application/pdf https://archiv.ub.uni-marburg.de/diss/z2014/0249/cover.png Philipps-Universität Marburg Publikationsserver der Universitätsbibliothek Marburg Universitätsbibliothek Marburg https://doi.org/10.17192/z2014.0249 2013-12-18 monograph Development of new selective inverse agonists for PPARβ/δ opus:5563 Natural sciences + mathematics Naturwissenschaften doctoralThesis 2014-05-28 39 Markt, P. et al. Discovery of Novel PPAR Ligands by a Virtual Screening Approach Based on Pharmacophore Modeling, 3D Shape, and Electrostatic Similarity Screening. J Med Chem 51, 6303–6317 (2008). 37 Hack, K. et al. Skin-Targeted Inhibition of PPAR β/δ by Selective Antagonists to Treat PPAR β/δ – Mediated Psoriasis-Like Skin Disease In Vivo. PLoS ONE 7, e37097 (2012). 60 Toth, P. M. et al. Development of Improved PPARβ/δ Inhibitors. ChemMedChem 7, 159–170 (2012). 10 Shirinsky, I., Polovnikova, O., Kalinovskaya, N. + Shirinsky, V. The effects of fenofibrate on inflammation and cardiovascular markers in patients with active rheumatoid arthritis: a pilot study. Rheumatol Int (2012). 17 Peters, J. M., Foreman, J. E. + Gonzalez, F. J. Dissecting the role of peroxisome proliferator- activated receptor-β/δ (PPARβ/δ) in colon, breast, and lung carcinogenesis. Cancer Metast Rev 30, 619–640 (2011). 61 Ponec, R. + Řeřicha, R. Theoretical study of the catalytic activity of platinum(II) and palladium(II) complexes in cis-trans isomerisations of alkenes. J Organomet Chem 341, 549–557 (1988). Friedland, S. N. et al. The Cardiovascular Effects of Peroxisome Proliferator-activated Receptor Agonists. Am J Med 125, 126–133 (2012). 68 Luckhurst, C. A. et al. Discovery of isoindoline and tetrahydroisoquinoline derivatives as potent, selective PPARδ agonists. Bioorg Med Chem Lett 21, 492–496 (2011). 20 Bishop-Bailey, D. + Bystrom, J. Emerging roles of peroxisome proliferator-activated receptor-β/δ in inflammation. Pharmacol Therapeut 124, 141–150 (2009). Literatur 16 Henry, R. R. et al. Effect of the dual peroxisome proliferator-activated receptor-α/γ agonist aleglitazar on risk of cardiovascular disease in patients with type 2 diabetes (SYNCHRONY): a phase II, randomised, dose-ranging study. Lancet 374, 126–135 (2009). Inoue, H. et al. Brain protection by resveratrol and fenofibrate against stroke requires peroxisome proliferator-activated receptor α in mice. Neurosci Lett 352, 203–206 (2003). 62 Oh, K.-B. et al. Discovery of Diarylacrylonitriles as a Novel Series of Small Molecule Sortase A Inhibitors. J Med Chem 47, 2418–2421 (2004). 22 Pirat, C. et al. Targeting Peroxisome Proliferator-Activated Receptors (PPARs): Development of Modulators. J Med Chem 55, 4027–4061 (2012). 51 Montanari, R. et al. Crystal Structure of the Peroxisome Proliferator-Activated Receptor γ (PPARγ) Ligand Binding Domain Complexed with a Novel Partial Agonist: A New Region of the Hydrophobic Pocket Could Be Exploited for Drug Design. J Med Chem 51, 7768–7776 (2008). Lockyer, P., Schisler, J. C., Patterson, C. + Willis, M. S. Minireview: Won't Get Fooled Again: The Nonmetabolic Roles of Peroxisome Proliferator-Activated Receptors (PPARs) in the Heart. Mol Endocrinol 24, 1111–1119 (2010). Nevin, D., G. Lloyd, D. + Fayne, D. Rational Targeting of Peroxisome Proliferating Activated Receptor Subtypes. CMC 18, 5598–5623 (2011). 46 Rimando, A. M., Nagmani, R., Feller, D. R. + Yokoyama, W. Pterostilbene, a New Agonist for the Peroxisome Proliferator-Activated Receptor α-Isoform, Lowers Plasma Lipoproteins and Cholesterol in Hypercholesterolemic Hamsters. J Agric Food Chem 53, 3403–3407 (2005). Zhu, P., Goh, Y. Y., Chin, H. F. A., Kersten, S. + Tan, N. S. Angiopoietin-like 4: a decade of research. Biosci Rep 32, 211–219 (2012). 29 Szanto, A. et al. Retinoid X receptors: X-ploring their (patho)physiological functions. Cell Death Differ 11, S126–S143 (2004). Hashimoto, M. + Hatanaka, Y. Recent Progress in Diazirine-Based Photoaffinity Labeling. Eur J Org Chem 2008, 2513–2523 (2008). 72 Hashimoto, M. + Hatanaka, Y. Practical conditions for photoaffinity labeling with 3- trifluoromethyl-3-phenyldiazirine photophore. Anal Biochem 348, 154–156 (2006). Goto, M. A comparative study of anti-inflammatory and antidyslipidemic effects of fenofibrate and statins on rheumatoid arthritis. Mod Rheumatol 20, 238–243 (2010). 53 Ishmaeva, E. A. et al. Polarity and structure of 2-(1-methylbenzimidazol-2-yl)-1-phenyl-and -1,2- diphenyl-1-nitroethenes. Russ J Gen Chem 82, 911–920 (2012). Michel, P., Gennet, D. + Rassat, A. A one-pot procedure for the synthesis of alkynes and bromoalkynes from aldehydes. Tet Lett 40, 8575–8578 (1999). Guram, A. S., Rennels, R. A. + Buchwald, S. L. A Simple Catalytic Method for the Conversion of Aryl Bromides to Arylamines. Angew Chem Int Edit 34, 1348–1350 (1995). b) Louie, J. + Hartwig, J. F. Palladium-catalyzed synthesis of arylamines from aryl halides. Mechanistic studies lead to coupling in the absence of tin reagents. Tet Lett 36, 3609–3612 (1995). c) Metal-catalyzed cross-coupling reactions (Wiley-VCH, Weinheim, 2004). 42 Palkar, P. S. et al. Cellular and Pharmacological Selectivity of the Peroxisome Proliferator-Activated Receptor-β/δ Antagonist GSK3787. Mol Pharmacol 78, 419–430 (2010). 73 Dubinsky, L., Krom, B. P. + Meijler, M. M. Diazirine based photoaffinity labeling. Bioorg Med Chem 20, 554–570 (2012). Die verabreichte Dosis lag bei 25 mg/kg (PO) bzw. 5 mg/kg (IV). Die Plasmaproben wurden 45 min (PO) oder 15 min (IV) nach Verabreichung entnommen. 35 Kuenzli, S., phane + Saurat, J.-H. Effect of Topical PPARβ/δ and PPARγ Agonists on Plaque Psoriasis. Dermatology 206, 252–256 (2003). 32 Kenakin, T. Efficacy as a Vector: the Relative Prevalence and Paucity of Inverse Agonism. Mol Pharmacol 65, 2–11 (2004). Toth, P. Entwicklung von Antagonisten und inversen Agonisten für den Peroxisom Proliferator aktivierten Rezeptor Beta/Delta auf Basis der Struktur von GSK0660 (Verlag Dr. Hut, ISBN 978-3- 8439-1069-9, 2013). Für PT-S 271 konnte keine lineare Korrelation erreicht werden. 33 Adhikary, T. et al. Genomewide Analyses Define Different Modes of Transcriptional Regulation by Peroxisome Proliferator-Activated Receptor-β/δ (PPARβ/δ). PLoS ONE 6, e16344 (2011). 74 Naruhn, S. et al. High-Affinity Peroxisome Proliferator-Activated Receptor β/δ-Specific Ligands with Pure Antagonistic or Inverse Agonistic Properties. Mol Pharmacol 80, 828–838 (2011). 12 iiiihttp://www.fda.gov/Safety/MedWatch/SafetyInformation/SafetyAlertsforHumanMedicalProducts/i iiiioiiiucm173081.htm (abgerufen am 10.07.2013) 13llllhttp://www.fda.gov/drugs/drugsafety/postmarketdrugsafetyinformationforpatientsandproviders/u cm226976.htm (abgerufen am 5.10.2013) 14 http://www.fda.gov/Drugs/DrugSafety/ucm259150.htm (abgerufen am 5.10.2013) 38 Shearer, B. G. et al. Identification and Characterization of a Selective Peroxisome Proliferator- Activated Receptorβ/δ (NR1C2) Antagonist. Mol Endocrinol 22, 523–529 (2007). Leslie, B. J. + Hergenrother, P. J. Identification of the cellular targets of bioactive small organic molecules using affinity reagents. Chem Soc Rev 37, 1347 (2008). Michalik, L. et al. International Union of Pharmacology. LXI. Peroxisome Proliferator-Activated Receptors. Pharmacol Rev 58, 726–741 (2006). Luche, J. L. Lanthanides in organic chemistry. 1. Selective 1,2 reductions of conjugated ketones. J Am Chem Soc 100, 2226–2227 (1978). 26 Bays, H. E. et al. MBX-8025, A Novel Peroxisome Proliferator Receptor-δ Agonist: Lipid and Other Metabolic Effects in Dyslipidemic Overweight Patients Treated with and without Atorvastatin. J Clin Endocr Metab 96, 2889–2897 (2011). 59 Corey, E. J., Gilman, N. W. + Ganem, B. E. New methods for the oxidation of aldehydes to carboxylic acids and esters. J Am Chem Soc 90, 5616–5617 (1968). 18 Wagner, K.-D. + Wagner, N. Peroxisome proliferator-activated receptor beta/delta (PPARβ/δ) acts as regulator of metabolism linked to multiple cellular functions. Pharmacol Therapeut 125, 423– 435 (2010). 23 Geiger, L. E. et al. Rat carcinogenicity study with GW501516, a PPAR delta agonist. The Toxicologist 001ii108, 185 (2009). 71 Dess, D. B. + Martin, J. C. Readily accessible 12-I-5 oxidant for the conversion of primary and secondary alcohols to aldehydes and ketones. J Org Chem 48, 4155–4156 (1983). Xu, H. E. et al. Structural basis for antagonist-mediated recruitment of nuclear co-repressors by PPARα. Nature 415, 813–817 (2002). 54 Wittig, G. + Geissler, G. Zur Reaktionsweise des Pentaphenyl-phosphors und einiger Derivate. Liebigs Ann Chem 580, 44–57 (1953). 25 http://playtrue.wada-ama.org/news/wada-issues-alert-on-gw501516/ (abgerufen am 27.06.2013) Heck, R. F. + Nolley, J. P. Palladium-catalyzed vinylic hydrogen substitution reactions with aryl, benzyl, and styryl halides. J Org Chem 37, 2320–2322 (1972). b) Metal-catalyzed cross-coupling reactions (Wiley-VCH, Weinheim, 2004). Yang, L. et al. Biological Function and Prognostic Significance of Peroxisome Proliferator- Activated Receptor in Rectal Cancer. Clin Cancer Res 17, 3760–3770 (2011). Choi, J. H. et al. Antidiabetic actions of a non-agonist PPARγ ligand blocking Cdk5-mediated phosphorylation. Nature 477, 477–481 (2011). Peters, J. M., Shah, Y. M. + Gonzalez, F. J. The role of peroxisome proliferator-activated receptors in carcinogenesis and chemoprevention. Nat Rev Cancer, 181–195 (2012). 28 Gronemeyer, H., Gustafsson, J.-Å. + Laudet, V. Principles for modulation of the nuclear receptor superfamily. Nat Rev Drug Discov 3, 950–964 (2004). 36 Romanowska, M. et al. Activation of PPARβ/δ Causes a Psoriasis-Like Skin Disease In Vivo. PLoS ONE 5, e9701 (2010). 52 Fleming, F. F., Yao, L., Ravikumar, P. C., Funk, L. + Shook, B. C. Nitrile-Containing Pharmaceuticals: Efficacious Roles of the Nitrile Pharmacophore. J Med Chem 53, 7902–7917 (2010). 34 Wadosky, K. M. + Willis, M. S. The story so far: post-translational regulation of peroxisome proliferator-activated receptors by ubiquitination and SUMOylation. Am J Physiol-Heart C 302, H515 (2012). 27 Iwaisako, K. et al. PNAS Plus: Protection from liver fibrosis by a peroxisome proliferator-activated receptor agonist. P Natl Acad Sci USA 109, E1369 (2012). Harmon, G. S., Lam, M. T. + Glass, C. K. PPARs and Lipid Ligands in Inflammation and Metabolism. Chem Rev 111, 6321–6340 (2011). Adhikary, T. et al. Inverse PPARβ/δ agonists suppress oncogenic signaling to the ANGPTL4 gene and inhibit cancer cell invasion. Oncogene 32, 5241–5252 (2012). Wang, Y.-X. et al. Regulation of Muscle Fiber Type and Running Endurance by PPARδ. Plos Biol 2, e294 (2004). 55 Müller, S., Liepold, B., Roth, G. J. + Bestmann, H. J. An Improved One-pot Procedure for the Synthesis of Alkynes from Aldehydes. Synlett 1996, 521–522 (1996). 40 Kasuga, J.-i. et al. Novel biphenylcarboxylic acid peroxisome proliferator-activated receptor (PPAR) δ selective antagonists. Bioorg Med Chem Lett 19, 6595–6599 (2009). 41 Zaveri, N. T. et al. A novel peroxisome proliferator-activated receptor delta antagonist, SR13904, has anti-proliferative activity in human cancer cells. cbt 8, 1252–1261 (2009). Bugge, A. + Mandrup, S. Molecular Mechanisms and Genome-Wide Aspects of PPAR Subtype Specific Transactivation. PPAR Research 2010, 1–12 (2010). 2013 Ausgehend von einem Screening mit zehn Hits wurde eine neue Grundstruktur für inverse PPARβ/δ-Agonisten identifiziert. Anhand einer auf diesem Grundgerüst basierenden systematischen Struktur-Aktivitäts-Studie mit über 80 synthetisierten Verbindungen wurden mehrere funktionelle Merkmale identifiziert, die entscheidend für die PPARβ/δ-Affinität sind. Durch Kombination dieser Merkmale wurde ein neuer, selektiver und mit einem IC50 von 9.5 nM hochaktiver, inverser Agonist für PPARβ/δ entwickelt (46). Dieser Ligand stellt zudem mit seiner oralen Bioverfügbarkeit in der Maus von 72 % und einer Halbwertszeit von 10 h den ersten literaturbekannten inversen Agonisten für PPARβ/δ dar, der für eine Anwendung im Tiermodell geeignet ist. Darüber hinaus wurden zwei verschiedene Strategien verfolgt, um Informationen über den Bindungsmodus dieses Liganden zu erhalten, die Proteinkristallisation und die Photoaffinitätsmarkierung. Zu diesem Zweck wurden ausreichende Mengen an Protein exprimiert und aufgereinigt, so dass mehrere Kristallisationsscreens durchgeführt werden konnten. Zeitgleich wurde ein Photoaffinitätsligand entwickelt und synthetisiert, um mithilfe der Photoaffinitätsmarkierung die ungefähre Bindungsposition des Liganden zu identifizieren. Da das verwendete Protein jedoch sehr schnell aggregierte, konnte mit keinem dieser Ansätze eine Information über den Bindungsmodus erhalten werden. Agonist Entwicklung neuer selektiver inverser Agonisten für PPARβ/δ ths Prof. Dr. Diederich Wiebke Diederich, Wiebke (Prof. Dr.) Agonist 2014-05-28 ppn:340809515 urn:nbn:de:hebis:04-z2014-02497 Starting from a screening with ten hits, a new core structure for inverse PPARβ/δ agonists has been identified. A structure-activity-relationship study based on this core structure with more than 80 synthesized compounds revealed several key features essential for the affinity to PPARβ/δ. By combination of these features a new selective PPARβ/δ inverse agonist has been developed, which is highly active based on the IC50 value of 9.5 nM. In addition this ligand has an oral bioavailability of 72 % with a half-life time of 10 h and is thus the first published PPARβ/δ inverse agonist suitable for the use in animal models. To identifiy the binding mode of this new ligand two strategies were pursued: protein crystallisation and photoaffinity labeling. For this purpose the ligand binding domain of PPARβ/δ was expressed in E. coli and purified to obtain sufficient amounts of protein. At the same time a photoaffinity ligand with PPARβ/δ affinity was designed and sythesized, to determine the binding position of this ligand. However, due to the prompt aggregation of the protein none of these approaches led to any insight into the binding mode. Scheer, Frithjof Scheer Frithjof Pharmazeutische Chemie Fachbereich Pharmazie German