Performance of a parasitic plant and its effects on hosts depends on the interactions between parasite seed family and host species

Root hemiparasitic plants act as keystone species influencing plant community composition through their differential suppression of host species. Their own performance also strongly depends on interactions with host species. However, little is known about the roles of parasite genetic variation vs....

Ful tanımlama

Kaydedildi:
Detaylı Bibliyografya
Asıl Yazarlar: Moncalvillo, Belén, Matthies, Diethart
Materyal Türü: Makale
Dil:İngilizce
Baskı/Yayın Bilgisi: Philipps-Universität Marburg 2023
Konular:
Online Erişim:PDF Tam Metin
Etiketler: Etiketle
Etiket eklenmemiş, İlk siz ekleyin!
Diğer Bilgiler
Özet:Root hemiparasitic plants act as keystone species influencing plant community composition through their differential suppression of host species. Their own performance also strongly depends on interactions with host species. However, little is known about the roles of parasite genetic variation vs. plasticity in these interactions. We grew plants from eight maternal families of the root hemiparasite Rhinanthus alectorolophus with six potential host species (two grasses, two legumes and two forbs) and without a host and measured fitness-related and morphological traits of the parasite, host biomass and overall productivity. Parasite biomass and other traits showed strong plastic variation in response to different host species, but were also affected by parasite maternal family. Parasite seed families responded differently to the hosts, indicating genetic variation that could serve as the basis for adaptation to different host plants. However, there were no negative correlations in the performance of families across different hosts, indicating that R. alectorolophus has plastic generalist genotypes and is not constrained in its use of different host species by trade-offs in performance. Parasite effects on host biomass (which may indicate virulence) and total productivity (host + parasite biomass) depended on the specific combination of parasite family and host species. Mean biomass of hosts with a parasite family and mean biomass of that family tended to be negatively correlated, suggesting selection for maximum resource extraction from the hosts. Specialization of generalist root hemiparasites may be restricted by a lack of trade-offs in performance across hosts, together with strong spatial and temporal variation in host species availability. The genetic variation in the effects on different hosts highlights the importance of genetic diversity of hemiparasites for their effects on plant community structure and productivity and for the success of using them to restore grassland diversity.
Diğer Bilgileri:Gefördert durch den Open-Access-Publikationsfonds der UB Marburg.
DOI:10.1093/aobpla/plac063