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Spatial Point Pattern Analysisand Industry Concentration

Reinhold Kosfeld Hans-Friedrich EckeyJgrgen Lauridsen

Abstract. Traditional measures of spatial industry conadrgn are restricted to given areal
units. They do not make allowance for the fact tbahcentration may be differently
pronounced at various geographical levels. Metloddsgpatial point pattern analysis allow to
measure industry concentration at a continuum atigpscales. While common distance-
based methods are well applicable for sub-natishaly areas, they become inefficient in
measuring concentration at various levels withotustrial countries. This particularly applies
in testing for conditional concentration where @lemanufacturing is used as a reference
population. Using Ripley’s K function approach tecsend-order analysis, we propose a
subsample similarity test as a feasible testingagh for establishing conditional clustering
or dispersion at different spatial scales. For meag the extent of clustering and dispersion,
we introduce a concentration index of the styldesag’s (1977) L function. By contrast to
Besag’s L function, the new index can be employethéasure deviations of observed from
general spatial point patterns. The K function apph is illustratively applied to measuring
and testing industry concentration in Germany.

Keywords: Spatial concentration, clustering, disper, spatial point pattern analysis, K
function
JEL : C46, L60, L70, R12

1. Introduction

The spatial distribution of economic activity is iamportant issue in regional economic theory
and policy. Rationales for benefits from agglomera already date back to Marshall (1920).
Arrow and Romer seized on Marshall’'s reasoningemmmnological externalities by pointing
to localisation economies due to agglomeration iohd in the same branch of industry
(Neffke et al., 2008). Marshall-Arrow-Romer (MARXternalities are founded in benefits
from a specialised labour pool, scale economigspmit suppliers and knowledge spillovers
within industries. Jacobs (1970, 1986) worked dat texternalities may additionally arise
when firms of different industries agglomerate (fKefet al., 2008). Jacobs’ externalities or
urbanisation economies may result from a large aaded labour market pool, scale
economies in infrastructure provision, a varietypasiness services and knowledge spillovers
across industries.
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New Economic Geography (NEG) explains the emergehce core-periphery structure by
the tense of centripetal and centrifugal forcesufftnan, 1991; Helpman, 1998; Fujita et al.,
1999). Savings of transport costs favour the demknt of agglomerations as both
intermediary and final goods become cheaper fondirand consumers. With decreasing
prices, real wages will increase thereby attracadditional consumers. Because of larger
sales markets, firms benefit from moving from peef towards economic centres.
Dispersive forces can be picked up in the demanidnofobile workers living in peripheral
regions as well as congestion. While standard NEGdeis treat the whole industry
uniformly, recent research focuses on identifyiegtsr-specific clusters and their impact on
regional growth and development (Feser et al., 2008

A cluster is a geographically concentrated groupca@hpanies and associated institutions
sharing local resources, using associated techieslogrming linkages and alliances, as well
as co-operating in complementary relationships tPo2008). Porter points to the role of
clusters in regional competition and explains hdusters can positively affect competition
by increasing productivity and innovation as wedl stimulating the formation of new
businesses. Thus, the EU commission, national egidmal governments have designed and
implemented different types of instruments of @ugtolicy (Oxford Research, 2008). The
European Commission has launched new initiativeserioourage national and regional
governments to develop regional clusters. Howewadithough there is a consensus that
economic sectors benefit differently from spatialsters, evidence on the efficacy of clusters
on development and growth of regions is not unaodug (Litzenberger, 2007; Menzel,
2008). Depending on the factors viewed as partijuleelevant for the formation and
development of clusters, localisation or urbanigateconomies attain a greater weight
(Beaudry and Schiffauerova, 2009).

For policy makers in Europe, clusters can be reiega a number of levels. In order to get an
insight in economic effects from clusters, inforroatis necessary on the formation of
potential cluster at different regional scales. &bier, the degree of concentration is
expected not to be independent on the reach ofpgrgwof firms. Traditional concentration
indices fail to provide such information.

The spatial Gini coefficient and Herfindahl indese @lementary instruments for measuring
spatial concentration of economic activity (Fes2®00; Bickenberger and Bode, 2008).
Although the spatial Gini coefficient is preferalftem the viewpoint of data requirements,
(Sudekum, 2006), Ellison and Glaeser (1997) havealed some distortive effects coming
along with this measure. They derive an index @icemtration on the basis of a probabilistic
model of plant location decisions. The Ellison-Gleindex “corrects” the Gini coefficient
by eliminating distortions from industry structuséth the aid of the Herfindahl index. When
the null hypothesis of a perfectly random locafwacess is rejected, spatial concentration is
driven by spillover forces, natural advantages onixture of both factors.

Location choice by firms may not only lead to astéwing patterns on the industry or sector
level. By conditioning on the industry as a whotispersed patterns of plants within
industries may arise. In this case, plants belangprdifferent sectors tend to co-locate with a
higher probability than plants from the same sedtdnile dispersive plant patterns canbet
revealed by the Gini coefficient and the Herfindiadlex, they can be detected on the basis of
the Ellison-Glaeser index. However, clustering atigpersion patterns may vary across
spatial scales. For example, clustering may octwnall spatial scales, whereas complete
random or dispersed patterns may be prevalentgarldistances.



Spatial point pattern analysis is an appropriafg@gch to deal with these issues. It provides
a toolbox of evaluating industry concentration bglgsing the spatial distribution of plants in
a study region. In particular we make use of Rigld¢y function (Ripley, 1976, 1977) that
allows measuring of clustering and dispersion siamdously at all relevant spatial scales.
Although the K function is a powerful analytic taal measuring the covariance structure of
the location process of plant decisions, its appibi;m on real economies is extremely time-
consuming: This is one of the reasons of the restrained Gishi® approach in assessing
industrial concentration. While Barff (1987) apglithe K function approach to a single city,
Sweeney and Feser (1998) extend it to the stat. |®oth papers differentiate between
different size classes of establishments, not batveectors.

Marcon and Puech (2003) utilise methods of pointtepa analysis to evaluate sector
concentration of firms in the greater Paris ared @m idealised area of France. Like Sweeny
and Feser (1998), they make use of Diggle and Gmetlw (1991) D function to establish
clustering or dispersion of a branch relative te ihdustry as a whole. Duranton and
Overman (2005) test for localisation of British fiches of industry on the basis of a K
density function. In referring to an earlier draft the paper, Marcon and Puech (2003)
compare the Duranton and Overman’s K density wighldy's K function approach. In spite
of some advantageous, the construction of the Isitlefunction is not without problems. In
particular clustering and dispersion can only biected but not quantified. Arbia et al. (2008)
use the bivariate K function approach to identifylacation across different industries.

The contribution of this paper to the literaturehseefold. First, we introduce a concentration
index of the style of Besag’s (1977) L functionttisabased on the concept of the K function.
While Besag’s L function is intended to measureiagns from the CSR process, the new
index can be applied to measure deviations fromengeneral spatial processes. The index is
also used for identifying the importance of sedpecific and more general industry-specific
forces inducing clustering. Secondly, we proposteasible testing procedure enabling a
usage of the K function approach efficiently forgka study regions. For this, Diggle and
Chetwynd’s (1991) D function approach is replacgdabspatial similarity test based on
subsamples drawn from the industry under analysistiae reference population. Third, up to
now, concentration of the branches of industry arr@any is only available at spatial scales
given by more or less arbitrary defined regions.ilé/tve illustrate our K function approach
by selected industries, we additionally provide canmtration numbers for sixteen German
industries within different distance bands.

The paper is organised as follows. In section 2,inteduce the methods of spatial point

pattern analysis for evaluating industry clusteramgl dispersion. Section 3 deals with issues
regarding the construction of geographical coortésmdrom the available source of data.

Estimation and testing results on unconditionalcemtration of branches are discussed in
section 4, while section 5 illustrates the applaatof our K function approach in assessing
conditional clustering and dispersion. The empirar@alysis is in both cases performed for

mining and manufacturing industries in Germany.tisacs draws conclusions and points to

directions of future research in this field.

! Even with high-speed computers, pure CPU timestfreating and testing the K function for a singtarizh of

industry with several thousand plants by simulai®not a question of hours but of days. A singieutation

run takes several hours.

2 Arbia et al. (2008) do not analyse the spatiahppattern of plants as a realisation of firms'dtien decisions,
but show how the K function approach can be appbeidvestigate co-agglomeration or repulsion afrexmic

events. In particular they analyse spatial nearaadsremoteness between locations of inventionssasectors
of industry in Italy.



2. Spatial Point Processes
Testing for unconditional concentration and dispersion

The spatial approach in measuring industry conagatr investigates the point pattern of
industrial establishments. Firms’ decisions on eherlocate industrial production is viewed
as a spatial point process {N(A)[ R} where the random variable N(A) renders the numbe
of plants in the area A as part of the whole staigha R. For a stationary process, the intensity
A, defined by the number of plants per unit aregosstant over the whole study area R.
Often it is sensible to assume that the spatialtgmiocess is not only stationary but isotropic.

In this case, the second-order inteng(ty, 5) measures the dependence between two plants at
locations sand gsolely as a function of their distancey(k, ) = y(d).

Unfortunately, the second-order intensy{y) is of little practical use as it cannot dirgdbe
estimated from sample data. Explorative tools faalgsing the spatial point patterns are the
cumulative distribution functions of nearest neighb event-event distances and nearest
neighbour point-event distances (see e.g. Bailaey @Gatrell, 1995; Martinez and Martinez,
2008). However, these functions only give insightoi pattern characteristics over the
smallest scales. Ripley’s K function (Ripley, 197®,77) is a much more powerful tool in
investigating second-order properties with realadarounded on the close connection
between second order properties and the distamtegén pairs of occurrences of plants, this
tool provides insight on clustering and dispersadma point pattern at a range of relevant
scales. It can be meaningful interpreted in retatmthe K function of a benchmark like the
complete spatially random (CSR) process. Moreowee, test for significance from
hypothesised patterns using the bounds of confelemervals derived from Monte Carlo
simulation. The power of the K function rests mostably in its use as a graphical tool to
provide detailed insight into the extent of concatidn of industrial sectors in dependence of
the regional scale.

As a reduced second-order moment measure, the &idanK(d) is closely related to the
second-order intensity(d). It measures the normalised expected numbercofirrences of
plants within a distance d of an arbitrary est&plient. The normalisation is accomplished by
dividing the expected value E[NgA by the intensityA where A is the area of a circle with
the radius d around an arbitrary plant locatedgiat s in R

@ Kdr ENag)

Without a relation to the intensitythe expectation of N(# cannot be meaningful compared
across different populations. In defining the K dtian, the “density effect” is eliminated
from the absolute measure of occurrences of additiplants in a well-defined neighbour-
hood of an arbitrarily chosen establishment.

Although the expected value E[N(R)] for the whotedy region is always given by R,

the expected number of plants i & not generally equal thAq4. The relation E[N(A)] =
A-Aq4 only holds for a completely spatially random (CSRnt process. While the expectation
of N(Ay) is larger tharh-Aq4 in case of concentration at scale d, it is low@ni\-Ay in case of
dispersion. The latter case reflects a regularidigton of plants at the considered scale. Both
tendencies are mirrored in the K function.

% For the sake of simplicity, we use the same symbmi the labels of the areas (R, Ay)As for the areas
themselves.



In measuring unconditional or absolute spatial eotr@ation, the intensit) is assumed to be
constant across the study region R. kt;) be an indicator function that takes the valué of
if the distance between two plants i and j is lowerequal to d and O otherwise. Then a
preliminary non-parametric estimate of the K fuantis given by

1 n
—— > 2 lq(dy).
AR i=1i<j

(2 K@=

In (2), the expected number of ordered pairs ofitglat most d units away from one another,
AR-K(d),* is estimated by the double sum of the indicatarcfion k(d;). In order to
compute the estimate of K(d) for a series of distand, it is suggested to use the ratio n/R as

an estimatord for the intensity\ with n as the number of observed plants in R.

As the expected number of plants tends to be uaidelrby (2) due to border effects, the
estimator R(d) is generally not unbiased. This problem especiadlgomes serious at large
scales. The border effects result from the ignagasfcpossible occurrences of plants outside
the study region R when counting these entitiekiwitoncentric circles around the locations
of critical plants. An edge correction can be acplished by introducing correction factors
1/w; where the weights jis chosen as the proportion of the circumfererafethe circles
lying in region R (Martinez and Martinez, 2008With this adjustment, a feasible edge-
corrected estimate for the K function is given by

- n I (d
@ k@==F 59

n<i=1i<j Wijj

In order to interpret the values of the K functmiran observed point pattern, one has to look
for a benchmark. In measuring absolute spatial eatnation, the K function of a complete
spatially random (CSR) process serves a naturaihimeark. For this process, K(d) is simply
given by the aread. Hence, K(d) generally measures a hypothetical agefor the spatial
point process under investigation. In the caseootentration, K(d) td® measures the area
that is expected under the CSR hypothesis giveintireased number of plants. Conversely,
in the case of dispersion, K(d)red” reflects the area that is expected in view ofdbereased
number of plants for a CSR process.

In order to test for dispersion and clustering loa basis of the K function, lower and upper
sets of critical values within a range of relevalliﬁtances,k'a /o(d) and Rg /o(d), are

needed. ThusR'a/Z(d) and Rg,z(d) define the bounds of a confidence interval sugabl

with a significance level od. As the distribution oK (d)s unknown, the bounds have to be
determined by Monte Carlo methods. For each ingusér simulate B random patterns of size

n. In case ofklalz(d) < R(d) < Rg,z(d), the CSR hypothesis cannot be rejected for the

distance d at a significance leveloofif R(d) is outside the confidence interval, the following
testing decisions result:

* This expectation is obtained by multiplying theyected number of plants in RR, by the left-hand side of
A-K(d) = E[N(Ag)] which is implied by equation (1).

® Alternatively, the area of the circle can be uedtalculating the correction factor (cf. MarcamdaPuech,
2003).



R(d) < R'alz(d) = Significant dispersion at scale d
and
KY ,,(d) > K(d) = Significant clustering at scale d.

Given the computational expense of the testinggaore, we restrict ourselves to determine
the confidence band for a special case. HZ%ISR(d) denote the estimated K function of the

simulated CSR process in théhlrun. Then the lower and upper envelopb%SR ald)
UES;SR(d), of the estimate& gSR (cBre defined by

LBsr(d) = minfk Len(d), b=1,2,...B}
and
UB o (d) = ma{R B o (d), b=1,2,...B}.

For B=20, the bound&'alz(d) and Rg,z(d) of the confidence interval coincide with the

lower and upper envelopeB,BCSR ehd UESR (d), of the estimated K functingSR (d)
for a significance levek of 0.05

Some authors advice to use one half of the maximistance between the pairs of events as
an upper bound for d (e.g. Smith, 2008; Marcon Rndch, 2003). However, at large scales,
edge effects increasingly dominate the estimatothfe K function. In particular for irregular
shaped study areas, with this rule of thumb, serimierpretation problems may arise.
Therefore we restrict the maximum radius by onetfoof the maximum pairwise distances
between locations of plants (cf. Duranton and Owern2005; Arbia et al., 2008).

Testing for conditional concentration and dispersion

In measuring concentration of manufacturing sectefative to the industry as a whole,
location decisions of firms are taken as given tids account the null hypothesis of complete
spatial randomness of plant locations is no lorgftactive. More specifically we replace the
CSR hypothesis by the hypothesis of spatial sitylaas a benchmark. The spatial point
patterns of an industrial sectds; = (511,512, ...,slnl), and all other manufacturing sectors

Sy = (521,322, .1 S2n, ) are called spatially similar, when they are gatest by the same

spatial point process. Len; [1{1,2} be a label denoting whether a location is a marnuifeg

sector (1) or all other industrial sectors (2). &nthe null hypothesis the labels ocan be
exchanged such that; Sand $ consist of both types of plants. In all, there séexn!
permutations of labels that are all equiprobabldeurthe spatial similarity hypothesis. One
speaks of a marked point process that assigns tabets m randomly to the observed n
industry locations s By conditioning on observed set of locations, idewariety of point
patterns can be compared without the need to igalternative locations.

In principal, conditional concentration or dispersiof manufacturing sectors could be
measured by investigating the difference of theidogb K functions of both patterns; &nd

® The value of B is in line with Marcon and Puect2603) choice of the number of simulations for idhealised
area of France.



S, that defines the so-called D function (Diggle &@taetwynd, 1991). Critical values for the
test of the spatial similarity hypothesis can bewie by Monte Carlo simulations. This type
of test for relative concentration is proposed barddbn and Puech (2003). Because the
number of locations in.Ss in general many time over that of, $1e usual test of the spatial
similarity hypothesis is not very efficient. In essof economies of a special size, it is not
feasible without imposing restrictiofs.

A more efficient and feasible test on conditionahcentration can be based on a subsample
similarity hypothesis. First, we use the observeuhfppattern,

S0 = (511,512, - 51, ).

to construct an estimat@l (¥ the K function for the industry under analysifien, we
simulate B random permutatior{$; (b),p2(b),....pn (b)), from the order of natural numbers
Nn = (1, 2, ..., n) and use the first numbers(ps (b),p2(b),....pn; (b))to define a sample of
locations from all industrial sites (IND):

St = (sp, (0). S, (). ... 5p, (8). b=1.2,....B.

Under the null of spatial indistinguishability, hoS? and StI’ND are subsamples from the

same spatial point process. Therefore the estim&afedctions fromSFND : RFND (d), can be
used to construct a confidence interval ﬂéﬁ .(@he lower and upper bounds of this

confidence intervaIK'm/2 (d)and R]lfalz (d) provide critical values for the test of the

subsample similarity hypothesis. The following itegtdecisions are obtained with respect to
conditional dispersion and clustering:

Rl(d) < RLG/ » (d) = Significant conditional dispersion at scale d
and

K lar2@ > K 1 (d) = Significant conditional clustering at scale d.

In case ofkialz (d)= Rl(d) < Rfalz(d), the subsample similarity hypothesis cannot be
rejected for the distance d at a significance level

As in testing for unconditional concentration weedmine the confidence band on the basis
of the envelopes of the simulated K functions:

Lo (d) = minjk fyp (), b=1,2,...B]
and

UBp (d) = maxk By (d), b =1,2,...B}.

" Marcon and Puech (2003) note that it was impossiblperform K function analysis for the whole acfa
France. Instead they apply Diggle and Chetwyndfam2tion to an idealised French rectangular area.



For a significance leved of 0.05 the boundskqm2 (dand Rfa/z (d) are given by the
lower and upper envelopégBND éad UFND (d)with B=20.

Although the testing procedure draws subsampleszefn from the reference population for
calculating confidence bands, it becomes infeaditnidarge samples sizes.rn this case,
subsampling is applied as well to the industry wundensideration. In order to ensure
feasibility and efficiency, we restrict the subsdengize i to 500.

Indices of clustering and dispersion

Concentration indices for single industries cancbastructed from K function analysis in
form of difference measures. In principal, a spat@centration index could be defined by
relating the K function to its expectation underRC$ order to avoid comparisons of areas,
Besag (1977) proposed an L function as access oddine circles around the locations
necessary to capture the observed number of ewemisr the assumption that the point
pattern had been generated from a CSR process:
@ L= g

T
As the dividing value is zero, from L(d) > d clustg and from L(d) < O dispersion is
inferred at distance d.

Despite its vivid interpretation, Besag'’s L funetifails to detect insignificant deviations from
the CSR process. It indicates clustering or dispereven if the observed point pattern is a
realisation from a CSR process. Moreover, L(d) @ conceived to measure conditional
concentration.

In order to establish the extent of significantstéwing (dispersion), we define a concentration
index L*(d) that measures the excess radii witlpees to the upper (lower) confidence band.

Let R(d) be the observed K function of the industry undelgsis andkglz(d) (R'alz(d))

the upper (lower) confidence band. With this, tleaaentration index L*(d) is built up as
follows.

< KUY - .
K@) _ Ro2 o, K(d)> K}, (sign.clustering
T T
R@d) (K, o
(5) L*(d)= —|—¥2 for K(d)< K'&/2 (sign.dispersioi.
T T

0 for K!, <K(d)<K", (acceptiorof CSR)

While L*(d) becomes positive in case of significapatial clustering, significant dispersion is
indicated by a negative L* value at distance d.spatial scales where the observed K
function runs between the lower and upper confiderands, the L* function takes the value
zero.



With the notation used above, L* is defined as adek of unconditional concentration.
Regular patterns are usually not observed in ecasnMvoreover, a completely random
point pattern will only occur by exception. Thus,the unconditional case, L* is suited to
measure the extent of spatial concentration of strites and sectors. By replacing the

observed K functiork (dpy the Kl (d)function along with the respective confidence lsand

the L* function can be employed for identifying stared or dispersed industry patterns
relative to an arbitrary reference population. Ulguhe industry as whole is used as a bench
mark.

3. Data

In this study we make use of regional and sectislggregated data on German industrial
establishments. While the number of employees és gdreferred variable with traditional
measures of concentration like the Gini index ahd Ellison-Glaeser index (see e.g.
Sudekum, 2006), spatial methods preferably make aiskcation data on plants. They
directly reflect firms’ decisions on sites of pration. From the viewpoint of spatial statistics,
decisions of enterprises where to locate induspmiatuction define a spatial point process,
whereby the scale of spatial analysis camatori be fixed.

The regional database of the Federal Statisticht®©fsermany Data includes data on the
number of plants in 439 German districts the latesthe year 2006. The industry is defined
by the sections Mining and Quarrying (C) and Mantfeng (D) of the German
Classification of Economic Activities (WZ 2003). Ut the four-digit sectors, this
classification matches in terms of content with M&CE Rev. 1.1 classificatidrwhich is
based on the International Standard Industrial sffiaation of all Economic Activities (ISIC
Rev. 3.1) of the United Nations. Two out of sixtée-letter industries pertain to section C,
while fourteen are manufacturing industries beloggito section D (Appendix). The
industries are subsections of the sections C arffloime analyses are additionally performed
with two-digit sectors that are called divisiongie NACE classification.

In all, the industry comprises 45611 establishm@&mt®006. Principally these are all plants
with 20 and more employe@dwith a share of 97.4 per cent, the overwhelmingoritgt of
plants belong to the manufacturing sector (sedd®nThe district level is the finest level of
regional disaggregation for which data are ava@aBloordinates of cities and centres of rural
districts are available. However, industrial placdés be located in any municipality of a rural
district. Thus, in order to capture dispersion laings in districts, we replace central locations
by randomly distributed points within the arealtani

From sampling surveys it is known that plants ef $ame branch are usually dispersed across
districts (IAB, 2008). Thus, location of plants kit districts should not be represented by
coordinates of central places. In view of this mifation, a random allocation of plant
locations within districts will be best approximakeir real distribution. In urban districts on
average from each point all plants are covereditnjes with a radius of 5 km. Although
some fuzziness is introduced by larger-sized magions, we use this threshold as the lower
bound of the spatial scale in the analysis of ilgusoncentration. However, as plant density
is much sparser in rural regions, the general teeylean be modified but not completely

8 Nomenclature des Activités Economiques dans lear@anautés Européennes (NACE).
° In selected sectors, for instance, manufacturbad products and beverages and manufacture o$ glag
ceramics, establishments with 10 to 19 employeesdditional included (StatBA, 2008).



reversed at low spatial scales between 5 and 1tlgase of opposite arrangements in rural
regions. In case of short-distance clustering despirandom distribution of plant location

within districts no interpretation problems occBome degree of uncertainty at low spatial
scales arises in case of acceptance of the nulithgpis of randomness.

4. Unconditional industry concentration in space

Here we investigate spatial industry concentratigainst the hypothesis of complete spatial
randomness (CSR). While testing the assumptiorpafiad homogeneity is not of particular

interest, it enables us to detect the intensitglastering at different spatial scales within and
across industries. Moreover, we are interestedewealing the extent to that industry

concentration can be attributed to forces effecsivéhe level of industry under consideration
or subordinated sectors.

We discuss these issues exemplary for three indsstr

CA: Mining and quarrying of energy producing medés;j
DA: Manufacture of food products, beverages anadob,
DB: Manufacture of textiles and textile products.

In order to determine the relevant spatial scaleapgly the ga/4 rule to the industry as a
whole. According to this rule, spatial point patieof industries are analysed for all distances
from 5 to 215 km.

For understanding testing for spatial concentratiorihe basis of the K function, a preceding
exploratory data analysis of spatial point pattenay be helpful. In the left panel of Figure 1,
the observed spatial point pattern for the CA imiquss plotted. It shows a strong clustering
of coal mines and quarrying plants in the westeart pf North-Rhine Westphalia and the
western and middle part of Lower Saxony. Using shee number of plants, the observed
point pattern is compared with a completely randpaint pattern’® The right panel of

Figurel exhibits a CSR point pattern showing neitthestering nor regularity. In testing and

Figure 1: Spatial point patterns of the CA industng a CSR process

Spatial point pattern of CA industry Spatial point pattern of a CSR process
(n= 127) (= reference population) {r 127)
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19 For a fixed intensity ratk, a CSR process is given by a homogenous Poissmess. When one conditions
on the number of plants, the CSR process is usteliged binomial process (cf. Martinez and Martjr308).



measuring spatial concentration using the K fumctépproach, hypothetical spatial point
patterns for an industry are simulated from a C®6tess by conditioning on the observed
number of plants.

The observed K function for the entire CA indusarnyd the subordinated CA10 and CAll
sectors are plotted along with the lower and ugpefidence bands in Figure'2As all three

K functions lie above the upper confidence bandmificant clustering is established. The
intensity of clustering at different spatial scalesneasured by the L* functions that reflect
the gaps between the observed K functions andgperwconfidence bands.

Figure 2: K and L* functions of the CA industry f@asting unconditional concentration

C(/)A]-O: Mining of Coal and Lignite; Extraction of Peat CA11: Extraction of Crude Petroleum and Natural Gas
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The lower right panel of Figure 2 shows an incregsspatial concentration of the CA
industry up to a distance of 160 km. The L* funotiadicates that the radii of circles around
the plants are up to 75 km larger than acceptamdernthe CSR hypothesis. The CA10 sector
is marked by an increasing degree of concentraa®rar as 80 km after that it remains
relatively constant. Coal mines are stronger cotmated than the petroleum and gas factories
over the full spatial scale. The run of the L* ftioo of the CA industry below both sector
functions in the interval between 20 km and 80 lkfitects a lack of mixed industry-specific
clustering at lower and medial regional scales.sThuithin this distance band, concentration
of the CA industry is attributable to clusteringiishe both sectors. At larger distances the high

M The ordinates of the K function diagrams haveeartultiplied by a factor 10,000.



degree of concentration of the CA industry is maphliven by CA10-specific agglomeration
forces.

In the DA industry, sector concentration is notfarm (Figure 3). For the entire DA industry
as well as the DA15 sector, significant clusterowgurs at a level of 5% for all distances.
However, plants belonging to the DA16 sector othlgier significantly up to a distance of 75
km. Beyond this threshold, the K function of thédoco sector lies within the confidence
band indicating complete spatial randomness.

Figure 3: K and L* functions of the DA industry faasting unconditional concentration
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The DA industry as a whole reaches its maximum eptration at 75 km. In the interval of
20 to 100 km its L* function shows a mean excessusabetween 6 and 8 km. While the L*
functions of the DA industry and the DA16 sectan kery similar over a long distance band,
they drift apart at a large spatial scale. At dists above 160 km, industry clustering is no
more only sector-specific but driven by forces etiiee across both DA sectors.

Because the K functions are well above the uppefidence bands at all distances in the DB
industry, clear clustering structures emerge (Fgd)y. At low spatial scales, the run of L*
curve of the DB industry above the sector curvelicates the presence of mixed spatial
clustering of textile and clothing plants. Industtgncentration declines only slightly for



distances between 50 and 175 km, but sharply aedaspatial scales. The highest
concentration is measured at a distance of 75 Kimavi L* value of nearly 30.

Figure 4: K and L* functions of the DB industry fasting unconditional concentration
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The sector profiles turn out to be very differehfter a steep slope up to a distance of 50 km,
the DB18 L* curve remains relatively constant atigh level. This is in contrast to the U-

shaped L* curve of the DB17 sector. For this sether degree of clustering is highest at
distances between 70 and 110 km. Beyond this tblgsthe curve declines with a rate of

about 0.2 km per unit distance.

The L* curves are as well comparable across inghgstFrom our examples it can be inferred
that the CA industry is considerable stronger catre¢ed than the DA and DB industries
over the whole scale. Out of these industries,DReindustry shows the lowest degree of
concentration. In Figure 5 the 16 industries araked according to their degree of
concentration within four distance bands. For thispose, we use for each industry the
maximum L* value within a distance band as a cotre¢ion index.

Figure 5 confirms the extremely high concentrabbroal mines and quarrying plants (CA).
At smaller spatial scales, however, the differetactihe second-placed industry is by far lesser



than at median and high distances. Manufacturexdfiés (DB), leather (DC), coke, refined
petroleum and nuclear fuel (DF) and fabricated ingtaducts (DJ) are highly concentrated
within different distance bands. But beside the i@dustry only the DB industry belongs to
the five strongest concentrated branches at amiies. Particularly conspicuous is the last
rank of the DF industry in the case of large diséan

Figure 5: Unconditional concentration of industraslifferent spatial scales
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Over the entire spatial scale low concentratiofoisd for mining of metal ores and other
mining and quarrying (CB), manufacture of food proid (DA), metallic mineral products
(DI) and transport equipment (DM). With some quedifions this also applies for the
manufacture of wood and wood products (DD). Inrahking differences at different spatial
scales are much greater in the case of high thiowotoncentration.

5. Conditional industry concentration in space

After having established the degree of spatial eatration for 16 industries at the subsection
level of NACE, we aim at identifying clustering arebularity by abandoning the assumption
of homogenous space. In regional economics, adgestaf sites are attributed to natural and
economic features. We assume that locational adgastare reflected in firms’ decisions on
the sites of production. In testing for conditiomaincentration and dispersion, we refer to
plant locations of the whole industry as the refesepopulation.



Figure 6: Spatial point patterns of the CA industng a sample from the entire industry
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As in the case of unconditional concentration, Kdtion analysis is based on comparisons of
an industry-specific and hypothetical spatial pgatterns. By using the industry as a whole
as the benchmark, spatial clustering is presenewutite null hypothesis. The hypothetical
point pattern is specifically generated by randotabelling all plants of the entire industry.
Subsamples of equal size are generated from batiplea .Under the null hypothesis of
spatial similarity, the point pattern of the indysspecific subsample is just a realisation from

the set of all industrial establishments.

Figure 7: K and L* functions of the CA industry fasting conditional concentration
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Because of the relatively small number of coal miaad quarrying plants, we use the full
sample in testing for conditional concentration digpersion of the CA industfy.A visual
inspection of Figure 6 reveals that the CA indugtrgonsiderably more concentrated than the
industry as a whole. The extent of conditional @ntration is measured with the aid of the

L* function.

K function analysis for the CA industry confirmsethisual finding. As all three observed K
functions run well above the upper confidence bandaditional clustering is clearly found
for the CA industry as well as its CA10 and CAlttees at all distances. The lower right
panel of Figure 7 exposes that the L* functions similarly to the case of unconditional
concentration. Note, however, that the index ofcemtration for the entire CA industry has

dropped to about two third.

In contrast to the CA industry, the DA industrysignificantly less concentrated than other
manufacturing sectors. Its K function runs below tbwer 5% confidence band over the
whole spatial scale. As the spatial distributiorabbfindustrial plants is used as the reference
population, the testing outcome indicates condgi@agularity or dispersion.

Figure 8: K and L* functions of the DA industry ftasting conditional concentration
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21n order to ensure feasibility, the test is coriddavith a maximum subsample size of 500 { n



The same result applies for the DA15 sector. Ini@dar the plot of the L* functions reveals
nearly identical dispersive point patterns in tierdrchically related DA and DA15 branches.
By contrast, tobacco-producing plants are clustanpdo a distance of 50 km, while no
significant differences from the null hypothesiscat larger spatial scales. As the tobacco
sector is small compared to the food and beveragetr, its completely different type of
point pattern does not substantially affect theral¢éendency.

In the DB industry, conditional clustering is predioant over the whole spatial scale (Figure
9). The observed L* function of this industry exiksban inverted U-shaped form that runs
between the sector curves. This points to a lagubstantial clustering of plants belonging to
different sectors. Maximum concentration is reached distance of 85 km. Beyond this
threshold, concentration steadily declines.

Figure 9: K and L* functions of the DB industry ftasting conditional concentration
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In the DB17 sector, the U-shaped L* curve is everarpronounced than in the entire DB
industry. By contrast, the extent of conditionalncentration in the DB18 sector stays
relatively constant over the whole spatial scale.



Because some sort of clustering is present ineat® population, the concentration index L*
is dropped compared to the case of the null ofpeddency. Moreover, when conditioning on
the spatial point pattern of the industry as a whaobt only clustering but also dispersion can
emerge. Figure 10 displays the testing resultshferl6 industries for the same four distance
bands as before. The extent of conditional clusteiidispersion) in a distance band is
measured by the maximum (minimum) value of the wridtion.

Figure 10 exhibits that conditionally clusteringcacs more frequently than dispersion.
Clustering structures are not uniform but vary wdiktances. In particular, more industries
are relatively strongly concentrated at short spattales than at larger distances. However,
five out of sixteen industries, mining and quargy(€A), manufacture of fabricated products
(DJ),manufacture of leather (DC), manufacture &filies (DB) and manufacture of pulp and
paper and publishing and printing (DE) show alwagme degree of conditional clustering.
Moreover, manufacture of non-metallic mineral pradu(DI) and manufacture of food
products, beverages and tobacco (DA) are dispeasaahy spatial scales. In contrast, both
clustering and dispersion can be found in the nmamtufe of transport equipment (DM).
Conditional clustering of manufacture of machinand equipment (DK) and manufacture
n.e.c (DN) depends on the distance at which corator is considered. The same holds for
manufacture of rubber and plastic products (DH) atier mining and quarrying (CB) with
respect to conditional dispersion.

Figure 10: Conditional clustering and dispersiomolustries at different spatial scales
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6. Conclusions

This paper introduces a concentration index ofstlyee of Besag's (1977) L function that is

based on the concept of the K function. The indexsat measuring the extent of substantial
clustering and dispersion at different spatial asaWhile Besag’'s L function is intended to
measure deviations from the CSR process, the neexircan be applied to measure
deviations from more general spatial processesalte used the measure for identifying the
importance of sector-specific or more general itgespecific forces inducing clustering of

industries.

In testing for conditional concentration, previopspers mainly relied on Diggle and
Chetwynd’s (1991) D function approach. Howevers lgpproach is not efficient and feasible
for evaluating clustering and dispersion in medama large economies. We have outlined a
spatial similarity test based on subsamples drawm fthe industry under analysis and the
entire industry as the reference population. ltlistrated how the subsample similarity test
can be efficiently employed in measuring conditiamncentration of German industries.

We found that some industries like coal mines am@riying plants, manufacture of

fabricated metal products and other mining and rguag are highly concentrated at any

spatial scale, while the extent of concentratiorl dhe relative positions of industries

generally varies with distance. For example, wilanufacture of coke, refined petroleum
products and nuclear fuel is significantly clusteag a low and medium scale, no clustering at
all is found for distances beyond 150 km. Coal mimed quarrying plants are highest
concentrated, but the gaps to other industrieseasm considerably at medium and large
distances. Manufacture of textiles and textile patd as well a manufacture of rubber and
plastic products are always dispersed comparedeéoirtdustry as a whole. By contrast,

evidence for dispersion is found for manufacturefadd products and manufacture of

transport equipment only within some distance bands

The K function approach can as well be advantageonsloyed for analysing co-location
between plants of different industries. Such aremsibn of spatial point pattern analysis
could provide interesting insights on inter-indysttustering. We made a first step in this
direction by assessing clustering and dispersitnwden hierarchical branches. With regard to
the identification of Jacobs spillovers, non-hiehacal comparisons are additionally
necessary. For this, univariate point pattern aigliit the wall. In identifying attraction and
repulsion of establishments across sectors, bigapaint pattern analysis seems to be a
promising approach.
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Appendix: Industries and Sectors

German Classification of Economic Activities (WZ 2003)
Sour ce: Statistisches Bundesamt, Wiesbaden

Subsections (two-letter industries) Divisions (2-digit sectors)
CA: Mining and quarrying of energy producing| CA10: Mining of coal and Lignite; extraction of
materials peat
C11: Extraction of crude petroleum and natural
gas

CB: Mining and quarrying, except of energy
producing materials

DA: Manufacture of food products, beverages| DA15: Manufacture of food products and
and tobacco beverages
DA16: Manufacture of tobacco

DB: Manufacture of textiles and textile products I¥BManufacture of textiles
DB18: Manufacture of wearing apparel; dressing
and dyeing of fur

DC: Manufacture of leather and leather products

DD: Manufacture of wood and wood products

DE: Manufacture of pulp, paper and paper DE21: Manufacture of pulp, paper and paper
products; publishing and printing products

DE22: Publishing, printing, reproduction of
recorded media

DF: Manufacture of coke, refined petroleum
products and nuclear fuel




DG: Manufacture of chemicals, chemical
products and man-made fibres

DH: Manufacture of rubber and plastic product

DI: Manufacture of non-metallic mineral
products

DJ: Manufacture of basic metals and fabricate
metal products

dDJ27: Manufacture of basic metals
DJ28: Manufacture of fabricated metal produc
except machinery and equipment

DK: Manufacture of Machinery and Equipment

DL: Manufacture of electrical and optical
instruments

DL30: Manufacture of office machinery and
computers

DL31: Manufacture of electrical machinery and
apparatus

DL32: Manufacture of radio, television and
communication equipments and apparatus
DL33: Manufacture of medical, precision and
optical instruments, watches and clocks

)

DM: Manufacture of transport equipment

DM34: Maratéee of motor vehicles, trailers
and semi-trailers
DMS35: Manufacture of other transport equipms

2Nt

DN: Manufacturing n.e.c.

DN36: Manufacture of fuume; manufacturing
n.e.c.

DN37: Recycling
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