Nachweis von Cyanid und Schwermetallen mittels Chip-basierter Chemo- und Biosensoren

In der Umweltanalytik spielen Cyanid und Schwermetalle eine wichtige Rolle, denn beide Komponenten sind schädlich für den Menschen. Aufgrund ihrer guten chemischen und physikalischen Eigenschaften werden sowohl Cyanid als auch Schwermetalle häufig für industrielle Zwecke verwendet und können somit ü...

Ausführliche Beschreibung

Gespeichert in:
1. Verfasser: Turek, Monika
Beteiligte: Schöning, M. J. (Prof. Dr.) (BetreuerIn (Doktorarbeit))
Format: Dissertation
Sprache:Deutsch
Veröffentlicht: Philipps-Universität Marburg 2010
Pharmazeutische Chemie
Schlagworte:
Online Zugang:PDF-Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
language German
publishDate 2010
era_facet 2010
title Nachweis von Cyanid und Schwermetallen mittels Chip-basierter Chemo- und Biosensoren
spellingShingle Nachweis von Cyanid und Schwermetallen mittels Chip-basierter Chemo- und Biosensoren
Cyanide
Chemischer Sensor
Kaliumcyanid
Medizin, Gesundheit
Chemical sensor
Enzym-Biosensor
Schwermetall
Heavy metals
Biosensor
Turek, Monika
In environmental analysis, cyanide and heavy metals play an important role because both components are toxic for human. Due to their good chemical and physical properties cyanide as well as heavy metals are frequently used for industrial purposes. Thus, via industrial effluents and exhausts they are released into the environment. Furthermore, both components exist naturally. In this work, silicon-based chemical sensors and biosensors for a qualitative and quantitative detection of cyanide and heavy metals in solutions have been developed. In the case of cyanide detection, capacitive electrolyte-insulator-semiconductor (EIS) structures with immobilised cyanide selective enzyme, Cyanidase, as well as Ag-based ion-selective electrodes (ISEs) have been designed, fabricated by means of thin-/thick-film technology, characterised and optimised towards their intrinsic sensor properties. The cyanide biosensor uses the local pH-shift, which is caused by the selective catalysis of cyanide to ammonia and formate by Cyanidase. The cyanide detection with the help of Ag-halogenide and Ag-chalcogenide-glass ISE is based on a complex reaction between CN-ions from the analyte solution and Ag-ions in the sensor membrane, which results in a change of the surface potential of the ISE. Both, the enzyme-based biosensor and Ag-based ISE have shown a cyanide depended signal, which correlates well with theoretically expected values and experimental data from the literature. Due to the low enzyme activity and stability of the immobilised Cyanidase and based on theoretical model calculation it could be shown, that the developed cyanide biosensor delivers reliable and reproducible results only under optimal laboratory conditions. For the detection of heavy metals in liquids, various chip-based chalcogenide-glass ISEs have been realised by means of the pulsed laser deposition technique and characterised in Ag-, Cu-, Pb- and Cd-ion containing analyte solutions. The measurement principle is based on a concentration depended, dynamic ion exchange between particular heavy metal ions from the solution with heavy metal ions in the sensor membrane, which leads to a concentration depended change of the surface potential. The chalcogenide-glass ISEs have shown a heavy metal depended signal, which correlates well with the theoretically expected Nernst-sensitivity. For the analysis of mixed heavy metal solutions, in addition to the high sensitivity of chalcogenide-glass ISEs (e.g., Cu-ISE to Cu-ions) the cross-sensitivity of these ISEs have been used advantageously in a multi-sensor device. Therefore, in close cooperation with the university Bonn-Rhein-Sieg (Prof. W. Heiden) a primary “electronic tongue” which exists of three chalcogenide-glass ISEs (for Ag-, Cu- and Pb-ion detection) have been developed. In the first step, it could be shown that with the help of a fuzzy-logic software heavy metal ions of two-component solutions could be quantitatively and qualitatively determined. For the simultaneous detection of cyanide and heavy metals in liquids, a portable hybrid measuring cell and a measurement protocol have been presented for the first time. Therefore, in a first step cyanide and heavy metals have been separated by means of acidification of the analyte solution and applied temperature to the system. In a second step both toxic components have been simultaneously detected with the help of particular chalcogenide-glass ISEs. This hybrid measuring cell could be successfully applied for the simultaneous detection of Cu-, Cd- or Pb-ions and CN-ions.
title_short Nachweis von Cyanid und Schwermetallen mittels Chip-basierter Chemo- und Biosensoren
title_full Nachweis von Cyanid und Schwermetallen mittels Chip-basierter Chemo- und Biosensoren
title_fullStr Nachweis von Cyanid und Schwermetallen mittels Chip-basierter Chemo- und Biosensoren
title_full_unstemmed Nachweis von Cyanid und Schwermetallen mittels Chip-basierter Chemo- und Biosensoren
title_sort Nachweis von Cyanid und Schwermetallen mittels Chip-basierter Chemo- und Biosensoren
topic Cyanide
Chemischer Sensor
Kaliumcyanid
Medizin, Gesundheit
Chemical sensor
Enzym-Biosensor
Schwermetall
Heavy metals
Biosensor
author Turek, Monika
url http://archiv.ub.uni-marburg.de/diss/z2010/0081/pdf/dmt.pdf
first_indexed 2010-03-16T00:00:00Z
oai_set_str_mv ddc:610
doc-type:doctoralThesis
open_access
xMetaDissPlus
dewey-raw 610
dewey-search 610
genre Medical sciences, Medicine
genre_facet Medical sciences, Medicine
topic_facet Medizin, Gesundheit
last_indexed 2011-08-10T23:59:59Z
building Fachbereich Pharmazie
format Dissertation
publisher Philipps-Universität Marburg
contents In environmental analysis, cyanide and heavy metals play an important role because both components are toxic for human. Due to their good chemical and physical properties cyanide as well as heavy metals are frequently used for industrial purposes. Thus, via industrial effluents and exhausts they are released into the environment. Furthermore, both components exist naturally. In this work, silicon-based chemical sensors and biosensors for a qualitative and quantitative detection of cyanide and heavy metals in solutions have been developed. In the case of cyanide detection, capacitive electrolyte-insulator-semiconductor (EIS) structures with immobilised cyanide selective enzyme, Cyanidase, as well as Ag-based ion-selective electrodes (ISEs) have been designed, fabricated by means of thin-/thick-film technology, characterised and optimised towards their intrinsic sensor properties. The cyanide biosensor uses the local pH-shift, which is caused by the selective catalysis of cyanide to ammonia and formate by Cyanidase. The cyanide detection with the help of Ag-halogenide and Ag-chalcogenide-glass ISE is based on a complex reaction between CN-ions from the analyte solution and Ag-ions in the sensor membrane, which results in a change of the surface potential of the ISE. Both, the enzyme-based biosensor and Ag-based ISE have shown a cyanide depended signal, which correlates well with theoretically expected values and experimental data from the literature. Due to the low enzyme activity and stability of the immobilised Cyanidase and based on theoretical model calculation it could be shown, that the developed cyanide biosensor delivers reliable and reproducible results only under optimal laboratory conditions. For the detection of heavy metals in liquids, various chip-based chalcogenide-glass ISEs have been realised by means of the pulsed laser deposition technique and characterised in Ag-, Cu-, Pb- and Cd-ion containing analyte solutions. The measurement principle is based on a concentration depended, dynamic ion exchange between particular heavy metal ions from the solution with heavy metal ions in the sensor membrane, which leads to a concentration depended change of the surface potential. The chalcogenide-glass ISEs have shown a heavy metal depended signal, which correlates well with the theoretically expected Nernst-sensitivity. For the analysis of mixed heavy metal solutions, in addition to the high sensitivity of chalcogenide-glass ISEs (e.g., Cu-ISE to Cu-ions) the cross-sensitivity of these ISEs have been used advantageously in a multi-sensor device. Therefore, in close cooperation with the university Bonn-Rhein-Sieg (Prof. W. Heiden) a primary “electronic tongue” which exists of three chalcogenide-glass ISEs (for Ag-, Cu- and Pb-ion detection) have been developed. In the first step, it could be shown that with the help of a fuzzy-logic software heavy metal ions of two-component solutions could be quantitatively and qualitatively determined. For the simultaneous detection of cyanide and heavy metals in liquids, a portable hybrid measuring cell and a measurement protocol have been presented for the first time. Therefore, in a first step cyanide and heavy metals have been separated by means of acidification of the analyte solution and applied temperature to the system. In a second step both toxic components have been simultaneously detected with the help of particular chalcogenide-glass ISEs. This hybrid measuring cell could be successfully applied for the simultaneous detection of Cu-, Cd- or Pb-ions and CN-ions.
description In der Umweltanalytik spielen Cyanid und Schwermetalle eine wichtige Rolle, denn beide Komponenten sind schädlich für den Menschen. Aufgrund ihrer guten chemischen und physikalischen Eigenschaften werden sowohl Cyanid als auch Schwermetalle häufig für industrielle Zwecke verwendet und können somit über industrielle Abgase und Abwässer in die Umwelt gelangen. Darüber hinaus kommen beide Komponenten in der Natur vor. Im Rahmen dieser Arbeit wurden Silizium-basierte Chemo-/Biosensoren für die qualitative und quantitative Erfassung von Cyanid und Schwermetallen in Flüssigkeiten entwickelt. Im Falle der Cyaniderfassung wurden kapazitive Elektrolyt-Isolator-Silizium (EIS-) Strukturen, auf denen das Enzym Cyanidase immobilisiert wurde, sowie Ag-basierte ionenselektive Elektroden (ISEs) konzeptioniert, mittels Dünnschicht-/Dickschichttechnik prozessiert und hinsichtlich ihrer intrinsischen Sensoreigenschaften charakterisiert und optimiert. Der Cyanid-Biosensor nutzt die lokale pH-Wert-Verschiebung, die bei der enzymatischen Katalyse von Cyanid durch die Cyanidase zu Ammoniak und Formiat entsteht. Die Cyaniderfassung mittels Ag-Halogenid- bzw. Ag-Chalkogenidglas-ISE basiert auf der Komplexbindung zwischen CN-Ionen in der Lösung und Ag-Ionen in der Membran, die in einer Änderung des Oberflächenpotentials des Sensors resultiert. Sowohl der Enzym-Biosensor als auch die Ag-basierte ISE zeigten ein von der Cyanidkonzentration abhängiges Signal, das gut mit den theoretischen und experimentellen Werten aus der Literatur übereinstimmte. Aufgrund der geringen Aktivität und Stabilität der immobilisierten Cyanidase und unter Berücksichtigung von theoretischen Modellberechnungen zeigte sich jedoch, dass der entwickelte Biosensor nur unter optimalen Labor-Bedingungen für die Cyaniderfassung eingesetzt werden konnte. Für die Schwermetallerfassung in Flüssigkeiten wurden unterschiedliche Chip-basierte Chalkogenidglas-ISEs mittels gepulster Laserabscheidung hergestellt und für die Messung von Ag-, Cu-, Pb- und Cd-Ionen charakterisiert. Das Messprinzip dieser Sensoren basiert auf einem konzentrationsabhängigen, dynamischen Ionenaustausch zwischen Schwermetallionen aus der Messlösung und Schwermetallionen in der Sensormembran, was zu einer Veränderung des Oberflächenpotentials führt. Die Chalkogenidglas-ISEs zeigten ein von der Schwermetallkonzentration abhängiges Signal, entsprechend der theoretisch zu erwartenden Nernstempfindlichkeit. In gemischten Schwermetalllösungen konnte neben der hohen Sensitivität der Chalkogenidglas-ISE (z.B. Cu-ISE gegenüber Cu-Ionen) zusätzlich deren Querempfindlichkeit zu anderen Schwermetallionen in Form einer Multi-Sensoranordnung vorteilhaft eingesetzt werden. Deshalb wurde in einem grundlegenden Experiment in Kooperation mit der Hochschule Bonn-Rhein-Sieg (Prof. W. Heiden) eine „einfache“ elektronische Zunge – bestehend aus drei Chalkogenidglas-ISEs (für Ag-, Cu- und Pb-Ionen) – aufgebaut. Unter Zuhilfenahme einer Fuzzy-Logic-Software war es im ersten Schritt möglich, Schwermetalle aus Zwei-Komponentengemischen zu separieren. Darüber hinaus wurde für die gleichzeitige Erfassung von Cyanid und Schwermetallen in Lösungen erstmalig eine portable hybride Messzelle entwickelt und ein Messprotokoll vorgestellt, bei dem Cyanid und Schwermetalle zunächst über eine Ansäuerung und Temperaturbehandlung voneinander getrennt wurden, um anschließend simultan mittels der jeweiligen Chalkogenidglas-ISE potentiometrisch erfasst werden zu können. Diese hybride Messzelle konnte erfolgreich für simultane Messungen von Cu-, Pb- bzw. Cd-Ionen und CN-Ionen im µ-molaren Konzentrationsbereich eingesetzt werden.
title_alt Detection of cyanide and heavy metals by means of chip-based chemical sensors and biosensors
ref_str_mv references
license_str http://archiv.ub.uni-marburg.de/adm/urhg.html
institution Pharmazeutische Chemie
author2 Schöning, M. J. (Prof. Dr.)
author2_role ths
thumbnail http://archiv.ub.uni-marburg.de/diss/z2010/0081/cover.png
spelling diss/z2010/0081 2010 Nachweis von Cyanid und Schwermetallen mittels Chip-basierter Chemo- und Biosensoren 2010-03-16 2011-08-10 2010-01-21 urn:nbn:de:hebis:04-z2010-00815 In environmental analysis, cyanide and heavy metals play an important role because both components are toxic for human. Due to their good chemical and physical properties cyanide as well as heavy metals are frequently used for industrial purposes. Thus, via industrial effluents and exhausts they are released into the environment. Furthermore, both components exist naturally. In this work, silicon-based chemical sensors and biosensors for a qualitative and quantitative detection of cyanide and heavy metals in solutions have been developed. In the case of cyanide detection, capacitive electrolyte-insulator-semiconductor (EIS) structures with immobilised cyanide selective enzyme, Cyanidase, as well as Ag-based ion-selective electrodes (ISEs) have been designed, fabricated by means of thin-/thick-film technology, characterised and optimised towards their intrinsic sensor properties. The cyanide biosensor uses the local pH-shift, which is caused by the selective catalysis of cyanide to ammonia and formate by Cyanidase. The cyanide detection with the help of Ag-halogenide and Ag-chalcogenide-glass ISE is based on a complex reaction between CN-ions from the analyte solution and Ag-ions in the sensor membrane, which results in a change of the surface potential of the ISE. Both, the enzyme-based biosensor and Ag-based ISE have shown a cyanide depended signal, which correlates well with theoretically expected values and experimental data from the literature. Due to the low enzyme activity and stability of the immobilised Cyanidase and based on theoretical model calculation it could be shown, that the developed cyanide biosensor delivers reliable and reproducible results only under optimal laboratory conditions. For the detection of heavy metals in liquids, various chip-based chalcogenide-glass ISEs have been realised by means of the pulsed laser deposition technique and characterised in Ag-, Cu-, Pb- and Cd-ion containing analyte solutions. The measurement principle is based on a concentration depended, dynamic ion exchange between particular heavy metal ions from the solution with heavy metal ions in the sensor membrane, which leads to a concentration depended change of the surface potential. The chalcogenide-glass ISEs have shown a heavy metal depended signal, which correlates well with the theoretically expected Nernst-sensitivity. For the analysis of mixed heavy metal solutions, in addition to the high sensitivity of chalcogenide-glass ISEs (e.g., Cu-ISE to Cu-ions) the cross-sensitivity of these ISEs have been used advantageously in a multi-sensor device. Therefore, in close cooperation with the university Bonn-Rhein-Sieg (Prof. W. Heiden) a primary “electronic tongue” which exists of three chalcogenide-glass ISEs (for Ag-, Cu- and Pb-ion detection) have been developed. In the first step, it could be shown that with the help of a fuzzy-logic software heavy metal ions of two-component solutions could be quantitatively and qualitatively determined. For the simultaneous detection of cyanide and heavy metals in liquids, a portable hybrid measuring cell and a measurement protocol have been presented for the first time. Therefore, in a first step cyanide and heavy metals have been separated by means of acidification of the analyte solution and applied temperature to the system. In a second step both toxic components have been simultaneously detected with the help of particular chalcogenide-glass ISEs. This hybrid measuring cell could be successfully applied for the simultaneous detection of Cu-, Cd- or Pb-ions and CN-ions. In der Umweltanalytik spielen Cyanid und Schwermetalle eine wichtige Rolle, denn beide Komponenten sind schädlich für den Menschen. Aufgrund ihrer guten chemischen und physikalischen Eigenschaften werden sowohl Cyanid als auch Schwermetalle häufig für industrielle Zwecke verwendet und können somit über industrielle Abgase und Abwässer in die Umwelt gelangen. Darüber hinaus kommen beide Komponenten in der Natur vor. Im Rahmen dieser Arbeit wurden Silizium-basierte Chemo-/Biosensoren für die qualitative und quantitative Erfassung von Cyanid und Schwermetallen in Flüssigkeiten entwickelt. Im Falle der Cyaniderfassung wurden kapazitive Elektrolyt-Isolator-Silizium (EIS-) Strukturen, auf denen das Enzym Cyanidase immobilisiert wurde, sowie Ag-basierte ionenselektive Elektroden (ISEs) konzeptioniert, mittels Dünnschicht-/Dickschichttechnik prozessiert und hinsichtlich ihrer intrinsischen Sensoreigenschaften charakterisiert und optimiert. Der Cyanid-Biosensor nutzt die lokale pH-Wert-Verschiebung, die bei der enzymatischen Katalyse von Cyanid durch die Cyanidase zu Ammoniak und Formiat entsteht. Die Cyaniderfassung mittels Ag-Halogenid- bzw. Ag-Chalkogenidglas-ISE basiert auf der Komplexbindung zwischen CN-Ionen in der Lösung und Ag-Ionen in der Membran, die in einer Änderung des Oberflächenpotentials des Sensors resultiert. Sowohl der Enzym-Biosensor als auch die Ag-basierte ISE zeigten ein von der Cyanidkonzentration abhängiges Signal, das gut mit den theoretischen und experimentellen Werten aus der Literatur übereinstimmte. Aufgrund der geringen Aktivität und Stabilität der immobilisierten Cyanidase und unter Berücksichtigung von theoretischen Modellberechnungen zeigte sich jedoch, dass der entwickelte Biosensor nur unter optimalen Labor-Bedingungen für die Cyaniderfassung eingesetzt werden konnte. Für die Schwermetallerfassung in Flüssigkeiten wurden unterschiedliche Chip-basierte Chalkogenidglas-ISEs mittels gepulster Laserabscheidung hergestellt und für die Messung von Ag-, Cu-, Pb- und Cd-Ionen charakterisiert. Das Messprinzip dieser Sensoren basiert auf einem konzentrationsabhängigen, dynamischen Ionenaustausch zwischen Schwermetallionen aus der Messlösung und Schwermetallionen in der Sensormembran, was zu einer Veränderung des Oberflächenpotentials führt. Die Chalkogenidglas-ISEs zeigten ein von der Schwermetallkonzentration abhängiges Signal, entsprechend der theoretisch zu erwartenden Nernstempfindlichkeit. In gemischten Schwermetalllösungen konnte neben der hohen Sensitivität der Chalkogenidglas-ISE (z.B. Cu-ISE gegenüber Cu-Ionen) zusätzlich deren Querempfindlichkeit zu anderen Schwermetallionen in Form einer Multi-Sensoranordnung vorteilhaft eingesetzt werden. Deshalb wurde in einem grundlegenden Experiment in Kooperation mit der Hochschule Bonn-Rhein-Sieg (Prof. W. Heiden) eine „einfache“ elektronische Zunge – bestehend aus drei Chalkogenidglas-ISEs (für Ag-, Cu- und Pb-Ionen) – aufgebaut. Unter Zuhilfenahme einer Fuzzy-Logic-Software war es im ersten Schritt möglich, Schwermetalle aus Zwei-Komponentengemischen zu separieren. Darüber hinaus wurde für die gleichzeitige Erfassung von Cyanid und Schwermetallen in Lösungen erstmalig eine portable hybride Messzelle entwickelt und ein Messprotokoll vorgestellt, bei dem Cyanid und Schwermetalle zunächst über eine Ansäuerung und Temperaturbehandlung voneinander getrennt wurden, um anschließend simultan mittels der jeweiligen Chalkogenidglas-ISE potentiometrisch erfasst werden zu können. Diese hybride Messzelle konnte erfolgreich für simultane Messungen von Cu-, Pb- bzw. Cd-Ionen und CN-Ionen im µ-molaren Konzentrationsbereich eingesetzt werden. Detection of cyanide and heavy metals by means of chip-based chemical sensors and biosensors Kloock, J.P., Mourzina, Y.G., Schubert, J., Schöning, M.J.: A first step towards a microfabricated thin-film sensor array on the basis of chalcogenide glass materials. Sensors 2 (2002) S. 356-365. 2002 A first step towards a microfabricated thin-film sensor array on the basis of chalcogenide glass materials L.A. Zadeh, The Concept of a Linguistic Variable and Its Application to Approx- imate Reasoning, Memorandum ERL-M 411, Berkeley, 1973. 1973 The Concept of a Linguistic Variable and Its Application to Approximate Reasoning Van Hal, R.E.G.; Eijkel, J.C.T.; Bergveld, P.: A novel description of ISFET sensitivity with the buffer capacity and double-layer capacitance as key parameters. Sensors and Actuators B 24-25 (1995), S. 201-205 1995 A novel description of ISFET sensitivity with the buffer capacity and double-layer capacitance as key parameters Mak, K. K. W.; Law, A. W. C.; Tokuda, S.; Yanase, H.; Renneberg, R. Application of cyanide hydrolase from klebsiella sp. in a biosensor system for detection of low-lewel cyanide. Appl. Microbiol. Biotechnol. 2005, 67, 631-636. 2005 Application of cyanide hydrolase from klebsiella sp. in a biosensor system for detection of low-lewel cyanide Campanella, L.; Colapicchioni,C.; Favero, G.; Sammartino, M.P.; Tomassetti, M.: Organophosphorus pesticide (paraoxon) analysis using solid state sensors. Sensors and Actuators B 33 (1996), S. 25-33 1996 Organophosphorus pesticide (paraoxon) analysis using solid state sensors Li, D.: Electrokinetics in microfluidics. Elsevier Academic Press, Amsterdam, 2004 2004 Electrokinetics in microfluidics Pranitis, D.M.; Telting-Diaz, M.; Meyerhoff, M.E.: Potentiometric ion-, gas-, and bio-selective membrane electrodes. Critical Reviews in Analytical Chemistry 23 (1992), S. 163-186 1992 Potentiometric ion-, gas-, and bio-selective membrane electrodes Girault, H.H.: Analytical and physical electrochemistry. EPFL Press, New York, 2004 2004 Analytical and physical electrochemistry Schöning, M.J.: Sensoren für chemische und biologische Größen. Vorlesungsskriptum, 2000 2000 Sensoren für chemische und biologische Größen Besombes, J.-L.; Cosnier, S.; Reverdy, L.; Reverdy, G.: A biosensor as warning device for the detection of cyanide, chlorophenols, atrazine and carbamate pesticides. Analytica Chimica Acta 311 (1995), S. 255-263 1995 A biosensor as warning device for the detection of cyanide, chlorophenols, atrazine and carbamate pesticides Groom, C.A.; Luong, J.H.T.: A flow through analysis biosensor system for cyanide. Journal of Biotechnology 21 (1991), S. 161-171 1991 A flow through analysis biosensor system for cyanide Frumar, M.; Wagner, T.: Ag doped chalcogenide glass and their applications. Current Opinion in Solid State and Material Science 7 (2003), S. 117-126 2003 Ag doped chalcogenide glass and their applications Riesen, A.: Analyse von kombinierten Signalen immobilisierter Chemosensoren mit Fuzzy Logic. Bachelor Arbeit an der Hochschule Bonn-Rhein-Sieg, Fachbereich Informatik, 2009 2009 Analyse von kombinierten Signalen immobilisierter Chemosensoren mit Fuzzy Logic. Bachelor Arbeit an der Hochschule Bonn-Rhein-Sieg T. R. Crompton, Analysis of Seawater (Springer Verl., Hei- delberg Berlin, 2006). 2006 Analysis of Seawater Bergveld, P;, Sibbald, A.: Analytical and biomedical applications of ion-selective field-effect transistors. Elsevier, Amsterdam, 1988 1988 Analytical and biomedical applications of ion-selective field-effect transistors Referenzen [1] Neshkova, M.T., Pancheva, E.M., Pashova, V.: A new generation of CN -sensing silver chalcogenide-selective membranes for FIA application. Sens. Actuators B 19 (2006) S. 625-631. 2006 A new generation of CN -sensing silver chalcogenide-selective membranes for FIA application Mourzina, Y.G.; Schöning, M.J.; Schubert, J.; Zander, W.; Legin, A.V.; Vlasov, Y.G.; Kordos, P.; Lüth, H.: A new thin-film Pb microsensor based on chacogenide glasses. Sensors and Actuators B 71 (2000), S. 13-18 2000 A new thin-film Pb microsensor based on chacogenide glasses Men, H., Zou, S., Li, Y., Wang, Y., Ye, X., Wang, P.: A novel electronic tongue combined MLAPS with stripping voltammetry for environmental detection. Sens. A novel electronic tongue combined MLAPS with stripping voltammetry for environmental detection Merkoci, A.; Braga, S.; Fabregas, E.; Alegret, S.: A potentiometric biosensor for d-amygdalin based on a consolidated bio composite membrane. Analytica Chimica Acta 391 (1999), S. 65-72 1999 A potentiometric biosensor for d-amygdalin based on a consolidated bio composite membrane Kameswara Rao, V.; Suresh, S.; Bhattacharya, A.; Rao, N.B.S.N.: A potentiometric detector for hydrogen cyanide gas using silver dicyano complex. Talanta 49 (1999), S. 367-371 1999 A potentiometric detector for hydrogen cyanide gas using silver dicyano complex Mattiasson, B.; Mosbach, K.; Svenson, A.: Application of cyanide-metabolizing enzymes to environmental control; enzyme thermistor assay of cyanide using immobilized rhodanese and injectase. Biotechnology and Bioengineering 19 (2004), S. 1643-1651 2004 Application of cyanide-metabolizing enzymes to environmental control; enzyme thermistor assay of cyanide using immobilized rhodanese and injectase Legin, A.V.; Rudnitskaya, A.M.; Vlasov, Y.G.; di Natale, C.; Mazzone, E.; d'Amico, A.: Application of electronic tongue for quantitative analysis of mineral water and wine. Application of electronic tongue for quantitative analysis of mineral water and wine Sharma, S.K.; Sehgal, N.; Kumar, A.: Biomolecules for development of biosensors and their applications. Current Applied Physics 3 (2003), S. 307-316 2003 Biomolecules for development of biosensors and their applications Keusgen, M. Biosensors: new approaches in drug discovery. Naturwissenschaften 2002, 89, 433- 444. 2002 Biosensors: new approaches in drug discovery Mortimer, C.E.; Müller, U.: Chemie. Basiswissen der Chemie. Georg Thieme Verlag, Stuttgart, 2003 2003 Chemie. Basiswissen der Chemie Watanabe, A.; Yano, K.; Ikebukuro, K.; Karube, I.: Cloning and expression of a gene encoding cyanidase from pseudomonas stutzeri AK61. Applied Microbiology and Biotechnology 50 (1998), S. 93-97 1998 Cloning and expression of a gene encoding cyanidase from pseudomonas stutzeri AK61 Van Sommeren, A.P.G.; Machielsen, P.A.G.M.; Gribnau, T.C.J.: Comparison of three activated agaroses for use in affinity chromatography: effects on coupling performance and ligand leakage. Journal of Chromatography 639 (1993), S. 23-31 1993 Comparison of three activated agaroses for use in affinity chromatography: effects on coupling performance and ligand leakage J. Watkinson, Compression in Video and Audio, Focal Press, London, 1995. 1995 Compression in Video and Audio Tavernier, M.L.; Michaud, P.; Wadouachi, A.; Petit, E.: Continuous production of oligoglucuronans by immobilized glucuronan lyase. Enzyme and Microbial Technology 45 (2009), S. 48-52 2009 Continuous production of oligoglucuronans by immobilized glucuronan lyase Smith, R.M.; Martell, A.E.: Critical stability constants. Plenum Press, New York, 1989 1989 Critical stability constants Legin, A.V.; Babain, V.A.; Kirsanov, D.O.; Mednova, O.V.: Cross-sensitive rare earth metal ion sensors based on extraction systems. Sensors and Actuators B 131 (2008), S. 29-36 2008 Cross-sensitive rare earth metal ion sensors based on extraction systems Vlasov, Y.G.; Legin, A.V.; Rudnitskaya, A.M.: Cross-sensitivity evaluation of chemical sensors for electronic tongue: determination of heavy metal ions. Sensors and Actuators B 44 (1997), S. 532-537 1997 Cross-sensitivity evaluation of chemical sensors for electronic tongue: determination of heavy metal ions Luna, R.M.; Lapidus, G.T.: Cyanidation kinetics of silver sulfide. Hydrometallurgy 56 (2000), S. 171-188 2000 Cyanidation kinetics of silver sulfide Smit, M.H.; Cass, A.E.: Cyanide detection using a substrate-regenerating, peroxidase-based biosensor. Analytical Chemistry 62 (1990), S. 2429-2436 1990 Cyanide detection using a substrate-regenerating, peroxidase-based biosensor Volotovsky, V.; Kim, N.: Cyanide determination by an ISFET-based peroxidase biosensor. Cyanide determination by an ISFET-based peroxidase biosensor Cipollone, R.; Ascenzi, P.; Frangipani, E.; Visca, P.: Cyanide detoxification by recombinant bacterial rhodanese. Chemosphere 63 (2006), S. 942-949 2006 Cyanide detoxification by recombinant bacterial rhodanese Watanabe, A.; Yano, K.; Ikebukuro, K.; Karube, I.: Cyanide hydrolysis in a cyanide-degrading bacterium, pseudomonas stutzeri AK61, by cyanidase. Microbiology 144 (1998), S. 1677-1682 1998 Cyanide hydrolysis in a cyanide-degrading bacterium, pseudomonas stutzeri AK61, by cyanidase Neshkova M.T., Pancheva, E.M.: Cyanide ion-selective electrodes based on thin electroplated membranes of silver chalcogenides. Anal. Chim. Acta 242 (1991) S. 73-83. 1991 Cyanide ion-selective electrodes based on thin electroplated membranes of silver chalcogenides Danke an die Arbeitsgruppe in Marburg für die schöne Aufnahme und sehr gute Betreuung. Danke für die Cyanidase und die dazugehörigen Diskussionen. Danke Lothar, Gigi, Holger, Elvira und Anja. Danke! Danke an die Arbeitsgruppe in Marburg für die schöne Aufnahme und sehr gute Betreuung. Danke für die Cyanidase und die dazugehörigen Diskussionen Danke an Dr. P. Krüger für die schöne Zusammenarbeit am BMBF-Projekt. Danke! Danke an das IBN im FZ Jülich. Danke an Dr. J. Schubert, Dr. B. Holländer und an W. Zander für die Nutzung der PLD-Anlage sowie die zahlreichen RBS- Untersuchungen. Danke an H.P. Bochem, A. Steffen und J. Müller für die Nutzung des Reinraumes und die zahlreichen REM-Aufnahmen. Danke! Danke an Dr. J. Schubert, Dr. B. Holländer und an W. Zander für die Nutzung der PLD-Anlage sowie die zahlreichen RBS- Untersuchungen Danke an das INB in der FH Aachen. Danke an meine ganze Arbeitsgruppe in Jülich für die schöne Zusammenarbeit, Unterstützung, Diskussionen, netten gemeinsamen Nachmittage und Abende. Danke Maryam, David, Stefan, Matthias, Heiko, Christina, Danke an meine ganze Arbeitsgruppe in Jülich für die schöne Zusammenarbeit, Unterstützung, Diskussionen, netten gemeinsamen Nachmittage und Abende Camman, K.; Galster, H.: Das Arbeiten mit ionenselektiven Elektroden. Eine Einführung für Praktiker. Springer-Verlag, Berlin Heidelberg New York, 1995 1995 Das Arbeiten mit ionenselektiven Elektroden. Eine Einführung für Praktiker Danke an die Nebenprüfer, dass Sie sich die Mühe gemacht haben, die Arbeit zu begutachten und die Disputation zu gestalten. Danke! dass Sie sich die Mühe gemacht haben, die Arbeit zu begutachten und die Disputation zu gestalten Datenblatt 18-1113-53: NHS-activated sepharose TM 4 fast flow. Amersham Biosiences 262 Datenblatt 18-1113-53: NHS-activated sepharose TM 4 fast flow U.S. Department of health and human services, public health service, agency for toxic substances and disease registry. Toxicological profile for cyanide. 2006. 2006 Department of health and human services, public health service, agency for toxic substances and disease registry. Toxicological profile for cyanide Lvova, L.; Paolesse, R.; di Natale, C.; d'Amico, A.: Detection of alcohols in beverages: an application of poryhyrin-based electronic tongue. Sensors and Actuators B 118 (2006), S. 439-447 2006 Detection of alcohols in beverages: an application of poryhyrin-based electronic tongue Legako, J.A.; White, B.J.; Harmon, H.J.: Detection of cyanide using immobilized porphyrin and myoglobin surface. Sensors and Actuators B 91 (2003), S. 128-132 2003 Detection of cyanide using immobilized porphyrin and myoglobin surface Forzani, E.S., Zhang, H., Chen, W., Tao, N.: Detection of heavy metal ions in drinking water using a high-resolution differential surface plasmon resonace sensor. Environ. Detection of heavy metal ions in drinking water using a high-resolution differential surface plasmon resonace sensor Goulden, P.D.; Afghan, B.K.; Brooksbank, P.: Determination of nanogram quantities of simple and complex cyanides in water. Analytical Chemistry 44 (1972), S. 1845-1849 1972 Determination of nanogram quantities of simple and complex cyanides in water Basheer, S.; Kut, Ö.M.; Pernosil, J.E.; Bourne, J.R.: Development of an enzyme membrane reactor for treatment of cyanide-containing wastewaters from the food industry. Biotechnology and Bioengineering 41 (1993), S. 465-473 1993 Development of an enzyme membrane reactor for treatment of cyanide-containing wastewaters from the food industry Bergveld, P.: Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE Transactions on Biomedical Engineering 17 (1970), S. 70-71 1970 Development of an ion-sensitive solid-state device for neurophysiological measurements Verrelli, G.; Francioso, L.; Paolesse, R.; Siciliano, P.; di Natale, D.; d'Amico, A.; Logrieco, A.: Development of silicon-based potentiometric sensors: towards a miniaturized electronic tongue. Development of silicon-based potentiometric sensors: towards a miniaturized electronic tongue Bergveld, P.: Development, operation and application of the ion-sensitive field-effect transistor as a tool for electrophysiology. IEEE Transactions on Biomedical Engineering 19 (1972), S. 342- 1972 Development, operation and application of the ion-sensitive field-effect transistor as a tool for electrophysiology Nernst, W.: Die elektrochemische Wirksamkeit der Ionen. Zeitschrift für physikalische Chemie 4 (1889), S. 129-181 1889 Die elektrochemische Wirksamkeit der Ionen Katz, L.: Die Glaselektrode und ihre Anwendungen. S. Steinkopff, Frankfurt Main, 1950 1950 Die Glaselektrode und ihre Anwendungen Danke an alle fleißigen Studenten, die mit mir zusammengearbeitet haben. Danke an Ming Li, Abhishek, Tegpal, Somi, Arash, Shiyun und Udaya. Danke! die mit mir zusammengearbeitet haben. Danke an Ming Li Park, S.-M.; Yoo, J.-S.: Electrochemical impedance spectroscopy for better electrochemical measurements. Analytical Chemistry (2003), S. 455A-461A 260 Datenblatt: Eupergit C®. Degussa, 2007 2003 Electrochemical impedance spectroscopy for better electrochemical measurements Gutés, A.; Céspedes, F.; del Valle, M.: Electronic tongues in flow analysis. Analytica Chimica Acta 600 (2007), S. 90-96 2007 Electronic tongues in flow analysis Badugu, R.; Lakowicz, J. R.; Geddes, C. D. Enhanced fluorescence cyanide detection at physiologically lethal levels: reduced ICT-based signal transduction. J. Am. Chem. Soc. 2005, 127, 3635-3641. 2005 Enhanced fluorescence cyanide detection at physiologically lethal levels: reduced ICT-based signal transduction Fisher bioblock scientific cyanide ion electrodes instruction manual 265 Fisher bioblock scientific cyanide ion electrodes instruction manual 265 Zadeh, L.A.: Fuzzy sets. Information and Control 8 (1965), S. 338-353 1965 Fuzzy sets H.-J. Zimmermann, Fuzzy Set Theory and Its Applications, Kluwer, Boston, 1991. 1991 Fuzzy Set Theory and Its Applications ß-Galactosidase, rec. E.coli 119 ß-Galactosidase, rec. E.coli 119 Eisenman, G.; Rudin, D.O.; Casby, J.U.: Glass electrode for measuring sodium ion. Science 126 (1957), S. 831-834 1957 Glass electrode for measuring sodium ion Christen, H.R.: Grundlagen der allgemeinen und anorganischen Chemie. Verlag Sauerländer, Aarau-Frankfurt am Main-Salzburg, 1988 1988 Grundlagen der allgemeinen und anorganischen Chemie Albers, J.: Grundlagen integrierter Schaltungen, Bauelemente und Mikrostrukturierung. Carl Hanser Verlag, München, 2007 2007 Grundlagen integrierter Schaltungen, Bauelemente und Mikrostrukturierung Danke an Prof. Dr. W. Heiden und an A. Riesen für die schöne iterative Zusammenarbeit. Danke! Heiden und an A. Riesen für die schöne iterative Zusammenarbeit Kloock, J.P.: Herstellung und Charakterisierung von Sensormembranen aus Chalkogenidglasschichten für den Einsatz als Schwermetallsensoren in Flüssigkeiten. Dissertation an der Technischen Universität Ilmenau, 2008 2008 Herstellung und Charakterisierung von Sensormembranen aus Chalkogenidglasschichten für den Einsatz als Schwermetallsensoren in Flüssigkeiten Ohta, T.; Ikemoto, Y.; Usami, A.; Koide, T.; Wakabayashi, S.: High affinity interaction between histidine-rich glycoprotein and the cell surface type ATP synthase on T-cells. Biochimica et Biophysica Acta 1788 (2009), S. 1099-1107 2009 High affinity interaction between histidine-rich glycoprotein and the cell surface type ATP synthase on T-cells Frant, M.S.: Historical perspective. History of the early commercialization of ion-selective electrodes. The Analyst 119 (1994), S. 2293-2301 1994 Historical perspective. History of the early commercialization of ion-selective electrodes Woodward, J.: Immobilised cells and enzymes. IRL Press, Oxford-Washington DC, 1985 1985 Immobilised cells and enzymes Gómez de Segura, A.; Alcalde, M.; Yates, M.; Rojas-Cervantes, M.L.; López-Cortés, N.; Ballesteros, A.; Plou, F.J.: Immobilization of dextransucrase from leuconostoc mesenteroides NRRL B-512F on Eupergit C® supports. Biotechnology Progress 20 (2004), S. 1414-1420 2004 Immobilization of dextransucrase from leuconostoc mesenteroides NRRL B-512F on Eupergit C® supports Tu, M.; Zhang, X.; Kurabi, A.; Gilkes, N.; Mabee, W.; Saddler, J.: Immobilization of ß- glucosidase on Eupergit C for lignocellulose hydrolysis. Biotechnology Letters 28 (2006), S. 151- 2006 Immobilization of ßglucosidase on Eupergit C for lignocellulose hydrolysis Kallenberg, A.I.; van Rantwijk, F.; Sheldon, R.A.: Immobilization of penicillin G acylase: The key of optimum performance. Advanced Synthesis & Catalysis 347 (2005), S. 905-926 2005 Immobilization of penicillin G acylase: The key of optimum performance Hernaiz, M.J.; Crout, D.H.G.: Immobilization/stabilization on Eupergit C® of the ß- galactosidase from B. circulans and an α-galactosidase from aspergillus oryzae. Enzyme and Microbial Technology 27 (2000), S. 26-32 2000 Immobilization/stabilization on Eupergit C® of the ßgalactosidase from B. circulans and an α-galactosidase from aspergillus oryzae Mateo, C.; Palomo, J.M.; Fernandez-Lorente, G.; Guisan, J.M.; Fernandez-Lafuente, R.: Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme and Microbial Technology 40 (2007), S. 1451-1463 2007 Improvement of enzyme activity, stability and selectivity via immobilization techniques Mateo, C.; Abian, O.; Fernandez-Lafuente, R.; Guisan, J.M.: Increase in conformational stability of enzymes immobilized on epoxy-activated supports by favoring additional multipoint covalent attachment. Enzyme and Microbial Technology 26 (2000), S. 509-515 2000 Increase in conformational stability of enzymes immobilized on epoxy-activated supports by favoring additional multipoint covalent attachment Kloock, J.P., Schöning, M.J., Mourzina, Y.G., Schubert, J., Ermolenko, Y., Doll, T.: Inorganic thin-film sensor membranes wiht PLD-prepared chalcogenide glasses: Challenges and implementation. Sensors 4 (2004) S. 156-162. 2004 Inorganic thin-film sensor membranes wiht PLD-prepared chalcogenide glasses: Challenges and implementation Ipatov, A.; Abramova, N.; Bratov, A.; Domíquez, C.: Integrated multisensor chip with sequential injection technique as a base for " electronic tongue " devices. Sensors and Actuators B 131 (2008), S. 48-52 2008 Integrated multisensor chip with sequential injection technique as a base for " electronic tongue " devices Chhabda, T.A.: Investigation of multi-component heavy metal analytes with thin-film micro sensors using fuzzy logic data evaluation. Master of Science Thesis an der Fachhochschule Aachen, Institut für Nano-und Biotechnologien, 2008 2008 Investigation of multi-component heavy metal analytes with thin-film micro sensors using fuzzy logic data evaluation. Master of Science Thesis an der Fachhochschule Aachen Simon, W.; Wuhrmann H.R.; Vasak, M.; Pioda, L.A.R.; Dohner, R.; Stefanac, Z.: Ionenselektive Sensoren. Angewandte Chemie 82 (1970), S. 433-443 1970 Ionenselektive Sensoren Vlasov, Y.G., Bychkov, E.A.: Ion-selcetive chalcogenide glass electrodes. Ion-selective Electrode Rev. 9 (1987) S. 5-93. 1987 Ion-selcetive chalcogenide glass electrodes. Ion-selective Electrode Rev Bergveld, P.: ISFET, theory and practice. IEEE Sensor Conference Toronto (2003), S. 1-26 2003 ISFET, theory and practice Basheer, S.; Kut, Ö.M.; Pernosil, J.E.; Bourne, J.R.: Kinetics of enzymatic degradation of cyanide. Biotechnology and Bioengineering 39 (1992), S. 629-634 1992 Kinetics of enzymatic degradation of cyanide Mousty, C.; Vieille, L.; Cosnier, S.: Laccase immobilization in redox active layered double hydroxides: a reagentless amperometric biosensor. Biosensors and Bioelectronics 22 (2007), S. 1733-1738 2007 Laccase immobilization in redox active layered double hydroxides: a reagentless amperometric biosensor Wilchek, M.; Miron, T.: Limitations of N-hydroxysuccinimide esters in affinity chromatography and protein immobilization. Biochemistry 26 (1987), S. 2155-2161 1987 Limitations of N-hydroxysuccinimide esters in affinity chromatography and protein immobilization Danke an Frau G. Lins und an Frau F. Lorek für die schöne Organisation. Danke! Danke an Frau A. Stühn und an das BMBF für die finanzielle Unterstützung und Motivation. Danke! Lorek für die schöne Organisation. Danke! Danke an Frau A. Stühn und an das BMBF für die finanzielle Unterstützung und Motivation Schöning M.J.; Näther, N.; Auger, V.; Poghossian, A.; Kondelka-Hep, M.: Miniaturised flow- trough cell with integrated capacitive EIS sensor fabricated at wafer level using Si and SU-8 technologies. Sensors and Actuators B 108 (2005), S. 986-992 2005 Miniaturised flowtrough cell with integrated capacitive EIS sensor fabricated at wafer level using Si and SU-8 technologies Esen, H.; Inalli, M.; Sengur, A.; Esen, M.: Modelling a ground-coupled heat pump system using adaptive neuro-fuzzy inference systems. International Journal of Refrigeration 31 (2008), S. 65-74 2008 Modelling a ground-coupled heat pump system using adaptive neuro-fuzzy inference systems Yeoh, H.-H., Tatsuma, T., Oyama, N.: Monitoring the cyanogenic potential of cassava: The trend towards biosensor development. Trends Anal. Chem. 17 (1998) S. 234-240. 1998 Monitoring the cyanogenic potential of cassava: The trend towards biosensor development Moreno, L.; Merlos, A.; Abramova, N.; Jiménez, C.; Bratov, A.: Multi-sensor array used an " electronic tongue " for mineral water analysis. Sensors and Actuators B 116 (2006), S. 130-134 2006 Multi-sensor array used an " electronic tongue " for mineral water analysis Lin, C.-T.; Lee, C.S.G.: Neural-network-based fuzzy logic control and decision system. IEEE Transaction on Computers 40 (1991), S. 1320-1336 1991 Neural-network-based fuzzy logic control and decision system Yao, Y.; Ma, Y.-Z.; Qin, M.; Ma, X.-J.; Wang, C.; Feng, X.-Z.: NHS-ester functionalized poly (PEGMA) brushes on silicon surface for covalent protein immobilization. Colloids and Surface B: Biointerface 66 (2008), S. 233-239 2008 NHS-ester functionalized poly (PEGMA) brushes on silicon surface for covalent protein immobilization Yan, M.; Cai, S.X.; Wybourne, M.N.; Keana, F.W.: N-hydroxysuccinimide esters functionalized perfluorphenyl azides as novel photoactive heterobifunctional cross-linking reagents. The covalent immobilization of biomolecules to polymer surfaces. Bioconjugate Chemistry 5 (1994), S. 151-157 1994 N-hydroxysuccinimide esters functionalized perfluorphenyl azides as novel photoactive heterobifunctional cross-linking reagents. The covalent immobilization of biomolecules to polymer surfaces Magario, I.; Ma, X.; Neumann, A.; Syldatk, C.; Hausmann, R.: Non-porous magnetic micro- particles: comparison to porous enzyme carriers for a diffusion rate-controlled enzymatic conversion. Journal of Biotechnology 134 (2008), S. 72-78 2008 Non-porous magnetic microparticles: comparison to porous enzyme carriers for a diffusion rate-controlled enzymatic conversion Vlasov, Y.G.; Legin, A.V.: Non-selective chemical sensors in analytical chemistry: from " electronic nose " to " electronic tongue " . Fresenius Journal of Analytical Chemistry 361 (1998), S. 255-260 1998 Non-selective chemical sensors in analytical chemistry: from " electronic nose " to " electronic tongue Glyn Davies, O.; Moody, G.L.; Thomas, D.R.: Optimisation of poly(vinylchloride) matrix membrane ion-selective electrodes for ammonium ions. The Analyst 113 (1988), S. 497-500 1988 Optimisation of poly(vinylchloride) matrix membrane ion-selective electrodes for ammonium ions Ovalbumin, chicken 43 Ovalbumin, chicken 43 D'Annibale, A.; Stazi, S.R.; Vinciguerra, V.; Giovannozzi, G.: Oxirane-immobilized lentinula edodes laccase: stability and phenolics removal efficiency in olive mill wastewater. Journal of Biotechnology 77 (2000), S. 265-273 2000 Oxirane-immobilized lentinula edodes laccase: stability and phenolics removal efficiency in olive mill wastewater Nagy, K.; Eine, K.; Syverud, K.; Aune, O.: Promising new solid-state reference electrode. Promising new solid-state reference electrode Cheung, J.; Horwitz, J.: Pulsed laser deposition: history and laser-target interactions. Materials Research Society Bulletin 17 (1992), S. 30-36 1992 Pulsed laser deposition: history and laser-target interactions Chrisey, D.B.; Hubler, G.K.: Pulsed laser deposition of thin films. John Wiley & Sons, Inc., New York, 1994 1994 Pulsed laser deposition of thin films Küster, F.W.; Thiel, A.; Ruland, A.: Rechentafeln für die chemische Analytik. Walter de Gruyter, Berlin-New York, 2003 2003 Rechentafeln für die chemische Analytik Buck, R.P.; Lindner, E.: Recomendations for nomenclature of ion-selective electrodes (IUPAC recommendations 1994). Pure and Applied Chemistry 66 (1994), S. 2527-2536 1994 Recomendations for nomenclature of ion-selective electrodes (IUPAC recommendations 1994) Lowry, D.A.; Oniciu, L.: Reference electrode for potentiometric analyses in corrosive media. Reference electrode for potentiometric analyses in corrosive media Firat, M.; Güngör, M.: River flow estimation using adaptive neuro fuzzy inference system. River flow estimation using adaptive neuro fuzzy inference system M. J. Schöning and A. Poghossian, Electroanal. 18, 1893 (2006). 2006 Schöning and A. Poghossian, Electroanal Danksagung Danke an Prof. Dr. M.J. Schöning und an Prof. Dr. M. Keusgen, dass Sie mir die Möglichkeit gegeben haben, eine Doktorarbeit machen zu können. Danke für die fachliche und persönliche Unterstützung und Förderung. Danke! Schöning und an Prof. Dr. M. Keusgen, dass Sie mir die Möglichkeit gegeben haben, eine Doktorarbeit machen zu können Weinberg, H.S., Cook, S.J.: Segmented flow injection, UV digestion, and amperometric detection for the determination of total cyanide in wastewater treatment plant effluents. Anal. Chem. 74 (2002) S. 6055-6063. 2002 Segmented flow injection, UV digestion, and amperometric detection for the determination of total cyanide in wastewater treatment plant effluents Sze, S.M.: Semiconductor devices. Physics and technology. John Wiley & Sons, Inc., 2002 2002 Semiconductor devices. Physics and technology Sze, S.M.: Semiconductor sensors. John Wiley & Sons, Inc., New York-Chichester-Brisbane- Toronto-Singapore, 1994 1994 Semiconductor sensors Poghossian, A.; Schöning, M. J. Silicon-based chemical and biological field-effect sensors. In Encyclopedia of Sensors; Grimes, C. A.; Dickey, E. C.; Pishko, M. V.; American Scientific Publishers, Stevenson Ranch: USA, 2006; Vol. 9, pp 463-534. 2006 Silicon-based chemical and biological field-effect sensors. In Encyclopedia of Sensors Meeussen, J.C.L.N.; Temminghoff, E.J.M.; Keizer, M.G.; Novozamsky, I.: Spectrophotometric determination of total cyanide, iron-cyanide complexes, free cyanide and thiocyanate in water by a continuous-flow system. The Analyst 95 (1989), S. 959-963 1989 Spectrophotometric determination of total cyanide, iron-cyanide complexes, free cyanide and thiocyanate in water by a continuous-flow system Benco, J.S.; Nienaber, H.A.; McGimpsey, W.G.: Synthesis of an ammonium-ionophore and its application in planar ion selective electrode. Analytical Chemistry 75 (2003), 152-156 2003 Synthesis of an ammonium-ionophore and its application in planar ion selective electrode Thomas, J.D.R.: The development and scope of ion-selective electrodes. Pure and Applied Chemistry 66 (1994), S.2527-2536 1994 The development and scope of ion-selective electrodes Legin, A.V.; Rudnitskaya, A.M.; Vlasov, Y.G.; di Natale, C.; d'Amico, A.: The features of the electronic tongue in comparison with the characteristics of the discrete ion-selective sensors. The features of the electronic tongue in comparison with the characteristics of the discrete ion-selective sensors Dole, M.: The glass electrode, methods, application and theory. John Wiley, New York, 1941 1941 The glass electrode, methods, application and theory Morf, W.E., Kahr, G., Simon, W.: Theoretical treatment of the selectivity and detection limit of silver compound membrane electrodes. Anal. Chem. 46 (1974) S. 1538-1543. 1974 Theoretical treatment of the selectivity and detection limit of silver compound membrane electrodes Pungor, E.: Theory and application of anion. Analytical Chemistry 39 (1967), S. 28A-45A 174 1967 Theory and application of anion Anderson, G.W.; Zimmerman, J.E.; Callahan, F.M.: The use of esters of N- hydroxysuccinimide in peptide synthesis. Journal of the American Chemical Society 86 (1963), S. 1839-1842 1963 The use of esters of Nhydroxysuccinimide in peptide synthesis Schöning, M.J., Schmidt, C., Schubert, J., Zander, W., Mesters, S., Kordos, P., Lüth, H., Legin, A., Seleznev, B., Vlasov, Y.G.: Thin film sensors on the basis of chalcogenide glass materials prepared by pulsed laser deposition technique. Sens. Thin film sensors on the basis of chalcogenide glass materials prepared by pulsed laser deposition technique Danke an Melanie, Claudia, Silvia, Simone, Thomas und Vera für die fachliche Unterstützung, Bereitstellung von Gerätschaften, gemeinsame Organisation sowie für die schönen gemeinsamen Abende. Danke! Thomas und Vera für die fachliche Unterstützung, Bereitstellung von Gerätschaften, gemeinsame Organisation sowie für die schönen gemeinsamen Abende Trypsin inhibitor, soja 20 Trypsin inhibitor, soja 20 Jones, D. A. Why are so many food plants cyanogenic? Phytochemistry 1997, 47(2), 155-162. 1997 Why are so many food plants cyanogenic? Phytochemistry Gattrell, M.; Cheng, S.C.; Guena, T.; MacDougall, B.: Cyanide ion-selective electrode measurements in the presence of copper. Journal of Electroanalytical Chemistry 508 (2001), S. 97-104 2001 Cyanide ion-selective electrode measurements in the presence of copper Simonis, A.; Dawgul, M.; Lüth, H.; Schöning, M.J.: Miniaturised reference electrodes for field- effect sensors compatible to silicon chip technology. Electrochimica Acta 51 (2005), S. 930-937 2005 Miniaturised reference electrodes for fieldeffect sensors compatible to silicon chip technology Schöning, M.J.: Playing around with field-effect sensors on the basis of EIS structures, LAPS and ISFETs. Sensors 5 (2005), S. 126-138 2005 Playing around with field-effect sensors on the basis of EIS structures, LAPS and ISFETs Simonis, A.; Lüth, H.; Wang, J.; Schöning, M.J.: New concepts of miniaturised reference electrodes in silicon technology for potentiometric sensor systems. Sensors and Actuators B 103 (2004), S. 429-435 2004 New concepts of miniaturised reference electrodes in silicon technology for potentiometric sensor systems Simonis, A.; Lüth, H.; Wang, J.; Schöning, M.J., Strategies of miniaturised reference electrodes integrated in a silicon-based " one chip " pH sensor, Sensors (2003), S. 330-339 2003 Strategies of miniaturised reference electrodes integrated in a silicon-based " one chip " pH sensor Poghossian, A.; Thust, M.; Schroth, P.; Steffen, A.; Lüth, H.; Schöning, M. J. Penicillin detection by means of silicon-based field-effect structures. Sens. Mater. 2001, 13(4), 207-223. 2001 Penicillin detection by means of silicon-based field-effect structures Mourzina, Y.G., Schubert, J., Zander, W., Legin, A., Vlasov, Y.G., Lüth, H., Schöning, M.J.: Development of multisensor systems based on chalcogenide thin film chemical sensors for the simultaneous multicomponent analysis of metal ions in complex solutions. Electrochim. Acta 47 (2001) S. 251-258. 2001 Development of multisensor systems based on chalcogenide thin film chemical sensors for the simultaneous multicomponent analysis of metal ions in complex solutions Schubert, J.; Schöning, M.J.; Schmidt, C.; Siegert, M.; Mesters, S.; Zander, W.; Kordos, P.; Lüth, H.; Legin, A.; Mourzina, Y.G.; Seleznev, B.; Vlasov, V.G.: Chalcogenide-based thin film sensors prepared by pulsed laser deposition technique. Applied Physics A: Materials Science and Processing 69 (1999), S. 803-805 1999 Chalcogenide-based thin film sensors prepared by pulsed laser deposition technique Moreno, L.; Kloock, J.P.; Schöning, M.J.; Baldi, A.; Ipatov, A.; Bratov, A.; Jiménez-Jorquera, C.: Electronic integrated multisensor tongue applied to grape juice and wine analysis. The Analyst 133 (2008), S. 1440-1448 2008 Electronic integrated multisensor tongue applied to grape juice and wine analysis Poghossian, A.; Abouzar, M.H.; Schöning, M.J.: Capacitance-voltage and impedance characteristics of field-effect EIS sensors functionalised with polyelectrolyte multilayers. Innovation Literaturverzeichnis et Technologie en Biologie et Medecine – une Revue de Technologie Biomedicale 29 (2008), S. 149-154. 2008 Capacitance-voltage and impedance characteristics of field-effect EIS sensors functionalised with polyelectrolyte multilayers Turek, M.; Keusgen, M.; Poghossian, A.; Mulchandani, A.; Wang, J.; Schöning, M.J.: Enzyme- modified electrolyte-insulator-semiconductor sensors. Journal of Contemporary Physics 43 (2008), S. 82-85 2008 Enzymemodified electrolyte-insulator-semiconductor sensors Turek, M.; Heiden, W.; Riesen, A.; Chhabda, T.A.; Krüger, P.; Keusgen, M.; Schöning, M.J.: Artificial intelligence/fuzzy logic method for analysis of combined signals from heavy metal chemical sensors. Electrochimica Acta 54 (2009), S. 6082-6088 2009 Artificial intelligence/fuzzy logic method for analysis of combined signals from heavy metal chemical sensors Kloock, J.P.; Moreno, L.; Huachupoma, S.; Xu, J.; Wagner, T.; Bratov, A.; Doll, T.; Vlasov, Y.G.; Schöning, M.J.: Halbleiterbasierte Schwermetallsensorik auf der Basis von Chalkogenidgläsern für zukünftige " Lab on Chip " -Anwendungen. In: Gerlach, G.; Kaden, H.: 7. Dresdner Sensor-Symposium – Neue Herausforderungen und Anwendungen in der Sensortechnik, TUDpress, Dresden, 2005, S. 221-224 2005 Halbleiterbasierte Schwermetallsensorik auf der Basis von Chalkogenidgläsern für zukünftige " Lab on Chip Camman, K.: Instrumentelle analytische Chemie. Spektrum Akademischer Verlag, Heidelberg- Berlin, 2001 2001 Instrumentelle analytische Chemie Hofmeister, F.: Zur Lehre von der Wirkung der Salze. Archiv für experimentelle Pathologie und Pharmakologie 24 (1888), S. 247-260 1888 Zur Lehre von der Wirkung der Salze Wang, X.-H.; Forssberg, K.S.E.: The solution electrochemistry of the sulfide-xanthate-cyanide systems in sulfide mineral flotation. Minerals Engineering 9 (1996), S. 527-546 1996 The solution electrochemistry of the sulfide-xanthate-cyanide systems in sulfide mineral flotation Marquardt, H.; Schäfer, S. G. Lehrbuch der Toxikologie; Spektrum Akademischer Verlag: Heidelberg Berlin, 1997; pp 555-565. 1997 Lehrbuch der Toxikologie Ingvorsen, K.; Hojer-Pedersen, B.; Godtfredsen, S. E. Novel cyanide-hydrolyzing enzyme from alcaligenes xylosoxidans subsp. denitrificans. Appl. Environ. Microbiol. 1991, 57, 1783-1789. 1991 Novel cyanide-hydrolyzing enzyme from alcaligenes xylosoxidans subsp. denitrificans Turek, M., Ketterer, L., Claßen, M., Berndt, H.K., Elbers, G., Krüger, P., Keusgen, M., Schöning, M.J.: Development and electrochemical investigations of an EIS- (electrolyte-insulator-semiconductor) based biosensor for cyanide detection. Sensors 7 2007 Development and electrochemical investigations of an EIS(electrolyte-insulator-semiconductor ) based biosensor for cyanide detection Beullens, K; Mészáros, P.; Vermeir, S.; Kirsanov, D.; Legin, A.V.; Buysens, S.; Cap, N.; Nicolai, B.M.; Lammertyn, J.: Analysis of tomato taste using two types of electronic tongues. Sensors and Actuators B 131 (2008), S. 10-17 2008 Analysis of tomato taste using two types of electronic tongues Heiden, W.; Brickmann, J.: Segmentation of protein surfaces using fuzzy logic. Journal of Molecular Graphics 12 (1994), S. 106-115 1994 Segmentation of protein surfaces using fuzzy logic Turek, M.; Heiden, W.; Guo, S.; Riesen, A; Schubert, J; Zander, W; Krüger, P; Keusgen, M; Schöning, M.J.: Simultaneous detection of cyanide and heavy metals for environmental analysis by means of µISEs. Physica Status Solidi A (2010), eingereicht Anhang Tab. B: Protein und zugehöriges Molekulargewicht des Standards Roti®-Mark. Protein Molekulargewicht in kDa Myosin, beef 200 2010 Simultaneous detection of cyanide and heavy metals for environmental analysis by means of µISEs opus:2648 Turek, Monika Turek Monika Philipps-Universität Marburg ths Prof. Dr. Schöning M. J. Schöning, M. J. (Prof. Dr.)
recordtype opus
id urn:nbn:de:hebis:04-z2010-0081
urn_str urn:nbn:de:hebis:04-z2010-00815
collection Monograph
uri_str http://archiv.ub.uni-marburg.de/diss/z2010/0081
callnumber-raw diss/z2010/0081
callnumber-search diss/z2010/0081
callnumber-sort diss/z2010/0081
callnumber-label diss z2010 0081
callnumber-first diss
callnumber-subject diss z2010
_version_ 1563293786698678272
score 9,617626