Publikationsserver der Universitätsbibliothek Marburg Universitätsbibliothek Marburg Chemoenzymatic and Template-Directed Synthesis of Bioactive Macrocyclic Peptides https://archiv.ub.uni-marburg.de/diss/z2005/0528/cover.png opus:1255 137 application/pdf Chemoenzymatische und Templat-gerichtete Synthese von bioaktiven makrozyklischen Peptiden monograph NRPS Zyklasen doctoralThesis 2005 Peptidantibiotikum Fachbereich Chemie ths Prof. Marahiel Mohamed Marahiel, Mohamed (Prof.) Chemistry + allied sciences Chemie Philipps-Universität Marburg Nonribosomal peptide synthetases (NRPS) are large multienzyme complexes, which simultaneously represent template and biosynthetic machinery for the production of structurally diverse peptidic products that feature high pharmacological and biological activities. A key determinant of nonribosomal peptide product activity is the common macrocyclic structure of many compounds. Macrocyclization is catalyzed in the last step of nonribosomal synthesis by thioesterase (TE) domain activity. The herein presented work describes the first biochemical characterization of a TE domain of a streptomycete, the thioesterase of the S. coelicolor calcium-dependent antibiotic (CDA) synthetase. This recombinant cyclase catalyzes macrolactone formation of linear peptidyl-thioesters based on a sequence analogous to natural CDA. For substrate mimics, the phosphopantetheine cofactor was successfully substituted by various thioester leaving groups. The best rates for cyclization were determined for the thiophenol leaving group, revealing that chemical reactivity is more important for enzyme acylation than cofactor recognition. Interestingly, CDA cyclase catalyzes the formation of two regioisomeric macrolactones, which arise from simultaneous nucleophilic attack of the two adjacent Thr2 and Ser1 residues onto the C-terminal Trp11 of the acyl-enzyme intermediate. To further explore this relaxed regioselectivity of CDA TE, alterations to the peptide backbone and the fatty acyl chain were made. Substitution of either Thr2 or Ser1 by alanine led to selective formation of a decapeptide or undecapeptide lactone ring. However, the stereoselectivity of CDA cyclase was fully retained, thus accepting only L-configured Ser1 and Thr2 for cyclization. Elongation of the fatty acyl group by four methylene groups to the natural length (C6) of CDA turned the relaxed regioselectivity into a strict regioselectivity, yielding solely the decapeptide lactone ring, along with decreased hydrolysis of the peptidyl-thioester substrate. This provides evidence for the crucial role of the lipid chain in controlling the regio- and chemoselectivity of TE-mediated macrocyclization. CDA belongs to the group of acidic lipopeptides, which includes the clinically approved antibiotic daptomycin. To evaluate the capability of CDA cyclase for the chemoenzymatic generation of daptomycin, six daptomycin-specific residues were successively incorporated into linear CDA undecapeptidyl-thioesters. All these six substrates were efficiently cyclized by CDA TE. Simultaneous incorporation of all six of these residues into the peptide backbone and elongation of the N-terminus of CDA by two residues finally yielded a daptomycin derivative that lacked only the +#61538;-methyl group of L-3-methylglutamate. In accordance with acidic lipopeptide antibiotics, the bioactivity of the chemoenzymatic assembled daptomycin analogue is dependent on the presence of calcium ions. To identify calcium-binding sites in the lipo-tridecapeptide chain of the daptomycin analogue, all four acidic residues were successively substituted by either Asn or Gln. Bioactivity studies revealed that only Asp7 and Asp9 are essential for antimicrobial potency. Moreover, these two residues are strictly conserved among all other nonribosomal acidic lipopeptides and the calcium-binding EF-motif of ribosomally assembled calmodulin. The final part of this work is dedicated to the selective detection of peptide cyclization by fluorescence resonance energy transfer (FRET). In this approach, peptide cyclization catalyzed by NRPS-derived TE domains brings the donor Trp and the acceptor Kyn (kynurenine) in sufficiently close proximity to enable efficient FRET. Theses fluorophores were readily incorporated into the peptide backbone by solid-phase peptide chemistry and show excellent spectral overlap between the donor emission and acceptor absorption. Application of this method provided a tool to track TE-mediated peptide cyclization in real-time. Furthermore, picomolar detection limits of cyclopeptides were realized, thereby facilitating kinetic studies of TE-mediated macrocyclization. The general utility of FRET-assisted detection of cyclopeptides was demonstrated for two cyclases, namely tyrocidine (Tyc) TE, and CDA TE. For the latter cyclase, this approach was combined with site-directed affinity labelling, opening the possibility for high-throughput enzymatic screening. Lipopeptide 2011-08-10 Peptidsynthetasen English Grünewald, Jan Grünewald Jan NRPS Daptomycin urn:nbn:de:hebis:04-z2005-05284 Peptide cyclases https://doi.org/10.17192/z2005.0528 2005-12-15 Kalzium-abhängiges Antibiotikum Chemie Daptomycin Lipopeptides Peptidderivate Calcium-dependent antibiotic 2005-12-27 Cyclopeptide Nichtribosomale Peptidsynthetasen (NRPS) sind Multienzymkomplexe, die gleichzeitig Templat und biosynthetische Maschinerie für die Herstellung strukturell diverser peptidischer Produkte mit oftmals bedeutender pharmakologischer und biologischer Aktivität repräsentieren. Ein Schlüsselfaktor für die Bioaktivität nichtribosomaler Peptide ist die makrozyklische Struktur vieler dieser Verbindungen. Makrozyklisierung wird durch Thioesterase- (TE-) Domänen im letzten Schritt der nichtribosomalen Synthese katalysiert. Diese Arbeit beschreibt die erste biochemische Charakterisierung einer TE-Domäne eines Streptomyceten: Die Thioesterase des kalzium-abhängigen Antibiotikums (CDA) von S. coelicolor. Diese Zyklase katalysiert die Ringbildung linearer Peptidylthioester, die auf einer zu CDA analogen Sequenz basieren. Hierzu wurde der natürliche Phosphopantethein-Kofaktor durch verschiedene Abgangsgruppen ersetzt. Die höchsten Zyklisierungsraten wurden für die Thiophenol-Abgangsgruppe erzielt. Chemische Reaktivität ist demnach für eine effiziente Enzym-Acylierung wichtiger als Kofaktorerkennung. Die CDA-Zyklase katalysiert die Bildung zweier regioisomerer Laktone durch konzertierten Angriff der benachbarten Reste Thr2 und Ser1 auf das C-terminale Trp11 des Acyl-Enzym-Intermediates. Um diese relaxierte Regioselektivität der CDA TE eingehender zu untersuchen, wurden Änderungen im Peptidrückgrat und der Fettsäure vorgenommen. Substitution von Thr2 oder Ser1 durch Alanin führte zur selektiven Bildung eines Dekapeptid- oder Undekapeptid-Ringes. Die Stereoselektivität der Zyklase blieb voll erhalten, und nur L-konfiguriertes Ser1 bzw. Thr2 wurde toleriert. Elongation der Fettsäure um vier Methyleneinheiten auf die natürliche Länge (C6) von CDA wandelte die relaxierte in eine strikte Regioselektivität um, was zur ausschließlichen Bildung des Dekapeptid-Laktons führte. Zudem wurde weniger Hydrolyse beobachtet. Diese Ergebnisse verdeutlichen den Einfluss der Fettsäure auf die Regio- und Chemoselektivität der TE-vermittelten Makrozyklisierung. CDA gehört, wie das klinisch zugelassene Antibiotikum Daptomycin, den sauren Lipopeptiden an. Um das Potential der CDA-Zyklase zur chemoenzymatischen Synthese von Daptomycin abschätzen zu können, wurden sukzessive sechs Daptomycin-spezifische Reste in lineare CDA-Undekapeptidyl-Thioester eingebaut. Alle sechs Substrate wurden durch die CDA TE zyklisiert. Gleichzeitiger Einbau aller sechs Reste in das CDA-Peptidrückgrat und Verlängerung des N-Terminus um zwei Reste führte schließlich zur Synthese eines Daptomycin-Analogons, dem nur die +#61538;-Methylgruppe von L-3-Methylglutamat fehlte. In Übereinstimmung mit sauren Lipopeptiden war die Bioaktivität des chemoenzymatisch hergestellten Daptomycin-Derivats von der Anwesenheit von Kalzium abhängig. Um Kalzium-Bindungsstellen in dem Daptomycin-Analogon zu identifizieren, wurden sukzessive alle vier sauren Reste gegen Asn oder Gln ausgetauscht. Bioaktivitätstests wiesen die essentielle Bedeutung von Asp7 und Asp9 für die antimikrobielle Potenz nach. Zudem sind diese Reste in allen nichtribosomalen sauren Lipopeptiden und dem Kalzium-bindenden EF-Motiv ribosomal-hergestellten Calmodulins konserviert. Der letzte Teil dieser Arbeit beschreibt die Detektion von Peptidzyklisierung durch Fluoreszenz-Resonanz-Energie-Transfer (FRET). Hierbei werden der Donor Trp und der Akzeptor Kyn (Kynurenin) durch TE-Domänen-katalysierte Peptidzyklisierung räumlich so nahe zusammengebracht, das effizienter FRET ermöglicht wird. Die beiden Fluorophore konnten mittels Festphasensynthese in das Peptidrückgrat eingebaut werden und zeigen exzellente spektrale Überlappung zwischen Donor-Emission und Akzeptor-Absorption. Mittels dieser Methode konnte TE-vermittelte Zyklisierung in Echtzeit verfolgt werden. Zudem konnten Zyklopeptide im picomolaren Bereich detektiert werden, was kinetische Studien TE-katalysierter Makrozyklisierung erleichterte. Die generelle Anwendbarkeit FRET-unterstützter Detektion von Zyklopeptiden wurde für zwei Zyklasen gezeigt: Tyrocidin (Tyc) TE und CDA TE. Bei letzterer wurde diese Methode mit ortsgerichtetem Affinitätslabelling kombiniert, was neue Möglichkeiten für das Hochdurchsatz-Enzymscreening eröffnete.