Rolle von ICSBP in der Genetik BCR-ABL-induzierter Transformation und bei der Resistenzentstehung von BCR-ABL-transformierten Zellen gegenüber Imatinib CML application/pdf 2011-08-08 Medical sciences Medicine Medizin ths PD Dr. Burchert Andreas Burchert, Andreas (PD Dr.) 2010-10-07 monograph Die ursächliche Mutation in der CML ist die reziproke chromosomale Translokation t(9;22)(q34;q11), die für das Fusionsprotein BCR-ABL, eine konstitutiv aktive Tyrosinkinase, kodiert. Die CML ist durch drei Krankheitsphasen gekennzeichnet, dazu gehören die chronische Phase, die Akzelerationsphase und die Blastenkrise. Die eher indolente chronische Phase akzeleriert nach etwa 3-5 Jahren zur Blastenkrise, einer akuten Leukämie. Welche Faktoren mit BCR-ABL kooperieren und die Progression von der chronischen Phase zur Blastenkrise herbeiführen, ist bisher nur unzureichend verstanden. Zahlreiche Untersuchungen deuten darauf hin, dass die Gruppe der Interferon regulatorischen Faktoren (IRFs), darunter insbesondere ICSBP und IRF-4, in der Pathogenese der CML eine wichtige Rolle spielt. In peripherem Blut von Patienten mit CML in der chronischen Phase ist die ICSBP-Expression im Vergleich zu Normalblut signifikant vermindert. Eine Therapie mit INF-α vermag die ICSBP Expression der Patienten wieder anzuheben und zwischen gutem Ansprechen und hoher ICSBP-Expression besteht eine positive Korrelation (Schmidt et al., 1998). Diese Daten deuten auf eine antileukämische Wirkungsweise von ICSBP bei Erkrankungen des myeloischen Systems hin. In dieser Arbeit wurde versucht, mithilfe eines Replattierungsassays in Methylcellulose eine genetische Evidenz für die Kooperation von BCR-ABL mit dem Verlust von ICSBP in der onkogenen Transformation der Hämatopoese zu finden. Grundlage dieses Experimentes war die Beobachtung, dass sich BCR-ABL-transduzierte mononukleäre Knochenmarkzellen von ICSBP-/--Mäusen deutlich häufiger replattieren ließen als entsprechende Zellen von ICSBP+/+-Mäusen. In der vorliegenden Arbeit wurde das Replattierungsverhalten von BCR-ABL-transduzierten mononukleären Knochenmark-zellen von ICSBP+/+- und ICSBP+/--Mäusen untersucht. Für die Analyse des genomischen ICSBP-Status dieser Zellen wurde zu Beginn eine PCR standardisiert. Beide Zelltypen unterschieden sich jedoch nicht wesentlich in ihrem Replattierungsverhalten mit der Unfähigkeit, über die erste Replattierung hinaus CFUs zu bilden. Die Ergebnisse deuten an, dass der genetische Selektionsdruck durch Inaktivierung eines der beiden ICSBP-Allele während des Replattierungsassays nicht ausreicht, um einen Verlust der Heterozygotie herbeizuführen. Eine gentische Evidenz für die Kooperation von BCR-ABL mit dem Verlust von ICSBP in der onkogenen Transformation konnte daher nicht gefunden werden. Im zweiten Teil der Arbeit wurde der Beitrag von ICSBP zur Resistenzentstehung unter kontinuierlicher Anwesenheit von Imatinib untersucht. Ausgangspunkt dieses Experimentes war die Entdeckung, dass ICSBP die imatinibinduzierte Apoptoserate erhöht (Burchert et al., 2004). Diese Daten weisen auf eine Funktion von ICSBP als Tumorsuppressor und Regulator von Apoptose hin. In einem ENU-basierten Mutageneseassay wurde die Resistenzfrequenz von 32D/BA- und 32D/BA ICSBP Zellen miteinander verglichen und es konnte überraschend gezeigt werden, dass ICSBP die Mutationsfrequenz zu erhöhen scheint. ENU erzeugt Punktmutationen in multiplen Genen, so dass die Genese der Resistenz multifaktoriell bedingt sein kann. Im Western Blot zeigte sich jedoch in den resistenten Zellklonen unter Imatinib-Behandlung eine aktive Tyrosinkinase. Dies lässt vermuten, dass Punktmutationen im Bereich der Kinase-Domäne von BCR-ABL für die Resistenz verantwortlich sind. Ob die Vorbehandlung der Zellen mit ENU Einfluss auf die erhöhte Resistenzbildung von 32D/BA ICSBP-Zellen hat und über welchen Mechanismus ICSBP zu einer erhöhten Resistenz gegenüber Imatinib führt, wird Teil weiterer Studien sein. Zusammenfassend lassen die erhobenen Daten folgende Schlussfolgerungen zu: Erstens konnte keine genetische Evidenz für die Kooperation von BCR-ABL mit ICSBP in der onkogenen Transformation gezeigt werden und zweitens fördert ICSBP die Resistenzentstehung BCR ABL transformierter 32D-Zellen gegenüber Imatinib. Role of ICSBP in the genetic of BCR-ABL induced transformation and in the development of resistance of BCR-ABL transformed cells towards imatinib Medizin Innere Medizin German Melo, J. V., and Chuah, C. (2008). Novel agents in CML therapy: tyrosine kinase inhibitors and beyond. Hematology Am Soc Hematol Educ Program, 427-435. Sawyers, C. L. (1999). Chronic myeloid leukemia. N Engl J Med 340, 1330-1340. Palombella, V. J., and Maniatis, T. (1992). Inducible processing of interferon regulatory factor-2. Mol Cell Biol 12, 3325-3336. W. (2002). Dissecting p53 tumor suppressor functions in vivo. Cancer Cell 1, 289-298. Puttini, M., Coluccia, A. M., Boschelli, F., Cleris, L., Marchesi, E., Donella-Deana, A., Ahmed, S., Redaelli, S., Piazza, R., Magistroni, V., et al. (2006). In vitro and in vivo activity of SKI-606, a novel Src-Abl inhibitor, against imatinib-resistant Bcr-Abl+ neoplastic cells. Cancer Res 66, 11314-11322. Mullighan, C. G., Miller, C. B., Radtke, I., Phillips, L. A., Dalton, J., Ma, J., White, D., Hughes, T. P., Le Beau, M. M., Pui, C. H., et al. (2008). BCR-ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros. Nature 453, 110-114. O'Brien, S. G., Guilhot, F., Larson, R. A., Gathmann, I., Baccarani, M., Cervantes, F., Cornelissen, J. J., Fischer, T., Hochhaus, A., Hughes, T., et al. (2003). Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med 348, 994-1004. Tanaka, K., Takechi, M., Hong, J., Shigeta, C., Oguma, N., Kamada, N., Takimoto, Y., Kuramoto, A., Dohy, H., and Kyo, T. (1989). 9;22 translocation and bcr rearrangements in chronic myelocytic leukemia patients among atomic bomb survivors. J Radiat Res (Tokyo) 30, 352-358. Konopka, J. B., Watanabe, S. M., and Witte, O. N. (1984). An alteration of the human c-abl protein in K562 leukemia cells unmasks associated tyrosine kinase activity. Cell 37, 1035-1042. Liu, S. X., Cao, J., An, H., Shun, H. M., Yang, L. J., and Liu, Y. (2003). Analysis of spontaneous, gamma ray-and ethylnitrosourea-induced hprt mutants in HL-60 cells with multiplex PCR. World J Gastroenterol 9, 578-583. Pendergast, A. M., Quilliam, L. A., Cripe, L. D., Bassing, C. H., Dai, Z., Li, N., Batzer, A., Rabun, K. M., Der, C. J., Schlessinger, J., and et al. (1993). BCR-ABL-induced oncogenesis is mediated by direct interaction with the SH2 domain of the GRB-2 adaptor protein. Cell 75, 175-185. Bcr-Abl resistance screening predicts a limited spectrum of point mutations to be associated with clinical resistance to the Abl kinase inhibitor nilotinib (AMN107). Blood 108, 1328-1333. Schiffer, C. A. (2007). BCR-ABL tyrosine kinase inhibitors for chronic myelogenous leukemia. N Engl J Med 357, 258-265. Nowell, P. C., and Hungerford, D. A. (1960). Chromosome studies on normal and leukemic human leukocytes. J Natl Cancer Inst 25, 85-109. Quintas-Cardama, A., and Cortes, J. E. (2006). Chronic myeloid leukemia: diagnosis and treatment. Mayo Clin Proc 81, 973-988. Jamieson, C. H., Weissman, I. L., and Passegue, E. (2004b). Chronic versus acute myelogenous leukemia: a question of self-renewal. Cancer Cell 6, 531-533. Huret, J. L. (1990). Complex translocations, simple variant translocations and Ph- negative cases in chronic myelogenous leukaemia. Hum Genet 85, 565-568. Tanaka, N., Ishihara, M., Lamphier, M. S., Nozawa, H., Matsuyama, T., Mak, T. W., Aizawa, S., Tokino, T., Oren, M., and Taniguchi, T. (1996). Cooperation of the tumour suppressors IRF-1 and p53 in response to DNA damage. Nature 382, 816-818. Jabbour, E., Cortes, J. E., Giles, F. J., O'Brien, S., and Kantarjian, H. M. (2007). Current and emerging treatment options in chronic myeloid leukemia. Cancer 109, 2171-2181. Tsujimura, H., Tamura, T., and Ozato, K. (2003). Cutting edge: IFN consensus sequence binding protein/IFN regulatory factor 8 drives the development of type I IFN- producing plasmacytoid dendritic cells. J Immunol 170, 1131-1135. Mehlman, M. A. (2006). Dangerous and cancer-causing properties of products and chemicals in the oil refining and petrochemical industries. Part XXX: Causal relationship between chronic myelogenous leukemia and benzene-containing solvents. Nelson, N., Kanno, Y., Hong, C., Contursi, C., Fujita, T., Fowlkes, B. J., O'Connell, E., Hu-Li, J., Paul, W. E., Jankovic, D., et al. (1996). Expression of IFN regulatory factor family proteins in lymphocytes. Induction of Stat-1 and IFN consensus sequence binding protein expression by T cell activation. J Immunol 156, 3711-3720. Savona, M., and Talpaz, M. (2008). Getting to the stem of chronic myeloid leukaemia. Nat Rev Cancer 8, 341-350. Jamieson, C. H., Ailles, L. E., Dylla, S. J., Muijtjens, M., Jones, C., Zehnder, J. L., Gotlib, J., Li, K., Manz, M. G., Keating, A., et al. (2004a). Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med 351, 657-667. ICSBP directs bipotential myeloid progenitor cells to differentiate into mature macrophages. Immunity 13, 155-165. Interferon-alpha produces sustained cytogenetic responses in chronic myelogenous leukemia. Philadelphia chromosome-positive patients. Ann Intern Med 114, 532-538. Taniguchi, T., Ogasawara, K., Takaoka, A., and Tanaka, N. (2001). IRF family of transcription factors as regulators of host defense. Annu Rev Immunol 19, 623-655. Schmidt, M., Nagel, S., Proba, J., Thiede, C., Ritter, M., Waring, J. F., Rosenbauer, F., Huhn, D., Wittig, B., Horak, I., and Neubauer, A. (1998). Lack of interferon consensus sequence binding protein (ICSBP) transcripts in human myeloid leukemias. Blood 91, 22-29. Rowley, J. D. (1973). Letter: A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 243, 290-293. Mahon, F. X., Belloc, F., Lagarde, V., Chollet, C., Moreau-Gaudry, F., Reiffers, J., Goldman, J. M., and Melo, J. V. (2003). MDR1 gene overexpression confers resistance to imatinib mesylate in leukemia cell line models. Blood 101, 2368-2373. Ren, R. (2005). Mechanisms of BCR-ABL in the pathogenesis of chronic myelogenous leukaemia. Nat Rev Cancer 5, 172-183. Shah, N. P., Nicoll, J. M., Nagar, B., Gorre, M. E., Paquette, R. L., Kuriyan, J., and Sawyers, C. L. (2002). Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia. Cancer Cell 2, 117-125. Kantarjian, H., Giles, F., Wunderle, L., Bhalla, K., O'Brien, S., Wassmann, B., Tanaka, C., Manley, P., Rae, P., Mietlowski, W., et al. (2006). Nilotinib in imatinib-resistant CML and Philadelphia chromosome-positive ALL. N Engl J Med 354, 2542-2551. Normal cellular senescence and cancer susceptibility in mice genetically deficient in Ras-induced senescence-1 (Ris1). Oncogene 26, 1673-1680. L., Rosamilia, M., Ford, J., Lloyd, P., and Capdeville, R. (2004). Pharmacokinetics and pharmacodynamics of imatinib in a phase I trial with chronic myeloid leukemia patients. J Clin Oncol 22, 935-942. Sharf, R., Meraro, D., Azriel, A., Thornton, A. M., Ozato, K., Petricoin, E. F., Larner, A. C., Schaper, F., Hauser, H., and Levi, B. Z. (1997). Phosphorylation events modulate the ability of interferon consensus sequence binding protein to interact with interferon regulatory factors and to bind DNA. J Biol Chem 272, 9785-9792. Meraro, D., Hashmueli, S., Koren, B., Azriel, A., Oumard, A., Kirchhoff, S., Hauser, H., Nagulapalli, S., Atchison, M. L., and Levi, B. Z. (1999). Protein-protein and DNA- protein interactions affect the activity of lymphoid-specific IFN regulatory factors. J Immunol 163, 6468-6478. Kim, Y. M., Kang, H. S., Paik, S. G., Pyun, K. H., Anderson, K. L., Torbett, B. E., and Choi, I. (1999). Roles of IFN consensus sequence binding protein and PU.1 in regulating IL-18 gene expression. J Immunol 163, 2000-2007. Lohoff, M., and Mak, T. W. (2005). Roles of interferon-regulatory factors in T-helper- cell differentiation. Nat Rev Immunol 5, 125-135. Weisberg, E., Manley, P. W., Cowan-Jacob, S. W., Hochhaus, A., and Griffin, J. D. (2007). Second generation inhibitors of BCR-ABL for the treatment of imatinib- resistant chronic myeloid leukaemia. Nat Rev Cancer 7, 345-356. Ptasznik, A., Nakata, Y., Kalota, A., Emerson, S. G., and Gewirtz, A. M. (2004). Short interfering RNA (siRNA) targeting the Lyn kinase induces apoptosis in primary, and drug-resistant, BCR-ABL1(+) leukemia cells. Nat Med 10, 1187-1189. Zhang, S. Q., Yang, W., Kontaridis, M. I., Bivona, T. G., Wen, G., Araki, T., Luo, J., Thompson, J. A., Schraven, B. L., Philips, M. R., and Neel, B. G. (2004). Shp2 regulates SRC family kinase activity and Ras/Erk activation by controlling Csk recruitment. Mol Cell 13, 341-355. Nieborowska-Skorska, M., Wasik, M. A., Slupianek, A., Salomoni, P., Kitamura, T., Calabretta, B., and Skorski, T. (1999). Signal transducer and activator of transcription (STAT)5 activation by BCR/ABL is dependent on intact Src homology (SH)3 and SH2 domains of BCR/ABL and is required for leukemogenesis. J Exp Med 189, 1229-1242. Radujkovic, A., Schad, M., Topaly, J., Veldwijk, M. R., Laufs, S., Schultheis, B. S., Jauch, A., Melo, J. V., Fruehauf, S., and Zeller, W. J. (2005). Synergistic activity of imatinib and 17-AAG in imatinib-resistant CML cells overexpressing BCR-ABL-- Inhibition of P-glycoprotein function by 17-AAG. Leukemia 19, 1198-1206. Senechal, K., Halpern, J., and Sawyers, C. L. (1996). The CRKL adaptor protein transforms fibroblasts and functions in transformation by the BCR-ABL oncogene. J Biol Chem 271, 23255-23261. Melo, J. V. (1996). The diversity of BCR-ABL fusion proteins and their relationship to leukemia phenotype. Blood 88, 2375-2384. L., Prasad, K. V., and Griffin, J. D. (1996). The proto-oncogene product p120CBL and the adaptor proteins CRKL and c-CRK link c-ABL, p190BCR/ABL and p210BCR/ABL to the phosphatidylinositol-3' kinase pathway. Oncogene 12, 839-846. Vardiman, J. W., Harris, N. L., and Brunning, R. D. (2002). The World Health Organization (WHO) classification of the myeloid neoplasms. Blood 100, 2292-2302. Wang, Y., Cai, D., Brendel, C., Barett, C., Erben, P., Manley, P. W., Hochhaus, A., Neubauer, A., and Burchert, A. (2007). Adaptive secretion of granulocyte-macrophage colony-stimulating factor (GM-CSF) mediates imatinib and nilotinib resistance in BCR/ABL+ progenitors via JAK-2/STAT-5 pathway activation. Blood 109, 2147-2155. Williams, R. T., Roussel, M. F., and Sherr, C. J. (2006). Arf gene loss enhances oncogenicity and limits imatinib response in mouse models of Bcr-Abl-induced acute lymphoblastic leukemia. Proc Natl Acad Sci U S A 103, 6688-6693. Klemm, L., Duy, C., Iacobucci, I., Kuchen, S., von Levetzow, G., Feldhahn, N., Henke, N., Li, Z., Hoffmann, T. K., Kim, Y. M., et al. (2009). The B cell mutator AID promotes B lymphoid blast crisis and drug resistance in chronic myeloid leukemia. Cancer Cell 16, 232-245. Nozawa, H., Oda, E., Nakao, K., Ishihara, M., Ueda, S., Yokochi, T., Ogasawara, K., Nakatsuru, Y., Shimizu, S., Ohira, Y., et al. (1999). Loss of transcription factor IRF-1 affects tumor susceptibility in mice carrying the Ha-ras transgene or nullizygosity for p53. Genes Dev 13, 1240-1245. Interferon consensus sequence binding protein-deficient mice display impaired resistance to intracellular infection due to a primary defect in interleukin 12 p40 induction. J Exp Med 186, 1523-1534. Kelliher, M. A., McLaughlin, J., Witte, O. N., and Rosenberg, N. (1990). Induction of a chronic myelogenous leukemia-like syndrome in mice with v-abl and BCR/ABL. Proc Natl Acad Sci U S A 87, 6649-6653. Puil, L., Liu, J., Gish, G., Mbamalu, G., Bowtell, D., Pelicci, P. G., Arlinghaus, R., and Pawson, T. (1994). Bcr-Abl oncoproteins bind directly to activators of the Ras signalling pathway. Embo J 13, 764-773. Quintas-Cardama, A., and Cortes, J. (2009). Molecular biology of bcr-abl1-positive chronic myeloid leukemia. Blood 113, 1619-1630. Talpaz, M., Shah, N. P., Kantarjian, H., Donato, N., Nicoll, J., Paquette, R., Cortes, J., O'Brien, S., Nicaise, C., Bleickardt, E., et al. (2006). Dasatinib in imatinib-resistant Philadelphia chromosome-positive leukemias. N Engl J Med 354, 2531-2541. Overriding imatinib resistance with a novel ABL kinase inhibitor. Science 305, 399- 401. Philipps-Universität Marburg Chronisch-myeloische Leukaemie urn:nbn:de:hebis:04-z2011-00151 2011 doctoralThesis The reciprocal gene translocation t(9;22)(q34;q11) creates the Philadelphia chromosome (Ph+) carrying the BCR-ABL fusion gene. It is the causative genetic aberration of chronic myelogenous leukaemia (CML) and encodes a constitutively active protein tyrosine kinase. CML is characterized by three clinical stages including the chronic phase, the accelerated phase and the blast crisis. After a median of 3-4 years rather indolent chronic phase accelerates to blast crisis, an acute leukaemia. Although the underlying mechanisms are not fully understood, the appearance of additional genetic and/or epigenetic abnormalities in the blast phase strongly suggests that superimposed genetic alterations account for disease progression. There is mounting evidence that the family of interferon regulatory factors (IRFs), among them particularly IRF-8 (ICSBP) and IRF-4, is involved in the pathogenesis of CML. In the peripheral blood of CML patients in chronic phase the ICSBP-mRNA expression is very low or absent compared with blood from healthy donors. INF-α therapy leads to an increase of ICSBP transcripts in the treated patients. Furthermore there is a correlation between good response to INF-α and high ICSBP levels. These data suggest a role for ICSBP as a tumour suppressor and regulator of apoptosis in diseases of the myeloid system. In an attempt to address whether there is genetic evidence for the cooperation between BCR-ABL and the loss of ICSBP in the oncogenic transformation of haematopoiesis we performed a replating assay. This experiment was based on the observation that BCR ABL transduced mononuclear bone marrow cells from ICSBP-/- mice could be replated more often than the corresponding cells from ICSBP+/+ mice. Flow-sorted mononuclear bone marrow cells from ICSBP+/+ and ICSBP+/- mice were transduced with BCR-ABL. We then looked for their replating capacities in methylcellulose culture. The replating pattern did not differ significantly. Both cells from ICSBP+/+ and from ICSBP+/- mice did not form any CFUs beyond the first round of replating. These results indicate that the genetic selection pressure in the course of the replating assay is not sufficient to lead to LOH. Thus, genetic evidence for the cooperation between BCR-ABL and loss of ICSBP in transformation could not be found. In the second part of the thesis we investigated whether ICSBP has an impact on resistance to imatinib based on the observation that 32D/BA ICSBP cells are significantly more sensitive to apoptosis in the presence of imatinib than 32D/BA cells. These data suggest a role for ICSBP as a tumour suppressor and regulator of apoptosis. In an ENU based mutagenesis assay we compared the resistence pattern of 32D/BA and 32D/BA-ICSBP cells and found that ICSBP seems to increase the rate of resistance. Because ENU causes point mutations in multiple proteins, we hypothesized that in our assay, resistance to imatinib may be multifactorial. However in western blot it became obvious that the resistant clones had an active tyrosine kinase suggesting that point mutations in the kinase domain of BCR-ABL may be responsible for resistance to imatinib. Whether treatment with ENU has an impact on the increased resistance in 32D/BA ICSBP cells and by which mechanisms ICSBP leads to increased resistance to imatinib will be part of further investigation. Taken together, genetic evidence for the cooperation between BCR-ABL and ICSBP in the oncogenic transformation could not be found, and ICSBP increases the resistance rate in BCR ABL-transduced 32D cells in the presence of imatinib. Publikationsserver der Universitätsbibliothek Marburg Universitätsbibliothek Marburg opus:3333 2011-02-09 https://archiv.ub.uni-marburg.de/diss/z2011/0015/cover.png https://doi.org/10.17192/z2011.0015 ppn:27199259X Schmidt, Katharina Schmidt Katharina