Genetische und biochemische Charakterisierung der Itaconsäure-Biosynthese in Ustilago maydis

Die ungesättigte Dicarbonsäure Itaconsäure wird durch mikrobielle Fermentation erzeugt und dient als Ausgangsstoff für die Produktion von Kosmetika, Klebstoffen oder sogar Biokraftstoff. Der phytopathogene Basidiomycet Ustilago maydis produziert unter bestimmten Bedingungen eine Vielzahl an Sekundä...

Ausführliche Beschreibung

Gespeichert in:
1. Verfasser: Przybilla, Sandra Kathrin
Beteiligte: Bölker, Michael (Prof. Dr,) (BetreuerIn (Doktorarbeit))
Format: Dissertation
Sprache:Deutsch
Veröffentlicht: Philipps-Universität Marburg 2014
Biologie
Ausgabe:http://dx.doi.org/10.17192/z2014.0414
Schlagworte:
Online Zugang:PDF-Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
description Die ungesättigte Dicarbonsäure Itaconsäure wird durch mikrobielle Fermentation erzeugt und dient als Ausgangsstoff für die Produktion von Kosmetika, Klebstoffen oder sogar Biokraftstoff. Der phytopathogene Basidiomycet Ustilago maydis produziert unter bestimmten Bedingungen eine Vielzahl an Sekundärmetaboliten, zu denen auch die Itaconsäure gehört. Der Biosyntheseweg der Itaconsäure war jedoch in diesem Pilz bisher noch nicht bekannt. In dieser Arbeit wurden die für die Itaconsäure-Biosynthese in U. maydis verantwortlichen Gene identifiziert und charakterisiert. Alle beteiligten Gene sind in einem Gencluster organisiert, der durch den Transkriptionsfaktor Ria1 spezifisch reguliert wird. Anhand von Deletionsanalysen der entsprechenden Gene konnte gezeigt werden, dass in U. maydis zwei Enzyme essentiell für die Synthese von Itaconat sind. Im Verlauf dieser Arbeit wurde die enzymatische Aktivität dieser Enzyme bestimmt. Dabei wurde gezeigt, dass das PrpF-ähnliche Protein Aconitat-Δ-Isomerase (Adi1) die Umwandlung von cis- zu trans-Aconitat und damit den ersten Schritt der Itaconsäure-Biosynthese in U. maydis katalysiert. Der zweite Schritt wird durch das zweite essentielle Enzym trans-Aconitat-Decarboxylase (Tad1) katalysiert, das die Decarboxylierung von trans-Aconitat zu Itaconat vermittelt. Basierend auf diesen Daten konnte ein Modell für den Itaconsäure-Biosyntheseweg in U. maydis aufgestellt werden. Es wird angenommen, dass cis-Aconitat durch den mitochondriellen Transporter Ctp1 vom Mitochondrium ins Cytosol exportiert wird. Dort dient es als Substrat für Adi1, das die Isomerisierung zu trans-Aconitat katalysiert. Trans-Aconitat wird anschließend durch Tad1 zu Itaconat decarboxyliert, das vermutlich durch den Plasmamembran-Transporter Itp1 aus der Zelle transportiert wird. Der Itaconsäure-Gencluster ist während der pathogenen Entwicklung von U. maydis stark exprimiert. In dieser Arbeit konnte jedoch gezeigt werden, dass die Produktion von Itaconsäure während der biotrophen Phase nicht essentiell ist. Damit bleibt die biologische Rolle der Itaconsäure-Produktion für U. maydis weiterhin unklar. Im Verlauf dieser Arbeit wurde noch ein zweiter Gencluster in U. maydis identifiziert, der Ähnlichkeiten zum Itaconat-Gencluster aufweist. Dieser Gencluster enthält ein Gen für eine Aconitat Δ-Isomerase (adi2 ), die in der Lage ist, die Funktion von Adi1 vollständig zu ersetzen. Durch Wachstumstests konnte gezeigt werden, dass der Adi2-Gencluster für die Verstoffwechselung von cis- und trans-Aconitat essentiell ist, das sich auch in der Wirtspflanze Zea mays findet. Die Fähigkeit, trans-Aconitat als Kohlenstoffquelle zu verwenden, ist für U. maydis während der pathogenen Entwicklung möglicherweise von Vorteil, es konnte jedoch gezeigt werden, dass diese Fähigkeit nicht essentiell für die pathogene Entwicklung von U. maydis ist.
topic gene cluster
Itaconsäure
Biotechnologie
Ustilago zeae
Sekundärmetablismus
bio-based chemical building block
secondary metabolism
Gencluster
Biowissenschaften, Biologie
metabolic engineering
spellingShingle gene cluster
Itaconsäure
Biotechnologie
Ustilago zeae
Sekundärmetablismus
bio-based chemical building block
secondary metabolism
Gencluster
Biowissenschaften, Biologie
metabolic engineering
The unsaturated dicarboxylic acid itaconic acid is a bio-based chemical building block used in the industrial production of plastics, paints and cosmetics. Currently, itaconic acid is produced by fermentation of Aspergillus terreus. The phytopathogenic basidiomycete Ustilago maydis produces a variety of secondary metabolites e.g. itaconic acid under certain environmental conditions. The biosynthetic route of itaconate in this fungus, however, has not been elucidated, yet. The U. maydis genome contains a gene cluster comprising all the genes required for itaconic acid biosynthesis. This gene cluster is specifically regulated by the transcriptional regulator Ria1. Deletion analysis showed that U. maydis contains two genes essential for itaconate production coding for a PrpF-like enzyme and a CMLE-like enzyme. The activity of these enzymes has been identified by in vitro studies with the purified proteins. The PrpF-like enzyme aconitate-∆-isomerase (Adi1) catalyzes the first step of the itaconic acid biosynthesis pathway by isomerisation of cis-aconitate. The resulting trans-aconitate serves as a substrate for the trans-aconitate decarboxylase (Tad1), which catalyzes decarboxylation of trans-aconitate to form itaconate. A hypothetical pathway for itaconic acid biosynthesis in U. maydis has been modeled based on these data: cis-aconitate, which is a natural intermediate of the citric acid cycle, is probably exported from the mitochondria into the cytoplasm by the mitochondrial transporter Ctp1. In the cytoplasm cis-aconitate is converted to trans-aconitate by Adi1 and trans-aconitate is subsequently decarboxylated to itaconate by Tad1. Finally itaconate secretion into the surrounding medium is probably mediated by the MFS-transport protein Itp1. The itaconic acid gene cluster is highly expressed during pathogenic development of U. maydis. It has been demonstrated, however, that biosynthesis of itaconate is not essential for pathogenic development. Therefore, the biological role of itaconate for U. maydis is still unknown. The U. maydis genome contains a second gene cluster, which shows some similarities to the itaconic acid gene cluster. The PrpF-like enzyme Adi2, which is part of this gene cluster, is able to replace Adi1 in the itaconic acid pathway in vitro and also in vivo. Furthermore, growth assays showed that the small gene cluster of Adi2 is required for the metabolization of cis- and trans-aconitate. Trans-aconitate is known to be produced by the U. maydis host plant Zea mays. Therefore the ability to metabolize trans-aconitate might be an advantage for the fungus, even though pathogenicity tests showed that the Adi2 gene cluster is not required for the pathogenic development of U. maydis.
Genetische und biochemische Charakterisierung der Itaconsäure-Biosynthese in Ustilago maydis
Przybilla, Sandra Kathrin
first_indexed 2015-05-04T00:00:00Z
last_indexed 2015-05-04T23:59:59Z
contents The unsaturated dicarboxylic acid itaconic acid is a bio-based chemical building block used in the industrial production of plastics, paints and cosmetics. Currently, itaconic acid is produced by fermentation of Aspergillus terreus. The phytopathogenic basidiomycete Ustilago maydis produces a variety of secondary metabolites e.g. itaconic acid under certain environmental conditions. The biosynthetic route of itaconate in this fungus, however, has not been elucidated, yet. The U. maydis genome contains a gene cluster comprising all the genes required for itaconic acid biosynthesis. This gene cluster is specifically regulated by the transcriptional regulator Ria1. Deletion analysis showed that U. maydis contains two genes essential for itaconate production coding for a PrpF-like enzyme and a CMLE-like enzyme. The activity of these enzymes has been identified by in vitro studies with the purified proteins. The PrpF-like enzyme aconitate-∆-isomerase (Adi1) catalyzes the first step of the itaconic acid biosynthesis pathway by isomerisation of cis-aconitate. The resulting trans-aconitate serves as a substrate for the trans-aconitate decarboxylase (Tad1), which catalyzes decarboxylation of trans-aconitate to form itaconate. A hypothetical pathway for itaconic acid biosynthesis in U. maydis has been modeled based on these data: cis-aconitate, which is a natural intermediate of the citric acid cycle, is probably exported from the mitochondria into the cytoplasm by the mitochondrial transporter Ctp1. In the cytoplasm cis-aconitate is converted to trans-aconitate by Adi1 and trans-aconitate is subsequently decarboxylated to itaconate by Tad1. Finally itaconate secretion into the surrounding medium is probably mediated by the MFS-transport protein Itp1. The itaconic acid gene cluster is highly expressed during pathogenic development of U. maydis. It has been demonstrated, however, that biosynthesis of itaconate is not essential for pathogenic development. Therefore, the biological role of itaconate for U. maydis is still unknown. The U. maydis genome contains a second gene cluster, which shows some similarities to the itaconic acid gene cluster. The PrpF-like enzyme Adi2, which is part of this gene cluster, is able to replace Adi1 in the itaconic acid pathway in vitro and also in vivo. Furthermore, growth assays showed that the small gene cluster of Adi2 is required for the metabolization of cis- and trans-aconitate. Trans-aconitate is known to be produced by the U. maydis host plant Zea mays. Therefore the ability to metabolize trans-aconitate might be an advantage for the fungus, even though pathogenicity tests showed that the Adi2 gene cluster is not required for the pathogenic development of U. maydis.
license_str http://archiv.ub.uni-marburg.de/adm/urhg.html
oai_set_str_mv open_access
doc-type:doctoralThesis
ddc:570
xMetaDissPlus
publisher Philipps-Universität Marburg
language German
building Fachbereich Biologie
doi_str_mv http://dx.doi.org/10.17192/z2014.0414
edition http://dx.doi.org/10.17192/z2014.0414
institution Biologie
title_alt Genetic and biochemical characterization of the itaconic acid biosynthesis in Ustilago maydis
title Genetische und biochemische Charakterisierung der Itaconsäure-Biosynthese in Ustilago maydis
title_short Genetische und biochemische Charakterisierung der Itaconsäure-Biosynthese in Ustilago maydis
title_full Genetische und biochemische Charakterisierung der Itaconsäure-Biosynthese in Ustilago maydis
title_fullStr Genetische und biochemische Charakterisierung der Itaconsäure-Biosynthese in Ustilago maydis
title_full_unstemmed Genetische und biochemische Charakterisierung der Itaconsäure-Biosynthese in Ustilago maydis
title_sort Genetische und biochemische Charakterisierung der Itaconsäure-Biosynthese in Ustilago maydis
publishDate 2014
era_facet 2014
ref_str_mv references
format Dissertation
dewey-raw 570
dewey-search 570
genre Life sciences
genre_facet Life sciences
topic_facet Biowissenschaften, Biologie
url http://archiv.ub.uni-marburg.de/diss/z2014/0414/pdf/dskp.pdf
author Przybilla, Sandra Kathrin
author2 Bölker, Michael (Prof. Dr,)
author2_role ths
thumbnail http://archiv.ub.uni-marburg.de/diss/z2014/0414/cover.png
spelling diss/z2014/0414 Die ungesättigte Dicarbonsäure Itaconsäure wird durch mikrobielle Fermentation erzeugt und dient als Ausgangsstoff für die Produktion von Kosmetika, Klebstoffen oder sogar Biokraftstoff. Der phytopathogene Basidiomycet Ustilago maydis produziert unter bestimmten Bedingungen eine Vielzahl an Sekundärmetaboliten, zu denen auch die Itaconsäure gehört. Der Biosyntheseweg der Itaconsäure war jedoch in diesem Pilz bisher noch nicht bekannt. In dieser Arbeit wurden die für die Itaconsäure-Biosynthese in U. maydis verantwortlichen Gene identifiziert und charakterisiert. Alle beteiligten Gene sind in einem Gencluster organisiert, der durch den Transkriptionsfaktor Ria1 spezifisch reguliert wird. Anhand von Deletionsanalysen der entsprechenden Gene konnte gezeigt werden, dass in U. maydis zwei Enzyme essentiell für die Synthese von Itaconat sind. Im Verlauf dieser Arbeit wurde die enzymatische Aktivität dieser Enzyme bestimmt. Dabei wurde gezeigt, dass das PrpF-ähnliche Protein Aconitat-Δ-Isomerase (Adi1) die Umwandlung von cis- zu trans-Aconitat und damit den ersten Schritt der Itaconsäure-Biosynthese in U. maydis katalysiert. Der zweite Schritt wird durch das zweite essentielle Enzym trans-Aconitat-Decarboxylase (Tad1) katalysiert, das die Decarboxylierung von trans-Aconitat zu Itaconat vermittelt. Basierend auf diesen Daten konnte ein Modell für den Itaconsäure-Biosyntheseweg in U. maydis aufgestellt werden. Es wird angenommen, dass cis-Aconitat durch den mitochondriellen Transporter Ctp1 vom Mitochondrium ins Cytosol exportiert wird. Dort dient es als Substrat für Adi1, das die Isomerisierung zu trans-Aconitat katalysiert. Trans-Aconitat wird anschließend durch Tad1 zu Itaconat decarboxyliert, das vermutlich durch den Plasmamembran-Transporter Itp1 aus der Zelle transportiert wird. Der Itaconsäure-Gencluster ist während der pathogenen Entwicklung von U. maydis stark exprimiert. In dieser Arbeit konnte jedoch gezeigt werden, dass die Produktion von Itaconsäure während der biotrophen Phase nicht essentiell ist. Damit bleibt die biologische Rolle der Itaconsäure-Produktion für U. maydis weiterhin unklar. Im Verlauf dieser Arbeit wurde noch ein zweiter Gencluster in U. maydis identifiziert, der Ähnlichkeiten zum Itaconat-Gencluster aufweist. Dieser Gencluster enthält ein Gen für eine Aconitat Δ-Isomerase (adi2 ), die in der Lage ist, die Funktion von Adi1 vollständig zu ersetzen. Durch Wachstumstests konnte gezeigt werden, dass der Adi2-Gencluster für die Verstoffwechselung von cis- und trans-Aconitat essentiell ist, das sich auch in der Wirtspflanze Zea mays findet. Die Fähigkeit, trans-Aconitat als Kohlenstoffquelle zu verwenden, ist für U. maydis während der pathogenen Entwicklung möglicherweise von Vorteil, es konnte jedoch gezeigt werden, dass diese Fähigkeit nicht essentiell für die pathogene Entwicklung von U. maydis ist. urn:nbn:de:hebis:04-z2014-04141 2015-05-04 The unsaturated dicarboxylic acid itaconic acid is a bio-based chemical building block used in the industrial production of plastics, paints and cosmetics. Currently, itaconic acid is produced by fermentation of Aspergillus terreus. The phytopathogenic basidiomycete Ustilago maydis produces a variety of secondary metabolites e.g. itaconic acid under certain environmental conditions. The biosynthetic route of itaconate in this fungus, however, has not been elucidated, yet. The U. maydis genome contains a gene cluster comprising all the genes required for itaconic acid biosynthesis. This gene cluster is specifically regulated by the transcriptional regulator Ria1. Deletion analysis showed that U. maydis contains two genes essential for itaconate production coding for a PrpF-like enzyme and a CMLE-like enzyme. The activity of these enzymes has been identified by in vitro studies with the purified proteins. The PrpF-like enzyme aconitate-∆-isomerase (Adi1) catalyzes the first step of the itaconic acid biosynthesis pathway by isomerisation of cis-aconitate. The resulting trans-aconitate serves as a substrate for the trans-aconitate decarboxylase (Tad1), which catalyzes decarboxylation of trans-aconitate to form itaconate. A hypothetical pathway for itaconic acid biosynthesis in U. maydis has been modeled based on these data: cis-aconitate, which is a natural intermediate of the citric acid cycle, is probably exported from the mitochondria into the cytoplasm by the mitochondrial transporter Ctp1. In the cytoplasm cis-aconitate is converted to trans-aconitate by Adi1 and trans-aconitate is subsequently decarboxylated to itaconate by Tad1. Finally itaconate secretion into the surrounding medium is probably mediated by the MFS-transport protein Itp1. The itaconic acid gene cluster is highly expressed during pathogenic development of U. maydis. It has been demonstrated, however, that biosynthesis of itaconate is not essential for pathogenic development. Therefore, the biological role of itaconate for U. maydis is still unknown. The U. maydis genome contains a second gene cluster, which shows some similarities to the itaconic acid gene cluster. The PrpF-like enzyme Adi2, which is part of this gene cluster, is able to replace Adi1 in the itaconic acid pathway in vitro and also in vivo. Furthermore, growth assays showed that the small gene cluster of Adi2 is required for the metabolization of cis- and trans-aconitate. Trans-aconitate is known to be produced by the U. maydis host plant Zea mays. Therefore the ability to metabolize trans-aconitate might be an advantage for the fungus, even though pathogenicity tests showed that the Adi2 gene cluster is not required for the pathogenic development of U. maydis. http://dx.doi.org/10.17192/z2014.0414 opus:5770 Genetic and biochemical characterization of the itaconic acid biosynthesis in Ustilago maydis Genetische und biochemische Charakterisierung der Itaconsäure-Biosynthese in Ustilago maydis 2014-10-02 2014 Banuett, F. and Herskowitz, I. (1996) Discrete developmental stages during teliospore formation in the corn smut fungus, Ustilago maydis. Development, 122, 2965–76. 1996 Discrete developmental stages during teliospore formation in the corn smut fungus, Ustilago maydis Baup, S. (1837) Ueber eine neue Pyrogen-Citronensäure und überBenennung der Pyrogen- Säuren überhaupt. Ann. Chim. Phys., 19, 29–38. 1837 Ueber eine neue Pyrogen-Citronensäure und überBenennung der Pyrogen- Säuren überhaupt Rebholz, K. L. and Northrop, D. B. (1994) Kinetics of Enzymes with Iso-Mechanisms: Dead-End Inhibition of Fumarase and Carbonic Anhydrase II. Archives of Biochemistry and Biophysics, 312, 227–233. 1994 Kinetics of Enzymes with Iso-Mechanisms: Dead-End Inhibition of Fumarase and Carbonic Anhydrase II Lauble, H., Kennedy, M. C. and Beinert, H. (1994) Crystal Structures of Aconitase with Trans- Aconitate and Nitrocitrate bound. J. Mol. Biol., 237, 437–451. 1994 Crystal Structures of Aconitase with Trans- Aconitate and Nitrocitrate bound Watanabe, K., Katsuhara, M., Nakao, H. and Sato, M. (1997) Detection and molecular analysis of plant-and insect-associated bacteria harboring aconitate isomerase involved in biosynthesis of trans-aconitic acid as antifeedant in brown planthoppers. Current microbiology, 35, 97–102. ISSN 0343-8651. 1997 Detection and molecular analysis of plant-and insect-associated bacteria harboring aconitate isomerase involved in biosynthesis of trans-aconitic acid as antifeedant in brown planthoppers Thompson, J. F., Schaefer, S. C. and Madison, J. T. (1990) Determination of aconitate isomerase in plants. Analytical biochemistry, 184, 39–47. ISSN 0003-2697. 1990 Determination of aconitate isomerase in plants Velarde, M., Macieira, S., Hilberg, M., Bröker, G., Tu, S.-M., Golding, B. T., Pierik, A. J., Buckel, W. and Messerschmidt, A. (2009) Crystal Structure and Putative Mechanism of 3- Methylitaconate-∆-isomerase from Eubacterium barkeri. Journal of Molecular Biology, 391, 609–620. 2009 Crystal Structure and Putative Mechanism of 3- Methylitaconate-∆-isomerase from Eubacterium barkeri Steinberg, G. and Perez-Martin, J. (2008) Ustilago maydis, a new fungal model system for cell biology. Trends Cell Biol, 18, 61–67. 2008 Ustilago maydis, a new fungal model system for cell biology MacLennan, D. H. and Beevers, H. (1964) Trans-Aconitate in plant tissue. Phytochemistry, 3, 109–113. 1964 Trans-Aconitate in plant tissue Klinman, J. P. and Rose, I. A. (1971) Mechanism of the aconitate isomerase reaction. Bioche- mistry, 10, 2259–66. ISSN 0006-2960. 1971 Mechanism of the aconitate isomerase reaction Yang, J., Wang, Y., Woolridge, E. M., Arora, V., Petsko, G. a., Kozarich, J. W. and Ringe, D. (2004) Crystal structure of 3-carboxy-cis,cis-muconate lactonizing enzyme from Pseudomo- nas putida, a fumarase class II type cycloisomerase: enzyme evolution in parallel pathways. Biochemistry, 43, 10424–34. ISSN 0006-2960. 2004 Crystal structure of 3-carboxy-cis,cis-muconate lactonizing enzyme from Pseudomonas putida, a fumarase class II type cycloisomerase: enzyme evolution in parallel pathways Nelson, G., Traufler, D., Kelley, S. and Lockwood, L. (1952) Production of itaconic acid by Aspergillus terreus in 20-liter fermentors. Ind Eng Chem, 44, 1166–1168. 1952 Production of itaconic acid by Aspergillus terreus in 20-liter fermentors Keller, N. P., Turner, G. and Bennett, J. W. (2005) Fungal secondary metabolism -from bio- chemistry to genomics. Nature reviews. Microbiology, 3, 937–47. ISSN 1740-1526. 2005 Fungal secondary metabolism -from biochemistry to genomics Zheng, Y., Kief, J., Auffarth, K., Farfsing, J. W., Mahlert, M., Nieto, F. and Basse, C. W. (2008) The Ustilago maydis Cys2His2-type zinc finger transcription factor Mzr1 regulates fungal gene expression during the biotrophic growth stage. Molecular microbiology, 68, 1450–70. ISSN 1365-2958. 2008 The Ustilago maydis Cys2His2-type zinc finger transcription factor Mzr1 regulates fungal gene expression during the biotrophic growth stage Nogales, J., Canales, A., Jiménez-Barbero, J., Serra, B., Pingarrón, J. M., García, J. L. and Díaz, E. (2011) Unravelling the gallic acid degradation pathway in bacteria: the gal cluster from Pseudomonas putida. Molecular microbiology, 79, 359–74. ISSN 1365-2958. 2011 Unravelling the gallic acid degradation pathway in bacteria: the gal cluster from Pseudomonas putida Machowinski, A., Krämer, H.-J., Hort, W. and Mayser, P. (2006) Pityriacitrin–a potent UV filter produced by Malassezia furfur and its effect on human skin microflora. Mycoses, 49, 388–92. ISSN 0933-7407. 2006 Pityriacitrin–a potent UV filter produced by Malassezia furfur and its effect on human skin microflora Bentley, R. and Thiessen, C. P. (1955) Cis-aconitic Decarboxylase. Science, 122, 330. 1955 Cis-aconitic Decarboxylase Tabuchi, T. and Hara, S. (1974) Production of 2-methylisocitric acid from N-paraffins by mutants of candida-lipolytica. Agric. Biol. Chem., 38, 1105–1106. 1974 Production of 2-methylisocitric acid from N-paraffins by mutants of candida-lipolytica Jakubowska J, M. D. (1974) Studies on the metabolic pathway for itatartaric acid formation by Aspergillus terreus. II. Use of (-)citramalate, citraconate and itaconate by cell-free extracts. Acta Microbiol Pol B., 6, 51–61. 1974 Studies on the metabolic pathway for itatartaric acid formation by Aspergillus terreus. II. Use of (-)citramalate, citraconate and itaconate by cell-free extracts Banuett, F. and Herskowitz, I. (1994) Identification of fuz7, a Ustilago maydis MEK/MAPKK homolog required for a-locus-dependent and -independent steps in the fungal life cycle. Genes Dev, 8, 1367–78. 1994 Identification of fuz7, a Ustilago maydis MEK/MAPKK homolog required for a-locus-dependent and -independent steps in the fungal life cycle Lee, J. W., Kim, H. U., Choi, S., Yi, J. and Lee, S. Y. (2011) Microbial production of building block chemicals and polymers. Current opinion in biotechnology, 22, 758–67. ISSN 1879-0429. 2011 Microbial production of building block chemicals and polymers Okabe, M., Lies, D., Kanamasa, S. and Park, E. Y. (2009) Biotechnological production of itaconic acid and its biosynthesis in Aspergillus terreus. Appl Microbiol Biotechnol, 84, 597–606. 2009 Biotechnological production of itaconic acid and its biosynthesis in Aspergillus terreus Sasikaran, J., Ziemski, M., Zadora, P. K., Fleig, A. and Berg, I. A. (2014) Bacterial itaconate degradation promotes pathogenicity. Nature Chemical Biology, 10, 371–377. 2014 Bacterial itaconate degradation promotes pathogenicity Bok, J. W., Noordermeer, D., Kale, S. P. and Keller, N. P. (2006) Secondary metabolic gene cluster silencing in Aspergillus nidulans. Molecular microbiology, 61, 1636–45. ISSN 0950- 382X. 2006 Secondary metabolic gene cluster silencing in Aspergillus nidulans Hydroxyparaconic , Itatartaric , and Malic Acids by Strains of the Genus Ustilago. Journal of biological chemistry, 161, 739–742. Acids by Strains of the Genus Ustilago Medema, M. H., Blin, K., Cimermancic, P., de Jager, V., Zakrzewski, P., Fischbach, M. a., Weber, T., Takano, E. and Breitling, R. (2011) antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic acids research, 39, W339–46. ISSN 1362-4962. 2011 antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic acids research Kinoshita, K. (1932) Über die Produktion von Itaconsäure und Mannit durch einen neuen Schim- melpilz Aspergillus itaconicus. Acta Phytochim. 1932 Über die Produktion von Itaconsäure und Mannit durch einen neuen Schimmelpilz Aspergillus itaconicus Lemieux, R., Thorn, J., Brice, C. and Haskins, R. (1951) Biochemistry of the ustilaginales. II. Isolation and partial characterization of ustilagic acid. Can J Chem, 29, 409–414. 1951 Biochemistry of the ustilaginales. II. Isolation and partial characterization of ustilagic acid Bentley, R. and Thiessen, C. P. (1957) Biosynthesis of itaconic acid in Aspergillus terreus: I . tracer studies with C14-labeled Substrates. The Journal of biological chemistry, 226, 673–678. 1957 Biosynthesis of itaconic acid in Aspergillus terreus: I . tracer studies with C14-labeled Substrates Moore, R., Bigam, G., Chan, J., Hogg, A., Nakashima, T. and Vederas, J. (1985) Biosynthesis of the hypocholesterolemic agent mevinolin by Aspergillus terreus: determination of the origin of carbon, hydrogen and oxygen atoms by carbon-13 NMR and mass spectrometry. J. Am. Chem. Soc., 107, 3694–3701. 1985 Biosynthesis of the hypocholesterolemic agent mevinolin by Aspergillus terreus: determination of the origin of carbon, hydrogen and oxygen atoms by carbon-13 NMR and mass spectrometry Kanamasa, S., Dwiarti, L., Okabe, M. and Park, E. Y. (2008) Cloning and functional characte- rization of the cis-aconitic acid decarboxylase (CAD) gene from Aspergillus terreus. Applied microbiology and biotechnology, 80, 223–9. ISSN 0175-7598. 2008 Cloning and functional characterization of the cis-aconitic acid decarboxylase (CAD) gene from Aspergillus terreus Smith, D., Burnham, M., Edwards, J., Earl, A. and Turner, G. (1990) Cloning and heterologous expression of the penicillin biosynthetic gene cluster from penicillum chrysogenum. Biotech- nology (NY), 8, 39–41. 1990 Cloning and heterologous expression of the penicillin biosynthetic gene cluster from penicillum chrysogenum Southern, E. (1992) Detection of specific sequences among DNA fragments separated by gel electrophoresis. Biotechnology, 24, 122–139. 1992 Detection of specific sequences among DNA fragments separated by gel electrophoresis Sharp, P., Sugden, B. and Sambrook, J. (1973) Detection of two restriction endonuclease activi- ties in Haemophilus parainfluenzae using analytical agarose-ethidium bromide electrophoresis. Biochemistry, 12, 3055–63. 1973 Detection of two restriction endonuclease activities in Haemophilus parainfluenzae using analytical agarose-ethidium bromide electrophoresis Mingot, J., Peñalva, M. and Fernández-Cañón, J. (1999) Disruption of phacA, an Aspergillus nidulans gene encoding a novel cytochrome P450 monooxygenase catalyzing phenylacetate 2-hydroxylation, results in penicillin overproduction. J. Biol. Chem., 274, 14545–50. 1999 Disruption of phacA, an Aspergillus nidulans gene encoding a novel cytochrome P450 monooxygenase catalyzing phenylacetate 2-hydroxylation, results in penicillin overproduction van der Straat, L., Vernooij, M., Lammers, M., van den Berg, W., Schonewille, T., Cordewener, J., van der Meer, I., Koops, A. and de Graaff, L. H. (2014) Expression of the Aspergillus terreus itaconic acid biosynthesis cluster in Aspergillus niger. Microbial cell factories, 13, 11. ISSN 1475-2859. 2014 Expression of the Aspergillus terreus itaconic acid biosynthesis cluster in Aspergillus niger. Microbial cell factories Walton, J. D. (2000) Horizontal gene transfer and the evolution of secondary metabolite gene clusters in fungi: an hypothesis. Fungal genetics and biology : FG & B, 30, 167–71. ISSN 1087-1845. 2000 Horizontal gene transfer and the evolution of secondary metabolite gene clusters in fungi: an hypothesis. Fungal genetics and biology Law, C. J., Maloney, P. C. and Wang, D.-n. (2009) In and outs of Major Facilitator Superfamily Antiporters. Annual review of microbiology, 62, 289–305. 2009 In and outs of Major Facilitator Superfamily Antiporters. Annual review of microbiology Kim, M., Koh, H., Obata, T., Fukami, H. and Shii, S. I. (1976) Isolation and Identification of trans -aconitic acid as the antifeedant in barnyard grass against the brown planthopper Nilaparvata lugens. Appl. Entomol. Zool., 11, 53–57. 1976 Isolation and Identification of trans -aconitic acid as the antifeedant in barnyard grass against the brown planthopper Nilaparvata lugens Pfeifer, V., Vojnovich, C. and Heger, E. (1952) Itaconic acid by fermentation with Aspergillus terreus. Ind Eng Chem, 44, 2975–2980. 1952 Itaconic acid by fermentation with Aspergillus terreus Kennedy, J. (1999) Modulation of Polyketide Synthase Activity by Accessory Proteins During Lovastatin Biosynthesis. Science, 284, 1368–1372. ISSN 00368075. 1999 Modulation of Polyketide Synthase Activity by Accessory Proteins During Lovastatin Biosynthesis Horswill, A. R. and Escalante-Semerena, J. C. (1997) Propionate catabolism in Salmonella ty- phimurium LT2 : two divergently transcribed units comprise the prp locus at 8 . 5 centisomes, prpR encodes a member of the sigma-54 family of activators, and the prpBCDE genes consti- tute an operon . Propionate Catab. Journal of bacteriology, 179, 928. 1997 Propionate catabolism in Salmonella typhimurium LT2 : two divergently transcribed units comprise the prp locus at 8 . 5 centisomes, prpR encodes a member of the sigma-54 family of activators, and the prpBCDE genes constitute an operon . Propionate Catab Shi, L., Adkins, J. N., Coleman, J. R., Schepmoes, A. a., Dohnkova, A., Mottaz, H. M., Norbeck, A. D., Purvine, S. O., Manes, N. P., Smallwood, H. S., Wang, H., Forbes, J., Gros, P., Uzzau, S., Rodland, K. D., Heffron, F., Smith, R. D. and Squier, T. C. (2006) Proteomic analysis of Salmonella enterica serovar typhimurium isolated from RAW 264.7 macrophages: identi- fication of a novel protein that contributes to the replication of serovar typhimurium inside macrophages. The Journal of biological chemistry, 281, 29131–40. ISSN 0021-9258. 2006 Proteomic analysis of Salmonella enterica serovar typhimurium isolated from RAW 264.7 macrophages: identification of a novel protein that contributes to the replication of serovar typhimurium inside macrophages Self, A. and Hall, A. (1995) Purification of recombinant Rho/Rac/G25K from Escherichia Coli. Methods Enzymol, 256, 3–10. 1995 Purification of recombinant Rho/Rac/G25K from Escherichia Coli Yoshizawa, Y., Witter, D., Liu, Y. and Vederas, J. (1994) Revision of the biosynthetic origin of oxygens in mevinolin (Lovastatin), a hypocholesterolemic drug from Aspergillus terreus MF 4845. J. Am. Chem. Soc., 116, 2693–2694. 1994 Revision of the biosynthetic origin of oxygens in mevinolin (Lovastatin), a hypocholesterolemic drug from Aspergillus terreus MF 4845 Khaldi, N., Seifuddin, F. T., Turner, G., Haft, D., Nierman, W. C., Wolfe, K. H. and Fedorova, N. D. (2010) SMURF: Genomic mapping of fungal secondary metabolite clusters. Fungal genetics and biology : FG & B, 47, 736–41. ISSN 1096-0937. 2010 SMURF: Genomic mapping of fungal secondary metabolite clusters. Fungal genetics and biology Mullis, K., Faloona, F., Scharf, S., Saiki, R., Horn, G. and Erlich, H. (1986) Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb Symp Quant Biol, 51, 263–273. 1986 Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction Tilburn, J. (1995) The Aspergillus PacC zinc finger transcription factor mediates regulation of both acidand alkaline-expressed genes by ambient pH. The EMBO Journal, 14, 779–790. 1995 The Aspergillus PacC zinc finger transcription factor mediates regulation of both acidand alkaline-expressed genes by ambient pH Walsh, C. T. (2008) The chemical versatility of natural-product assembly lines. Accounts of chemical research, 41, 4–10. ISSN 1520-4898. 2008 The chemical versatility of natural-product assembly lines Ornston, L. N. and Stanier, R. Y. (1966a) The conversion of catechol and protocatechuate to beta-ketoadipate by Pseudomonas putida. The Journal of biological chemistry, 241, 3776–86. 1966a The conversion of catechol and protocatechuate to beta-ketoadipate by Pseudomonas putida Ambler, J. and Roberts, E. (1948) The effect of pH on the stability of cis-aconitic acid in dilute solution. Journal of organic chemistry, 13, 399–402. 1948 The effect of pH on the stability of cis-aconitic acid in dilute solution Ornston, L. N. and Stanier, R. Y. (1966b) The Protocatechuate pathway: The Conversion of Catechol and Protocatechuate to beta-Ketoadipate by Pseudomonas putida. The Journal of biological chemistry. 1966b The Protocatechuate pathway: The Conversion of Catechol and Protocatechuate to beta-Ketoadipate by Pseudomonas putida Werpy, T. and Petersen, G. (2004) Top value added chemicals from biomass, Volume 1: Results of screening for potential candidates from sugars and synthesis gas. Technical report, Department of Energy Washington DC, United States. 2004 Top value added chemicals from biomass Results of screening for potential candidates from sugars and synthesis gas Nesbitt, B., OKelly, J., Sargeant, K. and Sheridan, A. (1962) Toxic metabolites of Aspergillus flavus. Nature, 195, 1062– 63. 1962 Toxic metabolites of Aspergillus flavus Snetselaar, K., Bölker, M. and Kahmann, R. (1996) Ustilago maydis Mating Hyphae Orient Their Growth toward Pheromone Sources. Fungal genetics and biology : FG & B, 20, 299– 312. 1996 Ustilago maydis Mating Hyphae Orient Their Growth toward Pheromone Sources. Fungal genetics and biology Jansen, G., Wu, C., Schade, B., Thomas, D. Y. and Whiteway, M. (2005) Drag&Drop cloning in yeast. Gene, 344, 43–51. ISSN 0378-1119. 2005 Drag&Drop cloning in yeast Teichmann, B., Linne, U., Hewald, S., Marahiel, M. A. and Bölker, M. (2007) A biosynthetic gene cluster for a secreted cellobiose lipid with antifungal activity from Ustilago maydis. Molecular microbiology, 66, 525–33. ISSN 0950-382X. 2007 A biosynthetic gene cluster for a secreted cellobiose lipid with antifungal activity from Ustilago maydis Voll, A. and Marquardt, W. (2012) Reaction Network Flux Analysis : Optimization-Based Eva- luation of Reaction Pathways for Biorenewables Processing. AIChE Journal, 58, 1788–1801. 2012 Reaction Network Flux Analysis : Optimization-Based Evaluation of Reaction Pathways for Biorenewables Processing Maasem-Panakova, M. (2013) Itaconate production by Ustilago maydis: the influence of genes and cultivation conditions. Dissertation, RWTH Aachen. 2013 Itaconate production by Ustilago maydis: the influence of genes and cultivation conditions Williams, S. E., Woolridge, E. M., Ransom, S. C., Landro, J. A., Babbitt, P. C. and Kozarich, J. W. (1992) 3-Carboxy-cis,cis-muconate Lactonizing Enzyme from Pseudomonas putida Is Homologous to the Class II Fumarase Family: A New Reaction in the Evolution of a Mecha- nistic Motif. Biochemistry, 31, 9768–9776. 1992 ) 3-Carboxy-cis,cis-muconate Lactonizing Enzyme from Pseudomonas putida Is Homologous to the Class II Fumarase Family: A New Reaction in the Evolution of a Mechanistic Motif Neilands, J. (1952) A crystalline organo-iron pigment from a rust fungus (Ustilago sphaerogena). 1952 A crystalline organo-iron pigment from a rust fungus Bell, J. (1989) The polymerase chain reaction. Immunol Today, 10, 351–355. 1989 The polymerase chain reaction Rhagavendra Rao, M. and Altekar, W. (1961) Aconitate Isomerase. Biochemical and Biophysical research communications, 4, 101–105. 1961 Aconitate Isomerase Verduyn, C., Postma, E., Scheffers, W. and Van Dijken, J. (1992) Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast, 8, 501–17. 1992 Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation Mayser, P., Wille, G., Imkamp, A., Thoma, W., Arnold, N. and Monsees, T. (1998) Synthesis of fluorochromes and pigments in Malassezia furfur by use of tryptophan as the single nitrogen source. Mycoses, 41, 265–271. 1998 Synthesis of fluorochromes and pigments in Malassezia furfur by use of tryptophan as the single nitrogen source Kaplan, R., Mayor, J., Gremse, D. and Wood, O. (1995) High level expression and characteri- zation of the mitochondrial citrate transportprotein from the yeast Saccharomyces cerevisiae. The Journal of biological chemistry, 270, 4108–4114. 1995 High level expression and characterization of the mitochondrial citrate transportprotein from the yeast Saccharomyces cerevisiae Sikorski, R. S. and Hieter, P. (1989) A System of Shuttle Vectors and Yeast Host Strains Designed for Efficient Manipulation of DNA in Saccharomyces cerevisiae. Genetics, 122, 19–27. 1989 A System of Shuttle Vectors and Yeast Host Strains Designed for Efficient Manipulation of DNA in Saccharomyces cerevisiae Pereira, G., Tanaka, T. U., Nasmyth, K. and Schiebel, E. (2001) Modes of spindle pole body inheritance and segregation of the Bfa1p-Bub2p checkpoint protein complex. The EMBO journal, 20, 6359–70. ISSN 0261-4189. 2001 Modes of spindle pole body inheritance and segregation of the Bfa1p-Bub2p checkpoint protein complex Trail, F., Mahanti, N., Rarick, M., Mehigh, R., Liang, S. H. and Zhou, R. (1995) Physical and transcriptional map of an aflatoxin gene cluster in Aspergillus parasiticus and functional disruption of a gene involved early in the aflatoxin pathway . Physical and Transcriptional Map of an Aflatoxin Gene Cluster in Aspergillus parasiticus. Applied and environmental microbiology, 61, 2665. 1995 Physical and transcriptional map of an aflatoxin gene cluster in Aspergillus parasiticus and functional disruption of a gene involved early in the aflatoxin pathway . Physical and Transcriptional Map of an Aflatoxin Gene Cluster in Aspergillus parasiticus Bonnarme, P., Gillet, B., Sepulchre, A. M., Role, C., Beloeil, J. C. and Ducrocq, C. (1995) Itaconate biosynthesis in Aspergillus terreus. Journal of bacteriology, 177, 3573–8. ISSN 0021-9193. 1995 Itaconate biosynthesis in Aspergillus terreus Vida, T. A. and Em, S. D. (1995) A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast. J Cell Biol, 128, 779–792. 1995 A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast Yim, G., Wang, H. H. and Davies, J. (2007) Antibiotics as signalling molecules. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 362, 1195–200. ISSN 0962-8436. 2007 Antibiotics as signalling molecules Teichmann, B., Liu, L., Schink, K. O. and Bölker, M. (2010) Activation of the ustilagic acid biosynthesis gene cluster in Ustilago maydis by the C2H2 zinc finger transcription factor Rua1. Applied and environmental microbiology, 76, 2633–40. ISSN 1098-5336. 2010 Activation of the ustilagic acid biosynthesis gene cluster in Ustilago maydis by the C2H2 zinc finger transcription factor Rua1 Wang, A. M., Doyle, M. V. and Mark, D. F. (1989) Quantitation of mRNA by the polymerase chain reaction. Proceedings of the National Academy of Sciences of the United States of America, 86, 9717–21. ISSN 0027-8424. 1989 Quantitation of mRNA by the polymerase chain reaction Strelko, C. L., Lu, W., Dufort, F. J., Seyfried, T. N., Chiles, T. C., Rabinowitz, J. D. and Roberts, M. F. (2011) Itaconic acid is a mammalian metabolite induced during macrophage activation. J Am Chem Soc., 133, 16386–16389. 2011 Itaconic acid is a mammalian metabolite induced during macrophage activation Reed, R. and Holder, M. (1953) The antibacterial spectrum of ustilagic acid. Can. J. Med Sci., 31, 505–511. 1953 The antibacterial spectrum of ustilagic acid. Can Lockwood, L. and Reeves, M. (1945) Some factors affecting the production of itaconic acid by Aspergillus terreus. Arch Biochem, 6, 455–469. 1945 Some factors affecting the production of itaconic acid by Aspergillus terreus Jaklitsch, W., Kubicek, C. and Scrutton, M. (1991) Intracellular location of enzymes involved in citrate production by Aspergillus niger. Can. J. Microbiol, 37, 823–827. 1991 Intracellular location of enzymes involved in citrate production by Aspergillus niger Michelucci, A., Cordes, T., Ghelfi, J., Pailot, A., Reiling, N., Goldmann, O., Binz, T., Wegner, A., Tallam, A., Rausell, A., Buttini, M., Linster, C. L., Medina, E., Balling, R. and Hiller, K. (2013) Immune-responsive gene 1 protein links metabolism to immunity by catalyzing Literaturverzeichnis itaconic acid production. Proceedings of the National Academy of Sciences of the United States of America, 110, 7820–5. ISSN 1091-6490. 2013 Immune-responsive gene 1 protein links metabolism to immunity by catalyzing Literaturverzeichnis itaconic acid production Sanger, F., Nicklen, S. and Coulson, A. R. (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A, 74, 5463–5467. 1977 DNA sequencing with chain-terminating inhibitors Bölker, M., Urban, M. and Kahmann, R. (1992) The a mating type locus of U. maydis specifies cell signaling components. Cell, 68, 441–50. ISSN 0092-8674. 1992 The a mating type locus of U. maydis specifies cell signaling components Li, A., van Luijk, N., ter Beek, M., Caspers, M., Punt, P. and van der Werf, M. (2011) A clone-based transcriptomics approach for the identification of genes relevant for itaconic acid production in Aspergillus. Fungal genetics and biology : FG & B, 48, 602–11. ISSN 1096-0937. 2011 A clone-based transcriptomics approach for the identification of genes relevant for itaconic acid production in Aspergillus. Fungal genetics and biology Bohman, V. R., Lesperance, A. L., Harding, G. D. and Grunes, D. L. (1969) Induction of Experimental Tetany in Cattle . Journal of animal sciences, 29, 99–102. 1969 Induction of Experimental Tetany in Cattle Klement, T., Milker, S., Jäger, G., Grande, P. M., María, P. D. D. and Büchs, J. (2012) Biomass pretreatment affects Ustilago maydis in producing itaconic acid. Microbial Cell Factories, 11, 43. ISSN 1475-2859. 2012 Biomass pretreatment affects Ustilago maydis in producing itaconic acid Philipps-Universität Marburg Przybilla, Sandra Kathrin Przybilla Sandra Kathrin ths Prof. Dr, Bölker Michael Bölker, Michael (Prof. Dr,)
recordtype opus
id urn:nbn:de:hebis:04-z2014-0414
urn_str urn:nbn:de:hebis:04-z2014-04141
collection Monograph
uri_str http://archiv.ub.uni-marburg.de/diss/z2014/0414
callnumber-raw diss/z2014/0414
callnumber-search diss/z2014/0414
callnumber-sort diss/z2014/0414
callnumber-label diss z2014 0414
callnumber-first diss
callnumber-subject diss z2014
_version_ 1563293964992249856
score 9,599496