Lebok, Patrick Lebok Patrick Osteoblast Zugkraftmikroskopie ths Prof. Dr. PhD M.I. Biol Jones David B. Jones, David B. (Prof. Dr. PhD M.I. Biol) Publikationsserver der Universitätsbibliothek Marburg Universitätsbibliothek Marburg https://archiv.ub.uni-marburg.de/diss/z2013/0275/cover.png Mechanical loading on osteoblasts is one major component in bone remodeling. Investigating cell forces, may help identifying the underlying mechanisms of mechanotransduction. Aim of this publication was to point out the role of myosin II in the generation of cell forces in primary osteoblasts while applying shear stress. shear stress Orthopädie und Rheumatologie application/pdf opus:4849 https://doi.org/10.17192/z2013.0275 Philipps-Universität Marburg Myosinleichtkettenkinase Knochen als dynamisches Gewebe kann durch mechanische Belastung zugunsten des Knochenaufbaus umstrukturiert werden. Im lakuno-kanalikulären System können unter Belastung Flüssigkeitsverschiebungen entstehen, die Scherspannungen an Knochenzellen erzeugen. Osteoblasten sind in der Lage, diese mechanischen Stimuli zu erfassen und in ein biochemisches Signal zu transduzieren. Den Mechanismus dieser Mechanotransduktion und die beteiligten Strukturen zu identifizieren, ist Gegenstand der aktuellen Forschung und der vorliegenden Arbeit. Ziel dieser Arbeit war der Nachweis einer Myosin II-abhängigen Kraftentwicklung in primären bovinen Osteoblasten durch mechanische Stimulation mit Scherspannung. 2013-04-25 Force analysis on primary bovine osteoblasts following mechanical loading with shear stress tractionforce microscopy Kraftanalyse an primären bovinen Osteoblasten nach mechanischer Belastung durch Scherspannung myosin light chain kinase doctoralThesis Medizin Medical sciences Medicine Medizin Osteoporose 2013 urn:nbn:de:hebis:04-z2013-02751 monograph Schlichting, H. und Truckenbrodt, E. (1967). Aerodynamik des Flug- zeuges. Berlin, Heidelberg, New York: Springer. Pollard, T. D. und Borisy, G. G. (2003). Cellular motility driven by as- sembly and disassembly of actin filaments. Cell 112, 453-65. Rawlinson, S. C., el-Haj, A. J., Minter, S. L., Tavares, I. A., Bennett, A. und Lanyon, L. E. (1991). Loading-related increases in prostaglandin production in cores of adult canine cancellous bone in vitro: a role for pros- tacyclin in adaptive bone remodeling? J Bone Miner Res 6, 1345-51. Weyts, F. A., Li, Y. S., van Leeuwen, J., Weinans, H. und Chien, S. (2002). ERK activation and alpha v beta 3 integrin signaling through Shc recruitment in response to mechanical stimulation in human osteoblasts. J Cell Biochem 87, 85-92. Impaired bone formation in transgenic mice resulting from altered integrin function in osteoblasts. Dev Biol 220, 2-15. Mechanotransduction in bone cells: induction of nitric oxide and prosta- glandin synthesis by fluid shear stress, but not by mechanical strain. Adv Exp Med Biol 433, 311-4. Prandtl, L. (1904). Flüssigkeitsbewegung bei sehr kleiner Reibung. In Verh. d. III. Intern. Math. Kongr. Heidelberg. Wiltink, A., Nijweide, P. J., Scheenen, W. J., Ypey, D. L. und Van Duijn, B. (1995). Cell membrane stretch in osteoclasts triggers a self- reinforcing Ca2+ entry pathway. Pflugers Arch 429, 663-71. Zimmermann, K. W. (1898). Beiträge zur Kenntniss einiger Drüsen und Epithelien. Archiv für Mikroskopische Anatomie 52, 552-706. Wang, L., Ciani, C., Doty, S. B. und Fritton, S. P. (2004). Delineating bone's interstitial fluid pathway in vivo. Bone 34, 499-509. und Mogilner, A. (2009). Actin-myosin viscoelastic flow in the keratocyte lamellipod. Biophys J 97, 1853-63. Wadhwa, S., Choudhary, S., Voznesensky, M., Epstein, M., Raisz, L. und Pilbeam, C. (2002). Fluid flow induces COX-2 expression in MC3T3-E1 osteoblasts via a PKA signaling pathway. Biochem Biophys Res Commun 297, 46-51. Rappaport, R. (1986). Establishment of the mechanism of cytokinesis in animal cells. Int Rev Cytol 105, 245-81. Zaidi, M. (2007). Skeletal remodeling in health and disease. Nat Med 13, 791-801. Rubin, J., Murphy, T. C., Rahnert, J., Song, H., Nanes, M. S., Green- field, E. M., Jo, H. und Fan, X. (2006a). Mechanical inhibition of RANKL expression is regulated by H-Ras-GTPase. J Biol Chem 281, 1412-8. Cilia-like structures and polycystin-1 in osteoblasts/osteocytes and associ- ated abnormalities in skeletogenesis and Runx2 expression. J Biol Chem 281, 30884-95. Satcher, R. L., Jr., Bussolari, S. R., Gimbrone, M. A., Jr. und Dew- ey, C. F., Jr. (1992). The distribution of fluid forces on model arterial endo- thelium using computational fluid dynamics. J Biomech Eng 114, 309-16. Stamenovic, D., Mijailovich, S. M., Tolic-Norrelykke, I. M., Chen, J. und Wang, N. (2002). Cell prestress. II. Contribution of microtubules. Am J Physiol Cell Physiol 282, C617-24. Puklin-Faucher, E. und Sheetz, M. P. (2009). The mechanical integrin cycle. J Cell Sci 122, 179-86. Rubin, C., Recker, R., Cullen, D., Ryaby, J., McCabe, J. und McLeod, K. (2004). Prevention of postmenopausal bone loss by a low- magnitude, high-frequency mechanical stimuli: a clinical trial assessing compliance, efficacy, and safety. J Bone Miner Res 19, 343-51. Literaturverzeichnis XVIII Robling, A. G., Burr, D. B. und Turner, C. H. (2000). Partitioning a daily mechanical stimulus into discrete loading bouts improves the osteogenic response to loading. J Bone Miner Res 15, 1596-602. Rucci, N. (2008). Molecular biology of bone remodelling. Clinical Cases in Mineral and Bone Metabolism 2008 5, 49-56. Tavella, S., Ruggiu, A., Giuliani, A., Brun, F., Canciani, B., Manescu, A., Marozzi, K., Cilli, M., Costa, D., Liu, Y. et al. (2012). Bone turnover in wild type and pleiotrophin-transgenic mice housed for three months in the International Space Station (ISS). PLoS One 7, e33179. Zhang, S., Cheng, J. und Qin, Y. X. (2012). Mechanobiological modu- lation of cytoskeleton and calcium influx in osteoblastic cells by short-term focused acoustic radiation force. PLoS One 7, e38343. Praetorius, H. A. und Spring, K. R. (2001). Bending the MDCK cell primary cilium increases intracellular calcium. J Membr Biol 184, 71-9. Somlyo, A. P. und Somlyo, A. V. (2003). Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiol Rev 83, 1325-58. Spector, D., Goldman, R. und Leinwand, L. (1998). Cells : A Labora- tory Manual. Volume 1. Culture And Biochemical Analysis Of Cells. Cold Spring Harbor Laboratory. Quinn, J. M., Sabokbar, A. und Athanasou, N. A. (1996). Cells of the mononuclear phagocyte series differentiate into osteoclastic lacunar bone resorbing cells. J Pathol 179, 106-11. Wolf, J. (1892). Das Gesetz der Transformation der Knochen. In Hirchwild. Berlin. Design and construction of a linear shear stress flow chamber. Ann Biomed Eng 21, 77-83. Totsukawa, G., Yamakita, Y., Yamashiro, S., Hartshorne, D. J., Sa- saki, Y. und Matsumura, F. (2000). Distinct roles of ROCK (Rho-kinase) and MLCK in spatial regulation of MLC phosphorylation for assembly of stress fibers and focal adhesions in 3T3 fibroblasts. J Cell Biol 150, 797- 806. Vasiliev, J. M., Gelfand, I. M., Domnina, L. V., Ivanova, O. Y., Komm, S. G. und Olshevskaja, L. V. (1970). Effect of colcemid on the locomotory behaviour of fibroblasts. J Embryol Exp Morphol 24, 625-40. Rieger, T. (2004). Einfluss fluider Scherspannungen auf die Mechanotransduktion in Osteoblasten. In Abteilung für Experimentelle Or- thopädie und Biomechanik, vol. Dissertation. Marburg: Philipps- Universität. Tonna, E. A. und Lampen, N. M. (1972). Electron microscopy of aging skeletal cells. I. Centrioles and solitary cilia. J Gerontol 27, 316-24. Salter, D. M., Robb, J. E. und Wright, M. O. (1997). Electrophysiologi- cal responses of human bone cells to mechanical stimulation: evidence for specific integrin function in mechanotransduction. J Bone Miner Res 12, 1133-41. Reich, K. M., Gay, C. V. und Frangos, J. A. (1990). Fluid shear stress as a mediator of osteoblast cyclic adenosine monophosphate production. Wang, H. B., Dembo, M., Hanks, S. K. und Wang, Y. (2001). Focal adhesion kinase is involved in mechanosensing during fibroblast migra- tion. Proc Natl Acad Sci U S A 98, 11295-300. From molecules to cells: imaging soft samples with the atomic force mi- croscope. Science 257, 1900-5. Roux, W. (1895). Gesammelte Abhandlungen über Entwicklungsme- chanik der Organismen. Leipzig: Engelmann-Verlag. Schafer, A. und Radmacher, M. (2005). Influence of myosin II activity on stiffness of fibroblast cells. Acta Biomater 1, 273-80. Schwartz, M. A. (2010). Integrins and extracellular matrix in mechanotransduction. Cold Spring Harb Perspect Biol 2, a005066. Wong, G. (1990). Isolation and Behavior of Isolated Bone-Forming Cells. The Osteoblast and the Osteocyte. Telford Press 494. Sellers, J. R. (2000). Myosins: a diverse superfamily. Biochim Biophys Acta 1496, 3-22. Skerry, T. M. (2006). One mechanostat or many? Modifications of the site-specific response of bone to mechanical loading by nature and nur- ture. J Musculoskelet Neuronal Interact 6, 122-7. Ryder, K. D. und Duncan, R. L. (2001). Parathyroid hormone enhanc- es fluid shear-induced [Ca2+]i signaling in osteoblastic cells through acti- vation of mechanosensitive and voltage-sensitive Ca2+ channels. J Bone Miner Res 16, 240-8. Wang, Y. L. und Pelham, R. J., Jr. (1998). Preparation of a flexible, porous polyacrylamide substrate for mechanical studies of cultured cells. Methods Enzymol 298, 489-96. Struckmeier, J., Klopp, E., Born, M., Hofmann, M., Rink, D., Jones, D. und Butt, H. (2001). Real-time atomic force fluorescence microscopy on living cells. SPIE 4434, 142–149. van Bezooijen, R. L., Roelen, B. A., Visser, A., van der Wee-Pals, L., de Wilt, E., Karperien, M., Hamersma, H., Papapoulos, S. E., ten Dijke, P. und Lowik, C. W. (2004). Sclerostin is an osteocyte-expressed nega- tive regulator of bone formation, but not a classical BMP antagonist. J Exp Med 199, 805-14. Saitoh, M., Ishikawa, T., Matsushima, S., Naka, M. und Hidaka, H. (1987). Selective inhibition of catalytic activity of smooth muscle myosin light chain kinase. J Biol Chem 262, 7796-801. Literaturverzeichnis XIX Schlaepfer, D. D., Hauck, C. R. und Sieg, D. J. (1999). Signaling through focal adhesion kinase. Prog Biophys Mol Biol 71, 435-78. Toma, C. D., Ashkar, S., Gray, M. L., Schaffer, J. L. und Gersten- feld, L. C. (1997). Signal transduction of mechanical stimuli is dependent on microfilament integrity: identification of osteopontin as a mechanically induced gene in osteoblasts. J Bone Miner Res 12, 1626-36. Literaturverzeichnis XXI Wang, H. B., Dembo, M. und Wang, Y. L. (2000). Substrate flexibility regulates growth and apoptosis of normal but not transformed cells. Am J Physiol Cell Physiol 279, C1345-50. Ralston, S. H. (1997). The Michael Mason Prize Essay 1997. Nitric ox- ide and bone: what a gas! Br J Rheumatol 36, 831-8. Piekarski, K. und Munro, M. (1977). Transport mechanism operating between blood supply and osteocytes in long bones. Nature 269, 80-2. Rotta, J. C. (1972). Turbulente Strömungen. Stuttgart: Teubner. Wibel, W. (2008). Untersuchungen zu laminarer, transitioneller und tur- bulenter Strömung in rechteckigen Mikrokanälen. In Fakultät Bio-und Chemieingenieurwesen, vol. Dissertation. Dortmund: Technischen Univer- sität. Wang, Y., Botvinick, E. L., Zhao, Y., Berns, M. W., Usami, S., Tsien, R. Y. und Chien, S. (2005). Visualizing the mechanical activation of Src. Nature 434, 1040-5. Robinson, J. A., Chatterjee-Kishore, M., Yaworsky, P. J., Cullen, D. M., Zhao, W., Li, C., Kharode, Y., Sauter, L., Babij, P., Brown, E. L. et al. (2006). Wnt/beta-catenin signaling is a normal physiological response to mechanical loading in bone. J Biol Chem 281, 31720-8. Schmenn, T. (2012, unveröffentlicht). Zugkraftvergleichsanalyse von primären Osteoblasten und Osteosarkomzellen in Ruhe und nach mecha- nischer Belastung. In Abteilung für Experimentelle Orthopädie und Biome- chanik, vol. Dissertation. Marburg: Philipps-Universität. Mechanosensitive channels of Escherichia coli: the MscL gene, protein, and activities. Annu Rev Physiol 59, 633-57. Literaturverzeichnis XX Tan, L., Meyer, T., Pfau, B., Hofmann, T., Tan, T. W. und Jones, D. (2010). Rapid vinculin exchange dynamics at focal adhesions in primary osteoblasts following shear flow stimulation. J Musculoskelet Neuronal Interact 10, 92-9. Yam, P. T., Wilson, C. A., Ji, L., Hebert, B., Barnhart, E. L., Dye, N. A., Wiseman, P. W., Danuser, G. und Theriot, J. A. (2007). Actin-myosin network reorganization breaks symmetry at the cell rear to spontaneously initiate polarized cell motility. J Cell Biol 178, 1207-21. Weinbaum, S., Cowin, S. C. und Zeng, Y. (1994). A model for the ex- citation of osteocytes by mechanical loading-induced bone fluid shear stresses. J Biomech 27, 339-60. Rubin, J., Rubin, C. und Jacobs, C. R. (2006b). Molecular pathways mediating mechanical signaling in bone. Gene 367, 1-16. Schubspannung German 2013-05-23 2013-05-23