Biodegradable Amphiphilic Block Copolymers:Synthesis, Characterization and Properties Evaluation

Different biodegradable amphiphilic block copolymers were prepared by melt-polycondensation. These block copolymers are composed of different molar ratio of two segments, 1st is hydrophilic block which is methoxy poly(ethylene oxide) MPEO of two different molecular weights, (5000 and 2000 g/mol). Th...

Full description

Saved in:
Bibliographic Details
Main Author: Assem, Yasser
Contributors: Greiner, Andreas (Prof. Dr.) (Thesis advisor)
Format: Dissertation
Published: Philipps-Universität Marburg 2011
Online Access:PDF Full Text
Tags: Add Tag
No Tags, Be the first to tag this record!

1. Shih, Y. F.; Wu, T. M. Enzymatic degradation kinetics of poly(butylene succinate) nanocomposites. Journal of Polymer Research 2009, 16 (2), 109-115.

2. Kalyanasundaram, K.; Thomas, J. K. Solvent-dependent fluorescence of pyrene-3- carboxaldehyde and its applications in the estimation of polarity at micelle-water interfaces. The Journal of Physical Chemistry 1977, 81 (23), 2176-2180.

3. Kalyanasundaram, K.; Thomas, J. K. Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems. Journal of the American Chemical Society 1977, 99 (7), 2039-2044.

4. Soccio, M.; Lotti, N.; Finelli, L.; Gazzano, M.; Munari, A. Aliphatic poly(propylene dicarboxylate)s: Effect of chain length on thermal properties and crystallization kinetics. Polymer 2007, 48 (11), 3125-3136.

5. Zana, R.; In, M.; Levy, H.; Duportail, G. Alkanediyl--α,ω-bis(dimethylalkylammonium bromide). 7. Fluorescence Probing Studies of Micelle Micropolarity and Microviscosity. Langmuir 1997, 13 (21), 5552-5557.

6. Jin, J.; Wu, D.; Sun, P.; Liu, L.; Zhao, H. Amphiphilic Triblock Copolymer Bioconjugates with Biotin Groups at the Junction Points: Synthesis, Self- Assembly, and Bioactivity. Macromolecules 2011, 44 (7), 2016-2024.

7. Cheng, S. Z. D.; Wunderlich, B. A study of crystallization of low-molecular-mass poly(ethylene oxide) from the melt. Macromolecules 1989, 22 (4), 1866-1873.

8. Chen, C.; Yu, C. H.; Cheng, Y. C.; Yu, P. H. F.; Cheung, M. K. Biodegradable nanoparticles of amphiphilic triblock copolymers based on poly(3- hydroxybutyrate) and poly(ethylene glycol) as drug carriers. Biomaterials 2006, 27 (27), 4804-4814.

9. Soppimath, K. S.; Aminabhavi, T. M.; Kulkarni, A. R.; Rudzinski, W. E. Biodegradable polymeric nanoparticles as drug delivery devices. Journal of Controlled Release 2001, 70 (1-2), 1-20.

10. Winzenburg, G.; Schmidt, C.; Fuchs, S.; Kissel, T. Biodegradable polymers and their potential use in parenteral veterinary drug delivery systems. Advanced Drug Delivery Reviews 2004, 56 (10), 1453-1466.

11. Hadjichristidis, N.; Pispas, S.; Floudas, G. Block Copolymers by Anionic Polymerization. In Block Copolymers, John Wiley & Sons, Inc.: 2002; pp 1-27.

12. Hadjichristidis, N.; Pispas, S.; Floudas, G. Block Copolymers by Cationic Polymerization. In Block Copolymers, John Wiley & Sons, Inc.: 2002; pp 28-46.

13. Hadjichristidis, N.; Pispas, S.; Floudas, G. Block Copolymers by Living Free Radical Polymerization. In Block Copolymers, John Wiley & Sons, Inc.: 2002; pp 47-64.

14. Langer, R.; Peppas, N. Chemical and Physical Structure of Polymers as Carriers for Controlled Release of Bioactive Agents: A Review. Journal of Macromolecular Science, Part C: Polymer Reviews 1983, 23 (1), 61-126.

15. Kim, K.; Yu, M.; Zong, X.; Chiu, J.; Fang, D.; Seo, Y. S.; Hsiao, B. S.; Chu, B.; Hadjiargyrou, M. Control of degradation rate and hydrophilicity in electrospun non-woven poly( D L ,-lactide) nanofiber scaffolds for biomedical applications. Biomaterials 2003, 24 (27), 4977-4985.

16. Miyata, T.; Masuko, T. Crystallization behaviour of poly(tetramethylene succinate). Polymer 1998, 39 (6-7), 1399-1404.

17. Loo, Y. L.; Register, R. A. Crystallization Within Block Copolymer Mesophases. In Developments in Block Copolymer Science and Technology, John Wiley & Sons, Ltd: 2004; pp 213-243.

18. Osada, K.; Kataoka, K. Drug and Gene Delivery Based on Supramolecular Assembly of PEG-Polypeptide Hybrid Block Copolymers. In Peptide Hybrid Polymers, 202 ed.; Klok, H. A., Schlaad, H., Eds.; Springer Berlin / Heidelberg: 2006; pp 113- 153.

19. Goodman I. Encyclopedia of polymer science and engineering. Wiley: 1988; pp 1-75.

20. Yang, D. J.; Zhang, L. F.; Xu, L.; Xiong, C. D.; Ding, J.; Wang, Y. Z. Fabrication and characterization of hydrophilic electrospun membranes made from the block copolymer of poly(ethylene glycol-co-lactide). Journal of Biomedical Materials Research Part A 2007, 82A (3), 680-688.

21. Vassiliou, A. A.; Papadimitriou, S. A.; Bikiaris, D. N.; Mattheolabakis, G.; Avgoustakis, K. Facile synthesis of polyester-PEG triblock copolymers and preparation of amphiphilic nanoparticles as drug carriers. Journal of Controlled Release 2010, 148 (3), 388-395.

22. Matyjaszewski, K.; Xia, J. Fundamentals of Atom Transfer Radical Polymerization. In Handbook of Radical Polymerization, John Wiley & Sons, Inc.: 2002; pp 523- 628.

23. Khoee, S.; Rahimi, H. B. Intermolecular interaction and morphology investigation of drug loaded ABA-triblock copolymers with different hydrophilic/lipophilic ratios. Bioorganic & Medicinal Chemistry 2010, 18 (20), 7283-7290.

24. Rogers, M. E.; Long, T. E.; Turner, S. R. Introduction to Synthetic Methods in Step- Growth Polymers. In Synthetic Methods in Step-Growth Polymers, John Wiley & Sons, Inc.: 2003; pp 1-16.

25. Voronov, A.; Kohut, A.; Peukert, W.; Voronov, S.; Gevus, O.; Tokarev, V. Invertible Architectures from Amphiphilic Polyesters. Langmuir 2006, 22 (5), 1946-1948.

26. Robert M.Silverstein; Francis X.Webster; David J.Kiemle Spectrometric identification of organic compounds; 7th ed.; John Wiley & Sons: 2005.

27. Taniguchi, I.; Nakano, S.; Nakamura, T.; El-Salmawy, A.; Miyamoto, M.; Kimura, Y. Mechanism of Enzymatic Hydrolysis of Poly(butylene succinate) and Poly(butylene succinate-co-L-lactate) with a Lipase from Pseudomonas cepacia. Macromol. Biosci. 2002, 2 (9), 447-455.

28. Gِ öpferich, A. Mechanisms of polymer degradation and erosion. Biomaterials 1996, 17 (2), 103-114.

29. Dalton, P. D.; Lleixa Calvet, J.; Mourran, A.; Klee, D.; Möller, M. Melt electrospinning of poly-(ethylene glycol-block-ε-caprolactone). Biotechnology Journal 2006, 1 (9), 998-1006.

30. Hamley, I. W. Melt phase behaviuor of block copolymers. In The Physics of Block Copolymers, Oxford University Press: 1998; p 24.

31. Cheng, S. Z. D.; Wunderlich, B. Molecular segregation and nucleation of poly(ethylene oxide) crystallized from the melt. I. Calorimetric study. J. Polym. Sci. B Polym. Phys. 1986, 24 (3), 577-594.

32. Nakahara, Y.; Kida, T.; Nakatsuji, Y.; Akashi, M. New Fluorescence Method for the Determination of the Critical Micelle Concentration by Photosensitive Monoazacryptand Derivatives. Langmuir 2005, 21 (15), 6688-6695.

33. Langer, R. New methods of drug delivery. Science 1990, 249 (4976), 1527-1533.

34. Hawker, C. J. Nitroxide-Mediated Living Radical Polymerizations. In Handbook of Radical Polymerization, John Wiley & Sons, Inc.: 2002; pp 463-521.

35. Park, S. Y.; Bae, Y. H. Novel pH-sensitive polymers containing sulfonamide groups. Macromol. Rapid Commun. 1999, 20 (5), 269-273.

36. Kang, S. I.; Bae, Y. H. pH-Induced solubility transition of sulfonamide-based polymers. Journal of Controlled Release 2002, 80 (1-3), 145-155.

37. Kang, S. I.; Bae, Y. H. pH-Induced Volume-Phase Transition of Hydrogels Containing Sulfonamide Side Group by Reversible Crystal Formation. Macromolecules 2001, 34 (23), 8173-8178.

38. Wilhelm, M.; Zhao, C. L.; Wang, Y.; Xu, R.; Winnik, M. A.; Mura, J. L.; Riess, G.; Croucher, M. D. Poly(styrene-ethylene oxide) block copolymer micelle formation in water: a fluorescence probe study. Macromolecules 1991, 24 (5), 1033-1040.

39. Chen, C.; Yu, C. H.; Cheng, Y. C.; Yu, P. H. F.; Cheung, M. K. Preparation and characterization of biodegradable nanoparticles based on amphiphilic poly(3- hydroxybutyrate)-poly(ethylene glycol)-poly(3-hydroxybutyrate) triblock copolymer. European Polymer Journal 2006, 42 (10), 2211-2220.

40. Li, R.; Li, X.; Xie, L.; Ding, D.; Hu, Y.; Qian, X.; Yu, L.; Ding, Y.; Jiang, X.; Liu, B. Preparation and evaluation of PEG-PCL nanoparticles for local tetradrine delivery. International Journal of Pharmaceutics 2009, 379 (1), 158-166.

41. Guerra, G. D.; Cerrai, P.; Tricoli, M.; Maltinti, S. Release of 5-fluorouracil by biodegradable poly(ester-ether-ester)s. Part I: release by fused thin sheets. Journal of Materials Science: Materials in Medicine 2001, 12 (4), 313-317.

42. Bandyopadhyay, P.; Ghosh, A. K. Reversible Fluorescence Quenching by Micelle Selective Benzophenone-Induced Interactions between Brij Micelles and Polyacrylic Acids: Implications for Chemical Sensors. The Journal of Physical Chemistry B 2010, 114 (35), 11462-11467.

43. Gabarayeva, N. I.; Grigorjeva, V. V. Sporoderm ontogeny in Chamaedorea microspadix (Arecaceae): self-assembly as the underlying cause of development. Grana 2010, 49 (2), 91-114.

44. Choi, Y. K.; Bae, Y. H.; Kim, S. W. Star-Shaped Poly(ether-ester) Block Copolymers: Synthesis, Characterization, and Their Physical Properties. Macromolecules 1998, 31 (25), 8766-8774.

45. Alexandridis, P. Structural Polymorphism of Poly(ethylene oxide) êْ Poly(propylene oxide) Block Copolymers in Nonaqueous Polar Solvents. Macromolecules 1998, 31 (20), 6935-6942.

46. Cohen, L.; Rocco, A. Study of the Crystallization Kinetics. Poly(ethylene oxide) and a blend of poly(ethylene oxide) and poly(bisphenol A-co-epichlorohydrin). Journal of Thermal Analysis and Calorimetry 2000, 59 (3), 625-632.

47. Ding, M.; Zhang, M.; Yang, J.; Qiu, J. h. Study on the enzymatic degradation of PBS and its alcohol acid modified copolymer. Biodegradation 2011, 1-6.

48. Kang, S. I.; Na, K.; Bae, Y. H. Sulfonamide-containing polymers: a new class of pH- sensitive polymers and gels. Macromol. Symp. 2001, 172 (1), 149-156.

49. Wang, F.; Bronich, T. K.; Kabanov, A. V.; Rauh, R. D.; Roovers, J. Synthesis and Characterization of Star Poly(ε-caprolactone)-b-Poly(ethylene glycol) and Poly(l- lactide)-b-Poly(ethylene glycol) Copolymers: Evaluation as Drug Delivery Carriers. Bioconjugate Chemistry 2008, 19 (7), 1423-1429.

50. Wang, L. c.; Chen, J. w.; Liu, H. l.; Chen, Z. q.; Zhang, Y.; Wang, C. y.; Feng, Z. g. Synthesis and evaluation of biodegradable segmented multiblock poly(ether ester) copolymers for biomaterial applications. Polym. Int. 2004, 53 (12), 2145-2154.

51. Li, Y.; Kissel, T. Synthesis, characteristics and in vitro degradation of star-block copolymers consisting of L -lactide, glycolide and branched multi-arm poly(ethylene oxide). Polymer 1998, 39 (18), 4421-4427.

52. Hong, S. W.; Ahn, C. H.; Huh, J.; Jo, W. H. Synthesis of a PEGylated Polymeric pH Sensor and Its pH Sensitivity by Fluorescence Resonance Energy Transfer. Macromolecules 2006, 39 (22), 7694-7700.

53. Hadjichristidis, N.; Pispas, S.; Floudas, G. Synthesis of Block Copolymers by a Combination of Different Polymerization Methods. In Block Copolymers, John Wiley & Sons, Inc.: 2002; pp 91-113.

54. Hwang, S. Y.; Jin, X. Y.; Yoo, E. S.; Im, S. S. Synthesis, physical properties and enzymatic degradation of poly (oxyethylene-b-butylene succinate) ionomers. Polymer 2011, 52 (13), 2784-2791.

55. Gou, P. F.; Zhu, W. P.; Shen, Z. Q. Synthesis, Self-Assembly, and Drug-Loading Capacity of Well-Defined Cyclodextrin-Centered Drug-Conjugated Amphiphilic A14B7 Miktoarm Star Copolymers Based on Poly(ε-caprolactone) and Poly(ethylene glycol). Biomacromolecules 2010, 11 (4), 934-943.

56. Junkers, T.; Lovestead, T. M.; Barner-Kowollik, C. The RAFT Process as a Kinetic Tool: Accessing Fundamental Parameters of Free Radical Polymerization. In Handbook of RAFT Polymerization, Wiley-VCH Verlag GmbH & Co. KGaA: 2008; pp 105- 149.

57. Plage, B.; Schulten, H. R. Thermal degradation and mass-spectrometric fragmentation processes of polyesters studied by time/temperature-resolved pyrolysis-field ionization mass spectrometry. Macromolecules 1990, 23 (10), 2642-2648.

58. Vacanti, C. A.; Vacanti, J. P.; Langer, R. Tissue Engineering Using Synthetic Biodegradable Polymers. In Polymers of Biological and Biomedical Significance, 540 ed.; American Chemical Society: 1993; pp 16-34.

59. A.Romo-Uribe Hybrid -block copolymer nanocomposites. characterization of nanostructure by small-angle X-ray scattering (SAXS). REVISTA MEXICANA DE FI´SICA 2007, 53 (3), 171-178.

60. R.van Dijkhuizen-Radersma, R.; Roosma, J. R.; Kaim, P.; Metairie, S.; Peters, F. L. A. M.; de Wijn, J.; Zijlstra, P. G.; de Groot, K.; Bezemer, J. M. Biodegradable poly(ether-ester) multiblock copolymers for controlled release applications. Journal of Biomedical Materials Research Part A 2003, 67A (4), 1294-1304.

61. R.van Dijkhuizen-Radersma, R.; Metairie, S.; Roosma, J. R.; de Groot, K.; Bezemer, J. M. Controlled release of proteins from degradable poly(ether-ester) multiblock copolymers. Journal of Controlled Release 2005, 101 (1-3), 175-186.

62. Wang, F.; Bronich, T. K.; Kabanov, A. V.; Rauh, R. D.; Roovers, J. Synthesis and Evaluation of a Star Amphiphilic Block Copolymer from Poly(ε-caprolactone) and Poly(ethylene glycol) as a Potential Drug Delivery Carrier. Bioconjugate Chemistry 2005, 16 (2), 397-405.

63. Sun, J.; Bubel, K.; Chen, F.; Kissel, T.; Agarwal, S.; Greiner, A. Nanofibers by Green Electrospinning of Aqueous Suspensions of Biodegradable Block Copolyesters for Applications in Medicine, Pharmacy and Agriculture. Macromol. Rapid Commun. 2010, 31 (23), 2077-2083.