English ppn:35321020X Białowieża Fachbereich Biologie Philipps-Universität Marburg ths Jun.-Prof. Dr. Farwig Nina Farwig, Nina (Jun.-Prof. Dr.) application/pdf Samenverbreitung https://doi.org/10.17192/z2014.0359 Interaktionsnetzwerke human land-use Pflanzen urn:nbn:de:hebis:04-z2014-03594 Biodiversität Mutualismus Natürliche und anthropogene Dynamiken in mutualistischen Netzwerken mutualistic network 2015-01-14 Publikationsserver der Universitätsbibliothek Marburg Universitätsbibliothek Marburg Albrecht, Jörg Albrecht Jörg Pflanze-Tier Interaktion plant-animal interaction opus:5608 2014-06-24 Natural and human-induced dynamics in plant–animal mutualistic networks ecosystem service Journal of Ecology, 2013, doi: 10.1111/1365-2745.12105; Nature Communications, 2014, doi: 10.1038/ncomms4810 doctoralThesis https://archiv.ub.uni-marburg.de/diss/z2014/0359/cover.png Ökosystemdienstleistung Waldökos Species interactions are an integral part of ecological communities. Collectively, these interactions form complex and highly dynamic networks. The structure of these networks varies due to geographic and temporal variation in the abundance and co-occurrence of interacting species and due to species gains and losses after anthropogenic perturbation. In Europe’s last relict of old-growth lowland forest (Białowieża, Poland), I studied the outcomes of these natural and human-induced dynamics in highly diversified mutualistic networks of plants, pollinators and seed dispersers. These mutualistic interactions between plants and free-living animals are of great importance, as the flowers and fruits of many plant species are critical resources for a variety of animal species, which in turn contribute significantly to the regeneration of plant communities. As part of my studies, I was able to show that plant–animal mutualistic networks are highly dynamic systems that respond collectively to changing biotic context and human-induced perturbation. Observed shifts in facilitative and competitive interactions among plants sharing mutualistic partners show that biotic context is a strong determinant of the outcome of interspecific interactions. The use of network analyses, thereby, allowed me to identify some of the mechanisms that shape species interactions and their outcomes. For example, my studies show that a change in the population density of one species suffices to trigger cascading effects on the interactions and populations of other species. This finding highlights that species interactions may have a pervasive effect on the assembly and disassembly of ecological communities. Even more importantly, I could show that these community-wide dynamics were in all cases linked to consumer-resource relationships, which are key determinants of plant–animal mutualisms. Thus, changes in the foraging behaviour of animals in response to variation in the density of plant resources and competitors affected the structure of mutualistic communities. This underscores that despite the evolutionary conservatism in ecological interactions, biotic context determines to which extent these coevolved interactions are realized. The fact that the sharing of mutualistic partners among plant species was reflected in their co-occurrence demonstrates that the above-mentioned dynamics in ecological networks may also determine community assembly processes and species co-existence. Importantly, the comparison of several types of species interactions revealed how biotic context in its various forms can shape land-use effects on species interactions. I found that the mutualism between plants and seed dispersers was more susceptible to habitat degradation than the mutualism between plants and their pollinators. This finding highlights that a high degree of generalization, such as in the seed dispersal mutualism, does not necessarily buffer ecological communities against the loss of species. This becomes even more important if a few species have a disproportionate effect on a given target function and if species are particularly vulnerable to ecological perturbation, such as habitat specialists or large-bodied frugivores. Furthermore, I observed that shifts in the abundance of plant resources in degraded habitats can amplify land-use effects on plant–animal mutualistic interactions. Importantly, changes in the density of plant resources explained about 40 to 70 percent of the variation in land-use effects on interactions between plants and their pollinators and seed dispersers. This demonstrates that a consideration of biotic context (e.g. in the form of resources) may considerably improve predictions of the magnitude of land-use effects on species interactions. Thereby, the correlated responses of pollinators and seed dispersers to the shifts in plant population densities in degraded habitats highlight that these dynamics are not restricted to single types of interaction, but potentially operate at the level of ecosystems. Studies that only focus on subsets of species or interaction types may be unable to identify the consequences of human land-use that have been shown here. In principle, the results of the presented studies may also be valid for other types of mutualistic and antagonistic interactions that are based on consumer-resource relationships. Altogether, the results of my thesis suggest that natural and human-induced dynamics in plant–animal mutualistic networks follow similar principles. In the worst case these dynamics might have cascading effects on the functioning and integrity of ecosystems through a parallel loss of multiple animal-mediated ecosystem services after habitat degradation. Tiere Interaktionen zwischen Arten sind ein essentieller Bestandteil ökologischer Lebensgemeinschaften, weil sie eng mit der Koevolution von Arten sowie mit der Organisation und der Funktionalität von Ökosystemen verbunden sind. Zusammengenommen bilden diese Interaktionen zwischen Arten komplexe und sehr dynamische Beziehungsgeflechte, sogenannte Interaktionsnetzwerke. Die Struktur dieser Netzwerke ändert sich aufgrund der räumlichen und zeitlichen Variabilität im gemeinsamen Vorkommen interagierender Arten und aufgrund der Zu- oder Abnahme einzelner Arten durch die Fragmentierung oder Degradierung natürlicher Lebensräume. Im letzten Urwaldrelikt des Europäischen Tieflands in Białowieża, Ostpolen, untersuchte ich natürliche und menschlich bedingte Dynamiken in hoch diversen mutualistischen Netzwerken aus Pflanzen und deren bestäubenden und samenausbreitenden Tieren. Diese mutualistischen Interaktionen sind von großer Bedeutung, da die Blüten und Früchte vieler Pflanzenarten wichtige Ressourcen für verschiedenste Tierarten darstellen, die ihrerseits entscheidend zur Regeneration von Pflanzengemeinschaften beitragen. Im Rahmen meiner Studien konnte ich zeigen, dass räumliche und zeitliche Variation im Vorkommen verschiedener Pflanzenarten bestimmte, inwiefern zeitgleich fruchtende Pflanzenarten um samenausbreitende Tiere konkurrieren oder sich gegenseitig in ihrer Ausbreitungsfähigkeit fördern. So wurden häufige Pflanzenarten seltener von Samenausbreitern besucht, wenn sie zeitgleich mit anderen Arten fruchteten. Seltene Pflanzenarten hingegen profitierten von der Präsenz anderer fruchtender Arten. Zudem waren Pflanzenarten mit einem ähnlichen Spektrum an samenausbreitenden Tierarten auch stark räumlich miteinander assoziiert. Diese Ergebnisse deuten an, dass ökologische Interaktionen sowohl die Organisation ökologischer Gemeinschaften als auch die Koexistenz von Arten beeinflussen. Desweiteren konnte ich zeigen, dass Veränderungen im Nahrungssuchverhalten der Samenausbreiter als Reaktion auf die Verfügbarkeit von Fruchtressourcen und Nahrungskonkurrenz durch andere Tiere einen starken Effekt auf die Struktur der Gemeinschaften hatten. So hatte beispielsweise verminderte Konkurrenz durch den Verlust von Waldspezialisten in genutzten Waldgebieten eine erhöhte Spezialisierung und eine Abnahme der Redundanz in den Beziehungen zwischen Pflanzen und deren Samenausbreitern zur Folge. Dies könnte das Anpassungspotential dieser Gemeinschaften gegenüber Umweltveränderungen einschränken. Ein Vergleich der mutualistischen Beziehungen zwischen Pflanzen und ihren Bestäubern und Samenausbreitern zeigte, auf welche Weise der biotische Kontext Landnutzungseffekte auf ökologische Gemeinschaften beeinflussen kann. So reagierte der Mutualismus zwischen Pflanzen und Samenausbreitern empfindlicher auf die Degradation des untersuchten Urwaldgebietes als der Mutualismus zwischen Pflanzen und Bestäubern. Dieses Ergebnis verdeutlicht, dass ein hohes Maß an Generalisierung, wie etwa im Mutualismus zwischen Pflanzen und Samenausbreitern, nicht notwendigerweise einen stabilen Puffer gegenüber einem Verlust von Arten bildet. Dies gilt insbesondere, wenn wenige Arten einen überproportionalen Effekt innerhalb einer Gemeinschaft haben, oder wenn bestimmte Arten besonders sensibel auf menschliche Störung reagieren. Darüber hinaus zeigen meine Studien, dass forstliche Nutzung von Urwaldgebieten korrelierte Effekte auf die Interaktionen der Pflanzen in beiden mutualistischen Beziehungen hatte: Pflanzenarten, die in genutzten Wäldern viele Samenausbreiter verloren, waren auch von einem Verlust an Bestäubern betroffen. Die Stärke dieser Landnutzungseffekte konnte anhand von Verschiebungen in der Häufigkeit einzelner Pflanzenarten in genutzten Waldgebieten mit einer Bestimmtheit von 40 bis 70% vorhergesagt werden. Das bedeutet, dass eine Änderung in der Populationsdichte einer einzigen Art ausreicht, um in einer Art Domino-Effekt die Interaktionen sowie die Populationen anderer Arten zu beeinflussen. Diese Ergebnisse legen nahe, dass die Effekte von Landnutzung auf ökologische Gemeinschaften teilweise durch die Verfügbarkeit von pflanzlichen Nahrungsressourcen in genutzten Lebensräumen getrieben sind. Da natürliche und menschlich bedingte Dynamiken in mutualistischen Gemeinschaften ähnlichen Prinzipien zu folgen scheinen, könnte eine Berücksichtigung der Verfügbarkeit von Ressourcen in genutzten Lebensräumen genauere Vorhersagen über die Stärke von Landnutzungseffekten auf ökologische Gemeinschaften ermöglichen. Insgesamt deuten diese Ergebnisse an, dass Landnutzungseffekte auf Interaktionen zwischen Arten weitreichende Konsequenzen für die Funktionalität ganzer Ökosysteme haben könnten, da sie potentiell zu einem parallelen Verlust verschiedener ökosystemarer Dienstleistungen, wie etwa Bestäubung oder Samenausbreitung, führen können. Life sciences Biowissenschaften, Biologie Devictor, V., Clavel, J., Julliard, R., Lavergne, S., Mouillot, D., Thuiller, W., Venail, P., Villéger, S. + Mouquet, N. (2010) Defining and measuring ecological specialization. Journal of Applied Ecology, 47, 15–25. Buldyrev, S. V, Parshani, R., Paul, G., Stanley, H.E. + Havlin, S. (2010) Catastrophic cascade of failures in interdependent networks. Nature, 464, 1025–1028. Brummitt, C.D., D'Souza, R.M. + Leicht, E.A. (2012) Suppressing cascades of load in interdependent networks. Proceedings of the National Academy of Sciences of the United States of America, 109, E680– E689. Burnham, K.P. + Anderson, D.R. (2002) Model selection and multimodel inference. Springer-Verlag, New York, New York, USA. Kremen, C., Williams, N.M., Aizen, M.A., Gemmill- Herren, B., LeBuhn, G., Minckley, R., Packer, L., Potts, S.G., Roulston, T., Steffan-Dewenter, I., Vázquez, D.P., Winfree, R., Adams, L., Crone, E.E., Greenleaf, S.S., Keitt, T.H., Klein, A.M., Regetz, J. + Ricketts, T.H. (2007) Pollination and other ecosystem services produced by mobile organisms: a conceptual framework for the effects of land-use change. Ecology Letters, 10, 299–314. Vitousek, P.M., Mooney, H.A., Lubchenco, J. + Melillo, J.M. (1997) Human domination of earth's ecosystems. Wenny, D.G. (2001) Advantages of seed dispersal: a re-evaluation of directed dispersal. Evolutionary Ecology Research, 3, 51–74. Gao, J., Buldyrev, S. V, Stanley, H.E. + Havlin, S. (2012) Networks formed from interdependent networks. Nature Physics, 8, 40–48. Johnson, J.B. + Omland, K.S. (2004) Model selection in ecology and evolution. Trends in Ecology + Evolution, 19, 101–108. Sala, O.E., Chapin, F.S., Armesto, J.J., Berlow, E., Bloomfield, J., Dirzo, R., Huber-Sanwald, E., Huenneke, L.F., Jackson, R.B., Kinzig, A., Leemans, R., Lodge, D.M., Mooney, H.A., Oesterheld, M., Poff, N.L., Sykes, M.T., Walker, B.H., Walker, M. + Wall, D.H. (2000) Global biodiversity scenarios for the year 2100. Science, 287, 1770–1774. Guimarães, P.R., Jordano, P. + Thompson, J.N. (2011) Evolution and coevolution in mutualistic networks. Ecology Letters, 14, 877–885. Webb, C.O. + Peart, D.R. (2001) High seed dispersal rates in faunally intact tropical rain forest: theoretical and conservation implications. Ecology Letters, 4, 491–499. Stang, M., Klinkhamer, P.G.L. + van der Meijden, E. (2006) Size constraints and flower abundance determine the number of interactions in a plant– flower visitor web. Oikos, 112, 111–121. Grant, P.R. + Grant, B.R. (2006) Evolution of character displacement in Darwin's finches. Science, 313, 224– 226. Rey, P.J., Herrera, C.M., Guitián, J., Cerdá, X., Sánchez-Lafuente, A.M., Medrano, M. + Garrido, J.L. (2006) The geographic mosaic in predispersal interactions and selection on Helleborus foetidus (Ranunculaceae). Journal of Evolutionary Biology, 19, 21–34. Vázquez, D.P., Melian, C.J., Williams, N.M., Blüthgen, N., Krasnov, B.R. + Poulin, R. (2007) Species abundance and asymmetric interaction strength in ecological networks. Oikos, 116, 1120–1127. Legendre, P. + Gallagher, E. (2001) Ecologically meaningful transformations for ordination of species data. Oecologia, 129, 271–280. Fox, J., Nie, Z. + Byrnes, J. (2013) Sem: structural equation models. http://cran.r-project.org/ package=sem. Peterson, G., Allen, C.R. + Holling, C.S. (1998) Ecological resilience, biodiversity, and scale. Ecosystems, 1, 6–18. Hinde, J. (1982) Compound poisson regression models. GLIM 82: Proceedings of the International Conference on Generalised Linear Models. Volume 14 (ed R. Gilchrist), pp. 109–121. Springer, New York. Carlo, T.A., Collazo, J.A. + Groom, M.J. (2003) Avian fruit preferences across a Puerto Rican forested landscape: pattern consistency and implications for seed removal. Oecologia, 134, 119–131. Clark, C.J., Poulsen, J.R., Connor, E.F. + Parker, V.T. (2004) Fruiting trees as dispersal foci in a semi- deciduous tropical forest. Oecologia, 139, 66–75. Gómez, J.M. (2005) Non-additive effects of herbivores and pollinators on Erysimum mediohispanicum (Cruciferae) fitness. Oecologia, 143, 412–418. Farwig, N., Böhning-Gaese, K. + Bleher, B. (2006) Enhanced seed dispersal of Prunus africana in fragmented and disturbed forests? Oecologia, 147, 238–252. Gagic, V., Hönke, S., Thies, C., Scherber, C., Tomanovic, Z. + Tscharntke, T. (2012) Agricultural intensification and cereal aphid-parasitoid-hyperparasitoid food webs: network complexity, temporal variability and parasitism rates. Oecologia, 170, 1099–1109. Peres-Neto, P.R. + Jackson, D.A. (2001) How well do multivariate data sets match? The advantages of a Procrustean superimposition approach over the Mantel test. Oecologia, 129, 169–178. Tomiałojć, L. + Wesołowski, T. (2004) Diversity of the Białowieża Forest avifauna in space and time. Journal of Ornithology, 145, 81–92. Carlo, T.A. + Yang, S. (2011) Network models of frugivory and seed dispersal: challenges and opportunities. Acta Oecologica, 37, 619–624. Hegland, S.J., Dunne, J., Nielsen, A. + Memmott, J. (2010) How to monitor ecological communities cost- efficiently: the example of plant–pollinator networks. Biological Conservation, 143, 2092–2101. Dray, S., Legendre, P. + Peres-Neto, P.R. (2006) Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecological Modelling, 196, 483–493. Sargent, R.D. + Ackerly, D.D. (2008) Plant–pollinator interactions and the assembly of plant communities. Trends in Ecology + Evolution, 23, 123–130. Wang, B.C. + Smith, T.B. (2002) Closing the seed dispersal loop. Trends in Ecology + Evolution, 17, 379–385. Levey, D.J. + Benkman, C.W. (1999) Fruit-seed disperser interactions: timely insights from a long- term perspective. Trends in Ecology + Evolution, 14, 41–43. Borcard, D. + Legendre, P. (2002) All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecological Modelling, 153, 51–68. Ghazoul, J. (2005) Pollen and seed dispersal among dispersed plants. Biological Reviews, 80, 413–443. Loreau, M. (2000) Biodiversity and ecosystem functioning: recent theoretical advances. Oikos, 91, 3–17. Rosenthal, R. + Rosnow, R.L. (1985) Contrast Analysis: Focused Comparisons in the Analysis of Variance. Cambridge University Press, Cambridge. Marris, E. (2008) Ecology: the heart of the wood. Nature, 455, 277–280. Tylianakis, J.M., Tscharntke, T. + Lewis, O.T. (2007) Habitat modification alters the structure of tropical host-parasitoid food webs. Nature, 445, 202–205. James, A., Pitchford, J.W. + Plank, M.J. (2012) Disentangling nestedness from models of ecological complexity. Nature, 487, 227–230. Säterberg, T., Sellman, S. + Ebenman, B. (2013) High frequency of functional extinctions in ecological networks. Nature, 499, 468–470. Vázquez, D.P. + Simberloff, D. (2003) Changes in interaction biodiversity induced by an introduced ungulate. Ecology Letters, 6, 1077–1083. Burns, K.C. (2002) Seed dispersal facilitation and geographic consistency in bird-fruit abundance patterns. Global Ecology and Biogeography, 11, 253–259. MacArthur, R.H. + Pianka, E.R. (1966) On optimal use of a patchy environment. The American Naturalist, 100, 603–609. Janzen, D.H. (1970) Herbivores and the number of tree species in tropical forests. The American Naturalist, 104, 501–528. Wheelwright, N. + Orians, G. (1982) Seed dispersal by animals: contrasts with pollen dispersal, problems of terminology, and constraints on coevolution. The American Naturalist, 119, 402–413. Freckleton, R.P., Harvey, P.H. + Pagel, M. (2002) Phylogenetic analysis and comparative data: a test and review of evidence. The American Naturalist, 160, 712–726. Legendre, P. (2007) Studying beta diversity: ecological variation partitioning by multiple regression and canonical analysis. Journal of Plant Ecology, 1, 3–8. Garland, T., Harvey, P.H. + Ives, A.R. (1992) Procedures for the analysis of comparative data using phylogenetically independent contrasts. Systematic Biology, 41, 18–32. Gómez, J.M. + Verdú, M. (2012) Mutualism with plants drives primate diversification. Systematic Biology, 61, 567–577. Thies, W. + Kalko, E.K. V. (2004) Phenology of neotropical pepper plants (Piperaceae) and their association with their main dispersers, two short- tailed fruit bats, Carollia perspicillata and C. castanea (Phyllostomidae). Oikos, 104, 362–376. Tellería, J.L., Ramirez, A. + Pérez-Tris, J. (2008) Fruit tracking between sites and years by birds in Mediterranean wintering grounds. Ecography, 31, 381–388. Carlo, T.A. + Morales, J.M. (2008) Inequalities in fruit- removal and seed dispersal: consequences of bird behaviour, neighbourhood density and landscape aggregation. Journal of Ecology, 96, 609–618. Niklasson, M., Zin, E., Zielonka, T., Feijen, M., Korczyk, A.F., Churski, M., Samojlik, T., Jędrzejewska, B., Gutowski, J.M. + Brzeziecki, B. (2010) A 350-year tree-ring fire record from Białowieża Primeval Forest, Poland: implications for Central European lowland fire history. Journal of Ecology, 98, 1319–1329. Kremen, C. (2005) Managing ecosystem services: what do we need to know about their ecology? Ecology Letters, 8, 468–479. Duffy, J.E., Cardinale, B.J., France, K.E., McIntyre, P.B., Thébault, E. + Loreau, M. (2007) The functional role of biodiversity in ecosystems: incorporating trophic complexity. Ecology Letters, 10, 522–538. Fründ, J., Dormann, C.F. + Tscharntke, T. (2011) Linnee's floral clock is slow without pollinators - flower closure and plant–pollinator interaction webs. Ecology Letters, 14, 896–904. Encinas-Viso, F., Revilla, T.A. + Etienne, R.S. (2012) Phenology drives mutualistic network structure and diversity. Ecology Letters, 15, 198–208. Devoto, M., Bailey, S., Craze, P. + Memmott, J. (2012) Understanding and planning ecological restoration of plant–pollinator networks. Ecology Letters, 15, 319–328. Kirika, J.M., Farwig, N. + Böhning-Gaese, K. (2008) Effects of local disturbance of tropical forests on frugivores and seed removal of a small-seeded afrotropical tree. Conservation Biology, 22, 318–328. Ollerton, J., Winfree, R. + Tarrant, S. (2011) How many flowering plants are pollinated by animals? Oikos, 120, 321–326. Valladares, G., Cagnolo, L. + Salvo, A. (2012) Forest fragmentation leads to food web contraction. Oikos, 121, 299–305. Tuomisto, H. (2012) An updated consumer's guide to evenness and related indices. Oikos, 121, 1203–1218. Menke, S., Böhning-Gaese, K. + Schleuning, M. (2012) Plant–frugivore networks are less specialized and more robust at forest-farmland edges than in the interior of a tropical forest. Oikos, 121, 1553–1566. Burns, K.C. (2005) Is there limiting similarity in the phenology of fleshy fruits? Journal of Vegetation Science, 16, 617–624. Mougi, A. + Kondoh, M. (2012) Diversity of interaction types and ecological community stability. Science, 337, 349–351. Winfree, R., Bartomeus, I. + Cariveau, D.P. (2011) Native pollinators in anthropogenic habitats. Annual Review of Ecology Evolution and Systematics, 42, 1–22. Laliberté, E. + Tylianakis, J.M. (2010) Deforestation homogenizes tropical parasitoid-host networks. Ecology, 91, 1740–1747. Schleuning, M., Blüthgen, N., Flörchinger, M., Braun, J., Schaefer, H.M. + Böhning-Gaese, K. (2011) Specialization and interaction strength in a tropical plant–frugivore network differ among forest strata. Ecology, 92, 26–36. McConkey, K.R. + Brockelman, W.Y. (2011) Nonredundancy in the dispersal network of a generalist tropical forest tree. Ecology, 92, 1492– 1502. Plein, M., Längsfeld, L., Neuschulz, E.L., Schultheiß, C., Ingmann, L., Töpfer, T., Böhning-Gaese, K. + Schleuning, M. (2013) Constant properties of plant– frugivore networks despite fluctuations in fruit and bird communities in space and time. Ecology, 94, 1296–1306. MacArthur, R.H. (1955) Fluctuations of animal populations, and a measure of community stability. Ecology, 36, 533–536. Hill, M.O. (1973) Diversity and evenness: a unifying notation and its consequences. Ecology, 54, 427–432. Borcard, D., Legendre, P. + Drapeau, P. (1992) Partialling out the spatial component of ecological variation. Ecology, 73, 1045–1055. Waser, N.M., Chittka, L., Price, M. V., Williams, N.M. + Ollerton, J. (1996) Generalization in pollination systems, and why it matters. Ecology, 77, 1043–1060. Legendre, P., Galzin, R. + Harmelin-Vivien, M.L. (1997) Relating behavior to habitat: solutions to the fourth-corner problem. Ecology, 78, 547–562. Breslow, N.E. (1984) Extra-poisson variation in log- linear models. Applied Statistics, 33, 38–44. Williams, D.A. (1982) Extra-binomial variation in logistic linear models. Applied Statistics, 31, 144– 148. Thompson, J.N. + Willson, M.F. (1979) Evolution of temperate fruit/bird interactions: phenological strategies. Evolution, 33, 973–982. Herrera, C.M. (1998) Long-term dynamics of Mediterranean frugivorous birds and fleshy Fruits: a 12-year study. Ecological Monographs, 68, 511–538. Herrera, C.M., Jordano, P., Lopezsoria, L. + Amat, J.A. (1994) Recruitment of a mast-fruiting, bird- dispersed tree -Bridging frugivore activity and seedling establishment. Ecological Monographs, 64, 315–344. Herrera, C.M. (1985) Determinants of plant–animal coevolution -the case of mutualistic dispersal of seeds by vertebrates. Oikos, 44, 132–141. Whitham, T.G., Difazio, S.P., Schweitzer, J.A., Shuster, S.M., Allan, G.J., Bailey, J.K. + Woolbright, S.A. (2008) Extending genomics to natural communities and ecosystems. Science, 320, 492–495. Thébault, E. + Fontaine, C. (2010) Stability of ecological communities and the architecture of mutualistic and trophic networks. Science, 329, 853–856. Fontaine, C., Guimarães, P.R.J., Kéfi, S., Loeuille, N., Memmott, J., van der Putten, W.H., van Veen, F.J.F. + Thébault, E. (2011) The ecological and evolutionary implications of merging different types of networks. Ecology Letters, 14, 1170–1181. Prasad, S. + Sukumar, R. (2010) Context-dependency of a complex fruit-frugivore mutualism: temporal variation in crop size and neighborhood effects. Oikos, 119, 514–523. Lawton, J.H., Bignell, D.E., Bolton, B., Bloemers, G.F., Eggleton, P., Hammond, P.M., Hodda, M., Holt, R.D., Larsen, T.B., Mawdsley, N.A., Stork, N.E., Srivastava, D.S. + Watt, A.D. (1998) Biodiversity inventories, indicator taxa and effects of habitat modification in tropical forest. Nature, 391, 72–76. Whitham, T.G., Bailey, J.K., Schweitzer, J.A., Shuster, S.M., Bangert, R.K., LeRoy, C.J., Lonsdorf, E. V, Allan, G.J., DiFazio, S.P., Potts, B.M., Fischer, D.G., Gehring, C.A., Lindroth, R.L., Marks, J.C., Hart, S.C., Wimp, G.M. + Wooley, S.C. (2006) A framework for community and ecosystem genetics: from genes to ecosystems. Nature Reviews. Genetics, 7, 510–523. Skaug, H., Fournier, D., Nielsen, A., Magnusson, A. + Bolker, B. (2013) Generalized linear mixed models using AD model builder. R package version 0.7.7. http://glmmadmb.r-forge.r-project.org/. Fontaine, C., Collin, C.L. + Dajoz, I. (2008) Generalist foraging of pollinators: diet expansion at high density. Journal of Ecology, 96, 1002–1010. Moran, C., Catterall, C.P., Green, R.J. + Olsen, M.F. (2004) Functional variation among frugivorous birds: implications for rainforest seed dispersal in a fragmented subtropical landscape. Oecologia, 141, 584–595. Nathan, R. + Muller-Landau, H.C. (2000) Spatial patterns of seed dispersal, their determinants and consequences for recruitment. Trends in Ecology + Evolution, 15, 278–285. Lázaro, A., Mark, S. + Olesen, J.M. (2005) Bird-made fruit orchards in Northern Europe: nestedness and network properties. Oikos, 110, 321–329. Gómez, J.M., Verdú, M. + Perfectti, F. (2010) Ecological interactions are evolutionarily conserved across the entire tree of life. Nature, 465, 918–921. Schupp, E.W., Jordano, P. + Gómez, J.M. (2010) Seed dispersal effectiveness revisited: a conceptual review. New Phytologist, 188, 333–353. Olesen, J.M., Bascompte, J., Elberling, H. + Jordano, P. (2008) Temporal dynamics in a pollination network. Ecology, 89, 1573–1582. Rezende, E.L., Lavabre, J.E., Guimarães, P.R., Jordano, P. + Bascompte, J. (2007) Non-random coextinctions in phylogenetically structured mutualistic networks. Nature, 448, 925–929. Tylianakis, J.M., Didham, R.K., Bascompte, J. + Wardle, D.A. (2008) Global change and species interactions in terrestrial ecosystems. Ecology Letters, 11, 1351– 1363. Vázquez, D.P., Morris, W.F. + Jordano, P. (2005) Interaction frequency as a surrogate for the total effect of animal mutualists on plants. Ecology Letters, 8, 1088–1094. Jordano, P. + Schupp, E.W. (2000) Seed disperser effectiveness: the quantity component and patterns of seed rain for Prunus mahaleb. Ecological Monographs, 70, 591–615. Jordano, P. (1987) Patterns of mutualistic interactions in pollination and seed dispersal: connectance, dependence asymmetries, and coevolution. The American Naturalist, 129, 657–677. Chacoff, N.P., Vázquez, D.P., Lomáscolo, S.B., Stevani, E.L., Dorado, J. + Padrón, B. (2012) Evaluating sampling completeness in a desert plant–pollinator network. Journal of Animal Ecology, 81, 190–200. Hampe, A. (2008) Fruit tracking, frugivore satiation, and their consequences for seed dispersal. Oecologia, 156, 137–145. Markl, J.S., Schleuning, M., Forget, P.M., Jordano, P., Lambert, J.E., Traveset, A., Wright, S.J. + Böhning- Gaese, K. (2012) Meta-analysis of the effects of human disturbance on seed dispersal by animals. Conservation Biology, 26, 1072–1081. Carnicer, J., Jordano, P. + Melian, C.J. (2009) The temporal dynamics of resource use by frugivorous birds: a network approach. Ecology, 90, 1958–1970. Poulin, B., Wright, S.J., Lefebvre, G. + Calderón, O. (1999) Interspecific synchrony and asynchrony in the fruiting phenologies of congeneric bird-dispersed plants in Panama. Journal of Tropical Ecology, 15, 213–227. Petanidou, T., Kallimanis, A.S., Tzanopoulos, J., Sgardelis, S.P. + Pantis, J.D. (2008) Long-term observation of a pollination network: fluctuation in species and interactions, relative invariance of network structure and implications for estimates of specialization. Ecology Letters, 11, 564–575. Rathcke, B. + Lacey, E.P. (1985) Phenological patterns of terrestrial plants. Annual Review of Ecology and Systematics, 16, 179–214. Breitbach, N., Tillmann, S., Schleuning, M., Gruenewald, C., Laube, I., Steffan-Dewenter, I. + Boehning- Gaese, K. (2012) Influence of habitat complexity and landscape configuration on pollination and seed- dispersal interactions of wild cherry trees. Oecologia, 168, 425–437. Schupp, E.W. (1993) Quantity, quality and the effectiveness of seed dispersal by animals. Plant Ecology, 107/108, 15–29. Jędrzejewska, B. + Jędrzejewski, W. (1998a) Abundance of prey. Predation in Vertebrate Communities: The Białowieża Primeval Forest as a Case Study. Ecological Studies 135 (eds M.M. Caldwell, G. Heldmaier, O.L. Lange, H.A. Mooney, E.-D. Schulze + U. Sommer), pp. 28–92. Springer, Heidelberg. and restoration management. Forest Ecology and Management, 130, 159–175. Godínez-Alvarez, H. + Jordano, P. (2007) An empirical approach to analysing the demographic consequences of seed dispersal by frugivores. Seed Dispersal: Theory and its Application in a Changing World (eds A.J. Dennis, E.W. Schupp, R.J. Green + D.A. Westcott), pp. 391–406. CAB International, Oxfordshire. Herrera, C.M., Jordano, P., Guitian, J. + Traveset, A. (1998) Annual variability in seed production by woody plants and the masting concept: reassessment references of principles and relationship to pollination and seed dispersal. The American Naturalist, 152, 576–594. Paradis, E. + Claude, J. (2004) APE: analyses of phylogenetics and evolution in R language. R package version 3.0-11. Bioinformatics, 20, 289–290. Snow, D.W. (1965) A possible selective factor in the evolution of fruiting seasons in tropical forest. Oikos, 15, 274–281. references Sokolowski, A. (2004) Lasy Puszczy Białowieskiej [The Forests of the Białowieża Forest]. Centrum Informacyjne Lasow Panstwowych , Warszawa . Whelan, C.J., Schmidt, K.A., Steele, B.B., Quinn, W.J. + Dilger, S. (1998) Are bird-consumed fruits complementary resources? Oikos, 83, 195–205. Herrera, C.M. (1984) A study of avian frugivores, bird-dispersed plants, and their interaction in Mediterranean scrublands. Ecological Monographs, 54, 1–23. Naeem, S. + Li, S.B. (1997) Biodiversity enhances ecosystem reliability. Nature, 390, 507–509. Svensson, L., Mullarney, K. + Zetterström, D. (2009) Collins Bird Guide: The Most Complete Guide to the Birds of Britain and Europe. HarperCollins Publishers, London. Falinski, J.B. (1994) Concise geobotanical atlas of Białowieża forest. Phytocoenosis, 6, 3–34. Durka, W. + Michalski, S.G. (2012) Daphne: a dated phylogeny of a large European flora for phylogenetically informed ecological analyses. Ecology, 93, 2297. Ehrlich, P.R. + Raven, P.H. (1964) Butterflies and plants: a study in coevolution. Evolution, 18, 586–608. Borcard, D., Legendre, P., Avois-Jacquet, C. + Tuomisto, H. (2004) Dissecting the spatial structure of ecological data at multiple scales. Ecology, 85, 1826–1832. Cardinale, B.J., Srivastava, D.S., Duffy, J.E., Wright, J.P., Downing, A.L., Sankaran, M. + Jouseau, C. (2006) Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature, 443, 989–992. Jost, L. (2006) Entropy and diversity. Oikos, 113, 363– 375. Carlo, T.A. + Aukema, J.E. (2005) Female-directed dispersal and facilitation between a tropical mistletoe and a dioecious host. Ecology, 86, 3245–3251. Strauss, S.Y. (1997) Floral characters link herbivores, pollinators, and plant fitness. Ecology, 78, 1640– 1645. Smith-Ramírez, C., Armesto, J.J. + Figueroa, J. (1998) Flowering, fruiting and seed germination in Chilean rain forest myrtaceae: ecological and phylogenetic constraints. Plant Ecology, 136, 119–131. Tilman, D., Fargione, J., Wolff, B., D'Antonio, C., Dobson, A., Howarth, R., Schindler, D., Schlesinger, W.H., Simberloff, D. + Swackhamer, D. (2001) Forecasting agriculturally driven global environmental change. Science, 292, 281–284. Galetti, M., Guevara, R., Côrtes, M.C., Fadini, R., Von Matter, S., Leite, A.B., Labecca, F., Ribeiro, T., Carvalho, C.S., Collevatti, R.G., Pires, M.M., Guimarães, P.R., Brancalion, P.H., Ribeiro, M.C. + Jordano, P. (2013) Functional extinction of birds drives rapid evolutionary changes in seed size. Science, 340, 1086–1090. Fuentes, M. (1995) How specialized are fruit-bird interactions? Overlap of frugivore assemblages within and between plant species. Oikos, 74, 324– 330. Hannah, L., Carr, J.L. + Landerani, A. (1995) Human disturbance and natural habitat -A biome level analysis of a global data set. Biodiversity and Conservation, 4, 128–155. Şekercioğlu, C.H. (2006) Increasing awareness of avian ecological function. Trends in Ecology + Evolution, 21, 464–471. Vázquez, D.P. + Simberloff, D. (2004) Indirect effects of an introduced ungulate on pollination and plant reproduction. Ecological Monographs, 74, 281–308. Pagel, M. (1999) Inferring the historical patterns of biological evolution. Nature, 401, 877–884. Ideker, T., Thorsson, V., Ranish, J.A., Christmas, R., Buhler, J., Eng, J.K., Bumgarner, R., Goodlett, D.R., Aebersold, R. + Hood, L. (2001) Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science, 292, 929–934. Carlo, T.A. (2005) Interspecific neighbors change seed dispersal pattern of an avian-dispersed plant. Ecology, 86, 2440–2449. Jörg Albrecht CurriCulum vitae Geboren am 02.07.1984 in Suhl wissenschafTliche laufbahn Seit 01/2011 Rosseel, Y. (2012) lavaan: an R package for structural equation modeling. R package version 0.5-15 http:// lavaan.org. Journal of Statistical Software, 48, 1–36. Voigt, F.A., Arafeh, R., Farwig, N., Griebeler, E.M. + Böhning-Gaese, K. (2009) Linking seed dispersal and genetic structure of trees: a biogeographical approach. Journal of Biogeography, 36, 242–254. Herrera, C.M. (2000) Measuring the effects of pollinators and herbivores: evidence for non-additivity in a perennial herb. Ecology, 81, 2170–2176. Thompson, J.N. (2006) Mutualistic webs of species. Science, 312, 372–373. Jędrzejewska, B. + Jędrzejewski, W. (1998b) Numbers, distributions and home ranges of predators. Predation in Vertebrate Communities: The Białowieża Primeval Forest as a Case Study. Ecological Studies 135 (eds M.M. Caldwell, G. Heldmaier, O.L. Lange, H.A. Mooney, E.-D. Schulze + U. Sommer), pp. 97–173. Darwin, C. (1859) On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. John Murray, London. references Dawkins, R. + Krebs, J.R. (1979) Arms races between and within species. Proceedings of the Royal Society B: Biological Sciences, 205, 489–511. Dray, S., Legendre, P. + Blanchet, G. (2011) packfor: forward selection with permutation [R package version 0.0-8/r100]. Canoco manual, p. 46. Jost, L. (2007) Partitioning diversity into independent alpha and beta components. Ecology, 88, 2427–2439. Felsenstein, J. (1985) Phylogenies and the comparative method. The American Naturalist, 125, 1–15. Carlo, T.A., Aukema, J.E. + Morales, J.M. (2007) Plant– frugivore interactions as spatially explicit networks: integrating frugivore foraging with fruiting plant spatial patterns. Seed Dispersal: Theory and its Application in a Changing World (eds A.J. Dennis, E.W. Schupp, R.J. Green + D.A. Westcott), pp. 369– 390. CAB International, Oxfordshire. Tscharntke, T. + Brandl, R. (2004) Plant–insect interactions in fragmented landscapes. Annual Review of Entomology, 49, 405–430. Herrera, C.M. (1995) Plant–vertebrate seed dispersal systems in the Mediterranean -Ecological, evolutionary, and historical determinants. Annual Review of Ecology and Systematics, 26, 705–727. Promotion bei Junior-Prof. Dr. Nina Farwig, Fachgebiet Naturschutzökologie, an der Philipps-Universität Marburg Matuszkiewicz, W. (2001) Przewodnik Do Oznaczania Zbiorowisk Roolinnych Polski [Guide for Determination of Polish Plant Associations]. R Development Core Team. (2013) R: a language and environment for statistical computing. http://www.R- project.org/. Herrera, C.M. (2003) Seed dispersal by vertebrates. Plant–Animal Interactions: an Evolutionary Approach (eds C.M. Herrera + O. Pellmyr), pp. 185– 208. Blackwell, Oxford, UK. Dupont, Y.L., Padrón, B., Olesen, J.M. + Petanidou, T. (2009) Spatio-temporal variation in the structure of pollination networks. Oikos, 118, 1261–1269. Koh, L.P., Dunn, R.R., Sodhi, N.S., Colwell, R.K., Proctor, H.C. + Smith, V.S. (2004) Species coextinctions and the biodiversity crisis. Science, 305, 1632–1634. Dray, S. + Legendre, P. (2008) Testing the species traits– environment relationships: the fourth-corner problem revisited. Ecology, 89, 3400–3412. Thompson, J.N. (2009) The coevolving web of life. The American Naturalist, 173, 125–140. Janzen, D.H. (1974) The deflowering of Central America. Natural History, 83, 49–53. Morales, J.M. + Carlo, T.A. (2006) The effects of plant distribution and frugivore density on the scale and shape of dispersal kernels. Ecology, 87, 1489–1496. references Morales, J.M., García, D., Martínez, D., Rodriguez- Pérez, J. + Herrera, J.M. (2013) Frugivore behavioural details matter for seed dispersal: a multi- species model for Cantabrian thrushes and trees. Plos One, 8, e65216. Thompson, J.N. (2005) The Geographic Mosaic of Coevolution. University Chicago Press, Chicago. Vázquez, D.P., Blüthgen, N., Cagnolo, L. + Chacoff, N.P. (2009) Uniting pattern and process in plant– animal mutualistic networks: a review. Annals of Botany, 103, 1445–1457. Samojlik, T. + Jędrzejewska, B. (2004) Utilization of Białowieża Forest in the times of Jagiellonian dynasty and its traces in the contemporary forest environment. Sylwan, 11, 37–50. Thompson, J.N. (1988) Variation in interspecific interactions. Annual Review of Ecology and Systematics, 19, 65–87. Peres-Neto, P.R., Legendre, P., Dray, S. + Borcard, D. (2006) Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology, 87, 2614–2625. Falinski, J.B. (1986) Vegetation Dynamics in Temperate Lowland Primeval Forests: Ecological Studies in Białowieża Forest. Dr W. Junk/Kluwer Academic Publishers, Dordrecht. Ellenberg, H. (2011) Vegetation Mitteleuropas mit den Alpen: In Ökologischer, Dynamischer und Historischer Sicht. UTB, Stuttgart. González-Castro, A., Yang, S., Nogales, M. + Carlo, T.A. (2012) What determines the temporal changes of species degree and strength in an oceanic island plant–disperser network? Plos One, 7, e41385. in Białowieża. Wie wir zu zweit in so kurzer Zeit die unzähligen Insekten fangen, präparieren und bestimmen konnten, ist mir bis heute ein Rätsel. Der besagte Frühling in Białowieża war wirklich grandios! Vielen Dank für Deine Hilfe und die vielen gemeinsamen Filmabende. Pocock, M.J., Evans, D.M. + Memmott, J. (2012) The robustness and restoration of a network of ecological networks. Science, 335, 973–977. Kissling, W.D., Böhning-Gaese, K. + Jetz, W. (2009) The global distribution of frugivory in birds. Global Ecology and Biogeography, 18, 150–162. Naeem, S. (1998) Species redundancy and ecosystem reliability. Conservation Biology, 12, 39–45. Neuschulz, E.L., Botzat, A. + Farwig, N. (2011) Effects of forest modification on bird community composition and seed removal in a heterogeneous landscape in South Africa. Oikos, 120, 1371–1379. Sauve, A.M.C., Fontaine, C. + Thébault, E. (2013) Structure-stability relationships in networks combining mutualistic and antagonistic interactions. Oikos, 123, 378–384. Dodd, M.E., Silvertown, J. + Chase, M.W. (1999) Phylogenetic analysis of trait evolution and species diversity variation among angiosperm families. Evolution, 53, 732–744. O'Hara, R.B. + Kotze, D.J. (2010) Do not log-transform count data. Methods in Ecology and Evolution, 1, 118–122. Dormann, C.F., Fründ, J., Blüthgen, N. + Gruber, B. (2009) Indices, graphs and null models: analyzing bipartite ecological networks. The Open Ecology Journal, 2, 7–24. Newbold, T., Scharlemann, J.P.W., Butchart, S.H.M., Şekercioğlu, C.H., Alkemade, R., Booth, H. + Purves, D.W. (2013) Ecological traits affect the response of tropical forest bird species to land- use intensity. Proceedings of the Royal Society B: Biological Sciences, 280, 20122131. Litsios, G., Sims, C.A., Wüest, R.O., Pearman, P.B., Zimmermann, N.E. + Salamin, N. (2012) Mutualism with sea anemones triggered the adaptive radiation of clownfishes. BMC Evolutionary Biology, 12, 212– 226. Valdivia, C.E. + Niemeyer, H.M. (2007) Noncorrelated evolution between herbivore-and pollinator-linked features in Aristolochia chilensis (Aristolochiaceae). Biological Journal of the Linnean Society, 91, 239– 245. Hedges, L. V, Gurevitch, J. + Curtis, P.S. (1999) The meta-analysis of response ratios in experimental ecology. Ecology, 80, 1150–1156. Whitham, T.G., Young, W.P., Martinsen, G.D., Gehring, C.A., Schweitzer, J.A., Shuster, S.M., Wimp, G.M., Fischer, D.G., Bailey, J.K., Lindroth, R.L., Woolbright, S. + Kuske, C.R. (2003) Community and ecosystem genetics: a consequence of the extended phenotype. Ecology, 84, 559–573. Holland, J. + DeAngelis, D.L. (2010) A consumer- resource approach to the density-dependent population dynamics of mutualism. Ecology, 91, 1286–1295. Vázquez, D.P., Lomáscolo, S.B., Belen Maldonado, M., Chacoff, N.P., Dorado, J., Stevani, E.L. + Vitale, N.L. (2012) The strength of plant–pollinator interactions. Ecology, 93, 719–725. Hurlbert, S.H. (1978) The measurement of niche overlap and some relatives. Ecology, 59, 67–77. Howe, H.F. + Smallwood, J. (1982) Ecology of seed dispersal. Annual Review of Ecology and Systematics, 13, 201–228. Ollerton, J. (1996) Reconciling ecological processes with phylogenetic patterns: the apparent paradox of plant–pollinator systems. Journal of Ecology, 84, 767–769. MacArthur, R.H. + Levins, R. (1967) The limiting similarity, convergence, and divergence of coexisting species. The American Naturalist, 101, 377–385. Wheelwright, N.T. (1985) Competition for dispersers, and the timing of flowering and fruiting in a guild of tropical trees. Oikos, 44, 465–477. Jackson, D.A. (1995) PROTEST: a PROcrustean randomization TEST of community environment concordance. Ecoscience, 2, 297–303. Costanza, R., d'Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., O'Neill, R.V., Paruelo, J., Raskin, R.G., Sutton, P. + van den Belt, M. (1997) The value of the world's ecosystem services and natural capital. Nature, 387, 253–260. Chapin, F.S., Zavaleta, E.S., Eviner, V.T., Naylor, R.L., Vitousek, P.M., Reynolds, H.L., Hooper, D.U., Lavorel, S., Sala, O.E., Hobbie, S.E., Mack, M.C. + Díaz, S. (2000) Consequences of changing biodiversity. Nature, 405, 234–242. Wilf, P., Labandeira, C.C., Johnson, K.R. + Cúneo, N.R. (2005) Richness of plant–insect associations in Eocene Patagonia: a legacy for South American biodiversity. Proceedings of the National Academy of Sciences of the United States of America, 102, 8944–8948. Labandeira, C.C., Johnson, K.R. + Wilf, P. (2002) Impact of the terminal Cretaceous event on plant– insect associations. Proceedings of the National Academy of Sciences of the United States of America, 99, 2061–2066. Klein, A.-M., Vaissière, B.E., Cane, J.H., Steffan- Dewenter, I., Cunningham, S.A., Kremen, C. + Tscharntke, T. (2007) Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society B: Biological Sciences, 274, 303– 313. Jordano, P., Garcia, C., Godoy, J. + Garcia-Castaño, J. (2007) Differential contribution of frugivores to complex seed dispersal patterns. Proceedings of the National Academy of Sciences of the United States of America, 104, 3278–3282. Hu, S., Dilcher, D.L., Jarzen, D.M. + Winship Taylor, D. (2008) Early steps of angiosperm-pollinator coevolution. Proceedings of the National Academy of Sciences of the United States of America, 105, 240–245. McKenna, D.D., Sequeira, A.S., Marvaldi, A.E. + Farrell, B.D. (2009) Temporal lags and overlap in the diversification of weevils and flowering plants. Proceedings of the National Academy of Sciences of the United States of America, 106, 7083–7088. Dunne, J.A. + Williams, R.J. (2009) Cascading extinctions and community collapse in model food webs. Philosophical Transactions of the Royal Society B-Biological Sciences, 364, 1711–1723. Olff, H., Alonso, D., Berg, M.P., Eriksson, B.K., Loreau, M., Piersma, T. + Rooney, N. (2009) Parallel ecological networks in ecosystems. Philosophical Transactions of the Royal Society B: Biological Sciences, 364, 1755–1779. Olesen, J.M., Bascompte, J., Dupont, Y.L., Elberling, H., Rasmussen, C. + Jordano, P. (2011) Missing and forbidden links in mutualistic networks. Proceedings of the Royal Society B: Biological Sciences, 278, 725–732. Díaz, S., Purvis, A., Cornelissen, J.H.C., Mace, G.M., Donoghue, M.J., Ewers, R.M., Jordano, P. + Pearse, W.D. (2013) Functional traits, the phylogeny of function, and ecosystem service vulnerability. Ecology and Evolution, 3, 2958–75. Şekercioğlu, C.H., Daily, G.C. + Ehrlich, P.R. (2004) Ecosystem consequences of bird declines. Proceedings of the National Academy of Sciences of the United States of America, 101, 18042–18047. Rodriguez-Cabal, M.A., Barrios-Garcia, M.N., Amico, G.C., Aizen, M.A. + Sanders, N.J. (2013) Node-by- node disassembly of a mutualistic interaction web driven by species introductions. Proceedings of the National Academy of Sciences of the United States of America, 101, 16503–16507. Herrera, C.M., Medrano, M., Rey, P.J., Sanchez- Lafuente, A.M., Garcia, M.B., Guitian, J. + Manzaneda, A.J. (2002) Interaction of pollinators and herbivores on plant fitness suggests a pathway for correlated evolution of mutualism-and antagonism- related traits. Proceedings of the National Academy of Sciences of the United States of America, 99, 16823–16828. Farrell, B.D. (1998) " Inordinate fondness " explained: why are there so many beetles? Science, 281, 555– 559. Hooper, D.U., Chapin, F.S., Ewel, J.J., Hector, A., Inchausti, P., Lavorel, S., Lawton, J.H., Lodge, D.M., Loreau, M., Naeem, S., Schmid, B., Setälä, H., Symstad, A.J., Vandermeer, J. + Wardle, D.A. (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecological Monographs, 75, 3–35. Bolker, B.M., Brooks, M.E., Clark, C.J., Geange, S.W., Poulsen, J.R., Stevens, M.H.H. + White, J.S.S. (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends in Ecology + Evolution, 24, 127–135. Ramírez, S.R., Eltz, T., Fujiwara, M.K., Gerlach, G., Goldman-Huertas, B., Tsutsui, N.D. + Pierce, N.E. (2011) Asynchronous diversification in a specialized plant–pollinator mutualism. Science, 333, 1742– 1746. Dray, S. + Dufour, A. (2007) The ade4 package: implementing the duality diagram for ecologists. Journal of Statistical Software, 22, 1–20. Breitbach, N., Laube, I., Steffan-Dewenter, I. + Böhning-Gaese, K. (2010) Bird diversity and seed dispersal along a human land-use gradient: high seed removal in structurally simple farmland. Oecologia, 162, 965–976. Polen 2014 Landnutzung Bestäubung monograph Biologie