Photoperiod-dependent proteolytic processing of neuropeptide precursors

Body weight in seasonal animals such as the Siberian hamster (Phodopus sungorus) is regulated by a complex interaction of neuropeptides in a hypothalamic network of neurons that integrates environmental photoperiod inputs. Most of these energy balance-regulating neuropeptides derive from larger biol...

Descripció completa

Guardat en:
Dades bibliogràfiques
Autor principal: Helwig, Michael
Altres autors: Klingenspor, Martin (Prof. Dr.) (Assessor de tesis)
Format: Dissertation
Idioma:anglès
Publicat: Philipps-Universität Marburg 2008
Matèries:
Accés en línia:PDF a text complet
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!
Descripció
Sumari:Body weight in seasonal animals such as the Siberian hamster (Phodopus sungorus) is regulated by a complex interaction of neuropeptides in a hypothalamic network of neurons that integrates environmental photoperiod inputs. Most of these energy balance-regulating neuropeptides derive from larger biologically inactive precursors and have to undergo post-translational processing by endo- and exoproteolytic cleavage. In the current PhD thesis we investigated the effect of photoperiod on the expression of prohormone convertases 1 (PC1/3), 2 (PC2), carboxypeptidase D and E (CPD and CPE) and the proteolytic processing of the neuropeptide precursor pro-opiomelanocortin (POMC) within key energy balance regulating centres of the hypothalamus. We compared mRNA levels and protein distribution of the enzymes PC1/3, PC2, CPD and CPE and the neuropeptide precursor POMC and its derived peptides ACTH, a-MSH and ß-endorphin in selected hypothalamic areas of either long day (LD, 16h light: 8h dark) or short day (SD, 8h light: 16h dark) acclimated Siberian hamsters. Messenger RNA and immunoreactivity of PC1/3 enzyme and neuropeptides cleaved by PC1/3 such as ACTH in the ARC, and orexin A in the LH, were not affected by photoperiod changes. In contrast increased levels of PC2 mRNA and protein were associated with a higher abundance of the mature neuropeptides a-MSH and ß-endorphin in SD. CPE immunoreactivity was increased in SD and after leptin injection suggesting increased terminal activation of neuropeptides subsequent to processing by PC2. The photoperiod-driven regulatory mechanism by differential activity of the major neuroendocrine enzymes on a posttranslational level observed in this study could be an additional universal control point for selective maturation of energy balance related neuropeptides.
Descripció física:158 Seiten
DOI:10.17192/z2008.0490