversion fluorescence, MR and CT trimodal imaging. Biomaterials 33:1079–89 Zelada-Guillén GA, Sebastián-Avila JL, Blondeau P, Riu J, Rius FX. 2012. Label-free detection of Staphylococcus aureus in skin using real-time potentiometric biosensors based on carbon nanotubes and aptamers. Biosens. Bioelectron. 31:226–32 Ruedas-Rama MJ, Orte A, Hall EAH, Alvarez-Pez JM, Talavera EM. 2011. Quantum dot photolumi- nescence lifetime–based pH nanosensor. Chem. Commun. 47:2898–900 Parak WJ, Hofmann UG, Gaub HE, Owicki JC. 1997. Lateral resolution of light addressable potentio- metric sensors: an experimental and theoretical investigation. Sens. Actuators A 63:47–57 George M, Parak WJ, Gaub HE. 2000. Highly integrated surface potential sensors. Sens. Actuators B 69:266–75 Wilson MS, Nie W. 2006. Electrochemical multianalyte immunoassays using an array-based sensor. Anal. Chem. 78:2507–13 Lai G, Yan F, Wu J, Leng C, Ju H. 2011. Ultrasensitive multiplexed immunoassay with electrochemical stripping analysis of silver nanoparticles catalytically deposited by gold nanoparticles and enzymatic reaction. Anal. Chem. 83:2726–32 Tanne J, Schafer D, Khalid W, Parak WJ, Lisdat F. 2011. Light-controlled bioelectrochemical sensor based on CdSe/ZnS quantum dots. Anal. Chem. 83:7778–85 Zong C, Wu J, Wang C, Ju H, Yan F. 2012. Chemiluminescence imaging immunoassay of multiple tumor markers for cancer screening. Anal. Chem. 84:2410–15 Dong Y, Wang R, Li G, Chen C, Chi Y, Chen G. 2012. Polyamine-functionalized carbon quantum dots as fluorescent probes for selective and sensitive detection of copper ions. Anal. Chem. 84:6220–24 Liu B, Zhang B, Cui Y, Chen H, Gao Z, Tang D. 2011. Multifunctional gold-silica nanostructures for ultrasensitive electrochemical immunoassay of streptomycin residues. Am. Chem. Soc. Appl. Mater. Interfaces3:4668–76 Kim K, Lee YM, Lee HB, Shin KS. 2009. Silver-coated silica beads applicable as core materials of dual-tagging sensors operating via SERS and MEF. Am. Chem. Soc. Appl. Mater. Interfaces 1:2174–80 Zhang J, Song S, Zhang L, Wang L, Wu H, et al. 2006. Sequence-specific detection of femtomolar DNA via a chronocoulometric DNA sensor (CDS): effects of nanoparticle-mediated amplification and nanoscale control of DNA assembly at electrodes. J. Am. Chem. Soc. 128:8575–80 Zhao W, Chiuman W, Lam JCF, McManus SA, Chen W, et al. 2008. DNA aptamer folding on gold nanoparticles: from colloid chemistry to biosensors. J. Am. Chem. Soc. 130:3610–18 Sanles-Sobrido M, Exner W, Rodríguez-Lorenzo L, Rodríguez-Gonzalez B, Correa-Duarte MA, et al. 2009. Design of SERS-encoded, submicron, hollow particles through confined growth of encapsulated metal nanoparticles. J. Am. Chem. Soc. 131:2699–705 Fernández-L ´ opez C, Mateo-Mateo C, ´ Alvarez-Puebla RA, Pérez-Juste J, Pastoriza-Santos I, Liz-Marzán LM. 2009. Highly controlled silica coating of PEG-capped metal nanoparticles and preparation of SERS- encoded particles. Langmuir 25:13894–99 Yu C, Nakshatri H, Irudayaraj J. 2007. Identity profiling of cell surface markers by multiplex gold nanorod probes. Nano Lett. 7:2300–6 Ament I, Prasad J, Henkel A, Schmachtel S, Soennichsen C. 2012. Single unlabeled protein detection on individual plasmonic nanoparticles. Nano Lett. 12:1092–95 Maltez–da Costa M, de la Escosura-MuMu˜Muñiz A, Nogués C, Barrios L, IbáIbá˜Ibáñez E, Merkoçi A. 2012. Simple monitoring of cancer cells using nanoparticles. Nano Lett. 12:4164–71 Vetrone F, Naccache R, ZamarrZamarr´Zamarrón A, Juarranz de la Fuente A, Sanz-Rodríguez F, et al. 2010. Temper- ature sensing using fluorescent nanothermometers. Am. Chem. Soc. Nano 4:3254–58 Ko JW, Woo J-M, Jinhong A, Cheon JH, Lim JH, et al. 2011. Multi-order dynamic range DNA sensor using a gold decorated SWCNT random network. Am. Chem. Soc. Nano 5:4365–72 Abbasi AZ, Amin F, Niebling T, Friede S, Ochs M, et al. 2011. How colloidal nanoparticles could facilitate multiplexed measurements of different analytes with analyte-sensitive organic fluorophores. Am. Chem. Soc. Nano 5:21–25 Khlebtsov B, Panfilova E, Khanadeev V, Bibikova O, Terentyuk G, et al. 2012. Nanocomposites con- taining silica-coated gold–silver Nanocages and Yb-2,4-dimethoxyhematoporphyrin: multifunctional ca- pability of IR-luminescence detection, photosensitization, and photothermolysis. Am. Chem. Soc. Nano 5:7077–89 Kim J-H, Patra CR, Arkalgud JR, Boghossian AA, Zhang J, et al. 2011. Single-molecule detection of H 2 O 2 mediating angiogenic redox signaling on fluorescent single-walled carbon nanotube array. Am. Chem. Soc. Nano 5:7848–57 del Mercato LL, Abbasi AZ, Ochs M, Parak WJ. 2011. Multiplexed sensing of ions with barcoded polyelectrolyte capsules. Am. Chem. Soc. Nano 5:9668–74 Koh I, Josephson L. 2009. Magnetic nanoparticle sensors. Sensors 9:8130–45 Fowley C, McCaughan B, Devlin A, Yildiz I, Raymo FM, Callan JF. 2012. Highly luminescent biocom- patible carbon quantum dots by encapsulation with an amphiphilic polymer. Chem. Commun. 48:9361–63 Nagl S, Wolfbeis OS. 2007. Optical multiple chemical sensing: status and current challenges. Analyst 132:507–11 Ma M, Chen H, Chen Y, Wang X, Chen F, et al. 2012. Au capped magnetic core/mesoporous silica shell nanoparticles for combined photothermo-/chemo-therapy and multimodal imaging. Biomaterials 33:989–98 Kang T, Yoo SM, Yoon I, Lee SY, Kim B. 2010. Patterned multiplex pathogen DNA detection by Au particle–on–wire SERS sensor. Nano Lett. 10:1189–93 Kim D-K, Yoo S-M, Park T-J, Yoshikawa H, Tamiya E-I, et al. 2011. Plasmonic properties of the multispot copper-capped nanoparticle array chip and its application to optical biosensors for pathogen detection of multiplex DNAs. Anal. Chem. 83:6215–22 Erogbogbo F, Chang C-W, May JL, Liu L, Kumar R, et al. 2012. Bioconjugation of luminescent silicon quantum dots to gadolinium ions for bioimaging applications. Nanoscale 4:5483–89 Song J, Zhou J, Duan H. 2012. Self-assembled plasmonic vesicles of SERS-encoded amphiphilic gold nanoparticles for cancer cell targeting and traceable intracellular drug delivery. J. Am. Chem. Soc. 134:13458–69 ARI 13 February 2013 20:38 Marin MJ, Galindo F, Thomas P, Russell DA. 2012. Localized intracellular pH measurement using a ratiometric photoinduced electron-transfer-based nanosensor. Angew. Chem. Int. Ed.51:9657–61 Moros M, Pelaz B, L ´ opez-Larrubia P, García-Martin ML, GrazGraz´Grazú V, de la Fuente JM. 2010. Engineering biofunctional magnetic nanoparticles for biotechnological applications. Nanoscale 2:1746–55 Wang F, Deng R, Wang J, Wang Q, Han Y, et al. 2011. Tuning upconversion through energy migration in core-shell nanoparticles. Nat. Mater. 10:968–73 Geidel C, Schmachtel S, Riedinger A, Pfeiffer C, M ¨ ullen K, et al. 2011. A general synthetic approach for obtaining cationic and anionic inorganic nanoparticles via encapsulation in amphiphilic copolymers. Small 7:2929–34 Amin F, Yushchenko DA, Montenegro JM, Parak WJ. 2012. Integration of organic fluorophores in the surface of polymer-coated colloidal nanoparticles for sensing the local polarity of the environment. ChemPhysChem 13:1030–35 Sanchez-Iglesias A, Aldeanueva-Potel P, Ni WH, Pérez-Juste J, Pastoriza-Santos I, et al. 2010. Chem- ical seeded growth of Ag nanoparticle arrays and their application as reproducible SERS substrates. Nano Today 5:21–27 Judenhofer MS, Wehrl HF, Newport DF, Catana C, Siegel SB, et al. 2008. Simultaneous PET-MRI: a new approach for functional and morphological imaging. Nat. Med. 14:459–65 Harisinghani MG, Barentsz J, Hahn PF, Deserno WM, Tabatabaei S, et al. 2003. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N. Engl. J. Med. 348:2491–99 Hwang DW, Ko HY, Lee JH, Kang H, Ryu SH, et al. 2012. A nucleolin-targeted multimodal nanoparticle imaging probe for tracking cancer cells using an aptamer. J. Nucl. Med. 51:98–105 Rivera-Gil P, Nazarenus M, Ashraf S, Parak WJ. 2012. pH Sensitive capsules as intracellular optical reporters for monitoring lysosomal pH changes upon stimulation. Small 8:943–48 AC06CH03-Parak ARI 13 February 2013 20:38 Kondrashina AV, Dmitriev RI, Borisov SM, Klimant I, O'Brien I, et al. 2012. A phosphorescent nanoparticle–based probe for sensing and imaging of (intra)cellular oxygen in multiple detection modal- ities. Adv. Func. Mater. In press 176. Fercher A, Borisov SM, Zhdanov AV, Klimant I, Papkovsky DB. 2011. Intracellular O 2 sensing probe based on cell-penetrating phosphorescent nanoparticles. Am. Chem. Soc. Nano 5:5499–508 Xu J-J, Luo X-L, Du Y, Chen H-Y. 2004. Application of MnO 2 nanoparticles as an eliminator of ascorbate interference to amperometric glucose biosensors. Electrochem. Commun. 6:1169–73 Luo X, Morrin A, Killard AJ, Smyth MR. 2006. Application of nanoparticles in electrochemical sensors and biosensors. Electroanalysis 18:319–26 LundstrLundstr¨Lundström I, Erlandsson R, Frykman U, Hedborg E, Spetz A, et al. 1991. Artificial " olfactory " images from a chemical sensor using a light-pulse technique. Nature 352:47–50 Leuvering JHW, Thal P, Vanderwaart M, Schuurs A. 1981. A sol particle agglutination assay for human chorionic gonadotropin. J. Immunol. Methods 45:183–94 Cui Y, Zheng XS, Ren B, Wang R, Zhang J, et al. 2011. Au@organosilica multifunctional nanoparticles for the multimodal imaging. Chem. Sci. 2:1463–69 Kotov N. 2011. Bioimaging: The only way is up. Nat. Mater. 10:903–4 Hočevar SB, Wang J, Deo RP, Musameh M, Ogorevc B. 2005. Carbon nanotube modified microelectrode for enhanced voltammetric detection of dopamine in the presence of ascorbate. Electroanalysis 17:417–22 YáYá˜Yáñez-SedeSede˜Sedeño P, PingarrPingarr´Pingarrón JM, Riu J, Rius FX. 2010. Electrochemical sensing based on carbon nan- otubes. Trends Anal. Chem. 29:939–53 Wang Y, Fang F, Shi C, Zhang X, Liu L, et al. 2012. Evaluation of a method for the simultaneous detection of multiple tumor markers using a multiplex suspension bead array. Clin. Biochem. 45:1394–98 Grabolle M, Kapusta P, Nann T, Shu X, Ziegler J, Resch-Genger U. 2009. Fluorescence lifetime mul- tiplexing with nanocrystals and organic labels. Anal. Chem. 81:7807–13 Peng X, Yang Z, Wang J, Fan J, He Y, et al. 2011. Fluorescence ratiometry and fluorescence lifetime imaging: using a single molecular sensor for dual mode imaging of cellular viscosity. J. Am. Chem. Soc. 133:6626–35 Alcantara D, Guo Y, Yuan H, Goergen CJ, Chen HH, et al. 2012. Fluorochrome-functionalized magnetic nanoparticles for high-sensitivity monitoring of the polymerase chain reaction by magnetic resonance. Angew. Chem. Int. Ed. 51:6904–7 He S, Liu K-K, Su S, Yan J, Mao X, et al. 2012. Graphene-based high-efficiency surface-enhanced Raman scattering–active platform for sensitive and multiplex DNA detection. Anal. Chem. 84:4622–27 Ferguson JA, Steemers FJ, Walt DR. 2000. High-density fiber-optic DNA random microsphere array. Anal. Chem. 72:5618–24 Ross P, Hall L, Smirnov I, Haff L. 1998. High level multiplex genotyping by MALDI-TOF mass spectrometry. Nat. Biotechnol. 16:1347–51 Wang C, Gao X, Su XG. 2010. In vitro and in vivo imaging with quantum dots. Anal. Bioanal. Chem. 397:1397–415 Kumar R, Roy I, Ohulchanskky TY, Vathy LA, Bergey EJ, et al. 2010. In vivo biodistribution and clearance studies using multimodal organically modified silica nanoparticles. Am. Chem. Soc. Nano 4:699– 708 Weissleder R, Moore A, Mahmood U, Bhorade R, Benveniste H, et al. 2000. In vivo magnetic resonance imaging of transgene expression. Nat. Med. 6:351–55 He X, Wang K, Cheng Z. 2010. In vivo near-infrared fluorescence imaging of cancer with nanoparticle- based probes. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2:349–66 Hiep HM, Endo T, Saito M, Chikae M, Kim DK, et al. 2008. Label-free detection of melittin binding to a membrane using electrochemical-localized surface plasmon resonance. Anal. Chem. 80:1859–64 Hafeman DG, Parce JW, McConnell HM. 1988. Light-addressable potentiometric sensor for biochem- ical systems. Science 240:1182–85 Perez JM, Josephson L, O'Loughlin T, H ¨ ogemann D, Weissleder R. 2002. Magnetic relaxation switches capable of sensing molecular interactions. Nat. Biotechnol. 20:816–20 Pregibon DC, Toner M, Doyle PS. 2007. Multifunctional encoded particles for high-throughput biomolecule analysis. Science 315:1393–96 Endo T, Kerman K, Nagatani N, Hiepa HM, Kim D-K, et al. 2006. Multiple label-free detection of antigen–antibody reaction using localized surface plasmon resonance–based core-shell structured nanoparticle layer nanochip. Anal. Chem. 78:6465–75 Yu C, Irudayaraj J. 2007. Multiplex biosensor using gold nanorods. Anal. Chem. 79:572–79 Stoeva SI, Lee J-S, Smith JE, Rosen ST, Mirkin CA. 2006. Multiplexed detection of protein cancer markers with biobarcoded nanoparticle probes. J. Am. Chem. Soc. 128:8378–79 Osterfeld SJ, Yu H, Gaster RS, Caramuta S, Xu L, et al. 2008. Multiplex protein assay based on real-time magnetic nanotag sensing. Proc. Natl. Acad. Sci. USA 105:20637–40 Lowe SB, Dick JAG, Cohen BE, Stevens MM. 2012. Multiplex sensing of protease and kinase enzyme activity via orthogonal coupling of quantum dot–peptide conjugates. Am. Chem. Soc. Nano 6:851–57 Zamborini FP, Bao L, Dasari R. 2012. Nanoparticles in measurement science. Anal. Chem. 84:541–76 Altıno ˘ glu EI, Russin TJ, Kaiser JM, Barth BM, Eklund BC, et al. 2008. Near-infrared emitting fluorophore–doped calcium phosphate nanoparticles for in vivo imaging of human breast cancer. Am. Freeman R, Willner I. 2012. Optical molecular sensing with semiconductor quantum dots (QDs). Chem. Soc. Rev. 41:4067–85 Jimenez de Aberasturi D, Montenegro JM, Ruiz de Larramendi I, Rojo T, Klar TA, et al. 2012. Optical sensing of small ions with colloidal nanoparticles. Chem. Mater. 24:738–45 Jin R, Cao Y, Mirkin CA, Kelly KL, Schatz GC, Zheng JG. 2001. Photoinduced conversion of silver nanospheres to nanoprisms. Science 294:1901–3 Boyer D, Tamarat P, Maali A, Lounis B, Orrit M. 2002. Photothermal imaging of nanometer-sized metal particles among scatterers. Science 297:1160–63 Scotognella F, Della Valle G, Kandada ARS, Dorfs D, Zavelani-Rossi M, et al. 2011. Plasmon dynamics in colloidal Cu 2−x Se nanocrystals. Nano Lett. 11:4711–17 Tsoutsi D, Montenegro JM, Dommershausen F, Koert U, Liz-Marzán LM, et al. 2011. Quantitative surface-enhanced Raman ultradetection of atomic inorganic ions: the case of chloride. Am. Chem. Soc. Nano 5:7539–46 Chan WCW, Nie S. 1998. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016–18 Schubert K, Khalid W, Yue Z, Parak WJ, Lisdat F. 2010. Quantum dot–modified electrode for the detection of NAD-dependent dehydrogenase reactions. Langmuir 26:1395–400 Guerrero-Martinez A, Pérez-Juste J, Liz-Marzán LM. 2012. Recent progress on silica coating of nanopar- ticles and related nanomaterials. Adv. Mater. 22:1182–95 Taton TA, Mirkin CA, Letsinger RL. 2000. Scanometric DNA array detection with nanoparticle probes. Science 289:1757–60 Wang Z, Zong S, Li W, Wang C, Xu S, et al. 2012. SERS-fluorescence joint spectral encoding using organic-metal-QD hybrid nanoparticles with a huge encoding capacity for high-throughput biodetec- tion: putting theory into practice. J. Am. Chem. Soc. 134:2993–3000 Jiang ZY, Jiang XX, Su S, Wei XP, Lee ST, He Y. 2012. Silicon-based reproducible and active surface- enhanced Raman scattering substrates for sensitive, specific, and multiplex DNA detection. Appl. Phys. Lett. 100:203104 Chikkaveeraiah BV, Bhirde A, Malhotra R, Patel V, Gutkind JS, Rusling James F. 2009. Single-wall carbon nanotube forest arrays for immunoelectrochemical measurement of four protein biomarkers for prostate cancer. Anal. Chem. 81:9129–34 Sperling RA, Liedl T, Duhr S, Kudera S, Zanella M, et al. 2007. Size determination of (bio-)conjugated water-soluble colloidal nanoparticles—a comparison of different techniques. J. Phys. Chem. C 111:11552– 59 Huang S, Pfeiffer C, Hollmann J, Friede S, Chen JJ-C, et al. 2012. Synthesis and characterization of colloidal fluorescent silver nanoclusters. Langmuir 28:8915–19 Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA. 2012. The golden age: gold nanopar- ticles for biomedicine. Chem. Soc. Rev. 41:2740–79 Alivisatos AP. 2004. The use of nanocrystals in biological detection. Nat. Biotechnol. 22:47–51 Raez J, Blais DR, Zhang Y, ´ Alvarez-Puebla RA, Bravo-Vasquez JP, et al. 2007. Spectroscopically encoded microspheres for antigen biosensing. Langmuir 23:6482–85 Dong B, Cao B, He Y, Liu Z, Li Z, Feng Z. 2012. Temperature sensing and in vivo imaging by molyb- denum sensitized visible upconversion luminescence of rare-earth oxides. Adv. Mater. 24:1987–93 Skladal P. 1997. Advances in electrochemical immunosensors. Electroanalysis 9:737–45 Stoll C, Kudera S, Parak WJ, Lisdat F. 2006. Quantum dots on gold:electrodes for photoswitchable cytochrome c electrochemistry. Small 2:741–43 Riedinger A, Zhang F, Dommershausen F, R ¨ ocker C, Brandholt S, et al. 2010. Ratiometric optical sensing of chloride ions with organic fluorophore–gold nanoparticle hybrids: a systematic study of distance dependency and the influence of surface charge. Small 6:2590–97 Malhotra R, Patel V, Chikkaveeraiah BV, Munge BS, Cheong SC, et al. 2012. Ultrasensitive detection of cancer biomarkers in the clinic by use of a nanostructured microfluidic array. Anal. Chem. 84:6249–55 Chen S, Svedendahl M, Van Duyne RP, Kaell M. 2011. Plasmon-enhanced colorimetric ELISA with single molecule sensitivity. Nano Lett. 11:1826–30 Park EJ, Brasuel M, Behrend C, Philbert MA, Kopelman R. 2003. Ratiometric optical PEBBLE nanosen- sors for real-time magnesium ion concentrations inside viable cells. Anal. Chem. 75:3784–91 Akter R, Rahman MA, Rhee CK. 2012. Amplified electrochemical detection of a cancer biomarker by enhanced precipitation using horseradish peroxidase attached on carbon nanotubes. Anal. Chem. 84:6407–15 Beqa L, Singh AK, Khan SA, Senapati D, Arumugam SR, Ray PC. 2011. Gold nanoparticle–based simple colorimetric and ultrasensitive dynamic light scattering assay for the selective detection of Pb(II) from paints, plastics, and water samples. Am. Chem. Soc. Appl. Mater. Interfaces 3:668–73 Aldeanueva-Potel P, Correa-Duarte MA, ´ Alvarez-Puebla RA, Liz-Marzán LM. 2010. Free-standing carbon nanotube films as optical accumulators for multiplex SERRS attomolar detection. Am. Chem. Soc. Cheon J, Lee J-H. 2008. Synergistically integrated nanoparticles as multimodal probes for nanobiotech- nology. Acc. Chem. Res. 41:1630–40 Freeman R, Liu X, Willner I. 2011. Chemiluminescent and chemiluminescence resonance energy transfer (CRET) detection of DNA, metal ions, and aptamer–substrate complexes using Hemin/G-quadruplexes and CdSe/ZnS quantum dots. J. Am. Chem. Soc. 133:11597–604 www.annualreviews.org @BULLET Colloidal Nano-and Microparticles AC06CH03-Parak ARI 13 February 2013 20:38 Algar WR, Wegner D, Huston AL, Blanco-Canosa JB, Stewart MH, et al. 2012. Quantum dots as simul- taneous acceptors and donors in time-gated F ¨ orster resonance energy transfer relays: characterization and biosensing. J. Am. Chem. Soc. 134:1876–91 Pei H, Li J, Lv M, Wang J, Gao J, et al. 2012. A graphene-based sensor array for high-precision and adaptive target identification with ensemble aptamers. J. Am. Chem. Soc. 134:13843–49 Li Y, Srinivasan B, Jing Y, Yao X, Hugger MA, et al. 2010. Nanomagnetic competition assay for low- abundance protein biomarker quantification in unprocessed human sera. J. Am. Chem. Soc. 132:4388–92 Freeman R, Liu X, Willner I. 2011. Amplified multiplexed analysis of DNA by the exonuclease III– catalyzed regeneration of the target DNA in the presence of functionalized semiconductor quantum dots. Nano Lett. 11:4456–61 Giri S, Sykes EA, Jennings TL, Chan WCW. 2011. Rapid screening of genetic biomarkers of infectious agents using quantum dot barcodes. Am. Chem. Soc. Nano 5:1580–87 Ku G, Zhou M, Song S, Huang Q, Hazle J, Li C. 2012. Copper sulfide nanoparticles as a new class of photoacoustic contrast agent for deep tissue imaging at 1,064 nm. Am. Chem. Soc. Nano 6:7489–96 Lin CAJ, Yang TY, Lee CH, Huang SH, Sperling RA, et al. 2009. Synthesis, characterization, and bioconjugation of fluorescent gold nanoclusters toward biological labeling applications. Am. Chem. Soc. Nano 3:395–401 Rivera-Gil P, Parak WJ. 2008. Composite nanoparticles take aim at cancer. Am. Chem. Soc. Nano 2:2200–5 www.annualreviews.org @BULLET Colloidal Nano-and Microparticles AC06CH03-Parak ARI 13 February 2013 20:38 Mayer KM, Hafner JH. 2011. Localized surface plasmon resonance sensors. Chem. Rev. 111:3828–57 Katz E, Zayats M, Willner I, Lisdat F. 2006. Controlling the direction of photocurrents by means of CdS nanoparticles and cytochrome c–mediated biocatalytic cascades. Chem. Commun. 2006:1395–97 Ali Z, Abbasi AZ, Zhang F, Arosio P, Lascialfari A, et al. 2011. Multifunctional nanoparticles for dual imaging. Anal. Chem. 83:2877–82 Shipway AN, Katz E, Willner I. 2000. Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. ChemPhysChem 1:18–52 Maiti KK, Dinish US, Samanta A, Vendrell M, Soh K-S, et al. 2012. Multiplex targeted in vivo cancer detection using sensitive near-infrared SERS nanotags. Nano Today 7:85–93 Wang F, Banerjee D, Liu Y, Chen X, Liu X. 2010. Upconversion nanoparticles in biological labeling, imaging, and therapy. Analyst 135:1839–54 McQueenie R, Stevenson R, Benson R, MacRitchie N, McInnes I, et al. 2012. Detection of inflammation in vivo by surface-enhanced Raman scattering provides higher sensitivity than conventional fluorescence imaging. Anal. Chem. 84:5968–75 Rodríguez-Lorenzo L, de la Rica R, ´ Alvarez-Puebla RA, Liz-Marzán LM, Stevens MM. 2012. Plasmonic nanosensors with inverse sensitivity by means of enzyme-guided crystal growth. Nat. Mater. 11:604–7 Carregal-Romero S, Ochs M, Parak WJ. 2012. Nanoparticle-functionalized microcapsules for in vitro delivery and sensing. Nanophotonics 1:171–80 Khalid W, Helou ME, MurbMurb¨Murböck T, Yue Z, Montenegro J-M, et al. 2011. Immobilization of quantum dots via conjugated self-assembled monolayers and their application as a light-controlled sensor for the detection of hydrogen peroxide. Am. Chem. Soc. Nano 5:9870–76 Wang J. 2005. Nanomaterial-based electrochemical biosensors. Analyst 130:421–26 Lin C-AJ, Sperling RA, Li JK, Yang T-Y, Li P-Y, et al. 2008. Design of an amphiphilic polymer for nanoparticle coating and functionalization. Small 4:334–41 Saha K, Agasti SS, Kim C, Li X, Rotello VM. 2012. Gold nanoparticles in chemical and biological sensing. Chem. Rev. 112:2739–79 Cedervall T, Lynch I, Lindman S, Berggård T, Thulin E, et al. 2007. Understanding the nanoparticle– protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc. Natl. Acad. Sci. USA 104:2050–55 Nahrendorf M, Zhang HW, Hembrador S, Panizzi P, Sosnovik DE, et al. 2008. Nanoparticle PET-CT imaging of macrophages in inflammatory atherosclerosis. Circulation 117:379–87 Mani V, Chikkaveeraiah BV, Patel V, Gutkind JS, Rusling JF. 2009. Ultrasensitive immunosensor for cancer biomarker proteins using gold nanoparticle film electrodes and multienzyme–particle amplifica- tion. Am. Chem. Soc. Nano 3:585–94 Erogbogbo F, Yong K-T, Roy I, Xu G, Prasad PN, Swihart MT. 2008. Biocompatible luminescent silicon quantum dots for imaging of cancer cells. Am. Chem. Soc. Nano 2:873–78 Xia Z, Xing Y, So MK, Koh AL, Sinclair R, Rao J. 2008. Multiplex detection of protease activity with quantum dot nanosensors prepared by intein-mediated specific bioconjugation. Anal Chem 80:8649–55 Hilderbrand SA, Shao F, Salthouse C, Mahmood U, Weissleder R. 2009. Upconverting luminescent nanomaterials: application to in vivo bioimaging. Chem. Commun. 2009:4188–90 Liong M, Lu J, Kovochich M, Xia T, Ruehm SG, et al. 2008. Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. Am. Chem. Soc. Nano 2:889–96 Hall DA, Gaster RS, Osterfeld SJ, Murmann B, Wang SX. 2010. GMR biosensor arrays: Correction techniques for reproducibility and enhanced sensitivity. Biosens. Bioelectron. 25:2177–81 Abalde-Cela S, Aldeanueva-Potel P, Mateo-Mateo C, Rodríguez-Lorenzo L, ´ Alvarez-Puebla RA, Liz-Marzán LM. 2010. Surface-enhanced Raman scattering biomedical applications of plasmonic col- loidal particles. J. R. Soc. Interface 7:S435–50 Mak AC, Osterfeld SJ, Yu H, Wang SX, Davis RW, et al. 2010. Sensitive giant magnetoresistive–based immunoassay for multiplex mycotoxin detection. Biosens. Bioelectron. 25:1635–39 Claridge SA, Schwartz JJ, Weiss PS. 2011. Electrons, photons, and force: quantitative single-molecule measurements from physics to biology. Am. Chem. Soc. Nano 5:693–729 Haun JB, Devaraj NK, Marinelli BS, Lee H, Weissleder R. 2012. Probing intracellular biomarkers and mediators of cell activation using nanosensors and bioorthogonal chemistry. Am. Chem. Soc. Nano 5:3204–13 Gaster RS, Xu L, Han S-J, Wilson RJ, Hall DA, et al. 2011. Quantification of protein interactions and solution transport using high-density GMR sensor arrays. Nat. Nanotechnol. 6:314–20 ARI 13 February 2013 20:38 ´ Alvarez-Puebla RA, Agarwal A, Manna P, Khanal BP, Aldeanueva-Potel P, et al. 2011. Gold nanorods 3D supercrystals as surface enhanced Raman scattering spectroscopy substrates for the rapid detection of scrambled prions. Proc. Natl. Acad. Sci. USA 108:8157–61 Kim D, Daniel WL, Mirkin CA. 2009. Microarray-based multiplexed scanometric immunoassay for protein cancer markers using gold nanoparticle probes. Anal. Chem. 81:9183–87 Jin Y, Jia C, Huang S-W, O'Donnell M, Gao X. 2010. Multifunctional nanoparticles as coupled contrast agents. Nat. Commun. 1:41 Si D, Epstein T, Lee Y-EK, Kopelman R. 2012. Nanoparticle PEBBLE sensors for quantitative nanomo- lar imaging of intracellular free calcium ions. Anal. Chem. 84:978–86 Peterson VM, Castro CM, Lee H, Weissleder R. 2012. Orthogonal amplification of nanoparticles for improved diagnostic sensing. Am. Chem. Soc. Nano 6:3506–13 Yang KS, Budin G, Reiner T, Vinegoni C, Weissleder R. 2012. Bioorthogonal imaging of aurora kinase A in live cells. Angew. Chem. Int. Ed. 51:6598–603 Zarei H, Ghourchian H, Eskandari K, Zeinali M. 2012. Magnetic nanocomposite of anti-human IgG/COOH-multiwalled carbon nanotubes/Fe 3 O 4 as a platform for electrochemical immunoassay. Anal. Biochem. 421:446–53 Xia A, Chen M, Gao Y, Wu D, Feng W, Li F. 2012. Gd 3+ complex-modified NaLuF 4 -based up- conversion nanophosphors for trimodality imaging of NIR-to-NIR upconversion luminescence, X-ray computed tomography and magnetic resonance. Biomaterials 33:5394–405 Alexiou C, Arnold W, Hulin P, Klein RJ, Renz H, et al. 2001. Magnetic mitoxantrone nanoparticle detection by histology, X-ray and MRI after magnetic tumor targeting. J. Magn. Magn. Mater. 225:187– 93 Morales MP, Bomati-Miguel O, de Alejo RP, Ruiz-Cabello J, Veintemillas-Verdaguer S, O'Grady K. 2003. Contrast agents for MRI based on iron oxide nanoparticles prepared by laser pyrolysis. J. Magn. Magn. Mater. 266:102–9 Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, et al. 2005. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–44 Khalid W, G ¨ obel G, H ¨ uhn D, Montenegro JM, Rivera Gil P, et al. 2011. Light triggered detection of aminophenyl phosphate with a quantum dot based enzyme electrode. J. Nanobiotechnol. 9:46 Jans H, Huo Q. 2012. Gold nanoparticle–enabled biological and chemical detection and analysis. Chem. Soc. Rev. 41:2849–66 Nanopartikel: Synthese, Oberflächenmodifikation und Funktionalität für umweltbezogene und biologische Anwendungen Philipps-Universität Marburg urn:nbn:de:hebis:04-z2014-04204 Fachbereich Physik Abdelmonem, Abuelmagd M. Abdelmonem Abuelmagd M. English Oberfläche 2014 ppn:350050341 application/pdf https://archiv.ub.uni-marburg.de/diss/z2014/0420/cover.png Physics Physik Nanopartikel Surface Modification monograph