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Polygenic risk scores (PRS) calculate the risk for a specific disease based on the
weighted sum of associated alleles from different genetic loci in the germline
estimated by regression models. Recent advances in genetics made it possible to
create polygenic predictors of complex human traits, including risks for many
important complex diseases, such as cancer, diabetes, or cardiovascular diseases,
typically influenced bymany genetic variants, each of which has a negligible effect
on overall risk. In the current study, we analyzed whether adding additional PRS
from other diseases to the prediction models and replacing the regressions with
machine learning models can improve overall predictive performance. Results
showed that multi-PRS models outperform single-PRS models significantly on
different diseases. Moreover, replacing regression models with machine learning
models, i.e., deep learning, can also improve overall accuracy.
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1 Introduction

Disease prevention is a crucial part of medical care. It reduces the costs for the healthcare
system and reduces the number of hospitalization and deaths (Kahn et al., 2008). For
targeted preventive measures, it is necessary to determine the individual risks for certain
diseases. In addition to age, sex, and lifestyle, genetic factors play an important role in
determining the individual risk. Polygenic risk scores (PRS) are used to take multivariate
genomic information into consideration and can be used for the selection of a targeted
treatment in personalized medicine (Lambert et al., 2019; Lewis and Vassos, 2020; Schröder
et al., 2022).

PRS are typically modeled as a regression task by calculating a weighted sum of all
genotypes and their corresponding estimated effect size. Relevant single nucleotide
polymorphisms are discovered by genome-wide association studies (GWAS). For
individual risk prediction, another regression model is built based on the previously
calculated PRS and other covariates, such as age, sex, and lifestyle (e.g., smoking and
alcohol consumption) (Choi et al., 2020).

In recent years, machine learning (ML) has led to numerous advances in medicine
(MacEachern and Forkert, 2021) due to the ability to train models on complex problems and
being able to handle large amounts of data. These models have been used in various
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applications, e.g., oncology (Bibault et al., 2016), pathology
(Madabhushi and Lee, 2016; Coudray et al., 2018), diabetes
(Spänig et al., 2019), human genetics (Libbrecht and Noble,
2015), and infectious diseases (Riemenschneider et al., 2016b;
Ren et al., 2021) as part of a growing trend toward personalized/
precision medicine.

In this study, we trained multiple models, i.e., ridge regression
(RR), random forests (RFs), and deep neural networks (DNNs), to
predict an individual’s phenotype for the following diseases: breast
cancer (BC), coronary artery disease (CAD), and type 2 diabetes
(T2D). We selected those three common chronic diseases to
demonstrate the usefulness of our approach for different diseases.
For instance, breast cancer is diagnosed in approximately 2.3 million
women yearly. Cardiovascular diseases are the leading cause of death
globally. Coronary artery disease affects approximately 126 million
individuals, with 7.2 million deaths each year. Diabetes affects
approximately 425 million people worldwide.

The inclusion of additional PRS has been shown to improve the
prediction of traits and diseases (Krapohl et al., 2017) (Sinnott-
Armstrong et al., 2021) (Abraham et al., 2019), psychological
diseases, such as schizophrenia, bipolar disorder, or depression
(Rodriguez et al., 2022), the risk of exposure to bullying
(Schoeler et al., 2019), and hazard ratios (Meisner et al., 2020).
Thus, we further evaluated the inclusion of 139 additional PRS in a
multi-PRS approach to the prediction of the previously mentioned
diseases. The additionally used PRS do not have to be directly
associated with the investigated disease (Sinnott-Armstrong et al.,
2021). Including these PRS, even if the phenotypes appear to be
unrelated, may be beneficial as similar underlying biological
mechanisms may be involved.

2 Materials and methods

The workflow of the current study is shown in Figure 1. We
incorporated additional PRS into the predictive models and,

additionally, compared different machine learning models to the
regression models that are typically used in PRS.

2.1 Data

This research has been conducted using the UK Biobank
resource (Bycroft et al., 2018) under application number 81202.
The UK Biobank is a large-scale cohort study covering a huge
prospective sample (n > 500,000) of the British general population,
including both genotype and phenotype (health-related outcomes)
data. We used the imputed UK Biobank data which include
9̃6 million variants.

We excluded available genotype data outliers for heterozygosity
(F within three standard deviations (SD) from the mean), sample
genotype missing rates (>2%), and discordant reported sex vs.
genotypic sex. Allele frequency MAF < 0.1% was removed.
Variants not in the Hardy–Weinberg equilibrium (p-value <10–6)
were excluded.

In total, 139 PRS (Supplementary Table S1) for different
phenotypes, e.g., lung cancer (PGS000078), venous
thromboembolism (PGS000043), and fasting glucose
(PGS000305), were computed using PLINK (Chang et al., 2015)
score function, and the corresponding effect alleles and beta
coefficients were retrieved from the PGS Catalog (https://www.
pgscatalog.org/). The PRS are therefore based on a linear additive
combination of effect alleles and are characterized by a normal
distribution. Due to the great abundance of SNPs in the imputed UK
Biobank, adequate coverage was ensured.

The additional 139 PRS were added as additional input features
without any pre-selection to enable a data-driven approach without
any subject-matter knowledge. Therefore, we included all PRS that
were available in the PGS Catalog at the time we started the project.
The underlying idea is that different diseases can share different
pathways, e.g., inflammatory pathways, or even comorbidities.
Selection of PRS according to phenotype association with the

FIGURE 1
Workflow of the study. PRS are calculated based on the associated genetic loci (i.e., SNPs, single-nucleotide polymorphisms). Significant loci are
identified via a regression model. These loci are then used to calculate the PRS based on a linear combination. Additional PRS for other diseases are
incorporated into the final predictive model. During training, the models learn to distinguish between relevant and irrelevant features, including the
additional PRS. Moreover, we compare the typically used ridge regressionwithmachine learningmodels, namely, deep neural networks and random
forests. Created with BioRender.com.
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investigated disease, though more interpretable, can potentially miss
relevant information. By using multiple risk scores, we were able to
capture the interdependencies in a data-driven approach by
machine learning models. PRS that were calculated on the same
UK Biobank cohort for one of our target diseases could induce
overfitting or circularity. For PRS that were calculated on the UK
Biobank cohort, but for different diseases, this would only affect the
control group. Therefore, these effects are, if at all, of very little
impact.

From the phenotypic data, we derived the case/control status for
three diseases, namely, BC, CAD, and T2D. BC cases were women
based on self-report in an interview with a trained nurse and/or BC-
related ICD-9 codes (174 or 174.9) or ICD-10 codes (C50.X) in
hospitalization records. CAD cases were individuals with
myocardial infarction based on self-report or hospital admission
diagnosis according to ICD-9 codes of 410.X, 411.0, 412.X, or
429.79 or ICD-10 codes of I21.X, I22.X, I23.X, I24.1, or I25.2 in
hospitalization records and/or with coronary artery bypass grafting
(K40.1–40.4, K41.1–41.4, or K45.1–45.5) or coronary angioplasty
with or without stenting (K49.1–49.2, K49.8–49.9, K50.2,
K75.1–75.4, or K75.8–75.9). T2D cases were samples based on
self-report in an interview with a trained nurse or an ICD-10
code of E11.X in hospitalization records. For controls, all
individuals without the phenotype were considered (for BC, the
analysis was restricted only to women).

In order to limit the confounding due to the genetic background,
the analysis was restricted only to individuals with White British
origin (Field 21000) and with European genetic ancestry according
to the principal components provided by UK Biobank (Field 22006),
and among the remaining samples, to account for the residual
population stratification, we considered the principal components
(PCs) as computed in UK Biobank (Field 22009). The total number
of individuals in the data set amounts to 429,466, while the number
of patients for the three diseases, BC, CAD, and T2D, are 13,679,
23,033, and 24,241, respectively (Table 1).

2.2 Data preparation

We included the following features into the model training:
corresponding PRS (i.e., BC-PRS (PGS000015), CAD-PRS
(PGS000013), or T2D-PRS (PGS000014), respectively), first
10 PCs, age, sex, and the genotyping array. Categorical features
such as sex and genotyping array were one-hot encoded, while all
other features were normalized to values between 0 and 1. For the
prediction of BC, only female individuals were included, and sex was
removed as an input feature. For the multi-PRS approach,
139 additional PRS (e.g., lung cancer (PGS000078), venous
thromboembolism (PGS000043), and fasting glucose
(PGS000305)) were included in the data set.

2.3 Model development

The data sets were split for each individual disease into
training and test sets (75:25) using a stratified approach to
preserve a disease’s prevalence within each data set. This was
repeated three times with different seeds to assert the robustness
of the model’s prediction on previously unseen data sets. The
training set was then used in a stratified 10-fold nested cross-
validation. Due to the class imbalance in the data, the training
data set was upsampled within the nested cross-validation
(Beinecke and Heider, 2021). We compared multiple methods
in our study: RR, RF, and DNN.

2.3.1 Ridge regression
Ridge regression (RR) is a statistical method that includes a

penalty parameter, rendering it more stable when input features are
correlated compared to other regression models. RR is typically used
in calculating PRS. For the RR, we used the scikit-learn library
version 0.23.2 (Pedregosa et al., 2011).

2.3.2 Random forests
Random forests (RFs) are proven non-linear classifiers that have

been shown to produce good results even in small-n-large-p
scenarios in biomedical classification (Riemenschneider et al.,
2016a; Anastasiou et al., 2017). They are based on multiple
decision trees that are combined via a majority vote (Breiman,
2001). We used the implementation of the scikit-learn library
version 0.23.2 (Pedregosa et al., 2011).

2.3.3 Deep neural networks
Deep neural networks (DNNs) are modeled after biological

neurons and consist of multiple layers of artificial neurons. In
our study, we used only deep feed-forward networks, where each
of these neurons has multiple inputs via weighted connections to
previous neurons and calculates an output on the sum of all inputs
and with a given activation function. The first layer is called the
input layer and is fed with the training features, while the last layer is
called the output layer and provides the prediction of the network.
These two layers are connected by several so-called hidden layers.
All DNNs were implemented using the PyTorch library version 1.7.1
(Paszke et al., 2019).

2.3.4 Hyperparameter optimization
Hyperparameter optimization of all models was carried out

within the nested cross-validation. For the DNNs, we evaluated
different topologies, ranging from 3 to 6 layers and 2 to 512 neurons
per layer. Learning rates of 1 × 10−5, 1 × 10−4, and 1 × 10−3 were
tested. The loss function used was BCELoss. RFs were optimized
with regard to the number of trees (100, 250, 500, and 1,000) and the
maximum depth per tree (default, 10, 25, and 50). For RR models,
the number of iterations (default, 100, 500, 1,000, and 5,000) was
optimized.

After optimizing the hyperparameters in the 10-fold nested
cross-validation, models were trained on the full training set
using the optimal hyperparameters and then used to predict the
test set. Models were evaluated based on the area under the receiver
operating characteristic curve (AUC) and accuracy on the test set
averaged over three random seeds.

TABLE 1 Number of individuals in the case and control groups.

BC (female only) CAD T2D

Cases 13,679 23,033 24,241

Controls 232,424 406,433 405,225
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3 Results

For the DNNs, no single best topology for all tasks was found
(Table 2). The best learning rate for all DNN models was 1 × 10−4.
The best topology for the single-PRS approach for all data sets is 16-
8-4-1, while the best topology for the multi-PRS approach is 8-4-4-
1 for CAD and T2D and 16-8-4-1 for BC. The rectified linear unit
(ReLU) was used as an activation function after all layers, except for
the output layer, where the sigmoid function was used. The models
performed best after 100 epochs of training. The training of single-
PRS models took approximately 8 min, while multi-PRS trainings
took approximately 10 min, resulting in a total training time of
approximately 80 and 100 min, respectively, for a 10-fold cross-
validation. Due to the lower amount of samples for BC, training
times were halved for these models.

For the RF models, the best predictions were obtained with
500 trees, while all other parameters were left at the default value.
For the RR models, all parameters were left at the default value.

It turned out that the DNNs performed equally well or
outperformed RR in all data sets, in particular for the multi-PRS
approach. RF did not outperform RR in any data set, neither as
single-PRS nor as multi-PRS. In fact, RF performed significantly
worse for all data sets and PRS modes with approximately 2% lower
AUC and accuracy values than RR and DNNs.

For instance, the DNNs reached an accuracy of 0.653 ± 0.010
compared to 0.636 ± 0.008 for RR for the T2D data set using the

multi-PRS approach. For the BC data set, the DNN reached an
accuracy of 0.628 ± 0.024 for the multi-PRS approach, while the RR
reached only an accuracy of 0.612 ± 0.011. For the single-PRS, the
DNN reached an accuracy of 0.613 ± 0.021 and the RR reached an
accuracy of 0.598 ± 0.007. For the CAD data set, the DNN reached
an accuracy of 0.698 ± 0.012 with the multi-PRS approach, while the
RR reached 0.693 ± 0.004. For the single-PRS approach, there were
no differences between RR and DNN. Interestingly, using the multi-
PRS approach instead of the typically used single-PRS approach
generally leads to higher accuracy of the resulting model, irrespective
of the underlying prediction model, i.e., RF, RR, or DNN.

4 Discussion

We showed that the inclusion of additional PRS improves the
prediction quality of PRS models for predicting an individual’s
phenotype for BC, CAD, and T2D. The improved prediction
quality by including additional PRS can be attributed to the fact
that disease susceptibility can be characterized by different risk
factors for which at least a partially independent underlying
genetic liability exists. For instance, the risk for CAD (coronary
artery disease) can be associated with high LDL-cholesterol, high
body mass index, smoking, etc., which is also influenced by genetics.
Therefore, more comprehensive genetic risk models can be obtained
by using a multi-PRS modeling approach. Moreover, by replacing
the typically used RR with DNNs, prediction performance could also
be improved. DNNs are non-linear classifiers able to capture non-
linearity in the underlying data. By not selecting additional PRS
manually, we ensured that no information is lost and left it to the
algorithms to identify important features. The effect of different PRS
on the prediction is likely to be very different. Approaches from
explainable AI could be used to identify the relevant PRS.

Although these differences are rather small, the improvement in
overall accuracy implies that there are non-linear relationships in
the genomics data, as expected from other studies. Improvements in
accuracy of up to 1.5%–2% are rather small, but they can have strong
implications for patients. For instance, in Europe, there are
approximately 355,000 BC cases per year, accounting for more
than 90,000 deaths; however, incidences are increasing.
Currently, one out of 11 women will develop BC in Europe. In
the US, the number is even higher, with approximately 13%, and BC
is the second leading cause of death among women. Using
prediction models to detect high-risk patients for screening of BC
can improve early detection and thus increase life expectancy. An
improvement of 1.5% corresponds to more than 5,000 cases that can
be detected only in Europe. If we consider T2D, one in 11 adults has
diabetes, i.e., 425 million people worldwide. In the United States of
America, approximately 11% of people aged between 20 and
79 years have diabetes, while in Europe, it is approximately 6.8%.
Approximately 90% of those affected have type 2 diabetes. Every
8 seconds, a person dies as a result of diabetes. It is estimated that
almost 700 million people will have diabetes in 2045. Moreover, it
has been estimated that a very high number (almost half) of cases are
unreported. By improving the risk prediction by 2% solely by
incorporating the available data and novel AI models,
approximately 7 million more cases could be identified in risk
screenings.

TABLE 2 Comparison of DNN, RF, and RR on the three data sets, BC, CAD, and
T2D, for single- and multi-PRS approaches. Evaluation based on AUC and
accuracy according to Khera et al. (2018). Values are shown as mean ± SD.

Method Disease PRS mode Accuracy AUC

DNN BC Single-PRS 0.613 ± 0.021 0.653 ± 0.004

DNN BC Multi-PRS 0.628 ± 0.024 0.668 ± 0.001

RF BC Single-PRS 0.592 ± 0.015 0.626 ± 0.005

RF BC Multi-PRS 0.609 ± 0.009 0.648 ± 0.002

RR BC Single-PRS 0.598 ± 0.007 0.652 ± 0.004

RR BC Multi-PRS 0.612 ± 0.011 0.670 ± 0.002

DNN CAD Single-PRS 0.694 ± 0.009 0.785 ± 0.002

DNN CAD Multi-PRS 0.698 ± 0.012 0.790 ± 0.002

RF CAD Single-PRS 0.674 ± 0.002 0.765 ± 0.003

RF CAD Multi-PRS 0.683 ± 0.004 0.768 ± 0.002

RR CAD Single-PRS 0.696 ± 0.004 0.785 ± 0.002

RR CAD Multi-PRS 0.693 ± 0.004 0.790 ± 0.002

DNN T2D Single-PRS 0.626 ± 0.017 0.703 ± 0.002

DNN T2D Multi-PRS 0.653 ± 0.010 0.716 ± 0.003

RF T2D Single-PRS 0.607 ± 0 014 0.675 ± 0.001

RF T2D Multi-PRS 0.610 ± 0.001 0.686 ± 0.002

RR T2D Single-PRS 0.636 ± 0.007 0.703 ± 0.002

RR T2D Multi-PRS 0.636 ± 0.008 0.716 ± 0.002
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From a translational point of view, better prediction
performance will improve disease risk stratification. So far, multi-
PRS approaches have been rarely applied, mainly due to the limited
availability of large-population-based cohorts with deep-
phenotyping data to train the model and for the computational
issues to deal with high-dimensional data. With the availability of
population-based cohorts (such as UK Biobank) and the parallel
improvement of computational algorithms for big-data processing,
the training of multi-PRS models is feasible on standard HPC
infrastructure. Instead, the final application of the models on
independent test data is not computationally demanding and
therefore can be run locally and potentially integrated into a
clinical setting. Additional PRS can be calculated on imputed
SNPs based on reference haplotypes if they were not included in
the original SNP array.

Our study presents different limitations. In particular, we
focused on the genetic predictions of complex traits, including
only sex and age as non-genetic factors. However, it is well known
that genetic predictors explain only a relatively small proportion
of the heritability of complex traits (Gusev et al., 2013).
Therefore, in translational settings, different non-genetic risk
factors should be included in the prediction models in order to
obtain an optimized risk stratification [e.g., the BOADICEA
model for breast cancer (Lee et al., 2019)]. Since the multi-
PRS model is based on multiple PRS, general limitations of
PRS also apply to our model. Some SNPs associated with the
diseases may be undiscovered by GWAS, and effect sizes are
imprecise (Lewis and Vassos, 2020). Additionally, PRS suffer
from a portability problem. PRS calculated on one genetic
ancestry perform worse on groups of different ancestry
(Martin et al., 2019). In our work, the data set is mainly
composed of samples with European genetic backgrounds.
Given the different allele frequencies across populations and
the limited sample size of non-European individuals,
overfitting with respect to the target European population can
affect the generalizability of the model. Family-based GWAS are
more robust to the effects of population stratification but
generally lack power in comparison to non-family-based
GWAS (Laird and Lange, 2009). Furthermore, the
interpretation of PRS can be difficult and lead to
overdiagnosis, resulting in inappropriate treatment (Polygenic
Risk Score Task Force of the International Common Disease
Alliance et al., 2021).

In the future, we aim to incorporate not only genomics
information and PRS but also other clinical data and
questionnaires to further improve the risk predictions. As the
number of scores in the PGS Catalog constantly grows, those
new PRS can be used to update and potentially improve the
multi-PRS model. Furthermore, tools other than PLINK (Chang
et al., 2015) [e.g., LDpred2 (Privé et al., 2021), PRSice-2 (Choi and
O’Reilly, 2019), PRS-CSx (Ruan et al., 2022), or PRSMix (Truong
et al., 2023)] can be used to calculate the input PRS.
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