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Abstract: Neuromyelitis optica spectrum disorders (NMOSD) are chronic inflammatory diseases of
the central nervous system, characterized by autoantibodies against aquaporin-4. The symptoms
primarily involve severe optic neuritis and longitudinally extensive transverse myelitis. Although
the disease progression is typically relapse-dependent, recent studies revealed retinal neuroaxonal
degeneration unrelated to relapse activity, potentially due to anti-aquaporin-4-positive antibodies
interacting with retinal glial cells such as Miiller cells. In this exploratory study, we analysed the
response of mouse retinal explants to NMOSD immunoglobulins (IgG). Mouse retinal explants were
treated with purified IgG from patient or control sera for one and three days. We characterized tissue
response patterns through morphological changes, chemokine secretion, and complement expression.
Mouse retinal explants exhibited a basic proinflammatory response ex vivo, modified by IgG addition.
NMOSD IgG, unlike control IgG, increased gliosis and decreased chemokine release (CCL2, CCL3,
CCL4, and CXCL-10). Complement component expression by retinal cells remained unaltered by
either IgG fraction. We conclude that human NMOSD IgG can possibly bind in the mouse retina,
altering the local cellular environment. This intraretinal stress may contribute to retinal degeneration
independent of relapse activity in NMOSD, suggesting a primary retinopathy.

Keywords: NMOSD; autoantibodies; retina; chemokine; complement; local; Miiller cell; mouse
retinal explants

1. Introduction

Neuromyelitis optica spectrum disorders (NMOSD) represent a rare subset of au-
toimmune diseases that affect the central nervous system (CNS). The primary areas of
pathological involvement are the optic nerve and spinal cord. NMOSD is distinct from
multiple sclerosis due to the presence of autoantibodies against the astrocytic water channel
protein aquaporin-4 (AQP4-IgG) [1]. Binding of autoantibodies to AQP4 initiates the classi-
cal complement pathway, leading to inflammation and downstream neurodegeneration.
The course is relapsing in 90% of cases, and chronic progressive courses without relapse-
dependent worsening are rare. Interestingly, in AQP4-IgG positive NMOSD patients, a
loss of retinal ganglion cells and inner plexiform layer (GCIP) volume has been observed,
independent of optic neuritis attacks [2-7]. Hence, an underlying primary retinopathy may
be considered as an explanation in the context of NMOSD.

AQP4 is primarily found in astrocytes and glial cells in the CNS as well as in the
retina [8-10]. In AQP4-IgG positive NMOSD, primary retinopathy may be suspected
due to the interaction of AQP4-IgG with retinal Miiller cells or astrocytes. Miiller cells
maintain retinal homeostasis by regulating the fluid and ion homeostasis, neurotransmitter
recycling, secretion of growth factors, and inflammatory mediators [11-14]. AQP4-IgG
have been shown to decrease the expression of AQP4 on Miiller cells, disrupting volume
regulation and inhibiting cell proliferation [15]. This mechanism may contribute to retinal
degeneration with or without inciting optic neuritis.
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Classically, the primary sites of inflammation and lesion formation in NMOSD were
believed to be the optic nerve and spinal cord, with retinal thinning considered as a
secondary consequence. However, recent studies have demonstrated that AQP4-IgG can
bind to both human and rodent retinas in vivo and ex vivo [16-18], resulting in retinal
degeneration independent of optic nerve inflammation, suggesting the possibility of a
primary retinopathy [2,4,5,19,20].

In this exploratory study, we examine the putative impact of NMOSD IgG on retinal
chemokine homeostasis. Chemokines are inflammation regulators involved in various
biological processes, such as wound repair and cell morphogenesis. They attract leukocytes
and stimulate both endothelial and epithelial cells. In particular, chemokines CCL2 and
CCL5 have been found to be increased in response to AQP4-IgG treatment in isolated
rat astrocyte cultures [21]. However, the implications for CXCL2 and CXCL10 remain
ambiguous, as divergent findings have been reported in the serum of NMOSD patients
across various studies [22-25]. Although chemokines CCL3 and CCL4 are known to be
elevated in the serum of NMOSD patients, their concentrations within the retinal milieu
are yet to be explored [26,27].

Alongside chemokines, complement proteins play a crucial role as inflammatory
mediators in NMOSD. Blocking the complement system has been proven effective in
preventing disease relapses in AQP4-IgG-positive NMOSD [28]. However, the connection
between complement activation, retinal neuroaxonal degeneration, and inflammation still
remains unknown. Furthermore, the prospective effect of therapeutic intervention in retinal
tissue remains uncertain, as the prevailing treatments are delivered systemically [29,30].

The retina is typically safeguarded from systemic inflammatory mediators by the
blood-retinal barrier, which dichotomically also bars most therapeutic molecules from
entering. Consequently, it is important to identify tissue-specific reactions to comprehend
the possible impact of NMOSD IgG within the retinal compartment and potentially guide
the development of more targeted treatments.

Previous studies have been conducted using various in vivo models, such as rodents,
and primary astrocyte cultures [17,18,21,31,32]. In vivo models provide the benefit of
examining the impact of external factors, such as human antibodies, in their entirety, en-
compassing the effects of systemic blood circulation. However, single cell cultures may not
represent the full spectrum of cellular effects, as they exclude cell—cell and cell-systemic
interaction. Retinal explants offer the advantage of studying retinal cell interactions with a
stressor independent of blood. It is crucial, though, to recognize that the ex vivo environ-
ment might not supply optimal nutrients to the retina, leading to a baseline level of cellular
stress. Therefore, it is essential to compare the effects of NMOSD IgG with control IgG to
obtain reliable results.

The goal of this pilot study was to explore a probable primary retinopathy and the
potential impact of NMOSD IgG on the retina. Here, we focused specifically on retinal
cellular responses without considering the involvement of the systemic immune system,
blood-born hormones or growth factors. We examined the release of inflammatory media-
tors, such as chemokines, and the expression of local complement system transcripts. In an
ex vivo mouse retinal explant model, we demonstrated that retinal cells possibly respond
to NMOSD IgG binding with an acute, anti-inflammatory chemokine response. These
findings might provide new insights into the role of NMOSD IgG in retinal inflammation
and the potential for targeted therapeutic interventions. In conclusion, understanding
the chronic effects of AQP4-IgG on the retina could help unravel the mechanisms behind
relapse-independent progressive retinal degeneration of the GCIP.

2. Materials and Methods
2.1. Cultivation and Treatment of Mouse Retinas
Female C57BL6/] mice aged 6 to 12 weeks were used in this study and were housed in

a 12 h light/dark cycle with an illumination level of approximately 400 lux. Female mice
were chosen as the exclusive subjects in this study due to the higher prevalence of NMOSD
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in females compared to males, ensuring a more representative sample for the investigation.
All experiments were conducted in accordance with the European Community Council
Directive 2010/63/EU and the ARVO Statement for the Use of Animals in Ophthalmic
and Vision Research. CO, inhalation was used to sacrifice the mice and their eyes were
immediately enucleated and immersed in Dulbecco’s phosphate buffered saline (PBS,
#D8537, Thermo Fisher Scientific, Dreieich, Germany) supplemented with 100 mg/mL
streptomycin and 100 pg/mL penicillin (#15140122, Thermo Fisher Scientific, Waltham,
MA, USA).

The cornea, lens, and vitreous were removed and the optic nerve was transected near
the eyeball. The neural retina was carefully isolated from the underlying sclera and retinal
pigment epithelium and each retina was cut in half, resulting in two retinal segments per
retina and four retinal explants per animal. One segment was treated with purified control
IgG and one with NMOSD IgG to compensate for preparatory effects. However, it should
be noted that retinal explant viability and inflammatory status may vary depending on the
particular preparation, which may result in high standard errors within treatment groups.

The tissue was transferred photoreceptor layer down to a 12-well cell culture in-
sert (#10567522, Corning incorporated Life Sciences, Tewksbury, MA, USA) and cultured
under serum-free conditions in Neurobasal-A medium (#10888022, Thermo Fisher Sci-
entific, Waltham, MA, USA) supplemented with 2% B27 (#0080085SA, Thermo Fisher
Scientific, Waltham, MA, USA), 1% N2 (#17502048, Thermo Fisher Scientific, Waltham,
MA, USA), 2 mM GlutaMAX (#35050038, Thermo Fisher Scientific, Waltham, MA, USA)
and 100 units/mL penicillin-100 ug/mL streptomycin. The retinas were cultivated at the
air-medium interface under standard conditions (37 °C, 5% CO,, 80% humidity), and half
of the basal medium was changed daily.

IgGs were purified using a Protein A column (#GE11-0034-94, Cytiva Lifesciences,
Shrewsbury, MA, USA) to exclude the involvement of the systemic immune system, blood-
born hormones or growth factors. Purified IgGs from five controls and five AQP4-IgG-
seropositive NMOSD patients were pooled. All samples were obtained from the neu-
roimmunological biobank of the LMU Hospital, and samples as well as clinical data were
provided irreversibly anonymized (protocol number 163-16, Table Al). Retina medium
was supplemented with IgG at a concentration of 100 nug/mL. IgG-conditioned media was
added at the start of the culture and with every medium change.

2.2. Hematoxylin and Eosin (HE) Staining

The morphology of untreated retinas was assessed using HE staining. Then, 20 um
thick cryosections were immersed in hematoxylin, rinsed with HyOgeg;, and washed with
tap water. Subsequently, slides were incubated in eosin solution and dehydrated. The
dehydrated slides were then immersed in xylene and covered with entellan.

2.3. TUNEL Staining

Retinas were fixed with 4% paraformaldehyde (#100496, Merck, Schwalbach, Ger-
many) in PBS (pH 7.4) for 2 h and then washed in PBS. Dehydration was carried out
overnight in 42% sucrose solution (#107687, Merck, Schwalbach, Germany) followed by
embedding in frozen section medium NEG-50 (#11912365, Thermo Fisher Scientific, Braun-
schweig, Germany) and cryosectioning into 20 um sections using a Leica CM1950 cryostat
(Leica, Wetzlar, Germany). To analyse apoptotic cell death, TUNEL staining was per-
formed using a DeadEnd Fluorometric TUNEL kit (#G3250, Promega, Fitchburg, WI, USA)
following the manufacturer’s instructions.

2.4. Quantitative Real-Time PCR (qRT-PCR)

Retinal explants were cultured under three conditions: without treatment, with the
addition of purified control IgG, or purified NMOSD IgG. After one or three days in culture,
the samples were prepared for qPCR analysis. mRNA isolation was performed using a
NucleoSpin RNA /Protein Kit (#740933.50, Macherey-Nagel, Diiren, Germany), followed
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by cDNA synthesis using a Quantitect Reverse Transcription Kit (#205311, Qiagen, Hilden,
Germany).

gqRT-PCR analysis was conducted using custom-designed primer sets (cIs: F: CCCTG-
TAGCCACTTCTGCAA, R: GGGCAGTGAACACATCTCCA, c3: F: AGCCCAACACCAGC-
TACATC, R: GAATGCCCCAAGTTCTTCGC, cfh: F: AAAAACCAAAGTGCCGAGAC, R:
GGAGGTGATGTCTCCATTGTC, agp4: F: AGCAATTGGATTTTCCGTTG, R: TGAGCTC-
CACATCAGCACAG, idh3b: F: GCTGCGGCATCTCAATCT, R: CCATGTCTCGAGTCCG-
TACC), and the Rotor Gene Sybr green PCR Kit (#204076, Qiagen, Hilden, Germany).
The idh3b transcript was used as a housekeeping gene for normalization. Additionally,
IgG-treated retinal expression data were normalized to untreated retinal expression data.

2.5. Bead-Based Multiplex Chemokine/Cytokine Immunoassay and Human AQP4-IgG ELISA

Chemokine and cytokine protein concentrations in culture supernatants were as-
sessed after three days of cultivation using a customized mouse ProcartaPlex Multiplex
Immunoassay (#EPX010-20440-901, Invitrogen AG, Carlsbad, CA, USA). The assay was con-
ducted following the manufacturer’s protocol and analysis was performed on a MAGPIX™
instrument (Luminex Corporation, Austin, TX, USA).

To determine AQP4-IgG titer of control sera, NMOSD patient sera, and purified IgG
samples, an AQP4-IgG sandwich ELISA kit (#RAQP4/96/2R, BioVendor GmbH, Kassel,
Germany) was utilized. The ELISA was performed in accordance with the manufacturer’s
instructions, and the absorbance was measured at a wavelength of 450 nm on a VarioScan
Flash ELISA-reader (Thermo Fisher Scientific, Waltham, MA, USA).

2.6. Coomassie Staining

IgG purification success was verified through protein separation of serum and purified
antibody fractions from one patient in a 12% SDS-PAGE under reduced conditions. Follow-
ing separation, proteins were stained using Coomassie solution (#ISB1L-1L, Sigma-Aldrich,
Missouri, USA). Visualization of the protein bands was conducted using a FluorChem FC2
Imaging System (Alpha Innotech, San Leandro, CA, USA).

2.7. Immunohistochemistry (IHC)

IHC was carried out as previously described [33]. Retinas were washed with PBS, fixed
in 4% paraformaldehyde (#100496, Merck, Schwalbach, Germany) for 2 h, dehydrated in
42% sucrose (#107687, Merck, Schwalbach, Germany) overnight, and embedded in NEG-50
frozen section medium (#11912365, Thermo Fisher Scientific, Braunschweig, Germany).
Cryosections of 20 um were obtained using Leica CM1950 (Leica, Wetzlar, Germany). Reti-
nas were incubated with the primary antibody specific for GFAP (1:500, #ab7260, Abcam,
Cambridge, UK) or control/patient antibodies in 0.5% Triton-X100/2% BSA /PBS at 4 °C
overnight. Following a PBS wash, antibody binding was detected with secondary antibod-
ies (1:500 goat anti-rabbit Cy3-conjugated antibody, 1:500 goat anti-human FITC-conjugated
antibody) diluted in 2% BSA /PBS for 2 h. Cell nuclei were stained with DAPI (1:1000).
Nonspecific binding of secondary antibodies to retinal epitopes was excluded by standard
validation staining (Figure A2). Fluorescent images were captured using an apochromatic
stereo microscope (Carl Zeiss, Oberkochen, Germany). Immunohistochemical signal was
quantified using Image] software (V 1.53k, National Institutes of Health, Bethesda, MD,
USA).

2.8. Statistics

Statistical analyses were conducted using GraphPad Prism 9.3.1 (GraphPad Software
Inc., San Diego, CA, USA). All data are presented as mean =+ standard deviation (SD).
Detailed information about specific n-values, employed statistical analyses, and coding of
significance levels can be found in each figure and its corresponding figure legend.
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3. Results
3.1. In Vitro Cultivated Retinal Mouse Explants Showed Proinflammatory Baseline Characteristics

The effects of isolated human IgG on mouse murine retinal cells were studied in vitro.
Initially, a model for cultivating mouse retinal explants was developed, and baseline pa-
rameters for morphology, chemokine secretion, and complement component expression
were determined. Retinal explants were cultivated for up to seven days in an air-medium
interface on transwell filters (Figure 1). Hematoxylin and eosin (HE) staining revealed reti-
nal thinning in all layers after one and three days of cultivation compared to an uncultured
retina fixed immediately after enucleation (Figure 1A). After three days of cultivation an
increase in TUNEL-positive cells in all retinal layers and a slight increase in glial fibrillary
acidic protein (GFAP) staining, a marker of astrocyte and Miiller cell activation, were ob-
served (Figure 1A). In vitro cultivation of the retina for five or seven days led to significant
cell death, making it unsuitable as a model system (Figure Al).
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Figure 1. Retinal explant morphology, complement component transcription, and chemokine secre-
tion during in vitro cultivation. (A) Retinal morphology of freshly fixed (ex vivo) and cultivated
retinas of C57BL/6] mice was assessed using a HE staining to visualize cell nuclei, extracellular
matrix, and cytoplasm, respectively. Retinal thinning was observed in all layers after one and three
days of cultivation compared to uncultured retinas. Cell death increased during cultivation with no
fluorescence detected in the ex vivo retina. Scale bar, 50 pm. (B) Retinal transcription of complement
components changed depending on the cultivation time. C1gb, c3, and cfi mRNA expression signif-
icantly increased during cultivation. Agp4 mRNA decreased, and no trend was detectable for c1s
mRNA. Bars represent mean values (n = 3) & SD. Compared to an uncultivated control: * p < 0.05,
**p <0.01 (ordinary one-way ANOVA, Dunnett’s multiple comparisons test). (C) Supernatants of
cultivated retinas were collected at one and three days of untreated retinal cultivation and analysed
for chemokines using a multiplex cytokine assay. CXCL10 secretion increased during in vitro culti-
vation. CCL2, CCL3, CCL4, CCL5, and CXCL2 secretion remained unchanged. GCL: Ganglion cell
layer, INL: inner nuclear layer, ONL: outer nuclear layer. Bars represent mean values (n = 6) &= SD.
* p < 0.05 (multiple paired t-tests, Holm-Sidak method).

AQP4, mainly expressed by astrocytes and Miiller cells in the retina, is the principal
cellular target for AQP4-IgG in NMOSD sera (Figure 2A). Consequently, we analysed the
agp4 expression during cultivation of retinal explants. A decrease in agp4 mRNA was
observed, though it did not reach statistical significance (Figure 1B).
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Figure 2. Human purified NMOSD IgG bound to the mouse retina. (A) AQP4-IgG reactivity was
analysed in serum of controls (n = 5) and NMOSD patients (n = 5) as well as purified IgG pools (n =1
each). Control serum samples and the control IgG pool tested negative for AQP4-IgG, while positive
anti-AQP4 IgG titers were confirmed for NMOSD patient sera and the purified NMOSD IgG pool.
Bars represent mean values & SD. * p < 0.05. (unpaired t-test assuming Gaussian distribution). (B) The
Coomassie staining of NMOSD patient serum before and after immunoaffinity purification was used
to verify IgG purification. (C) Mouse retina sections were incubated with serum and purified IgG
from controls and NMOSD patients. Human IgG binding was confirmed for serum and purified IgG
from NMOSD patients, while no binding was observed for serum and IgG from controls. Scale bar,
50 pm.

Inflammatory processes in NMOSD are also associated with complement activation.
To measure effects on the expression of classical complement pathway components, we
analysed c1gb and c1s mRNA levels. After three days of cultivation, a significant increase in
c1qb was observed (p = 0.034), while no change was detected for c1s expression (Figure 1B).
To evaluate the effects on the alternative complement pathway components during culti-
vation, we determined cfi mRNA levels and found increased expression after three days
of cultivation (p = 0.02) (Figure 1B). The central complement component c3 showed a
significant increase after one day (p = 0.006) and three days (p = 0.01) of retinal cultivation
(Figure 1B).
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Retinal degeneration is also associated with altered retinal protein secretion. Con-
sequently, we observed an increase in CXCL10 secretion (p = 0.018) after three days of
cultivation in our baseline chemokine analysis. For CCL2, CCL3, CCL4, CCL5, and CXCL2,
protein secretion remained unchanged between cultivation days (Figure 1C).

In summary, mouse retinal explants revealed early signs of inflammatory activity
during the initial one to three days of in vitro cultivation. This finding helps to better
understand the gradual retinal degeneration process.

3.2. Human NMOSD IgG Bound to the Mouse Retina

In this preliminary investigation, our goal was to examine the potential influence
of NMOSD IgG on retinal cells without interference of other serum components such as
hormones, cytokines, chemokines, or growth factors. We isolated IgG from the serum of
NMOSD patients and healthy controls. ELISA analysis verified AQP4 reactivity for both
NMOSD patient sera and their respective isolated IgG pool, while neither sera nor the
respective isolated IgG pool from controls showed positive results (Figure 2A). Coomassie
staining of serum and isolated IgGs on an SDS gel demonstrated successful purification of
IgGs from serum (Figure 2B).

Retinal macroglia, particularly Miiller cells and astrocytes, express AQP4 [8,9,34]. To
investigate the interaction of human NMOSD IgG with proteins in the mouse retina, we
incubated retinas fixed and cryosectioned immediately after enucleation with serum and
isolated IgG fractions from NMOSD patients and controls. The binding of NMOSD serum
and purified IgG to the mouse retina confirmed the reactivity of NMOSD IgG to the mouse
retinal proteins. We observed immunoreactivity in the ganglion cell layer (GCL) and inner
nuclear layer (INL) (Figure 2C).

3.3. NMOSD IgG Increased Retinal GFAP Staining, Which Is a Marker of Miiller Cell Reactivity

After three days of cultivation, gliosis in response to stress in Miiller cells was observed
by increased staining of GFAP. GFAP protein expression in Miiller cells was upregulated
in both treatment groups after three days compared to one day of cultivation (Figure 3A).
Quantification of GFAP signals showed a trend toward upregulated GFAP expression in
NMSOD IgG-treated retinas (Figure 3B). Interestingly, transcription of the water channel
protein AQP4, which is a potential target of NMOSD IgG on Miiller cells, was not affected
by the addition of IgG (Figure 3C).

Figure 3. Cont.
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Figure 3. NMOSD IgG-enhanced Miiller cell gliosis in retinal explant cultures. (A) GFAP immunore-
activity (red) was assessed by immunohistochemistry staining in retinas treated with control IgG
or NMOSD IgG pool. (B) Quantification of GFAP immunoreactivity after one and three days of
treatment with respective IgG fractions in retinal explant culture demonstrated increased GFAP levels
in NMOSD IgG pool-treated retinas after three days of cultivation compared to control IgG-treated
retinas. Bars represent mean values = SD. (control—one day (n = 3); three days (n = 2); NMOSD—one
day (n = 3); three days (n = 3)). (C) Retinal agp4 mRNA expression was analysed after one and
three days of cultivation with control IgG or with NMOSD IgG pool (one day (n = 3), three days
(n =2)). The mRNA levels were compared to untreated, cultivated retinas. No significant changes in
mRNA levels were observed due to different treatments. Bars represent mean values + SD. (two-way
ANOVA with Tukey’s multiple comparisons test).

3.4. NMOSD IgG Reduced the Secretion of CCL2, CCL3, CCL4 and CXCL10 in Mouse
Retinal Explants

Retinal explants were found to release chemokines under in vitro culture conditions
(Figure 1C). To investigate the effect of NMOSD or control IgG on chemokine secretion,
culture supernatants were analysed by multiplex ELISA (Figure 4). After one day of culture,
secretion of the chemokines CCL2 (p < 0.01), CCL3 (p < 0.05), CCL4 (p < 0.01), and CXCL10
(p < 0.05) was significantly lower in media of explants treated with NMOSD IgG than
in the supernatant of the retinas treated with control IgG. A similar trend, which did
not reach significance, was observed for the chemokines CCL5 (p = 0.0945) and CXCL2
(p = 0.0688). However, after three days of treatment significant differences in chemokine
secretion between the treatment groups could no longer be detected. Retinal explants
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were also found to secrete CCL11, IL-17A, IL-1B, IL-6, TNF«&, and VEGF-A, but we did not
observe differences between treatment groups.
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Figure 4. Mouse retinal explants treated with NMOSD IgG showed decreased release of CCL2, CCL3,
CCL4, and CXCL10. Chemokine levels were assessed in the supernatants of control IgG or NMOSD
IgG-treated cultivated retinas. CCL2, CCL3, CCL4, and CXCL10 were significantly reduced after
one day of cultivation with NMOSD IgG compared to control IgG-treated retinas. Bars represent
mean values (n = 10-11) & SD. * p < 0.05, ** p < 0.01 (two-way ANOVA with Sidak’s multiple
comparisons test).

3.5. NMOSD IgG Did Not Alter Complement mRNA Expression in Mouse Retinal Explants

The complement pathway is known to play a crucial role in the pathophysiology of
NMOSD [35], as its activation in the fluid phase and distribution in tissues lead to inflam-
mation, cell damage, and cell lysis [36]. In a recent study, we demonstrated that various cell
types within the retina can produce complement components locally [13]. Here, we anal-
ysed the transcriptional levels of complement components in retinal explants treated with
control IgG and NMOSD IgG. Our findings indicate that there were no significant changes
in mRNA levels between the treatment groups for classical pathway components cIgb and
c1s, alternative pathway component cfh, and for the central complement component c3
(Figure 5).
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Figure 5. The effect of NMOSD IgG on complement mRNA expression in mouse retinal explants
was investigated. The mRNA levels of complement components c1gb, cIs, c3, and cfh were analysed
after one and three days of cultivation with control IgG (one day n = 4, three days n = 3) or with
NMOSD IgG pool (one day n = 3, three days n = 2). The mRNA levels were compared to untreated,
cultivated retinas. No significant changes in mRNA levels between the different antibody treat-
ments were observed. Bars represent mean values & SD (two-way ANOVA with Tukey’s multiple
comparisons test).

4. Discussion

In AQP4-IgG positive NMOSD, individual relapses are often severe with poor remis-
sion rates. However, increased neurological deficits are almost always associated with
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relapses and not with relapse-independent progression. Recently, evidence of subclinical
retinal neuroaxonal degeneration, likely due to primary retinopathy, has been demon-
strated in NMOSD patients. This hypothesis is further supported by studies that have
shown retinal neuroaxonal degeneration in NMOSD patients with and without a history
of optic neuritis [2,4,5,19,20]. In this exploratory study, we used mouse retinal explants
and treated them with purified IgG fractions from AQP4-IgG-positive NMOSD patients to
evaluate their reactivity and modulatory properties against murine retinal epitopes.

Retinal explant cultivation is a widely used model to study the pathophysiology of
retinal degeneration [37,38]. In this study, we cultivated C57BL6/] retinas for up to seven
days and examined tissue viability and inflammatory status. We observed a decrease in
retinal thickness over time, and the number of TUNEL-positive cells in all retinal layers
increased during cultivation, limiting the use of this model to three days. The limitation is
due to the fact that the metabolic demands of a systemic blood-deprived retina exceed the
amount of nutrients that can be supplied by the culture media, leading to a rapid decline in
tissue viability after three days of enucleation [39-41]. Despite this limitation, the model
offers several advantages. This includes the possibility to study primary retinopathy and
its histopathologic correlates in isolation, independent of systemic facets. Furthermore,
by obtaining two semi-independent retinal explants from the posterior segments of the
eyes of each animal, we were able to reduce the number of animals needed for the study,
promoting a more ethical use of animals in research.

Retinal neuroaxonal degeneration in AQP4-IgG-positive NMOSD is typically consid-
ered a downstream effect of inflammatory disease activity at the optic nerve and subsequent
ganglion cell death [42,43]. However, controversy exists regarding whether initial retinal
disease activity could serve as a second trigger for retinal degeneration in NMOSD. This
is supported by rodent models that have shown NMOSD-associated antibody binding to
retinal epitopes when incubated with patient-derived AQP4-IgG-positive serum or when
wildtype rats are treated with AQP4-IgG [17]. These data are consistent with clinical
evidence of relapse-independent retinal neuroaxonal degeneration in AQP4-IgG-positive
NMOSD [2,4,5,19,20]. AQP4, expressed on the endfeet of retinal Miiller cells, is a likely
target for binding by AQP4-IgG in NMOSD [8-10,34]. Treatment with AQP4-IgG-positive
serum in an immortalized Miiller cell line (MIO-M1) has been shown to reduce AQP4
detection, cause AQP4 internalization, and impair Miiller cell volume regulation, providing
further evidence of antibody-mediated degenerative effects at the cellular level [15]. These
findings provide suggestive evidence of a primary retinopathy in AQP4-IgG-seropositive
NMOSD.

The secretion profiles of chemokines in inflammatory CNS diseases may offer insights
into unique immunopathological processes and have potential therapeutic implications.
Current studies support a critical role of chemokines in NMOSD pathogenesis. However,
the regulation of chemokine levels in NMOSD patients is contradictory in the literature.
For instance, while one study reported elevated levels of the systemic neutrophil-related
chemokine CXCL2 in AQP4-IgG-seropositive patients compared to controls [25], another
study found decreased serum CXCL2 levels [22]. Our study also found decreased local
CXCL2 secretion in retinas treated with NMOSD IgG compared to control IgG. Another
important chemoattractant, CXCL10, has been documented to promote T-cell adhesion to
endothelial cells and facilitate blood—brain barrier disruption [44]. There is also conflicting
evidence on systemic CXCL10 levels in AQP4-IgG positive NMOSD compared to patients
with other neurological diseases and multiple sclerosis [23,24]. Our results demonstrated
that CXCL10 secretion is reduced immediately after antibody binding and returns to
normal levels after three days. In contrast, CXCL10 is upregulated in brain microvascular
endothelial cells after NMOSD IgG treatment and in the optic nerve after AQP4-IgG
treatment in mice [45,46]. The site-specific and time-dependent regulation of chemokine
levels observed in our study may be a causal link for the possible relapse-related protein
regulation seen locally in our NMOSD IgG-treated mouse retinas.



Curr. Issues Mol. Biol. 2023, 45

7330

In previous studies, an upregulation of CCL2, CCL3, CCL4, and CCL5 in NMOSD pa-
tients was reported, in contrast to the local, time-dependent downregulation of chemokine
secretion observed in our NMOSD IgG-treated mouse retinas [47-50]. CCL2, which is
produced locally by fibroblasts, Miiller cells, microglia, and astrocytes, is involved in neu-
roinflammation in the CNS and regulates cellular mechanics. Although CCL2 is not system-
ically regulated in NMOSD patients, increased local secretion is detectable in rat astrocytes
after treatment with purified NMOSD IgG [21,51]. For CCL3, a microglia chemokine,
an increase was reported only in the serums of one of two cohorts of NMOSD patients
studied [26,27]. CCL4, on the other hand, was elevated in different cohorts of NMOSD
patients [26,27]. Systemic regulation of CCL5 has not yet been reported in the literature, but
local ccl5 mRNA is upregulated in rat astrocytes after treatment with AQP4-IgG-positive
serum [21]. This is consistent with the time-dependent local upregulation of CCL5 secre-
tion in NMOSD IgG-treated mouse retinas detected after three days in this exploratory
investigation.

The contradictory findings on systemic and local chemokine regulation in NMOSD
suggest that modulation of proinflammatory chemokines may be tissue- and model-specific.
Retinal protein concentrations may not correspond to serum concentrations [52-54], and the
retina may attempt to protect itself from the effects of signaling molecules from the blood.
Reduction in tissue-specific chemokine concentration compared to blood could be a retinal
counterregulatory mechanism to attenuate local inflammatory responses. Furthermore,
temporal differences may also be important to the observed discrepancies. In our study, we
examined the change immediately after cell stress, whereas in vivo, the stressor is often
chronically present over a long period of time, and only the late effects of the differences in
chemokine levels would be visible.

AQP4-1gG, which are detectable in around 80% of NMOSD patients, lead to comple-
ment activation and associated cell death in the CNS [32,55]. Systemic inhibition of this
inflammatory pathway with eculizumab, a recombinant humanized monoclonal antibody
against the complement protein C5, has been shown to improve patient outcomes by pre-
venting new relapses [28]. However, the potential contribution of intravenous C5 inhibition
to minimizing primary retinopathy has not yet been studied. Our previous study showed
that complement components are produced and can be activated in the retina, indicating
that intravitreal C5 inhibition could potentially attenuate retinal degeneration [13,56]. How-
ever, in our current exploratory study, we did not observe modulation of local complement
expression in retinal cells at a transcriptional level upon binding of human NMOSD IgG
to the mouse retina, while chemokine release was regulated. It should be noted that in
previous NMOSD mouse models, the human complement system always had to be injected
together with passively transferred human IgG for degeneration to occur [31,32]. This
also confirms that mere human antibody binding in the mouse retina is not sufficient
to activate the murine complement reaction. Furthermore, passively transferred human
anti-AQP4-IgG triggered lesions in the CNS of rats only if a T-cell immune response had
been induced previously [57]. Nevertheless, we observed increased GFAP reactivity and
altered chemokine release in retinal explants treated with NMOSD IgG, even in the absence
of human complement and murine T-cell activity. Our preliminary results may support
the notion that NMOSD IgG could partially cause direct cellular damage in the retina that
may be independent of the complement system [17]. Despite the valuable insights obtained
from this study, it is important to acknowledge the limitation of a small sample size, which
calls for further comprehensive investigations to validate and expand upon our findings.

5. Conclusions

In this exploratory study, we aimed to investigate the potential NMOSD IgG-mediated
primary retinopathy. Our findings demonstrated that IgG from NMOSD patients specifi-
cally interacted with proteins in the mouse retina, leading to increased GFAP expression in
Miiller cells. Moreover, treatment with NMOSD IgG resulted in diminished chemokine
secretion but did not affect complement mRNA expression or cell death in the retina. These
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preliminary results indicate that NMOSD IgG may have an influence on retinal physiology
in NMOSD, possibly through its impact on retinal cells and inflammation. This study
advances our understanding of the role of NMOSD IgG in retinal pathology and highlights
the importance of further therapeutic strategies for NMOSD patients.
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Figure A1. Apoptosis was assessed in all retinal layers during seven days of in vitro cultivation using
the TUNEL technique. While no fluorescence was detected in the ex vivo retina, increasing apoptotic
activity was observed with prolonged cultivation time. Therefore, we selected three days of retinal
explant cultivation for all subsequent experiments. Bars represent mean values (n = 3) & SD, with
statistical significance denoted as ** p < 0.01, **** p < 0.0001 as determined by ordinary one-way
ANOVA and Dunnett’s multiple comparisons test.
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(b)

Figure A2. Secondary antibodies used in immunocytochemical staining were tested for unspecific

binding to retinal tissue. (a) Negative control staining of the secondary goat—anti human FITC-
conjugated antibody on uncultivated, fixated murine retinal tissue. (b) Negative control stainings of
the secondary goat—anti rabbit Cy3-conjugated antibody on uncultivated, fixated murine retinal tissue.

Table A1. Demographic and clinical characteristics of patients.

NMOSD Patients Sex Age AQP IgG Status
01 female 51 Positive
02 female 68 Positive
03 female 55 Positive
04 female 33 Positive
05 female 46 Positive
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