Einfluss der immunsuppressiven Therapie auf Reifungsstadien und TCR-Vβ-Gebrauch bei der autoimmunen Frühmyasthenie

Ziel der vorliegenden Arbeit ist die Untersuchung von TCR-Vβ-Gebrauch und Thymozyten-Reifungsstadien bei Patienten mit autoimmuner Frühmyasthenie. Auf diese Weise soll nach Hinweisen dafür gesucht werden, ob bei der autoimmunen Frühmyasthenie Mechanismen der zentralen oder der peripheren Toleranz ge...

Full description

Saved in:
Bibliographic Details
Main Author: Eienbröker, Christian
Contributors: Tackenberg, Björn (PD Dr.) (Thesis advisor)
Format: Dissertation
Published: Philipps-Universität Marburg 2014
Online Access:PDF Full Text
Tags: Add Tag
No Tags, Be the first to tag this record!

1. Serafini B, Cavalcante P, Bernasconi P, Aloisi F, Mantegazza R. Epstein-Barr virus in myasthenia gravis thymus: a matter of debate. Ann Neurol. 2011; 70: 519.

2. Steinmann GG. Changes in the human thymus during aging. Curr Top Pathol. 1986; 75: 43-88.

3. CXCL12 recruits B cells and antigen-presenting cells to the thymus of autoimmune myasthenia gravis patients. Immunobiology. 2013; 218: 373-381.

4. Takamori M. Autoantibodies against TRPC3 and ryanodine receptor in myasthenia gravis. J Neuroimmunol. 2008; 200: 142-144.

5. Tackenberg B, Schlegel K, Happel M, Eienbröker C, Gellert K, Oertel WH, Meager A, Willcox N, Sommer N. Expanded TCR Vbeta subsets of CD8(+) T-cells in late-onset myasthenia gravis: novel parallels with thymoma patients. J Neuroimmunol. 2009; 216: 85-91.

6. Wills MR, Carmichael AJ, Weekes MP, Mynard K, Okecha G, Hicks R, Sissons JG. Human virus-specific CD8+ CTL clones revert from CD45ROhigh to CD45RAhigh in vivo: CD45RAhighCD8+ T cells comprise both naive and memory cells. J Immunol. 1999; 162: 7080-7087.

7. Scarpino S, Di Napoli A, Stoppacciaro A, Antonelli M, Pilozzi E, Chiarle R, Palestro G, Marino M, Facciolo F, Rendina EA, Webster KE, Kinkel SA, Scott HS, Ruco L. Expression of autoimmune regulator gene (AIRE) and T regulatory cells in human thymomas. Clin Exp Immunol. 2007; 149: 504-512.

8. Wang XB, Pirskanen R, Giscombe R, Lefvert AK. Two SNPs in the promoter region of the CTLA-4 gene affect binding of transcription factors and are associated with human myasthenia gravis. J Intern Med. 2008; 263: 61-69.

9. Silk JD, Salio M, Brown J, Jones EY, Cerundolo V. Structural and functional aspects of lipid binding by CD1 molecules. Annu Rev Cell Dev Biol. 2008; 24: 369-395.

10. Guidelines for treatment of autoimmune neuromuscular transmission disorders. Eur J Neurol. 2010; 17: 893-902.

11. Sommer N, Tackenberg B, Hohlfeld R. The immunopathogenesis of myasthenia gravis. Handb Clin Neurol. 2008; 91: 169-212.

12. Wang YZ, Yan M, Tian FF, Zhang JM, Liu Q, Yang H, Zhou WB, Li J. Possible involvement of toll-like receptors in the pathogenesis of myasthenia gravis. Inflammation. 2013; 36: 121-130.

13. Shiow LR, Rosen DB, Brdicková N, Xu Y, An J, Lanier LL, Cyster JG, Matloubian M. CD69 acts downstream of interferon-alpha/beta to inhibit S1P1 and lymphocyte egress from lymphoid organs. Nature. 2006; 440: 540-544.

14. Wiendl H, Fuhr P, Gold R, Hohlfeld R, Melms A, Tackenberg B, Schneider-Gold C, Zimprich F. Diagnostik und Therapie der Myasthenia gravis und des Lambert-Eaton- Syndroms. In: Diener HC, Weimar C (Hrsg.): Leitlinien für Diagnostik und Therapie in der Neurologie. Thieme Verlag, Stuttgart, 2012.

15. Sandborn WJ, Ghosh S, Panes J, Vranic I, Su C, Rousell S, Niezychowski W; Study A3921063 Investigators. Tofacitinib, an oral Janus kinase inhibitor, in active ulcerative colitis. N Engl J Med. 2012; 367: 616-624.

16. Testi R, D'Ambrosio D, De Maria R, Santoni A. The CD69 receptor: a multipurpose cell-surface trigger for hematopoietic cells. Immunol Today. 1994; 15: 479-483.

17. Takahashi H, Amagai M, Tanikawa A, Suzuki S, Ikeda Y, Nishikawa T, Kawakami Y, Kuwana M. T helper type 2-biased natural killer cell phenotype in patients with pemphigus vulgaris. J Invest Dermatol. 2007; 127: 324-330.

18. Thangarajh M, Masterman T, Helgeland L, Rot U, Jonsson MV, Eide GE, Pirskanen R, Hillert J, Jonsson R. The thymus is a source of B-cell-survival factors-APRIL and BAFF-in myasthenia gravis. J Neuroimmunol. 2006; 178: 161-166.

19. Schumm F, Wiethölter H, Fateh-Moghadam A, Dichgans J. Thymectomy in myasthenia with pure ocular symptoms. J Neurol Neurosurg Psychiatry. 1985; 48: 332-337.

20. Tackenberg B, Kruth J, Bartholomaeus JE, Schlegel K, Oertel WH, Willcox N, Hemmer B, Sommer N. Clonal expansions of CD4+ B helper T cells in autoimmune myasthenia gravis. Eur J Immunol. 2007; 37: 849-863.

21. Wekerle TH, Paterson B, Ketelsen U, Feldman M. Striated muscle fibres differentiate in monolayer cultures of adult thymus reticulum. Nature. 1975; 256: 493-494.

22. Schluep M, Willcox N, Vincent A, Dhoot GK, Newsom-Davis J. Acetylcholine receptors in human thymic myoid cells in situ: an immunohistological study. Ann Neurol. 1987; 22: 212-222.

23. Schumm F, Stohr M. Accessory nerve stimulation in the assessment of myasthenia gravis. Muscle Nerve 1984; 7: 147–151.

24. Testi R, Phillips JH, Lanier LL. Leu 23 induction as an early marker of functional CD3/T cell antigen receptor triggering. Requirement for receptor cross-linking, prolonged elevation of intracellular [Ca++] and stimulation of protein kinase C. J Immunol. 1989; 142: 1854-1860.

25. Wang HB, Shi FD, Li H, Chambers BJ, Link H, Ljunggren HG. Anti-CTLA-4 antibody treatment triggers determinant spreading and enhances murine myasthenia gravis. J Immunol. 2001; 166: 6430-6436.

26. Shi FD, Wang HB, Li H, Hong S, Taniguchi M, Link H, Van Kaer L, Ljunggren HG. Natural killer cells determine the outcome of B cell-mediated autoimmunity. Nat Immunol. 2000; 1: 245-251.

27. Willcox HN, Newsom-Davis J, Calder LR. Cell types required for anti-acetylcholine receptor antibody synthesis by cultured thymocytes and blood lymphocytes in myasthenia gravis. Clin Exp Immunol. 1984; 58: 97-106.

28. Sheng JR, Muthusamy T, Prabhakar BS, Meriggioli MN. GM-CSF-induced regulatory T cells selectively inhibit anti-acetylcholine receptor-specific immune responses in experimental myasthenia gravis. J Neuroimmunol. 2011; 240-241: 65-73.

29. Sathaliyawala T, Kubota M, Yudanin N, Turner D, Camp P, Thome JJ, Bickham KL, Lerner H, Goldstein M, Sykes M, Kato T, Farber DL. Distribution and compartmentalization of human circulating and tissue-resident memory T cell subsets. Immunity. 2013; 38: 187-197.

30. Weinberg CB, Hall ZW. Antibodies from patients with myasthenia gravis recognize determinants unique to extrajunctional acetylcholine receptors. Proc Natl Acad Sci USA. 1979; 76: 504-508.

31. Schönbeck S, Padberg F, Hohlfeld R, Wekerle H. Transplantation of thymic autoimmune microenvironment to severe combined immunodeficiency mice. A new model of myasthenia gravis. J Clin Invest. 1992; 90: 245-250.

32. Sghirlanzoni A, Peluchetti D, Mantegazza R, Fiacchino F, Cornelio F. Myasthenia gravis: prolonged treatment with steroids. Neurology. 1984; 34: 170-174.

33. Sommer N, Harcourt GC, Willcox N, Beeson D, Newsom-Davis J. Acetylcholine receptor-reactive T lymphocytes from healthy subjects and myasthenia gravis patients. Neurology. 1991; 41: 1270-1276.

34. Wang ZY, Karachunski PI, Howard JF Jr, Conti-Fine BM. Myasthenia in SCID mice grafted with myasthenic patient lymphocytes: role of CD4+ and CD8+ cells. Neurology. 1999; 52: 484-497.

35. Vincent A, Scadding GK, Thomas HC, Newsom-Davis J. In-vitro synthesis of anti- acetylcholine-receptor antibody by thymic lymphocytes in myasthenia gravis. Lancet. 1978; 1: 305-307.

36. Suzuki Y, Onodera H, Tago H, Saito R, Ohuchi M, Shimizu M, Itoyama Y. Altered populations of natural killer cell and natural killer T cell subclasses in myasthenia gravis. J Neuroimmunol. 2005; 167: 186-189.

37. Ströbel P, Chuang WY, Chuvpilo S, Zettl A, Katzenberger T, Kalbacher H, Rieckmann P, Nix W, Schalke B, Gold R, Müller-Hermelink HK, Peterson P, Marx A. Common cellular and diverse genetic basis of thymoma-associated myasthenia gravis: role of MHC class II and AIRE genes and genetic polymorphisms. Ann N Y Acad Sci. 2008; 1132: 143-156.

38. Shotorbani SS, Su ZL, Xu HX. Toll-like receptors are potential therapeutic targets in rheumatoid arthritis. World J Biol Chem. 2011; 2: 167-172.