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1  |  INTRODUC TION

To decelerate the human-induced loss of biodiversity, 140 coun-
tries recently agreed on protecting one third of the planet's 

lands, coastal areas, and inland waters by the end of the decade 
(COP15, 2022). In order to achieve a significant impact on species 
protection, it is essential to identify areas of high conservation 
value. Species distribution modeling (SDM) and habitat suitability 
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Abstract
Conventional practices in species distribution modeling lack predictive power when 
the spatial structure of data is not taken into account. However, choosing a modeling 
approach that accounts for overfitting during model training can improve predic-
tive performance on spatially separated test data, leading to more reliable models. 
This study introduces spatialMaxent (https:// github. com/ envima/ spati alMaxent), a 
software that combines state-of-the-art spatial modeling techniques with the pop-
ular species distribution modeling software Maxent. It includes forward-variable-
selection, forward-feature-selection, and regularization-multiplier tuning based on 
spatial cross-validation, which enables addressing overfitting during model training 
by considering the impact of spatial dependency in the training data. We assessed 
the performance of spatialMaxent	using	the	National	Center	for	Ecological	Analysis	
and Synthesis dataset, which contains over 200 anonymized species across six re-
gions worldwide. Our results show that spatialMaxent outperforms both conventional 
Maxent and models optimized according to literature recommendations without using 
a	spatial	tuning	strategy	in	80	percent	of	the	cases.	spatialMaxent is user-friendly and 
easily accessible to researchers, government authorities, and conservation practition-
ers. Therefore, it has the potential to play an important role in addressing pressing 
challenges of biodiversity conservation.
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models (herein both types are referred to as SDMs) have become 
an indispensable tool in ecological research and nature conser-
vation (Villero et al., 2017). These models have the potential to 
forecast the distribution of invasive or endangered species under 
climate change scenarios and to identify areas of high value for the 
protection of endangered species (Porfirio et al., 2014). Further, 
government authorities are increasingly relying on these tech-
niques as a basis for conservation management decisions (Guisan 
et al., 2013; Sofaer et al., 2019; Villero et al., 2017). However, the 
results of SDMs cannot be fully relied upon due to their often in-
adequate performance on spatially separated test data (i.e., data 
not used to train the model and spatially separated from the data 
used for model training; Lee-Yaw et al., 2022), especially if they 
are tuned with spatially dependent data.

One reason for poor SDM performance is the insufficient or even 
complete lack of model tuning (i.e., finding the best set of model 
parameters).	A	review	by	Feng	et	al.	(2019) found that only 45% of 
studies	using	SDMs	in	2017	and	2018	reported	essential	SDM	model	
parameters	necessary	for	reproducibility.	Among	the	various	SDM	
approaches available, the open-source software Maxent (Phillips 
et al., 2006, 2017)	 is	 among	 the	 most	 popular	 (Guillera-Arroita	
et al., 2015) because it is readily available via a user-friendly graph-
ical user interface (GUI; Merow et al., 2013; Morales et al., 2017). 
The complexity and performance of Maxent models are essentially 
determined by two model parameters: (1) the regularization-multi-
plier (RM), which is a numerical value that controls the complexity 
of the models; and (2) feature classes, which are a series of math-
ematical transformations of the variables for modeling complex re-
lationships (e.g., linear, hinge; see: Merow et al., 2013). Phillips and 
Dudík (2008) identified default settings for these parameters by 
modeling 225 species from six regions worldwide contained in the 
National	Center	for	Ecological	Analysis	and	Synthesis	(NCEAS)	data-
set (Elith et al., 2020; Phillips & Dudík, 2008). The assumption that 
these default parameters are a replacement for model tuning is out-
dated because several studies have shown that better performances 
can be achieved with parameters that are specifically determined for 
each species (Bao et al., 2022; Hallgren et al., 2019; Radosavljevic & 
Anderson,	2014). However, for this popular software, most studies 
(~97%) demonstrated that little effort was made to tune models be-
yond the default settings provided in Maxent (Morales et al., 2017).

Another	 concerning	 reason	 for	 poor	 SDM	 performance	 is	 the	
disregard of overfitting during model training and validation (e.g. 
during cross-validation runs; Ploton et al., 2020; Schratz et al., 2019). 
The scientific community has been aware that spatial proximity also 
implies greater similarity and thus non-independence of data points 
since the formulation of Tobler's first law of geography (Tobler, 1970). 
However, the common practice for evaluating the results of SDMs is 
still to randomly exclude 10–20% of the target species locations from 
model training in order to subsequently use them for model testing 
(Sillero & Barbosa, 2021). Several studies have demonstrated that 
training and validation with spatially dependent data often leads to 
inflated performance metrics, overly complex models, and a poor per-
formance on spatially separated test data (Kattenborn et al., 2022; 

Meyer et al., 2018, 2019; Ploton et al., 2020; Roberts et al., 2017; 
Valavi et al., 2019). For instance, variable selection algorithms that 
select predictors based on cross-validation with spatially separated 
folds (e.g., spatial-block cross-validation; Valavi et al., 2019) can de-
crease overfitting and increase the predictive performance of models 
(Le Rest et al., 2014; Meyer et al., 2018).

There are numerous R packages available for utilizing Maxent, 
including “dismo” (Hijmans et al., 2022), “SDMtune” (Vignali 
et al., 2020), or “ENMeval” (Kass et al., 2021; Muscarella et al., 2014), 
to name just a few. For a comprehensive overview of R packages for 
SDM, refer to the review by Sillero et al. (2023).	Among	them,	the	R	
package “ENMeval” has gained great popularity due to its easy pro-
vision of automatic tuning and spatial cross-validation for Maxent 
models. This has already made the application of Maxent models 
much easier for users. However, there is currently no software that 
combines spatial validation and tuning together with an automatic 
variable selection, which should lead to a significant improvement in 
modeling (Meyer et al., 2018; Zeng et al., 2016).

In this study, we implemented functionalities to reduce overfit-
ting in a Maxent advancement (called “spatialMaxent”) with the same 
GUI as the original Maxent software. In particular, we implemented 
forward-variable-selection (FVS) and forward-feature-selection 
(FFS) algorithms together with regularization-multiplier tuning 
based on spatial cross-validation to reduce overfitting during model 
tuning. We assessed the performance of spatialMaxent in terms of 
model	complexity	and	performance	with	the	NCEAS	dataset	across	
six regions of the world by repartitioning the occurrence records of 
218	species	of	 this	dataset	 into	spatial	blocks	 (Valavi	et	al.,	2019). 
We calculated four different model evaluation metrics on spatially 
separated test data and compared our results to models based on 
Maxent's default settings and tuned models in which spatial depen-
dence was not considered during model training. We demonstrate 
that spatialMaxent	improves	predictive	performance	in	80%	of	cases	
and clearly outperforms classical as well as tuned species distribu-
tion modeling with Maxent.

2  |  SPATIALMA XENT

A	 possible	 explanation	 for	 the	 lack	 of	 tuning	 in	 published	 studies	
using Maxent is attributed to an easily accessible GUI, which facili-
tates the broad applicability of the software but without providing 
ready-to-use tuning options (Morales et al., 2017). To overcome this 
limitation, we developed a Maxent advancement, “spatialMaxent 
1.0.0,” which encompasses a spatial validation and tuning method, 
a variable selection procedure, feature selection, and regularization-
multiplier tuning.

Recent studies have demonstrated that accounting for spatial de-
pendence at the model tuning stage results in better performing and 
less overfitted models (Meyer et al., 2018). The selection of the best 
model parameter configuration ultimately depends on the learning 
success of the model, which in turn is determined by the validation 
strategy. Hence, in spatial modeling, spatial validation is not just a 
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validation strategy but is an essential tuning strategy. Tuning while 
accounting for the spatial structure of the data accounts for each 
possible model parameter configuration being validated on data 
that is as independent from the training data as possible. This allows 
strict exclusion of parameters that do not contribute to an improved 
model performance on spatially separated data. In the context of 
SDMs, the selected model parameters are forced toward parameters 
such as selected variables that best reflect the habitat of a species.

spatialMaxent uses three consecutive tuning processes in model 
training (Figure 1a): (1) FVS; (2) FFS; and (3) regularization-multiplier 
(RM) tuning.

All	tuning	steps	in	spatialMaxent can be performed with random 
cross-validation or spatial cross-validation. spatialMaxent should be 
applied with FVS, FFS, and regularization-multiplier tuning, and all 
models should be validated with spatial cross-validation. However, it 
is also possible to only use parts of the tuning procedure.

The implementation of spatialMaxent was performed in Java using 
openjdk	18.	 It	also	runs	on	Java	SE	18	and	newer	versions.	spatial-
Maxent 1.0.0. is based on Maxent version 3.4.4. It is available as a 
stand-alone .jar file and can be used in the same way as the original 
Maxent either via the GUI or the command line. spatialMaxent is dis-
tributed under the MIT license. Documentation, a tutorial, and the 
source code are hosted on GitHub (https:// github. com/ envima/ spati 
alMaxent).

2.1  |  Spatial cross-validation

spatialMaxent implements a spatial cross-validation as the inter-
nal validation method to account for overfitting during the three 
tuning steps. The presence points must be externally grouped by 
spatially clustered locations (clusters, blocks) beforehand by using 
for instance blocking methods as implemented in the “blockCV” R 
package (Valavi et al., 2019). In each cross-validation iteration, one 
of the blocks is held back as validation datum while the models are 
trained with data from the remaining blocks (Meyer et al., 2018; 
Valavi et al., 2019). Next, an n-fold cross-validation is performed, 
where the number of replicates/folds is equal to the number of dis-
tinct blocks.

2.2  |  Forward-variable-selection

To perform FVS, models are first trained with all possible combina-
tions of two variables. The best combination is selected by spatial-
Maxent	based	on	either	test-gain	or	test	area	under	the	curve	(AUC).	
The decision parameter determining the best model is averaged over 
the results of all folds. The best performing two-variable combina-
tion is trained together with all remaining variables separately and 
the best model is selected again. This step is repeated until no fur-
ther improvement is obtained by adding more variables to the model 
(for more details on FVS see: Meyer et al., 2018).	 All	 subsequent	
models are computed using only the variables selected by FVS.

Pseudocode for FVS (Meyer et al., 2018):

for each resampling iteration do  

     train models using all possible 2-variable 

combinations and calculate model performance with 

spatial cross-validation  

end  

Keep the best 2-variable model (modelbest)  

for each additional number of variables i, i = 3 …N 
do  

     for each remaining variable VR do  

          for each resampling iteration do  

               train models using the variables of 

model best and VR and calculate model performance 

with spatial cross-validation  

          end  

     end  

     if mean (error of model i) > mean(error of 
modelbest) then  

          Break  

     end  

Keep the best performing i-variable model (model-

best)  

end

2.3  |  Forward-feature-selection

Feature classes or features are a series of mathematical transforma-
tions of the covariates for modeling complex relationships. The FFS 
follows the same basic concept as FVS, except that the first models 
are trained with only one of the feature classes. The model with the 
best feature class is selected and another feature is added until no 
improvement in model performance is observed. The subsequent 
models are trained with only the selected variables and features.

Pseudocode for FFS (Meyer et al., 2018):

for each resampling iteration do  

     train models using all possible features and 

calculate model performance with spatial cross-val-

idation  

end  

Keep the best feature model (modelbest)  

for each additional number of features i, i = 2 …N do  
     for each remaining feature FR do  

          for each resampling iteration do.  

               train models using the features of 

modelbest and FR and calculate model performance with 

spatial cross-validation  

          end  

     end  

     if mean (error of model i) > mean(error of 
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F I G U R E  1 Modeling	workflow	of	spatialMaxent (a) Software structure of spatialMaxent.	A	total	of	three	tuning	algorithms	are	executed	
successively. First, the best variables are selected by FVS and spatial cross-validation. Next, the best combination of mathematical 
transformations of the selected variables (Maxent feature class; hinge, linear, etc.) are selected by FFS and spatial cross-validation. Finally, 
the	best	regularization-multiplier	(RM)	is	selected	based	on	spatial	cross-validation.	After	the	determination	of	the	optimal	parameters	
(variables, feature classes, RM), the model is validated by n-fold spatial cross-validation and results for each fold are reported in the Maxent 
results	file	and	the	familiar	results	html.	(b)	Data	preparation	and	forward-fold-metric-estimation	(FFME).	Presence	records	of	the	NCEAS	
data were grouped into seven spatial folds. Five spatial folds were used for model cross-validation. The other two folds were held back for 
testing on spatially separated data. This was repeated for all possible combinations of training and test folds, thus, a total of 21 iterations. 
For each of the 21 models, four evaluation metrics were calculated. The median value of each metric was calculated.
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    |  5 of 13BALD et al.

modelbest) then  

          Break  

     end  

Keep the best performing i-feature model (modelbest)  

end

2.4 | Regularization-multiplier tuning

The RM is a numerical value that controls the complexity of the 
models. RM tuning is completed by computing models with RMs 
from RMmin to RMmax in RMincrease increments.

Pseudocode for RM tuning:

for each resampling iteration do  

     train models using all possible regulariza-

tion-multipliers RMmin to RMmax in RMincrease incre-

ments and calculate model   

     performance with spatial cross-validation  

end  

Keep the best regularization-multiplier model 

(modelbest)

The final model is trained with the selected variables, selected 
features, best RM, and all presence points. This procedure is ex-
tremely computationally intensive which means that large quanti-
ties of variables are linked with large computational costs. To reduce 
computation time for these extensive tuning schemes, the FVS is 
fully parallelized in spatialMaxent. Nevertheless, depending on the 
computing capacity and dataset, the procedure can take several 
hours or even days on standard computers.

3  |  MATERIAL S AND METHODS

All	pre-	and	post-processing	of	the	data	and	evaluation	of	the	mod-
els (sections 3.2 and 3.3) were performed in R version 4.2.1 (R Core 
Team, 2022).

A	 tutorial	 explaining	 all	 work-steps	 using	 Canada	 from	 the	
NCEAS	 dataset	 as	 an	 example	 is	 provided	 online	 (https:// envima. 
github. io/ spati alMax ent/ ).

3.1  |  Modeling

We compared four modeling approaches to assess the performance 
of spatialMaxent in terms of predictive ability and model complex-
ity: (1) Maxent model trained with five-fold random cross-validation 
and the default settings (default model) of Maxent; (2) Maxent model 
trained with FFS, RM tuning, and a five-fold random cross-validation 
(part-tuned random model); (3) Maxent model trained with FVS, FFS, 
RM tuning, and five-fold spatial cross-validation (full-tuned spatial 
model), representing the full functionalities of spatialMaxent; and (4) 

Maxent was trained with FFS, FVS, RM tuning, and random five-
fold cross-validation (full-tuned random model). The default and part-
tuned random Maxent models are inspired by modeling approaches 
employed by Valavi et al. (2022). Modeling approach four allowed 
demonstration of the importance of spatial validation and that good 
results are only obtained by variable and feature selection when 
each model is trained with a spatial validation approach.

The models containing RM tuning were tuned from RMmin = 0.5	
to RMmax = 7	in	steps	of	0.5.	We	used	the	test	AUC	as	the	parameter	
for selecting the best model.

3.2  |  Data preparation

The default parameters provided in Maxent were determined by 
modeling 225 species in a total of six regions worldwide (Phillips 
& Dudík, 2008).	 The	NCEAS	 dataset	 has	 recently	 been	 published	
as an open benchmark dataset explicitly assembled for comparing 
SDM methods (Elith et al., 2020; data available from Open Science 
Framework (OSF): https:// osf. io/ kwc4v/  ).

The	NCEAS	dataset	covers	six	regions:	Australian	wet	tropics,	
Ontario	Canada,	New	South	Wales	Australia,	New	Zealand,	South	
American	 countries,	 and	 Switzerland.	 The	 species	 themselves	
are anonymized and only assigned to a biological group. The data 
consists	of	presence-only	(PO)	records,	presence-absence	(PA)	re-
cords, background points (BP), and environmental predictors as 
raster	layers	for	each	species	(spatial	resolution	between	80 m	and	
1 km).	The	PO	and	BP	data	are	intended	to	train	and	validate	the	
SDM	models,	and	the	PA	data	 to	 test	 them.	For	a	more	detailed	
description	of	the	NCEAS	dataset,	see	(Elith	et	al.,	2020).

3.2.1  |  Presence-only	and	presence-absence	data

The	PA	data	is	provided	as	a	separate	dataset	independent	from	PO	
data with the intention to use the former for model testing. Notably, 
the presence points in both datasets exhibit a pattern similar to a 
random separation of training and test data (Figure 2), and no spa-
tial delineation between training and test data is visible. To enable 
spatial cross-validation and evaluation with a reasonable number of 
records per species, we combined the presence records from the 
PO	and	 the	PA	data	 to	 one	new	dataset	which	was	 subsequently	
divided into spatial blocks using the “blockCV” R package (Valavi 
et al., 2019).

From the combined presence points, we only selected species 
with at least 35 occurrence records because we aimed for five-
fold cross-validation and evaluation on two external folds. Thus, 
we created seven cross-validation folds with at least five data re-
cords	each,	leaving	a	total	of	218	out	of	225	species	for	modeling.	
Next, we partitioned the data into spatially distinct blocks (spatial 
folds) for spatial cross-validation. These spatial folds were created 
with the function spatialBlock() from the R package “blockCV” 
(version 2.1.4; Valavi et al., 2019). The function spatialBlock() 
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divides the study region into spatial blocks of squared shape and 
distributes these blocks across a user-defined number of folds. 
We repeated this process 200 times for each species and the fold 
assignment with the most balanced number of presence records 
per species over all folds was chosen for further modeling (Valavi 
et al., 2019).

3.2.2  |  Background	points

Elith et al. (2020) stated that the 10,000 randomly distributed back-
ground	 points	 across	 each	 region	 in	 the	 original	 NCEAS	 dataset,	

which is the default number in the Maxent software, might be in-
sufficient for some of the regions. Consequently, previous stud-
ies used 50,000 randomly distributed background points for each 
region (Valavi et al., 2022). The issue of optimal sampling size and 
distribution of background points remains a major challenge in SDM 
which	will	not	be	discussed	in	this	present	study.	As	our	study	fo-
cuses on a comparison between modeling approaches and not on 
calculating context-specific ecologically meaningful SDMs, we argue 
that a comparison is justified as long as modeling conditions are held 
constant between different approaches. Thus, we also used 10,000 
background points (default setting and recommended by Merow 
et al., 2013)	for	each	region	in	the	NCEAS	dataset	but	did	not	sample	

F I G U R E  2 Example	species	“awt01”	in	the	Australian	wet	tropics	from	the	National	Center	for	Ecological	Analysis	and	Synthesis	(NCEAS)	
dataset.	(a)	Presence-only	(PO)	and	Presence-absence	(PA)	data.	(b)	Presence-only	points	from	the	PO	and	PA	data	as	seen	in	(a),	parted	into	
seven spatial folds with the R package “blockCV.” In the first of 21 FFME rounds for the performance evaluation, the black triangles were 
used for independent testing without being part of the modeling. The points of the folds 3–7 were used for model parameterization based 
on spatial cross-validation. Data: Elith et al. (2020) and OpenStreetMap (2023).
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    |  7 of 13BALD et al.

them randomly over the entire study area. Instead, we used condi-
tioned Latin hypercube sampling (Minasny & McBratney, 2006) as 
implemented in the R package “clhs” (version 0.9.0; Roudier, 2011) 
to distribute the background points over the study area whereby all 
variables of the environmental data were represented as well as pos-
sible. Background points within the same pixel as the environmental 
layers as presence records were removed.

3.2.3  |  Selection	of	folds	and	
forward-fold-metric-estimation

Out of the seven spatial folds of presence records, five were used 
for model training and two were used as spatially separated test 
data. One of the most crucial aspects in spatial validation is the 
spatial distribution of training, validation, and test points because 
the selection of the folds being removed from the data for testing 
can result in large differences in determining model quality. For 
instance, a model might predict one fold perfectly even though it 
has never been part of the training data, but might fail for others. 
Randomly excluding one or more spatial folds for external evalua-
tion therefore provides an incomplete picture of the model qual-
ity. To obtain a comprehensive picture of which modeling approach 
performs	best	on	the	NCEAS	dataset,	we	proposed	to	remove	the	
effect of random selection of spatial folds for calculating model 
quality by using a forward-fold-metric-estimation (FFME). In FFME, 
models are calculated for all possible combinations of training and 
test data and each model is evaluated with its respective spatially 
separated test data. The median of all result metrics is then used 
to assess the overall quality of the modeling approach (Figure 1b). 
Consequently, every PO point will eventually be part of the model 
training, while simultaneously the models are always evaluated with 
spatially independent data.

3.3  |  Evaluation

We utilized four different evaluation criteria for assessing which 
modeling	 approach	 performs	 best.	 We	 first	 used	 the	 AUC	 and	
then	the	mean	absolute	error	(MAE)	as	proposed	by	Konowalik	and	
Nosol (2021). Both metrics were calculated for each FFME-run on 
spatially separated test data using the R package “Metrics” (version 
0.1.4; Hamner & Frasco, 2018).	The	MAE	is	defined	as	the	average	
absolute deviance between the predicted value (= 1)	 and	 the	 ob-
served	value	 ([0,1])	 at	presence	points.	To	 calculate	AUC,	we	 ran-
domly sampled the same number of background points as available 
presence	points.	As	the	AUC	is	not	initially	intended	to	be	calculated	
on background points but on absence data, we follow the suggestion 
of Yackulic et al. (2013)	and	will	 from	here	on	refer	to	the	AUC	as	
AUC	presence-only	(AUCPO) to establish a clear distinction between 
AUC	 values	 calculated	 on	 PA	 and	 PO	 data.	We	 are	 aware	 of	 the	
general	problems	associated	with	these	metrics,	especially	the	AUC	
(Lobo et al., 2008) and thus used these only to compare between 

modeling approaches and not to make statements of absolute model 
performance.	 As	 a	 third	 metric,	 we	 calculated	 the	 Boyce-Index	
(Boyce et al., 2002) with the R package “ecospat” (version 3.3; Di 
Cola et al., 2017) using the prediction raster and spatially separated 
test data. Finally, as a fourth metric we used the number of param-
eters of each model as an indicator of model complexity.

These four metrics were determined for each fold of the FFME 
and their median value was calculated for each species separately. 
The assessment of which modeling approach was the best for each 
species	was	made	based	on	the	highest	Boyce-Index,	highest	AUCPO, 
lowest	MAE,	and	least	complex	model	(i.e.,	model	with	the	minimum	
number of parameters). We compared the metric values of each spe-
cies and assigned the species to the approach with the best value 
for further comparison. The best modeling approach for each metric 
(exemplary calculation in Table 1) was then defined as the one with 
the highest number of assigned species.

To express the overall performance of each modeling approach 
in conjunction with model complexity, we created a single perfor-
mance-complexity-index (PCI) based on all four metrics. To do this, 
we scaled the metrics of all models for each species from 0 to 1 with 
inverted	scales	of	MAE	and	the	number	of	parameters.	The	sum	of	
all four scaled metrics per species and modeling approach formed 
the PCI (exemplary calculation Table 2).

4  |  RESULTS

The full-tuned spatial modeling approach achieved the best results 
compared to the other three approaches for all four metrics. The least 
complex	models	for	210	out	of	218	species	were	produced.	The	re-
sults	were	worst	for	the	AUCPO	values,	where	for	a	total	of	92	of	218	
species	the	best	AUCPO value was achieved. The next best modeling 
approach was the default modeling approach, achieving the best re-
sults	 for	52	of	218	 species.	However,	 the	AUCPO values calculated 
for the four methods had a very similar range; therefore, it was dif-
ficult to determine which modeling approach provided the best re-
sults (Figure 3f).	The	Boyce-Index,	MAE,	and	number	of	parameters	
clearly demonstrated that the full-tuned spatial modeling approach 
performed better on spatially separated test data (Figure 3e,g,h). 
The ratio of the full-tuned spatial modeling approach to the next best 
modeling	approach	for	the	Boyce-Index	and	the	MAE	was	126	to	34	
and	198	 to	 9,	 respectively	 (Figure 3a). In general, the default mod-
eling approach was the next best compared to the full-tuned spatial 
modeling approach; however, the three modeling approaches using 
random cross-validation (default, part-tuned random, full-tuned random) 
recorded	a	similar	range.	A	direct	comparison	of	each	modeling	ap-
proach to the default modeling approach can be found in Figure 4.

The results for the PCI calculated from scaled Boyce-Index, num-
ber	of	parameters,	MAE,	and	AUCPO for all species for each modeling 
approach can be seen in Figure 3c,d. The full-tuned spatial modeling 
approach was best for >80%	of	the	species	when	directly	compared	
with the other modeling approaches (Figure 3d). The other three 
modeling approaches exhibited very similar results.
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8 of 13  |     BALD et al.

The	AUCPO values of the validation on spatially separated test 
data	were	significantly	closer	to	the	test	AUC	of	the	cross-validation	
of spatialMaxent compared to the other three modeling approaches 
(Figure 3b). spatialMaxent also allowed a more realistic assessment of 
the quality of the models based on internal model error rather than 
the models derived with random cross-validation.

As	mentioned	earlier,	the	performance	improvement	of	spatial-
Maxent	 is	accompanied	by	higher	computational	costs.	Among	the	
four modeling approaches used, the median computational time on 
one	thread	was	2.07 min	for	the	default	modeling	approach,	4.32 min	
for	the	part-tuned	random	modeling	approach,	and	16.2 min	each	for	
the full-tuned spatial and full-tuned random modeling approaches. 
Since the FVS can be executed in parallel, the processing time for the 
last two approaches can be improved. When run on 10 threads, the 
median	processing	time	was	9.33 min	for	the	full-tuned	random	ap-
proach	and	3.39 min	for	the	full-tuned	spatial	approach.	Therefore,	
spatialMaxent's computational demands, while higher for the full-
tuned settings, remain manageable for researchers using standard 
hardware configurations.

5  |  DISCUSSION

Ignoring spatial dependence in data and a lack of tuning are among 
the most common mistakes in SDM (Sillero & Barbosa, 2021). 

The software Maxent in its standard version offers the user a 
simple way to perform SDM. However, the current Maxent GUI 
lacks automatic tuning options and functionalities to account for 
overfitting, which might be the reason for missing model tun-
ing attempts. In our study, we consolidated current knowledge 
regarding best practices in spatial modeling and incorporated 
them into spatialMaxent, an advancement of the popular Maxent 
software.

Here, we demonstrated that appropriate tuning and variable-se-
lection methods that account for overfitting result in more reliable 
models with improved predictive performance. However, even when 
spatial cross-validation in spatialMaxent is used, care must be taken 
when arranging the spatial folds. For instance, if data is clustered too 
heavily, spatial cross-validation is not possible because a sufficient 
independence between cross-validation folds cannot be achieved 
(Meyer & Pebesma, 2022).

Compared to the random cross-validation results, the inter-
nal	model	AUC	of	the	spatialMaxent approach also remained much 
closer	 to	 the	AUCPO obtained by external validation with spatially 
separated test data. This reiterates the spatial cross-validation 
during model training better reflecting the predictive power and 
potential error of the model compared to the overoptimistic results 
obtained via random cross-validation.

SDM is increasingly being used in a wide variety of ecological 
fields, and offers a broad range of applications in decision-making 

TA B L E  1 Exemplary	determination	of	the	best	modeling	approach	for	AUCPO values.

Species

Modeling approach

Best AUCPOFull-tuned spatial Default Full-tuned random Part-tuned random

Awt01 0.5623669 0.5026700 0.4984056 0.4559949 Full-tuned spatial

Awt02 0.5013007 0.6569951 0.6133472 0.6052319 Default

Awt03 0.6455855 0.5647337 0.5976606 0.5957396 Full-tuned spatial

Swi30 0.8891490 0.8914484 0.8900276 0.8897441 Default

Note: Median values for each modeling approach over all forward-fold-metric-estimation folds. The result of the best modeling approach is indicated 
in bold.

Modeling approach
Full-tuned 
spatial Default

Full-tuned 
random

Part-tuned 
random

Boyce 0.299 −0.138 −0.295 −0.326

Boyce scaled 1 0.3008 0.0496 0

AUCPO 0.5623669 0.50267 0.4984056 0.4559949

AUCPO scaled 1 0.438791223 0.398701726 0

Number parameters 16 57 74 86

Number parameters scaled 1 0.414285714 0.171428571 0

MAE 0.485469422 0.765030005 0.80018211 0.826386672

MAE	scaled 1 0.17997525 0.076864876 0

PCI 4 1.333852187 0.696595173 0

Note:	For	each	metric	(AUCPO,	MAE,	Boyce,	and	number	of	parameters),	the	values	for	all	four	
modeling	approaches	are	scaled	from	0	to	1	with	inverted	scales	of	MAE	and	the	number	of	
parameters. The sum of all four scaled metrics per species and modeling approach formed the PCI.

TA B L E  2 Exemplary	calculation	of	the	
Performance-Complexity-Index (PCI) for 
the species “awt01.”

 20457758, 2023, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.10635 by U

niversitatsbibliothek, W
iley O

nline L
ibrary on [30/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    |  9 of 13BALD et al.

F I G U R E  3 Comparison	of	the	performance	of	modeling	approaches	based	on	species.	(a)	Number	of	species	in	each	modeling	approach	
with	the	best	area-under-the-curve	value	(AUCPO),	Boyce-Index	(Boyce),	Mean	Absolute	Error	(MAE),	and	number	of	parameters	(NP).	Note	
that	the	number	of	species	per	metric	across	the	four	modeling	approaches	sums	up	to	218,	which	is	to	the	total	number	of	species	used.	
(b)	Absolute	difference	between	the	test	AUC,	as	given	by	Maxent	and	AUCPO, calculated using spatially separated test data. (c) Boxplots of 
the	Performance-Complexity-Index	calculated	from	scaled	AUCPO,	MAE,	Boyce-Index,	and	number	parameters	for	218	species.	(d)	Number	
of	species	with	the	best	Performance-Complexity-Index,	as	calculated	from	the	scaled	AUCPO,	MAE,	Boyce-Index,	and	number	parameters.	
(e)	Number	of	parameters	(NP)	for	all	218	species	by	modeling	approach.	(f)	AUCPO	for	all	218	species	by	modeling	approach.	(g)	MAE	for	all	
218	species	by	modeling	approach.	(h)	Boyce-Index	for	all	218	species	by	modeling	approach.
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10 of 13  |     BALD et al.

(Araújo	 et	 al.,	 2019). Therefore, the importance of improving the 
quality of SDMs is essential. Given the popularity of Maxent and 
its current application in conservation research and practice, our 
results	based	on	the	NCEAS	dataset	are	concerning.	Even	if	model	
tuning without spatial cross-validation is applied, results are often 
not better than the default settings. Only the combination of model 
tuning with spatial cross-validation resulted in better performance 
and	less	complex	models.	An	analysis	of	the	impact	of	fine-tuning	on	
the response curves is also possible in spatialMaxent, as it provides 
the same response curve output as Maxent. However, due to the 
anonymization of species in this study, we refrained from doing so. 
Future research can explore the influence of fine-tuning in spatial-
Maxent on response curves using non-anonymized species data for 
deeper insights.

Most previous studies which reviewed the use of Maxent default 
settings in SDM applications only examined peer-reviewed academic 
publications. However, the application of Maxent as a conservation 

planning tool by government authorities is common and offers great 
practical application in nature conservation. Thus, there is a high 
probability that the lack of adequate tuning and proper evaluation is 
even more pronounced in that sector. The resulting models are still 
treated as realistic and used as a tool for managing endangered spe-
cies, biodiversity conservation, natural resource management, and 
studying	the	impact	of	climate	change	(Guillera-Arroita	et	al.,	2015). 
Direct negative consequences for endangered species may occur if 
interventions in the environment are performed using results from 
these default models (Lee-Yaw et al., 2022). By implementing the 
tuning processes and spatial validation directly into the popular 
Maxent GUI, we hope to promote the creation of SDMs that are 
meaningful beyond the training data and thereby support nature 
conservation.

spatialMaxent is a valuable software for researchers, govern-
ment authorities, and conservation practitioners. It can be used to 
identify areas of high conservation value, improve the accuracy of 

F I G U R E  4 Number	of	species	out	of	218	(y-axis)	which	reached	the	maximum	Boyce-Index,	the	maximum	AUCPO value, the minimum 
MAE,	or	the	minimum	number	of	parameters	for	(a)	the	full-tuned	spatial	modeling	approach	compared	to	the	default	modeling	approach,	
(b) the full-tuned random modeling approach compared to the default modeling approach, and (c) the part-tuned random modeling approach 
compared to the default modeling approach.
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    |  11 of 13BALD et al.

predictions for invasive or endangered species under climate change 
scenarios, and aid in conservation management decisions. By pro-
viding reliable results and being user-friendly, this software can be 
an important tool to support the achievement of the recently es-
tablished Global COP15 (2022) biodiversity conservation targets. 
However, there is no one-fits-all solution for SDM (Qiao et al., 2015), 
and even if spatialMaxent improves SDMs in an easily accessible way, 
this does not free users from careful quality control.
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