Gene expression in Phycomyces blakesleeanus after light and gravity stimulation

Licht zählt zu den wichtigsten abiotischen Faktoren. Es steuert eine Vielzahl von Schlüsselprozessen der pilzlichen Biologie und des Lebenszyklus. Der filamentöse Pilz Phycomyces blakesleeanus ist seit mehr als 50 Jahren ein Modellorganismus der sensorischen Physiologie. Eine lineare Signaltransdukt...

Full description

Saved in:
Bibliographic Details
Main Author: Seger, Norman-Ditmar
Contributors: Galland, Paul (Prof. Dr.) (Thesis advisor)
Format: Dissertation
Published: Philipps-Universität Marburg 2011
Online Access:PDF Full Text
Tags: Add Tag
No Tags, Be the first to tag this record!

1. Sutter, R. P. (1975). Mutation affecting sexual development in Phycomyces blakesleeanus. Proceedings of the National Academy of Sciences of the United States of America, 72(1), 127-130.

2. Cerdá-Olmedo, E. (2001). Phycomyces and the biology of light and color. FEMS Microbiology Reviews, 25(5), 503-512.

3. Lee, Y., Kim, M., Han, J., Yeom, K., Lee, S., Baek, S. H., et al. (2004). MicroRNA genes are transcribed by RNA polymerase II. The EMBO Journal, 23(20), 4051-4060.

4. E., et al. (2000). The ATPase cycle of Hsp90 drives a molecular 'clamp' via transient dimerization of the N-terminal domains. The EMBO Journal, 19(16), 4383-4392.

5. Purschwitz, J., Müller, S., & Fischer, R. (2009). Mapping the interaction sites of Aspergillus nidulans phytochrome FphA with the global regulator VeA and the white collar protein LreB. Molecular Genetics and Genomics, 281(1), 35-42.

6. Interallelic complementation provides genetic evidence for the multimeric organization of the Phycomyces blakesleeanus phytoene dehydrogenase. European Journal of Biochemistry, 269(3), 902-908.

7. Kottke T, Hegemann P, Dick B, Heberle J. (2006). The photochemistry of the light-, oxygen-, and voltage-sensitive domains in the algal blue light receptor phot. Biopolymers.;82(4):373-8. Review.

8. Voigt, K. & Wöstemeyer, J. (2001). Phylogeny and origin of 82 zygomycetes from all 54 genera of the mucorales and mortierellales based on combined analysis of actin and translation elongation factor EF-1[alpha] genes. Gene, 270(1-2), 113-120.

9. Arrach, N., Fernández-Martín, R., Cerdá-Olmedo, E., & Avalos, J. (2001). A single gene for lycopene cyclase, phytoene synthase, and regulation of carotene biosynthesis in Phycomyces. Proceedings of the National Academy of Sciences of the United States of America, 98(4), 1687-1692.

10. Kottke, T., Dick, B., Fedorov, R., Schlichting, I., Deutzmann, R., & Hegemann, P. (2003). Irreversible photoreduction of flavin in a mutated phot-LOV1 domain. Biochemistry, 42(33), 9854-9862.

11. Bouly JP, Schleicher, E., Dionisio-Sese, M., Vandenbussche, F., Van Der Straeten, D., Bakrim, N., Meier, S., Batschauer, A., Galland, P., Bittl, R., Ahmad, M. (2007). Cryptochrome blue light photoreceptors are activated through interconversion of flavin redox states. J Biol Chem., 282:9383–9391.

12. Crevel, G., Bates, H., Huikeshoven, H., & Cotterill, S. (2001). The drosophila Dpit47 protein is a nuclear Hsp90 co-chaperone that interacts with DNA polymerase {alpha}. J Cell Sci, 114(11), 2015-2025.

13. Olmedo, M., Ruger-Herreros, C., Luque, E. M., & Corrochano, L. M. (2010). A complex photoreceptor system mediates the regulation by light of the conidiation genes con-10 and con-6 in Neurospora crassa. Fungal Genet. Biol., 47(4), 352-363.

14. Galland, P. (1983). Action spectra of photogeotropic equilibrium in Phycomyces wild type and three behavioral mutants. Photochemistry and Photobiology, 37(2), 221-228.

15. Orejas, M., Peláez, M. I., Alvarez, M. I., & Eslava, A. P. (1987). A genetic map of Phycomyces blakesleeanus. Molecular and General Genetics MGG, 210(1), 69-76.

16. Galland, P., Amon, S., Senger, H., & Russo, V. E. A. (1995). Blue light reception in Phycomyces: Red light sensitization in madC mutants. Bot. Acta., 108, 344-350.

17. Campuzano, V., Galland, P., Alvarez, M.I. and Eslava, A.P. (1996). Blue-Light receptor requirement for gravitropism, Autochemotropism and ethylene response in Phycomyces. Photochem. Photobiol. 63(5), 686-694

18. Hoffman, E. C., Reyes, H., Chu, F. F., Sander, F., Conley, L. H., Brooks, B. A., et al. (1991). Cloning of a factor required for activity of the ah-(dioxin) receptor. Science, 252(5008), 954-958.

19. Butler, W. L., Norris, K. H., Siegelman, H. W., & Hendricks, S. B. (1959). Detection, assay, and preliminary purification of the pigment controlling photoresponsive development of plants. Proceedings of the National Academy of Sciences of the United States of America, 45(12), pp. 1703-1708.

20. Miyazaki, Y., Sunagawa, M., Higashibata, A., Ishioka, N., Babasaki, K., & Yamazaki, T. (2010). Differentially expressed genes under simulated microgravity in fruiting bodies of the fungus Pleurotus ostreatus. FEMS Microbiology Letters, 307(1), 72-79.

21. Elfving, F. (1881). En obeaktad kinslighet hos Phycomyces. Botaniska Notiser, 4, 105-107.

22. Rudolph, H. (1958). Entwicklungsphysiologische Untersuchungen an den Sporangiophoren von phycomyees blakesleeanus. Biologisches Zentralblatt, 77, 385-437.

23. Gutiérez-Corona, F., & Cerdá-Olmedo, E. (1985). Environmental influences in the development of Phycomyces sporangiophores. Exp. Mycol, 9, 56-63.

24. Purschwitz, J., Müller, S., Kastner, C., Schöser, M., Haas, H., Espeso, E. A., Atoui A., Calvo, A. M., Fischer, R. (2008). Functional and physical interaction of blue-and red-light sensors in Aspergillus nidulans. Current Biology, 18(4), 255-259.

25. Corrochano, L. M. (2007). Fungal photoreceptors: Sensory molecules for fungal development and behaviour. Photochemical & Photobiological Sciences, 6(7), 725-736.

26. Almeida, E., & Cerdá-Olmedo, E. (2008). Gene expression in the regulation of carotene biosynthesis in Phycomyces. Current Genetics, 53(3), 129-137; 137.

27. Froehlich, A. C., Chen, C., Belden, W. J., Madeti, C., Roenneberg, T., Merrow, M., et al. (2010). Genetic and molecular characterization of a cryptochrome from the filamentous fungus Neurospora crassa. Eukaryotic Cell, 9(5), 738-750.

28. Campuzano, B., Galland, P., Eslava, A.P. and Alvarez, M.I. (1995). Genetic characterization of two phototropism mutants of Phycomyces with defects in the genes madl and madJ. Curr. Genet. 27, 524-527

29. Álvarez, M. I., Benito, E. P., Campuzano, V., & Eslava, A. P. (1993). Genetic loci of Phycomyces blakesleeanus. In S. J. O'Brien (Ed.), Genetic maps book 3: Lower eukarvotes-locus maps of complex genomes (6th ed., pp. 3.120-3.126). New York: Cold Spring Harbour Laboratory Press.

30. Roncero, M. I. G., & Cerdá-Olmedo, E. (1982). Genetics of carotene biosynthesis in Phycomyces. Current Genetics, 5(1), 5-8.

31. Torres-Martínez, S., Murillo, F. J., & Cerdá-Olmedo, E. (1980). Genetics of lycopene cyclization and substrate transfer in β-carotene biosynthesis in Phycomyces. Genetics Research, 36(03), 299-309.

32. Dunlap, J. C., & Loros, J. J. (2006). How fungi keep time: Circadian system in Neurospora and other fungi. Current Opinion in Microbiology, 9(6), 579-587.

33. Schirmer, E. C., & Glover, J. R. (1996). HSP100/Clp proteins: A common mechanism explains diverse functions. Trends in Biochemical Sciences -Regular Edition, 21(8), 289-296.

34. Rutherford, S. L., & Lindquist, S. (1998). Hsp90 as a capacitor for morphological evolution. Nature, 396(6709), 336-342.

35. Grandin, N., & Charbonneau, M. (2001). Hsp90 levels affect telomere length in yeast. Molecular Genetics and Genomics, 265(1), 126-134; 134.

36. Idnurm, A., Walton, F. J., Floyd, A., & Heitman, J. (2008). Identification of the sex genes in an early diverged fungus. Nature, 451(7175), 193-196.

37. Díaz-Mínguez, J. M., Iturriaga, E. A., Benito, E. P., Corrochano, L. M., & Eslava, A. P. (1990). Isolation and molecular analysis of the orotidine-5′-phosphate decarboxylase gene (pyrG) of Phycomyces blakesleeanus. Molecular and General Genetics MGG, 224(2), 269-278; 278.

38. VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science, 320(5882), 1504-1506.

39. Schmidt, W., & Galland, P. (1999). Light-induced absorbance changes in Phycomyces : Evidence for cryptochrome-associated flavosemiquinones. Planta, 208(2), 274-282; 282.

40. Jayaram, M., Presti, D., & Delbrück, M. (1979). Light-induced carotene synthesis in Phycomyces. Experimental Mycology, 3(1), 42-52.

41. Herrera-Estrella, A., & Horwitz, B. A. (2007). Looking through the eyes of fungi: Molecular genetics of photoreception. Molecular Microbiology, 64(1), 5-15.

42. Eslava, A. P., Alvarez, M. I., & Delbrück, M. (1975). Meiosis in Phycomyces. Proceedings of the National Academy of Sciences of the United States of America, 72(10), 4076-4080.

43. Wolken, J. J. (1969). Microspectrophotometry and the photoreceptor of Phycomyces. The Journal of Cell Biology, 43(2), 354-360.

44. Galland, P. and Lipson, E.D. (1985). Modified action spectra of photogeotropic equilibrium in Phycomyces blakesleeanus mutants with defects in genes madA, madB, madC, and madH. Photochem. Photobiol. 41(3), 331-335.

45. Álvarez, M., Ootaki, T., & Eslava, A. (1983). Mutants of Phycomyces with abnormal phototropism induced by ICR-170. Molecular and General Genetics MGG, 191(3), 507-511; 511.

46. Navigating the chaperone network: An integrative map of physical and genetic interactions mediated by the Hsp90 chaperone. Cell, 120(5) 715-727.

47. Bayram, Ö., Krappmann, S., Seiler, S., Vogt, N., & Braus, G. H. (2008). Neurospora crassa ve-1 affects asexual conidiation. Fungal Genetics and Biology, 45(2), 127-138.

48. A eukaryotic protein, NOP-1, binds retinal to form an archaeal rhodopsin-like photochemically reactive pigment. Biochemistry, 38(43), 14138-14145.

49. Corrochano, L. M., & Garre, V. Photobiology in the zygomycota: Multiple photoreceptor genes for complex responses to light. Fungal Genetics and Biology (2010). Fungal Genet Biol., 47(11), 893-9. Epub 2010

50. Photocarotenogenesis in Phycomyces : Expression of the carB gene encoding phytoene dehydrogenase. Journal of Plant Research, 114(1), 25-31.

51. Corrochano, L. (2002). Photomorphogenesis in Phycomyces: Differential display of gene expression by PCR with arbitrary primers. Molecular Genetics and Genomics, 267(3), 424-428.

52. Liu, Y., He, Q., & Cheng, P. (2003). Photoreception in Neurospora: A tale of two white collar proteins. Cell Mol. Life Sci., 60(10), 2131-2138.

53. Maurizi, M. R., & Xia, D. (2004). Protein binding and disruption by Clp/Hsp100 chaperones. Structure, 12(2), 175-183.

54. Protein-DNA interactions in the promoter region of the Phycomyces carB and carRA genes correlate with the kinetics of their mRNA accumulation in response to light. Fungal Genetics and Biology, 47(9), 773-781

55. Galland, P. (1998). Reception of far-ultraviolet light in Phycomyces: Antagonistic interaction with blue and red light. Planta, 205(2), 269-276; 276.

56. Carnoy, J. B. (1870). Recherches anatomiques et physiologiques sur les champignons. Bulletin De La Société Royale De Botanique De Belgique, 9, 157-321.

57. Rodríguez-Romero, J., & Corrochano, L. M. (2006). Regulation by blue light and heat shock of gene transcription in the fungus Phycomyces: Proteins required for photoinduction and mechanism for adaptation to light. Molecular Microbiology, 61(4), 1049-1059.

58. Ballario, P., Talora, C., Galli, D., Linden, H., & Macino, G. (1998). Roles in dimerization and blue light photoresponse of the PAS and LOV domains of Neurospora crassa white collar proteins. Molecular Microbiology, 29(3), 719-729.

59. Bayram, Ö., Braus, G. H., Fischer, R., & Rodriguez-Romero, J. (2010) Spotlight on aspergillus nidulans photosensory systems. Fungal Genetics and Biology, In Press, Corrected Proof

60. Statoliths in Phycomyces: Characterization of octahedral protein crystals. Fungal Genetics and Biology, 29(3), 211-220.

61. Csermely, P., Schnaider, T., Sőti, C., Prohászka, Z., & Nardai, G. (1998). The 90-kDa molecular chaperone family: Structure, function, and clinical applications. A comprehensive review. Pharmacology & Therapeutics, 79(2), 129-168.

62. Harris, S. F., Shiau, A. K., & Agard, D. A. (2004). The crystal structure of the carboxy-terminal dimerization domain of htpG, the Escherichia coli Hsp90, reveals a potential substrate binding site. Structure (London, England : 1993), 12(6), 1087-1097.

63. Chen, B., Kayukawa, T., Monteiro, A., & Ishikawa, Y. (2005). The expression of the HSP90 gene in response to winter and summer diapauses and thermal-stress in the onion maggot, delia antiqua. Insect Molecular Biology, 14(6), 697-702.

64. Bieszke, J., Li, L., & Borkovich, K. (2007). The fungal opsin gene nop-1 is negatively-regulated by a component of the blue light sensing pathway and influences conidiation-specific gene expression in Neurospora crassa. Current Genetics, 52(3), 149-157.

65. Rodríguez-Romero, J., & Corrochano, L. M. (2004). The gene for the heat-shock protein HSP100 is induced by blue light and heat-shock in the fungus Phycomyces blakesleeanus. Current Genetics, 46(5), 295-303.

66. Cerdá-Olmedo, E. (1975). The genetics of Phycomyces blakesleeanus. Genetics Research, 25(03), 285-296.

67. Idnurm, A., Rodríguez-Romero, J., Corrochano, L. M., Sanz, C., Iturriaga, E. A., Eslava, A. P., et al. (2006). The Phycomyces madA gene encodes a blue-light photoreceptor for phototropism and other light responses. Proceedings of the National Academy of Sciences of the United States of America, 103(12), 4546-4551.

68. Ruiz-Hidalgo, M., Benito, E. P., Sandmann, G., & Eslava, A. P. (1997). The phytoene dehydrogenase gene of Phycomyces: Regulation of its expression by blue light and vitamin A. Molecular and General Genetics MGG, 253(6), 734-744.

69. Fraser, P. D., & Bramley, P. M. (1994). The purification of phytoene dehydrogenase from Phycomyces blakesleeanus. Biochimica Et Biophysica Acta (BBA) -Lipids and Lipid Metabolism, 1212(1), 59-66.

70. Calvo, A. M. (2008). The VeA regulatory system and its role in morphological and chemical development in fungi. Fungal Genetics and Biology, 45(7), 1053-1061.

71. Galland, P., Wallacher, Y., Finger, H., Hannappel, M., Tröster, S., Bold, E., et al. (2002). Tropisms in Phycomyces: Sine law for gravitropism, exponential law for photogravitropic equilibrium Springer Berlin / Heidelberg.

72. Sachs, J. (1882). Ueber Ausschliessung der geotropischen und heliotropischen Krümmungen während des Wachstums. In J. Sachs (Ed.), Arbeiten des Botanischen Instituts in Würzburg, volume 2, (pp. 209-225)

73. Rudolph, H. (1960). Weitere Untersuchungen zur Wärmeaktivierung der Sporangiophoren von Phycomyces blakesleeanus. Planta, 54(5), 505-529.

74. He, Q., Cheng, P., Yang, Y., Wang, L., Gardner, K. H., & Liu, Y. (2002). White collar-1, a DNA binding transcription factor and a light sensor. Science, 297(5582), 840-843.

75. Chen, B., Piel, W. H., Gui, L., Bruford, E., & Monteiro, A. (2005). The HSP90 family of genes in the human genome: Insights into their divergence and evolution. Genomics, 86(6), 627-637.

76. Blakeslee, A. F. (1904). Sexual reproduction in the Mucorineae. Proceedings of the American Academy of Arts and Sciences, 40(4), 205-319.

77. Silva, F., Torres-Martínez, S. & Garre, V. (2006). Distinct white collar-1 genes control specific light responses in Mucor circinelloides. Molecular Microbiology, 61(4), 1023-1037.

78. Chen, B., Zhong, D., & Monteiro, A. (2006). Comparative genomics and evolution of the HSP90 family of genes across all kingdoms of organisms. BMC Genomics, 7(1), 156.

79. Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiology, 139(1), 5-17.

80. Demerec, M., Adelberg, E. A., Clark, A. J., & Hartman, P. E. (1966). A proposal for a uniform nomenclature in bacterial genetics. Genetics, 54(1), 61-76.

81. Eslava, A. P., Alvarez, M. I., Burke, P. V., & Delbruck, M. (1975). Genetic recombination in sexual crosses of Phycomyces. Genetics, 80(3), 445-462.

82. Froehlich, A. C., Noh, B., Vierstra, R. D., Loros, J., & Dunlap, J. C. (2005). Genetic and molecular analysis of phytochromes from the filamentous fungus Neurospora crassa. Eukaryotic Cell, 4(12), 2140-2152.

83. Rockwell, N. C., & Lagarias, J. C. (2006). The structure of phytochrome: A picture is worth a thousand spectra. Plant Cell, 18(1), 4-14.

84. Denault, D. L., Loros, J. J., & Dunlap, J. C. (2001). WC-2 mediates WC-1-FRQ interaction within the PAS protein-linked circadian feedback loop of Neurospora. The EMBO Journal, 20(1), 109-117.

85. The Neurospora crassa white collar-1 dependent blue light response requires acetylation of histone H3 lysine 14 by NGF-1. Molecular Biology of the Cell, 17(10), 4576-4583.

86. Moseyko, N., Zhu, T., Chang, H., Wang, X., & Feldman, L. J. (2002). Transcription profiling of the early gravitropic response in Arabidopsis using high-density oligonucleotide probe microarrays. Plant Physiology, 130(2), 720-728.

87. Nicolas, F. E., Torres-Martinez, S., & Ruiz-Vazquez, R. (2003). Two classes of small antisense RNAs in fungal RNA silencing triggered by non-integrative transgenes. The EMBO Journal, 22(15), 3983-3991.

88. Bieszke, J. A., Braun, E. L., Bean, L. E., Kang, S., Natvig, D. O., & Borkovich, K. A. (1999). The nop-1 gene of Neurospora crassa encodes a seven transmembrane helix retinal-binding protein homologous to archaeal rhodopsins. Proceedings of the National Academy of Sciences of the United States of America, 96(14), 8034-8039.

89. Sanz, C., RodrÃguez-Romero, J., Idnurm, A., Christie, J. M., Heitman, J., Corrochano, L. M., et al. (2009). Phycomyces MADB interacts with MADA to form the primary photoreceptor complex for fungal phototropism. Proceedings of the National Academy of Sciences, 106(17), 7095-7100.

90. Pratt, A. J., & MacRae, I. J. (2009). The RNA-induced silencing complex: A versatile gene-silencing machine. Journal of Biological Chemistry, 284(27), 17897-17901.

91. Idnurm, A., Verma, S., & Corrochano, L. M. (2010). A glimpse into the basis of vision in the kingdom mycota. Fungal Genet. Biol., 47(11), 881-892.

92. Holt, S. E., Aisner, D. L., Baur, J., Tesmer, V. M., Dy, M., Ouellette, M., et al. (1999). Functional requirement of p23 and Hsp90 in telomerase complexes. Genes & Development, 13(7), 817-826.

93. Thornton, R. M. (1972). Alternative fruiting pathways in Phycomyces. Plant Physiology, 49(2), 194-197.

94. Delbruck, M., & Shropshire, W., J. (1960). Action and transmission spectra of Phycomyces. Plant Physiology, 35(2), 194-204.

95. Delbrück, M., Katzir, A., & Presti, D. (1976). Responses of Phycomyces indicating optical excitation of the lowest triplet state of riboflavin. Proceedings of the National Academy of Sciences of the United States of America, 73(6), 1969-1973.

96. White collar-1, a central regulator of blue light responses in Neurospora, is a zinc finger protein. EMBO J, 15(7), 1650-1657.

97. Grolig, F., Eibel, P., Schimek, C., Schapat, T., Dennison, D. S., & Galland, P. A. (2000). Interaction between gravitropism and phototropism in sporangiophores of Phycomyces blakesleeanus. Plant Physiology, 123(2), 765-776.

98. Brandt, S., von Stetten, D., Günther, M., Hildebrandt, P., & Frankenberg-Dinkel, N. (2008). The fungal phytochrome FphA from aspergillus nidulans. Journal of Biological Chemistry, 283(50), 34605-34614.

99. Photocycle of a blue-light receptor domain from the green alga Chlamydomonas reinhardtii. Biophysical Journal, 84(2), 1192-1201.