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Peroxisomes are dynamic multipurpose organelles with a major function in fatty acid
oxidation and breakdown of hydrogen peroxide. Many proteins destined for the
peroxisomal matrix contain a C-terminal peroxisomal targeting signal type 1 (PTS1),
which is recognized by tetratricopeptide repeat (TPR) proteins of the Pex5 family.
Various species express at least two different Pex5 proteins, but how this contributes
to protein import and organelle function is not fully understood. Here, we analyzed
truncated and chimeric variants of two Pex5 proteins, Pex5a and Pex5b, from the
fungus Ustilago maydis. Both proteins are required for optimal growth on oleic acid-
containing medium. The N-terminal domain (NTD) of Pex5b is critical for import of all
investigated peroxisomal matrix proteins including PTS2 proteins and at least one protein
without a canonical PTS. In contrast, the NTD of Pex5a is not sufficient for translocation of
peroxisomal matrix proteins. In the presence of Pex5b, however, specific cargo can be
imported via this domain of Pex5a. The TPR domains of Pex5a and Pex5b differ in their
affinity to variations of the PTS1 motif and thus can mediate import of different subsets of
matrix proteins. Together, our data reveal that U. maydis employs versatile targeting
modules to control peroxisome function. These findings will promote our understanding of
peroxisomal protein import also in other biological systems.
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INTRODUCTION

In eukaryotic cells specific metabolic pathways are often contained inside of organelles such as
mitochondria and peroxisomes (Lodish et al., 2000). Peroxisomes have versatile biological roles
including detoxification of hydrogen peroxide, degradation of fatty acids and metabolism of amino
acids and are essential for human health (Smith and Aitchison, 2013; Wanders, 2014). Peroxisomal
matrix proteins are imported into the organelle lumen from the cytosol via an evolutionary
conserved set of cytosolic receptors and peroxisomal membrane proteins (Gabaldón, 2010; Kim
and Hettema, 2015; Walter and Erdmann, 2019). The majority of known matrix proteins contains
one of two conserved targeting signals termed peroxisomal targeting signal type 1 (PTS1) and type 2
(PTS2). PTS1 motifs are located at the C-terminus, originally identified as a tripeptide with the
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sequence Ser-Lys-Leu (SKL), occurring in many variations of this
prototype sequence (Gould et al., 1989; Brocard and Hartig, 2006;
Lingner et al., 2011; Nötzel et al., 2016). The amino acid sequence
upstream of the C-terminal tripeptide contributes to PTS1
recognition (Brocard and Hartig, 2006). PTS2 motifs are
located in the N-terminal part of a protein and are recognized
by the receptor protein Pex7 (Braverman et al., 1997; Lazarow,
2006; Kunze et al., 2011; Kunze, 2020). Several proteins lacking
canonical targeting signals have been described (van der Klei and
Veenhuis, 2006). These either rely on piggy-back import
mediated by their interaction with other PTS-containing
proteins (Glover et al., 1994; McNew and Goodman, 1994;
Islinger et al., 2009; Schueren et al., 2014; Effelsberg et al.,
2015; Saryi et al., 2017; Gabay-Maskit et al., 2020) or on direct
interaction with Pex5 (Skoneczny and Lazarow, 1998; Klein et al.,
2002; Rymer et al., 2018; Kempiński et al., 2020; Rosenthal et al.,
2020; Yifrach et al., 2021).

Pex5 recognizes PTS1 motifs via several tetratricopeptide
repeats (TPRs) located in its C-terminal domain (CTD)
(Brocard et al., 1994; Gatto et al., 2000). Subsequently, the
receptor-cargo complex interacts with the peroxisomal
membrane proteins Pex13 and Pex14 (Gould et al., 1996;
Urquhart et al., 2000; Lill et al., 2020), followed by import of
cargo proteins into the peroxisomal lumen without the
requirement for ATP turnover (for review see: Miyata and
Fujiki, 2005; Kim and Hettema, 2015; Francisco et al., 2017).
The interaction with Pex14 is mediated via a conserved di-
aromatic amino acid motif located within the unstructured
N-terminal domain (NTD) of Pex5 (Saidowsky et al., 2001;
Otera et al., 2002; Carvalho et al., 2006; Su et al., 2009). The
exact mechanistic functionality of the translocation machinery is
still a matter of investigation and so far lacks structural data, but
probably has a transient character (Meinecke et al., 2010; Dias
et al., 2017; Bürgi et al., 2021). After cargo release, Pex5 proteins
are recycled from the peroxisome to the cytosol. Recycling
involves ubiquitination, unfolding, energy provided by the
AAA-ATPases Pex1 and Pex6, and deubiquitination (Miyata
and Fujiki, 2005; Platta et al., 2005; Platta et al., 2007; Gardner
et al., 2018; Pedrosa et al., 2018; El Magraoui et al., 2019).

In mammals, two isoforms of Pex5 – Pex5-small and Pex5-
large – are generated that derive from alternative splicing
(Braverman et al., 1998). The longer isoform contains an
additional Pex7 binding domain inside of the NTD. In
mammals, another TPR-containing protein with significant
homology to Pex5 was identified, which can interact with
PTS1 proteins but also with an ion channel (Amery et al.,
2001; Santoro et al., 2004, 2011). Many fungi encode two
proteins with homology to the PTS1 receptor Pex5 (Kiel
et al., 2006; Freitag et al., 2012). In Saccharomyces cerevisae,
the Pex5 paralog Pex9 is induced in cells grown in oleic acid-
containing medium and controls peroxisomal import of the
glyoxylate cycle enzyme malate synthase and additional cargo
(Effelsberg et al., 2016; Yifrach et al., 2016; Yifrach et al., 2022).
Thus, distinct pathways to target PTS1 proteins to peroxisomes
are found in diverse eukaryotes and may be crucial for the
regulation of peroxisomal protein import and peroxisome
function.

In the phytopathogenic fungus U. maydis, which causes smut
disease on corn (Lanver et al., 2017), we have identified two Pex5-
paralogs – termed Pex5a and Pex5b (Freitag et al., 2012). Pex5b is
the longer paralog and contains a putative binding domain for the
PTS2 receptor Pex7 (Figure 1A). Here, we show that the NTDs
and the C-terminal TPR-domains of Pex5a and Pex5b each can
recognize and import specific cargo. Additionally, we found that
the NTD of Pex5b is essential for import of all peroxisomal matrix
proteins investigated, and thus acts as a critical component in a
dynamic network of receptors that target soluble proteins into
peroxisomes.

RESULTS

Functional Analysis of Pex5a and Pex5b
From U. maydis
In a previous study we have described two Pex5-like proteins,
Pex5a (Um02528) and Pex5b (Um10172) from U. maydis
required for optimal growth of the fungus in different
nutrient conditions and for pathogenic development
(Figure 1A; Freitag et al., 2012). To discriminate the specific
contributions of both proteins for growth on different carbon
sources (Freitag et al., 2012; Camões et al., 2015), we tested
pex5a and pex5b single and double deletion mutants on media
containing either glucose or oleic acid as sole carbon source
(Figure 1B). We found that Δpex5a cells did not exhibit a severe
growth defect on glucose plates but on oleic acid-containing
medium (Figure 1B). Growth of mutants lacking pex5b or both
genes was reduced on glucose-containing medium indicated by
smaller colonies on solid medium and lower growth rates in
liquid medium (Figure 1B and Supplementary Figure S1). On
plates containing oleic acid as sole carbon source proliferation of
these mutants was almost abolished (Figure 1B). This indicates
that the presence of both Pex5 proteins is required for
peroxisome function in U. maydis.

Next, we followed localization of the peroxisomal reporter
protein mCherry-SKL in Δpex5a and Δpex5b cells (Figure 1C).
Peroxisomal localization of mCherry-SKL was observed in
Δpex5a mutants but not in Δpex5b mutants suggesting that
Pex5b is necessary for peroxisomal import of PTS1 proteins in
U. maydis. To test whether impaired binding of PTS1 cargo was
responsible for the phenotype of Δpex5b cells we deleted the TPR
domains of Pex5b. Although the partial deletion of pex5b affected
growth on oleic acid-containing medium (Figure 1B),
pex5bΔTPR mutants still were able to import mCherry-SKL
into peroxisomes (Figure 1C). Pex5b can therefore import
PTS1 proteins into peroxisomes in the absence of Pex5a, while
Pex5a-mediated protein import depends on the Pex5b NTD.

To address whether the observed growth phenotype of Δpex5a
cells (Figure 1B) results from different specificities of the Pex5a
and Pex5b receptors for distinct subsets of peroxisomal matrix
proteins or is caused by the reduced overall amount of Pex5
receptors, we overexpressed Pex5 derivatives. Overexpression of
Pex5b rescued the growth phenotype of Δpex5b cells but did not
restore the growth phenotype of Δpex5a cells (Supplementary
Figures S2A,B). This indicates that it is not the reduced dosage of
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TPR proteins but rather the specificity of the Pex5a receptor,
which explains the phenotype of Δpex5a mutants.

We addressed this hypothesis by construction of strains
expressing Pex5a and Pex5b chimeric variants
(Supplementary Figure S3). A mutant expressing Pex5
proteins containing only the TPR domain of Pex5a (pex5b:
TPRpex5a) exhibited a much stronger growth defect on oleic
acid-containing medium compared to a mutant expressing only
the TPR domain of Pex5b (pex5a:TPRpex5b), which only showed
a slightly reduced colony size (Figure 1B). The TPR domain of

Pex5b, therefore, recognizes specific PTS1 proteins required for
peroxisome function in these conditions. This is further
supported by the finding that, although growth was abolished
on oleic acid-containing medium (Figure 1B), mCherry-SKL is
localized to peroxisomes in Δpex5a pex5b:TPRpex5a cells
indicating that this chimeric protein is not generally affected
in peroxisomal import of PTS1 proteins (Figure 1C).

In addition, our experiments reveal that the absence of the
NTD of Pex5a is primarily responsible for the growth defect of the
Δpex5a strain on oleic acid-containing medium (Figure 1B,

FIGURE 1 | Contribution of the N- and C-terminal domains of two Pex5 proteins to peroxisome function. (A) Scheme illustrating the domain organization of Pex5a
and Pex5b from U. maydis. C and K refer to a cysteine and a lysine residue possibly involved in ubiquitination. Purple rectangles denote the position of W-X3-F/Y motifs
required for docking complex interaction. A putative Pex7 binding domain (P7BD) of Pex5b is shown in yellow. The position of the TPR domains is highlighted with
rectangles. Gray dashed lines indicate the position of domain swaps to generate chimeras (see Supplementary Figure S3). (B) Serial tenfold dilutions of indicated
strains were spotted on minimal media containing either glucose or oleic acid as sole carbon source. Plates were photographed after 2 days of incubation at 23°C. The
assays reveal that both the NTD and the CTD of Pex5a and Pex5b contribute to peroxisome function to a different extent. It is yet unclear why growth of mutants only
expressing the NTD of Pex5b is heavily affected on glucose media. (C) Fluorescence microscopic images of indicated strains expressing the peroxisomal marker protein
mCherry-SKL. Scale bar represents 5 µm. Notably, the Δpex5a pex5b:TPRpex5a mutant shows peroxisomal localization of mCherry-SKL but is heavily affected in the
growth assays (Figure 1B). (D)Serial tenfold dilutions of wild type cells, Δpex5amutants and Δpex5amutants overexpressing the NTD of Pex5a were spotted onminimal
media containing either glucose or oleic acid as sole carbon source. Plates were photographed after 3 days of incubation at 23°C. Accordingly, Pex5aΔTPR is a
functional targeting factor.
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compare mutant Δpex5a with pex5a:TPRpex5b). Indeed,
overexpression of Pex5aΔTPR was able to rescue the
phenotype of a Δpex5a strain (Figure 1D). Critical

peroxisomal matrix proteins are likely to exist, which
specifically require the NTD for import. Moreover, the data
suggest that Pex5a can act as a targeting factor even in the
absence of its TPR domains.

Identification of Pex5a-Specific Cargo
Several proteins from other fungi are known, which are imported
into peroxisomes via binding to the NTD of Pex5 although they
lack a canonical PTS or the PTS1 has been removed (van der Klei
and Veenhuis, 2006). We reasoned that PTS1-containing
substrates that require the NTD of Pex5a may as well display
specificity for the TPR domain of this cargo receptor. To identify
such proteins, we generated a library of GFP proteins with
C-terminal dodecameric PTS1 motifs derived from U. maydis
enzymes presumably involved in peroxisomal ß-oxidation
(Table 1; Figure 2A and Supplementary Figure S4; Brocard
and Hartig, 2006; Camões et al., 2015). Constructs were expressed
in WT and in Δpex5a cells (Supplementary Figure S4). GFP
fused to PTS1 motifs of the candidate proteins Um01966,
Um10665 and Um11001 showed peroxisomal localization in
WT cells but accumulated in the cytosol in the absence of
Pex5a (Figure 2A and Supplementary Figure S4).

Um01966 is a putative acyl-CoA oxidase with high similarity
to yeast Pox1, Um10665 a putative acyl-CoA dehydrogenase

TABLE 1 | Candidates tested in the screen for Pex5a cargo.

Functional prediction U.MAYDIS GENE PTS1

Acyl-CoA oxidases um01966 PMLKAAAERSNL*
um02028 GEAVPFTERARL*
um02208 TDFDSDLPRAKL*

Acyl-CoA dehydrogenases um06400 ALLAKAGIKSHL*
um01466 QALRMMPENARL*
um00122 WTQGSGDVKSHL*
um10665 QQLKLVGPQSKF*

Enoyl-CoA hydratases um01747 VANDDVARFAKL*
um02097 LAPPSSHARSKL*
um11001 EADRARSRASNL*
um10825 IRLDGASRLGKL*

Sterol carrier proteins um11938 LDGVLKSQKAKL*
um01850 NEVKKMSRVAKL*

Dienoyl-CoA isomerase um01273 VMQKQTPKFAKL*

3,2-Trans-enoyl-CoA isomerases um01599 FENIAAGARHKL*
um03158 ESLRAAAAKSKL*

FIGURE 2 | Identification of three cargo proteins of Pex5a. Fluorescence microscopic images of indicated strains expressing the peroxisomal marker protein
mCherry-SKL (magenta) together with GFP (green) fused to C-terminal dodecamers including the PTS1 motifs of the U. maydis proteins Um01966, Um10665 and
Um11001 (A), with GFP-tagged full-length version of these proteins (B). Scale bars represent 5 µm. These experiments show that localization of Um01966, Um10665
and Um11001 to peroxisomes is affected upon deletion of pex5a.
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and Um11001 a putative enoyl-CoA hydratase (Table 1;
Camões et al., 2015). N-terminally GFP-tagged full-length
versions of all three proteins co-localized with mCherry-SKL
in the presence of Pex5a, but showed pronounced cytosolic
localization in Δpex5a cells (Figure 2B). Cytosolic
accumulation of GFP-tagged full-length proteins was even
enhanced compared to the C-terminal dodecamers fused to
GFP. Both experiments show that the three identified proteins
are cargo with a preference for Pex5a.

Combinatorial Interaction With the NTD and
the TPR Domain of Pex5a Determines
Import Specificity
To discriminate between the function of the C-terminal TPR
domain and the NTD of Pex5a for peroxisomal import of
Um01966, Um10665 and Um11001 we added canonical SKL
containing motifs at the C-terminus of each. Targeting to
peroxisomes in Δpex5a cells was drastically improved for GFP-
Um10665-SKL and GFP-Um11001-SKL. Um01966-SKL

FIGURE 3 | The NTD of Pex5a acts as targeting factor for Um01966. Fluorescence microscopic images of indicated strains expressing the peroxisomal marker
protein mCherry-SKL (magenta) together with GFP-tagged full-length proteins (green) with their usual PTS1 masked by SKL (A) or AAA (B) in Δpex5a and Δpex5b cells.
(C) Representative images of GFP-tagged full-length proteins expressed in mutants containing chimeric receptor proteins. These data reveal that both the NTD and the
CTD contribute to cargo import.
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predominantly co-localized with mCherry-SKL positive foci in
wild type cells but substantial cytosolic mistargeting was observed
in a strain deleted for pex5a (Figure 3A). This suggests a critical
function of Pex5a for import of the acyl-CoA oxidase Um01966,
which cannot be entirely bypassed by addition of a C-terminal
canonical targeting signal.

Upon masking the PTS1 by C-terminal addition of three
alanine residues (AAA), GFP-Um10665-AAA and GFP-
Um11001-AAA remained largely cytosolic, while GFP-
Um01966-AAA partially co-localized with mCherry-SKL
(Figure 3B). A GFP-tagged and AAA-masked C-terminal
dodecamer of Um01966 remained cytosolic revealing an
additional targeting signal within the full-length protein
(Supplementary Figure S5). Microscopic analysis of strains
expressing chimeric variants of Pex5a and Pex5b
demonstrated that the Pex5a TPRs are not required for
efficient targeting of GFP-Um01966 to peroxisomes
(Figure 3C). However, in the absence of the NTD of Pex5a
(Δpex5a pex5b:TPRpex5a) residual peroxisomal targeting of
GFP-Um01966 was observed (Figure 3C), while GFP-
Um01966 localized almost entirely in the cytosol upon
depletion of pex5a (Figure 2B). This is probably due to the
presence of the Pex5a TPRs, which might partially compensate
for the absence of the Pex5a NTD in Δpex5a pex5b:TPRpex5a

cells (Figure 3C). These results are in accordance with our

initial observation that the isolated PTS1 containing sequence
requires Pex5a for efficient import (Figure 2A). Targeting of
GFP-Um10665 and to a minor extent GFP-Um11001 was
reduced in the absence of each part of Pex5a (Figure 3C).
Together, these experiments suggest that it is the combination
of affinities to the NTD and the CTD of Pex5a, which facilitates
recognition and import of Pex5a specific cargo. The impact of
each of the two domains can be different depending on
individual substrates.

PTS1 Motifs With Higher Affinity to the TPR
Domains of Pex5a
To test the binding affinities of TPR domains of Pex5a and Pex5b
(Figure 2), we set up a yeast two-hybrid experiment (Chien et al.,
1991). We attached the TPR domains of either protein to the
Gal4-DNA-binding domain (BD), and GFP with C-terminal
dodecamers of different candidate proteins to the Gal4-
activation domain (AD) (Figure 4A). As a control we used a
C-terminal dodecamer, which efficiently mediates import of GFP
into peroxisomes in the absence of Pex5a (Supplementary Figure
S3; Um03158). Constructs were transformed in respective
combinations into AH109Δpex5 (Stehlik et al., 2020).
Interactions were monitored for three independent
transformants per combination by growth assays on high

FIGURE 4 | PTS1 motifs with higher affinity to Pex5a. (A) Schematic drawing of constructs used for the yeast two-hybrid assay. Constructs were expressed in a
strain derived from AH109 deleted for PEX5 (Stehlik et al., 2020). TPR domains of either Pex5a or Pex5b were fused to the GAL4 DNA-binding domain (GAL4-BD), while
C-terminal dodecamers of candidate proteins were fused to the GAL4 activation domain (GAL4-AD). (B) Fivefold and fiftyfold dilutions (OD600 = 0.2 and 0.02,
respectively) of three independent transformants co-expressing indicated constructs were spotted on -LEU -TRPmedia and -LEU -TRP -HIS media and incubated
for 3 days at 30°C. The selection medium (-LEU -TRP -HIS) contained 1.5 mM 3-Amino-1,2,4-triazole. This assay demonstrates that Um01966, Um10665 and
Um11001 are substrates of the Pex5a TPRs and show only a very weak interaction with the Pex5b TPRs.
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stringency medium (Figure 4B). The assay revealed a stronger
interaction of PTS1 motifs of Um01966, Um10665 and Um11001
with the TPR domain of Pex5a compared to the TPR domain of
Pex5b. Among the tested candidates the PTS1 motif of Um03158
had the highest affinity to the TPRs of Pex5b and may thus be
efficiently imported via both Pex5 proteins (Figure 4B).
Interaction data from the two-hybrid experiment are in
agreement with the data on import efficiency obtained by
fluorescence microscopy (Figure 2). The weak interaction of
the Um10665 PTS1 with the Pex5a TPRs may explain why
efficient import of GFP-Um10665 is only observed when a
native Pex5a protein containing the original NTD and CTD is
expressed (Figure 3C). The strong interaction of the PTS1 of
Um01966 with the Pex5a TPRs explains residual peroxisomal
import of GFP-Um01966 in Δpex5a pex5b:TPRpex5a cells
(Figure 3C). Together, the results of the two-hybrid assay
confirm that TPR domains of Pex5a and Pex5b show distinct
preferences for variations of the C-terminal targeting signal and
indicate that both cargo receptors have specific as well as shared
substrates.

PTS1 Motifs With a Preference for Pex5b
Import of the putative Pox1 ortholog Um01966 shows
similarity to Pox1 in S. cerevisiae since both can be

imported via the NTD of a Pex5 protein (Klein et al.,
2002). We wondered whether more similarities exist and
tested import specificity of the glyoxylate cycle enzyme
Mls1 – a Pex9 substrate in S. cerevisiae (Effelsberg et al.,
2016; Yifrach et al., 2016) – in cells containing Pex5
derivatives with only one type of TPRs. To this end we
fused the C-terminal dodecamers of the U. maydis malate
synthase ortholog Mls1 (Um15004) to GFP. Indeed, we
detected efficient peroxisomal import in the presence of the
TPR domain of Pex5b but pronounced cytosolic localization
when only the TPR domain of Pex5a was present (Figure 5A).
mCherry-SKL predominantly localized in peroxisomes of both
strains (Figure 5A). Mls1 from U. maydis contains the
C-terminal tripeptide ARI. Remarkably, also a stop codon
readthrough derived isoform of the glycolytic/
gluconeogenetic enzyme triosephosphate isomerase (Tpi1;
Um03299) harbors this C-terminal tripeptide (Freitag et al.,
2012) and efficient import into peroxisomes also depends on
the TPRs of Pex5b (Figure 5B). Thus, the highly similar PTS1
motifs of both enzymes are preferentially recognized by Pex5b.

Pex5b as Key Player for Matrix Protein
Import in U. maydis
Of the cytosolic receptors, only Pex5b can mediate
peroxisomal import as a single protein, while Pex5a
requires the NTD of Pex5b (Figure 1). Pex5b might act as a
co-receptor for Pex5a similar to Pex5-large for Pex7 in
mammals or Pex18 and Pex21 for Pex7 in S. cerevisiae
(Braverman et al., 1998; Otera et al., 1998; Purdue et al.,
1998; Woodward and Bartel, 2005). Alternatively, Pex5b
could be independently required for the activity of the
peroxisomal import machinery.

In U. maydis PTS2-dependent transport may also involve
Pex5b as a co-receptor, since the NTD of Pex5b contains a
putative binding site for Pex7 (Figure 1; Kiel et al., 2006). In
addition, the U. maydis genome lacks any ortholog of the yeast
co-receptors Pex18 and Pex21 (Kämper et al., 2006). To test
Pex5b for targeting of PTS2 proteins, we engineered a reporter
protein by fusing an N-terminal fragment of the PTS2 protein
Um01090 to GFP (PTS2-GFP; Figure 5A). The N-terminus of
this predicted 3-keto-acyl-CoA thiolase related to yeast Pot1
contains a sequence matching the PTS2 consensus [R/K]-[L/
V/I]-[X]5-[H/Q]-[L/A] (Lazarow, 2006; Camões et al., 2015;
Kunze, 2020). We observed co-localization of PTS2-GFP with
mCherry-SKL in peroxisomes and found that PTS2-GFP was
retained in the cytosol upon deletion of the pex7 ortholog
(um03596) (Figure 6A). To address whether Pex5b acts as co-
receptor for Pex7, we expressed PTS2-GFP in pex5a and in pex5b
deletion mutants. While peroxisomal localization was not
affected in Δpex5a cells, absence of pex5b completely abolished
peroxisomal import of PTS2-GFP (Figure 6B). Reintroduction of
the NTD of Pex5b into Δpex5b mutants partially restored
targeting of PTS2-GFP to peroxisomes suggesting that the
NTD of Pex5b acts as co-receptor for Pex7 in U. maydis
(Figure 6B).

FIGURE 5 | PTS1 motifs with a preference for Pex5b TPRs.
Fluorescence microscopic images of indicated strains expressing the
peroxisomal marker protein mCherry-SKL (magenta) together with GFP
(green) fused to C-terminal dodecamers of Mls1 (malate synthase) (A)
and Tpi1 (triosephosphate isomerase) (B). Both C-terminal dodecamers end
on identical tripeptides and show efficient peroxisomal import when the TPR
domains of Pex5b were present. Scale bars represent 5 µm.
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Pex5b-Dependent Import of a Matrix
Protein Without a Canonical PTS
Finally, we focused on peroxisomal matrix proteins without a
canonical peroxisomal targeting signal. Several proteins have
been described that neither contain a PTS1 nor a PTS2 but,
nevertheless, localize inside of peroxisomes (van der Klei and
Veenhuis, 2006). In U. maydis, the multifunctional enzyme
involved in peroxisomal fatty acid oxidation (Mfe2; Um10038)
was characterized earlier (Klose and Kronstad, 2006). Although
we could not detect any PTS motif in Mfe2, both N-terminally
and C-terminally tagged GFP fusion proteins co-localized with
mCherry-SKL suggesting that Mfe2 is imported into peroxisomes
independently of recognition by Pex7 or the Pex5 TPRs
(Figure 6C). We probed the mode of transport of Mfe2 by
localization studies in a set of U. maydis mutants and found
that peroxisomal targeting of Mfe2 requires Pex5b. The NTD of
Pex5b was sufficient for partial peroxisomal localization of GFP-
Mfe2 but import of Mfe2 was more efficient when the full-length
protein was expressed (Figures 6C,D). This shows that the NTD
of Pex5b also can act as receptor for peroxisomal matrix proteins
in U. maydis.

DISCUSSION

Our work uncovered a network of import modules for
peroxisomal matrix proteins in U. maydis (Figure 7). We have

identified five modules: Pex5b can transport substrates destined
for the peroxisomal matrix either via its NTD (as coreceptor for
Pex7 bound to PTS2-GFP, and Mfe2) or via its TPR domain
(direct recognition of PTS1-containing proteins). The TPR
domains of Pex5a and Pex5b bind to PTS1 motifs with

FIGURE 6 | The NTD of Pex5b is a crucial factor for matrix protein import inU. maydis. Fluorescence microscopic images of indicated strains expressing mCherry-
SKL (magenta) together with PTS2-GFP (green) (A,B) or with GFP-tagged Mfe2 (green) (C,D). The data show that the NTD of Pex5b is involved in peroxisomal targeting
of PTS2 proteins and more unusual cargo such as the multifunctional enzymes (Mfe2). Scale bars represent 5 µm.

FIGURE 7 |Model highlighting preferential cargo of the different domains
of Pex5a and Pex5b. Cargo proteins of different domains are shown. Black
arrows point to preferred binding domains. Gray arrows point to secondary
binding sites. Please note that the cargo affinities of the TPRs are
overlapping, while PTS2 import via Pex7 seems to be a specific function of
Pex5b. For Mls1 and Tpi1 only specificity of the C-terminal dodecamer was
determined. If an interaction between Pex5a and Pex5b can occur during
import (dashed arrow) or if other functions of Pex5b determine its critical role
for Pex5a-dependent import remains to be established.
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overlapping but not identical specificity (Figures 2–5). The NTD
of Pex5a also contributes to targeting but does not facilitate
peroxisomal import in the absence of Pex5b (Figures 1–3, 7).
Although the NTD of Pex5a is shorter in comparison to Pex5b, it
contains the evolutionary conserved di-aromatic motifs for
interaction with Pex14 (Figure 1). It is currently unclear why
Pex5a alone is not sufficient to mediate cargo import. Recently, a
role of Pex5 for insertion of membrane proteins was observed in
S. cerevisiae (Martenson et al., 2020). A similar function of the
Pex5b NTD may indirectly contribute to the critical importance
of Pex5b for matrix protein import in U. maydis e.g., by targeting
membrane proteins of the importomer.

Our genetic analyses demonstrate that two paralogs of Pex5 are
necessary for optimal growth on oleic acid medium. Interestingly,
key enzymes of the β-oxidation pathway seem to be preferentially
targeted to peroxisomes via different factors. Pex5a is responsible for
targeting of the acyl-CoA oxidase Um01966 related to S. cerevisiae
Pox1, the multifunctional enzyme Mfe2 is imported into
peroxisomes in the absence of Pex5a while the thiolase Um01090
depends on Pex7 for peroxisomal import (Figures 2, 6). Three
different import routes may ensure the correct stoichiometry of
enzymes inside of each peroxisome in particular when peroxisomes
proliferate. Of interest, the S. cerevisiae ortholog Pox1 can bind to the
NTD of Pex5 to target peroxisomes (Skoneczny and Lazarow, 1998;
Klein et al., 2002). Malate synthase belongs to the cargo recognized
by the Pex5 paralog Pex9 in S. cerevisae (Effelsberg et al., 2016;
Yifrach et al., 2016; Yifrach et al., 2022). In U. maydis Mls1 is a
preferred substrate of Pex5b. Thus, an evolutionary conservation of
targeting mechanisms for particular peroxisomal proteins may exist
indicating biological relevance of specific routes for specific enzymes.

In addition, we observed a growth defect on glucose medium for
several of the pex5 mutants. A similar phenotype was already
detected for U. maydis Δpex3 and Δpex6 cells as well as in other
fungi (Idnurm et al., 2007; Freitag et al., 2012; Camões et al., 2015).
Previously, we identified a metabolic network of carbohydrate
metabolizing enzymes that are dually targeted to peroxisomes
and the cytosol in a number of fungi (Freitag et al., 2012; Stiebler
et al., 2014; Freitag et al., 2018; Kremp et al., 2020). A function of
peroxisomes in regulating gluconeogenesis was recently described
for S. cerevisiae and a number of novel, often dually localized
peroxisomal proteins was discovered (Yifrach et al., 2021). Many
metabolic and regulatory functions of peroxisomes still await
elucidation and may contribute to reduced fitness observed for
peroxisome-deficient mutants in glucose-containing medium. It is
yet obscure, why growth of a mutant expressing only the NTD of
Pex5b was more affected than any of the other strains (Figure 1). A
possible explanation might be that import of only a subset of
proteins e.g. Mfe2 or Pot1 is more detrimental for cells than
retention of all peroxisomal matrix proteins in the cytosol.

Several peroxisomal proteins without a canonical PTS such
as Mfe2 are known to bind to the NTD of Pex5 in S. cerevisiae
(Skoneczny and Lazarow, 1998; Klein et al., 2002; Rymer et al.,
2018; Kempiński et al., 2020). Aox1, Cta1, Fox2, Pox1 and Pox4
from different yeast species (Small et al., 1988; Kragler et al.,
1993; Skoneczny and Lazarow, 1998; Gunkel et al., 2004; Rymer
et al., 2018) resemble Um01966 and can be imported into
peroxisomes if the PTS1 motifs are removed pointing to

additional targeting signals. More such proteins likely exist,
but two targeting signals may appear redundant and are
therefore hard to detect. Specificity for a Pex5 protein seems
to result from the combination of affinities towards the NTD
and the CTD – for different cargo interaction with one or the
other domain is more relevant or may even be sufficient
(Figures 2–6). A very recent study focusing on TPR domains
of the paralogs Pex5 and Pex9 from S. cerevisiae revealed that
substrates can be discriminated by amino acids in vicinity of the
C-terminal tripeptide (Yifrach et al., 2022). If this also applies to
U. maydis or if other features of the motif determine specificity
is an exciting question for future research. The C-terminal
tripeptide could be important as well, as two of the three
identified Pex5a substrates end on SNL, while two identified
cargoes of Pex5b contain the tripeptide ARI at the C-terminus
(Figures 2, 5).

Pex7-mediated import in U. maydis differs from several yeast
species since specific co- receptors for PTS2 import are not
present (Purdue et al., 1998; Schäfer et al., 2004; Kiel et al.,
2006). We could show that inU. maydis PTS2 import depends on
the NTD of Pex5b and this pathway shows more similarity to
plants and mammals (Braverman et al., 1998; Otera et al., 1998;
Woodward and Bartel, 2005; Kunze et al., 2015).

Allosteric interactions upon cargo binding are important for
turning Pex5 and Pex7 into import-competent receptors
attaching to the docking complex followed by translocation
and cargo release (Kunze et al., 2015; Bürgi et al., 2021). The
Pex5 CTD inhibits docking of the NTD in the absence of cargo;
the NTD can translocate into the peroxisomal membrane when
the CTD is deleted (Klein et al., 2002; Gouveia et al., 2003; Gunkel
et al., 2004; Dias et al., 2017). In agreement with these data we
found that overexpression of Pex5a lacking the TPRs can rescue
the growth defect of Δpex5a cells (Figure 1). Furthermore, we
detected targeting of GFP-Mfe2 and PTS2-GFP to peroxisomes
upon expression of the Pex5b NTD in the absence of the full-
length protein (Figure 5). The capability of the peroxisomal
import machinery to translocate large oligomeric cargo has
been described (Walton et al., 1995; Yang et al., 2018). It will
be interesting to establish how interactions at different sites of
Pex5 proteins influence import of bigger complexes and import
kinetics. In addition, the exact mechanistic function of both Pex5
proteins might be worth to evaluate.

Taken together, our study reveals the impact of different
domains of Pex5 paralogs on cargo recognition and on
peroxisome function in different growth conditions and
contributes to a better understanding of peroxisomal protein
import. Versatile import routes for matrix proteins seem to be
widespread and may be critical for the formation of functional
peroxisomes in many species.

METHODS

Generation of Strains and Nucleic Acid
Procedures
Constructs were generated using standard cloning procedures
(Sambrook et al., 1989) or Gibson assembly (Gibson et al., 2009).
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All plasmids were verified by sequencing. Escherichia coli strain
Top Ten (Invitrogen) was used for transformation according to a
standard protocol (Hanahan et al., 1991) and propagation of
plasmid DNA. Transformation of U. maydis cells was achieved as
described previously (Schulz et al., 1990). Deletion strains and
chimeric variants were created using an Sfi1 based cloning system
(Brachmann et al., 2004; Kämper, 2004; Supplementary Figure
S3). Genomic DNA was extracted according to an established
protocol (Hoffman and Winston, 1987). Mutant strains were
verified by Southern blot analysis (Sambrook et al., 1989).
Proteins were expressed under control of the constitutive
otef-promoter either integrated into the cbx-locus
(Broomfield and Hargreaves, 1992; Spellig et al., 1996) or
randomly integrated into the genome of U. maydis
(mCherry-SKL). Similar expression levels were confirmed by
measuring fluorescence using Synergy Mx multimode
microplate reader (BioTek). All plasmids, strains and
oligonucleotides used or generated during this study are
listed in Supplementary Table S1. Progenitor plasmids used
for this study were described (Spellig et al., 1996; Brachmann
et al., 2004; Sandrock et al., 2006; Freitag et al., 2012; Stehlik
et al., 2020). Genes can be accessed on NCBI.

Growth Conditions
U. maydis strains were grown at 28°C in liquid YEPSL (1%
yeast extract, 0.4% peptone, 0.4% sucrose) or on solid potato
dextrose broth containing 1.5% Bacto agar at 28°C. For
selection solid media were supplemented with antibiotics
(Brachmann et al., 2004). For growth assays 4 µl of serial
tenfold dilutions of logarithmically growing cells starting
with an OD600 of 1 (Figure 1B and Supplementary Figure
S2) or 0.1 (Figure 1D) were spotted on solid minimal yeast
nitrogen based media (Difco) with a pH of 5.7 supplemented
with 0.5% ammonium sulfate. The plates contained 1.5%
Bacto agar and either 2% glucose or a mixture of 0.2% oleic
acid and 0.05% Tween-40. Plates were incubated for two
(Figure 1B and Supplementary Figure S2) to 3 days
(Figure 1D) at 23°C. All assays were at least repeated three
times with similar results.

Growth Assays in Liquid Media
Cells of an OD600 of 1 were diluted to a starting OD600 of 0.1 and
inoculated into fresh yeast nitrogen based media (Difco) with a pH
of 5.7 supplementedwith 0.5% ammonium sulfate and 2% glucose in
a volume of 100 µl in flat bottom 96 well plates. Growth assays were
performed in a Synergy Mx multimode microplate reader (BioTek)
at 23°C with high shaking setting. OD600 was determined in 30min
intervals. Each strain wasmeasured in five technical replicates and in
three independent experiments. Mean values were plotted and
original data and standard deviations are accessible in
Supplementary Table S2.

Microscopy
A total of 200 µl of hot 1.5% agarose melted in water was used
to create a thin agarose cushion on a 76 × 26 mm microscope
slide (Roth). Cells from logarithmic growth phase incubated
in yeast nitrogen based media (Difco) with a pH of 5.7

supplemented with 0.5% ammonium sulfate and 2%
glucose were washed with water, concentrated fivefold, and
3 µl were spotted onto the middle of the agarose pad and
covered with an 18 × 18 mm coverslip (Roth). Microscopy was
performed on an Axiovert 200 M inverse microscope (Zeiss)
equipped with a 1394 ORCA-ERA-CCD camera (Hamamatsu
Photonics), filter sets for enhanced GFP (EGFP) and
rhodamine (Chroma Technology), and a Zeiss 63×Plan
Apochromat oil lens (NA 1.4). Single-plane bright field or
phase contrast images and z-stacks of the cells (0.5 µm
z-spacing) in the appropriate fluorescence channels were
recorded, using the image acquisition software Volocity 5.3
(Perkin-Elmer). Images were processed and evaluated in
ImageJ (Schneider et al., 2012). For protein localization
analysis, single plain images or z-projections of
deconvolved image stacks were used. Deconvolution was
performed on the z-stacks by the ImageJ plugin
DeconvolutionLab with 25 iterations of the Richardson –
Lucy algorithm (Sage et al., 2017).

Yeast Two-Hybrid Assay
Sequences encoding the TPR domains of Pex5a and Pex5b
were inserted into pGBKT7 (Matchmaker GAL4 Two-Hybrid
System 3; Clontech) between the EcoRI and BamHI restriction
sites via Gibson assembly. The ORFs for GFP or GFP modified
with C-terminal dodecamers of Um01966, Um10665,
Um11001, and Um03158 including PTS1 motifs were
cloned into pGADT7 (Matchmaker GAL4 Two-Hybrid
System 3; Clontech) between the EcoRI and BamHI
restriction sites. Either pGBKT7-Pex5aTPR or pGBKT7-
Pex5bTPR were co-transformed with one of the pGADT7
plasmids into YTS398, a derivative AH109 of deleted for
pex5 (Stehlik et al., 2020). Three independent transformants
of each of the 10 combinations were grown in liquid synthetic
defined (SD) medium lacking leucine and tryptophan to an
OD600 of approx. 1. Cells were washed once with sterile water
and 4 µl of fivefold or fiftyfold dilutions (OD600 = 0.2 or 0.02)
were spotted on solid SD medium lacking leucine and
tryptophan as growth control, and on SD medium lacking
leucine, tryptophan and histidine, and containing 1.5 mM 3-
amino-1,2,4-triazole to test for protein – protein interaction.
Plates were incubated for 3 days at 30°C.
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