Turbulence Transition in Shear Flows and Dynamical Systems Theory

Turbulence is allegedly “the most important unsolved problem of classical physics” (attributed to Richard Feynman). While the equations of motion are known since almost 150 years and despite the work of many physicists, in particular the transition to turbulence in linearly stable shear flows eva...

Ausführliche Beschreibung

Gespeichert in:
1. Verfasser: Kreilos, Tobias
Beteiligte: Eckhardt, Bruno (Prof. Dr.) (BetreuerIn (Doktorarbeit))
Format: Dissertation
Sprache:Englisch
Veröffentlicht: Philipps-Universität Marburg 2014
Physik
Ausgabe:http://dx.doi.org/10.17192/z2014.0356
Schlagworte:
Online Zugang:PDF-Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
building Fachbereich Physik
author2 Eckhardt, Bruno (Prof. Dr.)
author2_role ths
publisher Philipps-Universität Marburg
topic Couette-Strömung
Dynamical Systems Theory
Strömungsmechanik
Shear Flows
Turbulence Transition
Subcritical Transition
Scherströmung
Viskose Strömung
Turbulente Strömung
Direct Numerical Simulations
Fluid
Physik
Turbulenz
Laminare Strö
Strömung
Physik
spellingShingle Couette-Strömung
Dynamical Systems Theory
Strömungsmechanik
Shear Flows
Turbulence Transition
Subcritical Transition
Scherströmung
Viskose Strömung
Turbulente Strömung
Direct Numerical Simulations
Fluid
Physik
Turbulenz
Laminare Strö
Strömung
Physik
Turbulenz gilt als „das wichtigste ungelöste Problem der klassischen Physik“ (Richard Feynman zugeschrieben). Obwohl die Bewegungsgleichung seit fast 150 Jahren bekannt sind und trotz der Arbeit zahlreicher Physiker ist insbesondere die Beschreibung des Turbulenzübergangs in linear stabilen Scherströmungen noch nicht zufriedenstellend möglich. In den letzten Jahrzehnten haben die Verfügbarkeit leistungsfähigerer Computer sowie Entwicklungen in der Chaosforschung die Grundlagen für erheblichen Fortschritt bei diesem Thema gelegt. Die erfolgreiche Arbeit zahlreicher Wissenschaftler hat gezeigt, dass die Theorie dynamischer Systeme ein hilfreiches und wichtiges Werkzeug in der Analyse transitionaler Turbulenz in der Fluidmechanik ist. Beobachtete Phänomene wie Transitionsschwellen und die Statistik transienter Lebenszeiten konnten durch Bifurkationsanalysen und die Identifizierung der zugrunde liegenden Phasenraumstrukturen erklärt werden. In dieser Dissertation setzen wir diesen Weg mittels numerischer Simulationen der ebenen Couette Strömung, der asymptotischen Abssauggrenzschicht sowie der Blasius Grenzschicht fort. Wir erforschen die Phasenraumstrukturen und Bifurkationen in der ebenen Couette Strömung, untersuchen die Dynamik in der laminar-turbulenten Grenze in der Abssauggrenzschicht und entwickeln ein Modell zur Beschreibung der raum-zeitlichen Dynamik in Grenzschichten. Die Ergebnisse zeigen wie die in parallelen, räumlich begrenzten Scherströmungen gewonnen Erkenntnisse auf räumlich entwickelnde Strömungen übertragen werden können.
Kreilos, Tobias
Turbulence Transition in Shear Flows and Dynamical Systems Theory
contents Turbulenz gilt als „das wichtigste ungelöste Problem der klassischen Physik“ (Richard Feynman zugeschrieben). Obwohl die Bewegungsgleichung seit fast 150 Jahren bekannt sind und trotz der Arbeit zahlreicher Physiker ist insbesondere die Beschreibung des Turbulenzübergangs in linear stabilen Scherströmungen noch nicht zufriedenstellend möglich. In den letzten Jahrzehnten haben die Verfügbarkeit leistungsfähigerer Computer sowie Entwicklungen in der Chaosforschung die Grundlagen für erheblichen Fortschritt bei diesem Thema gelegt. Die erfolgreiche Arbeit zahlreicher Wissenschaftler hat gezeigt, dass die Theorie dynamischer Systeme ein hilfreiches und wichtiges Werkzeug in der Analyse transitionaler Turbulenz in der Fluidmechanik ist. Beobachtete Phänomene wie Transitionsschwellen und die Statistik transienter Lebenszeiten konnten durch Bifurkationsanalysen und die Identifizierung der zugrunde liegenden Phasenraumstrukturen erklärt werden. In dieser Dissertation setzen wir diesen Weg mittels numerischer Simulationen der ebenen Couette Strömung, der asymptotischen Abssauggrenzschicht sowie der Blasius Grenzschicht fort. Wir erforschen die Phasenraumstrukturen und Bifurkationen in der ebenen Couette Strömung, untersuchen die Dynamik in der laminar-turbulenten Grenze in der Abssauggrenzschicht und entwickeln ein Modell zur Beschreibung der raum-zeitlichen Dynamik in Grenzschichten. Die Ergebnisse zeigen wie die in parallelen, räumlich begrenzten Scherströmungen gewonnen Erkenntnisse auf räumlich entwickelnde Strömungen übertragen werden können.
first_indexed 2014-07-02T00:00:00Z
format Dissertation
oai_set_str_mv doc-type:doctoralThesis
open_access
ddc:530
xMetaDissPlus
institution Physik
author Kreilos, Tobias
doi_str_mv http://dx.doi.org/10.17192/z2014.0356
edition http://dx.doi.org/10.17192/z2014.0356
ref_str_mv references
last_indexed 2014-07-02T23:59:59Z
title_alt Turbulenzübergang in Scherströmungen und Theorie dynamischer Systeme
description Turbulence is allegedly “the most important unsolved problem of classical physics” (attributed to Richard Feynman). While the equations of motion are known since almost 150 years and despite the work of many physicists, in particular the transition to turbulence in linearly stable shear flows evades a satisfying description. In recent decades, the availability of more powerful computers and developments in chaos theory have provided the basis for considerable progress in our understanding of this issue. The successful work of many scientists proved dynamical systems theory to be a useful and important tool to analyze transitional turbulence in fluid mechanics, allowing to explain observed phenomena such as transition thresholds and transient lifetimes through bifurcation analyses and the identification of underlying state space structures. In this thesis we continue on that path with direct numerical simulations in plane Couette flow, the asymptotic suction boundary layer and Blasius boundary layers. We explore the state space structures and bifurcations in plane Couette flow, study the threshold dynamics in the ASBL and develop a model for the spatio-temporal dynamics in the boundary layers. The results show how the insights obtained for parallel, bounded shear flows can be transferred to spatially developing external flows.
title Turbulence Transition in Shear Flows and Dynamical Systems Theory
title_short Turbulence Transition in Shear Flows and Dynamical Systems Theory
title_full Turbulence Transition in Shear Flows and Dynamical Systems Theory
title_fullStr Turbulence Transition in Shear Flows and Dynamical Systems Theory
title_full_unstemmed Turbulence Transition in Shear Flows and Dynamical Systems Theory
title_sort Turbulence Transition in Shear Flows and Dynamical Systems Theory
license_str http://archiv.ub.uni-marburg.de/adm/urhg.html
publishDate 2014
era_facet 2014
language English
url http://archiv.ub.uni-marburg.de/diss/z2014/0356/pdf/dtk.pdf
dewey-raw 530
dewey-search 530
genre Physics
genre_facet Physics
topic_facet Physik
thumbnail http://archiv.ub.uni-marburg.de/diss/z2014/0356/cover.png
spelling diss/z2014/0356 opus:5600 Turbulenz gilt als „das wichtigste ungelöste Problem der klassischen Physik“ (Richard Feynman zugeschrieben). Obwohl die Bewegungsgleichung seit fast 150 Jahren bekannt sind und trotz der Arbeit zahlreicher Physiker ist insbesondere die Beschreibung des Turbulenzübergangs in linear stabilen Scherströmungen noch nicht zufriedenstellend möglich. In den letzten Jahrzehnten haben die Verfügbarkeit leistungsfähigerer Computer sowie Entwicklungen in der Chaosforschung die Grundlagen für erheblichen Fortschritt bei diesem Thema gelegt. Die erfolgreiche Arbeit zahlreicher Wissenschaftler hat gezeigt, dass die Theorie dynamischer Systeme ein hilfreiches und wichtiges Werkzeug in der Analyse transitionaler Turbulenz in der Fluidmechanik ist. Beobachtete Phänomene wie Transitionsschwellen und die Statistik transienter Lebenszeiten konnten durch Bifurkationsanalysen und die Identifizierung der zugrunde liegenden Phasenraumstrukturen erklärt werden. In dieser Dissertation setzen wir diesen Weg mittels numerischer Simulationen der ebenen Couette Strömung, der asymptotischen Abssauggrenzschicht sowie der Blasius Grenzschicht fort. Wir erforschen die Phasenraumstrukturen und Bifurkationen in der ebenen Couette Strömung, untersuchen die Dynamik in der laminar-turbulenten Grenze in der Abssauggrenzschicht und entwickeln ein Modell zur Beschreibung der raum-zeitlichen Dynamik in Grenzschichten. Die Ergebnisse zeigen wie die in parallelen, räumlich begrenzten Scherströmungen gewonnen Erkenntnisse auf räumlich entwickelnde Strömungen übertragen werden können. 2014-07-02 http://dx.doi.org/10.17192/z2014.0356 van Veen, L., Kida, S., and Kawahara, G. Periodic motion representing isotropic turbulence. Fluid Dynamics Research, 38(1):19–46, 2006. 2006 Periodic motion representing isotropic turbulence Gibson, J. F., Halcrow, J., and Cvitanović, P. Visualizing the geometry of state space in plane Couette flow. Journal of Fluid Mechanics, 611:107–130, 2008. 2008 Visualizing the geometry of state space in plane Couette flow Duguet, Y., Willis, A. P., and Kerswell, R. R. Transition in pipe flow: the saddle structure on the boundary of turbulence. Journal of Fluid Mechanics, 613:255–274, 2008. 2008 Transition in pipe flow: the saddle structure on the boundary of turbulence Lan, Y. and Cvitanović, P. Unstable recurrent patterns in Kuramoto-Sivashinsky dynamics. Physical Review E, 78(2):026208, 2008. 2008 Unstable recurrent patterns in Kuramoto-Sivashinsky dynamics Pringle, C. C. T., Duguet, Y., and Kerswell, R. R. Highly symmetric travelling waves in pipe flow. Philosophical transactions. Series A, Mathematical, physical, and engineering sciences, 367(1888):457–472, 2009. 1888 Highly symmetric travelling waves in pipe flow Schneider, T. M. and Eckhardt, B. Lifetime statistics in transitional pipe flow. Phys- ical Review E, 78:46310, 2008. 2008 Lifetime statistics in transitional pipe flow Halcrow, J., Gibson, J. F., Cvitanović, P., and Viswanath, D. Heteroclinic connections in plane Couette flow. Journal of Fluid Mechanics, 621:365–376, 2009. 2009 Heteroclinic connections in plane Couette flow Gibson, J. F., Halcrow, J., and Cvitanović, P. Equilibrium and traveling-wave solu- tions of plane Couette flow. Journal of Fluid Mechanics, 638:243–266, 2009. 2009 Equilibrium and traveling-wave solutions of plane Couette flow Lagha, M. and Manneville, P. Modeling transitional plane Couette flow. The Euro- pean Physical Journal B, 58:433–447, 2007. 2007 Modeling transitional plane Couette flow Lebovitz, N. R. Shear-flow transition: the basin boundary. Nonlinearity, 22:2645, 2009. 2009 Shear-flow transition: the basin boundary Avila, M., Willis, A. P., and Hof, B. On the transient nature of localized pipe flow turbulence. Journal of Fluid Mechanics, 646:127–136, 2010. 2010 On the transient nature of localized pipe flow turbulence Schneider, T. M., Gibson, J. F., and Burke, J. Snakes and Ladders: Localized Solutions of Plane Couette Flow. Physical Review Letters, 104(10):104501, 2010b. 2010b Snakes and Ladders: Localized Solutions of Plane Couette Flow Mellibovsky, F. and Eckhardt, B. Takens-Bogdanov bifurcation of travelling-wave solutions in pipe flow. Journal of Fluid Mechanics, 670:96–129, 2011. 2011 Takens-Bogdanov bifurcation of travelling-wave solutions in pipe flow Froehlich, S. and Cvitanović, P. Reduction of continuous symmetries of chaotic flows by the method of slices. Communications in Nonlinear Science and Numerical Simulation, 17(5):2074–2084, 2012. 2012 Reduction of continuous symmetries of chaotic flows by the method of slices Barkley, D. Simplifying the complexity of pipe flow. Physical Review E, 84(1):016309, 2011a. 2011a Simplifying the complexity of pipe flow Sipos, M. and Goldenfeld, N. Directed percolation describes lifetime and growth of turbulent puffs and slugs. Physical Review E, 84(3):035304, 2011. 2011 Directed percolation describes lifetime and growth of turbulent puffs and slugs Manneville, P. Spatiotemporal perspective on the decay of turbulence in wall-bounded flows. Physical Review E, 79(2):025301, 2009. 2009 Spatiotemporal perspective on the decay of turbulence in wall-bounded flows van Veen, L. and Kawahara, G. Homoclinic tangle on the edge of shear turbulence. Physical Review Letters, 107:114501, 2011. 2011 Homoclinic tangle on the edge of shear turbulence Barkley, D. Modeling the transition to turbulence in shear flows. Journal of Physics: Conference Series, 318:032001, 2011b. 2011b Modeling the transition to turbulence in shear flows Mellibovsky, F. and Eckhardt, B. From travelling waves to mild chaos: a supercritical bifurcation cascade in pipe flow. Journal of Fluid Mechanics, 709:149–190, 2012. 2012 From travelling waves to mild chaos: a supercritical bifurcation cascade in pipe flow Willis, A. P., Cvitanović, P., and Avila, M. Revealing the state space of turbulent pipe flow by symmetry reduction. Journal of Fluid Mechanics, 721:514–540, 2013. 2013 Revealing the state space of turbulent pipe flow by symmetry reduction Kreilos, T. and Eckhardt, B. Periodic orbits near onset of chaos in plane Couette flow. Chaos: An Interdisciplinary Journal of Nonlinear Science, 22(4):047505, 2012. 2012 Periodic orbits near onset of chaos in plane Couette flow Kreilos, T., Veble, G., Schneider, T. M., and Eckhardt, B. Edge states for the turbulence transition in the asymptotic suction boundary layer. Journal of Fluid Mechanics, 726:100–122, 2013. 2013 Edge states for the turbulence transition in the asymptotic suction boundary layer Cvitanović, P., Borrero-Echeverry, D., Carroll, K. M., Robbins, B., and Siminos, E. Cartography of high-dimensional flows: a visual guide to sections and slices. Chaos, 22:047506, 2012b. 2012b Cartography of high-dimensional flows: a visual guide to sections and slices Avila, M., Mellibovsky, F., Roland, N., and Hof, B. Streamwise-Localized Solutions at the Onset of Turbulence in Pipe Flow. Physical Review Letters, 110(22):224502, 2013. 2013 Streamwise-Localized Solutions at the Onset of Turbulence in Pipe Flow Biau, D. Laminar-turbulent separatrix in a boundary layer flow. Physics of Fluids, 24:034107, 2012. 2012 Laminar-turbulent separatrix in a boundary layer flow Gibson, J. F. and Brand, E. Spatially localized solutions of shear flows. 2013. 2013 Spatially localized solutions of shear flows Itano, T., Akinaga, T., Generalis, S. C., and Sugihara-Seki, M. Transition of Planar Couette Flow at infinite Reynolds numbers. arXiv:1306.2702, 2014. 2014 Transition of Planar Couette Flow at infinite Reynolds numbers Riols, A., Rincon, F., Cossu, C., Lesur, G., Longaretti, P.-Y., Ogilvie, G. I., and Herault, J. Global bifurcations to subcritical magnetorotational dynamo action in Keplerian shear flow. Journal of Fluid Mechanics, 731:1–45, 2013. 2013 Global bifurcations to subcritical magnetorotational dynamo action in Keplerian shear flow Khapko, T., Duguet, Y., Kreilos, T., Schlatter, P., Eckhardt, B., and Henningson, D. S. Complexity of localised coherent structures in a boundary-layer flow. The European Physical Journal E, 37(4):32, 2014. 2014 Complexity of localised coherent structures in a boundary-layer flow Chantry, M., Willis, A. P., and Kerswell, R. R. The genesis of streamwise-localized solutions from globally periodic travelling waves in pipe flow. 2013. 2013 The genesis of streamwise-localized solutions from globally periodic travelling waves in pipe flow Kreilos, T., Khapko, T., Schlatter, P., Duguet, Y., Henningson, D. S., and Eckhardt, B. Bypass transition in boundary layers as an activated process. Manuscript in preparation, 2014b. Bibliography Kreilos, T., Zammert, S., and Eckhardt, B. Comoving frames and symmetry-related dynamics in parallel shear flows. arXiv:1309.4590, 2014c. 2014b Bypass transition in boundary layers as an activated process Comoving frames and symmetry-related dynamics in parallel shear flows Melnikov, K., Kreilos, T., and Eckhardt, B. Long-wavelength instability of coherent structures in plane Couette flow. Physical Review E, 89(4):043008, 2014. 2014 Long-wavelength instability of coherent structures in plane Couette flow Dauchot, O. and Bertin, E. The glass transition in a nutshell: a source of inspiration to describe the subcritical transition to turbulence. arXiv:1310.6967, 2014. 2014 The glass transition in a nutshell: a source of inspiration to describe the subcritical transition to turbulence Kreilos, T., Eckhardt, B., and Schneider, T. M. Increasing Lifetimes and the Growing Saddles of Shear Flow Turbulence. Physical Review Letters, 112(4):044503, 2014a. 2014a Increasing Lifetimes and the Growing Saddles of Shear Flow Turbulence Zammert, S. and Eckhardt, B. Periodically bursting edge states in plane Poiseuille flow. arXiv:1312.6783, 2013. 2013 Periodically bursting edge states in plane Poiseuille flow Tuckerman, L. S., Kreilos, T., Schrobsdorff, H., Schneider, T. M., and Gibson, J. F. Turbulent-laminar patterns in plane Poiseuille flow. arXiv:1404.1502, 2014. 2014 Turbulent-laminar patterns in plane Poiseuille flow Zammert, S. and Eckhardt, B. A Fully Localised Periodic Orbit In Plane Poiseuille Flow. arXiv:1404.2582, 2014. 2014 A Fully Localised Periodic Orbit In Plane Poiseuille Flow Brand, E. and Gibson, J. F. A doubly-localized equilibrium solution of plane Couette flow. arXiv:1404.2887, 2014. 2014 A doubly-localized equilibrium solution of plane Couette flow Madré, T. Turbulence Transition in the Asymptotic Suction Boundary Layer, Diplo- marbeit, Philipps Universität Marburg, 2011, Philipps Universität Marburg. 2011 Turbulence Transition in the Asymptotic Suction Boundary Layer Schmiegel, A. and Eckhardt, B. Fractal stability border in plane Couette Flow. Physical Review Letters, 79:5250–5253, 1997. 1997 Fractal stability border in plane Couette Flow Eckhardt, B. Periodic Orbit Theory. arXiv:chao-dyn/9303015, 1991. 1991 Periodic Orbit Theory. arXiv:chao-dyn/9303015 Hof, B., Juel, A., and Mullin, T. Scaling of the Turbulence Transition Threshold in a Pipe. Physical Review Letters, 91(24):244502, 2003. 2003 Scaling of the Turbulence Transition Threshold in a Pipe Schneider, T. M., Eckhardt, B., and Yorke, J. A. Turbulence transition and the edge of chaos in pipe flow. Physical Review Letters, 99:34502, 2007b. 2007b Turbulence transition and the edge of chaos in pipe flow Faisst, H. and Eckhardt, B. Transition from the Couette-Taylor system to the plane Couette system. Physical Review E, 61:7227–7230, 2000. Bibliography Faisst, H. and Eckhardt, B. Traveling waves in pipe flow. Physical Review Letters, 91:224502, 2003. 2000 Transition from the Couette-Taylor system to the plane Couette system Faisst, H. and Eckhardt, B. Sensitive dependence on initial conditions in transition to turbulence in pipe flow. Journal of Fluid Mechanics, 504:343–352, 2004. 2004 Sensitive dependence on initial conditions in transition to turbulence in pipe flow Barkley, D. and Tuckerman, L. S. Computational Study of Turbulent Laminar Pat- terns in Couette Flow. Physical Review Letters, 94(1):014502, 2005. 2005 Computational Study of Turbulent Laminar Patterns in Couette Flow Vinod, N. and Govindarajan, R. The signature of laminar instabilities in the zone of transition to turbulence. Journal of Turbulence, 8:N2, 2007. 2007 The signature of laminar instabilities in the zone of transition to turbulence Viswanath, D. Recurrent motions within plane Couette turbulence. Journal of Fluid Mechanics, 580:339–358, 2007. 2007 Recurrent motions within plane Couette turbulence Kerswell, R. R. and Tutty, O. R. Recurrence of travelling waves in transitional pipe flow. Journal of Fluid Mechanics, 584:69–102, 2007. 2007 Recurrence of travelling waves in transitional pipe flow Schneider, T. M., Eckhardt, B., and Vollmer, J. Statistical analysis of coherent structures in transitional pipe flow. Physical Review E, 75:66313, 2007a. 2007a Statistical analysis of coherent structures in transitional pipe flow Wang, J., Gibson, J. F., and Waleffe, F. Lower Branch Coherent States in Shear Flows: Transition and Control. Physical Review Letters, 98(20):204501, 2007. 2007 Lower Branch Coherent States in Shear Flows: Transition and Control Cross, M. C. and Hohenberg, P. C. Pattern formation outside of equilibrium. Reviews of Modern Physics, 65:851–1112, 1993. 1993 Pattern formation outside of equilibrium Rowley, C. W., Kevrekidis, I. G., Marsden, J. E., and Lust, K. Reduction and recon- struction for self-similar dynamical systems. Nonlinearity, 16:1257–1275, 2003. 2003 Reduction and reconstruction for self-similar dynamical systems Waleffe, F. Hydrodynamic stability and turbulence: beyond transients to a self- sustaining process. Studies in applied mathematics, 95(3):319–343, 1995. 1995 Hydrodynamic stability and turbulence: beyond transients to a selfsustaining process Navier, C. L. M. H. Mémoire sur les lois du mouvement des fluides. Mémoires de l'Académie Royale des Sciences de l'Institut de France, 6:389–440, 1823. 1823 Mémoire sur les lois du mouvement des fluides Frigo, M. and Johnson, S. The Design and Implementation of FFTW3. Proceedings of the IEEE, 93(2):216–231, 2005. 2005 The Design and Implementation of FFTW3 Wedin, H. and Kerswell, R. R. Exact coherent structures in pipe flow: travelling wave solutions. Journal of Fluid Mechanics, 508:333–371, 2004. 2004 Exact coherent structures in pipe flow: travelling wave solutions Meseguer, A. and Trefethen, L. N. Linearized pipe flow to Reynolds number 10 7 . Journal of Computational Physics, 186(1):178–197, 2003. 2003 Linearized pipe flow to Reynolds number 10 7 Taylor, G. I. The Spectrum of Turbulence. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 164(919):476–490, 1938. 1938 The Spectrum of Turbulence Rowley, C. W. and Marsden, J. E. Reconstruction equations and the Karhunen–Loève expansion for systems with symmetry. Physica D: Nonlinear Phenomena, 142(1-2): 1–19, 2000. 2000 Reconstruction equations and the Karhunen–Loève expansion for systems with symmetry Li, Y.-T. and Yorke, J. A. Period Three Implies Chaos. The American Mathematical Monthly1 , 82(10):985–992, 1975. 1975 Period Three Implies Chaos Christiansen, F., Cvitanović, P., and Putkaradze, V. Spatiotemporal chaos in terms of unstable recurrent patterns. Nonlinearity, 10:55, 1997. 1997 Spatiotemporal chaos in terms of unstable recurrent patterns Jiménez, J., Kawahara, G., Simens, M. P., Nagata, M., and Shiba, M. Character- ization of near-wall turbulence in terms of equilibrium and " bursting " solutions. Physics of Fluids, 17:15105, 2005. 2005 Characterization of near-wall turbulence in terms of equilibrium and " bursting " solutions Cvitanović, P. Invariant measurement of strange sets in terms of cycles. Physical Review Letters, 61:2729–2732, 1988. 1988 Invariant measurement of strange sets in terms of cycles Viswanath, P. R. Aircraft viscous drag reduction using riblets. Progress in Aerospace Sciences, 38(6-7):571–600, 2002. Bibliography Vollmer, J., Schneider, T. M., and Eckhardt, B. Basin boundary, edge of chaos and edge state in a two-dimensional model. New Journal of Physics, 11:013040, 2009. 2002 Aircraft viscous drag reduction using riblets Schoppa, W. and Hussain, F. Coherent structure generation in near-wall turbulence. Journal of Fluid Mechanics, 453:57–108, 2002. 2002 Coherent structure generation in near-wall turbulence Waleffe, F. Homotopy of exact coherent structures in plane shear flows. Physics of Fluids, 15:1517–1534, 2003. 2003 Homotopy of exact coherent structures in plane shear flows Lorenz, E. N. Deterministic Nonperiodic Flow. Journal of the Atmospheric Sciences, 20:130–141, 1963. 1963 Deterministic Nonperiodic Flow Gutzwiller, M. C. Chaos in classical and quantum mechanics. Journal of Physics A: Mathematical and Theoretical, 43:285302, 1990. 1990 Chaos in classical and quantum mechanics Guckenheimer, J. and Holmes, P. Nonlinear oscillations, dynamical systems and bifurcations of vector fields, volume 42 of Applied Mathematical Sciences. Springer- Verlag, 1983. 1983 Nonlinear oscillations, dynamical systems and bifurcations of vector fields Brosa, U. Turbulence without Strange Attractor. Journal of Statistical Physics, 55 Turbulence without Strange Attractor Eckhardt, B. and Ott, G. Periodic orbit analysis of the Lorenz attractor. Zeitschrift für Physik B, 93:259–266, 1994. 1994 Periodic orbit analysis of the Lorenz attractor Sivashinsky, G. I. Nonlinear analysis of hydrodynamic instability in laminar flames—I. Derivation of basic equations. Acta Astronautica, 4(11-12):1177–1206, 1977. 1977 Nonlinear analysis of hydrodynamic instability in laminar flames—I. Derivation of basic equations Metropolis, N., Stein, M. L., and Stein, P. R. On finite limit sets for transformations on the unit interval. Journal of Combinatorial Theory, Series A, 44:25–44, 1973. 1973 On finite limit sets for transformations on the unit interval Chaté, H. and Manneville, P. Spatio-temporal intermittency in coupled map lattices. Physica D: Nonlinear Phenomena, 32(3):409–422, 1988b. 1988b Spatio-temporal intermittency in coupled map lattices Feigenbaum, M. J. The onset spectrum of turbulence. Physics Letters A, 74(6): 375–378, 1979. 1979 The onset spectrum of turbulence Lebovitz, N. R. Boundary collapse in models of shear-flow transition. Communica- tions in Nonlinear Science and Numerical Simulation, 17:2095–2100, 2012. 2012 Boundary collapse in models of shear-flow transition Schlatter, P., Stolz, S., and Kleiser, L. LES of transitional flows using the approximate deconvolution model. International Journal of Heat and Fluid Flow, 25(3):549–558, 2004. 2004 LES of transitional flows using the approximate deconvolution model Cvitanović, P. Recurrent flows : the clockwork behind turbulence. Journal of Fluid Mechanics, 726:1–4, 2013. 2013 Recurrent flows : the clockwork behind turbulence Toh, S. and Itano, T. A periodic-like solution in channel flow. Journal of Fluid Mechanics, 481:67–76, 2003. 2003 A periodic-like solution in channel flow Fransson, J. H. M. and Alfredsson, P. H. On the disturbance growth in an asymptotic suction boundary layer. Journal of Fluid Mechanics, 482:51–90, 2003. 2003 On the disturbance growth in an asymptotic suction boundary layer Brandt, L., Schlatter, P., and Henningson, D. S. Transition in boundary layers subject to free-stream turbulence. Journal of Fluid Mechanics, 517:167–198, 2004. 2004 Transition in boundary layers subject to free-stream turbulence Peixinho, J. and Mullin, T. Finite-amplitude thresholds for transition in pipe flow. Journal of Fluid Mechanics, 582:169–178, 2007. 2007 Finite-amplitude thresholds for transition in pipe flow Salwen, H., Cotton, F. W., and Grosch, C. E. Linear stability of Poiseuille flow in a circular pipe. Journal of Fluid Mechanics, 98(2):273–284, 1980. Bibliography Saric, W. S., Reed, H. L., and Kerschen, E. J. Boundary-Layer Receptivity to Freestream Disturbances. Annual Review of Fluid Mechanics, 34:291–319, 2002. 1980 Linear stability of Poiseuille flow in a circular pipe Orszag, S. A. and Kells, L. C. Transition to turbulence in plane Poiseuille and plane Couette flow. Journal of Fluid Mechanics, 96(01):159–205, 1980. 1980 Transition to turbulence in plane Poiseuille and plane Couette flow Zaman, K. B. M. Q. and Hussain, A. K. M. F. Taylor hypothesis and large-scale coherent structures. Journal of Fluid Mechanics, 112:379–396, 1981. 1981 Taylor hypothesis and large-scale coherent structures Spalart, P. R. and Yang, K.-S. Numerical study of ribbon-induced transition in Blasius flow. Journal of Fluid Mechanics, 178:345–365, 1987. 1987 Numerical study of ribbon-induced transition in Blasius flow Antonia, R. A., Fulachier, L., Krishnamoorthy, L. V., Benabid, T., and Anselmet, F. Influence of wall suction on the organized motion in a turbulent boundary layer. Journal of Fluid Mechanics, 190:217–240, 1988. 1988 Influence of wall suction on the organized motion in a turbulent boundary layer Jiménez, J. and Moin, P. The minimal flow unit in near-wall turbulence. Journal of Fluid Mechanics, 225:213–240, 1991. 1991 The minimal flow unit in near-wall turbulence Lundbladh, A. and Johansson, A. V. Direct simulation of turbulent spots in plane Couette flow. Journal of Fluid Mechanics, 229:499–516, 1991. 1991 Direct simulation of turbulent spots in plane Couette flow Darbyshire, A. G. and Mullin, T. Transition to turbulence in constant-mass-flux pipe flow. Journal of Fluid Mechanics, 289:83–114, 1995. 1995 Transition to turbulence in constant-mass-flux pipe flow Gutzwiller, M. C. Periodic orbits and classical quantization conditions. Journal of Mathematical Physics, 12(3):343, 1971. 1971 Periodic orbits and classical quantization conditions Moehlis, J., Eckhardt, B., and Faisst, H. Fractal lifetimes in the transition to turbu- lence. Chaos: An Interdisciplinary Journal of Nonlinear Science, 14:S11, 2004a. 2004a Fractal lifetimes in the transition to turbulence Adrian, R. J. Hairpin vortex organization in wall turbulence. Physics of Fluids, 19 (4):041301, 2007. 2007 Hairpin vortex organization in wall turbulence Henningson, D. S., Spalart, P., and Kim, J. Numerical simulations of turbulent spots in plane Poiseuille and boundary-layer flow. Physics of Fluids, 30(10):2914, 1987. 1987 Numerical simulations of turbulent spots in plane Poiseuille and boundary-layer flow Waleffe, F. On a self-sustaining process in shear flows. Physics of Fluids, 9:883–900, 1997. 1997 On a self-sustaining process in shear flows Cvitanović, P. and Gibson, J. F. Geometry of the turbulence in wall-bounded shear flows: periodic orbits. Physica Scripta, T142:014007, 2010. 2010 Geometry of the turbulence in wall-bounded shear flows: periodic orbits Busse, F. H. Non-linear properties of thermal convection. Reports on Progress in Physics, 41(12):1929, 1978. 1929 Non-linear properties of thermal convection Allhoff, K. T. and Eckhardt, B. Directed percolation model for turbulence transition in shear flows. Fluid Dynamics Research, 44(3):031201, 2012. 2012 Directed percolation model for turbulence transition in shear flows Kerswell, R. R. Recent progress in understanding the transition to turbulence in a pipe. Nonlinearity, 18(6):R17–R44, 2005. 2005 Recent progress in understanding the transition to turbulence in a pipe Eckhardt, B. Turbulence transition in pipe flow: some open questions. Nonlinearity, 21:T1, 2008. 2008 Turbulence transition in pipe flow: some open questions Mellibovsky, F. and Meseguer, A. Critical threshold in pipe flow transition. Philo- sophical transactions. Series A, Mathematical, physical, and engineering sciences, 367(1888):545–560, 2009. 1888 Critical threshold in pipe flow transition Gebhardt, T. and Grossmann, S. Chaos transition despite linear stability. Physical Review E, 50(5):3705–3711, 1994. 1994 Chaos transition despite linear stability Willis, A. P. and Kerswell, R. R. Coherent Structures in Localized and Global Pipe Turbulence. Physical Review Letters, 100(12):124501, 2008. 2008 Coherent Structures in Localized and Global Pipe Turbulence Stavans, J., Heslot, F., and Libchaber, A. Fixed Winding Number and the Quasiperi- odic Route to Chaos in a Convective Fluid. Physical Review Letters, 55(11):1239, 1985. 1985 Fixed Winding Number and the Quasiperiodic Route to Chaos in a Convective Fluid Chaté, H. and Manneville, P. Transition to turbulence via spatio-temporal intermit- tency. Physical Review Letters, 58(2):112–115, 1987. 1987 Transition to turbulence via spatio-temporal intermittency Crutchfield, J. P. and Kaneko, K. Are Attractors Relevant to Turbulence? Physical Review Letters, 60(26):2715–2719, 1988. 1988 Are Attractors Relevant to Turbulence? Tuckerman, L. S. and Barkley, D. Global Bifurcations to Traveling Waves in Axisym- metric Convection. Physical Review Letters, 61(4):408–411, 1988. 1988 Global Bifurcations to Traveling Waves in Axisymmetric Convection Prigent, A., Grégoire, G., Chaté, H., Dauchot, O., and van Saarloos, W. Large-Scale Finite-Wavelength Modulation within Turbulent Shear Flows. Physical Review Letters, 89(1):014501, 2002. 2002 Large-Scale Finite-Wavelength Modulation within Turbulent Shear Flows Skufca, J. D., Yorke, J. A., and Eckhardt, B. Edge of chaos in a parallel shear flow. Physical Review Letters, 96:174101, 2006. 2006 Edge of chaos in a parallel shear flow Willis, A. P. and Kerswell, R. R. Critical Behavior in the Relaminarization of Local- ized Turbulence in Pipe Flow. Physical Review Letters, 98:014501, 2007. 2007 Critical Behavior in the Relaminarization of Localized Turbulence in Pipe Flow Pringle, C. C. T. and Kerswell, R. R. Asymmetric, Helical, and Mirror-Symmetric Traveling Waves in Pipe Flow. Physical Review Letters, 99(7):074502, 2007. 2007 Asymmetric, Helical, and Mirror-Symmetric Traveling Waves in Pipe Flow Grossmann, S. The onset of shear flow turbulence. Reviews of Modern Physics, 72: 603–618, 2000. 2000 The onset of shear flow turbulence Newhouse, S., Ruelle, D., and Takens, F. Occurrence of strange Axiom A attractors near quasi periodic flows on T m , m ≥ 3. Communications in Mathematical Physics, 64:35–40, 1978. 1978 Occurrence of strange Axiom A attractors near quasi periodic flows on T m , m ≥ 3 Itano, T. and Toh, S. The dynamics of bursting process in wall turbulence. Journal of the Physics Society of Japan, 8502(3):703–716, 2001. 2001 The dynamics of bursting process in wall turbulence Bottin, S., Daviaud, F., Manneville, P., and Dauchot, O. Discontinuous transition to spatiotemporal intermittency in plane Couette flow. Europhysics Letters, 43(2): 171–176, 1998. 1998 Discontinuous transition to spatiotemporal intermittency in plane Couette flow Alfredsson, P. and Matsubara, M. Free-stream turbulence, streaky structures and transition in boundary layer flows. In Fluids 2000 Conference and Exhibit, Reston, Virigina, 2000. American Institute of Aeronautics and Astronautics. 2000 Free-stream turbulence, streaky structures and transition in boundary layer flows Kline, S. J., Reynolds, W. C., Schraub, F. A., and Runstadler, P. W. The structure of turbulent boundary layers. Journal of Fluid Mechanics, 30(04):741–773, 1967. 1967 The structure of turbulent boundary layers Dhawan, S. and Narasimha, R. Some properties of boundary layer flow during the transition from laminar to turbulent motion. Journal of Fluid Mechanics, 3(04): 418–436, 1957. 1957 Some properties of boundary layer flow during the transition from laminar to turbulent motion Hamilton, J. M., Kim, J., and Waleffe, F. Regeneration mechanisms of near-wall turbulence structures. Journal of Fluid Mechanics, 287:317–348, 1995. 1995 Regeneration mechanisms of near-wall turbulence structures Townsend, A. A. The structure of turbulent shear flow. Cambridge University Press, 1980. ISBN 9780521298193. 1980 The structure of turbulent shear flow Maurer, J. and Libchaber, A. Rayleigh-Bénard experiment in liquid helium ; fre- quency locking and the onset of turbulence. Journal de Physique Lettres, 40(16): 419–423, 1979. 1979 Rayleigh-Bénard experiment in liquid helium ; frequency locking and the onset of turbulence Ott, E. Chaos in Dynamical Systems. Cambridge University Press, 1993. ISBN 9780521010849. 1993 Chaos in Dynamical Systems Cherubini, S., De Palma, P., Robinet, J.-C., and Bottaro, A. Edge states in a bound- ary layer. Physics of Fluids, 23:051705, 2011. 2011 Edge states in a boundary layer Halcrow, J. Charting the state space of plane Couette flow: Equilibria, relative equi- libria, and heteroclinic connections. PhD thesis, Georgia Institute of Technology, 2008. 2008 Charting the state space of plane Couette flow: Equilibria, relative equilibria , and heteroclinic connections Blasius, H. Grenzschichten in Flüssigkeiten mit kleiner Reibung. PhD thesis, Göttin- gen, 1907. 1907 Grenzschichten in Flüssigkeiten mit kleiner Reibung Canuto, C., Hussaini, M. Y., Quarteroni, A., and Zang, T. A. Spectral Methods in Fluid Dynamics. Springer Berlin Heidelberg, Berlin, Heidelberg, 1988. ISBN 978-3-540-52205-8. 1988 Spectral Methods in Fluid Dynamics Joslin, R. D. Aircraft laminar flow control. Annual Review of Fluid Mechanics, 30: 1–29, 1998. 1998 Aircraft laminar flow control Schlichting, H. Boundary-layer theory. Springer, 2004. ISBN 9783540662709. 2004 Boundary-layer theory Lai, Y.-C. and Tél, T. Transient Chaos: Complex Dynamics on Finite Time Scales. Springer, 2011. ISBN 9781441969873. 2011 Transient Chaos: Complex Dynamics on Finite Time Scales de Lozar, A., Mellibovsky, F., Avila, M., and Hof, B. Edge State in Pipe Flow Experiments. Physical Review Letters, 108(21):214502, 2012. 2012 Edge State in Pipe Flow Experiments Kawahara, G. Laminarization of minimal plane Couette flow: Going beyond the basin of attraction of turbulence. Physics of Fluids, 17(4):041702, 2005. 2005 Laminarization of minimal plane Couette flow: Going beyond the basin of attraction of turbulence Eckhardt, B., Faisst, H., Schmiegel, A., and Schneider, T. M. Dynamical systems and the transition to turbulence in linearly stable shear flows. Philosophical transac- tions. Series A, Mathematical, physical, and engineering sciences, 366:1297–1315, 2008. 2008 Dynamical systems and the transition to turbulence in linearly stable shear flows Mellibovsky, F., Meseguer, A., Schneider, T. M., and Eckhardt, B. Transition in Localized Pipe Flow Turbulence. Physical Review Letters, 103(5):054502, 2009. 2009 Transition in Localized Pipe Flow Turbulence Khapko, T., Kreilos, T., Schlatter, P., Duguet, Y., Eckhardt, B., and Henningson, D. S. Localized edge states in the asymptotic suction boundary layer. Journal of Fluid Mechanics, 717:R6, 2013. 2013 Localized edge states in the asymptotic suction boundary layer Schneider, T. M. and Eckhardt, B. Edge states intermediate between laminar and tur- bulent dynamics in pipe flow. Philosophical transactions. Series A, Mathematical, physical, and engineering sciences, 367(1888):577–587, 2009. 1888 Edge states intermediate between laminar and turbulent dynamics in pipe flow Chaté, H. and Manneville, P. Continuous and Discontinuous Transition to Spatio- Temporal Intermittency in Two-Dimensional Coupled Map Lattices. Europhysics Letters (EPL), 6(7):591–595, 1988a. 1988a Continuous and Discontinuous Transition to Spatio- Temporal Intermittency in Two-Dimensional Coupled Map Lattices Moehlis, J., Faisst, H., and Eckhardt, B. A low-dimensional model for turbulent shear flows. New Journal of Physics, 6:56, 2004b. 2004b A low-dimensional model for turbulent shear flows Schlatter, P. and Örlü, R. Turbulent asymptotic suction boundary layers studied by simulation. Journal of Physics: Conference Series, 318(2):022020, 2011. 2011 Turbulent asymptotic suction boundary layers studied by simulation Lai, Y.-C. and Grebogi, C. Converting transient chaos into sustained chaos by feed- back control. Physical Review E, 49(2):1094–1098, 1994. 1994 Converting transient chaos into sustained chaos by feedback control Nagata, M. Three-dimensional traveling-wave solutions in plane Couette flow. Phys- ical Review E, 55:2023–2025, 1997. 1997 Three-dimensional traveling-wave solutions in plane Couette flow Duriez, T., Aider, J.-L., and Wesfreid, J. Self-Sustaining Process through Streak Generation in a Flat-Plate Boundary Layer. Physical Review Letters, 103(14): 144502, 2009. 2009 Self-Sustaining Process through Streak Generation in a Flat-Plate Boundary Layer Waleffe, F. Three-dimensional coherent states in plane shear flows. Physical Review Letters, 81:4140–4143, 1998. 1998 Three-dimensional coherent states in plane shear flows Abshagen, J., Lopez, J., Marques, F., and Pfister, G. Symmetry Breaking Via Global Bifurcations of Modulated Rotating Waves in Hydrodynamics. Physical Review Letters, 94(7):074501, 2005. 2005 Symmetry Breaking Via Global Bifurcations of Modulated Rotating Waves in Hydrodynamics Eckmann, J. Roads to turbulence in dissipative dynamical systems. Reviews of Modern Physics, 53:643–654, 1981. 1981 Roads to turbulence in dissipative dynamical systems Adrian, R. J., Meinhart, C. D., and Tomkins, C. D. Vortex organization in the outer region of the turbulent boundary layer. Journal of Fluid Mechanics, 422:1–54, 2000. 2000 Vortex organization in the outer region of the turbulent boundary layer Waleffe, F. Exact coherent structures in channel flow. Journal of Fluid Mechanics, 435:93–102, 2001. 2001 Exact coherent structures in channel flow Kawahara, G. and Kida, S. Periodic motion embedded in plane Couette turbulence: regeneration cycle and burst. Journal of Fluid Mechanics, 449:291–300, 2001. Bibliography Kawahara, G., Uhlmann, M., and van Veen, L. The significance of simple invariant solutions in turbulent flows. Annual Review of Fluid Mechanics, 44(1):203–225, 2012. 2001 Periodic motion embedded in plane Couette turbulence: regeneration cycle and burst The significance of simple invariant solutions in turbulent flows Hoepffner, J., Brandt, L., and Henningson, D. S. Transient growth on boundary layer streaks. Journal of Fluid Mechanics, 537:91–100, 2005. 2005 Transient growth on boundary layer streaks Levin, O. and Henningson, D. S. Turbulent spots in the asymptotic suction boundary layer. Journal of Fluid Mechanics, 584:397–413, 2007. 2007 Turbulent spots in the asymptotic suction boundary layer Del Álamo, J. C. and Jiménez, J. Estimation of turbulent convection velocities and corrections to Taylor's approximation. Journal of Fluid Mechanics, 640:5–26, 2009. 2009 Estimation of turbulent convection velocities and corrections to Taylor's approximation Klebanoff, P. S., Tidstrom, K. D., and Sargent, L. M. The three-dimensional nature of boundary-layer instability. Journal of Fluid Mechanics, 12(01):1–34, 1962. 1962 The three-dimensional nature of boundary-layer instability Orszag, S. A. Accurate solution of the Orr–Sommerfeld stability equation. Journal of Fluid Mechanics, 50(04):689–703, 1971. 1971 Accurate solution of the Orr–Sommerfeld stability equation Wygnanski, I. J. and Champagne, F. H. On transition in a pipe. Part 1. The origin of puffs and slugs and the flow in a turbulent slug. Journal of Fluid Mechanics, 59 (2):281–335, 1973. 1973 On transition in a pipe. Part 1. The origin of puffs and slugs and the flow in a turbulent slug Blackwelder, R. F. and Eckelmann, H. Streamwise vortices associated with the burst- ing phenomenon. Journal of Fluid Mechanics, 94(03):577–594, 1979. 1979 Streamwise vortices associated with the bursting phenomenon Nagata, M. Three-dimensional finite-amplitude solutions in plane Couette flow: bi- furcation from infinity. Journal of Fluid Mechanics, 217:519–527, 1990. 1990 Three-dimensional finite-amplitude solutions in plane Couette flow: bifurcation from infinity Jeong, J., Hussain, F., Schoppa, W., and Kim, J. Coherent structures near the wall in a turbulent channel flow. Journal of Fluid Mechanics, 332:185–214, 1997. 1997 Coherent structures near the wall in a turbulent channel flow Schlatter, P., Brandt, L., de Lange, H. C., and Henningson, D. S. On streak break- down in bypass transition. Physics of Fluids, 20:101505, 2008. 2008 On streak breakdown in bypass transition Hanson, J. D., Cary, J. R., and Meiss, J. D. Algebraic decay in self-similar Markov chains. Journal of Statistical Physics, 39(3-4):327–345, 1985. 1985 Algebraic decay in self-similar Markov chains Bottin, S. and Chaté, H. Statistical analysis of the transition to turbulence in plane Couette flow. The European Physical Journal B -Condensed Matter and Complex Systems, 6(1):143–155, 1998. 1998 Statistical analysis of the transition to turbulence in plane Couette flow Ott, E. Strange attractors and chaotic motions of dynamical systems. Reviews of Modern Physics, 53:655–671, 1981. 1981 Strange attractors and chaotic motions of dynamical systems Reynolds, O. An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinous and the law of resistance in parallel channels. Philosophical Transactions of the Royal Society, 174:935–982, 1883. 1883 An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinous and the law of resistance in parallel channels Chevalier, M., Schlatter, P., Lundbladh, A., and Henningson, D. S. A pseudo-spectral solver for incompressible boundary layer flows. Technical report, KTH Mechanics, Stockholm, Sweden, 2007. 2007 A pseudo-spectral solver for incompressible boundary layer flows Koschmieder, E. L. Bénard Cells and Taylor vortices. Cambridge Monographs on Mechanics and Applied Mathematics. Cambridge University Press, 1993. ISBN 9780521402040. 1993 Bénard Cells and Taylor vortices Reshotko, E. Boundary-Layer Stability and Transition. Annual Review of Fluid Mechanics, 8:311–349, 1976. 1976 Boundary-Layer Stability and Transition Gibson, J. F. Channelflow: A spectral Navier-Stokes simulator in C++. Technical report, U. New Hampshire, 2012. URL Channelflow.org. Channelflow: A spectral Navier-Stokes simulator in C++ Cvitanović, P., Artuso, R., Mainieri, G., Tanner, G., and Vattay, G. Chaos: Classical and quantum. ChaosBook.org Niels Bohr Institute Copenhagen, 14 edition, 2012a. 2012a Chaos: Classical and quantum Danforth, C. M. "Chaos in an Atmosphere Hanging on a Wall", 2013. URL http: //mpe2013.org/2013/03/17/chaos-in-an-atmosphere-hanging-on-a-wall/, Accessed 04.04.2014. 2013 Chaos in an Atmosphere Hanging on a Wallchaos-in-an-atmosphere-hanging-on-a-wall Robinson, S. K. Coherent motions in the turbulent boundary layer. Annual Review of Fluid Mechanics, 23(1):601–639, 1991. 1991 Coherent motions in the turbulent boundary layer Mariani, P., Spalart, P., and Kollmann, W. Direct simulation of a turbulent boundary layer with suction. Near-wall turbulent flows, pages 347–356, 1993. 1993 Direct simulation of a turbulent boundary layer with suction. Near-wall turbulent flows Tsukahara, T., Seki, Y., Kawamura, H., and Tochio, D. DNS of Turbulent Channel Flow with Very Low Reynolds Numbers. In Proceedings of the 4th International Symposium on Turbulence and Shear Flow Phenomena, pages 935–940, 2005. 2005 DNS of Turbulent Channel Flow with Very Low Reynolds Numbers Moffatt, H. K. Fixed points of turbulent dynamical systems and suppression of nonlinearity. Whither Turbulence? Turbulence at the Crossroads, 357:250–257, 1990. 1990 Fixed points of turbulent dynamical systems and suppression of nonlinearity. Whither Turbulence? Turbulence at the Crossroads Andereck, C. D., Liu, S. S., and Swinney, H. L. Flow regimes in a circular Couette system with independently rotating cylinders. Journal of Fluid Mechanics, 164: 155–183, 1986. 1986 Flow regimes in a circular Couette system with independently rotating cylinders Bayly, B. J., Orszag, S. A., and Herbert, T. Instability mechanisms in shear-flow transition. Annual Review of Fluid Mechanics, 20:359–391, 1988. 1988 Instability mechanisms in shear-flow transition Fransson, J. H. M. Investigations of the asymptotic suction boundary layer. PhD thesis, KTH, Stockholm, 2001. 2001 Investigations of the asymptotic suction boundary layer Schneider, T. M., Gibson, J. F., Lagha, M., De Lillo, F., and Eckhardt, B. Laminar- turbulent boundary in plane Couette flow. Physical Review E, 78:37301, 2008. Bibliography Schneider, T. M., De Lillo, F., Buehrle, J., Eckhardt, B., Dörnemann, T., Dörnemann, K., and Freisleben, B. Transient turbulence in plane Couette flow. Physical Review E, 81:015301(R), 2010a. 2008 Laminarturbulent boundary in plane Couette flow Transient turbulence in plane Couette flow Poincaré, H. Les méthodes nouvelles de la mécanique céleste, volume 10. Gauthier- Villars, Paris, 1892. Bibliography Pomeau, Y. and Manneville, P. Intermittent Transition to Turbulence in Dissipative Dynamical Systems. Communications in Mathematical Physics, 74:189–197, 1980. 1980 Les méthodes nouvelles de la mécanique céleste Gauthier- Villars, Paris, 1892. Bibliography Pomeau, Y. and Manneville, P. Intermittent Transition to Turbulence in Dissipative Dynamical Systems Marinc, D. Localised edge-states in plane Couette flow, Diplomarbeit, Philipps Uni- versität Marburg, 2008, Philipps Universität Marburg. Bibliography Matsubara, M. and Alfredsson, P. H. Disturbance growth in boundary layers sub- jected to free-stream turbulence. Journal of Fluid Mechanics, 430:149–168, 2001. 2001 Localised edge-states in plane Couette flow Disturbance growth in boundary layers subjected to free-stream turbulence Duguet, Y., Schlatter, P., and Henningson, D. S. Localized edge states in plane Couette flow. Physics of Fluids, 21:111701, 2009. Bibliography Duguet, Y., Schlatter, P., and Henningson, D. S. Formation of turbulent patterns near the onset of transition in plane Couette flow. Journal of Fluid Mechanics, 650:119–129, 2010a. 2009 Localized edge states in plane Couette flow Formation of turbulent patterns near the onset of transition in plane Couette flow Theodorsen, T. Mechanism of turbulence. In Proceedings of the Second Midwestern Conference on Fluid Mechanics, pages 1–18. Ohio State University, 1952. 1952 Mechanism of turbulence Head, M. R. and Bandyopadhyay, P. New aspects of turbulent boundary-layer struc- ture. Journal of Fluid Mechanics, 107:297–338, 1981. 1981 New aspects of turbulent boundary-layer structure Strogatz, S. H. Nonlinear dynamics and chaos: With applications to physics, biology, chemistry, and engineering. 1994. ISBN 9780738204536. Bibliography Tasaka, Y., Schneider, T. M., and Mullin, T. Folded Edge of Turbulence in a Pipe. Physical Review Letters, 105(17):174502, 2010. 2010 Nonlinear dynamics and chaos: With applications to physics, biology, chemistry, and engineering. 1994. ISBN 9780738204536 Hocking, L. M. Non-linear instability of the asymptotic suction velocity profile. Quarterly Journal of Mechanics and Applied Mathematics, 28(3):341, 1975. 1975 Non-linear instability of the asymptotic suction velocity profile Wygnanski, I. J., Sokolov, M., and Friedman, D. On a turbulent 'spot' in a laminar boundary layer. Journal of Fluid Mechanics, 78(04):785–819, 1976. 1976 On a turbulent 'spot' in a laminar boundary layer Thibert, J. J., Reneaux, J., and Schmitt, V. ONERA activities on drag reduction. In 17th ICAS Congress, Stockolm (Sweden), September 9-14, 1990. 1990 ONERA activities on drag reduction Narasimha, R. On the distribution of intermittency in the transition region of a boundary layer. Journal of the Aeronautical Sciences, 24(9):711–712, 1957. 1957 On the distribution of intermittency in the transition region of a boundary layer Jeong, J. and Hussain, F. On the identification of a vortex. Journal of Fluid Me- chanics, 285:69–94, 1995. 1995 On the identification of a vortex Morkovin, M. V. On the many faces of transition. In Wells, C., editor, Viscous drag reduction, pages 1–31. Springer US, 1969. ISBN 978-1-4899-5581-4. Bibliography Moxey, D. and Barkley, D. Distinct large-scale turbulent-laminar states in transitional pipe flow. Proceedings of the National Academy of Sciences of the United States of America, 107(18):8091–8096, 2010. 1969 On the many faces of transition Viscous drag reduction ISBN 978-1-4899-5581-4. Bibliography Moxey, D. and Barkley, D. Distinct large-scale turbulent-laminar states in transitional pipe flow Stokes, G. G. On the theories of the internal friction of fluids in motion, and of the equilibrium and motion of elastic solids. Transactions of the Cambridge Philosoph- ical Society, 8:287–305, 1845. 1845 On the theories of the internal friction of fluids in motion, and of the equilibrium and motion of elastic solids. Transactions of the Cambridge Philosophical Society Cvitanović, P. and Eckhardt, B. Periodic-orbit quantization of chaotic systems. Phys- ical Review Letters, 63(8):823–826, 1989. Bibliography Cvitanović, P. and Eckhardt, B. Periodic orbit expansions for classical smooth flows. Journal of Physics A: Mathematical and General, 24(5):L237–L241, 1991. 1989 Periodic-orbit quantization of chaotic systems Bibliography Cvitanović, P. and Eckhardt, B. Periodic orbit expansions for classical smooth flows Schmid, P. J. and Henningson, D. S. Stability and Transition in Shear Flows. Number Bd. 142 in Applied mathematical sciences. Springer, 2001. ISBN 9780387989853. 2001 Stability and Transition in Shear Flows. Number Bd. 142 in Applied mathematical sciences Romanov, V. A. Stability of plane-parallel Couette flow. Functional Analysis and Its Applications, 7(2):137–146, 1973. 1973 Stability of plane-parallel Couette flow. Functional Analysis and Its Applications Clever, R. M. and Busse, F. H. Tertiary and quaternary solutions for plane Couette flow. Journal of Fluid Mechanics, 344:137–153, 1997. 1997 Tertiary and quaternary solutions for plane Couette flow Aubry, N., Holmes, P., Lumley, J. L., and Stone, E. The dynamics of coherent struc- tures in the wall region of a turbulent boundary layer. Journal of Fluid Mechanics, 192:115–173, 1988. Bibliography Avila, K., Moxey, D., de Lozar, A., Avila, M., Barkley, D., and Hof, B. The onset of turbulence in pipe flow. Science, 333(6039):192–196, 2011. 1988 The dynamics of coherent structures in the wall region of a turbulent boundary layer The onset of turbulence in pipe flow Emmons, H. W. The Laminar-Turbulent Transition in a Boundary Layer-Part I. Journal of the Aeronautical Sciences, 18(7):490–498, 1951. 1951 The Laminar-Turbulent Transition in a Boundary Layer-Part I Smale, S. Topology and mechanics. I. Inventiones Mathematicae, 10(4):305–331, 1970. 1970 Topology and mechanics Fransson, J. H. M., Matsubara, M., and Alfredsson, P. H. Transition induced by free-stream turbulence. Journal of Fluid Mechanics, 527:1–25, 2005. 2005 Transition induced by free-stream turbulence Andersson, P., Brandt, L., Bottaro, A., and Henningson, D. S. On the breakdown of boundary layer streaks. Journal of Fluid Mechanics, 428:29–60, 2001. 2001 On the breakdown of boundary layer streaks Ruelle, D. and Takens, F. On the Nature of Turbulence. Communications in Mathe- matical Physics, 20(3):167–192, 1971. 1971 On the Nature of Turbulence Schneider, T. M., Marinc, D., and Eckhardt, B. Localized edge states nucleate tur- bulence in extended plane Couette cells. Journal of Fluid Mechanics, 646:441–451, 2010c. 2010c Localized edge states nucleate turbulence in extended plane Couette cells Levin, O., Davidsson, E. N., and Henningson, D. S. Transition thresholds in the asymptotic suction boundary layer. Physics of Fluids, 17:114104, 2005. 2005 Transition thresholds in the asymptotic suction boundary layer Narasimha, R. The laminar-turbulent transition zone in the boundary layer. Progress in Aerospace Sciences, 22(1):29–80, 1985. 1985 The laminar-turbulent transition zone in the boundary layer Vinod, N. and Govindarajan, R. Pattern of Breakdown of Laminar Flow into Turbu- lent Spots. Physical Review Letters, 93(11):114501, 2004. 2004 Pattern of Breakdown of Laminar Flow into Turbulent Spots Hof, B., de Lozar, A., Kuik, D. J., and Westerweel, J. Repeller or Attractor? Selecting the Dynamical Model for the Onset of Turbulence in Pipe Flow. Physical Review Letters, 101:214501, 2008. 2008 Repeller or Attractor? Selecting the Dynamical Model for the Onset of Turbulence in Pipe Flow Duguet, Y., Schlatter, P., Henningson, D. S., and Eckhardt, B. Self-sustained lo- calized structures in a boundary-layer flow. Physical Review Letters, 108:044501, 2012. 2012 Self-sustained localized structures in a boundary-layer flow Jiménez, J. and Moser, R. D. What are we learning from simulating wall turbulence? Philosophical transactions. Series A, Mathematical, physical, and engineering sci- ences, 365:715–732, 2007. 2007 What are we learning from simulating wall turbulence? Philosophical transactions Gollub, J. P. and Swinney, H. L. Onset of Turbulence in a Rotating Fluid. Physical Review Letters, 35(14):927–930, 1975. 1975 Onset of Turbulence in a Rotating Fluid Andersson, P., Berggren, M., and Henningson, D. S. Optimal disturbances and bypass transition in boundary layers. Physics of Fluids, 11:134–150, 1999. 1999 Optimal disturbances and bypass transition in boundary layers Duguet, Y., Monokrousos, A., Brandt, L., and Henningson, D. S. Minimal transition thresholds in plane Couette flow. Physics of Fluids, 25(8):084103, 2013. 2013 Minimal transition thresholds in plane Couette flow Hopf, E. A mathematical example displaying features of turbulence. Communications on Pure and Applied Mathematics, 1(4):303–322, 1948. 1948 A mathematical example displaying features of turbulence Khapko, T. Transition to turbulence in the asymptotic suction boundary layer. Tech- nical report, Royal Institute of Technology, Department of Mechanics, Stockholm, Sweden, 2014. 2014 Transition to turbulence in the asymptotic suction boundary layer Mullin, T. Experimental studies of transition to turbulence in a pipe. Annual Review of Fluid Mechanics, 43(1):1–24, 2011. 2011 Experimental studies of transition to turbulence in a pipe Peixinho, J. and Mullin, T. Decay of Turbulence in Pipe Flow. Physical Review Letters, 96:094501, 2006. 2006 Decay of Turbulence in Pipe Flow Moin, P. and Kim, J. Tackling Turbulence with Supercomputers. Scientific American, 276:62–68, 1997. 1997 Tackling Turbulence with Supercomputers Kadanoff, L. P. and Tang, C. Escape from strange repellers. Proceedings of the National Academy of Sciences of the United States of America, 81(4):1276–1279, 1984. 1984 Escape from strange repellers Grebogi, C., Ott, E., and Yorke, J. A. Crises, sudden changes in chaotic attractors, and transient chaos. Physica D: Nonlinear Phenomena, 7(1-3):181–200, 1983. Bibliography Grebogi, C., Ott, E., and Yorke, J. A. Critical exponent of chaotic transients in nonlinear dynamical systems. Physical Review Letters, 57:1284–1287, 1986. 1983 Crises, sudden changes in chaotic attractors, and transient chaos Critical exponent of chaotic transients in nonlinear dynamical systems Armbruster, D., Guckenheimer, J., and Holmes, P. Heteroclinic cycles and modulated travelling waves in systems with O(2) symmetry. Physica D, 29(3):257–282, 1988. 1988 Heteroclinic cycles and modulated travelling waves in systems with O(2) symmetry Smith, T. R., Moehlis, J., and Holmes, P. Heteroclinic cycles and periodic orbits for the O(2)-equivariant 0:1:2 mode interaction. Physica D, 211(3-4):347–376, 2005. 2005 Heteroclinic cycles and periodic orbits for the O(2)-equivariant 0:1:2 mode interaction Hof, B., van Doorne, C. W. H., Westerweel, J., Nieuwstadt, F. T. M., Faisst, H., Eckhardt, B., Wedin, H., Kerswell, R. R., and Waleffe, F. Experimental observation of nonlinear traveling waves in turbulent pipe flow. Science, 305:1594–1598, 2004. Bibliography Hof, B., Westerweel, J., Schneider, T. M., and Eckhardt, B. Finite lifetime of turbu- lence in shear flows. Nature, 443:59–62, 2006. 2004 Experimental observation of nonlinear traveling waves in turbulent pipe flow Finite lifetime of turbulence in shear flows Duguet, Y., Willis, A. P., and Kerswell, R. R. Slug genesis in cylindrical pipe flow. Journal of Fluid Mechanics, 663:180–208, 2010b. 2010b Slug genesis in cylindrical pipe flow 2014-07-02 urn:nbn:de:hebis:04-z2014-03563 Turbulenzübergang in Scherströmungen und Theorie dynamischer Systeme Turbulence is allegedly “the most important unsolved problem of classical physics” (attributed to Richard Feynman). While the equations of motion are known since almost 150 years and despite the work of many physicists, in particular the transition to turbulence in linearly stable shear flows evades a satisfying description. In recent decades, the availability of more powerful computers and developments in chaos theory have provided the basis for considerable progress in our understanding of this issue. The successful work of many scientists proved dynamical systems theory to be a useful and important tool to analyze transitional turbulence in fluid mechanics, allowing to explain observed phenomena such as transition thresholds and transient lifetimes through bifurcation analyses and the identification of underlying state space structures. In this thesis we continue on that path with direct numerical simulations in plane Couette flow, the asymptotic suction boundary layer and Blasius boundary layers. We explore the state space structures and bifurcations in plane Couette flow, study the threshold dynamics in the ASBL and develop a model for the spatio-temporal dynamics in the boundary layers. The results show how the insights obtained for parallel, bounded shear flows can be transferred to spatially developing external flows. Turbulence Transition in Shear Flows and Dynamical Systems Theory 2014-06-13 2014 ths Prof. Dr. Eckhardt Bruno Eckhardt, Bruno (Prof. Dr.) Philipps-Universität Marburg Kreilos, Tobias Kreilos Tobias
recordtype opus
id urn:nbn:de:hebis:04-z2014-0356
urn_str urn:nbn:de:hebis:04-z2014-03563
collection Monograph
uri_str http://archiv.ub.uni-marburg.de/diss/z2014/0356
callnumber-raw diss/z2014/0356
callnumber-search diss/z2014/0356
callnumber-sort diss/z2014/0356
callnumber-label diss z2014 0356
callnumber-first diss
callnumber-subject diss z2014
_version_ 1563293954543190016
score 9,617626