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1
Introduction

In recent years, the exploration of transition metal dichalcogenides (TMDs) has
emerged as a focal point in condensed matter physics, owing to their unique prop-
erties that make them intriguing candidates for diverse applications [1, 2]. TMDs,
belonging to the family of two-dimensional nanomaterials, have demonstrated their
significance in elucidating fundamental aspects of solid-state physics [3]. Excitons, as
fundamental entities in condensed matter physics, play a pivotal role in determining
the optical, dynamic, and transport properties of TMDs [4–7].

Figure 1.1: A schematic representation of two twisted monolayers, with the resulting moiré po-
tential illustrated as the surface below. Excitons have the ability to move within this potential,
transitioning between the minima depending on the twist angle.

The study of TMD monolayers, particularly their exciton propagation behavior un-
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der various conditions such as strain and dielectric engineering, has opened avenues
for tunable exciton transport, unveiling phenomena ranging from spatial rings (ha-
los) to non-classical diffusion and even effective negative diffusion [8–20].
However, the true marvel lies in the exploration of van der Waals heterostructures
formed by vertically stacking TMD monolayers. These heterostructures present a
rich exciton energy landscape (see Fig 1.1), tunable through the twist angle [21–27].
The resulting moiré superlattice exhibits twist-angle-dependent energy landscapes,
leading to the formation of trapped exciton states [28, 29]. This moiré physics has be-
come a central focus, offering a platform to study different exciton transport regimes
and presenting novel opportunities for technological applications [5, 23, 30, 31].
As this research unfolds, the role of polarons in the context of twisted TMD het-
erostructures has gained significant attention. Polarons, arising from the efficient
coupling of excitons and lattice vibrations (phonons), have the potential to influence
exciton transport in TMDs [26, 32–34]. Understanding how polaronic effects alter
the band structure and the propagation behavior of moiré excitons, especially in
scenarios where flat bands may emerge, is a captivating and essential inquiry [35–
37]. This exploration not only deepens our understanding of fundamental solid-state
physics but also holds implications for emergent phenomena like superconductivity,
magnetism, and topological phases [38–40]. Moreover, the influence of polarons on
charge transport, optical absorption spectra, and exciton dynamics could enable new
pathways for technological applications of TMD materials [41–43].
This thesis delvs into the realms of TMD materials, exciton physics, moiré phenom-
ena, and the intricate interplay of polarons. By employing theoretical frameworks
and computational approaches, we aim to unravel the complexities of exciton trans-
port in TMD van der Waals heterostructures, with a particular emphasis on the
impact of moiré physics and the crucial role of polarons. This research is expected to
enhance our fundamental understanding of condensed matter systems and possibly
open avenues for practical applications utilizing the distinctive properties of TMD
materials.
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2
Many-Particle Hamilton Operator
The subsequent section outlines the overarching theoretical framework employed
throughout this thesis. The first part introduces and examines the many-particle
density matrix approach, while the second part centers on the approximations uti-
lized to simplify the mathematical intricacies of the problem. In essence, this frame-
work can be universally applied to model the excitation kinetics of various systems
involving interacting electrons, phonons, and photons.

2.1 Generell Introduction

In this chapter, we will introduce various interaction Hamiltonians in second quan-
tization. To establish a solid foundation, it is essential to commence by defining the
general second quantization scheme, as elucidated in [44].
We define a single-particle state denoted as |α⟩, characterized by the quantum num-
ber α. While we focus on electronic states for upcoming sections, it is important to
note that the definition aligns closely with that of bosonic states. The compound in-
dex α = (nkσ) encompasses the band index n, momentum vector k and electron spin
σ. The real space representation of this state is established through its projection

Ψα(r) = ⟨r|α⟩ .

Our objective is to determine representations of single-particle operators, as exem-
plified by the Hamiltonian

H =
∑
i

h(ri).

In our pursuit of these representations, we create these operators by aggregating
electronic single-particle contributions, such as those of the free electron Hamiltonian,
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2.2 Born-Oppenheimer Approximation

which will be examined in the following section. To establish general single-particle
operators, we label the single-particle basis for the i-th electron at position ri using
the state |αi⟩. This approach enables us to insert identity operators, specifically∑

α |αi⟩⟨αi| = 1. These identity operators ensure that within the remaining Hilbert
space, the operators |αi⟩⟨αi| function as the identity, streamlining the representation
of single-particle operators. This technique enhances the manipulation and analysis
of these operators within the context of many-body quantum systems, facilitating
more efficient calculations and investigations. The equation results in

H =
∑
i

∑
αβ

⟨αi|h(ri) |βi⟩ |αi⟩ ⟨βi| =
∑
αβ

hαβa
†
αaβ. (2.1)

Here, we’ve defined the matrix elements as

hαβ = ⟨αi|h(ri) |βi⟩ =
∫
d3ri

∫
d3r′i ⟨αi|ri⟩ ⟨ri|h(ri) |r′i⟩ ⟨r′i|βi⟩

=

∫
d3rΨ∗

α(r)h(r)Ψβ(r).

Additionally, we have introduced creation and annihilation operators a†m/am which
must adhere to the following conditions

[an, a
†
m]+ = δnm, [an, am]+ = 0.

It is worth noting that these operators inherently abide by the Pauli exclusion princi-
ple, ensuring that no two fermions can occupy the same quantum state. As a result,
this approach underscores that the most general single-particle operators, which pre-
serve particle number conservation, adopt the form of quadratic fermionic operators
where the numbers of creation and annihilation operators are in balance.

2.2 Born-Oppenheimer Approximation

In the context of a crystal, the atomic structure involves a complex interplay between
electrons and nuclei. While the mass difference implies negligible kinetic energy
for the nuclei, completely disregarding the nucleus and, consequently, the electron-
nucleus interaction would lead to the disintegration of the entire crystal. Therefore,
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2.3 Non-Interacting Electron

it is advantageous to take a closer look at this intricate interplay. For this purpose,
we decompose the complete Hamiltonian into [44]

H = H0 + Tn(P’) with
H0 = Te(p’) + Ve−e(r’) + Vn−n(R’) + Ve−n(r’,R’).

Here, Ti represents kinetic energy, and Vi−i denotes various interaction processes,
where n and e represents nuclei and electron indices, respectively. We introduce
the impulses p/P and spatial coordinates r/R for electrons and nuclei, respectively.
Leveraging the observation that the ions’ positions remain nearly stationary, we
employ a product ansatz, separating the full wave function

ψ(r,R) = ξ(R)ϕ(r,R),

into electronic ψ and nuclear ξ parts. Examining the H0 part of the Hamiltonian,
we conclude that the Schrödinger equation associated with H0 depends solely on
the electron position r, while the nuclei act as classical variables denoted by R.
Therefore, we stipulate that the electronic part is determined by [44](

Te(p’) + Ve−e(r’) + Vn−n(R) + Ve−n(r’,R)
)
ϕ(r,R) = E0(R)ϕ(r,R). (2.2)

Here, we observe that Vn−n(R) generates an effective potential originating from the
nuclei [44]. By incorporating these considerations into the complete problem, we
derive the Schrödinger equation for the nuclei part as follows(

E0(R) + Vn−n(R’)− Vn−n(R) + Tn(P’)
)
χ(R) = Eχ(R). (2.3)

Please note that we neglect transition matrix elements between different electronic
states in this context. Additionally, it is worth emphasizing that in this solution,
the eigenvalues E0(R) can be interpreted as an effective potential arising from the
nucleus surrounding electrons.

2.3 Non-Interacting Electron

In scenarios where electron interactions can be neglected, it is advantageous to ad-
dress the single-particle Schrödinger equation. This equation can be effectively solved
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2.3 Non-Interacting Electron

by considering a background potential, which, as per the Born-Oppenheimer approx-
imation (c.f. 2.2), arises from the electric potential generated by the stationary ions

HΨ(r) =
(
− h̄2

2m
∆2 + V (r)

)
Ψ(r).

In this context, the symbol m denotes the mass of the electrons, and V (r) signifies
the potential that exerts an influence on the electrons. Notably, we assume that this
potential exhibits periodicity, denoted as V (r+R) = V (r), for all lattice vectors R.
This periodicity aligns with the characteristics of a Bravais lattice, which represents
a regular arrangement of points in a crystal lattice structure.
In the realm of periodically driven ordinary differential equations, Floquet’s theo-
rem holds true. Analogously, for periodic potentials, there exists a theorem known
as the Bloch theorem. The Bloch theorem states that in a periodic potential, the
wavefunctions of electrons can be expressed as plane waves modulated by periodic
functions, and it plays a fundamental role in understanding electronic states in crys-
talline materials

Ψk(r) = eik·ruk(r), uk(r + R) = uk(r). (2.4)

Here, k corresponds to the wave vector. In the case of eigenfunctions of H, shifting
them by a lattice vector simply adds a phase. Consequently, the probability density
of locating the electron at position r exhibits complete periodicity across the lattice,
as the phase vanishes in its modulus

|Ψk(r + R)|2 = |Ψk(r)|2.

Utilizing the Bloch theorem in the Schrödinger equation leads to

Heik·ruk(r) =
(
− h̄2

2m
∆2 + V (r)

)
eik·ruk(r), (2.5)

where we find ultimately an equation for only the periodic function unk(r)(
h̄2

2m
(−i∆+ k)2 + V (r)

)
uk(r) = Ekuk(r).
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2.3 Non-Interacting Electron

To ensure the required periodicity of the function unk(r), our analysis is confined
to an arbitrary elementary cell. Within this finite volume, the hermiticity of the
eigenvalue problem results in an infinite series of discrete eigenvalues, Ek, for each k
value. These eigenvalues exhibit discrete variations in the quantum number, n, and
continuous changes concerning k. Notably, it is possible to choose Ek in a manner
that aligns with the periodicity of the reciprocal lattice. These specific eigenvalues
are commonly known as the electronic band structure of the solid. In summary,
this approach allows us to classify the solutions and corresponding energy levels for
individual (non-interacting) electrons within a periodic potential using two quantum
numbers, n and k.
Up to this point, we have neglected the spin component of the eigenfunction. How-
ever, in the case of electrons, the eigenfunction can be separated into a spin (σ) part
and a spatial contribution. When applying these concepts to the second quantization
scheme, we arrive at the following result [45]

H =
∑

k,k′,σ,σ′

⟨kσ|
(
− h̄2

2m
∆2 + V (r)

)
|k′σ′⟩ a†kσak′σ′ .

Here, |k′σ′⟩ = Ψk(r) represents the Bloch state in the Fock space representation. As
the Bloch states form a complete set of orthonormal eigenvectors, we can derive the
following expression from Eq.(2.5)

⟨kσ|
(
− h̄2

2m
∆2 + V (r)

)
|k′σ′⟩ = Ek′δk,k′δσ,σ′ .

Hence, we arrive at the following expression for the electronic Hamiltonian

Hel =
∑
kσ

Eka
†
kσakσ. (2.6)

It is worth noting that in a crystal, the valley index can play a crucial role in
describing electronic behavior. Additionally, in atomically thin bilayers, the layer in-
dex becomes significant for understanding the material’s properties. Interestingly, all
these additional degrees of freedom can be conveniently incorporated into the com-
pound index m. This simplification allows us to obtain consistent and comprehensive
results while considering various factors.
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2.4 Coulomb Interaction

2.4 Coulomb Interaction

Expanding upon the preceding section, we will now investigate the implications of
electron-electron interactions. The total Hamiltonian is described as follows

H =
∑
i

(
− h̄2

2m
∇2

i + V (ri)
)
+
∑
i<j

V(ri − rj). (2.7)

In this context, we sum over all electrons denoted by the index i, and the term V(ri−
rj) signifies the electronic interaction potential between electrons at positions ri and
rj. The initial component of the Hamiltonian represents the individual contribution
of single particles, which we discussed in the preceding section. However, the second
part involves the expected interaction between two electrons. Microscopically, this
interaction is primarily governed by Coulomb repulsion, thus referred to as Coulomb
elements. In reality, various factors contribute to shaping this interaction, forming
an effective electron-electron interaction. One example of such contributions is the
strong binding of innermost electrons within an ion. It is indeed justifiable to treat
the interaction between a conduction band electron and such an inner shell electron
effectively as an interaction between the conduction band electron and the screened
ion potential.We will delve further into the subject of screening in Section 2.4.1.
For now, we will once again employ the second quantization scheme. However, in this
instance, we need to make slight adjustments to our procedure to accommodate the
additional particle. Consequently, we commence with a general two-particle operator
that can be disassembled into components that exclusively affect pairs of particles

HCoul =
1

2

∑
i ̸=j

υ(ri, rj).

One possible operator is the Coulomb component as introduced in Eq.(2.7). By
reintroducing identity operators, we can derive the following

HCoul =
1

2

∑
i ̸=j

∑
αβγδ

〈
αi
∣∣ 〈βj

∣∣ υ(ri, rj) ∣∣γj〉 ∣∣δi〉 ∣∣αi
〉 ∣∣βj

〉 〈
γj
∣∣ 〈δi∣∣ .

It is essential to highlight that expressions like ⟨αi|βj⟩ should not undergo further
simplification due to the inequality i ̸= j, as these operators operate in separate
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2.4 Coulomb Interaction

Hilbert spaces. Nevertheless, the matrix element can be expressed as follows

υαβγδ =
〈
αi
∣∣ 〈βj

∣∣ υ(ri, rj) ∣∣γj〉 ∣∣δi〉 = ∫ d3ri

∫
d3rjψ

∗
α(ri)ψδ(ri)ψ∗

β(rj)ψγ(rj)υ(ri, rj)

=

∫
d3r

∫
d3r′ψ∗

α(r)ψδ(r)ψ∗
β(r

′)ψγ(r′)υ(r, r′).

Due to the indistinguishability of electrons, we note that the matrix elements are
independent of i and j. This independence enables us to derive quadratic operators
that conserve the particle number

HCoul =
∑
αβγδ

υαβγδa
†
αa

†
βaγaδ. (2.8)

Please note that, for the sake of simplicity, in this section, we have employed
general compound indices. However, these indices naturally encompass all required
quantum numbers, including spin and momentum, for example.

2.4.1 2D Dielectric Screening

In this chapter, we introduce a comprehensive theoretical framework applied con-
sistently throughout this thesis. It consists of two major segments. The first part
centers on the many-particle density matrix approach and its discussion, while the
second part focuses on the approximations employed to reduce mathematical com-
plexity. Importantly, this framework is versatile, as it can be applied to model the
excitation kinetics of diverse systems composed of interacting electrons, phonons,
and photons.
The Coulomb interaction matrix element in Eq.(2.8) can be decomposed into two
primary components via a Fourier transformation of the interaction potential

υαβγδ =
∑
q

υqJαβ(q)Jγδ(−q).

Here, the form factor Jαβ(q) characterizes the scattering cross-section for a transition
from state α to state β under a momentum transfer q. This work primarily considers
band-conserving Coulomb processes, requiring the consideration of form factors with
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2.4 Coulomb Interaction

nα = nβ. Additionally, we examine the influence of the non-trivial dielectric envi-
ronment, considering a quasi-two-dimensional layer embedded in a three-dimensional
world. The Coulomb potential significantly decays for large momenta q. As such,
we focus on cases where q is much smaller than G and neglect Coulomb-induced
intervalley scattering. The remaining form factor

Jαβ(q) = ⟨kα| eiq·r |kβ⟩ (2.9)

can be evaluated using the Bloch representation Eq.(2.4) and as shown in Ref.[44]
close to symmetry points become

Jαβ(q) ≈ δq,kα−kβ
.

One of the fundamental distinctions between monolayers and conventional quasi-2D
systems is the confinement of electrons to a 2D plane and the subsequent modification
of dielectric screening [10, 46].

Figure 2.1: Schematic picture of the real-space representation of electrons and holes bound into
excitons differs between the three-dimensional bulk (a) and the quasi-two-dimensional monolayer
(b)[47]. This contrast is emphasized by differences in the dielectric environment, represented by
distinct dielectric constants ϵ0 within the bulk and ϵ1 for the surrounding material.

In a bulk system (Fig. 2.1(a)), field lines between attracting charges penetrate the
surrounding material, influenced by induced polarization. In contrast, for a 2D
system (Fig. 2.1(b)), most field lines penetrate the space surrounding the monolayer,
becoming less weakened, especially in a low dielectric environment. Moreover, the
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2.4 Coulomb Interaction

effective Coulomb potential’s distance behavior becomes a combination of 2D and
3D components. The potential is obtained through solving the Poisson equation

∇ ·
(
ϵ(z) · ∇V (x, y, z − z′)

)
=
e2

ϵ0
δ(x, y, z − z′).

In the subsequent analysis, we make the assumption of point charges localized at the
center (z’ = 0) of a homogeneous dielectric slab with thickness d [48, 49]. Further-
more, we introduce the concept of permittivity, denoted as ϵ(z). In this modeling, we
consider the slab as having distinct in-plane (ϵ||) and out-of-plane (ϵ⊥) permittivity.
The dielectric function of the slab is described using a step-function dependence on
z.

ϵ =

{
ϵiL for |z| ≤ d/2

ϵiBG for |z| < d/2

Where ϵiL denotes both in- and out-of-plane permittivity of the layer material, whereas
ϵiBG describes the background material. Utilizing this and ensuring that all boundary
conditions for the continuity of the potential and the discontinuity of the gradient
are fulfilled give us the following result

Vq =
e2

2ϵ0ϵ̃(q)Aq
. (2.10)

We employ the following definitions

ϵ̃(q) = κL tanh(1/2(αLqd− ln κ̃))

κ̃ =
κL − κBG

κL + κBG

κi =

√
ϵ
||
i ϵ

⊥
i αL =

√
ϵ
||
L/ϵ

⊥
L .

For extremely small values of αLqd, the potential can be approximated using the
Keldysh potential [48, 49]. The distance dependence of the effective potential un-
dergoes a shift in behavior with varying wave vectors. It displays a 2D character for
small wave vectors (associated with large distances) and transitions to a 3D behav-
ior for larger wave vectors (corresponding to smaller distances). Please note that,
throughout this work, dielectric constants for TMD monolayers are derived from
DFT calculations, as reported in [50].
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2.5 Electron-Phonon Interaction

2.5 Electron-Phonon Interaction

In the endeavor to quantitatively describe lattice vibrations, we commence by con-
ducting an in-depth examination of N mass points, which are representative of
atomic nuclei or ions. These intricate dynamics, as prescribed by the rigorous Born-
Oppenheimer approximation, are inherently shaped by an effective potential. This
potential, in turn, emerges as a consequence of the complex interplay involving the
surrounding electrons. When we consider slight deviations from the equilibrium, we
can employ a harmonic approximation, which involves truncating the expansion after
the quadratic terms. This approximation is valid because, at equilibrium positions,
the first-order terms vanish due to the minimization of potential energy. To simplify
our description further, we introduce new canonical coordinates Qs and momenta
Ps. By applying an orthogonal transformation to these new variables, we express
the Hamiltonian operator in the harmonic approximation, ultimately leading to a
diagonal Hamiltonian [44]

H =

f∑
i=s

(
1

2
P 2
s +

1

2
ω2
iQ

2
s

)
.

Each individual normal mode decouples into f independent, linear harmonic os-
cillators. The transformed generalized coordinates Qi and momenta Pi also form
canonically conjugate variables, with their commutator relation being

[Qs, Ps′ ] = δss′ .

Thus, we can immediately introduce creation and annihilation operators

bs =

√
ωj

2h̄
Qs +

i√
2h̄ωj

Ps,

b†s =

√
ωj

2h̄
Qs −

i√
2h̄ωj

Ps,

with [bs, b
†
s′ ] = δss′ . In a Bravais lattice, instead of the summation index s, we have

the wave vector q and the branch index j, which includes both acoustic and optical
modes. The Hamiltonian operator in the occupation number representation is
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2.5 Electron-Phonon Interaction

Hph =
∑
j

∑
q

h̄ωj(q)
(
b†qjbqj +

1

2

)
. (2.11)

Thus far, our comprehension of solids has revolved around the subtleties of elec-
trons and nuclei, encompassing the intricate task of accounting for electron-electron
interactions and electron-nucleus interactions. As elucidated in the discourse on the
Born-Oppenheimer approximation (c.f. Sec.2.2), we obtained valuable insights from
the substantial disparity in mass between nuclei and electrons. This contrast allowed
us to adopt a somewhat independent treatment of electrons and nuclei. Initially,
we tackled the electronic Schrödinger equation, incorporating the classical positions
of the nuclei as variables. Taking an alternative perspective, as expounded in the
previous paragraph, we delved into the notion of an effective electronic potential, ac-
companied by predefined equilibrium positions for the nuclei situated at the lattice
nodes. This approach, when expanded, engendered a harmonic potential governing
the behavior of the nuclei. This harmonic potential, in turn, lent itself to quanti-
zation through the utilization of bosonic annihilation and creation operators. This
pivotal development led us to the concept of phonons, which play a fundamental role
in understanding the vibrational dynamics of solids. What remains to be incorpo-
rated into this framework is the consideration of deviations in the positions of the
nuclei from their designated lattice sites. However, this time, these deviations need
to be integrated into the equations governing the behavior of the electrons.
The position of the nth nucleus is expressed as

Rn = R0
n + un.

The displacement of the nth ion from its equilibrium position is denoted as un.
These displacements are relatively small, permitting us to perform an expansion
of the potential around the equilibrium positions of the nuclei. However, a crucial
distinction arises: In the case of the nuclei, our expansion was centered around their
own equilibrium positions, leading to the first-order term vanishing. In contrast, for
electrons, their equilibrium position does not align with the equilibrium position of
the potential they experience. Consequently, the first-order term does not vanish,
and it assumes a critical role in mediating the electron-phonon interaction. In detail
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2.5 Electron-Phonon Interaction

this means for the background potential

V (ri) =
N∑

n=1

v(ri − R0
n)−

N∑
n=1

(
∆v(ri − R0

n)
)
· un +O(u2

n).

The first term is already encompassed within the electronic eigenenergies. In con-
trast, the second part signifies the electron-phonon Hamiltonian in the context of
first quantization. We are now equipped to calculate the electron-phonon interaction
within the framework of second quantization. The resulting Hamiltonian is as follows

Hel−ph = −
N∑

n=1

∑
kk′σ

⟨k′|Vel−ph(r) |k⟩ a†k′σ
akσ.

Here, the operators a†m and am correspond to creation and annihilation operators,
respectively. Hence, we must calculate the matrix element of the operator.

⟨k′|Vel−ph(r) |k⟩ =
N∑
l=1

∫
d3rΨk′(r)

(
∆v(ri − R0

n)
)
· unΨk(r).

We can now map the displacement of the ion to the bosonic operators [44] with

un =
1√
N

∑
qj

√
h̄

2Mωj(q)

(
bqj + b†−qj

)
ej(q)eiqR0

l .

In this expression, M represents the ion mass, and ej denotes an eigenvector or
polarization vector of branch j. When we substitute these values in the Hamiltonian
above, we obtain the following result

Hel−ph =
∑
kq

∑
jσ

Dj
q

(
bqj + b†−qj

)
a†k+qσakσ. (2.12)

The equations presented here involve electron-phonon matrix elements, denoted
as Dj

k,q. These matrix elements quantify the strength of interaction between an
electron with wave vector k and a phonon with momentum q in branch j. They
play a fundamental role in characterizing the coupling between electrons and lattice
vibrations, shedding light on the intricate interplay within condensed matter systems.
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2.5 Electron-Phonon Interaction

2.5.1 Electron-Phonon-Matrix Elements

These matrix elements depend on various factors, including the overlap of wave func-
tions between the initial and final electronic states and the potential arising from the
crystal’s specific phonon mode oscillations. As a result, their values are influenced by
various quantum numbers, including electronic band indices (which, for simplicity,
were omitted in the equations above), phonon modes, and valley indices. While it
may be feasible to establish simplified parameterizations for specific scattering sce-
narios, such as intravalley acoustic phonon scattering, accurately modeling electron-
phonon interactions across the entire Brillouin zone necessitates the incorporation of
parameters derived from rigorous ab initio calculations. To achieve this, we begin by
examining the emerging phonon energies. Similar to the electronic band structure,
the phonon dispersion is a material-specific feature that can be determined through
first principles calculations. The typical shape of the phonon dispersion in TMD
monolayers is illustrated along symmetry paths in Figure 2.2. We simplify our treat-

Figure 2.2: Diagram illustrating the typical phonon dispersion of acoustic and optical modes in
TMDs, as described in [51]. Notably, in regions around the Γ point (A), a linear (Debye) ap-
proximation is applicable, while a constant (Einstein) approximation is reasonable in other regions
(B-E).
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2.5 Electron-Phonon Interaction

ment of phonon energies by utilizing a Taylor expansion near high symmetry points.
This allows us to include material-specific parameters in the phonon energies, which
we naively introduced in the previous sections as ωα

j (q), and extend this definition
to

ωα
j (q) =

{
cαq for α = Γ & j = LA,TA
ωα
j else,

(2.13)

where we introduced a valley index α, which represents the position along the sym-
metry points. We approximate long-range acoustic phonons, specifically those in
close proximity of the Γ point (see A in Fig.2.2), with a linear dispersion described
by sound velocities cα, following the Debye approximation. On the other hand,
we consider for optical modes and short-wavelength acoustic phonons (see B-E in
Fig.2.2) constant energies ωα

j , following the Einstein approximation. In this study,
it is important to highlight that we consider both longitudinal and transverse acous-
tic modes (LA, TA), along with their respective optical modes (LO, TO), and the
out-of-plane homopolar optical mode (A1). However, it is worth noting that the dis-
cussion of coupling to other out-of-plane modes falls outside the scope of this work.
For comprehensive information regarding phonon energies and sound velocities in
TMDs, please refer to Ref. [51, 52]
This approach allows us to evaluate the electron-phonon matrix elements. These
matrix elements are derived using the deformation potential approximation, which
entails a Taylor expansion, often taken to zeroth or first order, of the complete
coupling element [51]. These parameters are invaluable for comprehending and pre-
dicting a wide array of physical properties within TMDs, especially in the context
of electron-phonon interactions, which exert a substantial influence on phenomena
such as electrical conductivity and transport. In Ref. [51], the matrix element is
expressed as follows

Dj
KiKf ,q ≈

√
h̄

2Mωj(q)
D̃j

KiKf ,q. (2.14)

The matrix element is represented in valley-local coordinates K, which means it is
expressed in the vicinity of the high symmetry points. The Taylor expansion we
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previously discussed results in the following elements

D̃j
KiKf ,q =


D̃j

Kq for Ki = Kf = K & j = LA,TA

D̃j
KiKf

else,

It is important to emphasize that despite expressing the crystal and phonon momen-
tum in these new coordinates, momentum conservation remains intact. Furthermore,
it is important to point out that the parameters in [51] do not provide information
about the phase or sign of the matrix elements. While the sign of the matrix element
is typically inconsequential in electronic considerations, its significance becomes ev-
ident when we extend our theory to the excitonic basis, as discussed in Sec. 3.2.
In this context, the exciton-phonon matrix element is profoundly influenced by its
sign, as it hinges on the disparity between coupling strengths in the valence and
conduction bands. To address this issue, we make an assumption that the coupling
strength for acoustic modes in Ref. [51] primarily arises from the deformation po-
tential mechanism [53]. Moreover, studies have demonstrated that in TMDs, the
deformation potential exhibits opposite signs in the valence and conduction bands
[54]. Consequently, the valence band matrix elements for the two acoustic branches
are assigned a negative sign due to the opposing shifts of these bands under strain. In
contrast, other modes retain their positive matrix elements, as they predominantly
couple to electrons via the Fröhlich interaction, which exhibits the same sign in both
bands. In Eq.(2.12), it should be noted that we adopted a representation using
global coordinates. This particular choice is made in alignment with the primary
focus of our work, which pertains to the investigation of transport properties within
the K-K valley. Consequently, we have intentionally excluded the valley index K to
streamline our analysis. A more comprehensive discussion regarding this matter will
be presented in Section 3.3.
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3
Exciton Picture

Excitons, bound electron-hole pairs, play a pivotal role in the optical and electronic
properties of semiconductors. Understanding their dynamics and interactions is cru-
cial for advancing various technological applications. In recent years, the exploration
of excitonic basis transformations has become a focal point, offering deeper insights
into the behavior of excitons in different semiconductor structures [3, 55, 56]. By
employing advanced theoretical frameworks and experimental techniques, these stud-
ies pave the way for novel approaches in exciton manipulation and control. In this
chapter, we will initially outline the intriguing steps involved in transitioning the en-
ergy landscape from an electronic framework to an excitonic one. Subsequently, we
will leverage these insights to present a free excitonic Hamiltonian and the exciton-
phonon Hamiltonian.

3.1 Wannier Equation

In this section, we explore a significant consequence of Coulomb interactions among
electrons in semiconductors: the formation of bound states known as excitons, con-
sisting of an electron in the conduction band and a hole in the valence band. To
facilitate a qualitative understanding, we begin with a simplified model that focuses
on the key aspects of this phenomenon. Our starting point is the general electronic
solid-state Hamiltonian operator, which can be constructed by combining the non-
interacting electron Hamiltonian with the Coulomb Hamiltonian (see Chapter 2) in
second quantization. To simplify our analysis, we make several model assumptions
[44]. Firstly, we consider only two bands, namely the valence band and the conduc-
tion band. Consequently, the non-interacting part of the Hamiltonian operator can
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3.1 Wannier Equation

be expressed as the sum of a valence and a conduction band contribution

Hel =
∑
k

(
Ev

ka
†
vkavk + Ec

ka
†
ckack

)
. (3.1)

In this analysis, we assume that the excited states we aim to determine are spin
independent, leading to the omission of the spin index. Secondly, in the context
of electron-electron interactions, we concentrate our attention exclusively on interac-
tions taking place between electrons in the conduction and valence bands. We do not
take into account interactions among conduction or valence electrons themselves, as
articulated in Eq.(2.8). In this context, we incorporate the Coulomb matrix elements
introduced in Section 2.4.1. Further simplifying our approach, we later presume the
presence of a direct gap at the Γ point (c.f. Fig 3.1 (a)). We describe the band struc-
tures near the upper valence and lower conduction band edges in terms of effective
masses, leading to specific assumptions about these band structures

Ev
k = − h̄

2k2

2mv

, Ec
k = EG +

h̄2k2

2mc

.

Where EG represent the band gap energies, while mv and mc correspond to the
respective effective masses. These assumptions provide a foundational framework
for understanding excitons in semiconductors, albeit within the boundaries of this
simplified model. While this model may not capture all intricate details, it serves as
a valuable stepping stone for grasping the fundamental principles underlying exciton
behavior. A missing electron with a negative effective mass can also be interpreted
as a hole (electron vacancy) with a positive effective mass. A positively charged hole
is generated when an electron is annihilated. Therefore, one can define creators and
annihilators for holes in the valence band as follows

h†k = avk, hk = a†vk.

The hole operators also obey the standard fermion exchange rules. Holes are, there-
fore, quasi-particles exhibiting fermionic characteristics, possessing a positive mass
mv, and carrying a positive charge. In the hole picture, the complete model Hamil-
tonian operator takes the following form [44]

H = E0 + EG +
∑
k

h̄2k2

2mv

h†khk +
∑
k

h̄2k2

2mc

a†ckack −
∑
αβγδ

vαβγδh
†
kδ
hkαa

†
ckβ
ackγ . (3.2)
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3.1 Wannier Equation

Figure 3.1: Comparison between the exciton in the free electron-hole pair basis (a) and after a basis
transformation the excitonic representation (b)

Incorporating the earlier mentioned focus on electron interaction between the con-
duction and valence bands, we observe that, by applying fermion exchange rules
straightforwardly, the originally repulsive Coulomb interaction transforms into an
attractive force in the hole picture. This attraction occurs between an electron in
the conduction band and a positive hole in the valence band. In the ground state,
all valence band states are fully occupied, while all conduction band states remain
unoccupied, resulting in a simple ground state energy, denoted as E0. Excited states
arise from the creation of electron-hole pairs, achieved through transitions from the
valence to the conduction bands, leading to a superposition of these states. The
Schrödinger equation reads

HΨ(k,k’) = EΨ(k,k’).

Utilizing the Hamiltonian in Eq.(3.2) on these excited states we are able to identify
the excitation energy for the non-interaction part

∆E = E − E0 = Ec(k)− Ev(k′) = EG +
h̄2k2

2mc

+
h̄2k’2

2mv

.

In the proximity of the minima and maxima of the conduction and valence bands, the
quadratic approximation of their dispersions enables us to distinguish between the
relative and center-of-mass motions. As a consequence, we introduce new coordinates
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3.1 Wannier Equation

such as

Q = k − k′

κ = αk + βk′.

This transforms the eigenvalue problem into relative vectors κ and center of mass
(CoM) vectors Q, where α = mc/M , β = mv/M , and M = mc +mv. As a result,
the equation becomes

∆E = EG +
h̄2κ2

2mr

+
h̄2Q2

2M
.

Where mr denotes the reduced mass, with 1/mr = 1/mc +1/mv. As the interaction
term in Eq. (3.2) is Q-independent, we can decompose the wavefunction into relative
and center-of-mass components as Ψ(κ,Q) = Φ(κ)ν(Q). Which leads us to the
separate eigenvalue problem including the Coulomb interaction

h̄2κ2

2mr

Φµ(κ)−
∑
q

vqΦ
µ(κ+ q) = Eµ

BΦ
µ(κ). (3.3)

This equation is commonly known as the Wannier equation. It is worth noting
that we have introduced the screened Coulomb potential as defined in Eq.(2.10).
This equation provides the binding energy, denoted as Eµ

B, for the excitonic state
µ, which does not depend on the center-of-mass momentum Q. Nevertheless, this
results in the emergence of a new center-of-mass energy for the full Hamiltonian

Eµ
Q =

h̄2Q2

2M
+ EG + Eµ

B. (3.4)

Hence, the Coulomb attraction between an electron in the conduction band and
a hole in the valence band results in the formation of a novel quasiparticle, known
as an exciton. These exciton-bound states (c.f. Fig. 3.1 (b)) exhibit characteristics
similar to those of a hydrogen atom [44], rendering excitons akin to hydrogen atoms in
certain aspects. Notably, the exciton as a whole can move freely, typically described
by its momentum (Q). Consequently, the lower-energy excited states do not consist of
quasi-free electrons in the conduction band and quasi-free holes in the valence band.
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3.2 Electron-Hole Pair Operator

Instead, due to the Coulomb interaction, there exist lower-energy bound exciton
states [44]. Excitons are crucial quasiparticles in solid-state physics, representing
elementary electron-hole pairs formed during electronic transitions. Their behavior
varies depending on the material while influencing optical and electronic properties.

3.2 Electron-Hole Pair Operator

The foundational step in formulating an excitonic Hamiltonian is the establishment
of electron-hole pair operators, designated as A. These operators are constructed
from electrons residing in the conduction and valence bands. In order to express
intraband transitions, such as a†ckαackβ

, in terms of interband operators A, a suitable
representation needs to be devised. We find

a†ckα
ackβ

⇒
∑
i

A†
kαi

Akβi, a†vkα
avkβ

⇒
∑
i

A†
ikα

Aikβ
. (3.5)

It is essential to note that the system’s many-particle dynamics are intricately
linked to the commutation of these operators with the Hamiltonian. Therefore, the
choice of operator representation can be adjusted while upholding the fundamental
commutation relations that govern the system. Thus, we define our pair operators
as

A†
kk′ = a†ckavk′[

Akαkβ
,A†

kγkδ

]
≈ δkαkγδkβkδ

.

In this context, we disregard the fermionic substructure of the pair operators, which
would typically lead to Pauli blocking. This simplification is justifiable because our
current focus is on the low excitation regime [57]. Consequently, we arrive at a fully
bosonic system for the commutation of electron-hole excitations.
These pair operators, representing bound electron-hole pairs, or excitons, mark a
pivotal step towards the transformation process of the electronic Hamiltonian into the
excitonic basis. In this transformation, the intraband Coulomb interaction, which has
significance at higher electron densities due to its impact on energy renormalization
and electron-electron scattering, is deliberately omitted. This omission is rooted
in the understanding that, in the low excitation regime, the intraband Coulomb

23



3.2 Electron-Hole Pair Operator

interaction’s influence on the system’s dynamics is minimal. Once the exciton basis
is defined, the Hamiltonian is reformulated in terms of excitonic operators, which
govern the creation and annihilation of excitons. The specific transformation of pair
operators is represented by the equation

A†
kk′ =

∑
µ

X†
µ,k−k′Φ

µ(αk + βk′). (3.6)

Where the Φµ(αk+ βk′) represent the excitonic eigenmodes, as previously intro-
duced in Eq.(3.3). Inserting this into the Hamiltonian

H = Hel + HCoul =
∑
k

Eka
†
kak +

∑
αβγδ

υαβγδa
†
αa

†
βaγaδ.

This transformation allows the Hamiltonian to shift from the electron-based represen-
tation to the excitonic basis. We utilize the understanding that the non-interacting
portion of the Hamiltonian can be divided into valence and conduction band contri-
butions, as previously illustrated in Eq.(3.1). When the general transformation into
pair operators is applied, the Hamiltonian becomes

H =
∑
kk′

(
(Ec

k − Ev
k′)A†

kk′ −
1

2

∑
q

VqA†
k+q,k′−q

)
Akk′ .

It is important to highlight that we have introduced the screened Coulomb potential
Vq, defined in Eq.(2.10). Employing the expansion introduced in Eq.(3.6), we arrive
at

H =
∑
Qµ

Eµ
QX

†
µQXµQ. (3.7)

Here, Eµ
Q denotes the excitonic energy introduced in Eq.(3.4). Notably, the

Coulomb interaction is now entirely encapsulated within the single-particle energy
of the exciton. In the electron-based perspective, the Hamiltonian included multi-
particle interactions, giving rise to issues related to hierarchy and Coulomb correla-
tions. However, by simplifying the pair operators and neglecting fermionic correction
terms, we have effectively transitioned to a single-particle problem while retaining
essential insights into the excitonic behavior.
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3.3 Exciton Phonon Interaction

3.3 Exciton Phonon Interaction

By emploing the same transformation procedure we are able to also transform the
exciton phonon Hamiltonian into the exciton basis. For that purpose we start form
the electron-phonon Hamiltonian we introduce in Eq.(2.12)

Hel-ph =
∑
kqλj

Dλj
q

(
bqj + b†−qj

)
a†λk+qaλk.

Where we now introduced an electronic band index λ. By leveraging the operator
relationships established in Section 3.2, we can now construct operators that take into
account the momentum transfer represented by q. This empowers us to articulate
the impact of phonon interactions on our systems using these operators, facilitating
a deeper and more thorough comprehension of the underlying phenomena

a†ck+qack =
∑
νµQ

(
Φν∗(k − αQ)Φµ(k − αQ + βq)

)
X†

µQ+qXνQ (3.8)

a†vkavk−q = −
∑
νµQ

(
Φν∗(k + βQ)Φµ(k + βQ − αq)

)
X†

µQ+qXνQ. (3.9)

Once more we focus on our observation on the conduction and valence band, which
allows us to write the electron-phonon Hamiltonian as

Hel-ph =
∑
kqj

(
Dcj

q a
†
ck+qack +Dvj

q a
†
vk+qavk

)(
bqj + b†−qj

)
.

Upon shifting the indices of the valence band and applying the operator relation
introduced earlier, we derive the exciton-phonon Hamiltonian as follows

Hx-ph =
∑
qj

∑
Qµν

Dµν
qjX

†
µQ+qXνQ

(
bqj + b†−qj

)
. (3.10)

Within this framework, we have introduced exciton-phonon interaction matrix
elements, resulting in the expression Dµν

qj = Dcj
q Jνµ(βq) − Dvj

q Jνµ(−αq). Here,
Jνµ(−αq) once again represents form factors (as discussed in Section 2.4.1). The ma-
trix elements elucidate the strength of interaction between an exciton and a phonon
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3.3 Exciton Phonon Interaction

characterized by the momentum q and its branch j. Up to this point, our Hamil-
tonians have exclusively focused on intravalley excitons. However, it is essential to
note that in solid-state systems, intervalley excitons also play a significant role as a
phonon scattering channel. When addressing the Wannier equation, as elucidated
in Section (3.3), the electron and hole momenta are consistently associated with
the minimum of the parabolic band structure (valley). It is worth noting that, in
principle, the electron’s valley can differ from that of the hole, and yet the result-
ing Wannier equation remains unaltered. This is due to the fact that the Coulomb
matrix element is invariant with respect to the separation of electron and hole in
momentum space. As long as the electron and hole possess a positive reduced mass,
they can coalesce to form a bound state, which we refer to as an "intervalley" or
"indirect" exciton.

Figure 3.2: The schematic comprises two key elements: (a) the electronic band structure, which
exhibits multiple minima and maxima in both the valence and conduction bands, and (b) the
corresponding exciton center-of-mass dispersion. This dispersion includes not only the direct (K-
K) exciton but also several intervalley excitons such as K-K’ and K-Λ. The source of this figure is
attributed to [33]

.

In Figure 3.2, you can see a graphical representation of the significant minima and
maxima of valence and conduction bands. Additionally, it illustrates the dispersion
of the center-of-mass for ground state excitons. It is worth noting that, owing to
variations in binding energies and electronic band gaps, we observe a fascinating
phenomenon: intervalley excitons such as K-Λ and K-K’ can be found at energeti-
cally lower positions than the direct K-K exciton. Thus, we are facing the necessity
to extend our theoretical framework. To this end, we include an additional val-
ley quantum number γ. This new quantum number is easily incorporated into the
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excitonic basis transformation (c.f. Eq.(3.6)). The operator relation reads

A†
γkk′γ′ =

∑
µ

X†
µ,γ,γ′,k−k′Φ

µ
γγ′(αγγ′k + βγγ′k′).

Since the electron and hole mass can differ between valley also the coeffients α and
β become valley dependent coefficients. This procedure of extending our theoretical
framework also applies for the Wannier equation. Hence, we are able to determine a
valley dependent excitonic energie

Eµγγ′

Q =
h̄2Q2

2Mγγ′
+ Eγγ′

G + Eµγγ′

B .

In the equation presented above, we observe that the inclusion of the Coulomb
interaction can lead to a reordering of the energy levels associated with direct and
indirect transitions. In the electronic context, the energy of an interband transition
can be straightforwardly determined as the band gap Eγγ′

G , which represent as we
determined in the previous section by the difference between the energy of the con-
duction band minimum and the valence band maximum. However, when taking the
excitonic binding energy Eµγγ′

B into accound we observe for the same transition a
redshift. Consequently, a momentum-indirect transition, which might be higher in
terms of electronic energies compared to the direct transition, can exhibit a lower
energy level in terms of excitonic energies. This intriguing observation underscores
the significant impact of Coulomb interactions on the energy hierarchy of different
electronic and excitonic transitions. As intervalley exciton states can potentially
reside below the optically active K-K exciton [58, 59], they play a pivotal role in
facilitating relaxation processes and significantly impact the optoelectronic charac-
teristics in TMDs.
Expanding our theoretical framework involves exploring potential modifications in
the exciton-phonon interaction. In this study, the primary mechanism for enabling
significant momentum transfers between two valleys is the electron-phonon scattering
process. To streamline our notation, we will incorporate the valley index, denoted
as γ, into the excitonic composite index: µ = (nµ, γµ, γ

′
µ), as well as into the phonon

index, which we will transform into a compound index j = (ij, γ
ph
j ). In this notation,

nµ represents the quantum number, while γµ/γ′µ pertain to the electron/hole valley,
respectively. In the phonon context, ij characterizes the well-known phonon branch,
and γph

j indicates the valley where the phonon is situated. Within this notational
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framework, the previously introduced electron-phonon Hamiltonian can be expressed
as follows

Hel-ph =
∑

λkqγγ′i

Dλi
γγ′q

(
bqiγ′−γ + b†−qiγ′−γ

)
a†λγ′k+qaλγk.

By following the identical procedure as previously outlined, we arrive at the exciton-
phonon Hamiltonian

Hx-ph =
∑
qj

∑
Qµν

Dµν
qjX

†
µQ+qXνQ

(
bqj + b†−qj

)
. (3.11)

Here, it is crucial to acknowledge that the exciton-phonon matrix elements now
incorporate valley-dependent factors. The matrix elements read

Dµν
qj = Dcj

γνγµqδγ′
νγ

′
µ
δγph

j ,γν−γµ
Jνµ(βq)

−Dvj
γ′
νγ

′
µqδγνγµδγph

j ,γ′
ν−γ′

µ
Jνµ(−αq).

In this context, we employ super indices, emphasizing a consistent treatment of inter-
and intravalley scattering. It is important to note that we have introduced delta
functions to uphold the principles of conservation. Specifically, these delta functions
serve two fundamental purposes. First, they ensure the preservation of the electron
valley if the hole scatters with a phonon, and vice versa. Second, they guarantee the
conservation of momentum, which necessitates that the phonon-valley configuration
aligns with the electronic intervalley transition.
The expansion of our theoretical framework is crucial for comprehending various
excitonic phenomena. This extension has been previously explored in works such
as [33] and was later also extended to heterostructures by [27, 60]. Notably, these
studies unveil a complex relationship between intervalley interactions, including the
emergence of hybridized states, as seen in [33, 60]. In this context, Meneghini et
al. have also scrutinized the intervalley relaxation dynamics. They observe that, in
the MoSe2-WSe2 heterostructure, following an initialization at the KWKW valley in
tungsten, excitons undergo various intermediary states as they relax to the interlayer
KWKMo valley. In the subsequent chapters of this work, we will place significant em-
phasis on heterostructures and interlayer excitons (see Chap.4).
It is noteworthy that in [27] already after 500 fs, the majority of excitons are found in
the interlayer KWKMo valley. Moreover, this state exhibits minimal hybridization (as

28



3.3 Exciton Phonon Interaction

also shown in [27, 61, 62]). These two characteristics render this state particularly
intriguing for our research. On the one hand, the relaxation processes occur on a
significantly shorter timescale than the spatio-temporal dispersion we are investigat-
ing, which are typically on a ps to ns timescale. On the other hand, the negligible
hybridization enables a clear definition of localized states. Therefore, we can summa-
rize that intervalley processes are a central element in solid-state physics. However,
within our framework they can be disregarded, since intervalley transitions have al-
ready been completed by the time spatio-temporal transport is initiated. Hence, in
the subsequent chapters, we will omit the valley index. It is important to empha-
size that these arguments hold true specifically for MoSe2-WSe2 heterostructures.
For different materials, the lowest-energy valleys and the degree of hybridization can
vary significantly.
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4
Heterostructures

We briefly touched upon heterostructures and their significant impact on the en-
ergy landscape in the preceding chapter. Until now, our analysis has predominantly
centered on monolayer TMDs and the diverse exciton states they harbor. How-
ever, a compelling avenue for expanding electronic possibilities involves stacking two
monolayer TMDs vertically to create a bilayer structure. Homobilayers, which con-
sist of two identical material layers, were once considered unremarkable byproducts
of monolayer exfoliation. Yet, recent groundbreaking research conducted by Cao
et al. has brought significant attention to the field of two-dimensional materials.
They demonstrated unconventional superconductivity in magic-angle twisted bilayer
graphene by stacking two graphene nanosheets with a relative twist of approximately
1.1◦ [63–65]. This concept of a "magic angle" was subsequently extended to graphene-
like hexagonal boron nitride (h-BN) systems, where the twisting angle was controlled
to modulate interactions within and between layers, sparking debates in the physics
community [66]. These remarkable discoveries have given rise to the field of twistron-
ics, where the manipulation of stacking arrangements in various two-dimensional
materials opens up vast possibilities for tailoring material properties. Importantly,
this approach can be used to engineer unique electronic behaviors by choosing differ-
ent monolayer components and adjusting the relative stacking angles between layers,
greatly expanding the scope of applications in many-particle physics. In particular,
TMDs have garnered attention due to their exceptional optical, electrical, mechani-
cal, and thermodynamic properties. Consequently, TMDs have found applications in
a wide range of nanodevices, including optoelectronics, batteries, sensors, solar cells,
and catalysis [67–77]. An essential distinction between bilayer structures and single
layers is the presence of excitons, which can manifest as intralayer excitons, com-
posed of electrons and holes within the same layer, or as interlayer excitons, where
the electron and hole are spatially separated across both layers. In this section, we
delve into the consequences of stacking two monolayers atop each other. We explore
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the fascinating emergence of distinct stacking types and stacking areas within a bi-
layer. Additionally, we redefine our Coulomb potential to account for the Coulomb
interaction with the second layer.

4.1 Stacking

Figure 4.1: Schematic representation of distinct high-symmetry stacking configurations [78]

Monolayer materials, often referred to as van der Waals materials, derive their
name from the characteristic of their bulk counterparts, consisting of atomic layers
that interact weakly via van der Waals forces, while atoms within the same layer
are bound together by robust covalent bonds. This distinction opens up avenues
for innovative investigations, akin to those inspired by the concept of the magic an-
gle. The control of stacking structures emerges as a promising strategy to fine-tune
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interactions between electrons and holes. The act of stacking individual monolay-
ers introduces adjustments to crystallographic alignments and interlayer interactions
(as depicted in Figure 4.1), offering a highly valuable parameter for tailoring the
electronic properties of nanomaterials. However, it is essential to recognize that
the electronic structure of monolayers undergoes significant transformations when
they are combined to form bilayers. For example, when a monolayer of tungsten
disulfide (WS2) or tungsten diselenide (WSe2) is superimposed on a monolayer of
molybdenum disulfide (MoS2), the bandgap undergoes a transition from direct to
indirect or vice versa, resulting in the creation of heterostructures that exhibit ex-
traordinary phenomena [79–82]. Furthermore, research has unveiled the influential
role of the stacking sequence of monolayers in these heterostructures [60], particu-
larly in shaping their photocatalytic activities and photovoltaic performance [76, 83].
Nevertheless, despite these structural modifications, it remains advantageous to em-
ploy the eigenstates of monolayers as the fundamental building blocks for the bilayer
Hamiltonian.
In Chapter 2, we presented a model Hamiltonian tailored for monolayers. This
simplified representation serves as a valuable tool for explaining many phenomena
within a bilayer by employing a straightforward framework that treats two indepen-
dent monolayers. Nonetheless, it is important to note that this simplification has
its boundaries. To bridge the gap, we must introduce an extension that encom-
passes interlayer interactions. This extension can be intuitively understood within
the monolayer basis by introducing a quantum number "l" to delineate between the
lower layer (l = 0) and the upper layer (l = 1) terms within the Hamiltonian. In
this context, the effective band masses maintain consistency with those of the mono-
layer. However, it is worth noting that the band gap and the precise alignment of
the valence and conduction bands in both layers are intricately dependent on the
specific materials chosen and the arrangement of the stacking. The stacking depen-
dence arises from a rotational misalignment between the monolayer sheets, giving
rise to an interference pattern in atomic positions referred to as a moiré pattern.
In Chapter 5, we will delve deeper into moiré physics. This misalignment leads to
spatially varying local stacking orders, and there are three specific locations where
the local environment displays high symmetry, characterized by threefold rotational
symmetry. These areas can be effectively represented by appropriately stacking the
atoms within the primitive bilayer cell.
Figure 4.1 visually illustrates the atomic registries for various high-symmetry stack-
ings. We have introduced a notation where R(H) signifies perfectly aligned lattices
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4.1 Stacking

with a 0◦ or 60◦ angle, as documented by Yu et al. [21]. In this alignment, the metal
atoms of one layer are initially placed on top of the metal (chalcogen) atoms of the
other layer, resulting in Rh

h (Hh
h) stacking, with ’h’ indicating a hole or void. As we

move along the high-symmetry line, further stacking configurations become appar-
ent, as indicated by the circles in Figure 4.1. In these configurations, we observe
either metal (m) or chalcogen atoms (x) positioned over holes in the second layer.
It is worth noting that in the literature, the notation in brackets is also commonly
used [78, 84]. However, we need to point out that this method is strictly valid only
at very low twist angles, as for shorter periods, the atomic arrangement rapidly de-
viates from the high symmetry points. In homobilayers featuring R-type stacking,
the electronic bands of the decoupled monolayers exhibit degeneracy. Nevertheless,
in the event of a relative spatial rotation occurring in both layers, it leads to a corre-
sponding adjustment in the orientation of the Brillouin zones within reciprocal space.
Consequently, for layers rotated by 60°, the K point of one layer aligns with the K’
point in the other layer. This rotation also causes an inversion in the spin ordering
of bands in both layers. Consequently, we observe stacking-dependent selection rules
[21, 85, 86].
In the context of a heterostructure, the differentiation between R- and H-type stack-
ing remains applicable. However, it is important to note that when combining two
dissimilar monolayers, they often possess distinct band gaps. The determination of
the band alignment, which usually entails a constant offset, is a critical aspect of
this analysis. This offset, stemming from variations in work functions (vacuum po-
tentials) between the monolayers, is typically established through DFT calculations.
These calculations shed light on the exciton landscape in the context of vertically
stacked TMDs. Please note, due to the weak van der Waals forces between atoms in
different layers compared to the strong in-plane bonds, we omit throughout this work
stacking related phonon mode changes. Consequently, we add a layer index to the
phonon quantum number, denoted as j = (ij, lph), while their energies and electron-
phonon coupling elements remain unchanged. It is important to note that in this
decoupled basis, direct phonon scattering between states in different layers is pro-
hibited. In contrast to the electron-phonon interaction, the Coulomb potential of an
electron in one layer extends into the other layer. Consequently, charges in different
layers are subject to mutual Coulomb forces and can form interlayer excitons.
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4.2 Coulomb Potential in Bilayers

The extension to bilayers introduces a significant Coulomb interaction between the
layers, necessitating a redefinition of the Coulomb potential as introduced in Sec.
2.4.1. With our focus no longer restricted to a single material layer, we must adapt
our initial definition to account for two homogeneous dielectric slabs. We make the
assumption that these materials are stacked directly on top of each other, effectively
reducing the interlayer distance to zero. This approximation holds true in practice
since the actual distance is minuscule in comparison to the thickness of the materials,
as supported by Merkl et al. (2019) [22]. As a result, we exclude this negligible
distance from our macroscopic model, as it would be impractical to incorporate.
The dielectric environment is then defined as

ϵ =


ϵiBG for z < −d1
ϵiL for − d1 < z < 0

ϵiL′ for 0 < z < d2

ϵiBG for z > d2

When we place a point charge at the midpoint of one of the layers in a bilayer system,
located at a height of z0 = ±d(1/2)/2, we can use the established definition to set up
boundary conditions for the electric field. This allows us to solve the Poisson equation
and find the Coulomb potential, similar to what was done in Section 2.4.1 (reference
[87]). As a result, we arrive at a familiar equation for the Coulomb potential in the
bilayer system

V ll′

q =
e2

2ϵ0ϵ̃ll′(q)Aq
. (4.1)

In this equation, we have introduced the layer indices, denoted as l and l′. The key
difference from the monolayer case is the presence of the layer-dependent dielectric
function, ϵ̃ll′ . This function can be divided into two essential cases: the interlayer
and intralayer cases. For the interlayer case, the dielectric function is given by

ϵinter(q) = κBGg12(q)g21(q)f(q).
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4.2 Coulomb Potential in Bilayers

Here, we have utilized the definition of κ from Section 2.4.1. To provide a more
comprehensive overview, we also introduce the function f(q) as follows

f(q) = 1 +
1

2

(( κ1
κBG

+
κBG

κ1

)
tanh(δ1q) +

( κ2
κBG

+
κBG

κ2

)
tanh(δ2q)

+
(κ1
κ2

+
κ2
κ1

)
tanh(δ1q)tanh(δ2q)

)
.

Additionally, we have the expression for gll′

gll′ =
cosh(δlq)

cosh
(

δl′q
2

)(
1 + κBG

κl
tanh

(
δlq
2

)) .
These equations highlight the increased complexity of the Coulomb potential in

a bilayer system. The dielectric function and associated factors, including f(q) and
gll′ , play a crucial role in determining the electrostatic interactions between charges
in different layers, adding depth to our understanding of the system. Similarly, for
the intra-layer case in the bilayer system, we can derive the dielectric function as
follows

ϵlintra(q) =
κBGgl′l′f(q)

cosh
(

δl′q
2

)
hll′

.

In this equation, we introduce the function hll′ to capture the intricacies of the
intra-layer interactions

hll′ = 1 +
κBG

κl
tanh(δlq) +

κBG

κl′
tanh

(δl′q
2

)
+
κl
κl′

tanh(δlq) tanh
(δl′q

2

)
.

Here, we note that δi = αidi, where α represents the dielectric constant, as defined
in Section 2.4.1. Additionally, the variable di corresponds to the thickness of the
respective layers. Essentially, the modified potential in the bilayer system introduces
significant screening effects within the layers, leading to a further reduction in the
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4.2 Coulomb Potential in Bilayers

potential between charges in different layers, due to specific geometric constraints.
The effective two-dimensional Coulomb potential, represented as V ll′

q , accommodates
this constraint through the dielectric functions ϵlinter/ϵ

l
intra. This approach simplifies

the treatment of the bilayer system as a 2D system while considering the intricacies
of the spatial arrangement of states along the z-direction. The associated error
in the binding energy, resulting from this approximation, is typically within 10%,
corresponding to just a few meV. As such, for the purpose of modeling the Coulomb
interaction, these variations can be safely disregarded, and as mentioned above the
thickness parameters (di) for monolayers can be employed.
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5
Moiré Physics

In the preceding chapter, we delved into the stacking of dissimilar monolayer materi-
als (heterobilayer), particularly TMDs, revealing a variety of intriguing phenomena
such as charge carrier dynamics and charge transport properties [4, 5, 88, 89]. These
structures pose intriguing research questions due to their tunable exciton energy land-
scape dictated by the twist angle [21–25]. In the realm of twisted heterostructures,
a moiré superlattice emerges—a superposition of the individual monolayers’ geome-
tries, strongly dependent on the twist angle [90–94]. This twist angle sensitivity leads
to diverse energy landscapes, including the intriguing realm of trapped exciton states
[28, 29]. Heterobilayer often exhibits a staggered (type II) band alignment, where
electrons and holes reside in distinct layers. Our earlier discussion touched upon the
generation of electron-hole pairs within a layer (intralayer excitons) and their tran-
sition to a more favorable charge-separated state (interlayer excitons), facilitated by
a reduced interlayer band gap.
This section introduces a theoretical model for intra- or interlayer moiré excitons.
We employ the concept of zone folding, widely employed in solid-state physics, to
derive a microscopic model for the electrostatic potential experienced by electrons
in one layer due to the presence of a second layer. This approach allows us to incor-
porate the intricate nature of moiré physics into our framework. It is crucial to note
that our focus in this section is specifically on excitons at the K point, given that
hybridization effects, already weak for homobilayers, are further suppressed by the
band offset in a heterobilayer.

5.1 Zone Folding

Within crystalline materials, scattering phenomena often lead to a wave vector k̃ ex-
tending beyond the confines of the first Brillouin zone (BZ). An illustrative instance
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5.1 Zone Folding

is electron-phonon scattering, as discussed in section 2.5, where we established that
interaction with a phonon allows an electron to acquire momentum k’=k+q, with
q representing the phonon momentum. This resultant momentum, k’, may, how-
ever, fall outside the first Brillouin zone. Given the material’s periodic nature, any
point outside the first BZ can be equivalently represented as a point inside the zone,
employing the reciprocal vector G. Such processes, known as Umklapp processes
or zone folding, exemplify the periodic wrapping of vectors to preserve the mate-
rial’s lattice periodicity. Figure 5.1 visually conveys this concept. On the right, the

Figure 5.1: Schematic representation of the zone folding approach in 1D (a) and 2D (b). Addition-
ally we introduce the concept of shells, which represent the neighboring BZ to the first BZ.

schematic illustrates the first Brillouin zone (BZ) and its adjacent zones, referred
to as shells. These shells are displaced by the corresponding reciprocal vectors G1,
G2, or linear combinations thereof. Figure 5.1(a) provides a detailed view of a 1-
dimensional Umklapp process. The momentum k’=k+q may lead to an energy state
at point A’, yet this point is effectively represented by the same energy level at point
A within the first BZ. Consequently, by introducing a reciprocal lattice vector, such
that k”=k+q+G resides within the first Brillouin zone, we can confine our analysis
to BZ and still include in complete momentum space by applying multiples of G, as
exemplified by the transition from point B” to B. This approach gives rise to multiple
subbands (see blue lines in Fig. 5.1(a)).
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5.2 Interlayer Moiré Potential

While integrating the impact of stacking-induced moiré potential on the existing exci-
tons, our initial step involves introducing the interaction to the electrons. To achieve
this, we introduce an effective single-particle Hamiltonian designed for valence and
conduction band electrons.

Ĥ = − h̄2

2m
∇2 +

∑
l

Vl(r),

where Vl represent the effective electrostatic potential created by the respective layer
(l = 0,1). Extending this into second quantization we find the following Hamiltonian

H =
∑
ll′kk′

⟨lk| Ĥ |l′k′⟩ a†lkal′k′ . (5.1)

We can separate this into three parts. First the in section 2.3 introduced non-
interacting electron Hamiltonian. For the other two parts we can find more interest-
ing interaction terms. The Hamiltonian yields

H = Hel +HT +HM. (5.2)

The Hamiltonian HT denotes the interlayer tunneling Hamiltonian, which incorpo-
rates interaction components facilitating carrier transfer from |l′k′⟩ to the adjacent
layer |lk⟩. For strongly interacting layers, such interactions can result in significant
energy shifts [57]. However, despite the potential for intriguing developments in this
context, it falls beyond the scope of this work. Our focus is solely on the latter part
of the interaction, which characterizes the potential change arising from the presence
of the potential originating from the other layer (referred to as 1-l). The Hamiltonian
is expressed as follows

HM =
∑
lkq

Vl(q,k)a
†
lk+qalk. (5.3)

Here, Vl(q,k) = ⟨lk + q|V1−l |lk⟩ represents this potential in second quantization.
Please note that, for simplicity, we omit the band index λ. In the context of type-II
heterostructures, this moiré Hamiltonian gains increasing importance, as the previ-
ously mentioned tunneling Hamiltonian diminishes in significance due to the larger
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5.2 Interlayer Moiré Potential

gap between the layer energy bands. However, even in these heterostructures, there
exists a substantial stacking-dependent energy landscape. Therefore, further explo-
ration of the additional electrostatic potential in layer l is warranted. Thus, we first
have to take a closer look at the potential

Vl(q,k) = ⟨lk + q|V1−l |lk⟩ .

If we now utilize a tight binding expansion as well as the fact that we can express
the effective lattice potential as a sum of it atomic contributions, which leads to the
equation

Vl =
∑
Rl

vl(r − Rl).

These steps lead us then to

Vl(q,k) =
1

N

∑
Rl,R′

l,R1−l

ei(−(k+q)·Rl+k·R′
l)

∫
d3rϕ∗

l (r − Rl)v1−l(r − R1−l)ϕl(r − R′
l).

This integral is only different from zero if Rl = R′
l. Furthermore, we are now able to

index shift r → r+Rl. On top of that we perform an in-plane Fourier transformation,
which changes the potential to

Vl(q,k) =
1

AUCN2

∑
Rl,R1−l

e−iq·Rl

∫
d2kdzeik·(Rl−R1−l)ṽ1−l(k, z)ρ̃l(−k, z).

Where AUC represents the area of the unit cell and ρ̃l(−k, z) represents the Fourier
transformed of the charge density ρl(r) = ϕ∗

l (r)ϕl(r). Please note, in equation above
the integral over the real space was separated into an outer plain variable z and the
remaining in plain contribution. The latter lead to

∫
d2r exp[i(k−k′) ·r] = δ(k−k′).

This leads us ultimately to

Vl(q) =
∑

Gl,G1−l

ml(G1−l)e
i(Gl+G1−l)·Dl/2δq,G1−l−Gl

. (5.4)

Here, ml(q) = 1/AUC

∫
dzṽ1−l(q, z)ρ̃l(−q, z) representes the atomic interaction en-

ergy. While, we additionally utilized the identity

1

N

∑
Ri

eiq·Ri =
∑
Gi

eiGi·R0
i δq,Gi

,

42



5.2 Interlayer Moiré Potential

which ensures momentum preservation. Furthermore, we introduced the convention
that the real space coordinate system is centered in the middle of a connection line
between nearest neighbors of different layers, i.e. R0

l = −R0
j = Di/2. Considering

the effective atomic potentials introduced earlier in our discourse, it is observed that
these potentials in the adjacent layer exhibit characteristics typical of long-ranged
potentials, owing to the van der Waals nature inherent in interlayer forces. As a
consequence, the interaction length proves to be significantly larger than the unit
cell, causing a rapid decrease in momentum space compared to G.
This allows us to confine in Eq.(5.4) the summation over reciprocal lattice vectors G
to the first shell. It is noteworthy that we choose to disregard the contributions of
constant G = 0 terms. We attribute these terms to the band alignment components
originating from the band structures of the two monolayers. This simplification is
justified by the fact that such contributions result in spatially constant band shifts.
Given that the atomic contributions of the potential remain unchanged under three-
fold symmetry, it follows that the atomic interaction energy ml also exhibits this
invariance. Consequently, we can express ml in terms of contributions from the
metal (α) and chalcogen atoms (β). The energy expression is then given by

ml = αl + e2πiσ1−l/3βl. (5.5)

Here, α and β represent two real parameters derived from ab initio calculations
[95]. Additionally, we introduce the parameter σi, which encapsulates the stacking-
dependent behavior of the resulting potential. The values of σi vary between σi = 1
for R-type stacking and σi = (−1)i for H-type stacking.
With these consideration we are now finally able to express the moiré Hamiltonian
as

HM =
∑
lkq

Vl(q)a
†
lk+qalk + h.c., (5.6)

Vl(q) = ml

2∑
i=0

eiC
i
3(G

(0)
l +G(0)

1−l)·Dl/2δq,Ci
3(G

(0)
1−l−G

(0)
l )
.
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Please note that we have partitioned the sum over the reciprocal lattice vectors,
which explicitly exhibits C6 symmetry in the first shell, into two distinct parts. The
first part involves a summation over Ci

3G
(0), while the residual portion has been

integrated into the hermitian conjugated Hamiltonian. This enables us to introduce
moiré reciprocal lattice vectors gi = Ci

3(G
(0)
1 − G(0)

0 ) , and accordingly, the lattice
vectors ai in real space. These vectors must satisfy the condition gi · aj = 2πδij.

Figure 5.2: (a) Illustrates the spatial displacement of the interlayer moiré potential within a twisted
heterostructure in real space. In this context, ai denotes the fundamental lattice vectors in the
moiré supercell. (b) Depicts the corresponding configurations of the twisted lattices. Three points
of interest (A, B, C) are highlighted in both images. Upon comparison, it becomes evident how
lattice mismatches result in the corresponding moiré potential. For instance, that Rm

h stacking
corresponds to a potential minimum [23].

The microscopic model we have defined captures the intricate stacking dependence
and correlates it with the moiré potential in a twisted bilayer. In Figure 5.2, (a)
illustrates the resultant moiré potential in real space. By comparing this with (b),
we can link the potential landscape to specific stacking configurations. Notably,
potential minima are observed in a R-type-stacked interlayer heterostructure during
Rm

h stacking. Conversely, the maxima are associated with Rx
h stacking [21, 23, 55, 96].

5.3 Moiré Exciton Transformation

In the preceding section, we established a moiré Hamiltonian that characterizes the
impact of the effective lattice potential on an electron within the given layer. Build-
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ing upon this foundation, the following section aims to broaden this Hamiltonian’s
scope by incorporating an excitonic basis. Our objective is to deduce an effective
single-particle Hamiltonian and subsequently analyze the excitonic band structure
within the context of a moiré potential. In the course of this study, we have incor-

Figure 5.3: Real space representations of the observed moiré pattern in (a) and (b), depicting
a decrease in moiré period with increasing twist angle Θi, indicating reduced distance between
potential minima. (c) Illustrates the momentum space representation, showing overlapping first
Brillouin zones and the formation of a mini-Brillouin zone (mBZ) with the corresponding moiré
reciprocal lattice vector.

porated the notion of the moiré potential on multiple occasions. Figures 5.3 (a)-(b)
provide visual representations of the observed moiré pattern. Notably, as the twist
angle Θi increases, Figure 5.3 illustrates a decrease in the moiré period—signifying a
reduction in the distance between potential minima. Extending this discussion, the
diminishing moiré period implies a more pronounced influence of the moiré potential
on the system.The nuanced dependence on the twist angle underscores the intricate
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interplay between electronic behavior and the moiré pattern, serving as the driving
force behind our explorations and considerations. To transform the newly formulated
Hamiltonian into the excitonic basis, we introduced electron-hole pair operators in
Sec.3.2 as follows A†

lk,l′k′ =
∑

ν X
ν†
ll′,k−k′ψν

ll′(αll′k
′ + βll′k), where we expanded into

excitonic eigenmodes [23]. Notably, the layer index l has now been incorporated. It
is crucial to observe that the factors αll′/βll′ encompass the respective electron and
hole masses in the conduction/valence band. For a WSe2-MoSe2 bilayer, these values
are me/m0 = 0.36(0.6) and mh/m0 = 0.29(0.5), extracted from Ref.[97]. Initially, we
proceed with the transformation of the moiré Hamiltonian from the electron basis to
the exciton basis. This process involves leveraging our findings from Eq.(5.6). As a
reminder, the Hamiltonian is expressed as follows

HM =
∑
lkqλ

Vλ
l (q)a

†
λlk+qaλlk + h.c..

By expressing the sum over the band index as separate parts for condition and valence
band, we obtain

HM =
∑
lkq

(
Vc
l (q)a

†
clk+qaclk + Vv

l (q)a
†
vlk+qavlk

)
+ h.c.,

where we depict the electronic moiré potential V v/c
l in the valence and conduction

band respectively. By shifting the index within the second part inside the bracket
(a†vlkavlk−q), we can readily identify the transformations introduced in Sec.3.2. Specif-
ically, we employ the relations given in Eq.(3.8) and Eq.(3.9). This leads us to

HM =
∑
ll′q

∑
Qµν

(
Vc
l (q)Jll′(βll′q)− Vv

l′(q)J ∗
ll′(αll′q)

)
X†

ll′Q+qXll′Q + h.c..

Here, we reintroduced the excitonic form factor Jll′(q) =
∑

k ψ
∗
ll′(k)ψll′(k + q) (see

Eq.(2.9)). We are now able to express the equation as

HM =
∑
ll′Qq

Mll′

q X
†
ll′Q+qXll′Q + h.c., (5.7)

where we have introduced the abbreviation for the moiré matrix element Mll′

q .
Furthermore, we assume that our system is in the low-density limit. Hence, we
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focus on the excitonic ground state 1s, and therefore, omit the excitonic states µ
and ν. We adopt a microscopic approach to describe the electronic moiré potentials.
Additionally, considering that the moiré potential establishes a superlattice with a
periodicity |G0| (as illustrated in the preceding sections), limiting the mixing to
discrete center-of-mass momenta, we employ a zone-folding approach to capitalize
on the properties of the new periodic lattice. This approach leads us to

HM =
∑
LQn

ζLX
†
LQ+(−1)leGn

XLQ with (5.8)

ζL =

{
mc

le
JL(βLG0)−mv

lh
JL(αLG0) for le = lh

mc
le
JL(βLG0)−mv∗

lh
JL(αLG0) for le ̸= lh

,

where the parametersmλ
l are extracted from first principle computations (see Eq.(5.5)).

The free exciton Hamiltonian we introduced in Eq. 3.7 reads in the low density regime

HF =
∑
ll′Q

εll
′

QX
†
ll′QXll′Q.

where εll
′

Q again denotes the free exciton dispersion. This enables us to define a
Hamiltonian for an exciton in a moiré potential H = HF +HM. By changing into a
zone-folded eigenbasis, with operator relation F †

LsQ = X̃L,Q+Gs , we obtain

H =
∑
LsQ

ε̃L,Q+s1G1+s2G2F
†
LsQFLsQ +

∑
Lss′Q

M̃L
ss′F

†
LsQFLs′Q. (5.9)

Here, the s and s’-index indicate the shells we include in our computations and
L = (le, lh). As we learned in Sec. 5.1 this shell index can also be interpreted as a
subband index. Additionally, we introduced a modified moiré mixing matrix element

M̃
L

ss′ = ζL

(
δ(s1, s

′
1 + (−1)le)δ(s2, s

′
2) + δ(s1, s

′
1)δ(s2, s

′
2 + (−1)le)

+ δ(s1, s
′
1 − (−1)le)δ(s2, s

′
2 − (−1)le)

)

+ ζ∗L

(
δ(s1, s

′
1 − (−1)le)δ(s2, s

′
2) + δ(s1, s

′
1)δ(s2, s

′
2 − (−1)le)

+ δ(s1, s
′
1 + (−1)le)δ(s2, s

′
2 + (−1)le)

)
.
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We change to the eigenbasis

Y †
LνQ =

∑
s

cν∗Ls(Q)F †
LsQ.

where the coefficients fulfill the eigenvalue equation

ε̃L,Q+s1G1+s2G2c
ν
Ls(Q) +

∑
s′

M̃
L

ss′C
ν
Ls′(Q) = ELµQC

ν
Ls(Q).

This new basis leads us to the final diagonal Hamiltonian

H =
∑
LµQ

ELµQY
†
LµQYLµQ. (5.10)

As we can see this Hamiltonian is diagonal for our new defined moiré excitons.
This eigenvalue problem can be solved numerically. In our computation in order to
make sure the eigenvalues are converged, we included the seven nearest neighboring
shells. As a result we obtain the band structure as depicted in Fig.5.4. This picture
shows the exemplary band structures of a interlayer exciton in a twisted MoSe2/WSe2
heterostructure encapsulated in hexagonal boron nitride (hBN) for θ = 1◦ as well as
θ = 3◦.
At θ = 1◦ twist angle, we observe the emergence of several flat exciton bands, indica-
tive of so called trapped exciton states in real space. This characteristic is particularly
evident in momentum space, attributed to the compact size of the moiré Brillouin
zone (mBZ) and the consequential extensive overlap of excitonic wavefunctions. The
significant overlap results in a pronounced influence of the moiré potential, as evi-
dent in Eq.(5.10). Consequently, the group velocity vG =

∑
j 1/h̄(∂EQ/∂Qj) at these

small twist angles experiences a significant reduction. This leads to a pronounced
slowdown in the propagation of excitons for small twist angles [23]. Further elabo-
ration in Sec. 7.5 will reveal a notably localized exciton distribution at this angle,
impeding exciton propagation. Therefore, we characterize these states as trapped
excitonic states.
Conversely, at a twist angle θ = 3◦, the bands display a parabolic dispersion, sig-
nifying greater mobility. The exciton delocalization observed at larger twist angles
[23, 30] is a direct outcome of the zero-point energy associated with quantum-confined
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Figure 5.4: Moiré exciton subbands for interlayer excitons in the twisted MoSe2/WSe2 heterostruc-
ture at (a) θ = 1◦ and (b) θ = 3◦, respectively.

states. As the confinement length scale decreases (twist angle increases), the zero-
point energy of the ground state exciton rises. At a critical confinement length, the
zero-point energy surpasses the depth of the moiré potential, resulting in exciton
delocalization and an associated increase in mobility. We can approach this obser-
vation from a more mathematical perspective. In Fig. 5.4, we present a schematic
illustration of the mBZ in momentum space. Notably, as the twist angle increases,
the mBZ also expands. Consequently, due to the reduced overlap of the excitonic
wavefunction (see Eq.(5.8)), characterized by smaller form factors, the moiré matrix
elements exhibit a decrease. This observation indicates that for larger twist angles,
there is a convergence towards the behavior observed in the free excitonic case [23].
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6
Polaron Transformation

In a previous section we explored the concept of an effective electronic potential. This
potential was postulated to have equilibrium positions for the nuclei coinciding with
the lattice nodes within a crystalline material. When we expanded this potential, it
revealed a harmonic behavior with respect to the nuclear positions. This harmonic
potential, crucial to understanding lattice vibrations, could be quantized through the
introduction of bosonic annihilation and creation operators. This insightful frame-
work laid the foundation for the concept of phonons, which are quanta of lattice
vibrations in a crystal lattice. By applying a normal mode decomposition to this
harmonic potential, we uncovered the existence of various phonon modes, notably
acoustic and optical modes. These modes are distinctive in their characteristics and
play pivotal roles in the material’s thermal and optical properties. In Eq.(2.11), we
derived the phonon Hamiltonian, a fundamental expression describing the energy
and dynamics of phonons within the crystal.

Hph =
∑
qj

h̄ωjq

(
b†qjbqj +

1

2

)
.

This Hamiltonian captures the intricate interplay between the nuclear positions and
the corresponding phonon modes, providing a powerful tool for analyzing the behav-
ior of lattice vibrations in crystalline materials. Understanding these phonon modes
and their interactions is essential for comprehending various physical phenomena,
such as heat conduction, optical properties and spatio temporal dispersion, in crys-
talline solids. Therefore, we employ the interaction Hamiltonian previously discussed
in Eq.(2.12) which yields

Hel−ph =
∑
kqj

Dj
qa

†
k+qak

(
bqj + b†−qj

)
.
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Figure 6.1: (a) Schematic on the coupling between excitons and lattice vibrations (phonons), result-
ing in the formation of polarons in a twisted TMD heterostructure. (b) Schematic illustration of the
polaron-induced spatial narrowing of the excitonic wave function in presence of a moiré potential.
This effect is temperature and twist-angle dependent and has a direct impact on the exciton band
width and its propagation behaviour.

The electron-phonon Hamiltonian plays a crucial role in understanding and predict-
ing various material properties and the fascinating interplay between electron and
phonon, after being thoroughly discussed in prior sections. This leads us to the
complete Hamiltonian

H = H0 +Hph +Hel−ph.

To better comprehend the Hamiltonian, it’s valuable to employ diagrams that repre-
sent interaction processes. These so called Feynman diagrams illustrated elementary
processes from absorption to emission of phonons and the corresponding influence
on the regarding electron. Notably, such scattering processes play a pivotal role in
understanding electrical resistance, particularly with phonon contributions prevail-
ing at elevated temperatures. Combination of these elementary processes can lead
into more complex diagrams with multiple vertices, facilitating the mediation of ef-
fective interactions. For instance, an electron might emit phonons and subsequently
reabsorb them, as depicted in Fig. 6.1. This localized lattice polarization, which is
associated with an electron, is known as a "polaron" and will be the main focus of
this chapter. It constitutes a quasi-particle composed of a real particle (the electron)
and another quasi-particle (the phonons). Alternatively, emitted phonons can be
absorbed by another electron, giving rise to an effective scattering process involving
two electrons, as shown in Fig. 6.1.

52



6.1 Lang Firsov Transformation

6.1 Lang Firsov Transformation

The polaron or Lang-Firsov transformation is a powerful method employed in quan-
tum mechanics to simplify and analyze complex Hamiltonian systems, especially
those involving the coupling of electrons to a non-interacting bosonic reservoir, such
as phonons in a crystal lattice. This transformation provides a unitary mapping
from an original Hamiltonian to an effective Hamiltonian, making it easier to study
the system’s behavior. A unitary mapping or unitary transformation is a type of
linear transformation that preserves the inner product and, consequently, the nor-
malization of quantum states. This transformation U has to satisfies the condition
UU † = U †U = I, where U † denotes the adjoint (or conjugate transpose) of U , and I
is the identity operator. The Lang-Firsov transformations represents a specific types
of unitary transformations. In the context of polaron transformation, an Hermitian
operator A is introduced, operating within a distinct Hilbert space from the bosonic
operators. The transformation operator U is defined as

U = eA(αb−α∗b†), (6.1)

where α is a complex coefficient that can be chosen conveniently. This trans-
formation proves particularly useful when dealing with electron-phonon interactions
in solid-state physics. It allows for the incorporation of the phonon degrees of free-
dom into the electronic Hamiltonian, effectively dressing the electrons with phonon
clouds. By doing so, the transformed Hamiltonian often simplifies, revealing new
insights into the system’s behavior. It is essential for understanding phenomena like
the formation of polarons, where electrons in a crystal lattice distort the surrounding
lattice due to their interaction with phonons.

6.2 Examplary Electronic Polaron Transformation

In this section we will give a short but comprehensive example for a polaron trans-
formation performed for electronic dispersion. Utilizing the complete Hamiltonian
introduced earlier, we are able to thoroughly describe and analyze the behavior and
properties of this exemplary system. Please note that for the sake of simplicity, we
omit the phonon mode index j. It’s important to emphasize that while we do not
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6.2 Examplary Electronic Polaron Transformation

explicitly write out this index, it still exists and is applicable in our calculations. We
employ the transformation to facilitate a unitary mapping of Hamiltonians.

H̃ = e−SHeS

= H + [S,H] +
1

2

[
S, [S,H]

]
+O(H3)

= H0 +Hel-ph + [S,H0] + [S,Hel-ph] +
1

2

[
S, [S,H]

]
+O(H3).

Please note, that we omit the above Baker-Campbell-Hausdorff in third order. Sub-
sequently, we define the transformation operator

S = −
∑
kq

Dq

(
1

Ek+q − Ek + h̄Ω
b†−q +

1

Ek+q − Ek − h̄Ω
bq

)
a†k+qak. (6.2)

As one can easily ascertain, the commutator relation below follows from this trans-
formation

[S,H0] = −Hex-ph. (6.3)

Thus, we obtain the new Hamiltonian

H̃ = H0 +
1

2
[S,Hel-ph]. (6.4)

Using many-particle Fock states of the unperturbed Hamiltonian, denoted as
|n⟩ =̂ |k, nq⟩ with corresponding eigenvalues En, we can derive the matrix elements
of the operator S in this eigenbasis from Equation (6.3)

⟨n|SH0 |m⟩ − ⟨n|H0S |m⟩ = ⟨n|S |m⟩ (Em − En) = −⟨n|Hel-ph |m⟩

⟨n|S |m⟩ = ⟨n|Hel-ph |m⟩
En − Em

. (6.5)

With this in mind we can use equation (6.3) and insert 1 =
∑

n |n⟩⟨n| which leads to

H̃ = H0 +
1

2

∑
ln

|l⟩⟨l|
(
SHel-ph −Hel-phS

)
|n⟩⟨n|

= H0 +
1

2

∑
lmn

(
⟨l|S |m⟩⟨m|Hel-ph |n⟩ − ⟨l|Hel-ph |m⟩⟨m|S |n⟩

)
|l⟩ ⟨n| , (6.6)
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6.2 Examplary Electronic Polaron Transformation

with Eq.(6.5) we obtain the new Hamiltonian [44, 98]

H̃ = H0 −
1

2

∑
lmn

⟨l|Hel-ph |m⟩ ⟨m|Hel-ph |n⟩

(
1

Em − En

− 1

El − Em

)
|l⟩ ⟨n| . (6.7)

In order to obtain an effective Hamiltonian, we perform a trace over the phonons
within a bath approximation. As a consequence, the initial states represented as |n⟩
and the final states represented as |l⟩ must maintain the same phonon configuration.
This constrains the processes to involve a two-step sequence where a phonon is first
absorbed and then subsequently emitted with the same momentum or vice versa (see
Fig.6.1).
Additionally, we need to account for energy conservation in these processes. As an
example, considering one of these processes, the energy change associated with the
absorption of a phonon with energy ωq and the subsequent emission of a phonon
with the same momentum

|n⟩ =̂ |k, nq⟩ ⇒ |m⟩ =̂ |k + q, nq − 1⟩ ⇒ |l⟩ =̂ |k, nq⟩ .

The energy can be expressed as follows, taking into account both the absorption of
a phonon (indicated by −ωq) and the subsequent reemission of a phonon (indicated
by +ωq)

Em − En = Ek+q − Ek − ωq El − Em = Ek − Ek+q + ωq.

This set of assumptions and considerations enables us to compute the expectation
values in Eq.(6.7) and ultimately leads us to the final form of the Hamiltonian

H̃ = H0 −
∑
k,q

|Dq|2
(

nq

∆E − ωq
+

nq + 1

∆E + ωq

)
a†kak. (6.8)

where ∆E = Ek+q−Ek. It is important to note that we intentionally neglect two-
particle processes in our calculations, which result in an effective phonon-mediated
electron-electron interaction. This interaction has the potential to lead to attractive
electron-electron interactions, ultimately giving rise to the formation of Cooper pairs,
a phenomenon extensively studied in the context of superconductivity but beyond
the scope of this work.

55



6.3 Excitonic Polaron Transformation

6.3 Excitonic Polaron Transformation

Expanding upon the theoretical framework introduced earlier, we now extend it to
the excitonic context presented in chapter 3. To achieve this, we revisit the exciton-
phonon Hamiltonian previously introduced in Eq.(3.10). Since our focus centers
on interlayer excitons in the K-valley, particularly within the lowest subband, we
simplify the Hamiltonian by omitting the subband indices ν and µ. As a result, the
Hamiltonian can be expressed in a more concise form as follows [57, 99]

Hx−ph =
∑
Q,q

DqX
†
Q+qXQ(bq + b†−q).

In this context, Dq represents the exciton-phonon matrix element, characterizing
the interaction magnitude between excitons and phonons having momentum q. This
coupling strength is determined through the transformation of the relevant electron-
phonon matrix element, as obtained from DFT calculations [51], into the excitonic
basis (as detailed in section 3.3). Following a similar procedure as in the electronic
case, this results, in the low-density limit, in the following Hamiltonian

H̃ = H −
∑
Q,q

|Dq|2
(

nq

∆E − ωq

+
nq + 1

∆E + ωq

)
X†

QXQ. (6.9)

with nq representing the phonon occupation number and ∆E = EQ+q−EQ. In our
model, we only include the coupling to optical phonons ωq = h̄Ω, since the continuous
low energy spectrum of acoustic phonons gives rise to short phonon coherence times,
which suppresses the coherent hybridization of excitons and phonons. We can identify
a polaron renormalized energy as

ẼQ = EQ −
∑
q

|Dq|2
(

nq

∆E − h̄Ω
+

nq + 1

∆E + h̄Ω

)
.
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6.3 Excitonic Polaron Transformation

Performing a Taylor expansion on the second term for small Q we obtain

ẼQ = EQ −
∑
q

|Dq|2
[

nq

E(q)− h̄Ω

{
1−

h̄2

m
Q · q

(E(q)− h̄Ω)
+

(
h̄2

m
Q · q

(E(q)− h̄Ω)

)2}

+
(nq + 1)

E(q) + h̄Ω

{
1−

h̄2

m
Q · q

(E(q) + h̄Ω)
+

(
h̄2

m
Q · q

(E(q) + h̄Ω)

)2}]
.

Upon integration over q, the contributions linear in q vanish. Consequently, we
are left with two key terms: one responsible for shifting the original exciton energy,
denoted as EPolaron (representing the polaron shift), and the other term corresponds
to a mass renormalization factor denoted as λ. In a more concise form, we can
express the new energy as

ẼQ = −EPolaron +
h̄2Q2

2m∗ , (6.10)

with m∗ = (1 + λ)m. The individual terms can be specified as follows

EPolaron =
∑
q

|Dq|2
(

nq

E(q)− h̄Ω
+

(nq + 1)

E(q) + h̄Ω

)
(6.11)

λ =
2h̄2

m

∑
q

|Dq|2q2

(
��������:0nq

(E(q)− h̄Ω)3
+

(nq + 1)

(E(q) + h̄Ω)3

)
. (6.12)

Observing the mass renormalization term, it becomes apparent that the first term
vanishes during the integration over q. This can be confirmed through a residue
analysis. With the incorporation of polaron-renormalized energies we can now con-
duct an in-depth analysis of the influence of polaronic mass enhancements on the
moiré exciton band structure. We commence by exploring the twist angle dependent
effects of polaron-induced mass enhancement on the moiré exciton band structure.
Our findings reveal a conspicuous trend of band flattening, signifying a significant
reduction in bandwidth, as illustrated in Figs. 6.2(a)-(b). Notably, we observe that
the absolute change in bandwidth diminishes by roughly 6 meV at larger twist angles
(3◦), while smaller twist angles (1◦) exhibit changes as small as 20 µeV, attributed
to their inherently flatter band structure.
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6.3 Excitonic Polaron Transformation

Figure 6.2: (a)-(b): A comparison of the lowest moiré exciton subband structure in the twisted
MoSe2/WSe2 heterostructure, considering the incorporation of polarons (highlighted in orange),
alongside the purely excitonic scenario without phonon interactions (depicted in red). The data is
normalized to their respective minima. The impact of this interaction is quantified by examining
changes in both the exciton energy (∆Eexc) and the polaron bandwidth (∆Epol).

We further scrutinize the impact of temperature on the polaron-induced bandwidth
alterations. To achieve this, we calculate the relative change in bandwidth, denoted
as ∆ = 1−∆Epol(T )/∆Epol(0), with ∆Epol(0) representing the polaronic bandwidth
at T=0K as a reference (refer to Fig. 6.3). Our observations reveal an intriguing
temperature-dependent behavior stemming from elevated phonon occupation num-
bers nq at higher temperatures. Consequently, we discern an increase in effective
excitonic mass, as elucidated by Eq.(6.10), which promotes the pronounced flatten-
ing of the band structure (also evident in Fig. 6.2(a)-(b)).
The most substantial change in bandwidth occurs at elevated temperatures and
smaller twist angles, resulting in a remarkable 50% increase at 1◦ and room temper-
ature. In contrast, at 3◦, the relative change is notably smaller, at approximately
10%. Despite the fact that polaron formation is not intrinsically dependent on the
twist angle, the interaction between polarons and the moiré potential imparts a
pronounced twist-angle dependence on bandwidth. This behavior emerges because
minor alterations in band flattening, attributed to polaron formation, engender a
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6.3 Excitonic Polaron Transformation

Figure 6.3: The figure displays the relative change in polaron bandwidth, denoted as ∆ = 1 −
∆Epol(T )/∆Epol(0), as a function of temperature for varying twist angles, with ∆Epol(T = 0) as the
reference point. Notably, at a twist angle of 1◦, a substantial polaron bandwidth change exceeding
50% is observed. The inset provides further insight, illustrating the twist-angle-dependent relative
change in polaron bandwidth, denoted as Λ = 1 − ∆Epol(0)/∆Eexc(0) , concerning the exciton
bandwidth at a fixed temperature of T=0 K.

substantial relative change in already considerably flat bands. Conversely, in cases
with larger bandwidths, even slight changes in band structure yield less pronounced
effects.
These observations underscore that smaller twist angles are considerably more in-
fluenced by polaron formation. This effect is emphasized when we examine the
relative change in band structure compared to the unperturbed exciton (Λ = 1 −
∆Epol/∆Eexc), as illustrated in the inset of Fig. 6.3. The change in bandwidth
is particularly pronounced at smaller twist angles, with relative changes exceeding
60% (at T = 0K and 1◦). As the twist angle increases, the magnitude of this effect
diminishes significantly, with differences dropping below 20%. While the polaronic
mass enhancement is generally independent of the twist angle, its impact on moiré
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6.3 Excitonic Polaron Transformation

trapping is highly contingent on the length scale of the trapping potential. The pre-
vious observations of exciton delocalization at larger twist angles [23, 30] stem from
the zero-point energy of quantum-confined states. As the confinement length scale
decreases (twist angle increases), the zero-point energy of the ground state exciton
rises. At a critical confinement length, the zero-point energy surpasses the depth of
the moiré potential, leading to exciton delocalization and an increase in bandwidth.
However, the zero-point energy of a quantum-confined state is inversely proportional
to particle mass. Consequently, the polaronic mass enhancement exerts different ef-
fects on moiré bandwidth in the trapped regime (small twist angles) compared to
the delocalized regime (large twist angles).
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7
Spatio-Temporal Exciton Dynamics

In the preceding section, we explored the intricacies of exciton energy landscapes,
highlighting its reliance at the small angle limit on hopping mechanisms within the
moiré potential. To comprehensively capture and elucidate these hopping dynamics,
we introduce a Hubbard-like model—a well-established theoretical framework com-
monly employed to analyze charge carriers’ motion within lattices. This theoretical
framework has been successfully applied to describe the dynamics of bosonic atoms
within optical lattices, as demonstrated in studies such as [100, 101]. Additionally,
it has played a crucial role in modeling quantum phase transitions, specifically those
from superfluid to Mott insulators [100, 102]. Furthermore, we aim to obtain a
deeper understanding of exciton propagation by deriving a numerical exact solution,
which allows us to extract the time-dependent excitonic wavefunction, providing a
comprehensive depiction of the spatiotemporal dynamics governing exciton motion.
Through the interplay of these two models, we navigate the complex landscape of
exciton transport, identifying and characterizing distinct transport regimes. Our
analysis sheds light on the nuanced behaviors exhibited during exciton propagation
within the moiré potential, unraveling a spectrum of transport phenomena. In the
subsequent sections, we delve into a detailed discussion of these different transport
regimes, offering insights into the underlying mechanisms and their implications for
practical applications.

7.1 Tight Binding Method (Wannier states)

In the realm of solid-state physics, various approaches are employed to model binding
mechanisms. One such approach is the quasi-free electron model, where we assume
a weak effective periodic potential generated by atoms. This allows for a qualitative
understanding of the energy landscape within solids. We will utilize this method in
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7.2 Hubbard-like Model

Sec. 2.3. However, this assumption breaks down in the case of localized electrons,
where the interaction with atoms becomes strong, binding the electron closely to the
atom itself. This scenario is aptly described by the tight-binding model.
In the initial step, we consider an isolated atom at position R, leading to the atomic
problem [44] ( p2

2m
+ V (r − R)

)
ϕ(r − R) = Eϕ(r − R).

Here, V (r − R) represents the atomic potential felt by an electron at position R.
Bringing multiple atoms closer together results in the crystal Hamiltonian. While,
in the free electron case, we could express atomic wave functions in a Bloch basis,
the constructed Bloch states, denoted as ψk(r), in the tight-binding model do not
form an orthonormal system [44]. Consequently, an additional basis transformation
is required. The orthonormal basis in the tight-binding model is represented by the
Wannier basis, which can be constructed from the aforementioned Bloch states as
follows

W (r − R) =
1√
N

∑
k

e−ik·Rψk(r). (7.1)

In Section 7.2, we will explore how interactions within a moiré potential can lead
to strongly localized states. Thus, the tight-binding model introduced here in an
atomic context can also be applied in interaction with a periodic moiré potential.

7.2 Hubbard-like Model

As demonstrated in Sec. 5.3, the twist angle within heterostructures significantly in-
fluences the energy landscape. We have previously noted that these distinct energy
configurations characterize trapped states for small angles and delocalized excitonic
states for larger twist angles. Considering the hindrance of excitonic movement due
to the decrease in group velocity, particularly pronounced at very small angles where
the exciton band structure is flat (refer to Sec. 5.3), suggesting a transport domi-
nated by hopping (see Fig. 7.1).
To address this, we introduce a moiré inter-cell tunneling model, a robust approach
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7.2 Hubbard-like Model

for calculating the dynamics of strongly localized, hopping-driven states. This mod-
eling technique has previously found success in describing the dynamics of bosonic
atoms in optical lattices [100, 101] and quantum phase transitions from superfluid
to Mott insulators [100, 102].

Figure 7.1: Illustration of the hopping movement of excitons inside the moiré potential minima.

For this purpose, we exploit the already introduced moiré exciton Hamiltonian
in Eq.(5.10)

H =
∑
µQ

EµQY
†
µQYµQ.

For simplicity, let’s consider a single layer index L. By transforming the operators
into a Wannier basis (c.f. Sec. 7.1), denoted as b†ν,n = 1√

N

∑
Q exp(iQ·Rn)Y ν†

Q , where
Rn represents the n-th moiré superlattice minimum. In this basis, the Hamiltonian
operator is expressed as

H =
∑
µQ

∑
n,m

1

N
eiQ·(Rm−Rn)EµQb

†
µ,nbµ,m.

This can be rewritten as follows
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7.2 Hubbard-like Model

H =
∑
n,m,µ

tµn,mb
†
µ,nbµ,m. (7.2)

Here, tνn,m represents the hopping term, and it can be computed by evaluating the
overlap of the Wannier wavefunctionsWn(r) = 1/

√
N
∑

Q,s e
−iQ·Rncνs(Q)exp{−i(Q+

Gs) · r} at different lattice positions n and m. This matrix element yields

tµn,m =

∫
d2r W ∗

n(r)HWm(r) =
1

N

∑
Q

eiQ·(Rm−Rn)EµQ. (7.3)

The band structure EµQ is inherently influenced by the twist angle. Consequently,
the hopping element or hopping term also exhibits a dependency on the twist angle.

7.2.1 Hopping rate

The hopping matrix elements offer valuable insights into the transport properties of
our system. To delve deeper into this aspect, we will examine in detail the depen-
dence of these matrix elements on the twist angle.
Figure 7.2 provides a representative depiction of the intralayer hopping term with
respect to the twist angle θ. The ground state (µ = 0) is represented by green lines,
while the excited state (µ = 1) is depicted in blue. The analysis accounts for both
nearest neighbor (solid lines) and next-nearest neighbor (dashed lines) interactions.
At small θ, the hopping term approaches zero, signifying complete exciton trapping.
This occurs because, at these angles, there is minimal overlap of excitonic orbital
functions, resulting in negligible transport. The moiré superlattice constant increases
for small twist angles, creating a substantial potential barrier for tunneling between
neighboring sites. Conversely, at larger twist angles, the hopping term steadily in-
creases, mirroring the growing delocalization of Wannier orbitals. This results in
an expanded orbital overlap, as illustrated in the insets of Fig. 7.2 for θ = 1◦ and
θ = 3◦, showing the orbitals of two neighboring sites within the moiré potential. This
trend aligns with the twist-angle evolution of the moiré subbands, as demonstrated
in Fig.5.4(a) and (b). For 1◦, a flat band structure is observed, corresponding to neg-
ligible group velocity. In contrast, for 3◦, the bands exhibit a parabolic dispersion,
indicating increased mobility.
An noteworthy distinction between nearest-neighbor (NN) and next-neighbor (2NN)
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Figure 7.2: Hopping term over the twist angle θ for nearest neighbor (NN) and next-neighbor
(2NN) interaction. We depict the hopping term for the ground and first excited exciton states,
i.e. µ = 0, 1. Due to the more pronounced overlap between the Wannier wavefunction (insets) the
nearest neighbor interaction is the dominant term for the hopping interaction.

hopping (solid vs dashed lines) is the rate of their increase concerning the twist angle,
as shown in Fig. 7.2. Hopping due to nearest-neighbor interaction increases more
rapidly owing to the larger overlap of directly adjacent sites. Furthermore, 2NN
hopping becomes significant only at larger twist angles, being negligible for angles
smaller than θ < 2◦. Considering the hopping term for different exciton subbands,
the lowest and first excited states (green and blue lines) exhibit a similar overall
behavior. However, the first excited state demonstrates more efficient hopping due
to its less stringent binding and more delocalized wave functions, resulting in a larger
overlap.

7.2.2 Polaron impact on hopping rates

In the realm of exciton transport, the hopping rate |t| (as indicated in Eq.(7.3)),
as explored in the preceding section, emerges as a critical parameter influencing the
propagation of excitons. Now, incorporating the polaron interaction discovered in
Section 6 between excitons and phonons, we gain the capability to delineate the
impact of this significant interaction on the hopping rate and, consequently, on the
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7.2 Hubbard-like Model

excitonic transport properties. As previously established, focusing on the nearest-
neighbor interactions, which are paramount due to their significantly larger wave-
function overlap, reveals that the hopping rate is directly tied to the moiré exciton
band structure and the overlap of the Wannier wavefunctions (refer to Eq.(7.3)).
With the introduction of phonon interaction, this relationship remains valid. How-
ever, the intriguing question arises: How does the increased effective excitonic mass,
resulting from the interaction with phonons, influence the overall mobility? In this

Figure 7.3: The hopping rate |t| decreases significantly with polarons present, especially at smaller
twist angles and room temperature, where the reduction exceeds 80%.

analysis, we examine once more the behavior of the hopping rate (|t|) as a func-
tion of the twist angle. The dashed line in Fig. 7.3 represents the nearest-neighbor
hopping for an interlayer exciton in a twisted heterostructure. Similar to intralayer
excitons (cf. Figure 7.2), at small angles, the hopping is negligible, indicating flat
moiré exciton bands and trapped states. As the twist angle increases, excitons gain
more mobility, consistent with the well-established trend for intralayer excitons.
However, the introduction of polarons transforms this behavior. The solid lines in
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Fig. 7.3 demonstrate a significant reduction in the hopping rate due to polarons, at-
tributed to the polaron-induced mass enhancement hindering exciton motion. Even
at T=0K, polarons lead to a clear decrease in the hopping rate (blue line) compared
to the purely excitonic case (dashed line). With increasing temperature, exciton-
phonon interaction becomes more efficient, resulting in a larger mass enhancement
and a greater reduction in the hopping rate (red line). Equation (6.10) establishes
a direct relationship between the polaron mass and the phonon occupation number,
implying that the exciton mass increases with rising temperature, hindering exciton
mobility. Therefore, phonon-mediated interaction plays a pivotal role in modifying
the material’s transport characteristics.
Moreover, we observe an angle-dependent impact of polarons on the hopping rate.
The absolute decrease in the rate due to polarons is more substantial at higher twist
angles, as shown in Fig. 7.3. There is a general increase in exciton mobility with
an increasing twist angle, reflecting the diminishing effect of the moiré potential.
Interestingly, polarons counteract this trend by enhancing the effective exciton mass
and reducing the exciton bandwidth (Figs. 6.2 (a)-(b)), shifting the transition from
moiré-trapped to delocalized phases [23] to larger twist angles.
In the inset of Fig. 7.3, we illustrate the relative polaron-induced changes in the hop-
ping rates (compared to the free excitonic case) as a function of the twist angle for
various fixed temperatures. Even at T=0K, the polaron effect is pronounced, leading
to a substantial deviation from the free exciton hopping rate due to self-interaction
via virtual phonons [103]. These deviations exceed 60% at 1◦, underscoring the sig-
nificant reduction in the hopping rate and emphasizing the pivotal role of polarons
in altering the transport properties of excitons in TMD-based materials. As the
temperature increases, the contribution of thermal energy to the effective exciton
mass becomes relevant through the increased phonon occupation in Eq.(6.10). This
results in even larger changes in the hopping rates, with relative deviations exceeding
80% at 1◦ from the undisturbed excitonic case at elevated temperatures. While the
absolute rate reduction was found to increase with the twist angle (main Fig. 7.3),
the relative difference is most pronounced at small twist angles (inset of Fig. 7.3).
With an increasing twist angle, the band flattening becomes less pronounced due to
a stronger localization of the excitonic wavefunction in momentum space, resulting
in a reduced influence of the moiré potential. Specifically, the reduction in the hop-
ping rate at a twist angle of 3◦ is approximately 20% at T=0K and up to 30% at
T=300K, in contrast to the more substantial reductions observed at 1◦ (>60% and
>80%, respectively). This trend underscores the intriguing role that the twist angle
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plays in moiré exciton transport.

7.3 Exact Solution

After identifying the excitonic eigenstates within the moiré potential in Chapter 5,
the computation of the time-dependent real-space wave function for a given initial
distribution becomes feasible through the utilization of the time evolution operator.
The general form of a time-dependent wave function can be articulated as follows

|ψ(t)⟩ = U(t) |ψ(0)⟩ .

In the context of the Schrödinger picture, the evolution of quantum states over time is
dictated by the Hamiltonian operator. This leads to the derivation of an exponential
expression that encapsulates the time-dependent evolution of a quantum state. The
time evolution of a quantum state |ψ(t)⟩ is governed by the Hamiltonian operator
H, and it is expressed through the following exponential form

|ψ(t)⟩ = e−
i
h̄
Ht |ψ(0)⟩ .

Here, |ψ(0)⟩represents the state at the initial time, t denotes the elapsed time, H is the
Hamiltonian operator. This exponential term embodies the time evolution operator
in the Schrödinger picture. By incorporating the diagonalized moiré Hamiltonian as
given in Equation (5.10), we arrive at the following expression

|ψ(t)⟩ = e
− i

h̄

∑
µ′Q′ Eµ′Q′Y

†
µ′Q′Yµ′Q′ t |ψ(0)⟩ .

This expression reflects the evolution of the quantum state within the moiré potential,
shedding light on the intricate dynamics governed by the diagonalized Hamiltonian.
By incorporating the identity operator

∑
µQ |µQ⟩⟨µQ|, the equation for the time-

dependent excitonic wavefunction in real space can be expressed as follows

ψ(r, t) =
∑
Q,ν

ψ̃ν(Q, 0)χQ,ν(r) exp

(
− i

h̄
Eν

Qt

)
. (7.4)

Here, we utilize the the Bloch wavefunction χQ,ν(r) =
∑

s c
ν
s(Q)exp(−i(Q+Gs)r)

and the projection of the initial state ψ̃ν(Q, 0) = ⟨ν,Q|ψ(0)⟩. In experimental scenar-
ios, Gaussian-shaped laser pulses are commonly employed to shape the initial exciton
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distribution, with the real space width on the order of the excitation wavelength, typ-
ically in the µm-range [14]. This width is large compared to the moiré lattice vector
(< 100nm for the twist angles > 1◦ considered in this work [104]). Consequently, a
Taylor expansion of the twist angle dependent band structure around the γ-point is
performed, yielding isotropic and parabolic bands with EQ ≈ h̄2Q2/(2meff), where
1/meff = 1/h̄2∂2EQ/∂Q

2 represents the effective mass. Within this quadratic approx-
imation, the integral in Eq.(7.4) can be solved analytically, leading to the exciton
density distribution.

ρ(r, t) =
1

2πσ2(t)
exp

(
− r2

2σ2(t)

)
. (7.5)

Considering the time-dependent variance σ2(t) = σ2
0

(
1 + 4h̄2t2/(m2

effσ
4
0)
)
, where

σ2
0 represents the variance of the initial density distribution, the numerical com-

putation of the time evolution of the wave packet is performed using the full band
structure EQ and the exact expression for the wave function given in Eq.(7.4). There-
fore, instead of relying solely on Eq.(7.5), we are able to give a more comprehensive
analysis of the moiré exciton propagation in experimentally relevant situations by
comparing the obtained results from both equation. This enables us to extract an
effective mass for the propagation of moiré excitons. This analysis provides valuable
insights into the dynamic behavior of moiré excitons in experimental conditions, of-
fering a quantitative measure of their effective mass under the influence of the moiré
potential.

7.4 Heisenberg Equation of Motion and Dispersion
Parameter

In the context of our investigation, we employ two different approaches to study the
spatiotemporal dynamics of moiré excitons. Within the approximation we introduced
in Sec 7.2, we calculate the exciton density for the lowest exciton subband (µ = 0)
in the Wannier basis. The exciton density ρ(r, t) is defined as the expectation value
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of the density operator, given by

ρ(r, t) = ⟨ψ†(r)ψ(r)⟩ =
∑
n,m

W ∗
m(r)Wn(r)ρnm(t),

where ψ†(r) =
∑

nWn(r)b†n are the field operators expressed in terms of Wannier
orbitals. The density matrix ρnm governs the temporal evolution of the exciton
density and is determined by solving the Heisenberg equation of motion

ρ̇nm = − i

h̄

∑
i

(tmiρni − tinρim) . (7.6)

To quantify the transport behavior for both trapped and delocalized excitons, we
utilize the second central moment, σ2(t) =

∫
d2rr2ρ(r, t), of the exciton distribution.

This variance provides a measure of how much a given distribution broadens its
width within a specific time period. While this quantity already holds intrinsic
value, it is commonly employed to define a dispersion length. The dispersion length
is defined as ξ(t) =

√
σ2(t)− σ2

0 offering insight into the characteristic length over
which dispersive effects become significant. Here, σ2

0 represents the variance of the
initial density distribution [105]. To quantify the dispersion and characterize the rate
of change of the dispersion length, we introduce a parameter α, defined as the time
derivative of the dispersion length, and we refer to it as the dispersion velocity

α =
σ2
0

2
∂tξ(t). (7.7)

For a parabolic dispersion (cf. Eq. (7.5)), α = h̄/meff allowing for the unam-
biguous determination of the effective mass meff as a function of the twist angle.
To ensure comparability between the tunneling model and the exact solution, both
simulations are initialized with conditions where only the lowest moiré subband is oc-
cupied, employing a superposition of ground state Wannier orbitals with a Gaussian
envelope

ρnm(t = 0) = δnmG(σ0, |Rn −R0|),
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and

ψ̃ν(Q, 0) = δν,0

∫
d2rχ∗

Q,ν(r)
√

G(σ0, r),

where G(σ0, r) is a Gaussian envelope with width σ0. This comprehensive approach
enables a detailed investigation of the nuanced spatiotemporal behavior of moiré ex-
citons under different approximations, offering valuable insights into their transport
dynamics.

7.5 Dispersive and Hopping Regime

In the upcoming analysis, we delve into distinct transport regimes within TMD het-
erostructures featuring a moiré potential that can be tuned by the twist angle. Figure
7.4 visually captures the spatiotemporal exciton dynamics using the precise expres-
sion from Eq. (7.4) for two varying twist angles. The background contour lines depict
the corresponding moiré potentials, illustrating a reduction in supercell size with an
increase in the twist angle. For a small twist angle of θ = 2◦, our observations reveal
that only a few moiré sites are initially occupied at t = 0fs, and these sites appear
almost isolated and well-localized. In contrast, when considering a larger twist angle
of θ = 5◦ with the same initial Gaussian distribution, a significantly larger number
of sites are excited, indicating a more delocalized exciton distribution. As time pro-
gresses to t = 2.4ps, we observe a noticeable broadening of the exciton distribution
for both twist angles. However, a distinct difference in exciton transport behavior
becomes evident. For the smaller twist angle, exciton occupation remains localized at
individual sites, while for the larger angle, excitons propagate in various directions.
To quantify the propagation rate and gain a deeper understanding of the different
characteristics of these distinct exciton transport regimes, we introduced the disper-
sion parameter α in Eq.(7.7). This parameter provides valuable insights into the
dynamics of exciton dispersion, allowing us to analyze and compare the transport
regimes under different twist angles.

The dispersion parameter α serves as a constant of motion, offering a quantifica-
tion of the propagation velocity. This parameter allows us to explore and compare
the efficiency of exciton transport across different regimes. Figure 7.5 illustrates α
as a function of the twist angle θ, extracted from the exact solution (red solid line),
the solution for completely free excitons (dashed line), and the tunneling solution
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7.5 Dispersive and Hopping Regime

Figure 7.4: Exciton propagation in a twisted MoSe2/WSe2 heterostructure. (a)-(b) The initial
exciton density distribution at 2◦ and 5◦, respectively. The contour lines represent the moiré
potential. (c)-(d) Exciton distribution after 2.4ps. For smaller twist angles excitons are strongly
localized leading to a suppressed propagation compared to larger angles, where the Wannier orbitals
have a larger overlap.

(green line). Notably, we observe a rapid increase in the dispersion parameter α
up to a value of approximately 0.25 nm2/fs, which is reached at a twist angle of
around 4◦. As the twist angle continues to increase beyond this point, α remains
constant, reflecting the consistent dispersion parameter for free excitons (depicted
by the dashed line). In this scenario, the exciton distribution becomes delocalized
over a large number of supercells, closely resembling the effective mass limit. This
behavior is evident in the inset for 7◦ in Fig. 7.5. Exciton propagation in a moiré
potential with a large twist angle mirrors the dispersion of a quantum-mechanical
wave packet. Accordingly, we denote this transport regime as dispersive.
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7.5 Dispersive and Hopping Regime

Figure 7.5: Dispersion parameter α plotted against the twist angle θ, providing a direct comparison
between the exact numerical solution for exciton propagation in a moiré potential (red line), the
moiré tunneling model, and the free-exciton solutions. The exact solution converges to the free
solution (dashed line) for θ > 4◦, representing the dispersive regime characterized by a delocalized
exciton distribution (as shown in the inset at 7◦). As the twist angle decreases to θ > 1.8◦, the
exact solution transitions to the tunneling solution, indicative of a localized exciton distribution (as
illustrated in the inset at 1◦).

For smaller twist angles, the exact solution distinctly diverges from the free solution
and transitions into the tunneling solution (depicted by the green line) for θ > 1.8◦.
In this range, the efficiency of propagation is significantly reduced, as also evident in
Fig. 7.4. At a twist angle of 1◦, the dispersion parameter has dropped to more than
one order of magnitude, reaching α ≈ 0.023 nm2/fs. This pronounced deceleration in
exciton transport velocity stems from the band flattening in the exciton dispersion
(see Fig. 5.4). This corresponds to trapped exciton states in real space, resulting
in a substantially reduced group velocity vG. Consequently, for small twist angles,
exciton propagation is markedly slowed down [23].
In this particular regime, we observe a highly localized exciton distribution (refer
to the inset for 1◦ in Fig. 7.5). Continuous and regular exciton propagation is
not feasible; instead, it necessitates hopping between different, largely isolated moiré
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sites. Consequently, we denote this behavior as a hopping regime. The moiré tunnel-
ing model proves to be a suitable representation to describe this hopping behavior.
Notably, the nearest neighbor approximation (green line) aligns perfectly with the
exact solution (red line) for small twist angles θ < 1.8◦. The dispersion parameter
exhibits an increase with the angle, indicating that the overlap of exciton wavefunc-
tions becomes larger, leading to a more efficient hopping term. However, for larger
twist angles θ > 1.8◦, a distinct deviation from the exact solution becomes evident.
Hence, we conclude that the hopping model, formulated in the Wannier basis and
assuming that nearest neighbor hopping is the sole efficient channel, is excellent for
small angles characterized by localized states. Nevertheless, this assumption fails for
larger angles where states are strongly delocalized.

7.5.1 Moiré Exciton Mass

In the context of an external periodic potential, excitons exhibit Bloch wave-like
propagation akin to crystal electrons. For sufficiently large wavepackets compared
to the cell size, this propagation can be conceptualized as a variation in effective
mass. The effective masses are contingent on the surrounding potential, which,
in monolayers, arises from the atomic lattice. However, in heterostructures, the
exciton mass undergoes natural changes due to the moiré potential, making it notably
sensitive to the twist angle. While one could potentially derive the effective mass by
interpolating the energy dispersion, such a mass would represent the band curvature
only within a specific momentum range.

In contrast, by harnessing the definition of the dispersion parameter α in Eq.(7.7),
we derive a more general and transport-relevant effective mass, denoted as

meff(θ) = h̄/α(θ). (7.8)

For larger angles θ > 4◦, the effective exciton mass converges toward the value of the
free exciton mass (with a deviation of < 1% for θ > 4◦), as illustrated in Fig. 7.6.
However, upon decreasing θ, a significant surge in the effective mass by nearly one
order of magnitude is evident at 1◦. This enhancement mirrors the band flattening
observed in the excitonic band structure in the presence of a moiré potential at small
twist angles (refer to Fig. 5.4). In scenarios with completely flat bands, the effective
mass would theoretically approach infinity. Nonetheless, for angles smaller than 1◦,
considerations of atomic reconstruction effects [106] become pertinent, although such
effects are beyond the scope of this study.
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Figure 7.6: Effective exciton mass as a function of the twist angle ϑ. For larger angles, we find that
the effective mass corresponds to the free exciton mass. The insets illustrate that the parabolic
approximation (dashed line) fails for small twist angles (here 1◦), while it is a perfect assumption
at larger angles (here 7◦).

7.6 Polaron Impact on Spatio-Temporal Dynamics

In the preceding Chapter 6, we delved into the exciton-phonon interaction, illustrat-
ing its profound impact on the energy landscape. Notably, we demonstrated that
polarons play a pivotal role in modulating the bandwidth, with this influence being
markedly temperature-dependent. Consequently, as explored in Section 7.2.2, we
observed significant deviations in the hopping rates from the phonon-free excitonic
case, particularly as the temperature increased. While we anticipate these effects
to extend to transport properties, the extent of this influence remains uncertain. In
this section, we embark on an exploration of the polaronic impact on spatiotemporal
dynamics, aiming to unravel the intricacies of this influence.

Figure 7.7(a) visually illustrates the spatial evolution of exciton density at fixed
times, specifically at a twist angle of θ = 2◦ and room temperature. Commencing
with an initial Gaussian distribution at t = 0 ps, we track the propagation of excitons
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Figure 7.7: a) Spatial evolution of exciton density at 2◦ (shaded area) for exciton and polaron
cases at fixed times. Notably, polarons exhibit a distinctly decelerated spatial propagation. (b)
Dispersion parameter α (Eq.(7.7)) plotted against twist angle, facilitating a direct comparison
between undisturbed exciton and polaron cases. Both converge to the free exciton/polaron case at
larger twist angles, where the moiré potential becomes negligible.

in space. The localized peaks (darker shading) signify localized states at the given
angle. To enhance clarity in comparing the propagation behavior, we introduce an
envelope function and normalize the initial distributions of excitons with and with-
out polarons to be identical (represented by red and blue shading). At t = 3ps and
more prominently at t = 6ps, a distinct difference in propagation speed between free
excitons and polarons is observed (cf. Fig 7.7(a)). This observation aligns with our
earlier findings, indicating that polarons contribute to a slower exciton propagation.
This deceleration is attributed to the increased effective mass of excitons due to po-
larons, resulting in reduced hopping rates and diminished mobility.
For a quantitative analysis of moiré exciton propagation, we employ the dispersion
velocity parameter α from Eq.(7.7). The analysis reveals a clear trend: as the twist
angle increases, both excitons and polarons converge toward their respective free
excitonic/polaron solutions (Fig. 7.7(b)). Beyond a critical angle of approximately
θ = 3◦, the dispersion parameter α saturates, indicating a constant dispersion char-
acteristic for free excitons/polarons. Exciton propagation within a moiré potential
characterized by a large twist angle mirrors the dispersion behavior of a quantum-
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mechanical wave packet. Put differently, the observed motion, akin to free particle
motion, persists even in the presence of polarons, as detailed in Section 7.5. In con-
trast, for small twist angles, exciton propagation becomes severely limited due to
band flattening in the exciton dispersion. This twist-angle effect is accentuated by
the formation of polarons, which lead to an increase in mass and consequently a flat-
tening of the band. This band flattening hinders the convergence processes observed
in the unperturbed case, where excitons are delocalized. As a result, the polaronic
dispersion velocity is lower than in the purely excitonic case. Furthermore, a delay
in the velocity increase is evident (indicated by the grey area in Fig 7.7 (b)). The
relative difference in dispersion velocity between free excitons and polarons at large
twist angles is estimated to be around 53%.
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8
Conclusion

This thesis delves deeply into the microscopic intricacies of exciton dynamics within
a heterostructure systems: twisted van der Waals structures and moiré configura-
tions in MoSe2/WSe2. The investigation explores the nuanced interplay of factors
influencing exciton transport, unraveling novel phenomena and contributing signifi-
cantly to the broader field of condensed matter physics.
After introducing fundamental concepts, which covered essential components such
as the non-interacting electron model, Coulomb matrix elements, and the exciton
picture—with emphasis on concepts like the electron-hole pair operator and basis
transformations—we delved into key aspects of heterostructure analysis. This in-
cluded a comprehensive redefinition of the Coulomb potential in bilayers and an
exploration of Moiré physics, encompassing zone folding and an investigation into
the development and influence of the interlayer Moiré potential.
We focused in the thesis on two specific case studies. First, the study investigates
spatio-temporal exciton dynamics in twisted van der Waals heterostructures. Dis-
tinct transport regimes emerge based on twist angles: at large angles (ϑ > 4◦),
excitons propagate akin to wave packets in a dispersion regime, while at smaller an-
gles, the hopping regime prevails (ϑ < 2◦) with exciton motion accurately described
by a tunneling model. The study unveils the twist-angle dependence of exciton prop-
agation, providing invaluable microscopic insights.
In the second case study, the thesis explores the influence of polaron-induced exciton
mass enhancement on moiré exciton transport in a twisted MoSe2/WSe2 heterostruc-
ture. The presence of polarons leads to a distinct flattening of moiré exciton bands
and a significant reduction in bandwidth. At small twist angles, the predicted changes
in energy bandwidth exceed 60%, and hopping rates are substantially diminished by
up to 80% due to weakened wavefunction overlap. Despite generally improved ex-
citon mobility at higher twist angles, the counteracting effects of polarons impede
exciton motion in TMD heterostructures.
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Collectively, these studies enrich our understanding of exciton dynamics in diverse
heterostructure scenarios. The research work forms the basis for the development
of materials with customized exciton properties and may pave the way for appli-
cations in optoelectronics and quantum technology. The knowledge gained in this
work serves as a catalyst for future studies and advances in the manipulation and
control of exciton transport in complex condensed matter systems. A potential next
step involves considering exciton-exciton interactions, as explored in earlier studies
[107, 108]. A subsequent investigation could focus on discerning the impact of these
interactions on exciton dynamics. Recent research indicates that with an increasing
exciton density, previously trapped moiré excitons become delocalized [109]. Within
our framework, it would be valuable to determine whether polaron formation coun-
teracts this effect or represents the dominant contribution.
Another possible next step involves exploring local strain modulation, a method
effectively used to create potential traps and localize intralayer excitons in TMD
monolayers [110, 111]. Previous research has delved into the impact of strains on
indirect excitons in TMD heterostructures, revealing evidence for the formation of
potential traps and the trapping of interlayer excitons within these heterostructures
[112]. Investigating whether this behavior is reproducible within our theoretical
framework would be of particular interest. As it could potentially open up new av-
enues for applications in photonic and optoelectronic devices.
Finally, a third intriguing subsequent study could involve incorporating an exter-
nal electric field. Existing literature indicates that such a field can induce significant
changes in the electronic band structure [113]. In this thesis, our focus is on a specific
material, MoSe2/WSe2, and relevant studies for this material reveal that an applied
external electric field profoundly affects the electronic landscape [114]. Examining
the influence of such a field on spatio-temporal exciton dynamics could deepen our
fundamental understanding and potentially contribute to advancements in electronic
devices.
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Zusammenfassung

Diese Dissertation taucht tief in die mikroskopischen Feinheiten der Exzitondynamik
in Heterostruktursystemen ein: verdrehte van-der-Waals-Strukturen und Moiré Kon-
figurationen in MoSe2/WSe2. Die Untersuchung erkundet das nuancierte Zusammen-
spiel von Faktoren, die den Exzitonen-Transport beeinflussen, deckt neue Phänomene
auf und trägt wesentlich zur Festkörperphysik bei.
Nach der Einführung grundlegender Konzepte, die wesentliche Komponenten wie
das Modell der nicht wechselwirkenden Elektronen, Coulomb-Matrixelemente und
das Exziton-Bild einschließen – wobei besonderes Augenmerk auf Konzepten wie
dem Elektron-Loch-Paar-Operator und Basis-Transformationen liegt – vertieften wir
uns in Schlüsselaspekte der Heterostrukturanalyse. Dies umfasste eine umfassende
Neudefinition des Coulomb-Potentials in Doppelschichten und eine Untersuchung der
Moiré-Physik, die Zone-Folding einschloss und die Entwicklung und den Einfluss des
Moiré-Potentials zwischen den Schichten untersuchte.
In der Dissertation konzentrieren wir uns auf zwei spezifische Fallstudien. Zunächst
untersucht die Studie die räumlich-zeitliche Exzitondynamik in verdrehten van-der-
Waals-Heterostrukturen. Unterschiedliche Transportregime entstehen auf der Grund-
lage von Verdrehungswinkeln: Bei großen Winkeln (ϑ > 4◦) breiten sich Exzitonen
ähnlich wie Wellenpakete in einem Dispersionsregime aus, während bei kleineren
Winkeln das Hopping-Regime überwiegt (ϑ < 2◦) und die Exziton-Bewegung genau
durch ein Tunnelmodell beschrieben wird. Die Studie enthüllt die Verdrehungswinkel-
Abhängigkeit der Exziton-Propagation und liefert unschätzbar wertvolle mikroskopis-
che Einblicke. In der zweiten Fallstudie untersucht die Dissertation den Einfluss der
durch Polaronen verursachten Verstärkung der Exzitonmasse auf den Exzitontrans-
port in einer verdrehten MoSe2/WSe2-Heterostruktur. Die Anwesenheit von Polaro-
nen führt zu einer deutlichen Abflachung der Moiré-Exziton-Bänder und einer erhe-
blichen Reduzierung der Bandbreite. Bei kleinen Verdrehungswinkeln übertreffen die
vorhergesagten Änderungen der Energiebandbreite 60%, und die Hoppungsraten sind
aufgrund einer geschwächten Überlappung der Wellenfunktionen erheblich reduziert.
Trotz allgemein verbesserter Exzitonmobilität bei höheren Verdrehungswinkeln be-
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hindern die gegenläufigen Effekte von Polaronen die Exzitonbewegung in TMD-
Heterostrukturen.
Zusammenfassend bereichern diese Studien unser Verständnis der Exzitondynamik in
verschiedenen Heterostrukturszenarien. Die Forschung bildet die Grundlage für die
Entwicklung von Materialien mit maßgeschneiderten Exzitoneigenschaften und kön-
nte den Weg für Anwendungen in der Optoelektronik und Quantentechnologie ebnen.
Das in dieser Arbeit gewonnene Wissen dient als Ausgangspunkt für zukünftige Stu-
dien und Fortschritte bei der Manipulation und Kontrolle des Exzitontransports in
komplexen kondensierten Materiesystemen. Ein möglicher nächster Schritt könnte
die Berücksichtigung von Exziton-Exziton-Wechselwirkungen sein, wie sie in früheren
Studien untersucht wurden [107, 108]. Eine anschließende Untersuchung könnte sich
darauf konzentrieren, die Auswirkungen dieser Wechselwirkungen auf die Exziton-
dynamik zu klären. Aktuelle Forschung zeigt, dass mit zunehmender Exzitondichte
zuvor gefangene Moiré-Exzitonen delokalisiert werden [109]. In unserem Rahmen
wäre es wertvoll zu bestimmen, ob die Bildung von Polaronen diesem Effekt entgegen-
wirkt oder den dominanten Beitrag darstellt. Ein weiterer möglicher nächster Schritt
bezieht sich auf die lokale Dehnungsmodulation, die als effektive Methode zur Erzeu-
gung von Potenzialfallen und zur Lokalisierung von intralayer Exzitonen in TMD-
Monolagen genutzt wurde [110, 111]. Frühere Forschungen haben die Auswirkun-
gen von Spannungen auf indirekte Exzitonen in TMD-Heterostrukturen untersucht,
wobei Anzeichen für die Bildung von Potenzialfallen und die Einschließung von
Interlayer-Exzitonen vorliegen [112]. Die Untersuchung, ob dieses Verhalten in un-
serem theoretischen Model reproduzierbar ist, wäre von besonderem Interesse. Da es
potenziell neue Anwendungsmöglichkeiten in photonischen und optoelektronischen
Geräten eröffnen könnte. Schließlich könnte eine dritte interessante Folgestudie die
Integration eines externen elektrischen Feldes beinhalten. Die vorhandene Literatur
deutet darauf hin, dass ein solches Feld signifikante Veränderungen in der elektron-
ischen Bandstruktur induzieren kann [113]. In dieser Arbeit konzentrieren wir uns
auf ein spezifisches Material, MoSe2/WSe2, und relevante Studien für dieses Material
zeigen, dass ein angelegtes externes elektrisches Feld einen tiefgreifenden Einfluss auf
die elektronische Landschaft hat [114]. Die Untersuchung des Einflusses eines solchen
Feldes auf die räumlich-zeitliche Exzitondynamik könnte unser grundlegendes Ver-
ständnis vertiefen und möglicherweise zu Fortschritten in elektronischen Geräten
beitragen.
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gung an Interpretation der Ergebnisse. Feedback zu Abbildungen.

Ermin Malic: Konzeptualisierung, Beschaffung von Fördermitteln, Projektadmin-
istration , Supervision, sowie Feedback zum Manuskript und Unterstützung im Re-
view & Editing Prozess.

Die vorliegende Einschätzung über die erbrachte Eigenleistung wurde mit den am
Artikel beteiligten Ko-Autoren/Ko-Autorinnen einvernehmlich abgestimmt.
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