Shape control in 2D molecular nanosheets by tuning anisotropic intermolecular interactions and assembly kinetics

Since molecular materials often decompose upon exposure to radiation, lithographic patterning techniques established for inorganic materials are usually not applicable for the fabrication of organic nanostructures. Instead, molecular self-organisation must be utilised to achieve bottom-up growth of...

Cur síos iomlán

Sábháilte in:
Sonraí bibleagrafaíochta
Príomhchruthaitheoirí: Dreher, Maximilian, Dombrowski, Pierre Martin, Tripp, Matthias Wolfgang, Münster, Niels, Koert, Ulrich, Witte, Gregor
Formáid: Alt
Teanga:Béarla
Foilsithe / Cruthaithe: Philipps-Universität Marburg 2023
Ábhair:
Rochtain ar líne:An téacs iomlán mar PDF
Clibeanna: Cuir clib leis
Níl clibeanna ann, Bí ar an gcéad duine le clib a chur leis an taifead seo!
Cur síos
Achoimre:Since molecular materials often decompose upon exposure to radiation, lithographic patterning techniques established for inorganic materials are usually not applicable for the fabrication of organic nanostructures. Instead, molecular self-organisation must be utilised to achieve bottom-up growth of desired structures. Here, we demonstrate control over the mesoscopic shape of 2D molecular nanosheets without affecting their nanoscopic molecular packing motif, using molecules that do not form lateral covalent bonds. We show that anisotropic attractive Coulomb forces between partially fluorinated pentacenes lead to the growth of distinctly elongated nanosheets and that the direction of elongation differs between nanosheets that were grown and ones that were fabricated by partial desorption of a complete molecular monolayer. Using kinetic Monte Carlo simulations, we show that lateral intermolecular interactions alone are sufficient to rationalise the different kinetics of structure formation during nanosheet growth and desorption, without inclusion of interactions between the molecules and the supporting MoS2 substrate. By comparison of the behaviour of differently fluorinated molecules, experimentally and computationally, we can identify properties of molecules with regard to interactions and molecular packing motifs that are required for an effective utilisation of the observed effect.
Cur síos ar an mír:Gefördert durch den Open-Access-Publikationsfonds der UB Marburg.
DOI:10.1038/s41467-023-37203-7