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differentiation of
inflammatory conditions
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Introduction: Inflammatory conditions in patients have various causes and

require different treatments. Bacterial infections are treated with antibiotics,

while these medications are ineffective against viral infections. Autoimmune

diseases and graft-versus-host disease (GVHD) after allogeneic stem cell

transplantation, require immunosuppressive therapies such as glucocorticoids,

which may be contraindicated in other inflammatory states. In this study, we

employ a combination of straightforward blood tests to devise an explainable

artificial intelligence (XAI) for distinguishing between bacterial infections, viral

infections, and autoimmune diseases/graft-versus-host disease.

Patients and methods: We analysed peripheral blood from 80 patients with

inflammatory conditions and 38 controls. Complete blood count, CRP analysis,

and a rapid flow cytometric test for myeloid activation markers CD169, CD64,

and HLA-DR were utilized. A two-step XAI distinguished firstly with C5.0 rules

pruned by ABC analysis between controls and inflammatory conditions and

secondly between the types of inflammatory conditions with a new bivariate

decision tree using the Simpson impurity function.

Results: Inflammatory conditions were distinguished using an XAI, achieving an

overall accuracy of 81.0% (95%CI 72 – 87%). Bacterial infection (N = 30), viral

infection (N = 26), and autoimmune diseases/GVHD (N = 24) were differentiated

with accuracies of 90.3%, 80.0%, and 79.0%, respectively. The most critical

parameter for distinguishing between controls and inflammatory conditions was

the expression of CD64 on neutrophils. Monocyte count and expression of CD169

were most crucial for the classification within the inflammatory conditions.

Conclusion: Treatment decisions for inflammatory conditions can be effectively

guided by XAI rules, straightforward to implement and based on promptly

acquired blood parameters.
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1 Introduction

Bacterial and viral infections, often manifesting with symptoms

such as respiratory distress and diarrhoea, represents some of

the most common reasons for emergency department visits and

hospital admissions in the United States even before the advent of

COVID-19 (1). Upon presentation, these patients frequently exhibit

inflammatory signs such as fever, increased respiratory rate, low

blood pressure, high heart rate, and elevated inflammation markers

like C-Reactive Protein (CRP) and leukocytes. Inflammation plays a

pivotal role in a broad spectrum of physiological and pathological

processes, including infection, tissue injury, and stress or malfunction

of tissues (2).

Patients are often inaccurately treated with empirical antibiotics,

particularly when presenting with respiratory tract symptoms (3–5).

This approach is ineffective, especially for viral infections that do not

respond to antibiotics and can even be inappropriate or

contraindicated in patients with inflammatory symptoms due to

autoimmune processes like vasculitis or graft-versus-host disease

(GVHD) following allogeneic stem cell transplantation. These

situations warrant the use of immunosuppressive treatment. Thus,

developing quick, easy to assess, and reliable tests to distinguish

between different sources of inflammation is imperative to aid

clinicians in making appropriate treatment decisions.

Several studies have evaluated using CRP, white blood cell

(WBC) count, and procalcitonin (PCT), either individually or in

various combinations, as markers to differentiate between bacterial

and non-bacterial infections, with inconsistent results as reviewed

elsewhere (6). A meta-analysis of 14 studies, encompassing 2,471

patients, conducted by Yeh et al., demonstrated that expression of

the Fc gamma receptor I (CD64) on polymorphonuclear

neutrophils (PMN) was superior to CRP and PCT for predicting

sepsis (7). Moreover, Hussein et al. employed CD64 expression on

PMN to distinguish between infections and disease flare-ups in

patients with autoimmune disease (8).

Nonetheless, interferon gamma (IFNg), known to induce CD64

expression, plays a pivotal role in the immune regulation of viral and

bacterial infections, cancer, and autoimmune diseases (9). As such,

relying solely on CD64 expression may lead to misinterpretation of

inflammatory states. Bourgoin et al. demonstrated that a combination

of CD64 and CD169 (Siglec-1) expression on white blood cells could

aid in differentiating between viral and bacterial infections (10–12).

Furthermore, Rose et al. found a correlation between increased

CD169 and disease activity in patients with Sjögren’s syndrome

(13). HLA-DR, an MHC-Class II receptor, has been shown to

decrease in sepsis-induced immunosuppression (14, 15), and is

associated with poor outcomes in sepsis patients (16, 17).

In this study, we employed a rapid, no-wash flow cytometry test

for measuring CD64, CD169, and HLA-DR on monocytes and PMN,

integrating these results with differential blood counts and CRP

values. The comprehensive data set, obtainable within two hours in

a laboratory setting, was subsequently fed into an explainable artificial

intelligence (XAI) system. This white box model is designed to

differentiate in a manner that is understandable to physicians
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between bacterial, viral, and autoimmune-induced inflammation,

including cases of graft-versus-host disease following allogeneic

stem cell transplantation. Addressing the limitations of subsymbolic

AI systems, particularly those that rely on neural networks, our XAI

model provides transparent and comprehensible rationales for its

decision-making process (18–20). Aligned with regulations

mandating decision justification in AI systems (21), our model

delivers case-specific explanations that are intelligible to physicians,

thereby facilitating a more in-depth evaluation of the AI’s

diagnostic reasoning.
2 Materials and methods

2.1 Patients

A total of 100 consecutive patients exhibiting inflammatory

symptoms and 50 control patients without such symptoms were

included in the study, following their informed consent and in

accordance with the guidelines of the local ethical committee (Vote

201/20) and the Declaration of Helsinki. Patients were considered to

have inflammatory symptoms if they met at least two of the following

criteria, which could not be explained otherwise: temperature > 38°C

or < 36°C, heart rate > 90/min, respiratory rate > 20/min, PaCO2 <

32mmHg, leukocyte count > 12,000/µL or < 4000/µL or > 10%

immature granulocytes (bands), CRP > 50 mg/dL, and systolic blood

pressure < 100mmHg. Additionally, we included patients with active

bacterial infections, as evidenced by positive bacterial cultures, nitrite-

positive urinary conditions, or characteristic pneumonia infiltrates.

Patients with viral infections were confirmed through positive IgM

serology, rapid antigen tests, or PCR. Those with active GVHD were

identified based on histological evidence and typical clinical

presentation, and patients diagnosed with autoimmune diseases

were defined in accordance with the respective medical

association’s criteria. Patients were assessed in two distinct cohorts.

The initial cohort, designated for training and cross-validation,

comprised 118 patients: 30 with bacterial infections, 26 with viral

infections, 24 with autoimmune diseases/graft-versus-host disease

(AID/GVHD), and 38 control patients. The second cohort, used for

validation, included 32 patients: 12 with bacterial infections, 8 with

viral infections, and 12 control patients. Patients with AID/GVHD

were excluded from the validation cohort due to the specific focus of

this phase of the study. Details regarding the diagnoses of control

patients are provided in Table S1 in the Supporting Information.
2.2 Collected parameters

For the study, differential blood counts were conducted using

the Sysmex XS-1000i (Sysmex Corporation, Kobe, Japan).

Additionally, high-sensitive CRP levels (with a detection limit of

0.20 mg/L) were measured using the SYNCHRON® System

(Beckman Coulter, Fullerton, CA, USA) following the

manufacturer’s instructions. Furthermore, a flow cytometric
frontiersin.org
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analysis of monocytes and polymorphonuclear neutrophils (PMN)

for CD169-PE (clone 7-239), HLA-DR-APC (clone Immu357), and

CD64-PB (clone 22) (all Beckman Coulter, three marker

combination, C63854) was performed on the Navios® Flow

Cytometer (Beckman Coulter). The relative median fluorescence

intensity (MFI) for both monocytes and PMN were determined for

all three antigens. Lymphocytes served as the negative population.
2.3 Dataset extension with
synthetic patients

118 cases x 18 variables were used. We used the knn-classifier

and the Bayes classifier for the baseline. We performed k-fold cross-

validation with k = 30. Due to the low number of cases the dataset

was extended in the next step by the SMOTE algorithm (22). The

SMOTE algorithm generates synthetic examples of selected classes

by creating new instances similar to the existing class samples. It

does this by identifying the nearest neighbours of each class sample

and creating new synthetic examples along the line segments

connecting these neighbours. Depending upon the amount of

over-sampling required, neighbours from nearest neighbours are

randomly chosen. We set the parameter for the nearest neighbours

k = 5. The data was extended by factor four. Again, we performed k-

fold cross cross-validation with k = 30 with the Bayes and knn

classifier to define a second baseline.
2.4 Construction of an explainable AI
based on the diagnostic process of
a physician

The XAI system was constructed in two steps, similar to the

diagnostic process of a physician. In the first step, the physician

decides if the patient has an inflammatory condition. In the second

step, the physician decides if it is bacterial, viral, or Autoimmune

disease/GVHD.

The XAI system uses in the first step k-ary C5.0 tree to

distinguish between normal controls and the named diseases (23).

The C5.0 decision tree is a powerful and widely used classification

algorithm. It is an improved version of Quinlan’s earlier ID3

(Iterative Dichotomiser 3) (24) and C4.5 algorithms (25). C5.0

uses a divide-and-conquer approach to recursively split the data

based on the most significant attributes. It selects the best attribute

to split the data at each node, using criteria like information gain or

gain ratio. The splitting continues until a certain stopping condition

is met, such as reaching a maximum depth or the minimum number

of samples per leaf. After learning the tree, we use the internal

procedure of C5.0 to extract the set of rules. It should be noted that

when a ruleset is used to classify a case, several of the rules may be

applicable (that is, all their conditions are satisfied) (https://

www.rulequest.com/see5-unix.html). Within each rule, the

number of cases that satisfy these conditions are specified. This

information of the number of cases is used in the ABC Analysis

algorithm (26). For a given information stored as a vector, the

method computes precise limits to acquire easily interpreted
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subsets. With the help of the ABC curve, the algorithm calculates

the optimal limits by exploiting the mathematical properties

pertaining to the distribution of analysed items. Closely related to

the Lorenz curve, the ABC curve can visualize the data by

graphically representing the cumulative distribution function. The

information containing positive values is divided into three disjoint

subsets A, B and C, with subset A comprising very profitable values,

i.e. largest data values (“the important few”), subset B comprising

values where the yield equals to the effort required to obtain it, and

the subset C comprising of non-profitable values, i.e., the smallest

ones. The two most important rules for class 1 are selected by this

ABC analysis (26).

In the second step, a bivariate binary decision tree based on the

Simpson impurity function is proposed. The term Impurity refers to

the measure of the disorder in a partition of data. The impurity is

used to determine the best split at each tree node during the

construction process by measuring how well a split separates the

classes or categories in the current partition of data (27). The aim is

to minimize the impurity at each node by selecting the split that

results in the purest subsets (27). This process continues recursively

until a stopping criterion of having nodes with a minimum number

of instances is met (27). Simpson’s impurity is a measure used in

ecology to assess the diversity (28). It considers both the number of

different classes (species richness) and the relative abundance of

each class (evenness). It measures how evenly the cases are

distributed among the different classes.

Note that by choosing decision trees to model the physician’s

diagnostic process through an XAI system, the generalization ability

remains unaffected through the synthetic cases (22). We performed

k-fold cross-validation with k = 30.
2.5 Variable importance measurement

Variable importance measurement was based on the abstract of

Hennig et al. (29), presented at the Joint Conference of Data

Science, Statistics & Visualisation and the European Conference

on Data Analysis, held in Antwerp from July 5-7, 2023, focusing on

cluster analysis. After the full two-step XAI is learned, it is applied

to the original dataset. For the baseline x, an adjusted rand index

(30, 31) is computed using the prior classification of the dataset and

the XAI predicted classification. Next, N = 200 times the values of a

selected feature are randomly permutated. For each trial, the value y

of the adjusted rand index is computed by using the prediction of

the XAI and the prior classification. Thereafter, the relative

differences (32) to the baseline are computed as follows:

R = 0:5*(x − y)=(x + y)*100

The range of relative differences is the interval [-200%, 200%].

The approach yields N = 200 relative difference R values for a

feature. Next, the Mirrored-density plot (MD plot) (33) estimates

parameter-free the probability density function (pdf). The MD plot

is a type of data visualization that displays the pdf of two or more

variables in a single graph. It is often used to compare the

distributions of continuous variables across different variables,

groups, or conditions. The plot consists of two mirrored density
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curves, one for each dataset, placed on either side of a central axis.

The area between the curves is filled in blue. The density curves

show how the data is distributed along the range of the variable. By

using MD plots, one can easily observe and compare the

distributions’ shape, spread, and central tendencies between

different variables. The MD plot outlines the variable importance

as follows. If the blue area lies around zero with a small spread, the

variable is unimportant because permutations did not influence the

adjusted rand index compared to the baseline. If the area lies below

zero, permutations of the variable will improve the performance

compared to the baseline. If the area lies above zero, the

performance of permutations of a variable is lower compared to

the baseline. This indicates that the variable is important in the XAI.

The variable importance is estimated with this procedure for each

variable of the dataset.
3 Results

3.1 Training and cross-validation

A total of 118 patients were enrolled in the training and cross-

validation cohort, categorized based on all available clinical information

as follows: bacterial infections (N = 30), viral infections (N = 26),

autoimmune diseases, including patients with graft-versus-host disease

(N = 24), and negative controls without inflammation (N = 38). The

median age of the patients was 61 years, with a range spanning from 18

to 91 years. 42% of the participants were female, and 58% were male.

The age and sex of the subgroups are disaggregated in Table 1.

Relative MFI values from CD169, HLA-DR, and CD64 were

estimated with flow cytometry on monocytes and PMN. The flow

cytometry gating strategy is shown in Figure 1A. Relative MFI of

CD64 was significantly higher in the patients with inflammation

(bacterial infection, viral infection, and autoimmune disease/GVHD)

than without inflammation (controls) either on monocytes or PMN

(all p < 0.001; Mann-Whitney test) as shown in Figure 1B. Within the

different inflammatory states, only CD169 was significantly higher

expressed on monocytes in patients with viral infections than in

patients with bacterial infection (p = 0.012), and HLA-DR on

monocytes was higher in patients with autoimmune disease

compared to patients with bacterial infections (p = 0.005) (Figure 1).

Mean values, along with their upper and lower 95% confidence

intervals for the CRP and hemogram, are presented in Table 2. As

expected, CRP values were significantly higher in bacterial infection

compared to autoimmune disease/GVHD and controls (p < 0.0001 for

both). However, they were not significantly different compared to viral

infections (p = 0.061). The results of the Mann-Whitney U test,

comparing all parameters presented in Table 2, are detailed in the

Supporting Information (Table S2). Leveraging insights from the

readily available N = 18 parameters (Table 2 CRP/hemogram N =

12; Figure 1B MFI values: N = 6), we initially utilized the XAI system

C5.0 to distinguish controls from patients with inflammatory

syndromes. The accuracy of this initial step was 97.46% (95%CI
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92.75 ─ 99.47%). In the subsequent step, aiming to differentiate

between bacterial infection, viral infection, and autoimmune disease/

GVHD, the dataset was augmented in silico fourfold for each diagnosis

using the SMOTE algorithm. Combining both steps yielded an overall

accuracy of 81.0% (95%CI 72 – 87%). The classification of all N = 118

cases is presented in a confusion matrix in Table 3.

The highest accuracy among the subgroups was observed in

patients with bacterial infection (90.29%), followed by viral

infection (79.97%) and autoimmune disease/GVHD (78.98%).

Sensitivity was also highest in bacterial infection (86.21%),

succeeded by autoimmune disease/GVHD (71.43%) and viral

infection (64.71%). Conversely, specificity was notably high for

viral infection (95.24%) and bacterial infection (94.38%), compared

to a lower 71.43% in patients with autoimmune disease. The

diagnostic process of the two-step XAI is depicted in Figure 2. It

enables the physician to understand which clinical parameters

influenced the XAI’s diagnosis decision and to assess the validity

of these decisions for each specific case. The decision-making rules

defined by the XAI are based on formulas, which can be seamlessly

integrated and automatically calculated within a laboratory

information system that encompasses all 18 parameters.

The overall classification of inflammatory cases exhibited notable

reliability. However, an exception arose with nine instances of

autoimmune disease/GVHD, which were misclassified as viral

infections. This misclassification adversely impacted the sensitivity

for the viral infection category and overall performance for the

autoimmune disease/GVHD category. Given the smaller sample

sizes, autoimmune disease (N = 12) and GVHD (N = 12) were

grouped into a single category due to their pathophysiological

similarities. Of the nine misclassified cases, four were diagnosed

with GVHD, while five had an autoimmune disease. This

distribution suggests that there was no distinct bias within the

category that could account for the observed misclassification.
3.2 Validation cohort

The generalizability of our diagnostic algorithm was further

verified using an independent validation cohort of 32 patients.

Due to challenges in distinguishing between autoimmune
TABLE 1 Characteristics of Subgroups.

Age in years –
median (range)

Female/Male – N

Total 61 (18 - 91) 49/69

Bacterial infection 64.5 (18 - 91) 10/20

Viral infection 61 (20 - 89) 9/17

Autoimmune
disease/GVHD

61.5 (21 - 84) 14/10

Controls 59 (20 - 82) 16/22
N, Number; GVHD, Graft versus host disease.
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disease/GVHD and viral infections, patients with autoimmune

disease/GVHD were excluded from this validation cohort. This

cohort included 12 patients with bacterial infections, 8 patients

with viral infections, and 12 control subjects without

inflammation. The algorithm’s effectiveness in accurately

categorizing these patients was evaluated, with detailed

outcomes depicted in Figure 2 (Validation Cohort). The

overall accuracy of the diagnostic algorithm was determined to

be 84.38% (95%CI 67.21% ─ 94.72%). The corresponding
Frontiers in Immunology 05
confusion matrix is provided in the Supporting Information

(Table S3).
3.3 Evaluation of parameter significance

We aimed to identify which of the 18 parameters compiled for

each patient had the most significant influence on categorization by

XAI and to determine if there were any parameters that could be
A

B

FIGURE 1

Expression of the Myeloid Activation Markers on Leukocytes from Patients with Inflammation. (A) demonstrates the flow cytometry gating strategy,
along with representative histogram plots for polymorphonuclear neutrophils (PMN), monocytes, and lymphocytes (negative control population). In
(B) CD169, HLA-DR, and CD64 expressions were quantified using relative MFI (Median and 95%CI) on PMN and monocytes (Mono). Controls
displayed significantly lower CD64 expression in both PMN and monocytes than all other inflammatory states (Mann-Whitney test). Among the
inflammatory conditions, CD169 showed higher expression on monocytes in viral infections than in bacterial infections. Furthermore, HLA-DR on
monocytes was more pronounced in patients with autoimmune disease/GVHD than in patients with bacterial infections. (WBC, White blood cells;
MFI, Median fluorescence intensity; GVHD, Graft versus host disease; 95%CI, 95% Confidence interval; * p < 0.05; ** p < 0.01; *** p < 0.001; **** p
< 0.0001).
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considered redundant. To achieve this, we performed a procedure

200 times where we randomly permuted the values of a selected

parameter (from the set of 18). Following each permutation, the

predictions generated by the XAI were compared to our original

classifications using the adjusted rand index as a metric. We then

assessed the deviations of these results from our baseline prediction.

In Figure 3 MD-Plots illustrate the relevance (R in range (-)200 ─
200%) for each parameter. This analysis provided insight into the
Frontiers in Immunology 06
extent to which introducing randomness impacted the precision of

the XAI’s predictions.

The relative MFI of CD64 on PMN andmonocytes emerged as a

paramount parameter, influencing the XAI prediction with R-

values of 61.21% and 59.70% respectively. In contrast, the results

from the XAI prediction were minimally affected by the relative

MFI of CD169 and HLA-DR (1.89%) on PMN (-0.34%) Moreover,

the relative MFI of HLA-DR on monocytes appeared
TABLE 2 CRP and Hemogram values.

Bacterial Infection
Mean (95%CI)

N = 30

Viral Infection
Mean (95%CI)

N = 26

AID/GVHD
Mean (95%CI)

N = 24

Controls
Mean (95%CI)

N = 38

CRP
mg/L

113.26
(72.22 - 154.30)

66.94
(34.54 - 99.35)

23.67
(10.06 - 37.27)

11.75
(3.89 - 19.62)

WBC
G/L

8.95
(7.25 - 10.65)

8.10
(5.67 - 10.52)

7.37
(5.56 -9.17)

5.51
(5.01 - 6.02)

Hemoglobin
g/dL

104.40
(96.21 - 112.59)

117.88 (
108.07 - 127.69)

101.75
(89.95 - 113.55)

110.69
(100.41 - 120.98)

Platelets
G/L

250.67
(189.70 - 311.63)

187.98
(144.19 - 231.77)

139.42
(86.99 - 191.85)

235.05
(198.70 - 271.40

PMN
%

67.30
(58.22 - 76.38)

65.15
(54.69 - 75.61)

70.08
(61.93 - 78.23)

56.81
(52.62 - 61.00)

PMN
G/L

6.80
(4.83 - 8.77)

5.81
(3.82 - 7.79)

5.30
(3.68 - 6.91)

3.21
(2.77 - 3.64)

Eosinophils
%

1.18
(0.59 - 1.76)

0.74
(0.14 - 1.34)

2.94
(0.57 - 5.31)

1.92
(1.38 - 2.46)

Eosinophils
G/L

0.08
(0.04 - 0.12)

0.05
(0.01 - 0.10)

0.26
(0.01 - 0.51)

0.10
(0.07 - 0.13)

Basophils
%

0.56
(0.38 - 0.73)

0.33
(0.18 - 0.47)

0.29
(0.17 - 0.42)

0.55
(0.38 - 0.71)

Basophils
G/L

0.05
(0.03 - 0.07)

0.03
(0.01 - 0.04)

0.02
(0.01 - 0.03)

0.03
(0.02 - 0.04)

Monocytes
%

11.85
(8.66 - 15.05)

7.77
(5.68 - 9.86)

7.54
(5.74 - 9.34)

11.73
(9.82 - 13.63)

Monocytes
G/L

0.92
(0.72 - 1.13)

0.50
(0.37 - 0.63)

0.75
(0.27 - 1.22)

0.63
(0.51 - 0.74)
CRP, C-reactive protein; WBC, White blood count; PMN, Polymorphonuclear neutrophils; CI, Confidence interval; AID, Autoimmune disease; GVHD, Graft versus host disease.
TABLE 3 Confusion Matrix for the Training- and Cross-Validation cohort.

Prediction

Bacterial infection Viral infection AID/GVHD Controls Accuracy Sensitivity Specificity

T
ru
e 
di
ag
n
os
is

Bacterial infection 25 3 2 0 90.29% 86.21% 94.38%

Viral infection 1 22 2 1 79.97% 64.71% 95.24%

AID/GVHD 3 9 10 2 78.98% 71.43% 86.53%

Controls 0 0 0 38 96.34% 92.68% 100%
AID, Autoimmune disease; GVHD, Graft versus host disease.
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inconsequential, suggesting that the HLA-DR measure on

myeloid cells was not a pivotal determinant in the prediction

process. Additionally, the percentages of PMN, monocytes, and

Eosinophils were substantially less influential (R = 0 ─ 3.65%)

compared to their absolute values (R = 8.87 ─ 46.21%). Because N =

38 negative controls might have affected the relevance for all cases,

we analysed the importance of the parameters to differentiate

between the different inflammatory cases without controls.

Results changed tremendously, and MFI of CD64 on PMN and

monocytes turned out to decline from most relevant to irrelevant (R

= 0% for both, Figure 3B). Most important was the count of the

monocytes (R = 118.81%) followed by the CD169 MFI on

monocytes (R = 79.47%).
4 Discussion

We established straightforward ruleset to aid in the differential

diagnosis of inflammatory syndromes for physicians in the

emergency department. These rules were derived from an XAI

algorithm that utilized 18 readily available parameters from 80

patients with inflammation and 38 control subjects in a training-

and cross-validation cohort. The overall accuracy reached 81% in

the main cohort and increased to 84% in a smaller, independent
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validation cohort that excluded patients with AID/GVHD. We

prioritized ensuring that our approach was both transferable and

verifiable in low-income countries and in emergency departments

worldwide. All outcomes from the 18 parameters can be ascertained

within 2 hours. The XAI approach enables physicians to understand

which clinical parameters, such as the monocyte count, were pivotal

in the diagnostic decision-making. Consequently, a physician can

evaluate whether the XAI’s reliance on specific parameters, like the

monocyte count, is appropriate for their suspected diagnosis. This

assessment allows for a critical determination of the XAI’s

applicability to individual patient cases, especially in situations

where certain parameters may be misleading for the physician’s

differential diagnosis. By interacting with the XAI system and

understanding its diagnostic processes, physicians can identify

potential gaps in data. This interaction allows them to suggest

additional clinically relevant parameters based on their medical

expertise, which could enhance the performance of the XAI in

diagnosing and guiding treatment decisions for patients with

inflammatory conditions.

Notably, bacterial infections were identified with an accuracy of

90.29% (Sensitivity 86.21%; Specificity 94.38%). This accuracy can

inform antibiotic treatment decisions, potentially reducing

antibiotic overuse and the subsequent development of drug

resistance. The accuracy for detecting viral infections stood at
FIGURE 2

Explainable artificial intelligence (XAI) decision tree. In our diagnostic guidance approach, we initially employed two Boolean rules using the XAI
system C5.0 to distinguish between controls and patients presenting with inflammatory syndromes. Subsequently, we harnessed XAI to craft a
bivariate binary decision tree. This tree, grounded on the Simpson impurity function, produced dichotomous rules based on basic arithmetic
operations. These rules were designed to differentiate among bacterial infections, viral infections, and autoimmune diseases/graft-versus-host
disease. (N, Number; Mono, Monocytes; PMN, Polymorphonuclear neutrophils; WBC, White blood count; Hb, Hemoglobin; CRP, C-reactive protein;
PLT, platelets; AID, Autoimmune disease; GVHD, Graft versus host disease).
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79.97% (Sensitivity 64.71%; Specificity 95.24%). This suggests that

when the guidelines do not indicate a viral infection, such an

infection can be safely ruled out. However, a notable challenge

arose with N = 9 patients with AID/GVHD being misclassified as

having viral infections. This misclassification rate is significant,

affecting 37.5% of AID/GVHD patients and 11.25% of all

inflammatory cases, thereby impacting our overall findings. The

established ruleset effectively distinguished control cases without

inflammation. They reliably detect and rule out bacterial infections,

and they exclude viral infections with a high degree of confidence.

The primary challenge lies in diagnosing AID/GVHD. This may be

attributed to the small sample size and the possibility that AID and

GVHD differ considerably from each other, rendering the disease

category too heterogeneous. It may be beneficial to consider
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additional markers to enhance accuracy in the AID/GVHD

categorization. It is noteworthy that viral infections and GVHD

are intricately related. Viral infections may precede or occur

concurrently with GVHD (34–38). Furthermore, GVHD and its

treatment can lead to impaired T-cell recovery, predisposing

individuals to viral infections (39). Additionally, the clearance of

viral infections is often delayed in highly immunocompromised

individuals (38, 39). In our approach to differentiate various

inflammatory conditions, we primarily relied on parameters

involving myeloid cells. However, specifically for distinguishing

between viral infections and autoimmune diseases, the integration

of elements from the specific immune system, such as T-helper cell

differentiation (Th1, Th17, Tregs), cytotoxic T-cells, and B-cells,

might be beneficial. This additional focus on the specific immune
A

B

FIGURE 3

Parameter relevance for decision. In the mirrored-density plot, all 18 parameters were evaluated for their significance (R in %). A value of zero
indicates that a feature is not relevant, while a high percentage signifies its high relevance. Panel (A) demonstrates the significance of the variables
for all N = 118 samples of the main cohort, inclusive of 38 control cases without inflammatory disease. Here, CD64 expression on PMNs and
monocytes emerged as the most crucial parameters. Conversely, Panel (B) highlights the importance (R in %) of the variables when differentiating
solely between inflammatory states, excluding the control cases. In this context, the significance of CD64 expression on PMNs and monocytes
reduced to zero, rendering them non-essential. Notably, the highest relevance was attributed to the absolute count of monocytes and the
expression of CD169 on monocytes. In regard to the inflammatory subgroups, the monocyte count emerged as the key parameter for differentiating
bacterial and viral infections, denoted by §. For distinguishing patients with autoimmune diseases/GVHD, CRP was identified as the key parameter,
indicated by ‡. (Mono, Monocytes; PMN, Polymorphonuclear neutrophils; WBC, White blood count; CRP, C-reactive protein; AID, Autoimmune
disease; GVHD, Graft versus host disease; R, Relevance).
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system could enhance our ability to identify and differentiate these

conditions accurately. Integrating the results from a basic

lymphocyte subset analysis, which differentiates between T-helper

cells, cytotoxic T-cells, NK-cells, and B-cells, could further refine

our findings (40). This approach aligns with our strategy of utilizing

easily accessible parameters.

We evaluated each parameter for its significance within the

decision-making guidelines. Interestingly, CD64 expression on both

monocytes and PMN proved crucial in ruling out non-

inflammatory cases. However, within the scope of inflammatory

cases, CD64 did not differentiate between bacterial infection, viral

infection, and AID/GVHD. The expression of CD64 on PMN is a

well-documented biomarker for the prediction of sepsis (7).

Nonetheless, interferon gamma (IFNg), known to induce CD64

expression, plays a pivotal role in the immune regulation of viral

and bacterial infections, cancer, and autoimmune diseases (9). As

such, relying solely on CD64 expression may lead to

misinterpretation of inflammatory states. Bourgoin et al.

demonstrated that a combination of CD64 and CD169 (Siglec-1)

expression on white blood cells could aid in differentiating between

viral and bacterial infections (10–12).

These findings underscore the necessity of judiciously selecting

the most appropriate control group tailored to the research

question. The most significant parameters for distinguishing

solely between inflammatory cases were the monocyte count and

the CD169 expression on monocytes. Within our guidelines,

parameters associated with monocytes played a pivotal role,

particularly in the crucial step of differentiating inflammatory

conditions. Yet, these findings might be uniquely relevant to our

decision tree. In future studies, the set of 18 non-complementary

parameters should be further refined and reduced.

Furthermore, absolute values appeared to provide more

meaningful information within these guidelines and might be

favoured over relative values in subsequent studies.

We synthesized cases to employ XAI algorithms in generating

the bivariate decision tree for the second differentiation step of

inflammatory states. It is argued that by using decision trees,

this methodology doesn’t compromise the accuracy of the

findings (22).

In conclusion, our study demonstrates that the application of

XAI algorithms in differentiating various inflammatory conditions

is promising, yet requires further refinement and expansion to

enhance its accuracy and clinical applicability.
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