Optimizing AV- Delay, Impedance cardiography AV-Optimierung Medical sciences Medicine Medizin Acute haemodynamic effects of optimizing the A-V interval with impedance cardiography in dual-chamber stimulation https://doi.org/10.17192/z2011.0069 Medizin 2-Kammerschrittmacher Acute haemodynamic effects of optimizing the A-V interval with impedance cardiography in dual-chamber stimulation Background: Optimizing the A-V interval in dual-chamber stimulation may improve haemodynamics. Haemodynamic evaluation can be conducted by invasive or non-invasive procedures. One possible method is impedance cardiography, in which changes in cardiac volumes are recorded. The objective of this study was to analyze the acute haemodynamic effects of A-V intervals programmed at different lengths in dual-chamber stimulation, ascertained by determining stroke volume with impedance cardiography. Methods: The study was carried out with 42 patients who had a dual-chamber pacemaker or dual chamber ICD implanted, and the A-V interval was optimized by impedance cardiography. Left-ventricular pump function was determined by echocardiography, and the patients were divided into a group with maintained left-ventricular pump function (EF ≥50%) and another with limited (EF +amp;lt;50%). The criteria for inclusion were: 1. dual-chamber pacemaker or ICD; 2. sinus rhythm, and 3. consent. In all the patients the A-V intervals were programmed from 80-120 ms in steps of 20 ms or at the standard A-V interval (150 ms) and with their own conduction system (VVI 30/min.). For each A-V interval the mean stroke volume was determined in the steady state after 1 minute at the earliest. Results: The 42 patients in the study (33 men, 9 women; average age 66.8 ± 7.7 years, min. 47, max. 84 years) showed values of 45 ± 17 % for the mean ejection fraction (EF) during echocardiography. When the A-V interval was optimized, the stroke volume showed significantly higher values (74 ± 14 p +amp;lt;0001) than at the standard A-V interval (65± 13.5). The least-favourable A-V interval resulted in the significantly lowest stroke volume (least-favourable A-V interval 62.0 ±11.8 ms, optimum A-V interval 74 ± 14 p+amp;lt;0001). On average, the optimized A-V interval was significantly shorter than the least-favourable A-V interval (optimum A-V interval 103 ms ± 25, least-favourable A-V interval 129 ± 28 ms p+amp;lt;0001). In patients with an EF ≥ 50%, the optimized A-V interval was significantly shorter (96 +19.5) than in patients with an EF +amp;lt; 50% (109.5 ± 28 p= 0.048). Conclusions: It is possible to significantly improve the stroke volume acutely, at rest, by optimizing the A-V interval. There is no such thing as a universally optimum A-V interval; it is necessary to optimize it individually, the optimized A-V interval being in the shorter A-V conduction time range in both patients with an EF of ≥ 50% and those with an EF +amp;lt; 50%. Patients with limited LV pump function (EF +amp;lt; 50%) have significantly longer optimized A-V intervals than those whose LV function is not restricted. doctoralThesis 2011-08-08 2011-03-04 Daralammouri, Yunis Daralammouri Yunis Ghio, S., C. Constantin, et al. (2004). "Interventricular and intraventricular dyssynchrony are common in heart failure patients, regardless of QRS duration." Eur Heart J 25(7): 571-8. Ishikawa, T., T. Sugano, et al. (1999). "Relationship between atrioventricular delay, QT interval and cardiac function in patients with implanted DDD pacemakers." Europace 1(3): 192-6. Masuyama, T., K. Kodama, et al. (1989). "Effects of atrioventricular interval on left ventricular diastolic filling assessed with pulsed Doppler echocardiography." Cardiovasc Res 23(12): 1034-42. Spinale, F. G., D. A. Hendrick, et al. (1990). "Relationship between bioimpedance, thermodilution, and ventriculographic measurements in experimental congestive heart failure." Cardiovasc Res 24(5): 423-9. Modena, M. G., R. Rossi, et al. (1996). "The importance of different atrioventricular delay for left ventricular filling in sequential pacing: clinical implications." Pacing Clin Electrophysiol 19(11 Pt 1): 1595-604. Kruse, I., K. Arnman, et al. (1982). "A comparison of the acute and long-term hemodynamic effects of ventricular inhibited and atrial synchronous ventricular inhibited pacing." Circulation 65(5): 846-55. Wang, Y., D. R. Haynor, et al. (2001). "A finite-element study of the effects of electrode position on the measured impedance change in impedance cardiography." IEEE Trans Biomed Eng 48(12): 1390-401. Ismer, B., von Knorre, G. H., Voß, W., Placke, J. (2004) (2004). "Approximation des individuell optimalen AV-Delays mittels linksatrialer Elektrographie" Herzschr Elektrophys 15, Suppl 1, I/33-I/38. Josephson, M. E., D. L. Scharf, et al. (1977). "Atrial endocardial activation in man. Electrode catheter technique of endocardial mapping." Am J Cardiol 39(7): 972-81. Guardigli, G., L. Ansani, et al. (1994). "AV delay optimization and management of DDD paced patients with dilated cardiomyopathy." Pacing Clin Electrophysiol 17(11 Pt 2): 1984-8. Wiegand, U. K. (2008). "[Avoidance of ventricular pacing in patients with sinus node disease or intermittent AV block]." Herzschrittmacherther Elektrophysiol 19(1): 3-10. R. C. Funck, S. K., B. Maisch (2008). "Biventrikuläre Stimulation bei AV-Block." Herzschr Elektrophys 19:41–47 (2008) Peter Libby, R. O. B., Douglas L. Mann, Douglas P. Zipes, (2007-10-16 | ISBN: 1416041060 | 2304 pages | CHM | 176,5 MB). "Braunwald's Heart Disease: A Textbook of Cardiovascular Medicine, 8 Ed " ." Pianosi, P. and D. Garros (1996). "Comparison of impedance cardiography with indirect Fick (CO2) method of measuring cardiac output in healthy children during exercise." Am J Cardiol 77(9): 745-9. Kubicek, W. G., J. N. Karnegis, et al. (1966). "Development and evaluation of an impedance cardiac output system." Aerosp Med 37(12): 1208-12. Wilkoff, B. L., J. R. Cook, et al. (2002). "Dual-chamber pacing or ventricular backup pacing in patients with an implantable defibrillator: the Dual Chamber and VVI Implantable Defibrillator (DAVID) Trial." Jama 288(24): 3115-23. Josephson, M. E., J. A. Kastor, et al. (1977). "Electrocardiographic left atrial enlargement. Electrophysiologic, echocardiographic and hemodynamic correlates." Am J Cardiol 39(7): 967-71. Lemke, B., B. Nowak, et al. (2005). "[Guidelines for heart pacemaker therapy]." Z Kardiol 94(10): 704-20. Videen, J. S., S. K. Huang, et al. (1986). "Hemodynamic comparison of ventricular pacing, atrioventricular sequential pacing, and atrial synchronous ventricular pacing using radionuclide ventriculography." Am J Cardiol 57(15): 1305-8. Skinner, N. S., Jr., J. H. Mitchell, et al. (1963). "Hemodynamic Effects of Altering the Timing of Atrial Systole." Am J Physiol 205: 499-503. Nordlander, R. and A. Hedman (1991). "Hemodynamics and exercise capacity during pacemaker stimulation." Herz 16(3): 149-57. Gerd Fröhlig, J. C., Jens Jung, Walter Koglek, Bernd Lemke, Andreas Markewitz und Jörg Neuzner (2006). "Herzschrittmacher-und Defibrillator-Therapie Indikation-Programmierung-Nachsorge." 2006 Georg Thieme Verlag KG. Lemke B, W. U. (1992). "Hämodynamische Bedeutung der programmierbaren atrioventrikulären Verzögerungszeit für die Zweikammerstimulation. Herzschr Elektrophys 3: 41–57." Lamberts, R. (1984). "Impedance cardiography." Van Gorcum, pp. 1-163, Assen, 1984. Ovsyshcher, I. and S. Furman (1993). "Impedance cardiography for cardiac output estimation in pacemaker patients: review of the literature." Pacing Clin Electrophysiol 16(7 Pt 1): 1412-22. "Impedanzkardiograpie." Herzschrittmacherther Elektrophysiol (2004) 15:1102–9. Kass, D. A., C. H. Chen, et al. (1999). "Improved left ventricular mechanics from acute VDD pacing in patients with dilated cardiomyopathy and ventricular conduction delay." Circulation 99(12): 1567-73. Leier, C. V., G. M. Jewell, et al. (1979). "Interatrial conduction (activation) times." Am J Cardiol 44(3): 442-6. Pehrsson, S. K., H. Astrom, et al. (1983). "Left ventricular volumes with ventricular inhibited and atrial triggered ventricular pacing." Acta Med Scand 214(4): 305-10. Ovsyshcher, I., R. Zimlichman, et al. (1993). "Measurements of cardiac output by impedance cardiography in pacemaker patients at rest: effects of various atrioventricular delays." J Am Coll Cardiol 21(3): 761-7. Nishimura, R. A., D. L. Hayes, et al. (1995). "Mechanism of hemodynamic improvement by dual-chamber pacing for severe left ventricular dysfunction: an acute Doppler and catheterization hemodynamic study." J Am Coll Cardiol 25(2): 281-8. Sweeney, M. O., A. J. Bank, et al. (2007). "Minimizing ventricular pacing to reduce atrial fibrillation in sinus-node disease." N Engl J Med 357(10): 1000-8. Kirch, W., A. Halabi, et al. (1989). "Negative effects of famotidine on cardiac performance assessed by noninvasive hemodynamic measurements." Gastroenterology 96(6): 1388-92. Guize, LM. Rabine, C. Daubert (1995) New method for determining the optimal AV delay in patients paced in DDD mode for complete AV block (abstr.) PACE 18 : 855 (1995) "New method for determining the optimal AV delay in patients paced in DDD mode for complete AV block." Volume, DOI: Ishikawa T, S. S., Kosuge M, et al. "Optimization of atrioventricular delay and follow-up in a patient with congestive heart failure with an implanted DDD pacemaker -Case report-." Jpn Circ J 2001; 65: 46-9. Kindermann, M., G. Frohlig, et al. (1997). "Optimizing the AV delay in DDD pacemaker patients with high degree AV block: mitral valve Doppler versus impedance cardiography." Pacing Clin Electrophysiol 20(10 Pt 1): 2453-62. Goldreyer, B. N. (1982). "Physiologic pacing: the role of AV synchrony." Pacing Clin Electrophysiol 5(4): 613-5. Hemmer W, W. A., Schirmer U et al.(1992) (1992). "Postoperative hämodynamische Untersuchungen zur Optimierung der AV-Zeit unter 2- Kammerstimulation." Herzschr Elektrophys 3: 96–100. Ovsyshcher, I., J. N. Gross, et al. (1992). "Precision of impedance cardiography measurements of cardiac output in pacemaker patients." Pacing Clin Electrophysiol 15(11 Pt 2): 1923-6. Moshkovitz, Y., E. Kaluski, et al. (2004). "Recent developments in cardiac output determination by bioimpedance: comparison with invasive cardiac output and potential cardiovascular applications." Curr Opin Cardiol 19(3): 229-37. Schiller NB, S. P., Crawford M, et al (1989). "Recommendations for quantitation of the left ventricle by two-dimensional echocardiography. American Society of Echocardiography Committee on Standards, Subcommittee on Quantitation of Two-Dimensional Echocardiograms." J Am Soc Echocardiogr 1989; 2:358–367. Sweeney, M. O., A. S. Hellkamp, et al. (2008). "Reduced Ejection Fraction, Sudden Cardiac Death, and Heart Failure Death in the Mode Selection Trial (MOST): Implications for Device Selection in Elderly Patients with Sinus Node Disease." J Cardiovasc Electrophysiol. Spinale, F. G., A. C. Smith, et al. (1990). "Relationship of bioimpedance to thermodilution and echocardiographic measurements of cardiac function." Crit Care Med 18(4): 414-8. van Oppen, A. C., I. van der Tweel, et al. (1994). "Reproducibility of estimated cardiovascular function by transthoracic bioimpedance cardiography in healthy volunteers." Int J Biomed Comput 37(1): 15-8. Linde, C., F. Gadler, et al. (1995). "Results of atrioventricular synchronous pacing with optimized delay in patients with severe congestive heart failure." Am J Cardiol 75(14): 919-23. Liebold, A., G. Rodig, et al. (1998). "Short atrioventricular delay dual-chamber pacing early after coronary artery bypass grafting in patients with poor left ventricular function." J Cardiothorac Vasc Anesth 12(3): 284-7. Koobi, T., M. Kahonen, et al. (2003). "Simultaneous non-invasive assessment of arterial stiffness and haemodynamics -a validation study." Clin Physiol Funct Imaging 23(1): 31-6. Voelker, W. (2004). "Strukturierter Datensatz zur Befunddokumentation in der Echokardiographie – Version 2004." Z Kardiol 93:987–1004 (2004) DOI 10.1007/s00392-004-0182-1. Lababidi, Z., D. A. Ehmke, et al. (1970). "The first derivative thoracic impedance cardiogram." Circulation 41(4): 651-8. Lüderitz, B. (1986). "Therapie und Diagnostik kardialer Rhythmusstörungen." Springer-Verlag (1986). Ovsyshcher, I. E. (1997). "Toward physiological pacing: optimization of cardiac hemodynamics by AV delay adjustment." Pacing Clin Electrophysiol 20(4 Pt 1): 861-5. Hochleitner, M., H. Hortnagl, et al. (1990). "Usefulness of physiologic dual-chamber pacing in drug-resistant idiopathic dilated cardiomyopathy." Am J Cardiol 66(2): 198-202. Melzer, C., A. C. Borges, et al. (2004). "Echocardiographic AV-interval optimization in patients with reduced left ventricular function." Cardiovasc Ultrasound 2: 30. Kolb HJ, B. U., Mende M, Neugebauer A, Pfeiffer D, Rother. (1999). "Assessment of the optimal atrioventricular delay in patients with dual-chamber pacemakers using impedance cardiography and Doppler echocardiography." J Clin Basic Cardiol (1999) 2:237–40. application/pdf Akute hämodynamische Auswirkung der Optimierung des AV-Intervalls mit der Impedanzkardiographie bei Zwei-Kammerstimulation Publikationsserver der Universitätsbibliothek Marburg Universitätsbibliothek Marburg 2011-02-16 Dual-chamber pacemaker opus:3376 Impedanzkardiographie monograph 2011 ths Prof. Dr. Vogt Sebastian Vogt, Sebastian (Prof. Dr.) Akute hämodynamische Auswirkung der Optimierung des AV-Intervalls mit der Impedanzkardiographie bei Zweikammerstimulation Abstract: Hintergrund: Eine Optimierung des AV- Intervalls bei Zweikammerstimulation kann zu einer Verbesserung der Hämodynamik führen. Die Beurteilung der Hämodynamik kann mittels invasiver und nichtinvasiver Verfahren erfolgen. Eine mögliche Methode ist die Impedanzkardiographie, bei der kardiale Voluminaänderungen registriert werden. Ziel dieser Arbeit war eine Untersuchung der akuten hämodynamischen Effekte unterschiedlich lang programmierter AV- Intervalle bei 2- Kammerstimulation ermittelt durch Bestimmung des Herzschlagvolumens mit der Impedanzkardiographie. Methoden: Eingeschlossen wurden 42 Patienten, die einen Zweikammer-Schrittmacher bzw. 2-Kammer-ICD implantiert bekommen hatten, aufgenommen und es wurde eine Optimierung des AV- Intervalls mittels Impedanzkardiographie vorgenommen. Die linksventrikulären Pumpfunktion wurde echokardiographisch ermittelt und die Patienten in eine Gruppe mit erhaltener linksventrikulärer Pumpfunktion (LVEF) ( EF ≥50%) oder eingeschränkter LVEF ( EF +amp;lt;50%) eingeteilt Die Einschlusskriterien waren: 1. Zweikammer-Schrittmacher bzw. ICD 2. Sinusrhythmus und 3. Einverständnis. Bei allen Patienten wurden die AV-Intervalle von 80-120 ms in Schritten von 20 ms sowie das Standard-AV-Intervall (150ms) und die eigene Überleitung (VVI 30/min.) programmiert. Bei jedem AV-Intervall wurde im Steady-state nach frühestens 1 Minute. das mittlere Herzschlagvolumen bestimmt. Resultate: Die 42 untersuchten Patienten (33 Männer, 9 Frauen, mittleres Alter 66,8 ± 7,7 Jahre, min. 47, max 84 J.). zeigten in der Echokardiographie für die mittlere Ejektionsfraktion (EF) Werte von 45 ± 17 %. Das Herzschlagvolumen zeigte bei optimalem AV-Intervall signifikant höhere Werte (74 ± 14 p +amp;lt;0001) als beim Standard-AV-Intervall (65± 13,5). Für das ungünstigste AV-Intervall ergab sich das signifikant niedrigste Herzschlagvolumen (ungünstigstes AV-Intervall 62,0 ±11,8 ms, optimales AV-Intervall 74 ± 14 p+amp;lt;0001). Das optimierte AV-Intervall war im Mittel signifikant niedriger als das ungünstigstes AV-Intervall (optimales AV-Intervall 103 ms ±25, ungünstiges AV-Intervall 129 ± 28 ms p+amp;lt;0001). Bei Patienten mit einer EF ≥ 50% ergab sich eine signifikant niedrigere optimierte AV-Zeit (96 +19,5) als für Patienten mit einer EF +amp;lt; 50% (109,5 ± 28 p= 0,048). Schlussfolgerung: Mit einem optimierten AV-Intervall kann das Herzschlagvolumen in Ruhe akut signifikant verbessert werden. Hierbei gibt es kein universell optimales AV-Intervall, sondern es ist eine individuelle Optimierung erforderlich, wobei das optimierte AV-Intervall sowohl bei Patienten mit einer EF von ≥ 50% als auch +amp;lt; 50% jeweils im Bereich niedrigerer AV-Überleitungszeiten gefunden werden kann. Patienten mit eingeschränkter LV-Pumpfunktion (EF +amp;lt; 50%) haben dabei signifikant höhere optimierte AV-Zeiten als Patienten mit nichteingeschränkter LV-Funktion. https://archiv.ub.uni-marburg.de/diss/z2011/0069/cover.png Philipps-Universität Marburg ppn:232371490 Medizin German urn:nbn:de:hebis:04-z2011-00697