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Abstract

Optimization problems are ubiquitous in software engineering. They arise, for
example, when searching for a modular software design or planning a cost-
efficient development process. Search-based software engineering (SBSE) is
concerned with solving optimization problems by applying search-based al-
gorithms. Among the most popular are evolutionary algorithms, which are
the focus of this thesis. Following the example of natural evolution, they use
selection, mutation, and crossover operators to evolve existing solutions.

In the hope of enabling the use of SBSE without optimization expertise, model-
driven optimization (MDO) relies on model-driven engineering (MDE); models
and model transformations are used to specify optimization problems and solu-
tion algorithms. Two ways of representing solutions, the model-based approach
(MB-MDO) and the rule-based approach, have established. However, the im-
plications of choosing one over the other are not clear. Therefore, we compare
both approaches qualitatively and quantitatively and pursue MB-MDO as the
more promising approach in the rest of the thesis.

How to design efficient and effective evolutionary algorithms is a central ques-
tion in MB-MDO. Moreover, how to perform crossover there is not yet known.
We first present a framework that highlights and explains the core concepts of
evolutionary algorithms in MB-MDO and formalizes them based on graph trans-
formation theory. It not only contributes to the understanding of evolutionary
algorithms in MB-MDO, but in particular facilitates their precise specification,
analysis, and evaluation. The framework is used to define important properties
of mutation operators and to evaluate their impact on the efficiency and effective-
ness of evolutionary algorithms. Furthermore, a general, graph-based approach
for the construction of crossover operators in MB-MDO is presented. The gen-
eral approach is also concretized for the Eclipse Modeling Framework (EMF).
Finally, an evaluation of a prototypical implementation shows the relevance of
crossover operators for evolutionary algorithms in MB-MDO.
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Zusammenfassung

Optimierungsprobleme sind in der Softwareentwicklung allgegenwärtig. Sie
treten beispielsweise bei der Suche nach einem modularen Softwaredesign oder
der Planung eines kosteneffizienten Entwicklungsprozesses auf. Die suchbasierte
Softwaretechnik (SBSE, von engl. search-based software engineering) befasst
sich mit der Lösung von Optimierungsproblemen durch Anwendung suchba-
sierter Optimierungsverfahren. Zu den beliebtesten gehören evolutionäre Algo-
rithmen, die im Mittelpunkt dieser Arbeit stehen. Angelehnt an die natürliche
Evolution werden bei diesen Selektions-, Mutations- und Kreuzungoperatoren
verwendet, um bestehende Lösungen weiterzuentwickeln.

In der Hoffnung, den Einsatz von SBSE ohne tiefere Optimierungskenntnis-
se zu ermöglichen, setzt die modellgetriebene Optimierung (MDO, von engl.
model-driven optimization) auf modellgetriebene Entwicklung (MDE, von engl.
model-driven engineering); Modelle und Modelltransformationen werden zur
Spezifikation von Optimierungsproblemen und Lösungsalgorithmen herange-
zogen. Dabei haben sich zwei Arten Lösungen zu repräsentieren etabliert, der
modellbasierte (MB-MDO, von engl. model-based MDO) und der regelbasierte
Ansatz. Es ist jedoch nicht klar, welche Auswirkungen die Entscheidung für den
einen oder anderen Ansatz hat. Daher vergleichen wir beide Ansätze sowohl
qualitativ als auch quantitativ und verfolgen im weiteren Verlauf der Arbeit
MB-MDO als den vielversprechenderen Ansatz.

Wie sich effiziente und effektive evolutionäre Algorithmen entwickeln lassen, ist
in MB-MDO eine zentrale Frage. Darüberhinaus ist dort noch kein Ansatz zur
Umsetzung von Kreuzungsoperatoren bekannt. Wir stellen zunächst ein Frame-
work vor, welches die Kernkonzepte evolutionärer Algorithmen in MB-MDO
herausstellt, erklärt und diese auf Grundlage der Graphentransformationstheorie
formalisiert. Es trägt damit nicht nur zum Verständnis evolutionärer Algorithmen
in MB-MDO bei, sondern ermöglicht insbesondere deren präsize Spezifikati-
on, Analyse und Evaluation. Mit Hilfe des Frameworks werden zwei wichtige
Eigenschaften von Mutationsoperatoren definiert und deren Einfluss auf die
Effizienz und Effektivität evolutionärer Algorithmen evaluiert. Desweiteren wird
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ein genereller, graphbasierter Ansatz zur Konstruktion von Kreuzungsoperato-
ren in MB-MDO vorgestellt. Der generelle Ansatz wird zudem für das Eclipse
Modeling Framework (EMF) konkretisiert. Die Evaluation einer prototypischen
Implementierung zeigt abschließend die Relevanz von Kreuzungsoperatoren für
evolutionäre Algorithmen in MB-MDO.
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“Modeling in its broadest sense is the cost-effective use of some-
thing in place of something else for some cognitive purpose. It
allows us to use something that is simpler, safer, or cheaper than
reality instead of reality for some purpose. A model represents
reality for the given purpose; the model is an abstraction of reality
in the sense that it cannot represent all aspects of reality. This
allows us to deal with the world in a simplified manner, avoiding
the complexity, danger, and irreversibility of reality.”

Rothenberg et al.: The Nature of Modeling (1989) 1
Introduction

As early as 1956 George A. Miller, an American psychologist, was among the
first to investigate capacity limits in human information processing [Mil56]. He
observed that even in simple classification and counting tasks our short-term
memory can only handle a very small number of items before we start to make
mistakes. It is surely debatable whether a single number can sufficiently describe
the capacity of something as complex as our short-term memory [MHB14]. Still,
considering the complexity of systems and technologies we have to deal with,
the order of magnitude of what Miller found to be the limit for the number of
items we can process correctly is highly relevant; it is 1!

Problems faced in software engineering as well as in other engineering disci-
plines are utterly complex nowadays. Typically, thousands of lines of code are
scattered over myriads of artifacts distributed among various places. Under-
standing such systems solely on the source code level is a hopeless task. Thus,
a key element to comprehension is abstraction [Kra07]. Looking at complex
systems from different perspectives and at different levels of detail allows us to
process information in chunks closer, with regard to their number of elements,
to Miller’s observed capacity limits. According to Rothenberg et al. [Rot+89],
models are a natural means to handle abstraction and, consequently, play a vital
role in today’s software development.
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1 Introduction

Introduced over two decades ago, a paradigm called model-driven engineering
(MDE) aims at leveraging the power of abstraction by treating everything as
a model [Béz04]. It promotes a change in the role of models: from a sheer
means of documentation to first-class entities participating (along with model
transformations) in the configuration, production, and execution of systems.
Practicing MDE by embracing models throughout the development process is
expected to increase comprehension, productivity, and in consequence software
quality. Recent research shows that MDE can live up to these expectations but
its adoption can be challenging [Moh+13; HWR14; Lie+14; Buc+20].

1.1 Motivation

In the last years a new domain called model-driven optimization (MDO) has
emerged, applying MDE to the tasks of specifying and solving optimization
problems. Optimization problems lie at the heart of many software engineering
tasks – architecture design, release planning, resource allocation, and refac-
toring [HMZ12], to name a few. Solving such problems with search-based
algorithms is subject of the well established domain of search-based software
engineering (SBSE) [HJ01]. Developing an effective and efficient search-based
algorithm for a problem at hand is anything but trivial and requires expertise
in the domain of interest as well as in SBSE. In particular, considerable effort
has to be put into finding a suitable representation of solutions within the algo-
rithm, as well as into developing fitting search operators that can effectively and
efficiently be used to explore the search space of possible solutions.

Hierarchies, dependencies, constraints, and other relations between the objects
of interest regularly need to be considered in software engineering problems. As
discussed by Burton and Poulding on the example of planning the next release
of a software product [BP13], expressing such complex structures in traditional
representations (e.g., strings of integers or real numbers) can be cumbersome and
lead to unwieldy representations which are hard to comprehend and maintain.
Often the complexity needs to be hidden in implicit assumptions about the data
structure chosen for the representation. Developing search operators respecting
these assumptions becomes an error prone task. Furthermore, the implementation
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1.1 Motivation

of a representation and its associated search operators typically needs to take
place on a technical level (e.g., a specific programming language) making this
step even harder for domain experts not proficient in programming.

Advocating models and model transformations as the central components of
search-based optimization, MDO seeks to remedy these problems. Among
domain experts and software engineers alike, models are already an established
means to discuss domain concepts. Consequently, founding the representation of
optimization problems on models and model transformations can be considered
a natural choice. SBSE becomes more accessible to both domain experts and
software engineers who can now formulate optimization problems and develop
search-based algorithms using the language and tools they are familiar with.
Complex structural requirements can be made explicit facilitating their adher-
ence and validation. Overall, a tighter integration of search-based optimization
into software development could be achieved. Modeling artifacts naturally
emerging from development processes, e.g., architecture or class diagrams, can
be reused and potentially become subject to optimization. Considering projects
applying MDE, where many parts of a software system are already captured
by or generated from models and model transformations, a prospect of Harman
et al. [Har+12] might become reality: SBSE as a central aspect of software
development.

Because of their simplicity and flexibility [Fog97], evolutionary algorithms have
become the most popular optimization technique in SBSE [HMZ12] and are
currently in the focus of MDO. Inspired by nature, a search is typically performed
on a population of solutions. Two representations of solutions are distinguished.
Changes are performed on their genotype which represents solutions within an
evolutionary algorithm. The phenotype constitutes their external representation
and is used to evaluate their quality. To evolve a population, search operators
(called evolutionary operators in this context) mimic the biological concepts
of mutation and crossover (also known as recombination) to create offspring.
Selection steps realize survival of the fittest and favor good solutions to evolve
towards better populations. Evolution takes place iteratively by generating
new populations until some desired termination condition (e.g., a solution with
acceptable quality is found) is met. While mutation is meant to induce small
changes in a single solution, crossover recombines the information of multiple
solutions. The realization of these concepts strongly depends on the encoding of
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1 Introduction

an optimization problem, i.e., the mapping between its phenotypes and genotypes.
For example, in traditional string-based encodings, mutation typically swaps
the value at one or multiple positions in a solution string. Crossover cuts parent
strings apart and recombines the created substrings. When solution strings
capture complex structures (as discussed above), the application of evolutionary
operators often produces offspring violating structural constraints. Intricate
repair steps are needed to restore solutions meeting these constraints. In contrast,
with models and model transformations structural constraints may already be
considered explicitly by evolutionary operators.

In the last years, different realizations of MDO have been proposed and devel-
oped. In particular, two approaches on how to use models and model trans-
formations to encode solutions have established. The model-based approach
(MB-MDO) encodes solutions directly as models and model transformations are
used to gather new solutions [Bur+12; BP13; KLW13; ZM16; Str17; BZS18;
Hor+22]. In contrast, the rule-based approach (RB-MDO) encodes each solution
as a sequence of rule calls, where a rule call constitutes a model transformation
rule together with the parameters required for its application [Abd+14; FTW15;
Bil+19]. For both approaches, how to design efficient and effective evolutionary
algorithms and, in particular, their evolutionary operators is an open research
topic.

1.2 Problem Statement

Both encoding approaches in MDO have gained similar attention in literature and
are backed by a solid tool environment to facilitate further research. Up to now,
however, both approaches have been developed and investigated independently
from each other. No work has yet compared their features and limitations
or compared them with regard to their optimization performance. As their
advantages and drawbacks remain unclear, users need to decide for one approach
or the other based on their intuition rather than making an informed decision.
Also from a research perspective, this knowledge gap constitutes a problem as it
becomes hard to estimate, which approach might be the more promising one to
pursue. Consequently, our first contribution tries to close this gap by answering
the following research questions:
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1.2 Problem Statement

RQ1 What are the conceptual advantages and drawbacks of each encoding
approach in MDO?

RQ2 How do both encoding approaches in MDO compare with regard to their
optimization effectiveness and efficiency?

The insights gathered from the comparison build the foundation for our subse-
quent focus on MB-MDO. Without a clear specification, many concepts involved
in the application of evolutionary algorithms in MB-MDO remain implicit; am-
biguities and misunderstandings can be the result. Furthermore, in the absence
of a formal basis, the formulation and precise reasoning about properties of
evolutionary operators and evolutionary algorithms becomes difficult; only lim-
ited research on such properties can be found so far [BZJ21]. Without a deeper
understanding of the intricacies of MB-MDO, however, finding an effective and
efficient algorithm for a specific problem resorts to trial and error. A formaliza-
tion may provide the necessary means (e.g., by its underlying theory) for the
development and analysis of new operator concepts. We argue that a formal
framework is needed to systematically investigate MB-MDO and address the
following questions:

RQ3 How can the key concepts of evolutionary algorithms in MB-MDO be
specified in a precise yet general manner that captures the large variety
of evolutionary algorithms found in practice?

RQ4 How can experiments in MB-MDO be specified in a precise and repro-
ducible way?

RQ5 Which properties of evolutionary operators are important for the effec-
tiveness and efficiency of evolutionary algorithms in MB-MDO?

While in RB-MDO, mutation and crossover operators developed for the tra-
ditional string encoding can be adopted seamlessly, we find the most obvious
limitation of MB-MDO to be the lack of a general concept for how to perform
crossover on models. In evolutionary algorithms crossover is meant to create
new solutions to a problem by recombining already well optimized parts of
existing solutions. It is expected to speed up the search process and help over-
come local optima. Crossover has often been shown to be practically beneficial
for specific problems (e.g., [HK18; APS20]). Recently, its benefit for general
optimization problems has also been proven theoretically [DHK12; PD18]. As
models can be structurally complex and typically underlie structural constraints,
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1 Introduction

it is yet unknown how a recombination of models can be done in MB-MDO.
This shortcoming raises two questions:

RQ6 How can crossover be performed in MB-MDO?
RQ7 Can crossover be beneficial for the effectiveness and efficiency of evolu-

tionary algorithms in MB-MDO?

Obviously, RQ7 depends on finding one or multiple solutions for RQ6. We also
realize that the absence of a crossover operator in MB-MDO may be favored by
the lack of a formal foundation for MB-MDO (and MDO in general). Thus, we
are confident that tackeling RQ3 may also greatly contribute to the development
of crossover operators.

1.3 Contributions

The following contributions are made by this thesis to answer the research ques-
tions, tackle the aforementioned shortcomings, and deepen the understanding of
MDO. Hereby, underpinned by their dominant usage in SBSE and MDO, we
focus on evolutionary algorithms as the search-based optimization technique.
Both encoding approaches, RB-MDO and MB-MDO, are compared both quali-
tatively and quantitatively. Backed by the outcome of this comparison, the more
promising model-based approach is focused in the rest of the thesis. We present
a formal framework for MB-MDO based on graph transformation theory which
relies on sets of graph transformation rules to perform mutation. In that context,
soundness and completeness are defined as properties of such sets. An empirical
study affirms the importance of both properties for the design of efficient and
effective evolutionary algorithms in MB-MDO. Based on our framework we also
extend MB-MDO by proposing a generic construction of crossover operators
for graph-like structures. Finally, we provide an instantiation and prototypical
implementation of this formal crossover approach for the Eclipse Modeling
Framework (EMF) [Ste+08; emf] and empirically show its appropriateness.

The contributions of this work have been published as journal and conference
papers. The contents of the publications are included in mostly their original
form in the following chapters; mild adaptions have been made to consolidate
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1.3 Contributions

the work and to enhance readability. In particular, references to the publications
were substituted by cross-references within the thesis. The appendices of the
individual publications are included as a comprehensive appendix at the end
of the thesis in the order of the chapters to which they belong. In the following,
the contributing publications are summarized. For each publication the authors,
the journal/conference in which it was published, the contributions of the thesis
author to the respective work, and the targeted research questions are listed.

1.3.1 Searching for Optimal Models: Comparing Two
Encoding Approaches [Joh+19a]

Publication details

Authors: Stefan John, Alexandru Burdusel, Robert Bill, Daniel Strüber, Gabriele
Taentzer, Steffen Zschaler, Manuel Wimmer
Appeared in: Journal of Object Technology, Volume 18, Number 3 (2019)
Presented at: 12th International Conference on Model Transformations (ICMT)
Contributions: The thesis author acted as the lead of the comparison project. He
largely contributed to the design of the comparison, performing the qualitative
analysis, the design and preparation of the quantitative experiments, and the
interpretation of the results. The paper was co-written by all authors, with the
thesis author contributing major parts to the following sections: Optimization
Problems, Model-driven Optimization, Qualitative Comparison, Quantitative
Comparison, Discussion, Threats to Validity, and Conclusion.
Targeted research questions: RQ1, RQ2

In MDO the two approaches on how to encode solutions, RB-MDO and MB-
MDO, have been developed and investigated independently from each other. So
far, apart from being model-driven, i.e., based on models and model transforma-
tions, the relation between them remains unclear. Our contribution addresses this
lack of knowledge and provides a systematic comparison of both approaches.

To get a deeper insight into their peculiarities, both approaches are first compared
from a qualitative perspective. Their differences and similarities as well as the
implications thereof are discussed. Most prominently, the analysis reveals that
the representation of solutions as rule-call sequences (RB-MDO) grants more
flexibility in the choice and configuration of evolutionary operators. However,
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1 Introduction

maintaining the validity of such sequences also comes with an overhead and can
have negative effects on an optimization. Especially dependencies between rule
calls can pose a problem which cannot easily be overcome.

Based on an evaluation, the approaches are also compared quantitatively. To that
end, we considered three optimization problems from the software engineering
domain: the class responsibility assignment problem (CRA) [BBL10], the next
release problem (NRP) [BRW01], and a refactoring use case (REF) [LK13].
We observe that MB-MDO in most cases outperforms RB-MDO, especially for
large models. Furthermore, the maybe most substantial feature of RB-MDO, the
possibility to apply crossover, shows to be detrimental for the quality of resulting
solutions. We discuss possible reasons for these results and relate our findings to
the properties we identified in the qualitative analysis for both approaches.

From these results we consider MB-MDO the more promising approach to
tackle optimization problems with MDO. All the more, as the future addition
of a crossover operator might unfold untapped potential. Consequently, the
comparative study constitutes the basis for our decision to focus our further
research on MB-MDO.

1.3.2 A Graph-Based Framework for Model-Driven
Optimization Facilitating Impact Analysis of
Mutation Operator Properties [Joh+23a]

Publication details

Authors: Stefan John, Jens Kosiol, Leen Lambers, Gabriele Taentzer
Appeared in: International Journal on Software and Systems Modeling (2023)
Contributions: The thesis author was the main contributor to the design and
execution of the experiments and the interpretation of the results. He also set
up, documented, and published the artifacts of the evaluation [Joh+23b]. The
development of the framework was a joint effort of all authors. The paper was
co-written by all authors. The thesis author was the main contributor to the
Running Example and Evaluation sections, and was instrumental in the detailed
discussion of the use cases. He did not contribute to the formal proofs.
Targeted research questions: RQ3, RQ4, RQ5
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1.3 Contributions

So far, there is no formal basis consolidating the concepts of MB-MDO. To
deepen the understanding of this domain, we propose a formal framework
that defines the ingredients of evolutionary algorithms used in MB-MDO. As
graphs and graph transformations are well-suited to represent models and model
transformations, the framework is based on the theory of graph transformation.
Since crossover has not yet been investigated for MB-MDO, regarding change
operators the framework focuses on mutation. Specifically, it details the use
of graph transformation rules as element mutation operators, i.e., as operators
implementing a change of a single population element (being a model). The
formalization, however, is done with the extension to further operators (e.g.,
crossover) in mind.

With the framework we also provide a comprehensive overview over the key
aspects of evolutionary algorithms in the context of MB-MDO and discuss their
characteristics. These contributions are meant to serve as a guidance for the
rigorous design and specification of evolutionary algorithms in the context of
MB-MDO; to illustrate this aspect, the instantiation of the framework is shown
on NSGA-II [Deb+02], a state-of-the-art evolutionary algorithm, and the CRA
case as the treated optimization problem. The formal setting of our framework
also enables a precise reasoning about properties of such evolutionary algorithms
and, in particular, their evolutionary operators. Drawing on this attainment we
define two properties of (sets of) element mutation operators of evolutionary
algorithms used in MB-MDO. Soundness captures if (sets of) element mutation
operators can generate models that violate so-called feasibility constraints of an
optimization problem. Feasibility constraints are considered constraints which
might be violated by solutions created throughout the optimization process. To
be considered meaningful, however, a solution needs to fulfill them, i.e., it needs
to be feasible. Completeness reflects whether or not a given set of element
mutation operators can be used to reach every possible feasible solution of an
optimization problem. The definition of both properties on the level of element
mutation operators allows for their static analysis. In the case of soundness,
to some extent existing tooling can be used to support this analysis [Nas+18;
Nas+20].

To investigate the impact of these properties on an optimization, we also propose
and formally define various metrics to measure the performance of evolutionary
algorithms. An empirical evaluation, based on three state-of-the-art evolution-
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ary algorithms (NSGA-II, SPEA2 [ZLT01], and PESA-II [Cor+01]) and three
optimization problems from the domain of software engineering (the CRA,
SCRUM [BZJ21], and NRP cases), reveals the importance of soundness and
completeness for the development of effective and efficient evolutionary algo-
rithms for MB-MDO. It also showcases how our framework can contribute to
conduct clearly defined and repeatable experiments.

1.3.3 A Generic Construction for Crossovers of
Graph-like Structures [TJK22]

Publication details

Authors: Gabriele Taentzer, Stefan John, Jens Kosiol
Appeared in: Proceedings of the 15th International Conference on Graph Trans-
formation (2022)
Presented at: 15th International Conference on Graph Transformation (ICGT)
Contributions: The development of the approach was a joint effort of all au-
thors. The paper was co-written by all authors. The thesis author was the main
contributor to the Running Example section as well as to the examples discussed
for the crossover construction. He did not contribute to formal proofs.
Targeted research questions: RQ6

Traditionally, apart from well-designed mutation operators, crossover is a sub-
stantial part of any evolutionary algorithm. For various optimization problems
its potential to exploit and recombine good parts of existing solutions has, both
pratically and theoretically, shown to be beneficial regarding efficiency and
effectiveness of an optimization [DHK12; PD18; HK18; APS20]. Thus, the
absence of crossover in MB-MDO can be considered a major shortcoming.

Drawing on our proposed framework, we formally define a generic construction
for crossover operators of graph-like structures. In particular, typed, attributed
graphs are supported which are a typical means to represent models in MB-
MDO. Therefore, the presented construction can be used to implement crossover
operators for MB-MDO but might also become useful in other contexts. The
construction is applicable regardless of the semantics of the underlying graph-
like structure, i.e., it is problem independent. However, it provides several
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configuration points which allow to adapt the resulting crossover operators to
specific optimization problems to leverage domain specific knowledge.

We show that our construction is correct and complete in the sense that for
any two solutions to an optimization problem two valid offspring solutions
can be calculated. Furthermore, we discuss that our construction can be inter-
preted as a unifying framework covering various existing crossover approaches
for graphs and even for string representations (e.g., the well-known k-point
crossover [ES15]).

1.3.4 Towards a Configurable Crossover Operator for
Model-Driven Optimization [JKT22a]

Publication details

Authors: Stefan John, Jens Kosiol, Gabriele Taentzer
Appeared in: Proceedings of the 25th International Conference on Model Driven
Engineering Languages and Systems: Companion Proceedings (2022)
Presented at: 5th Workshop on Artificial Intelligence and Model-driven Engi-
neering 2022 (MDEIntelligence)
Contributions: The thesis author was the main contributor to the development
and implementation of the approach, the design and execution of the experiments,
and the interpretation of the results. He set up, documented, and published the
open-source project MD⊚⊚⊚ver [mdover] containing the implementation, as well
as the artifacts of the evaluation [JKT22b]. The paper was co-written by all au-
thors, with the thesis author being the main contributor to the following sections:
Related Work, Running Example, Implementation, and Initial Evaluation.
Targeted research questions: RQ6, RQ7

From our generic approach to crossover we derive a more concrete crossover
operator. It adheres to our formal definition of graph-like crossovers but is
suited for the application to EMF-based models. EMF is one of the widely
adopted frameworks for modeling and is the basis for various tools implement-
ing MDO [Bil+19; Str17; BZS18; Hor+22]. However, EMF imposes structural
constraints on models which can easily be violated if models are recombined
carelessly. The proposed crossover operator is designed to respect these con-
straints while still being independent of the optimization problem at hand. At
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the same time, if needed, it still offers several points of configuration to allow
users to incorporate domain-specific knowledge. We also provide a prototypical,
generic implementation designed for extension [mdover]. First experiments with
the CRA case show that even in this prototypical form crossover can improve
the effectiveness of evolutionary algorithms in MB-MDO.

1.4 Outline

Chapter 2 corresponds to the first contribution. Both of the encoding approaches
are analyzed and compared qualitatively as well as quantitatively. Motivated
by the outcome of this comparison, Chapter 3 presents a formal framework for
MB-MDO. Based on this framework, we define and evaluate soundness and
completeness as desirable properties of sets of model transformation rules used
in mutation operators. A formal definition of a generic construction of crossover
operators for MB-MDO is presented in Chapter 4 followed by an EMF specific
concretization and an initial evaluation of the same. Chapter 5 summarizes the
achievements of this work and discusses future challenges in MDO.

Chapters 2 to 4 are based on related but individual publications. The context
is provided by the comprehensive introduction in Chapter 1 and the coherent
conclusion in Chapter 5.
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2
Comparison of Approaches to

MDO

Preface: This chapter corresponds to the publication Searching for Optimal
Models: Comparing Two Encoding Approaches [Joh+19a].

2.1 Introduction

Many software engineering problems give rise to a tremendous space of possible
solutions that differ in various qualities, such as their performance, resource
efficiency, and understandability. To efficiently find optimal solutions, search-
based software engineering (SBSE) [HJ01] seeks to formulate the problem as
an optimization problem over one or multiple fitness functions capturing the
qualities of interest. By using metaheuristic search techniques, the available
solution space can be explored efficiently. Due to their generality, a technique of
particular relevance are genetic algorithms [HMZ12], which use the evolutionary
operators of mutation, crossover, and selection to perform a guided search over
the search space.

Model-driven engineering (MDE) is a paradigm that aims to raise the level of
abstraction in a broad range of application domains by the use of models, which
are continuously refined and transformed. Recently, research combining SBSE
and MDE for a range of purposes has become increasingly popular. The term
search-based model-driven engineering (SBMDE, [BSA17]) has been proposed
as an umbrella term for these efforts. One particular line of research in SBMDE,
which we call model-driven optimization (MDO), aims to reduce the level of
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expertise required by users of SBSE techniques1. In MDO, models are used to
specify optimization problems and transformation rules are used to explore the
search space. Thus, rather than becoming involved in the intricacies of the used
optimization technology, users interact with a domain-specific formulation of
their problem. They can rely on the familiar modeling and model transformation
tools to inspect the solutions and specify the change operations.

Recently, a variety of MDO frameworks has emerged [Bil+19; Abd+14; ZM16;
Str17] and been applied successfully in numerous use-cases, including security-
oriented software refactoring [Rul+18], model generation [SNV18], transfor-
mation modularization [Fle+17], and various more examples [BSA17]. A key
distinction in MDO frameworks concerns the way in which solutions are en-
coded [ZM16]: The model-based encoding approach represents solutions as
models. In the rule-based encoding approach, a solution is a sequence of rule
calls in the context of a given input model. Both encoding approaches have dis-
tinct advantages: The model-based approach reduces the overhead of applying
transformations before the solution is evaluated. It also removes the effort for
tracking detail information of the rule calls. The rule-based approach, instead of
only incrementally changing the solutions, allows to go back in time easily and
deviate from changes made earlier, which may allow the search to move faster
through the search space.

So far, there has been no systematic assessment of how the choice of encoding
impacts the performance of the search. In existing use-cases, the approach
was chosen in an ad-hoc manner, based on the availability of a specific MDO
framework. Systematic evidence for the suitability of the chosen approach may
help developers in selecting a solution that best fits their use-case and lower the
acceptance threshold for MDO in practice.

In this chapter, we aim to compare the two main encoding approaches in MDO
frameworks. We study the implementation of these approaches in two state-of-
the-art MDO frameworks that differ in the encoding approach used, but otherwise
share the same technological basis. This setup allows us to attribute any observed
differences in performance to the used encoding. Specifically, we consider MO-
MoT [Bil+19; momot] and MDEOptimiser [BZS18; mdeo], which follow the
rule-based and the model-based approach, respectively. Both are built atop of the

1As opposed to applying SBSE techniques to solve MDE problems.
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EMF modeling platform [Ste+08; emf], the Henshin model transformation lan-
guage [Are+10; Str+17], and the MOEA evolutionary search framework [moea].
Problems are specified by meta-models; model transformations are performed
by Henshin transformation rules.

The main contributions of the chapter are as follows:

(1) A qualitative comparison between the model-based and the rule-based en-
coding in MDO frameworks, based on a systematic study of their features.

(2) A quantitative comparison of both encodings with their implementations
in MOMoT and MDEOptimiser, based on their performance (regarding
solution quality and execution time) in a set of three diverse use cases.

(3) Insights into the applicability of both encoding approaches; their strengths
and weaknesses. We study whether the differences can be attributed to the
different encoding approaches.

The chapter is structured as follows: Section 2.2 introduces the use-cases con-
sidered in this chapter. Section 2.3 describes MDO. Section 2.4 and 2.5 are
devoted to the qualitative and quantitative comparative evaluation, respectively.
Section 2.6 provides interpretations for the observed results, while Section 2.7
points out threats to their validity. Section 2.8 discusses related work. Section 2.9
concludes the chapter.

2.2 Optimization Problems

For our experimental analysis, we focus on three combinatorial optimization
problems. Such problems can be described by providing [GJ79]: (i) a problem
domain; (ii) problem instances, each with a finite set of candidate solutions; (iii)
a function which maps each candidate solution to a rational number.

Combinatorial optimization problems are often encountered in fields such as
engineering, software engineering and finance [CR04]. In contrast to other
optimization categories (e.g. Integer Programming, Linear Programming), where
sets of equations need to be solved, requirements of combinatorial problems are
usually formulated by objects and their relationships. This makes them ideal
candidates for Model-driven Optimization.
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2 Comparison of Approaches to MDO

2.2.1 Problem Descriptions

In this section, we briefly introduce the case studies we will use for quantitative
evaluation. We provide only a rough description of the key features of each case
study; more detail can be obtained from the websites linked in the footnotes.

Class Responsibility Assignment (CRA). The CRA use case [BBL10]
stems from the domain of software design and, initiated by the Transformation
Tool Contest 2016 (TTC’16) [FTW16], has been addressed by several works
in the last years [FSK17; BZ18; Str17]. A software system is defined by a set
of features (methods and attributes) and dependencies. Dependencies can be
functional, i.e., one method calling another one, or data-driven, i.e., an attribute
is processed by a method. Classes can be added to encapsulate features and
modularize the system. With the constraint of assigning all features to classes,
the optimization goal is to reach a good modular software design. To assess
the quality of such a class diagram, the CRA-Index is used, which aggregates
the metrics of cohesion and coupling. To increase the maintainability and
comprehension of a system, combinations of high cohesion and low coupling,
reflected by higher CRA-Index values, are desirable [BDW98]. To facilitate
easier comprehension of the model changes needed to reach a modular design,
we define an extended CRA case (CRA ext.) with the additional objective
to minimize the number of transformations performed by the optimization
process.

Next Release Problem (NRP). The NRP is about planning which features
to include in the next release of a software product. Features are requested by
customers in terms of requirements and are implemented as software artifacts.
The two optimization objectives are to minimize the development costs, by
developing as few artifacts as possible, and to maximize customer satisfaction,
by fulfilling requirements. Typical versions of the problem [Dur+11] do not
allow nested requirements, partial fulfillment of requirements, or dependencies
between software artifacts. Based on the work of Burton and Poulding [BP13],
our problem specification2 considers these additional facets.

2see https://mde-optimiser.github.io/case-studies/nrp/ (visited on 06/2023)
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2.2 Optimization Problems

CRA CRA ext. NRP Ref Ref ext.

objective single multi multi single multi
min. transf. no yes no no yes
coarse obj. no no yes no no
constrained yes yes no no no
mut. changes small small large large large
mut. complexity low low medium high high
mutable types yes yes no yes yes

Table 2.1 – Optimization characteristics covered by the considered use cases.

Refactoring (REF). The REF use case3 has been taken from the TTC’13.
Program refactoring is a common task in agile development typically performed
manually. Developers strive to reduce the complexity and increase the compre-
hensibility of their programs without affecting their function. While there is a
great variety of refactor operations possible, we restrict ourselves to attribute
location changes to not require any control flow information about the program.
The objective is to minimize the number of elements (classes and attributes), by
moving duplicate attributes to existing or newly generated superclasses. In an
extended version (REF ext.) we want the refactoring itself to be as simple as
possible to ease manual review. Therefore, we additionally minimize the total
number of refactoring operations.

2.2.2 Coverage of Selected Use Cases

With the selection of the above use cases, we seek to cover a wide range of
optimization characteristics (Table 2.1) which might influence both encoding
approaches differently. We selected single- as well as multi-objective problems.
In particular, problems where the number of applied transformations needs to
be minimized are, hypothetically, easier to address by a rule-based encoding.
NRP includes an objective (maximize customer satisfaction) which guides the
optimization only in a coarse manner, i.e., multiple transformations might be

3see http://martin-fleck.github.io/momot/casestudy/class_restructuring/
(visited on 06/2023)
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2 Comparison of Approaches to MDO

needed to change a solution’s fitness with regard to that objective. The CRA
case comprises an additional constraint. With regard to transformation rules, the
use cases differ widely. The CRA case uses atomic rules which perform only
small changes and contain basic rule elements. In the other cases, more complex
rule structures (e.g., control flow elements) can be found. Their rules also allow
larger parts of a problem instance to be restructured in one mutation. In terms of
their structure, optimization problems differ in whether or not instances of types
may be removed and created. While CRA and REF contain such mutable types
(e.g. classes), NRP only allows to select or deselect existing type instances.

Covering these aspects of optimization problems mitigates the risk of introducing
a bias into our comparison. A systematic analysis of the impact of each aspect,
however, is not in the scope of this chapter and is left for future work.

Regarding problem size, we considered five models, ranging from 9 features
and 14 dependencies (model A) to 160 features and 600 dependencies (model
E) for CRA. For NRP, two models were used. Model A with 5 customers,
25 requirements and 63 software artifacts and model B with 25 customers,
50 requirements and 203 artifacts. Models A (19 classes, 18 attributes, 15
generalizations) and model B (6 classes, 68 attributes, 4 generalizations) were
used for REF.

2.3 Model-driven Optimization

We now introduce the MDO approach on the example of the CRA problem and
illustrate its concepts in the context of Genetic Algorithms (GAs), a specific
type of evolutionary algorithms. We stick to GAs because they are prominently
used in SBMDE literature [BSA17] and are supported by both of the compared
frameworks.

2.3.1 Preliminaries

For a basic understanding of the optimization process, we revisit GAs. GAs [Gol89]
work on a population of solutions. Solutions are represented externally by their
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phenotype. An encoding maps phenotypes to an internal representation, the
genotype. Each individual of the population has an assigned fitness, which repre-
sents the quality of a solution with regard to the desired optimization goals. A
search is performed iteratively by evolving existing solutions. While the fitness
is usually evaluated on the phenotype, changes to solutions are performed on
their genotype. Inspired by nature, evolution commonly comprises mutation
and crossover. Mutation induces changes in a single solution while crossover
aims at recombining multiple solutions in the hope of generating fitter offspring.
After an evolution, the population of the next iteration is selected, favoring fit
solutions. This cycle continues until a predefined termination criterion (e.g.
fitness threshold, number of evolutions) is met.

Both encoding implementations considered in this chapter use Henshin [Are+10;
Str+17] to specify and perform model transformations. Henshin is a rule-based
transformation language based on the paradigm of graph transformation. A
transformation rule is visually represented as a graph in which nodes and edges
are annotated with actions such as delete, preserve, create, and forbid (Fig. 2.3).
Henshin provides an interpreter engine to apply rules to input models. Roughly,
a rule is applied to an input model by finding a match of its preserve and delete
elements, and performing the changes specified by the delete and create elements.
The existence of forbid elements prevents a rule from being applied.

Three easily confused terms related to transformation rules need to be distin-
guished. First, a rule specifies how a transformation has to be performed and
may contain formal parameters. Second, a rule call consists of a rule and the
actual arguments used to execute the rule. And third, a rule call executed in the
context of a specific model is called transformation.

2.3.2 Model-driven optimization

MDO relies on model-driven engineering concepts to specify search problems. In
general, a search problem specification comprises (i) a search space description,
defining all possible solutions to the problem on the genotype level; (ii) a method
for encoding individual solutions; (iii) a set of evolutionary operators used to
explore the search space; and (iv) a method for evaluating the fitness of individual
solutions based on the optimization goals. In Fig. 2.1a we include a general
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Figure 2.1 – Architectural overview for MDEOptimiser and MOMoT.
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Figure 2.2 – Meta-model of the CRA case.

overview of the architecture used by tools implementing MDO. In the following
sections, we describe the core specification components.

2.3.2.1 Encoding Approaches, Solution Space, Search Space

In MDO, a meta-model specifies the structure of a family of optimization prob-
lems. Model instances represent the phenotype of concrete problems and solu-
tions. Regarding the encoding of solutions, i.e., their representation in terms of a
genotype, the model-based and rule-based encodings differ. The model-based
encoding aims to reduce the computational time spent for translating solutions
between the geno- and the phenotype by using model instances for both. Thus,
fitness can be calculated directly on newly found solutions. Fig. 2.1b shows
an overview of the model-based approach. The rule-based approach uses se-
quences of rule calls as genotype. To evaluate the quality of a solution, its
whole sequence needs to be applied to the input model before its fitness can be
determined. Fig. 2.1c shows an overview of the rule-based approach.

Knowledge about immutable parts of a problem is needed to specify its solution
space. We define the solution space to contain all solutions to a problem on the
phenotype level, i.e, all solution models. Fig. 2.2 shows the meta-model for the
CRA case. White solid elements are immutable, while colored dashed elements
may be created or removed. The search space defines possible solutions on the
genotype level. In the model-based approach it equals the solution space. In the
rule-based approach it contains all rule call sequences that can be constructed
with the chosen set of transformation rules.
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2.3.2.2 Evolutionary Operators

In the model-based encoding, mutation is implemented in terms of applying one
or multiple transformation rules to a solution model. To our knowledge, how to
perform crossover to effectively recombine parts of several models remains an
open research problem. For that reason, the model-based approach usually relies
on mutation to explore the search space. Mutation in the rule-based approach
alters the sequence of a solution. Rule calls are added, removed or changed. The
approach also facilitates the use of traditional crossover operators specified for
sequential encodings.

To perform model changes, in the CRA case we rely on four Henshin rules
(Fig. 2.3), proposed by Burdusel and Zschaler [BZ16]. Unassigned features
can be assigned to newly created classes by addUnassignedFeatureToNewClass
and to existing classes by addUnassignedFeatureToExClass. moveFeatureToEx-
Class relocates a feature; deleteEmptyClass decreases the number of available
classes.

2.3.2.3 Fitness Functions

The quality of solution models is evaluated using fitness functions implemented
in Java or OCL. Both encoding approaches allow to formulate objectives on
the meta-model. In the rule-based approach, additionally, objectives on the
sequence of rule calls are possible. Along with objectives, additional constraints
(not covered by the meta-model) might be needed to distinguish between valid
problem instances and valid solutions. It is up to the optimization algorithm used
how violating solutions are treated. In the CRA case, Java classes implement the
calculation of the CRA-Index, the retrieval of the number of applied rules, and
the constraint of assigning all features to classes.

2.3.3 Implementing Tools

MOMoT as well as MDEOptimiser rely on EMF, Henshin, and the MOEA
framework as their technological basis. Both offer a mature DSL to facilitate an
easy configuration of optimization runs.
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Figure 2.3 – Henshin transformation rules of the CRA use case.

Both allow the user to specify the transformation rules used as mutation operators.
The responsibility for generating consistent models is left to the user, who must
ensure that the provided rules do not generate invalid model instances when they
are applied. As MOMoT relies on the rule-based approach, rules are additionally
required to match uniquely when their parameters are set. Otherwise, applying a
solution sequence may lead to non-deterministic results.

As an implementation detail, MOMoT works with a fixed solution length, which
needs to be specified as an additional parameter. By default, each solution of the
starting population is initialized by randomly assigning rule calls to each slot of
its sequence. In MDEOptimiser, following the model-based approach, solutions
of the initial population are generated by applying a single random mutation to
the input model provided by the user. To achieve a fair comparison, we adapted
MOMoT to randomly assign a rule call to just one slot of initial solutions.
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Model-based Rule-based

problem description initial model initial model
solution representation model rule call sequence
mutation operator rule call (sequence) alteration of sequence

slots
crossover operator adhoc implementations traditional variants for

sequential encodings
transformation rules both constructive and de-

structive rules needed
depending on use case:
constructive and/or de-
structive rules needed

solution quality fitness of solution model fitness of transformation
sequence and fitness of
resulting model

runtime time of applying muta-
tion

time of applying evolu-
tionary operators and re-
pair plus applying se-
quence to initial model

consistency meta-model confor-
mance

meta-model confor-
mance

completeness depends on search rules depends on search rules
(and solution length)

Table 2.2 – Summary of similarities and differences of both encoding approaches.

2.4 Qualitative Comparison

In MDO the structure and immutable parts of optimization problems are defined
by meta-models and instance models, respectively. They are independent of
the chosen encoding. The representation of solutions, however, influences most
other parts of the optimization process (Table 2.2). In the following, we consider
the main ingredients of MDO and discuss them for our two encodings.

Regarding the choice of evolutionary operators, the rule-based approach is more
flexible than the model-based approach. Representing solutions as sequences
allows the use of traditional crossover operators. Crossover is generally expected
to accelerate the optimization process by recombining (potentially good) parts
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of already fit solutions. Additionally, the rule-based approach brings more flexi-
bility in the choice of mutation. First, decisions of the past can be reconsidered
by changing existing rule calls or entirely deleting them from a solution. Second,
problems like CRA and NRP, in contrast to REF, are monotonic in the sense
that their whole solution space can be explored by only adding elements to (or
removing them from) the initial model. For the rule-based approach, purely con-
structive (or purely destructive) rules are sufficient in these cases. In case of the
CRA, addUnassignedFeatureToNewClass and addUnassignedFeatureToExClass
are such constructive rules (Fig. 2.3). In the model-based encoding, in contrast,
additional rules are needed (e.g., deleteEmptyClass and moveFeatureToExClass
in CRA). As a result, evolution steps are potentially spent on reverting prior
transformations, slowing down the search. Additionally, more effort has to be
put in rule creation.

The rule-based flexibility, however, comes at the cost of making additional repair
steps necessary. Rule calls might be dependent on each other, e.g., a rule call
in the CRA case creates a class to which a later rule call assigns a feature. As
such, changing a single slot in a sequence of rule calls may invalidate subsequent
rule calls, which needs to be addressed and may lead to a loss of evolutionary
information. Compared to the model-based approach, repair steps as well as the
necessity to apply a sequence to the input model to determine the fitness of the
resulting model, cause a runtime overhead in each evolution step. Its magnitude
depends on the size of the solution sequences, which is capped by the chosen
solution length in MOMoT. This additional parameter also makes finding a good
optimization configuration a bit harder. Note, however, that using sequences of a
specific length is not a strict requirement of the rule-based approach but merely
an implementation detail of MOMoT.

The rule-based encoding allows insight into how a solution has been found. It
also allows more variety in formulating objectives as it facilitates to not only
reason about the quality of a model but also of the rule call sequence generating
it. We exploited that functionality in the extended CRA and REF cases, where
the number of rule calls has to be minimized. In MDEOptimiser, as its encoding
does not naturally support such objectives, we had to implement an additional
rule call counter, effectively extending the information stored by the encoding.

Sequences of the rule-based approach do not, per se, fulfill specific consistency
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constraints. However, applying a sequence produces a solution model consistent
with the problem meta-model. This sort of consistency is naturally given for the
model-based approach. Completeness, i.e., whether or not the entire solution
space can be explored, in both approaches depends on the transformation rules
provided by the user. In the rule-based approach, additional care has to be taken
to choose a sufficiently large solution length when fixed size solutions are used,
as solution length caps the number of changes which can be applied to an input
model.

2.5 Quantitative Comparison

For the quantitative comparison, we are first interested in how both encoding
approaches compare with regard to their optimization performance (runtime
and solution quality) when the implementing tools are configured similarily.
The qualitative comparison, however, shows that the rule-based approach offers
configuration options for the evolutionary operators which are not present in the
model-based approach. To analyze their influence on optimization performance,
we also compare multiple MOMoT configurations.

We aim at answering the following research questions (subscripts are indicating
the associated chapter):

C2Q1: How do MDEOptimiser and MOMoT compare, in terms of optimiza-
tion performance, when their behavior is aligned as much as possible?

C2Q2: Can the optimization performance of the rule-based approach profit
from the ability to apply a traditional crossover operator?

C2Q3: Can the optimization performance of the rule-based approach profit
from excluding destructive transformation rules?

In the following, we present the experimental setup, the results we obtained and
discuss threats to the validity of our study.
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2.5.1 Experimental Setup

For each problem instance of the use cases presented above, we performed 30
optimization runs using NSGA-II [Deb+02] a prominent representative of ge-
netic algorithms [BSA17] supported by both frameworks. With a population of
100 solutions each optimization instance was executed on Amazon Web Services
relying on c4.2xlarge Spot instances running openjdk 1.8.0_191 and Amazon
Linux release 2. Apart from these common settings, both encoding approaches
differed in their parameters, runtime, and even the supported evolutionary opera-
tors.

2.5.1.1 Termination Condition

CRA CRA NRP REF REF
(ext.) (ext.)

A 5s 5s 120s 60s 800s
B 15s 15s 500s 800s 800s
C 30s 30s - - -
D 300s 120s - - -
E 2500s 1200s - - -

Table 2.3 – Timeouts in seconds used as termi-
nation condition for each problem instance.
A through E refer to the different instances
of a problem. For NRP and REF, only two
instances were used.

As a termination criterion for our
experiments, we chose specific
timelimits for each problem in-
stance (Table 2.3). We system-
atically determined sensible lim-
its by performing 10 runs with
MDEOptimiser for each problem
instance of each use case. The runs
were stopped when no improve-
ment took place for 100 evolutions
to guarantee that a good level of
convergence can be reached within
the limit. The average runtime of
these runs was chosen as the termi-
nation criterion for both approaches in the final experiments.

2.5.1.2 Operators

For both approaches, we let mutation perform exactly one change per evolution
step for each solution (100% mutation rate). This is done by either executing
a transformation rule (model-based) or changing the content of one sequence
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slot (rule-based). To answer the above research questions, we conducted ex-
periments with different MOMoT configurations. For the direct comparison of
both approaches (C2Q1), we configured MOMoT to use mutation only (MO).
To get insights into how crossover influences the performance of the rule-based
approach (C2Q2), another variant combining mutation with one-point crossover
(MC) was used. Crossover was also applied once for each solution and step
(100% crossover rate). For both approaches, we used the same set of transforma-
tion rules for each use case. To answer the last research question (C2Q3), in the
CRA and NRP cases, we analyzed additional MOMoT configurations refraining
from the use of destructive rules (e.g., deleteEmptyClass and moveFeature in
the CRA case; see Fig. 2.3), flagging them as non-destructive (ND). In total, we
tested four configurations of MOMoT as can be seen in Table 2.4.

To repair solutions in the rule-based approach, invalid rule calls were removed
from a solution sequence.

2.5.1.3 Solution Length

As briefly discussed in Section 2.3.3, for MOMoT a fixed solution length de-
termining the maximum number of possible rule calls of a solution needs to be
chosen. For the CRA case, to allow exploration of the whole solution space,
one has to guarantee that each feature can be assigned to a separate class. To
achieve that, the solution length must match at least twice the number of fea-
tures in the specific problem instance. As the transformation rules included in
NRP allow multiple software artifacts to be selected in one step, the situation
changes in favor of a smaller solution length. Based on these considerations, we
conducted preliminary experiments with solution lengths of 1x, 2x, 4x and 8x
the number of key elements of the specific use case. Interestingly, both use cases
behaved similar, with best values for 4x and 8x variants. We chose 8x for the
final experiments as it was slightly dominant. Regarding the REF case, we did
not have any expectations on the length of solutions, as the number of possible
refactorings can hardly be guessed from the number of elements. Therefore, we
experimented with a solution length of 10, 20, 40, 80 and 160. All lengths lead
to a very similar solution quality, 160 being slighty benefitial.
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2.5.2 Quality Criteria

We compare the encoding approaches on two criteria: their solution quality and
their associated runtime. In single-objective scenarios the fitness of solutions
can directly be used as a quality metric. In multi-objective optimization, this
approach is generally not applicable. When objectives are conflicting, tradeoffs
need to be considered, captured by the concept of Pareto optimality. A solution
is said to be Pareto optimal if one of its objectives cannot be improved without
degrading another objective. As a result, sets of mutually incomparable solutions,
called Pareto front approximations, need to be considered. Additionally, a
solution dominates another solution, if it is better in at least one objective and
not worse in any of the others. Capacity, convergence and diversity are the main
dimensions along which the quality of such sets is commonly assessed [Jia+14].
In our work we rely on two metrics measuring these dimensions for Pareto front
approximations.

2.5.2.1 Ratio Of Best Solutions Found

To quantify the capacity of a solution set S we measure the Best Solution Ratio
based on the cardinal C1 metric presented by [HJ98]

BSR =
|S∩PFpseudo|
|PFpseudo|

(2.1)

PFpseudo denotes the set of non-dominated solutions in the union of all solutions
found for a particular problem instance. In other words, the best solutions found
for that problem by any configuration used in the experiments.

2.5.2.2 Hypervolume

The Hypervolume indicator (HV) [ZBT07] is one of the most popular metrics
used in multi-objective optimization [RLB15]. It measures the size of the
area enclosed by the objective vectors of a solution set with respect to a given
reference point. In our experiments, for the latter we have chosen a point slightly
worse than the nadir point given by all solutions found for a particular problem.

29



2 Comparison of Approaches to MDO

This nadir point combines the worst objective values found so far in one vector.
We use PFpseudo to normalize HV. As such HV increases towards 1 as solution
sets converge towards PFpseudo. The distribution of the objective vectors of the
solutions among the objective space (the vector space of objective values) also
influences the HV. Thereby, HV incorporates convergence and diversity in one
measure.

2.5.3 Results

In the following we discuss the results of our experiments in terms of the
research questions we seek to answer. Table 2.4 summarizes the outcome of the
experiments with regard to the median quality and standard deviation reached by
each configuration for each problem instance. The complete data set discussed
in this section can be downloaded from [Joh+19b].

MDEO
MOMoT

MO MO, ND MC MC, ND
MED SD MED SD MED SD MED SD MED SD

CRA-A 2.33 0.45 3.00 0.47 2.67 0.67 3.00 0.49 3.00 0.72
CRA-B 1.82 0.53 2.16 0.50 1.83 0.46 2.72 0.61 1.50 0.64
CRA-C 2.22 0.54 -0.10 1.36 -1.52 1.74 -2.90 2.54 -5.71 3.49
CRA-D 5.44 0.88 -4.34 3.45 -5.82 3.12 -6.41 3.31 -15.45 5.29
CRA-E 11.30 0.95 -8.42 3.14 -10.04 3.97 -9.98 2.96 -20.13 4.83

CRA-EXT-A 0.89 0.04 0.97 0.05 0.90 0.07 0.97 0.06 0.97 0.06
CRA-EXT-B 0.89 0.02 0.91 0.02 0.89 0.03 0.90 0.03 0.88 0.03
CRA-EXT-C 0.97 0.02 0.94 0.04 0.93 0.03 0.86 0.06 0.87 0.06
CRA-EXT-D 0.93 0.03 0.81 0.05 0.87 0.04 0.71 0.06 0.76 0.05
CRA-EXT-E 0.90 0.04 0.82 0.05 0.91 0.03 0.71 0.08 0.81 0.04

NRP-A 0.79 0.00 0.76 0.02 0.77 0.02 0.75 0.03 0.75 0.02
NRP-B 0.71 0.01 0.48 0.04 0.49 0.04 0.42 0.05 0.38 0.06

REF-A 28.00 0.00 28.00 0.00 - - 28.00 0.00 - -
REF-B 51.60 0.00 51.60 0.00 - - 51.60 0.00 - -

REF-EXT-A 0.46 0.00 0.53 0.00 - - 0.53 0.00 - -
REF-EXT-B 0.50 0.00 0.50 0.00 - - 0.50 0.00 - -

Table 2.4 – Median results (MED) and standard deviations (SD) over 30 runs. The
median objective value is shown for the single-objective, the median Hypervolume
for the dual-objective variants. Generally, higher values are better. Only for single-
objective REF, lower values are better. ND variants are not available for the REF
case.
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Comparing Approaches (C2Q1). Both tools have been configured to have
equal runtime across similar configurations. Despite this limit, due to the dif-
ferences in the solution encodings and evolutionary operators, the number of
algorithm steps performed by each implementation differs ([Joh+19b]). Across
most cases, MDEOptimiser is able to run more than twice the number of steps
than MOMoT. In a few cases, however, most notably model E of the multi-
objective CRA case, MOMoT outperforms MDEOptimiser with regard to evolu-
tion speed.

Despite this difference in the number of steps, for small models MOMoT is
on par with or even better than MDEOptimiser in terms of solution quality
(Table 2.4). In the CRA case, MOMoT finds a slightly higher objective median
for input models A and B in the single-objective as well as in the multi-objective
variants. The same can be observed for model A of the multi-objective REF
case. However, as the size of the evaluated models increases, the quality of
the solutions found by MOMoT decreases compared to solutions generated by
MDEOptimiser. Most notably this can be seen for models C, D, and E of the
CRA case and model B of the NRP case. In the single-objective variants this
effect is also accompanied by a higher standard deviation.

The quality of the solutions is confirmed by the reference set contributions
observed for the multi-objective configurations included in Table 2.5. The table
shows the total size of the PFpseudo found for each problem instance, and the
BSR rate, indicating the percentage of the PFpseudo solutions found by each
configuration.

Impact of Rule-based Crossover (C2Q2). While applying crossover affects
the runtime, it does not do so in a consistent way ([Joh+19b]). In the CRA case,
fewer steps could be performed when crossover was used. This effect is stronger
for smaller models where mutation-only allows up to 50% more steps to be
executed. For the largest models a difference of 15-20% can still be observed and
the effect is a bit stronger for multi-objective variants than for single-objective
ones. In contrast, applying crossover allows for up to 50% more steps in the
NRP case. In the Refactoring case, there is no clear trend.

As shown in Table 2.4, in terms of solution quality, crossover is not beneficial
for any but a single configuration (model B of the single-objective CRA case).
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Configurations PFS PFC BSR Configurations PFS PFC BSR
MOMoT MC CRA A 1 1 1 MOMoT MO CRA E 54 0 0
MOMoT MO CRA A 1 1 1 MOMoT MC ND CRA E 54 0 0
MOMoT MC ND CRA A 1 1 1 MOMoT MO ND CRA E 54 1 0.019
MOMoT MO ND CRA A 1 1 1 MDEO CRA E 54 53 0.981
MDEO CRA A 1 0 0 MOMoT MC NRP A 32 24 0.75
MOMoT MC CRA B 4 0 0 MOMoT MO NRP A 32 28 0.875
MOMoT MO CRA B 4 0 0 MOMoT MC ND NRP A 32 25 0.781
MOMoT MC ND CRA B 4 0 0 MOMoT MO ND NRP A 32 30 0.938
MOMoT MO ND CRA B 4 1 0.25 MDEO NRP A 32 31 0.969
MDEO CRA B 4 3 0.75 MOMoT MC NRP B 245 29 0.118
MOMoT MC CRA C 10 0 0 MOMoT MO NRP B 245 19 0.078
MOMoT MO CRA C 10 0 0 MOMoT MC ND NRP B 245 28 0.114
MOMoT MC ND CRA C 10 0 0 MOMoT MO ND NRP B 245 30 0.122
MOMoT MO ND CRA C 10 1 0.1 MDEO NRP B 245 245 1
MDEO CRA C 10 9 0.9 MOMoT MC Ref A 7 7 1
MOMoT MC CRA D 44 0 0 MOMoT MO Ref A 7 7 1
MOMoT MO CRA D 44 0 0 MDEO Ref A 7 5 0.714
MOMoT MC ND CRA D 44 0 0 MOMoT MC Ref B 24 24 1
MOMoT MO ND CRA D 44 1 0.023 MOMoT MO Ref B 24 24 1
MDEO CRA D 44 43 0.977 MDEO Ref B 24 22 0.917
MOMoT MC CRA E 54 0 0

Table 2.5 – Summary of the PFpseudo Size (PFS), number of PFpseudo Contributions
(PFC) and Ratios of Best Solutions found (BSR) for MDEO and MOMoT in all
configurations.

Even in the NRP case, when more steps are executed with crossover, the results
are worse.

Impact of Destructive Rules (C2Q3). The rejection of destructive rules has
contrasting effects. Although the optimization is faster in the single-objective
CRA case, solution quality decreases considerably. For the larger models of the
multi-objective CRA version, however, we find the opposite to be true. In the
NRP case, the rule execution speed decreases but the quality is barely affected
(Table 2.4 and [Joh+19b]).

General Findings. In general, the convergence rate differs between MDEOpti-
miser and MOMoT. MDEOptimiser needs fewer evolution steps to develop good
solutions in all cases studied. Regarding the BSR, MDEOptimiser outperforms
MOMoT clearly for the multi-objective CRA cases and model B of the NRP
(Table 2.5). Additionally, the objective vectors of solutions of the found Pareto
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Figure 2.4 – Summary of the median HV increase over the number of evolution steps
and Pareto front approximations for all evaluated configurations for model B of the
NRP.
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front approximations spread wider across the objective space, a condition usually
considered favorable in multi-objective optimization [ČLM13]. Figure 2.4 shows
the convergence behavior and the spread of the Pareto front approximations on
the example of model B of the NRP case. For the other cases we refer the reader
to the online archive [Joh+19b].

2.6 Discussion

As the rule-based approach allows more options (crossover, reconsidering past
decisions, specialized rule sets) in supporting a search, one might expect it to
dominate the model-based approach in at least one of the tested configurations.
However, the evaluation results paint a different picture. In the following, we
will discuss possible reasons for these observations along the associated research
questions.

Preface. As discussed in the qualitative comparison, in the rule-based approach
rule calls may become invalid when changes are applied to their containing
sequence. We find this to be a central aspect for the explanation of observations
regarding runtime and solution quality. Due to the repair strategy used in the
experiments, as rule calls become invalid in an evolution step the number of rule
calls in a solution decreases. This positively affects runtime as fewer rules need
to be applied when evaluating the fitness of that solution. We refer to this as
Invalidation Runtime Effect (IRE) in the following. On the other hand, important
evolutionary information might get lost and quality might degrade. We call this
the Invalidation Quality Effect (IQE).

With an increasing size of sequences invalidations become more likely. As such,
both effects become stronger for larger models where longer solution sequences
are needed.

Comparing Approaches (C2Q1). The rule-based approach suffers from a
slower evolution compared to that of the model-based approach. This is mainly
caused by the overhead in applying all rule calls stored in a solution before the
solution’s fitness can be calculated. The overhead becomes more prominent for
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larger models where longer solution sequences are needed. This behavior reflects
in the solution quality. MOMoT outperforms MDEOptimiser for most of the
smaller models because it seems to have enough time to properly converge. As
models get larger, aggravated by a stronger IQE, MOMoT is not able to converge
equally well. A relatively high standard deviation in these cases underpins this
theory.

Impact of Rule-based Crossover (C2Q2). In most of the cases, crossover
was detrimental to the solution quality obtained by the rule-based approach.
We attribute this effect to the destructive nature of the traditional crossover.
By possibly invalidating many rule calls at once when mixing up sequences
of rule calls, a high IQE kicks in. In the multi-objective REF case and the
NRP case, applying crossover allowed to perform a higher number of evolution
steps. Two possible reasons come to mind. Because the rules of these cases are
potentially changing a large number of model elements at once, the invalidation
of a single rule call might cause a snowball effect. Accordingly, the IRE might
be more visible here than in the other use cases. Additionally, the IQE might
degrade the quality of solutions so frequently that only a very small set of Pareto
optimal solutions needs to be maintained. A faster selection process might be
the result.

Impact of Destructive Rules (C2Q3). In the CRA and NRP cases, any
optimal solution would certainly not need destructive rules. However, without
them, solutions might have to be degraded first (e.g. by substituting a feature
assignment with a class creation in the CRA case) before a better solution can
be reached. Here, destructive rules might help in overcoming local optima.
Unfortunately, this does not explain why the absence of such rules is beneficial
for some of the use cases. More research is needed to discover the causalities of
the observed behavior.

General Findings. Generally, the rule-based approach converges slower than
the model-based approach, i.e., more evolution steps are needed to reach a
comparable solution quality. We attribute this to the IQE which may introduce
steps of quality regression into the optimization process. As discussed for C2Q2,
crossover adds to that problem in most cases.
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2.7 Threats To Validity

Regarding research question C2Q1, the validity of our results depends highly
on whether the observed differences in performance can be attributed to the
differences in encoding. To mitigate the risk of side effects caused by the
implementation of both encoding approaches we have chosen frameworks which
are built on a similar basis. Both are implemented in Java, rely on EMF and
Henshin for the modelling part, and use the same NSGA-II implementation for
running the optimization. For common parameters, we used the same values
and the same transformation rules were used to explore the search space. Where
necessary, we also aligned the implementation of the tools: both starting from
the same initial population in our study and performing mutations of equal size.
However, although we checked key parts of both implementations, differences
influencing the runtime cannot be ruled out completely.

The generalizability of our findings is limited as both approaches may expose
different optimization behavior when other configurations, evolutionary opera-
tors and problems are selected. We are confident, though, that the characteristics
of our use cases cover a wide range of problems of practical importance.

2.8 Related Work

Our work is related to various approaches to encode search problems, including
conventional ones such as binary and integer representations. We discuss relevant
work below.

2.8.1 Conventional encodings

Several types of encodings have been proposed for finding optimal genotype
representations in evolutionary computation [ES15]. Binary representation
uses a bit-string in which values of bits are interchanged and switched by the
evolutionary operators to change the control variables. Integer representation
and real-valued representation are similar to the previous category, however,
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represent the control variables as integers and real values, respectively. Tree
representation uses a tree to represent the genotype. This encoding is common
to represent syntax trees of programs, when using genetic algorithms to improve
programs. Graph representations use a graph to represent both the genotype and
the phenotype.

In many cases, there is an additional genotype-phenotype translation step re-
quired to convert an encoding to the solution candidate, such that it can be
evaluated by the fitness functions. Usually, an additional repair step is needed
after the application of evolutionary operators, in order to repair syntactically
correct solutions which are semantically invalid.

2.8.2 Encodings in Model-Driven Optimization

Model-based encodings have been introduced by Burton et. al [Bur+12], who
used models and transformations to encode and evolve solution candidates for the
NRP problem. The Crepé Complete framework is a more general approach that
employs models to represent solutions for any given search problem [EWZ14].
However, this approach converts the models to an integer representation. Fit-
nessStudio [Str17] uses the model-based encoding to generate efficient mutation
operators. It evolves the mutation operators on a given training model using
higher-order transformations.

2.8.3 Ruled-based encoding

The rule-based encoding has been introduced by Kessentini et. al [KLW13],
who propose formulating search problems as a search of optimal transformation
chains resulting from rule call sequences. Abdeen et al. [Abd+14] follow
this idea in their VIATRA-DSE framework, calling their approach rule-based
design space exploration. Whereas VIATRA-DSE employs the VIATRA model
transformation language to specify transformations, our comparison focuses on
the MOMoT [Bil+19; momot] and MDEOptimiser [BZS18; mdeo] tools, since
they both use Henshin as the underlying transformation language.
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2.8.4 Comparisons between encodings

Previous efforts to compare different encodings have focused on conventional
encodings. Janikov et al. [JM91] experimentally compare a binary and a floating
point encoding of a dynamic control problem. They find that some benefits of the
binary encoding can be countered with refined problem-specific operators for the
floating point encoding. Wu and Lindsay [WL96] compare two different flavors
of linear representation, one with fixed and one with floating locations for the
building blocks for individuals. They find that the floating representation enables
the algorithm to better maintain diversity of individuals, and suggest to use both
encodings in combination. Kantschik and Banzhaf [KB01] compare a text-based,
a linear, and a hybrid representation and show that the hybrid outperforms the
former two in most cases. To our knowledge, no work has compared different
encodings for SBMDE problems, yet.

2.9 Conclusion

In this chapter, we performed a qualitative and quantitative comparison of the two
main encoding approaches in model-driven optimization, the model-based and
the rule-based one. The quantitative comparison showed that the model-based
approach tends to be more effective, except for the smallest considered models.
While the ability of the rule-based approach to reconsider past decisions may be
beneficial on the long run, it is quite likely the cause of a slower convergence
compared to the model-based approach.

Interestingly, the main distinguishing features of the rule-based encoding, do
not help very much. While the rejection of destructive rules caused a slight
improvement in some problem cases, it is not a game changing factor in general.
For traditional crossover, the result is even worse as it had a detrimental effect
on solution quality most of the time. Typically, crossover can help if there are
good parts in solutions which can be recombined. This can be problematic in
the case of model transformations, as the dependency of rule calls need to be
considered when multiple rule calls are exchanged during recombination. A
crossover operator more tailored to the needs of MDO is needed here.

38



2.9 Conclusion

Finally, our analysis raised a couple of questions left for future work. How
do the specific characteristics of a use case influence the performance of each
encoding approach? How can the traditional crossover be improved to be more
effective in the rule-based approach? And can crossover be done effectively in
the model-based approach?
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3
A Formal Framework for

Model-Based MDO

Preface: This chapter corresponds to the publication A Graph-Based Frame-
work for Model-Driven Optimization Facilitating Impact Analysis of Mutation
Operator Properties [Joh+23a].

3.1 Introduction

Various software engineering problems, such as software modularization [BBL10],
software testing [WL05], and release planning [BRW01], can be viewed as opti-
mization problems. Search-based software engineering (SBSE) [HJ01] explores
the application of meta-heuristic techniques to such problems. One of the widely
used approaches to efficiently explore a search space is the application of evolu-
tionary algorithms [HMZ12]. In this approach, elements of the search space are
generated from existing elements using evolutionary operators such as mutation
operators. However, the proper application of SBSE techniques is often not an
easy task. As pointed out in [ZM16], “the problem domains in software engineer-
ing are too complex to be effectively captured with traditional representations
as they are typically used in search-based systems”. Compared to traditional
encodings, e.g., by vectors, domain-specific models allow to more easily capture
structural information about the problem and solution domains. Thus, their use
can facilitate the exploratory search for solutions using evolutionary operators,
especially for structural software engineering problems.
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Model-driven engineering (MDE) [Sch06] aims to represent domain knowledge
in models and solve problems through model transformations. MDE can be used
in the context of SBSE to minimize the expertise required of users of SBSE
techniques. In Chapter 2, we coined the term model-driven optimization (MDO)
for this combination of SBSE and MDE. Two main approaches have emerged
in MDO: The model-based approach [BP13; ZM16] performs optimization
directly on the models, while the rule-based approach [Abd+14; FTW15; Bil+19]
searches for optimized model transformation sequences. In this chapter, we
focus on the model-based approach to MDO and refer to it as MB-MDO for
short. Problem instances and solutions are represented as models and the search
space is explored by model transformations.

With reference to [ES15; ZM16], the definition of an evolutionary algorithm
requires a representation of problem instances and search space elements (i.e.,
solutions). It also includes a formulated optimization problem that clarifies
which of the solutions are feasible (i.e., satisfy all constraints of the optimization
problem) and best satisfy the objectives. The key ingredients of an evolutionary
algorithm are a procedure for generating an initial population of solutions, a
mechanism for generating new solutions from existing ones (in this case, by
mutation), a selection mechanism that typically implements the evolutionary
concept of survival of the fittest, and a condition for stopping evolutionary
computations. Selecting these ingredients so that an evolutionary algorithm is
effective and efficient is a challenge.

Using MB-MDO the application of search-based techniques in software engi-
neering can be simplified since the search space consists of models evolved
with model transformations. However, this does not prevent us from creating
sub-optimal specifications of evolutionary operators. For example, a particular
set of mutation operators may not be complete, i.e., it may not reach all regions
of the search space, so an optimum or a good enough solution may be missed.
For optimization, however, it can be quite advantageous if the entire search space
is reachable with a given set of evolutionary operators. Furthermore, too many
of the possible mutations can lead to infeasible solutions, so that it may be advan-
tageous if the given set of operators is sound in the sense that mutating a feasible
solution yields a feasible solution again. In Chapter 2 and [Str17; BZJ21],
several sets of mutation operators were evaluated for their effectiveness, i.e.,
ability to produce good results, and for their efficiency, i.e., low computational
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cost. In particular, the results in [BZJ21] suggest that feasibility-preserving (i.e.,
sound) mutation operators can be advantageous. To clarify what soundness and
completeness can mean in the first place, and what implications they can have
for evolutionary computation, we need a formal basis.

According to Harman et al. [HMZ12], the initial excitement about SBSE is over;
it is now time for consolidation, i.e., “to develop a deeper understanding and
scientific basis for the results obtained so far.” This statement has motivated
us to develop a formal framework for MDO (in particular MB-MDO) that will
hopefully lead to a deeper understanding of MDO, which combines SBSE with
MDE. Our contributions are as follows:

(1) We present a graph-based framework for (the model-based approach to)
MDO using mutation operators and evolutionary algorithms, and exemplify an
instantiation based on the well-known NSGA-II algorithm [Deb+02]. We use the
theory of graph transformation [Ehr+06] to define model-driven optimizations
since graphs are a natural means to encode models of different types. Mutations
of models can be formally defined as graph transformations. Our framework
precisely defines all the relevant components of MB-MDO and is intended to
assist the developer in using MB-MDO to solve optimization problems.

(2) We identify and define soundness and completeness as interesting properties
of mutation operator sets. We select these properties because previous evalu-
ations suggest that they may play a role and because these properties can be
analyzed statically for certain types of mutation operator sets.

(3) In an evaluation, we investigate the impact of soundness and completeness
on the effectiveness and efficiency of evolutionary algorithms. We use the frame-
work to clarify all critical factors for conducting a reproducible experiment.
In the experiment conducted, we stick to three state-of-the-art evolutionary al-
gorithms (NSGA-II [Deb+02], PESA-II [Cor+01], and SPEA2 [ZLT01]) and
we study different sets of mutation operators for three optimization problems:
the Class Responsibility Assignment problem (CRA case) [BBL10; MJ14;
FTW16; BZJ21], the problem of Scrum Planning [BZJ21], and the Next Release
Problem [BRW01; BZJ21]. The experiment is based on the tools MDEOpti-
miser [BZJ21; mdeo] and Henshin [Are+10].
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In the next section, the model-based approach to MDO is presented using an ex-
ample. Section 3.3 considers the state of the art of MDO and other work related
to our framework. Then, in Section 3.4, we present our graph-based framework
for MB-MDO. Soundness and completeness of evolutionary operators are de-
fined in Section 3.5. To enable comparison of evolutionary algorithms, we define
their effectiveness and efficiency with respect to our framework in Section 3.6.
The evaluation is presented in Section 3.7. We conclude in Section 3.8. All
proofs and additional material for the evaluation can be found in Appendices A.1
and A.2.

3.2 Running example

Since the CRA case [BBL10] is a structural optimization problem in software
engineering and has become one of the most well-known cases when consid-
ering MDO, we use it to recall the core concepts of MB-MDO, illustrate our
formalization, and conduct a set of experiments. The CRA case aims to provide
a high-level design for object-oriented systems. Given a class model with fea-
tures (i.e., attributes and methods) and their usage relationships as the problem
instance, each partial assignment of features to classes forms a solution. What
is sought is a complete assignment of features to classes such that coupling
between classes is low and cohesion within classes is high.

Meta-modeling is used to define what kind of domain models are considered for
optimization. A suitable meta-model for the CRA case is presented in [FTW16]
and has been introduced in Section 2.3. A slightly adapted version is reproduced
in Fig. 3.1. Since the CRA case is a structural problem, we neglect all meta-
attributes (which are attributes of meta-model classes) such as class and feature
names to keep the running example as simple as possible. Additionally, we drop
the isEncapsulated edge. Multiplicities were also removed, as we will formulate
and consider the associated constraints explicitly later on. The meta-model
specifies class models that contain features (i.e., attributes and methods) and
prescribes the possible usage relationships. While methods can use attributes
and methods, attributes are used only by methods. To represent solutions, a
class model may contain classes to encapsulate features. A solution model is
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encapsulates
Class

featuresclasses

ClassModel

Attribute

dataDependency

Method

Feature

functionalDependency

Figure 3.1 – Meta-model of the CRA case as in [FTW16], slightly adapted. White
solid elements are invariant problem parts, the colored, dashed class element and its
incoming and outgoing references are solution-related.

considered to be feasible if each feature is assigned to exactly one class (the
feasibility constraint).

To assess the quality of a class design, two quality aspects are important: cohe-
sion and coupling. While cohesion confirms that dependent features are within
a single class, coupling refers to the dependencies of features between differ-
ent classes. Good solutions exhibit a class design with high cohesion and low
coupling because it is considered easy to understand and maintain. Cohesion
and coupling are measured by the CohesionRatio and CouplingRatio presented
in [FTW16], respectively.

3.3 Related work

Recently, several papers have been published on MDO optimizing models or
rule-based model transformation sequences. We consider related work on both
approaches below. Since our main contribution is a graph-based framework
for MB-MDO, we also consider related work on evolving graphs and other
frameworks for (evolutionary) optimization.

3.3.1 The rule-based approach to MDO

Early approaches combining SBSE with MDE seek optimized model transfor-
mation sequences [Abd+14; FTW15; Bil+19]. More precisely, a solution is a
sequence of rule calls that is to be applied to a given input model. The successful
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application of such a sequence then yields a solution model. The sequences are
optimized using local search algorithms and evolutionary algorithms. While
a mutation operator can change sequence slots, a crossover operator splits se-
quences into parts and recombines them in a different order. The behavior of
these operators is largely similar to the operation of traditional variants for se-
quential encoding. As sequences of rule calls do not per se satisfy consistency
constraints, they can easily become inapplicable to the input model after muta-
tion or crossover has taken place. Thus, a disruptive repair step (e.g., truncation
of a sequence) is typically needed to regain applicable sequences.

To our knowledge, soundness and completeness have not yet been formally
defined in the rule-based approach. In addition, the effects of soundness and
completeness on the effectiveness and efficiency of evolutionary algorithms have
not been investigated in the rule-based approach.

The comparison of the rule-based approach with the model-based approach in
Chapter 2 revealed that the model-based approach tends to be more effective than
the rule-based approach. For that reason, we decided to first develop a framework
for the model-based approach to MDO and plan to extend the framework toward
the rule-based approach in future work.

3.3.2 The model-based approach to MDO

Since our framework follows the model-based approach to MDO, we consider
related work in more detail. We consider our work in Chapter 2 and additionally
selected the following papers on the model-based approach to MDO that have
been published in journals, at conferences, and at workshops on modeling and
SBSE: [KLW13; Bur+12; BP13; ZM16; Str17; BZJ21; Hor+22]. We investigate
which core concepts of MB-MDO were considered. In addition, we compare
MB-MDO approaches by describing how they account for the soundness and
completeness of mutation operators.

An early work proposing an MDE-based framework to facilitate the application
of SBSE to MDE problems is given in [KLW13]. A generic meta-model for
encoding is presented that can be extended for specific optimization problems.
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However, only preliminary ideas are presented for how to specify an evolutionary
algorithm based on that encoding.

Generally, early papers such as [KLW13; BP13; Bur+12] mainly discuss the
representation of a problem and the search space. The computation space
is specified with meta-models that cover the representation of problems and
solutions. A distinction between problem and solution models was introduced
in [Bur+12; BP13]. Feasibility constraints and objectives for comparing search
space elements are not explicitly distinguished in the early papers. In [KLW13;
ZM16], the authors consider objectives and fitness functions and suggest that,
for example, a Java implementation can be used to measure the quality of
solutions.

Almost all papers on model-based MDO propose to define mutations of solution
models as model transformations. Later works such as [ZM16; Str17; BZJ21]
and our comparison in Chapter 2, go into more detail and define as well as
evaluate concrete mutation operators. In our comparison and in [Str17; BZJ21],
models are selected according to how well they meet the objectives or by giving
preference to feasible solutions. To terminate an evolutionary computation,
various forms of termination conditions were presented in [BZJ21; Hor+22]
and Chapter 2: Simple conditions limit the number of evolutionary iterations
performed in an evolutionary computation or the total runtime of these compu-
tations. Alternatively, the computation can be terminated if a certain number
of iterations does not yield a sufficient improvement regarding the quality of
solutions.

In Chapter 2 and [Str17; BZJ21], several groups of mutation operators are com-
pared with respect to effectiveness and efficiency. In [Str17], mutation operators
are generated by higher-order transformations and compared to manually con-
structed operators. Since the higher-order transformations generate larger rules
than the manually constructed ones, the evolutions can be shortened, resulting in
higher efficiency. In Chapter 2, the effects of destructive mutation operators were
studied. Evolutionary computations using these rules were faster but resulted in
models of less quality. In [BZJ21], the generation of consistency-preserving (i.e.
sound) mutation operators with regard to multiplicity constraints is presented.
The generated operators were compared to manually designed operators; some
effects on effectiveness and efficiency were noted. In [Hor+22], the authors use
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techniques from model-based MDO to tackle the problem of optimal configura-
tion of product lines. Concretely, from a feature model with basic constraints
they derive consistency-preserving configuration operators that transform valid
configurations into valid configurations, i.e., they also construct sound operators.
These are used as mutation operators in a genetic algorithm to search for optimal
configurations. In an evaluation, in particular, concerning effectiveness, their
approach outperforms other approaches that do not use sound mutation operators
but rely on repair techniques instead. They mention that their technique might
not result in a complete set of operators. Generally, the completeness of operator
sets has not yet been explicitly investigated.

In summary, related approaches to MB-MDO consider several evolutionary
operators and compare them in experiments with respect to their effects on
the effectiveness and efficiency of evolutionary algorithms. The understanding
of the core concepts of MB-MDO remains implicit or problem-specific. In
contrast, we will present a graph-based framework for MB-MDO that concisely
defines the core concepts. It will help clarify the critical factors for conducting
experiments in MB-MDO and increase the reproducibility of experiments. In
particular, the soundness and completeness of mutation operators have only been
roughly discussed. We will precisely define these properties with the help of our
framework and investigate whether they have an impact on the effectiveness and
efficiency of evolutionary algorithms.

3.3.3 Evolving graphs

Since our framework is based on graphs and graph transformation, a closely
related approach is Evolving Graphs by Graph Programming (EGGP) by Atkin-
son et al. [APS18; APS21; APS20]. The general motivation is to increase the
effectiveness of evolutionary algorithms that operate on graph-like structures
by operating directly on graphs as genotypes (as opposed to a linear encoding
of graphs). In EGGP, so-called function graphs serve as genotypes, and graph
programs based on graph transformation rules serve as mutation operators. The
mutations are designed to respect certain constraints, namely acyclicity, the
arity of nodes (since a node represents a function of a certain arity), and the
maximal depth. No other constraints are discussed, and the effects of unsound
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mutations are not measured. Our framework does not generally restrict the type
of constraints used to specify feasibility, but we propose to stick with graph
constraints [HP09] since the soundness of mutation operators for graphs can be
statically shown for this kind of constraints. In this sense, we consider a more
general form of soundness than that shown for EGGP. To our knowledge, the
completeness of operator sets has not yet been considered for EGGP.

3.3.4 Other formal frameworks

While MOMoT [Bil+19; momot] and MDEOptimiser [BZS18; mdeo] are tooling
frameworks for combining search-based optimization and model transformations,
we are developing a formal framework for the model-based approach to MDO.
While we are the first to develop a formal framework for this particular area,
there are other formal frameworks for evolutionary computation or processes.
Two such frameworks are discussed below as examples.

The first approach, which encompasses a large class of evolutionary (and other
randomized search) algorithms, regards population-based algorithms as algo-
rithms that generate a new population at each iteration such that each individual
is selected from the pool of all possible individuals according to a probability
distribution that depends on the current population [Cor+18]. This highly ab-
stract view on evolutionary computation allows the development of common
formal techniques that can be applied to analyze different kinds of evolutionary
algorithms on different problems (see, e.g., the results in [Cor+18; DLN19;
CL20]). However, this framework is too abstract for our purposes; it does not
provide support for determining the ingredients of an evolutionary algorithm
for which we need to find model-based implementations. Furthermore, this
framework does not capture elitism or methods used to preserve the diversity of
a population during evolutionary computation.

The most recent theoretical framework for evolutionary processes that we are
aware of is [Pai+15]; we also refer the reader to this paper for an overview of
attempts to develop such frameworks. In this work, the authors define in modular
terms the parts that make up evolutionary processes, namely, selection and varia-
tion operators. To show the adequacy of their framework, they demonstrate how
various evolutionary models from the domain of population genetics and various
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evolutionary algorithms can be instantiated within it. While soundness is not
discussed in [Pai+15], completeness (in our terminology) serves as the defining
property that a mutation operator should have. They deal with recombination
operators, a topic we leave for future work, and do not yet cover multi-objective
problems that MDO regularly addresses.

Because the existing frameworks do not adequately fit our purposes, we develop
our own framework in the following instead of presenting our framework as an
instantiation of an existing one.

3.4 A graph-based framework for MB-MDO

MB-MDO has been used in Chapter 2 of this thesis and in the literature to solve
a variety of optimization problems [BP13; FTW16; ZM16; BZJ21; Hor+22], and
the key ideas of the evolutionary algorithms presented are similar. To clarify the
design space of MB-MDO problems and evolutionary algorithms that solve them,
we present a framework for MB-MDO below. The definition of the framework
is deliberately generic since we want to include the existing variants (of the
model-based approach to MDO) into the framework. The framework is also
intended to be formal to allow for formal reasoning on MB-MDO. In particular,
we want to facilitate impact analysis of important properties of evolutionary
operators since domain experts can easily specify suboptimal operators. In
Section 3.5, we define two properties of mutation operator sets, soundness and
completeness, and in Section 3.7 we study their impact on effectiveness and
efficiency of evolutionary algorithms.

We will present the framework in two steps: First, the key concepts of the
framework are presented using a meta-model. It represents these key concepts
as interface classes and captures their structure and relations.

In a second step, all the key concepts identified in the meta-model are defined.
The definitions capture various requirements that have to be met when using
the framework to define concrete MB-MDO problems, develop appropriate
evolutionary algorithms, and design suitable experiments in MB-MDO. Since
models in general have a graph structure and evolutionary operators generate
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new models, it is natural to define the framework based on graph transformation
theory.

The presentation of the formal framework is accompanied by a discussion of
the characteristics of each key concept and examples of how the concept can be
instantiated. The nature of instantiation varies depending on the concept: while
the underlying computation space determines the type of models we work with,
an instantiation of the term “optimization problem” is primarily concerned with
an appropriate formulation of constraints and objectives. When instantiating
the term “evolutionary algorithm”, we must specify how to generate an initial
population, which evolutionary operators are to be applied, how they are applied,
and when to terminate.

3.4.1 Meta-model for MB-MDO

Figure 3.2 presents a meta-model that contains the core concepts of MB-MDO
and their interrelationships. We use this meta-model to remind us what evo-
lutionary optimization is and to facilitate the understanding of our framework,
which defines each of the concepts appearing in this meta-model.

To formulate an optimization problem, we encode it in terms of a computation
space that defines all computation models that can occur in the context of the
optimization problem. A problem instance spans a search space that contains
only those computation models that represent solutions to this problem instance,
the solution models. In addition, there are objective relations (which may be
realized by functions) to evaluate how well the solution models satisfy the opti-
mization objectives. Also, there may be feasibility constraints; a solution model
that satisfies all feasibility constraints is said to be feasible. A problem instance
is itself considered a (potentially infeasible) solution model. A population is a
finite multi-set of solution models over a common search space; a sequence of
populations is called evolutionary sequence.

To solve an optimization problem with respect to a particular problem instance,
an evolutionary algorithm iteratively evolves a population. A population genera-
tor first creates an initial population for a given problem instance. Given a set
of evolutionary operators, the evolution is performed following a computation
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specification that dictates how the evolutionary operators are applied in each iter-
ation. An evolutionary computation of an evolutionary algorithm is represented
as an evolutionary sequence which can be generated by that specific algorithm.
While element mutation operators are used to perform changes on computation
models, a population mutation operator organizes at the population level how
a new population is created by applying element mutation operators. Survival
selection operators decide which elements from a population survive and are
candidates for further evolution. Evolutionary operators usually make decisions
based on the given objective relations and constraints. Finally, an evolution is
terminated when a given termination condition is met.

3.4.2 Computation space

A computation space for MB-MDO forms the basis for encoding and solving
an optimization problem (see Fig. 3.2). Basically, it defines a domain-specific
modeling language to specify both optimization problems and their solutions.
In evolutionary computing, phenotypes, which represent elements externally,
are distinguished from genotypes, which represent their internal encodings. In
MB-MDO, we do not consider this distinction when formulating an evolutionary
algorithm. Problem instances and search space elements are all domain-specific
models. It is the task of future work to compare the efficiency of model-based
encodings with traditional encodings and to translate models into more efficient
encodings as needed. (An example where models are translated to bit strings is
given in [Hor+22].)

However, to show formal properties and implement evolutionary computation,
we choose appropriate formal representations such as typed graphs for formaliz-
ing models (see below) and Ecore models for implementing them (in Section 3.7).
Since there are several modeling languages used in software engineering, we are
looking for a formalization that is generic such that it is not restricted to models
of a particular type. Graph-like structures are a natural way to formalize models
of different types.

In MB-MDO, computation spaces are defined based on modeling languages,
typically specified with meta-models. In Chapter 2, like in several MB-MDO ap-
proaches in the literature [ZM16; BZJ21], we have chosen to represent problem
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instances by models and solutions by models with dedicated problem models.
This means that each model of a computation space has a particular part, the
problem model, which represents important information of the given problem
instance and is invariant throughout evolutionary computations. Typical exam-
ples of such encoding are the CRA case [Str17; BZJ21], the NRP case [BZJ21],
and the SCRUM case [BZJ21]. Accordingly, the meta-model for a computation
space, called computation meta-model, contains a dedicated problem meta-model.
All solution models must conform to the computation meta-model. A problem
model is a solution model that is fully typed over the problem meta-model.

A meta-model contains typing information as well as multiplicities and optionally
other constraints. We distinguish constraints that restrict the language (called
language constraints) from constraints that specify the feasibility of solutions
(called feasibility constraints). The problem meta-model induces a subset of
the language constraints as problem constraints, namely the constraints that
affect only the problem elements. Feasibility constraints specify properties
that are expected to be satisfied by reasonable solutions, i.e., they constitute
side conditions for the optimization. In contrast, language constraints serve to
exclude instances that would not constitute a well-posed optimization problem,
or to exclude instances for technical reasons. We distinguish problem constraints
because, as will be shown in Proposition 3.1, they are particularly easy to use in
optimization. In the context of graph transformation, constraints are formalized
with nested graph constraints [HP09].

EP FP

E F

TGP

TG
⊆ ⊆

m

⊆ mP

Figure 3.3 – Computation
models and cm-morphism.

A computation model is given by an instance
model that conforms to a computation meta-model.
Its problem model and solution part are fully spec-
ified by the types in the computation meta-model.
This basic structuring is reflected in the following
definitions and is shown in Fig. 3.3. It is based
on graphs typed over type graphs; a type graph
contains a node for each node type and an edge for
each edge type. The parallels to the structural part

of meta-models are therefore striking. Typed graphs are presented in [Ehr+06]
(and recalled in the appendix). For simplicity reasons, we neglect the handling
of attributes here.
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Appendix A.1 presents a generalized form of computation space based on cate-
gory theory. A generalized computation space can have various instantiations.
For example, it allows to define models as typed, attributed graphs using type
inheritance and model changes as typed, attributed graph transformations. All
the propositions presented in this section are proven in the appendix based on
category theory.

Definition 3.1 (Computation space). A computation meta-model is a pair MM =

(⊆: TGP ↪→ TG,LC) where ⊆ is an inclusion between type graphs TGP and TG,
and LC is a set of graph constraints typed over TG, called language constraints.
The set PC ⊆ LC, called problem constraints, is the subset of constraints that
can be considered as being already typed over TGP. (TGP,PC) is called problem
meta-model. A computation element or computation model (E, typeE) over MM
is a graph E together with a graph morphism typeE : E→ TG such that E |= LC.
The computation space over MM is

CS := {(E, typeE) |
(E, typeE) is a computation model over MM}.

Given a computation model (E, typeE) over MM, the model (EP, typeEP
) where

EP := E ∩ type−1
E (TGP) and typeEP

:= typeE |EP

is the problem model and E \EP is the solution part of (E, typeE).

A computation-model morphism, short cm-morphism, m between computation
models (E, typeE) and (F, typeF) is a graph morphism m : E→ F such that m is
compatible with typing, i.e., typeF ◦m = typeE (Fig. 3.3). A cm-morphism m is
problem-invariant if mP, the restriction of m to the problem model of E, is an
isomorphism between EP and FP.

Characteristics. The definition of a computation model reflects the core idea
that it consists of a problem model (which specifies a problem) and a solution
part (which contains information about the solution). The problem model should
stay invariant during evolution (which must be ensured); the solution part is
developed during an evolutionary computation. A special case is an empty
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problem model (and problem meta-model). A computation model (meta-model)
would be a simple model (meta-model) in this case.

A meta-model may contain constraints to specify the well-formedness of the
modeling language it defines. For example, certain elements of the solution part
must always occur together or the number of instantiations of a certain problem
type must be restricted. The latter would even be a problem constraint since
it applies only to the problem model. Language constraints impose hard con-
straints that any computation model must satisfy at any point in an evolutionary
computation.

Example 3.1 (Computation space). The meta-model underlying the computation
space for the CRA case is shown in Fig. 3.1. We consider the presence of exactly
one class model as a problem constraint. Additionally, representing a dependency
between two features by multiple edges is not useful. Parallel edges are thus
forbidden by further language constraints; avoiding parallel edges between
features can actually be realized by problem constraints.

For simplicity, the graph TG in Fig. 3.4 focuses on the core structural part and
shows the computation meta-model for the CRA case without abstract types and
names of edge types. Edge types are still distinguishable by the types of their
source and target nodes. As there will always be one class model, we also neglect
the node type ClassModel and its containment-edges shown in Fig. 3.1. As for
type inheritance, the graph TG shows a flattened version where all inherited
edges are shown. (For details on the flattening construction, see [Lar+07].)
The black part of TG indicates the node and edge types of the problem meta-
model TGP, while the red, dashed part with filled node rectangles indicates the
components of the solution part of computation models. Note that the solution
part itself is usually not a graph.

Figure 3.4 also shows two computation models E and S. They are both typed over
TG and use the same color coding as TG. The type within each node indicates
how it maps to the corresponding node in TG. S shows only a part of the problem
model of E along with its solution part. It can be included in E; the inclusion
morphism from S to E is indicated by numbers. Each node of S is mapped to the
node in E with the same number. The mapping of edges is not shown explicitly
but can be inferred from the node mapping. All morphisms between the graphs
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S
1:Method2:Method

5:Class

TG

MethodAttribute

Class

E
1:Method2:Method 3:Attribute 4:Attribute

5:Class 6:Class

Figure 3.4 – Computation models as typed graphs.

E and S and to the type graph TG are shown by arrows between the graphs in
Fig. 3.4. Note that due to the definition of cm-morphisms, the red and black
parts are mapped separately. Problem-invariant morphisms will be used for the
definition of element mutation operators in Def. 3.4.

Remark 3.1. In the remainder of this chapter, we assume that every computation
model E and every cm-morphism is typed over a graph TG, even if this is not
explicitly stated. For simplicity, we omit the definition of type inheritance in
Section 3.4, but use it in the evaluation. The interested reader can find a suitable
definition of type graphs with inheritance in [Löw+15]. The meta-model in
Fig. 3.1 is an example of a type graph with inheritance. Class models and classes
can refer to features, which can be attributes or methods. In that case, morphisms
between computation models are allowed to map objects with compatible types.
This means that objects in the image model may have more concrete types than
their origins. For example, a Feature object may be mapped to an Attribute
object. We explain and prove our formal results for type graphs without in-
heritance. However, all results can be applied to the case with inheritance as
long as inheritance hierarchies are limited to either the problem or the solution
part introduced in Def. 3.1 (i.e., problem elements cannot inherit from solution
elements and vice versa). The inheritance hierarchy in Fig. 3.1, for example, is
limited to the problem meta-model. When we prove our results in Appendix A.1,
we also explain why the results are transferable in this way.
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3.4.3 Optimization problem

To formulate an optimization problem, we need a computation space that con-
tains problem instances, solutions, and any other models we need to perform
evolutionary computations. As in the literature on evolutionary algorithms,
we define an optimization problem in MB-MDO as containing both a set of
feasibility constraints and a set of objective relations (see Fig. 3.2), so that it
belongs to the category of Constrained Optimization Problems [ES15]. Unlike
the language constraints, feasibility constraints can be violated by a model, and
that model remains an element of the modeling language and the search space.
However, a reasonable solution must not violate feasibility constraints. For
each optimization objective, there is a corresponding relation that allows to
compare solutions in terms of how well they satisfy the respective objective.
Ultimately, the extent to which each of the objectives is met determines the
perceived quality of a solution. A concrete problem to be optimized is given
by a problem instance; it defines its search space within the computation space.
This search space includes all models that have the same problem model as the
given problem instance.

Definition 3.2 (Optimization problem. Search space). Let a computation space
CS over a meta-model MM = (⊆: TGP ↪→ TG,LC) be given. An optimization
problem P = (FC,≤O) over CS consists of

– a set FC of graph constraints typed over TG, called feasibility constraint
set, which defines

FE(CS,FC) := {E ∈ CS | E |= FC},

the set of feasible elements of CS, and
– a finite set ≤O of total preorders ≤ j⊆ CS×CS for j ∈ J, where J indexes
≤O, which are called objective relations.

A problem instance PI for P is a computation model in CS. It defines the search
space

S(PI) := {E ∈ CS | EP is isomorphic to PIP}.

58



3.4 A graph-based framework for MB-MDO

Each element of a search space is called solution model for PI. A solution model
E with E |= FC is called feasible; we also write E ∈ FE(S(PI),FC).

Characteristics. There are two special cases for an optimization problem, both
of which are covered by the definition: If FC is empty, it is an unconstrained
optimization problem. All computation models are then automatically feasible,
i.e., FE(CS, /0) =CS. If≤O is empty (but FC is not), we get a classical constraint
satisfaction problem that only looks for a feasible element in the computation
space.

When | ≤O | = 1, we have a single-objective problem. An objective is often
given as a function and is referred to as an objective function or fitness function
in the literature. A metric that measures the ratio of coupling and cohesion can
be defined as an objective function in the CRA case. We use objective relations
instead of functions because they are more general. We also avoid the term
“fitness function” because it is used variously in the literature.

For | ≤O |> 1, a multi-objective problem is defined. In this case, it can happen
that the objectives are contradictory. This means that a solution may be better
than another with respect to one objective but at the same time worse with respect
to another objective. As stated in [Zit+03] by Zitzler et al., “we consider the
most general case, in which all objectives are considered equally important – no
additional knowledge about the problem is available.” Thus, to compare two
elements with regard to multiple objectives, we can use the dominance relation.
We say that a solution model E dominates a model F if it is as good as the other
in all defined objective relations and, in addition, E is better in at least one of
these relations. Formally this means that, if E ≤ j F for all j ∈ J and there is at
least one k ∈ J with F ̸≤k E, then E dominates F . A solution model that is not
dominated by any other model is called Pareto optimum. The set of all Pareto
optima of a search space forms the Pareto front. The set of non-dominated
solutions of a population is called approximation set.

Example 3.2 (CRA problem). In the CRA case, each feature must be assigned
to exactly one class, which represents two feasibility constraints, an assignment
to at least one class and at most one class. For each constraint, the extent of its
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violation in a solution can be determined by counting the number of features
that violate the constraint.

Two computation models are compared using two metrics for coupling and
cohesion. Combining both metrics into a single one (which is called CRA Index
in [MJ14]), the CRA case can be considered as single-objective problem. These
metrics can also be used to define two objective relations, which would then lead
to a multi-objective problem. Class models can then easily become incomparable
because one model has better coupling and another model has better cohesion.
Only if both the coupling and cohesion of model A are better than those of model
B, does A dominate B, so B is likely to be discarded.

A problem instance is given by a class model that contains a set of features
that can use each other (and usually no class is given). It conforms to the type
graph in Fig. 3.4. The problem models of the two computation models S and E
shown in Fig. 3.4 can be used as problem instances. All the models in this figure
formalize feasible solutions (albeit for different problem instances) because they
provide a single class assignment for each of their features, implying that the
feasibility constraints are satisfied.

The following lemma states that the validity of problem constraints only depends
on the problem model of a computation model. For arbitrary constraints (typed
over the entire given meta-model), an analogous statement is obviously false;
their validity depends on the entire computation model, not just its problem part.
This result especially means that, only depending on the problem model of a
problem instance PI, either every element of its search space S(PI) satisfies the
problem constraints or none of it does.

Lemma 3.1. Given a computation meta-model MM = (⊆: TGP ↪→ TG,LC) with
a set of problem constraints PC ⊆ LC, a typed graph (E, typeE) satisfies the
problem constraints from PC if and only if (EP, typeEP

) satisfies them.

Later, in order to think about the quality of evolutionary computations, we need
the notion of an evolutionary sequence for a given problem instance. Evolution-
ary sequences are computed by evolutionary algorithms (see Def. 3.7).
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Definition 3.3 (Population. Evolutionary sequence). Given an optimization
problem P over CS and a problem instance PI for P , a finite multi-set over
S(PI) is called a population for PI. Q(PI) denotes the set of all populations for
PI. An evolutionary sequence for PI is a sequence of populations Q0Q1Q2 . . .

with Q j ∈Q(PI) for j = 0,1,2, . . . The set E (PI) consists of all evolutionary
sequences for PI.

3.4.4 Evolutionary operators

One of the most important configuration parameters of an evolutionary algorithm
are the evolutionary operators. These can be divided into change (or variation)
operators and selection operators. Evolutionary operators control the evolution
with the goal of finding solutions of ever better quality. In order to not leave the
search space of a problem instance, evolutionary operators need to be problem-
invariant, i.e., they may not change the problem model of solutions.

In this chapter, we stick to mutation operators as the only kind of change opera-
tors; crossover operators will be studied in the following chapters. Mutations
are usually considered as local changes of search space elements. Therefore, in
the context of MB-MDO, it is natural to define so-called element mutations as
model transformations, as done in Chapter 2 and in literature [ZM16; BZJ21].

We specify an element mutation operator for computation models as a model
transformation rule with a pre-condition (L) and a post-condition (R). Nodes
and edges of L \R are deleted, while nodes and edges of R\L are created. In
addition, the application of a rule can be prohibited by negative application
conditions (NACs). A NAC N is an extension of L and the pattern N \ L is
forbidden to occur. A concrete mutation of a computation model is realized as a
rule application.

In the formal specification of element mutations, we follow the algebraic ap-
proach to graph transformation, which takes a transformation rule with a match
and performs a transformation step on a graph representing a solution model. In
the following, we give a set-theoretic definition (omitting many details) and stick
to simple application conditions for mutation operators. A generalized form
of transformation that allows more complex forms of application conditions is

61



3 A Formal Framework for Model-Based MDO

defined in the appendix. A detailed definition of graph transformation based on
set and category theory can be found, for example, in [Ehr+06]. All models and
their relations used to define an element mutation are shown in Fig. 3.5.

I R

C F

L

E

N j
ri

ri′

le

le′

m

n j

q j

Figure 3.5 – Mutation of element E to element F .

Definition 3.4 (Element mutation operator. Element mutation). Given a com-
putation space CS over a meta-model MM = (⊆: TGP ↪→ TG,LC) including
problem constraints PC ⊆ LC, an (element) mutation operator mo is defined

by mo = (L
le←↩ I

ri
↪→ R,N ), where L, I, and R are typed graphs over TG with

le and ri being injective, typed morphisms. N is a set of negative application
conditions defined by injective, typed morphisms n j : L ↪→ N j with j ∈ J (where
J enumerates the elements of N ).

Given a computation model E, an element mutation operator mo is applicable
at an injective cm-morphism m : L→ E if the dangling condition holds: A
node n ∈ E must not be deleted if there is an edge e ∈ E \m(L) which would
dangle afterwards. In addition, there must not be a cm-morphism q j : N j ↪→ E
with q j ◦ n j = m for a j ∈ J; m is then called match. An element mutation
E =⇒mo F using mo at match m is defined as follows: If mo is applicable at
m, construct graph C = E \m(L \ le(I)). Then, F =C ∪̇ (R\ ri(I)), i.e., a new
copy of R \ ri(I) is added disjointly to graph C, so that the dangling edges of
R\ ri(I) are connected to the nodes in C as prescribed by their preimages in I
(see Fig. 3.5).

An element mutation E =⇒mo F is called pc-preserving if E |= PC implies F |=
PC. An element mutation E =⇒mo F is called lc-preserving if E |= LC implies
F |= LC. An element mutation E =⇒mo F is called problem-invariant if EP∼= FP.
An element mutation operator mo is called pc-preserving (lc-preserving) if every
element mutation E =⇒mo F with E |= PC (E |= LC) is pc-preserving (lc-
preserving). An element mutation operator mo is called problem-invariant if
every element mutation E =⇒mo F is problem-invariant.
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A sequence E = E0 =⇒mo1 E1 =⇒mo2 . . .En = F of element mutations (where
mutation operators moi and mo j are allowed to coincide for 1 ≤ i ̸= j ≤ n) is
denoted by E =⇒∗M F , where M is a set containing all mutation operators that
occur. For n = 0, we have E = F .

Remark 3.2. Element mutation operators must not change the types of nodes or
edges. This also applies to node types in type hierarchies. Any nodes that are
newly created must not have abstract types (such as Feature) since these types
must not be instantiated. However, abstract types are useful in the pre-condition
of a mutation operator, or in its NACs. For example, in the CRA case, the
moving of a method or attribute from one class to another can be specified with
only one operator if the abstract type Feature is used. Otherwise, two operators
would be required, one for moving a method and one for moving an attribute.
When applying a mutation operator, a node can be mapped to a node with a more
concrete type if they are compatible with related edge types.

Characteristics. In order to not leave the computation space, element muta-
tions must be lc-preserving. In principle, this condition can be satisfied in two
ways: Either the system checks after each mutation whether the resulting model
satisfies LC if the input model does and retracts the mutation result if it does
not, or the modeler ensures that the underlying element mutation operator is
designed to be lc-preserving.

We will see below that preservation of problem constraints PC can be easily
ensured by not creating, deleting or changing elements that are typed over the
problem meta-model. In this case, the resulting computation model F has the
same problem model as E and if E satisfies PC, so does F . Proposition 3.1 states
that problem invariance of mutation operators can be statically characterized
by problem-invariant morphisms le and ri in the mutation operator. Hence,
Proposition 3.1 provides a static analysis check that can be easily performed.

However, preserving PC still does not ensure that an element mutation remains
in the computation space. For this, one must additionally ensure that an ele-
ment mutation operator cannot introduce violations of the remaining language
constraints, i.e., for constraints from LC \PC. There are several approaches
to (semi-)automatically check whether a transformation rule preserves a given
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graph constraint [Pen09; Bec+11; Nas+18; Nas+20; Kos+22]. If a constraint is
first-order, it can be expressed as a nested graph constraint and then ensured
by integrating it as an application condition into a transformation rule [HP09;
Rad+18]; the resulting rule forms an element mutation operator that preserves the
given constraint. This constraint integration was automated in the tool OCL2AC
by Nassar et al. [Nas+18; Nas+20]. However, the resulting element mutation
operator is more restricted than the original one since it is only applicable if
the mutations do not violate the integrated constraints. Consequently, it may
not or hardly be applicable to a computation model anymore. When checking
a computed application condition, it may be subsumed by an already existing
application condition of the respective operator or it may cover a case that is
known to not occur in solutions at all (such as multiple class models in the CRA
case). In these cases, the integration of the computed application condition is
not necessary.

Example 3.3 (Element mutation). As a concrete example, we consider the
element mutation operator moveFeatureToExClass in Fig. 3.6; it moves a feature
from one existing class to another. Given the computation model E in Fig. 3.4
and applying moveFeatureToExClass to 3:Attribute (an instance of the abstract
type Feature), 5:Class, and 6:Class and the included edge, we get model F in
Fig. 3.7 as a result. Note that it represents a computation model with the same
problem model as E. Based on model E, four different element mutations can be
performed with moveFeatureToExClass: either 1:Method, 2:Method, 3:Attribute,
or 4:Attribute can change their encapsulating class.

Operator moveFeatureToExClass is problem-invariant since LP ∼= RP and there-
fore, is pc-preserving (as shown below). However, it can introduce a language
constraint violation by introducing a parallel edge between the nodes matched
by f:Feature and c2:Class. This can happen in infeasible solution models where a
feature is contained in more than one class. To preserve the language constraint,
the operator can be extended with a negative application condition that checks
whether f:Feature is already assigned to c2:Class.

The next proposition ensures that an element mutation E =⇒mo F returns a
computation model F that has the same problem model as E (formally: there
exists an isomorphism between EP and FP) if operator mo is problem-invariant.
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L
f:Feature

c1:Class c2:Class

R
f:Feature

c1:Class c2:Class

Figure 3.6 – Element mutation operator moveFeatureToExClass.

F
1:Method2:Method 3:Attribute 4:Attribute

5:Class 6:Class

Figure 3.7 – Result of an element mutation of solution model E in Fig. 3.4.

This is not obvious in MB-MDO, since unrestricted element mutations can easily
change the problem model.

Proposition 3.1. Let mo = (L
le←↩ I

ri
↪→ R,N ) be an element mutation operator,

and let E,F ∈ CS be computation models such that there is an element mutation
E =⇒mo F (compare Fig. 3.5). Then the operator mo is problem-invariant if the
morphisms le and ri in mo are problem-invariant.

Together with Lemma 3.1, the above proposition clarifies that problem con-
straints are trivial to treat in optimization: If the given problem instance PI (or
equivalently, its problem model PIP) satisfies the problem constraints, Lemma 3.1
ensures that each computation model E of the search space S(PI) does. Proposi-
tion 3.1 then ensures that this also holds for any computation model F obtained
by an element mutation E =⇒mo F . Thus, one only needs to verify (i) that a
given problem instance satisfies the problem constraints (otherwise it specifies
an ill-posed optimization problem) and (ii) that the morphisms used to specify
the element mutation operators are indeed problem-invariant (an easy condition
to verify).

Next, we consider mutations of populations. Normally, not the entire population
is mutated, but a so-called parent selection decides whether and how often an
element is mutated. A parent selection can be considered as the first step of
mutating a population. After the selection of elements to be mutated, the actual
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mutations take place, which are primarily element mutations but can also be
sequences of element mutations. Since there are innumerable variations in the
literature on how populations can be mutated, especially how parents can be
selected, the following definition is deliberately generic.

Definition 3.5 (Population mutation. Population mutation operator). Let a
problem instance PI for an optimization problem P over the computation space
CS and a set of element mutation operators M be given. A population mutation
operator MO is a binary relation over Q(PI) with Q⊆Q′ for each (Q,Q′)∈MO.
For each F ∈Q′ there is a (possibly empty) finite sequence of element mutations
E =⇒∗M F with E ∈Q. Each (Q,Q′) ∈MO is called a population mutation of Q
to Q′ via MO.

Characteristics. Usually, it is not desired that each element of a population is
evolved to an offspring solution. A parent selection decides whether an element
is evolved once, several times or not at all. In addition, population mutations
can differ in how many offspring solutions they generate and which and how
many element mutations they apply to evolve an existing solution, i.e., what
the finite transformation sequences that produce offspring are. The framework
leaves open how these sequences are specified. In particular, such a sequence
might be a complex programmed graph transformation sequence.

All of these decisions can be based on the fitness of solutions, which is usually
determined by the objective relations (e.g., considering the dominance relation)
and the satisfaction of the feasibility constraints. However, meta-information
about the population can also be taken into account. Due to its generality, our
definition supports all these variants.

Example 3.4 (Population mutation). In addition to the element mutation opera-
tor moveFeatureToExClass shown in Ex. 3.3, other element mutation operators
can be addUnassignedFeatureToNewClass, which creates a class and assigns an
unassigned feature to it, addUnassignedFeatureToExClass, to assign an unas-
signed feature to an existing class, and deleteEmptyClass to remove an empty
class from the model. Apart from their names, which were chosen for clarity,
these mutation operators are analogous to those in [BZ16; BZJ21]. All the
element mutation operators presented form the set M.
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For parent selection, the NSGA-II algorithm [Deb+02] uses, for example, binary
tournament selection, which we reproduce below: Let a population mutation
operator CraMutation rely on n binary tournament selections (where n is the
size of the population) to decide which solutions to evolve. In each tournament,
two randomly chosen elements of the input population compete with regard to
the following fitness specification: (1) Given two feasible solutions (assigning
each feature to exactly one class), a solution that dominates the other in terms of
the coupling and cohesion metrics is considered fitter. (2) A feasible solution is
automatically fitter than a non-feasible one. (3) If two infeasible solutions are
compared, the one with a lower degree of constraint violations is the fitter one.
The extent to which a constraint is violated can be determined by the number of
violations of the constraint. Alternatively, if a constraint is defined by attribute
values, the extent to which a desired value is missed can also be considered. The
degree of violation of a constraint can be calculated by summing up the extent
of violation of each constraint.

For the CRA case, if two infeasible solutions are equal in terms of the degree
of constraint violations, the solution that dominates the other in terms of the
coupling and cohesion metrics is the fitter solution. Solutions of equal fitness
with respect to the aforementioned rules can be further distinguished by their
crowding distance [Deb+02]. The crowding distance estimates the proximity
of a solution to other solutions in a population. To maintain diversity in a
population, solutions with a high crowding distance are considered fitter. (For
more details, we refer to [Deb+02].) The solution with the higher fitness wins
the tournament. It is cloned, and the clone is mutated with an arbitrarily chosen
applicable element mutation operator of M. If none of the element mutation
operators is applicable, the clone remains unchanged. When n tournaments have
been run, all clones are merged with the elements of the input population to form
the output population.

In a population, not all its elements are required or desired to form the next
generation. A survival selection filters the next generation from a population
according to certain criteria. The following definition is also deliberately generic,
as we do not want to exclude certain implementations from our framework.

Definition 3.6 (Survival selection. Survival selection operator). Given a problem
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instance PI for an optimization problem P , a survival selection operator SO is a
binary relation over Q(PI) such that for all (Q,Q′)∈ SO holds: Q′⊆Q∈Q(PI).
Each (Q,Q′) ∈ SO is called a survival selection that selects Q′ from Q.

Characteristics. Following nature’s example, survival selection is used to
realize the concept of survival of the fittest. The concept of fitness often coin-
cides with that used in parent selection of population mutation; the objective
relations and feasibility constraints are the most influencing criteria for defining
fitness. However, fitness in survival selection can also be viewed from a different
perspective. Factors such as the age of solutions, i.e., how many generations they
have survived, or the diversity of the resulting next generation can be considered.
To avoid losing the most valuable solutions achieved so far, survival selection
typically employs elitism, i.e., the fittest solutions are (partially) preserved for
the next generation. On the other hand, survival of less optimal or even infeasible
solutions may allow broader exploration of the search space. As with population
mutation, there are many ways to implement survival selection.

Example 3.5 (CRA survival selection). A survival selection operator corre-
sponding to the one used in the NSGA-II algorithm can be based on the notion
of fitness presented in Ex. 3.4. First, the three rules that take the constraints
and objectives into account are used to create a pre-order (rank) of population
elements, i.e., each rank contains solutions that have the same overall constraint
violation and do not dominate each other. Beginning with the rank of best
solutions, all solutions from subsequent ranks are selected until the selection of
the entire next rank would exceed the number of desired solutions in the output
population. At this point, solutions from the next rank are selected, taking their
crowding distance (introduced in Ex. 3.4) into account, until the desired size of
the output population is reached.

3.4.5 Evolutionary algorithm

A given instance of an optimization problem is solved using an evolutionary
algorithm. Since MB-MDO has been performed with several evolutionary al-
gorithms and there are many more variants of evolutionary algorithms in the
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literature, we want to keep the definition of evolutionary algorithm deliberately
generic. Actually, we define a skeleton of an evolutionary algorithm as shown in
the pseudo code in Algorithm 1. The minimal set of parameters for an evolution-
ary algorithm includes a problem instance and a set of evolutionary operators.
Concrete evolutionary algorithms may have further parameters, such as an initial
population. If the algorithm does not receive the initial population as input, it
first generates an initial population for the given problem instance PI. Then it
iteratively applies operators from the given set OP of evolutionary operators to
evolve this population. To this end, the computation specification C specifies
how the operators of OP are orchestrated over the course of an iteration. After
each iteration, a termination condition t determines whether further iterations
are performed. Algorithm 1 leaves G, C, and t completely generic since the
framework is intended to support all kinds of evolutionary algorithms. In the
following, we define such a generic algorithm and its semantics.

Algorithm 1 Pseudo code for an evolutionary algorithm.
1: procedure EVOLUTIONARY ALGORITHM(PI,OP)
2: Generate an initial population with G based on PI
3: while t is not fulfilled do
4: C ▷ Apply operators from OP following C.
5: end while
6: end procedure

Definition 3.7 (Evolutionary algorithm and its semantics). Given a problem
instance PI for an optimization problem P and a set of evolutionary operators
OP for P , let→OP⊆Q(PI)×Q(PI) be defined as

→OP := {(Q,Q′) | (Q,Q′) ∈ op,op ∈ OP}.

An evolutionary algorithm A (PI,OP) = (G,C, t) consists of a population gen-
erator G to generate a starting population Q0 based on PI, a computation speci-
fication C based on OP, and a termination condition t.

The semantics Sem(C) of C is a subset of the binary relation→∗OP. The termi-
nation condition t is a predicate over E (PI), the set of evolutionary sequences
for PI. An evolutionary computation of A (PI,OP) is an evolutionary sequence
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Q0Q1Q2 . . .∈E (PI) with (Q j,Q j+1)∈ Sem(C) for j = 0,1, . . .. Each (Q j,Q j+1)

is called an iteration. The semantics Sem(A (PI,OP)) of A (PI,OP) is the set
of all its evolutionary computations satisfying t. An execution of A (PI,OP)
results in an evolutionary computation of Sem(A (PI,OP)). A set of executions
of A (PI,OP), called execution batch of A (PI,OP), yields a batch result, a
multi-set of evolutionary computations of Sem(A (PI,OP)).

Characteristics. In general, evolutionary algorithms are non-deterministic
since the generator for initial populations, the computation specification, and
the evolutionary operators can introduce probabilistic behavior. Therefore, an
evolutionary algorithm generally determines a set of possible evolutionary com-
putations. When experimenting with an evolutionary algorithm, it is executed a
certain number of times. Each execution of the algorithm results in an evolution-
ary computation being part of its semantics. An experiment usually includes a
whole batch of executions. It may happen that the same computation is obtained
several times in one experiment. Therefore, an execution batch may result in
a multi-set of evolutionary computations. As a special case, algorithms with
deterministic behavior (leading to a single computation) are also included.

The generator G, the computation specification C and the termination condition
t can be instantiated by familiar patterns for existing evolutionary algorithms,
adapted to MB-MDO. In most cases, a random initialization procedure is used
to generate an initial population from a given problem instance. Properties such
as feasibility or diversity of elements in the initial population can affect the
efficiency and effectiveness of an evolutionary algorithm. Ideally, the entire
search space should be reachable from an initial population. However, depending
on the problem, specifying diversity, implementing an efficient generator, and
analyzing reachability can be challenges in themselves. Traditionally, the set
of operators consists of at least one population change operator and a survival
selection; the computation specification combines them by first applying the
change operators sequentially, followed by the survival selection to choose
the population for the next iteration. More sophisticated concepts (such as
self-adaptive evolutionary algorithms [ES15]) can also be expressed using our
framework but may require the implementation of more complex computation
specifications.
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Example 3.6 (CRA evolutionary algorithm). For the CRA case, consider an
example evolutionary algorithm with an initial population of 100 models, all
equal to the given problem instance. The set OP contains the population muta-
tion operator CraMutation introduced in Example 3.4. Also, OP contains the
selection operator presented in Example 3.5. The computation specification C
prescribes that both operators in OP are applied alternately, starting with the
mutation of a population, followed by the selection of a population for the next
iteration.

An example termination condition t is the following: It monitors the progress
of an evolutionary computation with respect to the improvement of the approx-
imation set. The improvement between the approximation sets A1,A2 of the
populations of two iterations is measured by the Euclidean distance of the so-
lution vectors of their solutions. For each solution E, its solution vector vS(E)
consists of the values of the cohesion and coupling metrics and two values
reflecting the extent to which the two feasibility constraints are violated. For
E2 ∈ A2, let dA1

min(E2) be the minimum Euclidean distance of vS(E2) to the so-
lution vectors of all solutions in A1. The distance between A1 and A2 is then
defined as

d(A1,A2) := ∑
E2∈A2

dA1
min(E2).

Let a finite evolutionary computation Q0Q1 . . .Qk and a corresponding sequence
of approximation sets A0A1 . . .Ak be given. Furthermore, let a sequence of pro-
gression indices x1x2 . . .xi be defined with 1≤ x j ≤ k for all 1≤ j≤ i as follows.
The first progression index x1 represents the iteration at which the approximation
set changed for the first time. Further progression indices represent iterations
where the approximation set has improved by at least 3 percent compared to the
approximation set of the iteration represented by the previous progression index.
Thus, for any progression index x j with 1 < j ≤ i, it holds that

d(Ax j−1,Ax j)≥ 0.03∗d(A0,Ax j−1).
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Let the sequence of progression indices be complete, i.e.,

d(Ax j−1 ,Am)< 0.03∗d(A0,Ax j−1)

d(Axi,An)< 0.03∗d(A0,Axi)

hold for all m,n with x j−1 < m < x j and xi < n≤ k. The termination condition t
is satisfied if k− xi = 100.

3.5 Soundness and completeness

Evolutionary algorithms aim at finding optimal solutions or at least approximat-
ing them. The operators chosen determine the effectiveness and efficiency of
the search. In this section, we will consider two fundamental properties of sets
of element mutation operators that can affect the effectiveness and efficiency
of evolutionary algorithms: soundness and completeness. Soundness refers to
preserving the feasibility of solutions and completeness refers to preserving the
reachability of all feasible solutions. Investigating whether properties such as
soundness and completeness actually have an impact on the effectiveness and effi-
ciency of evolutionary search is of particular interest in the context of MDO. One
of its promises is that domain knowledge can be integrated into problem-specific
evolutionary operators, thereby improving evolutionary search. Determining
general properties that operator sets should have provides guidelines and limits
for constructing problem-specific operators.

While evolutionary algorithms typically operate on populations, in this chapter
we first introduce our notions at the level of element operators. There are
two reasons for this: First, we deliberately introduced the population mutation
operators in general terms. At the level of element operators, it is still clear
what soundness and completeness should mean. At the level of population
operators, it becomes more complex; we think that it might be more promising
to look for appropriate definitions for more concrete (classes of) population
operators. Second, we also develop our definitions from the point of view of
analyzability. The properties we define can be analyzed statically since they are
based on element operators. Analyzing comparable properties at the level of
population operators would likely be more difficult and costly. The fact that an
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element operator has a particular property with respect to all or certain classes
of solutions needs to be checked only once. At the level of population operators,
run-time verification might be required to obtain a particular property. We will
outline the possibilities for static analysis after the respective definitions and
give some hints on how to define the respective properties for the more general
level of population operators.

We consider an element mutation operator sound if it ensures the feasibility of
all generated solution models under the assumption that the input models are
already feasible.

Definition 3.8 (Soundness of element mutation (operator sets)). Let P = (FC,

≤O) be an optimization problem for a computation space CS. Assuming E ∈
FE(CS,FC), an element mutation E =⇒mo F is sound, where mo is an element
mutation operator, if F ∈ FE(CS,FC).

An element mutation operator mo is sound if every element mutation E =⇒mo F
via mo with E ∈ FE(CS,FC) is sound. A set of element mutation operators is
sound if each of its operators is sound.

Note that a population mutation that starts with feasible solutions can lead to a
population with only feasible solutions, even if the element mutation operators
are not sound. This is because the soundness of the element mutation operators
is a sufficient condition for preserving the feasibility of solutions but not a
necessary condition.

Example 3.7 (CRA soundness). In the CRA case, the element mutation operator
moveFeatureToExClass in Fig. 3.6 is sound because it reassigns a feature to
another class, i.e., the feature is neither left without a class assignment nor given
a second one. In contrast, an operator that simply removes a feature from a class
is obviously unsound.

Static analysis. In the formal framework developed so far, element mutation
operators are not generally sound. It is up to the modeler to prove that concrete
element mutation operators are sound. We discussed above (after Def. 3.4) which
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approaches exist in the literature to (semi-)automatically check whether a trans-
formation rule preserves a given graph constraint. Since feasibility constraints
are also specified as graph constraints, these approaches can also be used for
checking soundness. In principle, it is also possible to check at runtime whether
unsound operators preserve feasibility (and if not, to undo their application), but
this would require additional computational effort at runtime.

Outlook on population operators and runtime verification. Since
feasibility is a property of an individual solution, it is not immediately obvious
how soundness should be defined for population mutation or survival selection
(operators). One might think about requiring that at least the proportion of
feasible solutions be preserved in a population. Preserving the proportion of
feasible solutions (while allowing enough newly computed solutions to be
selected for the next population) might require sophisticated control of the
selection of solutions and element mutation operators used during population
mutation to ensure that enough feasible offspring are computed. Note that the
probability for this could be increased by the use of sound element mutation
operators (without further control): In (most) evolutionary algorithms, feasible
solutions are preferred over infeasible ones in both selection for reproduction
(here: for mutation) and survival selection.

In our evaluation, we investigate whether the use of sound element mutation
operators supports the finding of optimal solutions more efficiently and effec-
tively.

Next, we consider the completeness of a set of element mutation operators. It
is satisfied if, for a given problem instance, all feasible solutions of its search
space can be generated at each point of an optimization.

Definition 3.9 (Completeness of element mutation operator sets). Let P = (FC,

≤O) be an optimization problem, PI a problem instance for P , and M a set of
element mutation operators. The set M is complete if, for every solution model
E ∈ S(PI) and every feasible solution model F ∈ FE(S(PI),FC), there exists a
finite sequence of element mutations E =⇒∗M F .
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Only considering element mutations based on a set of mutation operators, the
completeness of that set is a sufficient (but not a necessary) condition for the
reachability of all optimal solutions. It should be noted that the evolutionary
algorithm may still miss these optimal solutions since it further constrains which
element mutations are actually applied. Therefore, the completeness of a set of
element mutation operators does not imply that an evolutionary algorithm using
that set definitely reaches all optimal solutions. Conversely, an evolutionary
algorithm that uses an incomplete set of element mutation operators can, in
principle, still find optimal solutions. However, using an incomplete set of
element mutation operators bares the risk of completely truncating regions of the
search space that contain optimal solutions. Knowing whether a set of element
mutation operators is complete or not allows the developer to make an informed
decision about it.

Example 3.8 (CRA completeness). The set of element mutation operators
discussed in Ex. 3.4 is not complete since no new classes can be created after all
features are assigned. To obtain a complete set of element mutation operators,
we make a small change. We add an additional element mutation operator
moveFeatureToNewClass that can move an already assigned feature to a new
class. The resulting set of element mutation operators is complete since any
computation model (feasible or not) can be converted into a feasible model with
one class using the operators addUnassignedFeatureToNewClass at most once,
the operator addUnassignedFeatureToExClass as often as possible, and operators
moveFeatureToExClass and deleteEmptyClass as often as needed. This feasible
model with one class can then be transformed into any feasible model using the
operators moveFeatureToExClass and moveFeatureToNewClass. Summarizing,
every feasible model is reachable from any model. Note that this argumentation
(implicitly) uses the fact that computation models satisfy the language constraints
of the CRA case: General graphs that are typed over the meta-model of the CRA
case could contain more than one class model or classes that are not contained
in a class model. In such situations, we could, for example, not assign two
features that are contained in different class models to the same class. Hence,
our (extended) set of operators is not complete for general graphs.
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Static analysis. We are not aware of any formal approach that automatically
checks the completeness of sets of element mutation operators as defined above.
Basically, the problem is a reachability problem that can be analyzed for a single
model using model checking for graph transformation [RSV04]. However, we
do not ask about the reachability of a single model from a single model but
about the reachability of a (possibly infinite) set of models from each possible
model. Maybe surprisingly, in all three example cases of our evaluation the same
simple technique can be used to manually prove completeness of a set of element
mutation operators. As sketched for the CRA case in the example above, one
looks for one model for which one can argue that it can be transformed (via the
given element mutation operators) into any feasible model, and that any model
can be transformed into it. This (manual) analysis is still static in the sense that it
only needs to be done once for a given set of element mutation operators. Since
we selected our case studies before developing operator sets for them, for which
we then proved completeness, and the same simple proof technique worked in
all cases, we are confident that proving completeness manually will be feasible
also in other cases.

Outlook on population operators and runtime verification. If a chosen
set of element mutation operators is complete, we can be sure that in principle all
optimal feasible solutions can be found using these operators. However, much
weaker forms of completeness suffice to obtain this property. It is sufficient that
during an evolutionary computation every feasible solution remains reachable
from one element of the current population, but it need not be reachable from all
elements. Defining such a population as complete, a survival selection operator
would be completeness-preserving if it transforms complete populations to
complete populations. Note that completeness of a set of element mutation
operators, as introduced above, ensures this milder notion and, as mentioned
above, can be argued statically.

Note also that the completeness of element mutation operator sets we introduced
also allows a more free choice of initial populations. While an initial population
can still affect the search, a complete set of element mutation operators ensures
that, in principle, every feasible element can be reached, regardless of the initial
population chosen.
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In our evaluation, we investigate whether the use of a complete set of element
mutation operators supports finding optimal solutions more efficiently and ef-
fectively. While we believe that soundness and completeness are interesting
properties, they also serve to show that the formal framework we developed in
the previous section allows one to define and reason about such properties.

3.6 Effective and efficient algorithms

A major concern in the configuration of evolutionary algorithms is to make them
solve optimization problems effectively and efficiently. To that end, we want to
investigate how the choice of sound and/or complete sets of element mutation
operators affects the effectiveness and efficiency of evolutionary algorithms.
To compare evolutionary algorithms in this regard, we start with the definition
of quality relations based on our formal framework. Due to their probabilistic
nature, evolutionary algorithms cannot be directly compared regarding our defi-
nition of their semantics. Instead, we compare execution batches that represent
evolutionary computations that result from conducting experiments.

Definition 3.10 (Quality relation). Given a problem instance PI for an optimiza-
tion problem P , a quality relation ≤Q is a total preorder over multi-sets over
E (PI). Let further two evolutionary algorithms Ai for PI and two correspond-
ing execution batches EBi, with i = 1,2, be given. Then algorithm A1 has a
better or equal quality than A2 w.r.t ≤Q and the considered execution batches if
EB2 ≤Q EB1.

In the following, we show examples for quality relations. To make statements
about the effectiveness and efficiency of evolutionary computations, evolutionary
computations are compared with respect to a so-called quality indicator, which
relates populations according to their quality.

Definition 3.11 (Quality indicator). Given an optimization problem P , a prob-
lem instance PI for P , and a set T endowed with a total order <, the quality
indicator I : Q(PI)→ T is a function that assigns a value I(Q) in T to each
population Q ∈Q(PI).
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In a multi-objective setting, a quality indicator should be Pareto-compliant
such that it does not contradict the order induced by the dominance relation.
Pareto compliance means the following: For two populations Q1 and Q2, if E1

dominates E2 and E2 does not dominate E1 for all search space elements E1 ∈Q1

and E2 ∈ Q2, then I(Q1)< I(Q2). Typically, the hypervolume indicator is used
as quality indicator; it is known to be Pareto-compliant [ZBT07].

In practice, algorithms often need to be compared by performing a limited
number of optimizations; one uses statistical methods to validate conclusions
drawn from the generated execution batches. Consequently, as in the following
examples, quality relations can be restricted to execution batches that are non-
empty, finite, of equal size, and contain only finite evolutionary computations.

Example 3.9 (Effectiveness as quality relation). The effectiveness of an algo-
rithm can be considered in each iteration of an evolutionary computation, with
the last iteration usually being the most interesting. To capture the effect of out-
liers, non-robust measures (e.g., mean) may be specifically favored over robust
ones (e.g., median) when aggregating quality indicator values from multiple
populations. In this case, it may also be useful to consider the standard deviation
of quality indicator values. Low deviations indicate greater robustness of the
computations than higher deviations.

For a problem instance of a multi-objective optimization problem, we use a
normalized hypervolume indicator h : Q(PI)→ [0,1] to determine the quality
of a population. Two vectors are used for its calculation. A vector consisting of
the worst values found for each objective (also known as nadir point). And an
artificial Pareto optimum consisting of the best values found for each objective
(called ideal point). While the nadir point, which is degraded by a fixed value
of 1 for each objective, is used as the reference point for calculating the area of
the search space dominated by a solution, the ideal point is used to normalize
the results. For the construction of both vectors, the approximation sets of the
populations of the last iterations of all evolutionary computations generated by
all evolutionary algorithms for this specific problem instance are considered.

Let mean and sd be functions that compute the mean and standard devia-
tion of a set of real values, respectively. Given hlast(Q0Q1 . . .Qk) = h(Qk)

for Q0Q1 . . .Qk ∈ E (PI) and hn(Q0Q1 . . .Qn . . .Qk) = h(Qn) for 0 ≤ n ≤ k,
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hlast(Q0Q1 . . .Qk) otherwise (i.e., given projections onto the hypervolume of
the last or the n-th population of a finite evolutionary sequence), we define three
quality relations to compare the effectiveness of two algorithms A1(PI,OP) and
A2(PI,OP) regarding two execution batches EB1 of A1 and EB2 of A2 with
EB1,EB2 ⊆ E (PI).

– The mean-effectiveness ≤mean with EB2 ≤mean EB1 if
mean{hlast(e2) | e2 ∈ EB2} ≤mean{hlast(e1) | e1 ∈ EB1},

– the mean-n-effectiveness ≤mean,n with EB2 ≤mean,n EB1 if mean{hn(e2) |
e2 ∈ EB2} ≤mean{hn(e1) | e1 ∈ EB1} for n > 0, and

– the sd-effectiveness ≤sd with EB2 ≤sd EB1 if
sd{hlast(e2) | e2 ∈ EB2} ≤ sd{hlast(e1) | e1 ∈ EB1}.

Example 3.10 (Efficiency as quality relation). With respect to the efficiency
of evolutionary computations, the length of evolutionary sequences, i.e., the
number of iterations needed to satisfy the termination condition, and the mean
runtime of these iterations are of interest. For the latter, let a runtime function
rt : E (PI)→R be given which computes the mean runtime in ms per iteration for
an evolutionary sequence. Analogously to Ex. 3.9 we define two quality relations
to compare efficiency of two algorithms A1(PI,OP) and A2(PI,OP) regarding
two execution batches EB1 of A1 and EB2 of A2 with EB1,EB2 ⊆ E (PI).

– The iteration-efficiency ≤it with EB2 ≤it EB1 if
mean{length(e1) | e1 ∈ EB1} ≤mean{length(e2) | e2 ∈ EB2},

– and the runtime-efficiency ≤rt with EB2 ≤rt EB1 if
mean{rt(e1) | e1 ∈ EB1} ≤mean{rt(e2) | e2 . . . ∈ EB2}.

3.7 Evaluation

In Section 3.5, we briefly discussed how sound and complete operator sets
may influence evolutionary computations. Consequently, we also expect these
operator sets to have an impact on the outcome of optimizations in quantitative
evaluations. To investigate this assumption, we conduct experiments focusing
on the following two research questions (subscripts are indicating the associated
chapter):
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C3Q1 Does the soundness of element mutation operators have an impact on
the effectiveness or efficiency of evolutionary algorithms?

C3Q2 Does the completeness of the set of element mutation operators have an
impact on the effectiveness or efficiency of evolutionary algorithms?

In the following, we first introduce the context and use cases of the evaluation
according to the structure presented in our framework. Then, we present the
evaluation setup and results. All evaluation data can be found at [Joh+23b].
They include the results of our experiments and all artifacts needed to reproduce
them.

3.7.1 Implementation of the framework

To conduct the experiments, we use MDEOptimiser [BZS18; mdeo], a tool that
implements the framework presented. It allows users to configure, instantiate,
and run evolutionary algorithms as defined in our framework. MDEOptimiser
relies on the MOEAFramework [moea] to provide a selection of evolutionary al-
gorithms from which users can choose. The algorithm implementations provide
the computation specification and the selection operators. They also predefine
most parts of the population mutation operators. However, the user can choose
between different variants of how to apply element mutation operators when a
solution needs to be evolved. These variants differ, for example, in how they
select which element mutation operators to apply and how many element mu-
tations to use. Furthermore, the set of element mutation operators used by the
population mutation operators can be specified.

The realization of the computation space is based on the Eclipse Modeling
Framework (EMF) [Ste+08; emf]. Accordingly, the computation meta-models
and problem instances are implemented as EMF Ecore and instance models,
respectively. By default, an initial population is created by first replicating
the provided problem instance. Each replica is then modified by two applica-
tions of the specified population mutation operator (ignoring parent selection).
Alternatively, a user can provide an initialization procedure implemented in
Java to generate a user-defined initial population. Feasibility constraints and
objective relations are induced from constraint functions and objective functions
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implemented in OCL or Java. The user must specify a set of element mutation op-
erators as rules or units of the Henshin model transformation language [Are+10].
Henshin units allow complex transformations to be composed of multiple rules
using control flow elements. Regarding the termination condition, the user can
choose between predefined variants.

3.7.2 Optimization problems selected

The evaluation considers three multi-objective problems: the Class Responsibil-
ity Assignment [BBL10; MJ14; FTW16; BZJ21] problem (CRA), the problem
of Scrum Planning [BZJ21] (SCRUM), and the Next Release Problem [BRW01;
BZJ21] (NRP). The reasons for this choice are twofold. First, these use cases
cover different aspects that might be relevant for optimization problems in MB-
MDO since they differ in their structural complexity, the number and kind of
their feasibility constraints (more structural or more attribute-oriented), and
the number and complexity of element mutation operators needed to perform
meaningful optimizations. Second, the number and complexity of the required
element mutation operators is low enough to allow for their (partially manual)
analysis with regard to soundness and completeness. In the absence of real world
examples, all problem instances of the chosen use cases were generated.

The same use cases were already considered by Burdusel et al. [BZJ21]. How-
ever, some adjustments to the objectives and constraints were necessary to allow
comparison of operator sets implementing different degrees of soundness and
completeness. Therefore, the evaluation results are not directly comparable to
those in [BZJ21].

The computation space of each of the optimization problems is defined by
an EMF meta-model. The meta-model of the running example is shown in
Fig. 3.1. The meta-models of the other optimization problems can be found
in Appendix A.2. Since the experiments are based on EMF as the underlying
modeling framework, EMF-specific language constraints apply to all of the
following optimization problems: Each computation model has exactly one root
node that (transitively) contains all other nodes, each node is contained in at most
one container, there are no containment cycles, and there are no parallel edges of
the same type between two objects. In our use cases, the root node is always part
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of the problem model. Thus, its unique existence is even a problem constraint.
The SCRUM and NRP cases demand further language constraints. Here, we
will only discuss constraints stemming from the semantics of the respective
optimization problem. For a discussion of constraints tightly connected to the
design of the meta-model please also refer to Appendix A.2.

CRA. Our running example (Section 3.2), the CRA case, also serves as the
initial use case for the experiments. In summary, in this case, a unique class
model serves as the root node to which classes can be added. The assignment
of interdependent features to classes must be done in compliance with two
feasibility constraints: each feature must be assigned to one class and must not
be assigned to more than one class. The objectives are to minimize the coupling
between classes and maximize their cohesion. In the experiments, problem
instances range from 9 features and 14 dependencies (Model A) to 160 features
and 600 dependencies (Model E), as introduced in [FTW16]. All problem
instances are infeasible because none of their features are initially assigned.

SCRUM. Scrum [Rub12] is an agile software development technique. In
Scrum, a software product is defined by a set of work items each representing a
feature desired by one of the project stakeholders. The work items of all stake-
holders are collected in a backlog. Work items can be of varying importance to
their stakeholder and can also differ in the estimated effort required to imple-
ment them. In order to partition the development of all features into manageable
units, the work items are assigned to so-called sprints. Sprints represent timed
iterations and are implemented one after the other.

The SCRUM case goes back to the idea of using Scrum to manage maintenance
tasks for existing projects. In this scenario, sprints are not decided on in an
ad hoc basis. Instead, an optimal plan for distributing the work items across
the sprints must be found. Two objectives are considered when evaluating the
quality of a solution. First, the total effort of all work items should be distributed
evenly across sprints by minimizing effort variance. Second, the requirements of
each stakeholder should be distributed evenly across the sprints in terms of their
importance. For each stakeholder, the variance in the sum of the importance
of their work items in each sprint is considered. The objective is implemented
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by minimizing the average of this deviation across all stakeholders. Each work
item must be assigned to exactly one sprint (a feasibility constraint similar to
class assignment in the CRA case). Additionally, a sprint should neither be too
easy nor too complex. Thus, the plan must respect a minimum and maximum
number of desired sprints for each problem instance. These limits are expressed
via additional feasibility constraints. For reasonable problem instances, the
minimum and maximum must be at least zero and must not be greater than
the number of available work items. Additionally, the minimum must be less
than or equal to the maximum. These requirements are formulated as problem
constraints.

In the experiments, we consider two problem instances: Model A with 5 stake-
holders and 119 work items and Model B with 10 stakeholders and 254 work
items.

NRP. When planning the next release of a software system, customer satisfac-
tion must be weighed against the costs associated with developing new software
artifacts. This struggle is known as the Next Release Problem [BRW01]. In the
formulation considered here, requirements may be abstract and depend on other
requirements. By assigning a value to a requirement, customers can specify how
important a requirement is for them. A requirement can be satisfied to varying
degrees by different sets of software artifacts. In addition, some customers may
be more important to the software development company than others. Ultimately,
software artifacts may depend on each other and complex dependency hierar-
chies may even emerge. Each software artifact has a development cost associated
with it. The cost of the next release is determined by the sum of the costs of all
artifacts selected for that release.

The goal of the NRP case is to select a set of software artifacts while considering
two conflicting objectives: minimizing the total development cost of the selection
while maximizing customer satisfaction by satisfying the requirements. The
dependency hierarchy between software artifacts imposes a structural feasibility
constraint; an artifact can only be selected for the next release if all of its
(transitive) dependencies are also selected. In addition, a predefined budget
limits the cost allowed for a feasible solution. In reasonable problem instances
no cyclic dependencies may occur in the dependency structure of requirements
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or software artifacts. Additionally, the values assigned to requirements, the costs
associated with software artifacts, the degrees to which sets of software artifacts
satisfy requirements, and the importance of customers need to be positive. These
requirements constitute problem constraints of the NRP case.

Experiments are conducted with three models that differ in size and complex-
ity of the underlying dependency hierarchy. Model A contains 25 customers,
25 requirements, and 200 software artifacts with a median of 11 (transitive)
dependencies per artifact. Model B has twice as many requirements and a
slightly higher median of 15 (transitive) dependencies per artifact. Also, Model
C contains twice as many artifacts (25 customers, 50 requirement, 400 software
artifacts) and a median of 16 (transitive) dependencies per artifact.

3.7.3 Evolutionary operators

In MDEOptimiser the selection operators and most parts of the population
mutation operators are given by the choice of the evolutionary algorithm used
to perform an optimization (as described in Section 3.7.1). Therefore, we
will discuss this choice in the next section. However, regardless of the used
evolutionary algorithm, in our experiments the evolution of a solution is always
performed as presented in Ex. 3.4. A single arbitrarily chosen applicable element
mutation operator is applied. If none of the available element mutation operators
is applicable, the solution remains unchanged. In the following, we present the
sets of element mutation operators used by the population mutation operators.

For each use case, we consider three variants of sets of element mutation opera-
tors: a set SC that is sound and complete, a set SIC that is sound but incomplete,
and a set UC that is unsound but complete. We checked each set for soundness
and completeness. Since all the element mutation operators are formalized as
transformation rules in Henshin, we used the tool OCL2AC [Nas+18; Nas+20]
to support the soundness checks for all three cases. With regard to the com-
mon EMF-specific language constraints, we designed our rules according to
the guidelines developed in [BET12], which were proven there to be sufficient
conditions to preserve these constraints. Additionally, the implementation of the
transformation language Henshin does not support parallel edges of the same
type, i.e., attempts to introduce a parallel edge are ignored. Therefore, we do not
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need additional negative application conditions (as proposed in Ex. 3.3) for our
element mutation operators to preserve the respective language constraint. As
the root nodes are part of the problem model in all use cases, Proposition 3.1 and
Lemma 3.1 guarantee their unique existence in all solutions throughout the evo-
lutionary computations. Overall, all of the following element mutation operators
are lc-preserving with regard to the EMF-specific language constraints.

The operator sets used in the experiments are discussed in detail using the CRA
case as example. For the other use cases, please refer to Appendix A.2 for
more illustrations and details regarding their preservation of further language
constraints, their soundness, and their completeness.

CRA. Figure 3.8 shows the element mutation operators considered in the CRA
case as Henshin rules in graphical syntax. Nodes and edges are preserved,
deleted, created, or forbidden as annotated (and encoded via a color scheme).
Apart from the EMF-specific language constraints no language constraints are
specified for the CRA case. Therefore, all operators are lc-preserving.

The SC variant includes five operators. The operators 3.8a and 3.8b can only
add an assignment to a feature. To prevent features from being assigned to
multiple classes, application conditions ensure that only features that have not
yet been assigned are considered. If a feature is already assigned to a class, the
operators 3.8c (introduced in Ex. 3.4) and 3.8d can move it to another class. The
new assignment replaces the existing one in each case. In doing so, features
cannot be assigned to more than one class, nor can they remain unassigned.
Since the last operator (3.8e) only deletes empty classes and does not change
assignments, all operators in the set are sound. For a given solution model, any
feature assignment can be reached as argued in Ex. 3.8. Consequently, the set
SC is complete.

The operator set SIC corresponds to the operator set introduced in Section 2.3. It
largely coincides with the SC variant, but the designer forgot to implement the
operator 3.8d, which moves a feature to a new class. Since this is a subset of SC,
the set is also sound. However, once all features have been assigned to classes,
no new classes can be created. Therefore, the set is not complete.
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UC shares with its competitors only the deletion operator. Unlike their SC
counterparts (3.8a and 3.8b), the operators responsible for adding assignments
(3.8f and 3.8g) do not check if a feature is already assigned. Their application
may result in features being assigned to multiple classes. The operator 3.8h can
be used to unassign a feature which may result in unassigned features. Since
both feasibility constraints can be violated, the set UC is not sound. By removing
an assignment of a feature and reassigning it to another class, both move rules
of the SC variant can be mimicked. As the operators for adding assignments are
also more general than in the SC variant, the argumentation for completeness
presented in Ex. 3.8 can also be adapted to the UC variant. Thus, the set is
complete.

SCRUM. Conceptually, the SCRUM and CRA cases are similar: Certain
objects (work items/features) must be assigned to containers (sprints/classes).
Therefore, it is not surprising that the operator sets also have similarities. The
operator set for SCRUM is shown in Fig. A.5. The SC variant of the SCRUM
case contains two operators for adding unassigned work items to new or existing
sprints. Two other operators move work items from one sprint to another
(existing or new) sprint. Empty sprints can be deleted by the last operator.
The reasoning about completeness and soundness, at least with respect to the
feasibility constraints related to the assignment of work items, is analogous to the
CRA case. In addition, rules that create/delete new sprints are only applied when
the maximum/minimum number of allowed sprints has not yet been reached.

In the SIC variant, we again simulate a designer who forgot to design an operator
(as in the CRA case). Unlike the CRA case, where at some point no new
containers (i.e., classes) could be created, the rule for deleting containers (i.e.,
sprints) is completely missing. Otherwise, the set is equal to SC. Obviously, this
set is not complete. For example, if all solutions in the population have reached
the maximum number of sprints allowed, there is no way to create new solutions
with fewer sprints.

The set UC is similar to the SC variant. However, the operators that create or
delete sprints do so regardless of the current number of sprints in a solution.
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Figure 3.8 – The set of all element mutation operators used for the CRA case. The
operator set variants to which an operator belongs are given in parenthesis. (part 1/2)
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Figure 3.8 – The set of all element mutation operators used for the CRA case. The
operator set variants to which an operator belongs are given in parenthesis. (part 2/2)

NRP. Each of the operator set variants in the NRP case (in Fig. A.7) contains
two element mutation operators, one for adding an artifact to a release and
one for removing an artifact. To not violate the constraints on the dependency
hierarchy of artifacts, the SC variant follows a bottom-up construction of a
release. Starting from artifacts without dependencies, artifacts are added only if
all their dependencies are already part of the release. Complementarily, artifacts
are removed in a top-down manner.

SIC shares the bottom-up approach for adding artifacts. However, important
artifacts (representing a dependency for three or more other artifacts) are never
removed once they are in the release. Compared to SC, the rules in SIC are more
restrictive and therefore this set is still sound. However, it is not complete. If an
important artifact is added, feasible solutions without that artifact can no longer
be reached.

The UC variant randomly adds and removes artifacts, regardless of their depen-
dency structure. Randomly, all feasible and infeasible solutions can be reached
at any time.

3.7.4 Evolutionary algorithms

We consider three common evolutionary algorithms: NSGA-II [Deb+02], PESA-
II [Cor+01], and SPEA2 [ZLT01]. NSGA-II is most commonly used in the
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MDO literature and is also well represented in the literature combining SBSE
and MDE [BSA17]. Therefore, we already used it to exemplify our framework
in Section 3.4. It uses the population mutation operator explained in Ex. 3.4 and
the survival selection operator discussed in Ex. 3.5. Its computation specification
is described in Ex. 3.6. For details on PESA-II and SPEA2, we refer the
reader to [Cor+01] and [ZLT01], respectively. All algorithms are used with the
population size and termination condition of Ex. 3.6. The initial population
is always generated by mutating replicas of the problem instance twice, the
standard initialization procedure of MDEOptimiser.

For PESA-II, two additional parameters must be specified: the size of an archive
of non-dominated solutions and the number of regions into which the search
space is partitioned when selecting parents. In agreement with [Cor+01], we use
an archive of 100 elements and 32 regions. For SPEA2, an additional factor k
(to estimate the uniqueness of solutions) must be specified. For performance
reasons and in accordance with a recommendation of the MOEA framework, we
set k = 1.

For each use case, each evolutionary algorithm is run in three configurations
depending on the operator sets used: an SC, SIC, and UC variant. According to
Def. 3.7, we denote each of these configurations by A (PIP ,OPP), where A is
the name of the evolutionary algorithm, PIP indicates a problem instance of the
optimization problem P , and OPP uniquely identifies the set of evolutionary
operators. Although each set of evolutionary operators contains not only muta-
tion operators but also a selection operator, we name the set of operators only
after the mutation operators since the selection operator is always the same. For
ease of reading, the name of the algorithm is given by its initial letter only. For
example, N(ACRA,SCCRA) represents NSGA-II applied to model A of the CRA
case using the sound and complete operator set for the CRA case. For each of
our use cases, we run an execution batch of 30 executions for each combination
of problem instance and operator set.

3.7.5 Effectiveness and efficiency

For each evolutionary algorithm separately, we compare the variants of the
mutation operator sets with respect to the quality relations presented in the
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Table 3.1 – For each use case, problem instance, and configuration based on NSGA-II,
the following is presented: the mean normalized hypervolume (for which higher
values are better), the standard deviation with respect to this mean, the mean number
of iterations required to terminate and the mean runtime in ms required for an iteration
(with lower values being better).

CRA SCRUM NRP
Metric A B C D E A B A B C

SC

Hypervolume 0.904 0.878 0.797 0.709 0.703 0.959 0.937 0.434 0.745 0.775
SD 0.007 0.03 0.03 0.043 0.05 0.011 0.028 0.001 0.007 0.003
Iterations 127 289 578 993 1250 407 497 174 184 285
ms/Iteration 31 34 89 651 4098 730 4223 252 326 454

UC

Hypervolume 0.506 0.24 0.148 0.055 0.026 0.915 0.831 0.402 0.738 0.735
SD 0.079 0.111 0.055 0.021 0.012 0.018 0.043 0.037 0.006 0.034
Iterations 119 131 164 244 377 461 556 238 445 489
ms/Iteration 26 31 54 177 515 527 2985 222 298 434

SIC

Hypervolume 0.881 0.809 0.757 0.661 0.676 0.942 0.902 0.588 0.734 0.766
SD 0.039 0.068 0.043 0.054 0.045 0.014 0.028 0.042 0.014 0.018
Iterations 121 274 481 769 992 352 452 150 163 269
ms/Iteration 31 34 84 456 2704 699 3822 255 331 452

examples 3.9 and 3.10. This means that we do not compare the results between
different evolutionary algorithms; for example, we do not compare an algorithm
configuration based on NSGA-II with a configuration based on PESA-II or
SPEA2. This allows us to attribute the differences in results to a single parameter:
the differences in mutation operator sets. Using the hypervolume [ZBT07] as
a quality indicator for each algorithm configuration and problem instance, we
recorded the mean effectiveness of the last population, the standard deviation
from this mean, the mean length of evolutionary computations performed, and
the mean runtime per iteration. Table 3.1 summarizes the measurements for all
configurations based on NSGA-II. Since the results for the other algorithms are
very similar, we will not list them explicitly here, but will discuss the observed
differences.

In general, the results of optimization algorithms cannot be assumed to be
normally distributed. Therefore, pairwise Mann-Whitney U tests [MW47] on the
mean effectiveness of the last populations are performed to test the significance
(with p-value < 0.05) of the differences between two algorithm configurations.
We analyze the effect size of the observed differences using Cliff’s delta [Cli93],
which takes values between 0.0 (no effect at all) and ±1.0 (the hypervolume of
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each evolutionary computation of one algorithm configuration is larger than the
hypervolumes of all evolutionary computations of the other). We will use only
positive values and rely on context to clarify which algorithm configuration is
the dominating one.

To discuss the mean-n-effectiveness, for NSGA-II based configurations, Fig-
ures 3.9 to 3.11 show the development of the mean hypervolume for the smallest
and largest problem instance of each use case, respectively. Consistent with
Ex. 3.9, the mean hypervolume of each iteration of an algorithm configuration
is computed with regard to all populations generated in that iteration in all evo-
lutionary computations of the respective configuration. Figure 3.12 illustrates,
as an example, the cumulative approximation sets achieved by each NSGA-II-
based algorithm configuration for Model E of the CRA case and Model A of
the NRP case. A cumulative approximation set is formed by combining the
approximation sets of the last populations of all evolutionary computations of
an algorithm configuration into one set of non-dominated solutions. Note that
the diagrams in Figure 3.12 depict objective values along the axis and not the
normalized values used for the hypervolume calculation. Also, note that the
cumulative approximation sets shown in no way reflect how many evolutionary
computations of an algorithm configuration yielded a particular solution.

3.7.6 Results

In the following, we compare the UC and SIC variants of all evolutionary
algorithms with their respective SC variant for all cases.

UC effectiveness. Regardless of the evolutionary algorithm, the UC vari-
ant turns out to be less effective than its two sound counterparts in terms
of mean-effectiveness in almost all cases. Model B of the NRP case seems
to be a special case, as UC is almost on par with SC and SIC here. Only
the configurations N(BNRP,UCNRP), P(ANRP,UCNRP), P(BNRP,UCNRP), and
P(CNRP,UCNRP) are better than their respective SIC variants. The differences be-
tween a UC variant and its corresponding SC and SIC variants are significant with
a few exceptions. These are the SC variants P(ANRP, SCNRP), P(BNRP,SCNRP),
and S(ANRP,SCNRP) as well as the SIC variant S(BNRP, SICNRP).
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Figure 3.9 – Development of the mean hypervolume (defined in Section 3.7.5) for all
NSGA-II based algorithm configurations for problem instances A and E of the CRA
case.
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Figure 3.10 – Development of the mean hypervolume (defined in Section 3.7.5) for
all NSGA-II based algorithm configurations for problem instances A and B of the
SCRUM case.

93



3 A Formal Framework for Model-Based MDO

0 100 200 300 400

0.2

0.4

0.6

Iterations

M
e
a
n

H
y
p
e
r
v
o
lu

m
e

SC

UC

SIC

(a) NRP A

0 200 400 600 800

0.2

0.4

0.6

0.8

Iterations

M
e
a
n

H
y
p
e
r
v
o
lu

m
e

SC

UC

SIC

(b) NRP C

Figure 3.11 – Development of the mean hypervolume (defined in Section 3.7.5) for all
NSGA-II based algorithm configurations for problem instances A and C of the NRP
case.
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Figure 3.12 – Cumulative approximation sets (defined in Section 3.7.5) for all NSGA-II
based algorithm configurations for model E of the CRA case and model A of the
NRP case, respectively.
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Apart from the few insignificant differences, high effect sizes can be observed.
For all problem instances of the CRA case, the highest possible effect size of
1.0 is achieved regardless of the algorithm used.

Apart from the NRP case where UC eventually surpasses SIC when PESA-II
is used, UC always shows the lowest mean-n-effectiveness. For larger models
of the CRA case, UC stands out with a low standard deviation. However,
considering the poor quality of the solutions found, the robustness indicated by
the low standard deviation can hardly be considered an advantage.

UC efficiency. In the CRA case, UC trades effectiveness for efficiency and
requires far fewer iterations than the other variants (clearly seen in Fig. 3.9b).
The iterations are also performed faster. In the NRP and SCRUM cases, UC
requires more iterations than its competitors and its runtime efficiency is closer
to (in some PESA-II and SPEA2 cases even worse than) that of SC and SIC. In
general, UC converges more slowly than the other variants, i.e., the hypervolume
improves in smaller steps (most evident in Fig. 3.11b).

SIC effectiveness. Comparing the incomplete variant SIC with its complete
counterpart SC, the situation is not as clear as for UC. The result differs between
the use cases and even between problem instances of the same use case. In
terms of mean-effectiveness, SC is significantly better than SIC for models B,
C, and D of the CRA case regardless of the evolutionary algorithm used. Effect
sizes for models B and C lie between 0.55 to 0.96; for model D they range from
0.33 with SPEA2 to 0.55 with NSGA-II. For models A and E of the CRA case,
the differences are not significant regarding NSGA-II and PESA-II; however,
S(ECRA,SICCRA) outperforms its SC counterpart significantly.

For both models of the SCRUM case, SC outperforms SIC. However, the dif-
ferences are only significant for NSGA-II and SPEA2. In the NRP case, the
differences between SC and SIC are significant except for S(CNRP,SICNRP).
SC performs slightly better than SIC in most cases (with effect sizes up to
1.0 for PESA-II and medium effect sizes for NSGA-II and SPEA2). However,
N(ANRP,SICNRP) and S(ANRP,SICNRP) surpass their respective SC variants with
effect sizes close to 1.0.
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Looking at the standard deviation, SC produces slightly more consistent results
in most cases. Regarding the mean-n-effectiveness, SIC performs better than SC
at the beginning of an optimization in the CRA and NRP cases. For the SCRUM
case, both variants behave nearly identically.

SIC efficiency. Most of the time SIC requires fewer iterations than SC to
terminate. Only when using PESA-2 to solve the NRP case, it is the other
way around. Although this result is not well reflected in Table 3.1, there is no
clear winner in terms of runtime; the winner depends heavily on the algorithm
considered and the problem instance.

3.7.7 Discussion

UC. Since unsound operators allow the introduction of constraint violations,
their effect on optimization depends heavily on the constraint handling mech-
anisms of the underlying evolutionary algorithm. As described in Ex. 3.5, the
selection operator of NSGA-II discriminates hard against infeasible solutions.
The same holds for PESA-II and SPEA2. As a result, infeasible solutions in the
population are discarded as soon as a feasible substitute is found. Especially in
scenarios where the optimization starts from a population containing feasible
or nearly feasible solutions (as in the NRP case), the introduction of constraint
violations caused by unsound operators usually wastes evolution steps. The
resulting infeasible solutions are replaced early on by newly found or existing
feasible solutions. This behavior cannot only slow down the optimization pro-
cess (as seen in Fig. 3.11) but also increases the probability of getting stuck in
local optima (see Fig. 3.9).

The extent to which negative effects of an unsound operator become apparent
depends on other factors: (1) how often and at which stage of an optimization
it is applicable, (2) whether it necessarily produces infeasible solutions, and
(3) whether other operators are given a chance to counteract its negative effects.
In the CRA case, the unsound operators addFeatureToNewClass, addFeatureTo-
ExClass, and removeFeatureFromExClass are all applicable to the vast majority
of solutions. At the beginning of an optimization, only a few features have a
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chance to be assigned to a class (most of them to exactly one class). There-
fore, an application of removeFeatureFromExClass is likely to leave a feature
unassigned. The more features are assigned, the more likely multi-assignments
will occur when addFeatureToNewClass or addFeatureToExClass are applied.
Although removeFeatureFromExClass can potentially resolve multi-assignments,
the corresponding solutions are often discarded before such a resolution can
occur due to the constraint handling used by the considered evolutionary algo-
rithms. Since the combination of the discussed operators repeatedly leads to
constraint violations in the course of an optimization, their negative effects are
clearly reflected in the observed effectiveness of the UC variant. In contrast, in
the SCRUM case, the negative effects of the unsound operators are less notice-
able. The unsound operators for creating/deleting sprints do not necessarily lead
to constraint violations as long as the maximum/minimum number of allowed
sprints is not exceeded after their application. Furthermore, the effect of creating
a sprint can be neutralized by subsequent deletion of a sprint and vice versa,
before the respective limit is reached. Finally, one of the unsound operators
that creates sprints can no longer be applied once all work items have been
assigned.

In cases were UC is nearly as effective as its competitors, more iterations are
required to compensate for the wasted mutations caused by unsound operators.
On the other hand, UC also reaches the termination condition when it gets
stuck in local optima. Therefore, fewer iterations are required than for the
other variants. Checking the application condition of an operator and finding
a match of the operator in the solution model can be a time-consuming task.
Unsound operators restrict their applicability less than their sound counterparts.
Consequently, UC is often the fastest variant in terms of time required per
iteration.

SIC. The performance of the SIC variant depends largely on which part of the
search space becomes unreachable due to the incompleteness of the operator set.
When (near) optimal solutions become unavailable, the mean-effectiveness of
SIC likely suffers (as for the CRA case in Table 3.1). Comparing the cumulative
approximation sets generated by the NSGA-II variants for models C, D, and E
of the CRA case, we found that SC generated solutions with high cohesion and
high coupling that SIC could not find (e.g., Fig. 3.12a). We attribute this to the
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inability of the SIC variant to create new classes once all features are assigned.
Obviously, SIC was unable to maintain solutions with the number of classes
necessary to induce such a high coupling. However, ignoring certain parts of
the search space during the course of an optimization can also serve to take
shortcuts, speed up the optimization process, or even overcome local optima.
With NSGA-II, this can clearly be observed for model A of the NRP case (see
Fig. 3.12b). While complete variants get stuck at solutions of low satisfaction,
SIC manages to explore a much larger portion of the search space. For some
reason, however, the same set of operators is less successful in SPEA2 and even
worse than the other variants in PESA-II.

Note that the impact of an incomplete operator set may depend on the problem
instance at hand. While SIC performs better than SC on model A of the NRP
case, it is the opposite for the other problem instances. Moreover, small changes
in the introduced incompleteness can have large effects. In the SIC variant of the
NRP case, we do not allow an artifact to be removed if it serves as a dependency
for x = 3 other artifacts. Choosing other values for x (e.g., 2 or 4), we found that
the aforementioned superiority of SIC for Model A disappears completely.

Summary. In summary, we observe that the use of unsound operator sets in
our experiments has a mostly negative impact on optimization (C3Q1). While
they are sometimes more efficient than their sound counterparts, their lack of
effectiveness outweighs this advantage. An effect on the optimization was also
observed for the completeness of operator sets (C3Q2). In our use cases, the
incomplete variants were slightly more efficient than the sound and complete
variants, but less effective in most cases. However, in a few cases, they managed
to perform significantly better than their competitors regarding effectiveness.

3.7.8 Threats to validity

Although the selected use cases already differ in various aspects covering a range
of problems relevant in practice, they represent only a small part of the broad
spectrum of optimization problems in software engineering. While the problem
models of the considered cases have rather complex structures, the complexity
of the solution parts is rather limited. Consequently, the complexity of changes
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made by element mutation operators is also limited; a fact that allows us to
reason about the soundness and completeness of the operator sets in the first
place. Unfortunately, only a relatively small number of use cases have been
prepared for MB-MDO so far, i.e., with problem instances formalized over meta-
models and element mutation operators implemented as model transformations;
elaborating a suitable use case is a non-trivial task. Other optimization problems,
including those that allow for more complex mutations, will need to be addressed
in the future.

While the use cases considered reflect practical software engineering problems,
all problem instances were generated. The extent to which these are representa-
tive of real-world cases remains unknown. We have attempted to address this
problem by considering problem instances of varying sizes and complexity for
each use case.

We attribute the observed behavior of the mutation operator sets to their sound-
ness and completeness. However, there may also be hidden side effects on the
optimization caused by other differences in the implementation of the mutation
operators. Due to the simplicity of the use cases mentioned above, we attempted
to mitigate this risk by keeping the changes between operator sets as small as
possible and maintaining a similar granularity of model changes made by the
mutation operators.

Finding the best parametrization of an evolutionary algorithm (e.g., the initial
population, the operators, and the termination criterion) can be considered as an
optimization problem in its own right. We chose the size and generation process
of the population based on our experience from Chapter 2 and [BZJ21]. By
design, our termination criterion allows a fair comparison as all evolutionary
computations converge in same way. However, in the experiments for each evo-
lutionary algorithm, we kept all variation points constant except for the mutation
operator sets. This allows us to attribute differences to a single independent
variable, but neglects possible synergies between specific parameters and vari-
ants of mutation operator sets. Like NSGA-II, the selection mechanisms of
PESA-II and SPEA2 also discriminate infeasible solutions (see Ex. 3.5). Other
selection and constraint-handling mechanisms may lead to different observations
and need to be investigated. However, since NSGA-II, PESA-II, and SPEA2 can
be considered state of the art, we believe that our results are very relevant.
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3.8 Conclusion

Developing effective and efficient algorithms in MDO and, in particular, MB-
MDO requires not only domain expertise but also in-depth knowledge of evo-
lutionary algorithm design. We have presented a graph-based framework that
identifies and clarifies the core concepts of MB-MDO. It is intended to assist the
domain expert in using MB-MDO to solve optimization problems. It can also
help in clarifying the critical factors for conducting reproducible experiments
in MB-MDO. We have used this framework to conduct a series of experiments
on optimizing software modularization and release planning using the CRA,
SCRUM, and NRP cases.

In particular, since our formal framework puts the focus on the specification of
mutation operators, it facilitates impact analysis of the properties of operators.
As a showcase, we consider the soundness and completeness of element mutation
operator sets. Our experiments provide a first insight into the effects of these
properties on the effectiveness and efficiency of evolutionary algorithms in MB-
MDO. We found that for a selection operator that strictly discriminates infeasible
solutions, unsound mutation operators can slow down the optimization process
as infeasible solutions are generated and discarded; moreover, unsound operators
increase the probability of getting stuck in local optima. The performance of
a set of incomplete mutation operators depends largely on which part of the
search space becomes unreachable due to the incompleteness of the operator
set. When (near) optimal solutions become unreachable, the effectiveness of
the corresponding algorithm may suffer. On the other hand, ignoring parts
of a search space that do not contain interesting solutions can speed up the
optimization process. Since a search space also depends on the given problem
instance, the effect of completeness may vary from instance to instance of the
same optimization problem. Therefore, it can be very important to make an
informed decision about the soundness and completeness of change operators.

To confirm our observations, the task of future work is to consider other opti-
mization problems and further vary the determining factors. More tool support
for analyzing soundness and completeness would facilitate further experimenta-
tion. Investigating runtime verification techniques for analyzing soundness and
completeness on the population level is also part of future work.
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In addition, it is interesting to consider crossover (or breeding) operators for
MB-MDO and investigate the effects of soundness and completeness for these
as well. In Section 4.1, we take a first step in this direction by defining a
crossover operator for graph-like structures. It forms the formal basis for a
crossover operator for EMF models; we present a first draft and implementation
in 4.2. Furthermore, in [TK22], we develop a (not yet implemented) approach to
crossover on graphs that is sound with respect to multiplicity constraints. We
intend to use these works to extend our framework to crossover operators and to
extend our impact analysis of soundness and completeness also to evolutionary
algorithms that use both mutation and crossover operators.

A fundamental design decision of our framework is to distinguish problem
and solution parts in models: it can be advantageously used in the CRA, NRP,
and SCRUM optimization problems that we have considered throughout the
chapter. There may also be optimization problems where the separation of
problem and solution parts in models is not clear. For example, the Refactoring
case [LK13; Kol+14] starts from a class model and searches for an optimal
refactoring sequence for that model; during evolution, all parts of the class
model may change. This case would be specified in our framework with empty
problem models. It is left to future work to investigate the consequences of this
design decision.

Our graph-based framework is deliberately generic in terms of modeling lan-
guages and specification options for evolutionary algorithms. It is incumbent
on future work to investigate how it relates to other existing optimization ap-
proaches based on graphs or models. This is particularly true for the evolution
of graphs through graph programs by Atkinson et al. [APS18; APS21; APS20]
and the rule-based approach to MDO [Abd+14; FTW15; Bil+19].

Our long-term goal is to consolidate MDO so that it is well-suited for optimiza-
tions in complex problem domains such as those encountered in search-based
software engineering and beyond.
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4
A Crossover Approach for

MB-MDO

Preface: This chapter comprises two publications. Section 4.1 corresponds
to the publication A Generic Construction for Crossovers of Graph-like Struc-
tures [TJK22]. It introduces a generic approach for performing crossover on
graph-like structures. Section 4.2 concretizes this approach in the context of
the Eclipse Modeling Framework. It corresponds to the publication Towards a
Configurable Crossover Operator for Model-Driven Optimization [JKT22a].

4.1 Formal Approach to Crossover

4.1.1 Introduction

In software development, software engineers often make design decisions in
the context of competing constraints ranging from requirements to technol-
ogy. To efficiently find optimal solutions, Search-Based Software Engineering
(SBSE) [HJ01] attempts to formulate software engineering problems as opti-
mization problems that capture the constraints of interest as objectives. By
using meta-heuristic search techniques, good solutions can often be found with
reasonable effort. Because of their generality, evolutionary algorithms, and in
particular genetic algorithms [HMZ12; BSA17] that use mutation, crossover,
and selection to perform a guided search over the search space, are a technique
of particular relevance. According to e.g. [ES15], the definition of an evolution-
ary algorithm requires a representation of problem instances and search space
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elements (i.e., solutions). It also includes a formulated optimization problem
that clarifies which of the solutions are feasible (i.e., satisfy all constraints of
the optimization problem) and best satisfy the objectives. The key ingredients
of the optimization process are a procedure for generating a start population of
solutions, a mechanism for generating new solutions from existing ones (e.g.,
by mutation and crossover), a selection mechanism that typically establishes
the evolutionary concept of survival of the fittest, and a condition for stopping
evolutionary computations. Selecting these ingredients so that an evolutionary
algorithm is effective and efficient is usually a challenge.

Model-driven optimization (MDO) aims at reducing the required level of exper-
tise of users of meta-heuristic techniques. Two main approaches have emerged
in MDO: the model-based approach [Bur+12; BZJ21] performs optimization
directly on models, while the rule-based approach [Abd+14; Bil+19] searches
for optimized model transformation sequences. In this chapter, we focus on
the model-based approach since it tends to be more effective (see Chapter 2)
and refer to it as MB-MDO for short. In MB-MDO, optimization problems are
specified as models that capture domain-specific information about a problem
and its solutions. In that way, users can interact with a domain-specific formula-
tion of their problem, rather than traditional encodings that are typically closer
to implementation. While the search space consists of models, the mutation
of search space elements is specified by model transformations. In sophisti-
cated evolutionary algorithms, mutations typically perform local changes, while
crossovers are used to generate offspring by recombining existing search space
elements. For (the model-based approach to) MDO, no crossover mechanism
has been worked out yet. This chapter fills this research gap and presents a
crossover construction for graph-based models. Several graph-based approaches
to crossover have been suggested in the literature, e.g. [Per+99; Nie03]. In
most cases, these crossovers are not generic (in the sense of different kinds
of graphs), but are designed with specific semantics of the underlying graphs
in mind. We aim to develop a generic construction of crossovers that can be
applied to different kinds of graph-like structures. Moreover, this construction of
crossovers is applicable regardless of the semantics of the graphs of interest. We
also prove the correctness and completeness of our crossover construction.

The chapter is organized as follows: We start with an example MB-MDO prob-
lem and discuss a possible crossover in this context in Section 4.1.2. Section 4.1.3
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recalls preliminaries. The main contribution of this chapter, a pushout-based
crossover construction, is presented in Section 4.1.4. In Section 4.1.5, we ex-
plain how our new crossover construction encompasses important, more specific
approaches to crossover (on graph-like structures) that have been suggested in
the literature. We close with a discussion of related work and a conclusion in
Sects. 4.1.6 and 4.1.7. All proofs are given in Appendix B.1.

4.1.2 Running Example

The CRA case [BBL10] is an optimization problem from the domain of software
design that has recently established itself as an easily understood use case in the
context of MDO. Given a software product represented by a set of features (i.e.,
attributes and methods) and dependency relations between them, the task is to
modularize the software by encapsulating its features into classes. Two well-
known quality aspects are used to evaluate the quality of solutions: cohesion and
coupling. Cohesion rewards classes in which features are highly interdependent,
while coupling captures the interdependencies of features that exist between
classes. A highly cohesive design with low coupling is considered easy to
understand and maintain. Therefore, maximizing cohesion and minimizing
coupling are the opposing objectives of the CRA case.

T

Method

Attribute

Class

Figure 4.1 – Type graph of the
CRA case. White solid ele-
ments specify invariant prob-
lem parts, the red colored class
element and its relations are so-
lution specific.

The structure of models in the CRA case can
be defined by the type graph shown in Fig. 4.1.
A problem instance consists at least of the fea-
tures and their dependencies. These elements
form the invariant part of a concrete problem.
Classes (and their relationships), on the other
hand, can be added, modified and removed to
explore the search space and create new so-
lutions. Typical mutations for the CRA case
include small changes like adding or remov-
ing a class, assigning a feature to a class, or
changing the assignment of a feature from one
class to another. Mutation usually does not consider already well optimized
substructures that might be worth being shared with other solutions.
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In the CRA case, a subset of features, along with their current assignment to
classes, contains potentially valuable information. The exchange of this informa-
tion between two solutions represents a promising crossover as we will see in
the following example. Consider solutions E and F in Fig. 4.2, for a problem
instance consisting of four methods and two attributes. Let a crossover choose
to recombine them by exchanging their assignment information for the features
1:Method, 2:Attribute and 3:Method. This results in two offspring solutions.
Solution E1F2 keeps the original assignments of 4:Method, 5:Attribute, and
6:Method as found in solution F and combines them with the assignments of
E for the exchanged features. The solution E2F1 is constructed in the opposite
way.

E
1:Method 2:Attribute

3:Method

4:Method

5:Attribute 6:Method

7:Class 8:Class 9:Class

F
1:Method 2:Attribute

3:Method

4:Method

5:Attribute 6:Method

10:Class 11:Class 12:Class

E1F2

1:Method 2:Attribute

3:Method

4:Method

5:Attribute 6:Method

7:Class 11:Class 12:Class

E2F1

1:Method 2:Attribute

3:Method

4:Method

5:Attribute 6:Method

10:Class 11:Class 7:Class 8:Class 9:Class

Figure 4.2 – Example crossover in the CRA case that creates the offspring E1F2

and E2F1 by exchanging the assignments of features 1:Method, 2:Attribute, and
3:Method between the solutions E and F.

Note that combining 1:Method, 2:Attribute and 3:Method into one class (as
done in solution E) seems a reasonable choice. Their pairwise dependencies
promote cohesion, while splitting them would lead to coupling. The same is
true for the features of class 12: Class in solution F. Consequently, the offspring
E1F2 combines the best of both worlds.

106



4.1 Formal Approach to Crossover

4.1.3 Preliminaries: M -Adhesive Categories

In this section, we briefly recall our central formal preliminaries, namely M -
adhesive categories and M -effective unions [Ehr+15], which provide the set-
ting in which we formulate our contribution. M -adhesive categories with M -
effective unions are categories where pushouts along certain monomorphisms
interact in a particularly nice way with pullbacks. This is of importance because
our construction of crossovers is based on pushouts. Moreover, working in
the framework of M -adhesive categories allows us to easily abstract from the
concrete choice of graphs used to formalize the models of interest (such as typed,
labeled, and attributed graphs). We only use category-theoretic concepts that are
common in the context of algebraic graph transformation, and refer to [Ehr+06;
Ehr+15] for introductions.

Definition 4.1 (M -adhesive category). A category C with a morphism class M

is an M -adhesive category if the following properties hold:

– M is a class of monomorphisms closed under isomorphisms ( f isomor-
phism implies that f ∈M ), composition ( f ,g ∈M implies g◦ f ∈M ),
and decomposition (g◦ f ,g ∈M implies f ∈M ).

– C has pushouts and pullbacks along M -morphisms, i.e., pushouts and
pullbacks where at least one of the given morphisms is in M , and M -
morphisms are closed under pushouts and pullbacks, i.e., given a pushout
like the left square in Fig. 4.3a, m ∈M implies n ∈M and, given a
pullback, n ∈M implies m ∈M .

– Pushouts in C along M -morphisms are vertical weak van Kampen squares,
i.e., for any commutative cube in C (as in the right part of Fig. 4.3a)
where we have the pushout with m ∈M in the bottom, b,c,d ∈M , and
pullbacks as back faces, the top is a pushout if and only if the front faces
are pullbacks.

We speak of M -adhesive categories (C ,M ) and indicate arrows from M as
hooked arrows in diagrams. Examples of categories that are M -adhesive include
sets with injective functions, graphs with injective graph morphisms and various
varieties of graphs with special forms of injective graph morphisms. In particular,
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A B

C D

m

n

B′ D′

B D

A′ C′

A C

c

m
b d

(a) Vertical weak van Kampen square

B

A E D

C

n2

n1

p1

m1

p2
m2

x

(b) M -effective union

Figure 4.3 – Defining M -adhesive categories with M -effective unions

typed attributed graphs form an M -adhesive category (where the class M

consists of injective morphisms where the attribute part is an isomorphism).

The existence of M -effective unions ensures that the M -subobjects of a given
object form a lattice.

Definition 4.2 (M -effective unions). An M -adhesive category (C ,M ) has
M -effective unions if for each pushout of a pullback of a pair of M -morphisms
the induced mediating morphism belongs to M as well, i.e., if in each diagram
like the one depicted in Fig. 4.3b where the outer square is a pullback of M -
morphisms and the inner one a pushout, the induced morphism x is an M -
morphism.

4.1.4 A Pushout-Based Crossover Construction

In this section, we develop our approach to crossover. Recall that we introduced
our formal framework in Section 3.4 based on graphs and type graphs, but
presented a generalization in Appendix A.1. In the following, we will present
our crossover construction based on this general setting of category theory. We
start with introducing the objects to which crossover will be applied.

In MDO, optimization problems are defined based on modeling languages, typ-
ically specified with meta-models. Various MDO approaches in the literature
such as [Bur+12; BZJ21] have chosen to represent problem instances and solu-
tions by models. Both can contain invariant problem parts as well as solution
specific parts, a distinction typically embedded in the associated meta-model.
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EP FP

E F

TP

T
e f

m

tp
mP

Figure 4.4 – Computation ele-
ments and ce-morphism

In our formalization, this is reflected in the fact
that a computation element is given by an ob-
ject that conforms to a computation type object.
The type object specifies which parts of a com-
putation element are invariant and which parts
contribute to the solution. A concrete problem to
be optimized is given by a problem instance; ev-
ery computation element can serve as such. The
search space of a problem instance includes all
computation elements with the same problem object as specified by the given
problem instance. In MDO, problem instances and solutions are typically further
constrained by additional conditions. We leave this refinement to future work.

Definition 4.3 (Computation element. Problem instance. Search space). Let
(C ,M ) be an M -adhesive category. A computation type object in C is an
M -morphism tp : TP ↪→ T; TP is called the problem type object. A computation
element E = (e : EP ↪→ E, tEP , tE) over tp is an M -morphism e together with
typing morphisms tEP : EP→ TP and tE : E → T such that the induced square
(over tp) is a pullback. The pair (EP, tEP) is the problem object of E. If defined,
the initial pushout over e yields the solution part of E, written E \EP.

A computation-element morphism m=(mP,m), short ce-morphism, from compu-
tation element E to computation element F is a pair of morphisms mP : EP→ FP

and m : E→ F that are compatible with typing, i.e., tFP ◦mP = tEP and tF ◦m= tE
(see Fig. 4.4). A ce-morphism m is problem-invariant if mP is an isomorphism
between EP and FP.

Given a computation type object tp : TP ↪→ T in C , a problem instance PI of
tp is a computation element PI = (p : PIP ↪→ PI, tPIP, tPI) over tp. It defines the
search space

S(PI) :={E = (e : EP ↪→ E, tEP , tE) ∈CS |
there exists an isomorphism aP : PIP

∼−→ EP s.t. tEP ◦aP = tPIP}.

Each element of the search space S(PI) is called solution (object) for PI.
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4 A Crossover Approach for MB-MDO

Given a solution E for PI, a subsolution of E is a solution E1 from the search
space S(PI) such that there exists a problem-invariant ce-morphism s1 from E1

to E where s1 ∈M .

Before providing an example, some remarks with respect to the above definition
and notation are in order. Since the typing of the problem object of a computation
element is defined via a pullback, pullback decomposition implies that a ce-
morphism is indeed a pullback square (compare Fig. 4.4). Thus, in abstract
terms, we fix an M -morphism TP ↪→ T from a given M -adhesive category C .
We then work in the category that has pullback squares over TP ↪→ T as objects
and pullbacks between such pullback squares as arrows. The results in [Kos+20a,
Theorem 1] ensure that this category is again M -adhesive, provided that the
original category C is also partial-map adhesive (as defined in [Hei12]); a
property that is satisfied by the category of attributed graphs; see, for example,
[Kos+20a, Corollary 1]. However, in this chapter it will suffice to consider the
arising diagrams as diagrams in the M -adhesive category C .

To shorten the presentation, we often only speak of computation elements E
and ce-morphisms m and use their components (such as EP, tEP , or m) freely
without introducing them explicitly. Furthermore, we often let the typing be
implicit; in particular, we omit it in almost all diagrams. In our examples, we
use the category of graphs as the underlying M -adhesive category C . Finally,
we specify problem instances in terms of the actual computation elements (and
not just in terms of their problem objects) to account for the fact that in practice
the problem of interest may be given as part of a (suboptimal) solution.

Example 4.1. The graph T in Fig. 4.1 can be viewed as a compact representation
of a computation type graph where the black part marks the embedded problem
type graph. Similarly, the typed graphs of Fig. 4.2 are interpreted as computation
elements over T , with the black parts typed over the problem type graph; the
typing is indicated by the names of the nodes. Since the typing morphisms
form pullbacks, these black parts represent the problem graphs of the respective
computation elements. Having identical problem graphs, all four graphs belong
to the same search space, which can be defined using either of them. This reflects
that a user might want to optimize an existing assignment of features to classes,
rather than just specifying the features and their interdependencies.
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4.1 Formal Approach to Crossover

Taking two computation elements (from the same search space) and splitting
their solution parts, two offspring solutions are constructed by recombining the
resulting subsolutions crosswise. In the following, we formally develop this
intuition (based on the category-theoretic concept of pushouts) and prove basic
properties of this construction of crossovers. We begin by defining the split of a
given solution.

Definition 4.4 (Split). Given a problem instance PI and a solution E for PI,
a split of E is a commuting cube as depicted in Fig. 4.5 where the bottom
square is a pushout, the vertical squares constitute ce-morphisms, all morphisms
come from M , and all problem objects (the objects in the square at the top) are
isomorphic to PIP. The bottom square is called solution split and EI is a split
point of E. The subsolutions E1 and E2 of E are called (solution) split objects
of E.

E1
P EP

E1 E

EI
P E2

P

EI E2

∼
jEP

e2

jE

∼ iEP ∼
iE s2

∼

e1 e

s1

Figure 4.5 – Split of solution E

A solution can be split in several ways; the
central idea is that each solution item of E
occurs in (at least) one of the solution parts
of E1 or E2. We next present a concrete con-
struction that implements the above declar-
ative definition.

Definition 4.5 (Split construction). Given a
solution E, the split construction consists of
the following steps:

(1) Choose an M -subobject s1 : E1 ↪→E from E (in C ) such that when pulling
back s1 along e, the morphism s1

P opposite to s1 is an isomorphism (in
particular, E1

P
∼= EP ∼= PIP, where E1

P is the object computed by this pull-
back). The typing morphisms tE1

P
and tE1 are defined as tEP ◦ s1

P and tE ◦ s1,
respectively.

(2) Choose another such M -subobject s2 : E2 ↪→ E from E such that s1,s2 are
jointly epi (again, typing is defined by composition).

(3) Complete the cube by constructing pullbacks. That is, determine EI as
the pullback of s1 and s2, EI

P as the pullback of the isomorphisms at the
top of the cube, and eI : EI

P ↪→ EI as the morphism that is induced by the
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4 A Crossover Approach for MB-MDO

universal property of the bottom pullback. Again, when considered as
computation element, the typing of EI is defined by composition.

Remark 4.1. While in general categories the above construction need not be
constructive, it is when the underlying category is one of the familiar categories
of graphs (being, e.g. typed, labeled, or attributed). Then, the choice of E1

amounts to extending (an isomorphic copy of) EP by a choice of solution el-
ements from E; s1 extends the isomorphism accordingly. Since pullbacks of
injective morphisms compute intersections, the pullback of s1 along e computes
the chosen isomorphic copy (up to unique isomorphism). For the choice of E2,
one again extends an isomorphic copy of EP by a choice of solution elements
from E. To ensure that s1 and s2 become jointly epi (that is, jointly surjective in
our case), one must include at least all solution elements of E not chosen in the
construction of E1.

EI

1:Method 2:Attribute

3:Method

4:Method

5:Attribute 6:Method

7:Class

E1

1:Method 2:Attribute

3:Method

4:Method

5:Attribute 6:Method

7:Class

E2

1:Method 2:Attribute

3:Method

4:Method

5:Attribute 6:Method

7:Class 8:Class 9:Class

E
1:Method 2:Attribute

3:Method

4:Method

5:Attribute 6:Method

7:Class 8:Class 9:Class

Figure 4.6 – A split of solution E

Example 4.2. Given the two degrees of freedom for a split, different splits can
be constructed from solution E shown in Fig. 4.2. In steps (1) and (2) we have
all possibilities to extend its problem graph EP (or an isomorphic copy) with
solution parts that yield E1 and E2 as long as E1 and E2 form graphs and jointly
cover E.
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A possible split of the solution E is shown in Fig. 4.6. Here, E is split by first
inserting the assignment relations of 1:Method, 2:Attribute, and 3:Method into
E1 along with the associated class 7:Class. The rest of the feature assignments
and the necessary classes become part of E2. The pullback EI of E1 and E2

contains their common solution element 7:Class. To simplify the presentation,
the problem graph EP is reused in all four graphs. Note that the morphisms
in Fig. 4.6 are indicated by equal numbers in the corresponding nodes. They
uniquely induce the mapping of edges. We use these conventions in all of the
following examples.

Proposition 4.1 (Correctness and completeness of split construction). In an
M -adhesive category with M -effective unions, the split construction in Defi-
nition 4.5 is correct and complete: it always yields a split of the given solution
and every possible split can be realized through it. Moreover, for each choice of
an M -subobject s1 : E1 ↪→ E there exists at least one possible split.

Given a problem instance PI and two solutions E and F for it, a crossover
of E and F can be performed. Their offspring are basically constructed by
recombining solution split objects crosswise. Variations of recombinations are
possible, since solution-split objects resulting from solution splits of E and F
can be recombined with more or less overlap. To uniquely determine a crossover
of E and F , we define a crossover point that specifies the overlap of their solution
split objects.

Definition 4.6 (Crossover point). Given a problem instance PI, two solutions E
and F for PI, with splits having split points EI and F I , respectively, a crossover
point CP is a common subsolution of EI and F I . That is, a crossover point is a
span of problem-invariant ce-morphisms as depicted in Fig. 4.7 (with bottom
components coming from M ).

We will explain crossover points later along with the crossover operation as such.
Next we briefly mention that it is always possible to find a crossover point in a
trivial way – the problem object of the given problem instance can always serve
as such.
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4 A Crossover Approach for MB-MDO

Lemma 4.1 (Existence of crossover points). Given a problem instance PI =
(p : PIP ↪→ PI, tPIP, tPI) over type object tp, two solutions E and F for PI, and
splits with split points EI and F I , respectively, CP := (id : PIP ↪→ PIP, tPIP , tp◦
tPIP) is always a crossover point for them. In particular, for each two splits of
solutions for the same problem instance there always exists a crossover point.

EI
P

CPP

F I
P EI

CP

F I

∼

∼

Figure 4.7 – Crossover point

Taking two solutions E and F for a com-
mon problem instance and splitting them into
subsolutions E1,E2 and F1,F2, we choose a
crossover point for these splits and now de-
fine a crossover of these solutions. It basically
recombines the subsolutions of E and F cross-
wise at the crossover point and yields the com-
putation elements E1F2 and E2F1. We show
in Prop. 4.2 that these two offspring are also
solutions to the joint problem instance.

Definition 4.7 (Crossover). Let a problem instance PI, two solutions E and F for
PI, splits of these two solutions with split objects E1,E2,F1,F2 and split points
EI and F I , respectively, and a crossover point CP for these splits be given. Then,
a crossover of solutions E and F (at CP and these splits) yields the two offspring
solutions O1 and O2 of E and F that are shown in Fig. 4.8 and constructed as
follows:

(1) The ce-morphisms from CP to E1 and E2 are obtained by composing
the ce-morphism from CP to EI (given by the crossover point) with the
ce-morphisms from EI to E1 and E2 (given by the solution split of E),
respectively. The ce-morphisms from CP to F1 and F2 are obtained
analogously.

(2) The top and bottom squares of the cubes are computed as pushouts (in
C ) yielding the objects (E1F2)P, E1F2, (E2F1)P, and E2F1. The typing
morphisms for these objects are obtained from the universal properties of
the respective pushout.

(3) The morphisms o1 : (E1F2)P ↪→ E1F2 and o2 : (E2F1)P ↪→ E2F1 are also
induced by the universal property of the pushout squares at the top of the
cubes. These morphisms form the objects of O1 and O2.
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F1
P (E2F1)P

F1 E2F1

CPP E2
P

CP E2

∼

e2

∼ ∼
∼

f 1 o2

E1
P (E1F2)P

E1 E1F2

CPP F2
P

CP F2

∼

f 2

∼ ∼bP

b

∼ aP

e1 o1

a

Figure 4.8 – Crossover of solutions E and F

We illustrate the construction before establishing some of its basic properties
such as its correctness.

Example 4.3. A split of solution F (introduced in Fig. 4.2) is shown in Fig. 4.9.
Again, the split point extends the problem graph by a Class element. Therefore,
a crossover point for E and F (with the splits given in Figs. 4.6 and 4.9) consists
either of their common problem graph only, or of this problem graph extended by
a single Class. Figure 4.2 already shows the two offspring graphs that result from
applying crossover to E and F where the problem graph is chosen as crossover
point. In contrast, adding a Class to the crossover point would merge 7:Class and
11:Class during the recombination and result in the offspring shown in Fig. 4.10.

FI

1:Method 2:Attribute

3:Method

4:Method

5:Attribute 6:Method

11:Class

F1

1:Method 2:Attribute

3:Method

4:Method

5:Attribute 6:Method

10:Class 11:Class

F2

1:Method 2:Attribute

3:Method

4:Method

5:Attribute 6:Method

11:Class 12:Class

F
1:Method 2:Attribute

3:Method

4:Method

5:Attribute 6:Method

10:Class 11:Class 12:Class

Figure 4.9 – A split of solution F originally presented in Fig. 4.2

The next proposition shows that a crossover calculate the offspring correctly, i.e.
all offspring calculated represent solutions (for the given problem instance).
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E1F2

1:Method 2:Attribute

3:Method

4:Method

5:Attribute 6:Method

7↔11:Class 12:Class

E2F1

1:Method 2:Attribute

3:Method

4:Method

5:Attribute 6:Method

10:Class 7↔11:Class 8:Class 9:Class

Figure 4.10 – Two offspring models E1F2, E2F1, based on the splits of Figs. 4.6 and 4.9
and a crossover point containing an additional class

Proposition 4.2 (Correctness of offspring). Given a problem instance PI, two
solutions E and F for PI, splits with split objects E1,E2,F1,F2 and split points
EI and F I , respectively, and a crossover point CP for these splits, then there is
always a crossover and the two offspring solutions O1 and O2 are solutions for
PI.

Next we characterize the expressiveness of the presented crossover construction:
Given two solutions E and F , all solutions that can be understood as results of
splitting E and F and their recombination can indeed be generated as offspring of
the construction in Def. 4.7 (by different choices of solution splits and crossover
points). This is reminiscent of the expressiveness of uniform crossover when
using arrays of, e.g., bits as genotype [ES15].

Proposition 4.3 (Completeness of crossover). Let the underlying M -adhesive
category C have M -effective unions, and let a problem instance PI and solutions
E, F , and O for PI be given. The solution O can be obtained as offspring from a
crossover of E and F if and only if there are subsolutions E1 of E and F2 of F
with problem-invariant ce-morphisms ī : E1→O and j̄ : F2→O such that i and
j are jointly epic M -morphisms.

Discussion. As mentioned earlier, M -adhesive categories include various
categories of (typed, labeled, or attributed) graphs that can be used to formalize
modeling approaches. In particular, our construction supports crossovers of
graphs with inheritance and attribution – concepts that are regularly used in
modeling. As for the construction of splits and crossover points, our approach
provides several degrees of freedom. In principle, for any implementation of
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these variation points, the definitions and results in this section are sufficient to
complement evolutionary computations in model-based MDO with crossovers.
Moreover, our proposed crossover construction is generic in the sense that it
can be applied to any meta-model; it only needs to be possible to formalize the
optimization problem of interest and its search space according to Definition 4.3.
Then, whenever two solution models are chosen for crossover, Proposition 4.1
ensures that both can be split. Next, Lemma 4.1 ensures that regardless of which
splits are chosen, a crossover point exists for these splits. Finally, Proposition 4.2
ensures that, for two splits and a crossover point, there is always a crossover that
provides solutions of the search space.

Beyond typing, meta-modeling typically employs integrity constraints that ex-
press further requirements for instances being considered well-formed; multi-
plicities are a typical example. We do not consider such constraints so far. This
means that given a meta-model with additional integrity constraints and two of
its instance models satisfying these constraints, computing crossover as specified
in this work may result in offspring models that violate the constraints. We illus-
trate this with our running example: In practical applications, the meta-model
(type graph) from Fig. 4.1 would have a constraint requiring each Method and
each Attribute to be associated with at most one Class. A slight adjustment of
the split and crossover points in Examples 4.2 and 4.3 results in the offspring
shown in Fig. 4.11; both graphs violate the considered constraint. The splits of E
and F were adjusted to additionally include the edge to 5:Attribute in E1 as well
as in F1 (from 7:Class and 11:Class, respectively); the problem part served as
the crossover point. Computing offspring that violate such additional constraints
is not in itself a problem; several methods have been developed in evolutionary
algorithm research to deal with this. For example, such infeasible solutions
can be eliminated by the selection operator, or they can be tolerated (with a
reduced fitness assigned to them); after all, even an infeasible solution can lead
to a feasible solution of high quality later during the evolutionary computation.
However, producing too many infeasible solutions can waste valuable resources
and slow down the evolutionary computation process.

Summarizing, we expect evolutionary search to profit most if domain-specific
knowledge is used to direct the choices of splits and crossover points, that
is, if these choices are adapted to the problem at hand (possibly including
the preservation of additional constraints). Thus, while our construction can
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E1F2

1:Method 2:Attribute

3:Method

4:Method

5:Attribute 6:Method

7:Class 11:Class 12:Class

E2F1

1:Method 2:Attribute

3:Method

4:Method

5:Attribute 6:Method

10:Class 11:Class 7:Class 8:Class 9:Class

Figure 4.11 – Offspring violating an integrity constraint

principally yield problem-agnostic crossovers, it can also (and maybe better)
be understood as a generic construction that offers a unifying framework for
the implementation of specific crossovers on graph-like structures. In the next
section, we substantiate the claim that our construction offers such a unifying
framework.

4.1.5 Instantiating Existing Approaches to
Graph-Based Crossover

In this section, we exemplify how our generic construction includes existing
crossover operators that can be applied to graph-like structures. We discuss uni-
form, k-point and subtree crossover, as these are classic operators that are com-
monly applied [Koz92; ES15]. In addition, we consider horizontal gene transfer
(HGT), which was recently introduced in a setting similar to ours [APS20].

Uniform and k-point crossover. These are crossover operators commonly
used when solutions are encoded as strings (arrays) of bits (or other alpha-
bets) [ES15]. In k-point crossover, two given parent strings of equal length
are split into k+1 substrings at k randomly selected crossover points (at equal
positions in both strings). The two offspring solutions are obtained by alternately
concatenating a substring from each parent, resulting in solutions of the same
length as the given parents. In uniform crossover, a new decision is made at each
position (according to a given probability) which offspring gets the entry from
which parent. This can be understood as k-point crossover with varying k.

Strings can be represented as graphs by simply considering each character of a
string as an edge typed or labeled with that character; see, e.g., [Plu98]. Using
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this representation, our construction of crossovers can be used to implement
uniform and k-point crossover. Here, the problem object (graph) is given by the
nodes of the graphs (which encode the length of the given strings). The splits
are chosen such that (i) the edges are partitioned (disjointly) into the solution
splits and (ii) the same partitions are chosen for both parents (i.e., if the first
edge of the first parent is included in its first subsolution, the first edge of the
second parent is also included in its first subsolution). This partitioning can be
done according to the rules of k-point or uniform crossover. The only available
crossover point is the set of nodes (i.e. the problem graph), since the edges
are distributed disjointly. The calculation of the crossover, i.e.performing the
two pushouts, results in two offspring solutions with the same length as the
parents.

0 0

0 0

1 1

1 1

2 2

2 2

3 3

3 3

0 0

0 00 0

(a) Splitting s1

0 0

0 0

1 1

1 1

2 2

2 2

3 3

3 3

0 0

0 01 1

(b) Computing o1

Figure 4.12 – Implementing classic 2-point crossover

For the k-point crossover, we consider the concrete example of a 2-point
crossover of the strings s1 : 0|0|0 and s2 : 1|1|1, where | represents the cho-
sen crossover points. The computed offspring strings are o1 : 010 and o2 : 101.
Figure 4.12 outlines how this calculation is implemented in our approach.

Subtree crossover. Subtree crossover is the recombination operator com-
monly used in genetic programming [Koz92]. In genetic programming, a pro-
gram is represented by its syntax tree. Such a tree serves as a genotype for
an evolutionary computation that aims at finding an (optimal) program for the
given task. Given two syntax trees, subtree crossover (randomly) selects and
exchanges one subtree from each of them. With our approach, we can implement
subtree crossover if we use a little trick in representing the trees: We explicitly
encode the edges of the trees as nodes (for a representation of (hyper)edges as
special kinds of nodes, see, e.g., their (visual) representation in [Plu99]). The
problem tree (graph) is always empty. A split divides a tree into a subtree and the
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remaining tree, where the node encoding the reference to the subtree is common
in both split objects. This node serves as a crossover point to exchange subtrees
crosswise at the correct positions. Figure 4.13 schematically represents a subtree
crossover, where R1 is the root node of the first tree, all STi represent subtrees,
and nodes of type ref represent edges. Note that representing edges as nodes
allows us to split an edge into two parts and distribute it between the two split
parts. In this way, we can redirect edges.

2:ref 2:ref ST2

R1

1:ref 2:ref 3:ref

ST1 ST3

R1

1:ref 2:ref 3:ref

ST1 ST2 ST3

(a) Splitting a tree

2:ref 2:ref ST4

R1

1:ref 2:ref 3:ref

ST1 ST3

R1

1:ref 2:ref 3:ref

ST1 ST4 ST3

(b) Performing subtree crossover

Figure 4.13 – Implementing subtree crossover

o

i1 i2

(a) Donor

o

i1 i2

(b) Receiver

o

i1 i2

(c) Result graph

Figure 4.14 – Example of the horizontal gene transfer (HGT) proposed in [APS20]. o
is the fixed output node. Active nodes are depicted in white, passive nodes are gray.
i1 and i2 are input nodes. The marked nodes of the receiver (including outgoing
edges) are substituted by the marked parts of the donor.

Horizontal gene transfer (HGT). HGT was proposed by Atkinson et al. in
[APS20] as a non-recombinative method for transferring genetic information
between individuals. In their work, graphs are used to represent functions (or,
with small adaptations, neural networks); the reachability of fixed output nodes
determines the active component of a graph. As indicated in Fig. 4.14, HGT
takes the active component of one graph (the donor) and copies it to the passive
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component of another graph (the receiver); to maintain a fixed number of nodes,
an appropriate number of passive nodes is deleted from the receiver beforehand.
Input nodes representing parameters are identified during that process. In our
construction the output and input nodes would be considered the problem part.
Choosing the active component as the solution split for the donor, the subgraph
that remains after deleting the passive nodes as the solution split of the receiver,
and the problem part as crossover point, our approach can compute HGT as a
crossover.

4.1.6 Related Work

In addition to the approaches presented in detail above in Section 4.1.5, we now
relate our crossover construction to other variants of crossover on graph-like
structures. For each approach, we clarify whether it can be simulated by our
approach and how expressive it is. We then discuss the crossover variants used
so far in MDO.

4.1.6.1 Further Approaches for Graph-Based Crossover

The two most general crossover variants on graph-like structures that we are
aware of are those proposed by Niehaus [Nie03] and Machado et al. [MNR10].
Niehaus introduces random crossover on directed graphs, where a subgraph of
one graph is removed and replaced by a subgraph of another graph; in partic-
ular, only one offspring is computed. To avoid dangling edges, the exchanged
subgraphs must have the same in- and out-degrees with respect to the edges that
connect them to the rest of the graph. By using the trick of representing edges as
a special kind of node, we can realize this crossover with our approach.

Machado et al. [MNR10] also exchange subgraphs between graphs. The sub-
graphs are constructed as radii around randomly chosen nodes. To connect the
exchanged subgraphs to their new host graphs, a correspondence is established
between the nodes that were adjacent to them in their former host graphs. If this
correspondence is one-to-one, we can implement this operator in our approach
by again representing edges by a special type of node. However, Machado et
al. also allow for correspondences that are not one-to-one. To implement this
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feature, we would need to allow non-injective mappings from the crossover point
to the splits in our approach. Unlike this approach, our approach is not limited
to choosing subgraphs as radii around randomly chosen nodes.

Other approaches are less general since they depend to a greater extent on the
chosen representation or semantics of the graphs used [KB02; DZB10; DHK12;
Nob+13; KRD17; HK18]. In these cases, it does not seem straightforward to
apply the proposed crossovers in other contexts. The kind of computations that
can be performed using crossover may also be less expressive than those in the
approaches already discussed [Per+99; KB02; Nob+13; KRD17; HK18]. We
can implement the crossovers proposed in [Per+99; DZB10; DHK12; Nob+13;
HK18] in our approach, often by representing edges as a special type of node.
The approach by Kantschik and Banzhaf [KB02] cannot be implemented for
reasons similar to those discussed for [MNR10]. Furthermore, we cannot im-
plement the subgraph crossover proposed in [KRD17], because this approach
allows random insertion of new edges into an offspring and these edges do not
come from any parent.

In summary, our generic approach to crossover on graph-like structures en-
compasses most of the approaches proposed for more specific situations. Our
approach allows more general exchanges of subgraphs than most of the ap-
proaches discussed. Moreover, our Proposition 4.3 is the first result (that we
know of) that formally clarifies the expressiveness of the proposed crossover.
We have identified two reasons why our approach is not able to encompass an
existing approach: First, crossover could cause two (or more) edges that targeted
different nodes in their original graph to target the same node in their new context.
Second, elements that do not originate from either parent are reintroduced in the
offspring. However, both kinds of changes can be realized in our approach by
the subsequent application of mutation operators. We could also solve the first
problem by allowing non-injective mappings from crossover points to the splits
when performing crossover. However, this would complicate the theory we can
provide for our construction: Pushouts along any two morphisms need not exist
in M -adhesive categories, and even if the necessary pushouts did exist, ensuring
that the computed results come from the search space under consideration (i.e.,
represent an M -morphism) would only be possible for certain morphisms.
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4.1.6.2 Crossover in MDO

In the rule-based approach to MDO, the solutions are represented as sequences
of model transformations [Abd+14; Bil+19]. This allows traditional crossovers
(e.g., k-point crossover, uniform crossover) to be applied seamlessly. However,
they have been shown to be disruptive because the transformations can depend
on each other and repair strategies must be used to mitigate this problem (see
Chapter 2). As for the effects of crossover in the rule-based approach, no
theoretical results are available. To date, neither a formal basis nor alternatives
to traditional crossover have been developed in this context.

Burton et al. were the first to perform optimization directly on models as search
space elements [Bur+12]. Their specific use case allows for the adaptation of
single-point crossover through model transformations. However, their crossover
implementation is not described in detail. Recent applications of the model-based
approach neglect crossover and stick to mutation as their only change operator,
such as [BZJ21]. In [ZM16], Zschaler and Mandow present a generalized view
on the model-based approach to MDO and point out the challenge of specifying
crossover in such a setting. They briefly discuss model differencing and model
merging as related concepts, but do not elaborate on this idea. To our knowledge,
this work presents the first approach to address this issue.

4.1.7 Conclusion

There is theoretical and practical evidence that evolutionary algorithms in general
benefit from the use of crossover [DHK12; HK18; APS20] in the sense that
the search for optimal solutions can be more effective and efficient. However,
in the absence of suitable crossover approaches for (the model-based approach
to) MDO, the effect of crossover in this context has not yet been studied. Our
proposed generic crossover construction can serve as a basis to start with.

How existing solutions are split and the selection of common crossover points for
such splits are critical design decisions. Which of these decisions are beneficial
to the effectiveness and efficiency of an optimization remains to be explored.
Apart from the typing of objects, our approach neglects additional constraints of
an optimization problem, i.e., crossover may lead to violations of constraints.
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Whether our approach needs to be refined to guarantee constraint-preserving
offspring remains for future work. In addition to theoretical exploration of our
approach, an implementation is needed to enable empirical analysis. Addition-
ally, specification concepts need to be elaborated to allow users to conveniently
specify different split strategies and crossover points that fit their domain.

4.2 An EMF-Based Crossover Operator

4.2.1 Introduction

A variety of software engineering problems such as software modularization [BBL10],
software testing [WL05], and release planning [BRW01] can be viewed as opti-
mization problems. Search-based software engineering (SBSE) [HJ01] explores
the application of meta-heuristic techniques to such problems. One of the
widely used approaches to efficiently explore a search space is the application of
evolutionary algorithms [HMZ12].

With reference to e.g. [ES15; ZM16], the definition of an evolutionary algo-
rithm requires a representation of problem instances and solutions. Formulated
constraints and objectives determine the quality of solutions. A mechanism
for generating new solutions from existing ones (typically involving mutation
and crossover) and a selection mechanism (typically based on the concept of
survival of the fittest) drive the evolution. Finally, a population of solutions to
start from and a condition for stopping evolutionary computations are needed.
It is a challenge to select these ingredients so that an evolutionary algorithm is
effective and efficient.

The use of domain-specific models can facilitate the exploratory search for
solutions, especially for structural software engineering problems where tradi-
tional encodings (e.g., as vectors) are hard to apply. Model-driven engineering
(MDE) [Sch06] aims to represent domain knowledge in models and solve prob-
lems through model transformations. MDE can be used in the context of SBSE
to minimize the expertise required of users of SBSE techniques. In Chapter 2,
we referred to this combination of SBSE and MDE as model-driven optimiza-
tion (MDO). Two main approaches have emerged in MDO: The model-based
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approach [BP13; ZM16] performs optimization directly on models, while the
rule-based approach [Abd+14; Bil+19] searches for optimized model transfor-
mation sequences.

Both use mutations to make local changes. Crossover, i.e., splitting and re-
combining existing solutions, has only been applied in the rule-based approach,
because the concepts for conventional crossovers (such as k-point crossover and
uniform crossover) can be seemlessly applied to rule call sequences. Crossover
of models is not so obvious, since models are multidimensional structures. This
is probably the reason why a crossover operator for the model-based approach
to MDO is still missing. However, there is theoretical and practical evidence
that evolutionary algorithms can benefit from the use of crossover [Doe+13;
Sud17; HK18]. Since the model-based approach tends to be more effective than
the rule-based approach (see Chapter 2), even without crossover, we take initial
steps to implement and apply crossover in the model-based approach to MDO
(hereafter referred to as MB-MDO for short).

In MB-MDO, problem instances and solutions are represented as domain-specific
models, each containing a problem part with all relevant information about the
given problem instance and a solution part with solution information. All models
in the initial population have the same problem part. Model mutations are
rule-based model transformations that preserve the problem part. Since models
are close to graphs, it is quite obvious to use a graph-based construction such
as [Nie03; MNR10] or our approach in Section 4.1 to implement crossover.
However, these crossover constructions are very generic and do not consider
model- or even domain-specific aspects. Since the Eclipse Modeling Framework
(EMF) [Ste+08; emf] has become a de facto standard technology for defining
models and modeling languages, and MB-MDO concepts have been developed
and implemented for EMF models [BZJ21], a crossover operator for EMF
models should also be available.

In this chapter, we present (1) an algorithmic design for a crossover operator
for EMF models that generates EMF models as offspring. It is designed to be
configurable so that the user can incorporate domain-specific knowledge. (2)
We provide a prototypical implementation of our crossover operator based on
Henshin [henshin], a model transformation engine for EMF models. (3) Initial
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experiments show that the combination of mutation and crossover can be more
effective than using only mutation in MB-MDO.

4.2.2 Related Work

In the rule-based approach to MDO, the solutions are represented as sequences
of transformation units [Abd+14; Bil+19]. This allows conventional crossovers
such as k-point and uniform crossover to be applied seamlessly. The crossover
operators considered so far do not take domain-specific knowledge into account.
An offspring sequence may contain unit applications that are no longer exe-
cutable. By default, such units are simply ignored; they can also be deleted from
the sequence [Abd+14]. A non-executable unit can alternatively be repaired by,
for example, replacing it with a random executable unit [Bil+19]. Since there is
no guarantee that the offspring solutions are feasible, more sophisticated repair
strategies are needed to mitigate this problem.

Burton et al. were the first to perform optimization directly on models as
search space elements [Bur+12]. Their specific use case allows adaptation of
one-point crossover through model transformations. However, their crossover
implementation is not described in detail. In [ZM16], Zschaler and Mandow
present a generalized view on the model-based approach to MDO and point
out the challenge of specifying crossover in such an environment. They briefly
discuss model differencing and model merging as related concepts but do not
elaborate on this idea. Recent applications of the model-based approach neglect
crossover and stick to mutation as the only change operator, such as [BZJ21]. To
our knowledge, this is the first approach to a crossover operator for the model-
based approach to MDO and the first approach to a configurable crossover
operator for MDO in general that will be able to incorporate domain-specific
knowledge.

4.2.3 Running Example

The class responsibility assignment (CRA) case [BBL10] is a structural op-
timization problem in software engineering that has become one of the most
well-known cases when considering MDO. Therefore, we use this case to recall
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[0..*] classes
ClassModel

Method

Feature

[0..*] features

[0..*] dataDependency

[0..*] functionalDependency

[0..*] isEncapsulatedBy

[0..*] encapsualtes
Class

NamedElement

name: String

Attribute

Figure 4.15 – Meta-model for the CRA case (slightly adapted from [FTW16])

the core concepts of MB-MDO and illustrate our crossover operator. The CRA
case aims to create a high-level design for object-oriented systems. Starting
from a class model with features and their usage relations as a problem instance,
each partial assignment of features to classes forms a solution. What is sought is
a complete mapping of features to classes such that coupling between classes is
low and cohesion within classes is high.

A suitable meta-model for the CRA case is presented in [FTW16] and has been
introduced in Section 2.3. Figure 4.15 recalls the meta-model with slightly
adapted multiplicities. The meta-model specifies ClassModels that contain Fea-
tures (i.e., Attributes and Methods) and prescribes the possible usage relations.
Methods can use Attributes and Methods. To form a solution, Classes can be
used to encapsulate Features. In Fig. 4.15 (and subsequent figures), uncolored
solid elements are used to describe the optimization problem. They remain in-
variant during optimization, while the colored Class element with dashed border
and its incoming and outgoing references can be created or removed.

We treat the CRA case as a multi-objective problem where two aspects of
quality are important: cohesion and coupling. While cohesion means that
dependent Features are within a single Class, coupling refers to the dependencies
of Features between different Classes. Good solutions exhibit a class design
with high cohesion and low coupling because it is considered easy to understand
and maintain. Cohesion and coupling are measured by the CohesionRatio and
CouplingRatio both presented in [FTW16]. Furthermore, the CRA case is a
constrained optimization problem: A solution model is said to be feasible if each
Feature is associated with exactly one Class (the feasibility constraints).
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App

content

filter()

print()

DatabaseManager

fetchData()

update()

ConnectionData

url

ApplicationModel

Figure 4.17 – Class diagram represented by offspring O1 with class names adapted to
reflect their purpose.

Mutations can locally change solutions, such as assigning a Feature to a new
or existing Class or moving a Feature from one Class to another. Crossover
of solutions is of interest when parts of them are already promising, so that
decomposing and recombining them can lead to solutions with better fitness.
In the following, we present a crossover example on two solutions E and F
(Figs. 4.16a and 4.16b) for the same problem instance, which consists of six
interdependent Features: two Attributes and four Methods. Combining Attribute
content and Methods print and filter in one Class (as in solution E) seems
reasonable. Their pairwise dependencies promote cohesion, while splitting them
would lead to coupling. Similarly, combining Methods update and fetchData
like in solution F makes sense. A possible crossover of E and F that combines
those assignments combines the best of both worlds. The resulting offspring
solution, called O1, is shown in Fig. 4.16c. In fact, we can assign a descriptive
name to each of the classes in O1 that reflects its purpose from a semantic point of
view; Fig. 4.17 shows the resulting class model in concrete syntax. Offspring O2
(in Fig. 4.16d) is constructed by combining the opposite assignments. Note that
the assignments of Attribute url have been transferred to O2 from both parents.
This shows that crossover may generate infeasible solutions. Infeasible offspring
can either be repaired after crossover or are discarded due to infeasibility or low
fitness.

4.2.4 A Configurable Crossover Operator for EMF
Models

In this section, we introduce our crossover operator for EMF models and argue
that this operator always generates EMF models as offspring, i.e., models that
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satisfy general EMF constraints. We also discuss how it preserves a specific
form of rootedness expected from the input models. First, we briefly introduce
the general setting for our work.

4.2.4.1 Setting

EMF models. The Eclipse Modeling Framework (EMF) [Ste+08; emf] has
established itself as a leading framework for model-driven engineering. In
EMF, meta-models are used to specify the syntax of domain-specific (modeling)
languages. To further constrain meta-model instances that are considered valid,
a meta-model can be additionally equipped with multiplicities and further well-
formedness constraints, usually defined in the Object Constraint Language
(OCL) [ocl]. Recall that any EMF model has a hierarchical containment structure
over its elements to support its efficient processing. Specifically, an EMF model
must satisfy the following EMF constraints: (1) It is concretely typed, i.e., none
of its object nodes has an abstract type. (2) Each object node has at most one
container, i.e., at most one incoming reference of a containment type. (3) There
are no containment cycles. (4) There are necessary opposite references, i.e., if
a reference has a type with opposite type (in the meta-model), there is also a
reference of the opposite type pointing into the opposite direction. (5) There
are no parallel references of the same type between the same two nodes. We
call an EMF model rooted if its containment structure is a tree, i.e., if it has
a single, non-contained node (called root node) that (transitively) contains all
other nodes.

EMF models as representations for MB-MDO. Meta-models are used
to define the underlying modeling language; a meta-model generally consists
of structural part specifying the used types and references, as well as a set
of language constraints including EMF constraints, multiplicities, and further
well-formedness constraints. In MB-MDO, models directly encode optimization
problems and their solutions. To define these, a meta-model is divided into
two parts. The problem part is a sub-meta-model for defining an optimization
problem; the remaining meta-model part is used to model solutions; we call a
meta-model with this distinction a computation meta-model (see Def. 3.1). The
problem model of an instance model consists of all those elements that are typed
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over the problem part of the meta-model. An optimization problem consists
of a computation meta-model, a (possibly empty) set of feasibility constraints,
and a non-empty set of objective functions. A concrete problem instance of an
optimization problem is an instance model, denoted PI; its problem model is
denoted PIP. The search space of a problem instance PI consists of all instance
models whose problem model matches PIP. An element of the search space
is called solution (model). A solution is feasible if it satisfies all feasibility
constraints. The objective functions are used to determine the quality of a
solution with respect to the given optimization problem.

To recall, Fig. 4.15 shows a meta-model for the CRA case. Uncolored solid
elements constitute the problem part; accordingly, they form the problem models
in the solutions depicted in Fig. 4.16. Any solution can serve as a problem
instance as its problem model defines a search space.

Requirements for the crossover operator and assumptions. Usually,
a crossover operator takes two solutions, splits them, and recombines the parts
crosswise. A such computed solution model can show two forms of infeasibility:
In the extreme case, even validity of EMF constraints is lost; in the moderate
case, the solution merely violates feasibility constraints. In this chapter, we
develop a crossover operator that generates at least rooted EMF models. To deal
with the other feasibility constraints, standard techniques for constraint handling
in the context of evolutionary algorithms can be used (see, e.g., [Mic95; Coe10]).
Those include not selecting infeasible solutions for the next population, reducing
their fitness (proportional to the degree of infeasibility) to reduce the probability
of their selection, or applying additional repair operators. By preserving the
EMF constraints, we ensure that EMF-based tooling can be used for evolutionary
computations. Furthermore, crossover operators that preserve at least basic
structures of solutions have proved to increase the efficiency of evolutionary
search in other contexts (e.g., [Pot96; Doe+13]). To develop a crossover operator
which can produce rooted EMF models efficiently, we assume the problem
model of an input solution to be a non-empty, rooted EMF model that forms the
beginning of the containment hierarchy of the whole solution model. That is, its
root coincides with the root of the complete solution model and no problem part
element is contained by an element of the solution part. We call such solution
models problem-rooted.
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4.2.4.2 Splitting of Solution Models

We now show how we split a solution model into two parts for crosswise
recombination. The input of the splitting algorithm is a solution model E
for a given problem instance PI; we assume that E is a problem-rooted EMF
model. As output, the splitting algorithm computes two models E1 and E2, called
split parts. Since models are graph-like structures, it may be useful to look at
crossover for graphs. In Section 4.1, we have developed a generic crossover
operator for graph-like structures that can preserve basic graph structures. We
can use this approach as a generic framework for the algorithmic design of our
crossover operator for EMF models. Consequently, a split of a solution model
must satisfy the following properties:

(1) Each split part is a sub-model of E, i.e., it contains only elements and
attribute values from E.

(2) Each split part is a solution model for PI.
(3) E1 and E2 together cover E, i.e., every element of E occurs in at least one

of them.

Additionally for EMF models:

(4) Each split part is a problem-rooted EMF model.

Default splitting algorithm for EMF models. The key idea of Algorithm
4.1 is to split model E in such a way that the branches of the containment tree of
E that leave PIP are distributed to E1 or E2.

Algorithm 4.1 – Splitting algorithm
1 input: solution model E //E is problem−rooted
2 output: models E1 and E2 //split parts
3 model EI //split point
4

5 E1,E2,EI ← PIP

6 compute Ctemp as the set of containment edges outside of EI whose

source nodes belong to EI

7

8 while Ctemp is not empty

9 if |Ctemp|= 1
10 include that containment edge in E1, E2, and EI
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11 recompute Ctemp

12 else
13 C1,C2 ← split(Ctemp)

14 include subtrees starting within C1 in E1

15 include subtrees starting within C2 in E2

16 break
17 end while
18

19 for all non−containment references r in E
20 if r is opposite to a reference in Ei (with i = 1,2)
21 include r in Ei

22 else include r in E1 or E2 (or both)

23 end for

In the first iteration, Ctemp is the set of containment edges whose source nodes
belong to PIP but whose target nodes do not. Inclusion of containment edges
comprises also the inclusion of corresponding target nodes (line 10). Splitting di-
vides Ctemp into two (not necessarily disjoint) sets (line 13). Inclusion of subtrees
means that each object node contained (transitively) in E by a containment edge
from Ci is assigned (along with its incoming containment edge) to Ei (where
i = 1,2) (lines 14,15). When including non-containment references, a split part
is preferred if it contains both adjacent nodes of the reference and the other
does not (line 22). If one of the adjacent nodes of a reference is missing from
the model Ei to which it is assigned, this node (together with the containment
structure leading to it) is additionally included in the respective split part. If
an element (object node or reference) is included in both split parts, it is also
included in the split point EI . Thus, EI is the largest common sub-model of E1

and E2 (i.e., their intersection in E); it always contains at least the given problem
model PIP. We will use these split points in the definition of our crossover
operator.

Algorithm 4.1 computes two problem-rooted EMF models with the split prop-
erties above: Each element of E is assigned to at least one of the split parts
E1 and E2 (Prop. 3), and E1 and E2 receive only elements from E, i.e., they
form sub-models of E (Prop. 1). Since E1 and E2 both extend PIP, they are
solution models (Prop. 2). Regarding Prop. 4, E1 and E2 cannot contain abstract
types, multiple containers for a node, containment cycles, and parallel edges of
the same type (as such violations do not occur in E). Furthermore, references
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are always assigned together with their opposite counterpart (if existent) and
each object node always together with its container, preventing gaps in the
containment hierarchy.

In our running example (Section 4.2.3), the splitting algorithm computes as
Ctemp the set of containment edges of type classes. One possible split of E into
split parts E1 and E2 would be to put Class EC1 into E1 and Classes EC2, EC3,
and EC4 into E2. When distributing all encapsulation references along with their
classes, the resulting split point would be the problem model.

Configuration points. In the splitting algorithm, the split of Ctemp and the
distribution of non-containment references can be configured by controlling the
assignment of elements. Selected elements can either be separated or added
to the same split part; the split point size can be adjusted by either adding an
element to just one or to both split parts. Furthermore, the size of both split parts
can be chosen to be similar or significantly different.

4.2.4.3 Recombining Two Solution Models

Next, we explain how the splits of two models are recombined crosswise. We
assume that two problem-rooted solution models E and F are given for the
problem instance PI, together with split parts Ei,Fi (where i = 1,2) and split
points EI,FI computed as introduced above. The split parts E1 and F2 as well as
E2 and F1 are recombined to compute the offspring models O1 and O2. Formally,
this recombination is the union of the respective split parts over a common
sub-model CP, called crossover point. CP must be a common sub-model of the
two split points EI and FI and must minimally include the problem model PIP.
Following Def. 4.7, O1 and O2 must satisfy the following properties:

– Both E1 and F2 are sub-models of O1, i.e., all their elements (objects and
references) occur in O1. Similarly, E2 and F1 are sub-models of O2. In
particular, both O1 and O2 contain PIP, i.e., they are solutions.

– E1 and F2 together cover O1, i.e., every element of O1 occurs in at least
one of them; elements occurring in both are exactly the elements from CP.
Similarly, E2 and F1 cover O2.
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Additionally for EMF models:

– Both offspring models O1 and O2 are problem-rooted EMF models.
– Except for the objects from PIP, the attribute values in O1 and O2 are

allowed to differ from their counterparts in the model splits.

Default recombination algorithm for EMF models. The core of the
recombination algorithm is the determination of a crossover point CP. To ensure
that the containment structure of the offspring forms a tree, we initialize CP
with the given problem model PIP, which is the beginning of the containment
structure, and then extend CP from top to bottom. Specifically, the recombination
algorithm is described as follows.

Algorithm 4.2 – Recombination algorithm
1 input: E1, E2, F1, F2 //model splits
2 EI, FI //split points
3 output: models O1 and O2 //problem−rooted solution models
4

5 CP← PIP

6 compute CB as pairs of identifiable cont. edges from EI and FI

7

8 while (CB is not empty and StopCrit = false)

9 include a pair (eE ,eF) from CB in CP
10 recompute CB

11 end while
12

13 include induced non−containment references in CP
14

15 O1 ← union of E1 and F2 over CP
16 O2 ← union of E2 and F1 over CP
17

18 recompute attribute values in solution parts of O1 and O2

In Algorithm 4.2, the set CB of pairs of identifiable containment edges is defined
as follows: The border B of CP consists of all object nodes n of CP whose
counterparts in both EI and FI have outgoing containment edges to target nodes
not yet included in CP. A pair (eE ,eF) from EI and FI of such outgoing con-
tainment edges belongs to CB if they have the same type, the same source node
in B, and the types of their target nodes are the same or one inherits from the
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other (line 6). Another check, whose technical details we omit, ensures that their
identification cannot introduce parallel edges. The inclusion of a pair (eE ,eF)

from CB in CP means that a containment edge eCP of the same type as eE and eF

is included in CP along with its target node and is mapped to eE and eF (line 9).
The type of the target node in CP is the higher of the corresponding types in
EI and FI . StopCrit refers to a user-defined stopping criterion (line 8). To
avoid parallel edges after recombination, for each pair of nodes (n1,n2) from
CP (where n1 = n2 is allowed): If there are two non-containment references of
the same type between n1 and n2 in EI and FI , a reference of this type must be
included in CP (line 13). “Union over CP” means that elements from E1 and F2

for which each has a counterpart in CP should coincide and occur only once in
the offspring (lines 15,16). If the types of such identified object nodes differ,
the smaller of the two is chosen in the offspring to ensure that all necessary
reference types are defined.

Both offspring are problem-rooted, since the containment hierarchy of the
crossover point CP is the beginning of the containment structures of EI and
of FI . Thus, the containment structure of offspring O1 arises from the extension
of CP by the branches from E1 and from F2; the extension of a tree by branches
cannot destroy the tree structure.

In our example (Section 4.2.3), the crossover point consists only of the problem
model. It cannot contain any other elements because already the split points
coincide with the problem model. To identify Classes FC2 and EC2 in O2,
one would first need to assign them (and their references to attribute url) to
their respective split points during the split algorithm. If this is the case, the
containment edges leading to those Classes become part of CB and can be
included in CP during the recombination algorithm.

Configuration points. In the recombination algorithm, both the inclusion
of containment edges into CP and the final setting of attribute values can be
further configured. With respect to the inclusion of containment edges, domain-
specific information could be used to favor or avoid certain identifications. For
example, pairs of containment edges could be removed from CB after a certain
number of rounds if they were not selected for identification. Resetting attribute
values can be done according to user-defined instructions. In particular, if

136



4.2 An EMF-Based Crossover Operator

finding appropriate values for particular attributes is part of the optimization
task, it might be beneficial to include ideas designed for crossover on data, e.g.,
calculating the value of a numeric attribute in the offspring as the average of the
values in the parents.

4.2.5 Implementation

We have implemented a prototype crossover operator for EMF models to conduct
experiments. It implements the algorithms for splitting and recombining EMF
models presented in Sec. 4.2.4. For the configuration points of the split, we
chose a random distribution of containment subtrees (line 13 in Alg. 4.1) and
non-containment references (line 22 in Alg. 4.1) among the split parts. A
distribution ratio can be specified to skew this distribution. In our prototypical
implementation of the recombination algorithm, we neglect the option to extend
the crossover point and immediately set the stop criterion to true, i.e., we restrict
ourselves to the inclusion of the problem part for the time being. Note that the
problem parts of two solution models are usually not identical in terms of object
identity, but merely isomorphic. We use the model transformation language
Henshin [henshin] in the construction of the crossover point to identify the
necessary mappings between them. Henshin is also used to implement the actual
recombination of two split parts by model transformations. The implementation
can be found at [mdover].

4.2.6 Initial Evaluation

We conducted experiments focusing on the following research question; all
evaluation data can be found at [JKT22b]:

RQ: Can evolutionary search of models be more effective if it uses mutation
and crossover instead of just mutation?

Set up. Our running example (Section 4.2.3), the CRA case, also serves as a
use case for the initial experiments. Problem instances range from 9 features
and 14 dependencies (Model A) to 160 features and 600 dependencies (Model
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Rule addUnassignedFeatureToExClass

«preserve»
model:ClassModel

«preserve»
c2:Class

«preserve»
f:Feature

«forbid#2»
c1:Class

classes
«forbid#2»

encapsulates
«forbid#2»

classes
«preserve»

encapsulates
«create»

encapsulates
«forbid#1»

features
«preserve»

Figure 4.18 – Mutation rule (2) in Henshin syntax. The green edge (as well as its
opposite edge isEncapsulated) is created. The blue elements prevent application of
the rule if Feature f is already assigned to the same or another Class.

E). To perform optimizations we use the framework MDEOptimiser [BZJ21;
mdeo]. It supports Henshin transformation rules as mutation operators; to apply
crossover, we integrated our crossover operator presented in Sec. 4.2.5. As
the underlying evolutionary algorithm we choose NSGA-II [Deb+02], which is
generally well established in both MDO [Abd+14; BZJ21] and SBSE [HMZ12].
In our configuration, depending on a certain crossover rate, a pair of solutions can
participate once in crossover. Both (possibly unchanged) models can additionally
be subjected to the application of a single mutation operator, depending on a
certain mutation rate.

For the mutations, we rely on the transformation rules proposed for the CRA
case in [BZJ21], which we introduced in Section 2.3 and later discussed in more
detail in Section 3.7. They implement the following operations: (1) Create a new
class and assign an unassigned feature to that class. (2) Assign an unassigned
feature to an existing class. (3) Unassign a feature and assign it to another
existing class. (4) Delete a class to which no features are assigned. As illustrated
at the example of the second rule (in Fig 4.18), all rules are designed so that
they do not violate the feasibility constraints of the CRA case. Specifically,
applications of the rules can never cause a feature to be assigned multiply or to
not be assigned at all. Formally, w.r.t. the feasibility constraints, the selected
mutation rules are sound in the sense of Def. 3.8 and even consistency-sustaining
in the sense of [Kos+22].
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Crossover can easily introduce new violations of feasibility constraints. For
example, for the CRA case our crossover operator can introduce features which
are assigned to multiple classes. To cope with these new violations, we optionally
allow a repair step after crossover that removes multiple assignments of features:
it deletes (randomly) incoming isEncapsulatedBy-edges of a feature until only
one is left. Since the initial population does not contain multiply assigned
features and the mutation rules cannot introduce such, it is important to note that
this repair process only repairs violations that have just been introduced by the
application of the crossover operator.

After an evolution of the population, the solutions for the next population are
selected according to their fitness and feasibility. For details we refer to [Deb+02].
For all problem instances, an initial population of 100 models is used, each of
which is generated by the standard initialization procedure of MDEOptimiser: a
replica of the problem instance is mutated twice. The search stops if no relevant
improvement has occurred in the last 100 iterations.

In our experiments, we varied the crossover and mutation rates and also whether
or not the repair step is applied. For each of these algorithm variants and each
problem instance, we performed 30 evolutionary computations. Below, we
present the results for a selection of these variants, highlighting the most relevant
findings.

Since cohesion and coupling of a class are conflicting objectives, in the CRA
case there is no single solution that is better than all the others. Instead, an
evolutionary search produces a set of pairwise incomparable non-dominated
solutions; we call this an approximation set. A solution is said to dominate
another one if it is as good as the other one w.r.t. all objective functions and
better w.r.t. at least one of them. We refer the reader to [ES15] for more details
on multi-objective optimization and the concepts of dominance and Pareto
optimality. To compare the quality of approximation sets, we use a normalized
version of the well-known hypervolume indicator [ZBT07] where one solution
set is considered better than another if its hypervolume is closer to 1. The reason
for considering hypervolume is that, among the common metrics, hypervolume
is the only one that is Pareto compliant [ZBT07]. Also, in contrast to other
metrics, it considers not only convergence but also diversity of solution sets.
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Results. In this initial evaluation, we compare the effectiveness of algorithm
variants based on the mean hypervolume of their approximation sets and their
coverage of the search space. Table 4.1 summarizes the mean hypervolumes
for what we found the most interesting algorithm variants. For four of them,
Fig. 4.19 depicts the cumulative approximation sets obtained for model D. A cu-
mulative approximation set combines the approximation sets of all evolutionary
computations performed for an algorithm variant into a set of non-dominated
solutions. The labels indicate the mutation (Mxxx) and crossover rates (Cxxx)
used in percent. The application of the repair step is indicated by a trailing R.
M100-C0 is the basic variant without crossover. We first tried adding crossover
at a rate of 100 percent and without repair (M100-C100). Obviously, the effect
on the hypervolume is devastating for all but the smallest problem instance. This
did not hit us unexpectedly, since our crossover operator can make large changes
to parent solutions. If applied too often, this can hinder the gradual improvement
of the population and lead to premature stagnation of the search. For this reason,
we tried several variants with lower crossover rates. One promising variant is
M100-C10. In terms of mean hypervolume, it is close to M100-C0 for smaller
models, but less effective for larger models. We attribute this in part to the fact
that our crossover operator can lead to constraint violations. This can lead to
wasted evolution steps, as the resulting infeasible solutions are discarded. By
adding a repair step, variant M100-C10-R outperforms the basic variant in terms
of mean hypervolume for all models. Note that the observed differences are
not statistically significant considering a p-value of 0.05. Variants with higher
crossover rates and repair, i.e., M100-C20-R and M100-C30-R, perform even
better on smaller models (for models B and C significantly better than M100-C0).
With increasing model size, however, variants with lower mutation rate are more
effective. While M90-C10-R significantly outperforms M100-C0 on model D,
M80-C10-R does so for model E. Most interestingly, these variants appear to
be more effective in certain regions of the search space (see Fig. 4.19). They
produce highly cohesive solutions with low coupling which cannot be found by
other variants, particularly not by M100-C0.

In summary, even with our prototypical crossover implementation, using crossover
(plus repair) and mutation to perform evolutionary search can be more effective
and can cover a larger part of the search space than using mutation only.
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Table 4.1 – Mean normalized hypervolume (higher values are better) of selected
algorithm variants. Bold numbers mark the best results for each problem instance.

Algorithm Metric A B C D E

M100-C0 Mean HV 0.924 0.841 0.738 0.574 0.596

M100-C100 Mean HV 0.846 0.332 0 0 0

M100-C10 Mean HV 0.915 0.838 0.743 0.538 0.455

M100-C10-R Mean HV 0.929 0.871 0.759 0.584 0.609

M100-C20-R Mean HV 0.934 0.883 0.77 0.576 0.595

M100-C30-R Mean HV 0.933 0.879 0.779 0.583 0.579

M90-C10-R Mean HV 0.89 0.603 0.506 0.601 0.594

M80-C10-R Mean HV 0.774 0.586 0.538 0.483 0.618

Threats to Validity. Being a descriptive example, the CRA case exhibits
only a low structural complexity and can also be solved with traditional en-
codings [SPG10] . The initial evaluation includes only a single use case and
NSGA-II as the only underlying algorithm. Of course, this is not sufficient to
generalize our findings. For this purpose, additional use cases and algorithms
need to be considered. In particular, how well the proposed crossover works on
use cases with a more complex structure (e.g., the next release problem [BZJ21])
remains an open question. However, from the perspective of the research ques-
tion, the evaluation is still meaningful. It shows that the application of our
crossover operator, even in its prototypical form, can be beneficial, at least in
the configurations considered. This motivates and justifies further analysis of
(variants of) our crossover operator.

4.2.7 Conclusion

In this chapter, we have presented a crossover operator for EMF models that
always generates EMF models as offspring. Since this operator is configurable, it
can also accommodate domain-specific knowledge. Based on our initial results,
we outline several topics for future work.
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Figure 4.19 – Cumulative approximation sets of selected algorithm variants for model
D.

To illustrate our crossover operator, we applied it to the class responsibility
assignment problem. The CRA case was also used to illustrate the rule-based
approach to MDO and problem-specific approaches, such as evolutionary search
in [SPG10]. Future work is needed to compare to existing approaches for
crossover operators in terms of effectiveness, efficiency, and simplicity of their
specification.

The proposed crossover operator may lead to violations of feasibility constraints.
It is an open question how to configure a crossover operator to preserve (most of)
the constraints of a given language. To find feasible offspring models, it might
be helpful to first choose the crossover point and select the split parts accordingly.
Upper bounds could be satisfied, for example, by identifying common nodes
and edges in the crossover point [TK22]. It could also be helpful to focus on
computing only one offspring (instead of two) to obtain good offspring.

More generally, we can ask: What is the configuration space for crossover
operators and how can it be controlled from a domain-specific perspective? A
domain-specific language (DSL) for configuring the crossover operator could
help the user specify the split and crossover points in a way that leverages
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domain-specific knowledge. The configuration facilities of such a DSL need to
be evaluated at a selected set of optimization problems.
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5
Conclusion

In the following we conclude this work by summarizing our main findings and
recapping how they contribute to the research questions identified in section 1.2.
Finally, we will also discuss research directions for future work.

5.1 Summary

By using models and model transformations to specify and solve optimization
problems, MDO aims to make SBSE techniques more accessible to both domain
experts and software engineers. However, how to develop efficient and effec-
tive evolutionary algorithms with MDO is still a central question. This thesis
addresses seven research questions related to this topic.

Two approaches to encode solutions have been developed in MDO. RB-MDO
represents solutions as sequences of rule calls while MB-MDO works directly
on models. So far, it has been unclear what their advantages and drawbacks are
(RQ1) and how they compare with regard to their optimization effectiveness
and efficiency (RQ2). In a systematic comparison of the two approaches we
provide insights into their features and the implications of using one or the
other. We conclude that although RB-MDO is more flexible with respect to
evolutionary operators it has two major drawbacks. While the quality of solutions
can directly be assessed in MB-MDO, in RB-MDO rule calls of a sequence
need to be applied to an input model to obtain an assessable solution model.
This overhead slows down the optimization process. Furthermore, in RB-MDO
rule calls can depend on each other. These dependencies are easily broken by
evolutionary operators and lead to epistatic effects which are known to negatively
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affect optimization [WCT12]. Traditional crossover operators showed to be
particularly problematic in this regard. We hold these drawbacks responsible for
MB-MDO outperforming RB-MDO especially for larger input models; better
solutions are found in less time. As real-world problems tend to be large and
MB-MDO performed well even without a yet missing crossover concept, we
considered MB-MDO to be the more promising approach to investigate.

However, we found that a formal foundation for rigorous analysis and extension
of MB-MDO was lacking. Consequently, we developed a formal framework
for MB-MDO (without crossover) based on graph transformation theory. In
accordance with RQ3, the framework precisely specifies the key concepts of
evolutionary algorithms in MB-MDO; specifically, it details the use of graph
transformation rules as element mutation operators, i.e., as operators that imple-
ment a change of a single model. At the same time, the framework abstracts from
the concrete implementation of evolutionary operators to allow the instantiation
of a wide variety of evolutionary algorithms found in practice.

To investigate the importance of evolutionary operator properties on the effective-
ness and efficiency of evolutionary algorithms in MB-MDO (RQ5), we defined
soundness and completeness as two properties of (sets of) element mutation op-
erators. Typically, an optimization problem specifies a set of so-called feasibility
constraints, which may be violated in the course of an optimization, but must
be satisfied by feasible solution models in the end. We consider an element
mutation operator to be sound if its application cannot introduce violations of
feasibility constraints. Consequently, a set of element mutation operators is
sound if all of its operators are sound. A set of element mutation operators is
complete if all feasible solutions can be reached from any given solution (feasible
or not) by only applying (possibly multiple times) element mutation operators
from that set. We evaluated the impact of both properties on the efficiency and
effectiveness of three state-of-the-art evolutionary algorithms and found sound-
ness to be generally desirable. The use of unsound element mutation operators
slows down the evolution towards better solutions or even leads to stagnation
and premature termination of an optimization. The effect of incomplete sets of
element mutation operators is generally hard to predict. We recommend using
complete sets of element mutation operators as a baseline when tackling new
optimization problems. Afterwards, incompleteness should only be introduced
by well-considered and purposeful decisions. Overall, we have shown that both
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soundness and completeness are important properties of element mutation op-
erators that need to be considered when designing evolutionary algorithms in
MB-MDO.

To demonstrate how our framework can be used to specify experiments in
MB-MDO in a precise and reproducible way (RQ4), we detailed all aspects of
the experiments of the above evaluation using the concepts introduced by our
framework.

To address the problem of MB-MDO lacking a concept of how to perform
crossover on models (RQ6), we complemented our framework with a formaliza-
tion of a generic construction for crossover operators on graph-like structures.
The approach is generic in the sense that it can be applied regardless of the
optimization problem at hand, i.e., problem-agnostic crossover operators can be
constructed. It also offers several configuration points to embed domain-specific
information and tailor crossover operators to specific optimization problems.
However, apart from the correct typing of elements and the preservation of a
graph structure, the generic construction does not consider constraints. Therefore,
to facilitate the practical application of our crossover construction, we also devel-
oped an EMF-based [Ste+08; emf] concretization of our generic approach. EMF
is an established modeling framework in the MB-MDO community [Bil+19;
Str17; BZS18; Hor+22] and imposes various constraints that need to be fulfilled
by models in order to be processable. Our EMF-based approach preservers these
constraints and guarantees to produce EMF models as offspring.

Finally, following this EMF-based approach, we provide a prototypical and prob-
lem independent implementation of a crossover operator. To get first insights on
whether or not crossover can be beneficial for the effectiveness and efficiency of
evolutionary algorithms in MB-MDO (RQ7), we performed an initial evaluation
with various configurations of evolutionary operators using this prototype. The
results are promising. We observe that even the application of this still rather
unpolished crossover can contribute to the quality of the solutions found. More
interestingly, certain regions of the search space seem to be explored more
thoroughly with crossover than with mutation alone.

Overall, we believe that this thesis significantly advances MB-MDO by provid-
ing new insights and opportunities to develop efficient and effective evolutionary
algorithms. In particular, it completes the concept of evolutionary algorithms in
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MB-MDO through the theoretical and practical implementation of a crossover
operator. Regarding the availability of typical evolutionary operators, MB-MDO
is now on par with RB-MDO. Furthermore, the analysis of soundness and com-
pleteness provides a valuable guideline for the design of effective and efficient
mutation operators in MB-MDO; a similar guidance is still missing in RB-MDO.
Our formal framework showed to be crucial to enable this development and will
certainly prove useful for future enhancements of MB-MDO.

5.2 Future Work

Although our work already provides some insight into MB-MDO, we view it
primarily as a foundation for the further investigation and development of MB-
MDO. While some questions have been answered, many others have emerged
that need to be addressed in future work. Most prominently, properties of
evolutionary operators, their impact on optimization, and their realization in the
design of the operators remain a major topic.

Element mutation operators, which are implemented as graph transformation
rules in our framework, are of particular interest as they can be specified and ana-
lyzed drawing on the rich theory of graph transformation. So far we showed that
soundness and completeness are important properties of (sets of) element muta-
tion operators. We plan to extend this work by considering further properties
related to the preservation of constraints. With regard to graph constraints our
notion of soundness is equivalent to the notion of consistency-preserving graph
transformation rules [HP09]. That is, a graph already satisfying the considered
constraints will not violate them after the application of such rules. Recently,
Kosiol et al. defined additional properties of graph transformation rules con-
cerned with constraint violations [Kos+20b; Kos+22]. Consistency-sustaining
rules, for example, refrain from introducing new constraint violations, while
consistency-improving rules decrease the number of constraint violations. Given
our results on soundness, investigating these properties in the context of (sets of)
element of mutation operators seems a logical next step. Furthermore, as briefly
discussed in Section 3.7, the effect of soundness as well as of other properties
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concerned with constraint violations depends on the constraint handling mech-
anism employed by an evolutionary algorithm. The interplay between these
properties and different constraint handling mechanisms needs to be studied.

We speculate that the effect of such properties might also be related to the
different stages of an optimization. Different (sets of) element mutation operators
might be suited for different stages. Optimization often starts from solutions
with many violations of the respective feasibility constraints. In these cases,
it may be favorable to begin with a (possibly incomplete) set of consistency-
improving element mutation operators to speed up the discovery of feasible
solutions. As soon as feasible solutions are found, switching to a complete set
of sound operators may become advantageous. To the best of our knowledge,
such a context dependent switch of operators has not yet been considered in
MB-MDO.

With respect to the practicality of our findings to date, we are aware that sound-
ness and completeness checks are not yet fully automated. For soundness checks
we used existing tools from Nassar et al. [Nas+18; Nas+20]. Some manual steps,
choices, and an interpretation of the results are needed though. Completeness
entirely needs to be proven manually. While in our use cases these proofs turned
out to be not too complicated, this might not generally be the case. A coherent,
tool-supported approach for analyzing the soundness and completeness of (sets
of) element mutation operators would greatly support users of MB-MDO in
designing mutation operators.

Beyond the study of element mutation operators, the introduction of crossover
operators for MB-MDO opens up additional research possibilities. Our prototyp-
ical implementation of crossover has already yielded promising results. However,
the initial evaluation considered only one use case. Clearly, a more representative
set of use cases needs to be considered in the future. Furthermore, we believe that
the true potential of our approach lies in the integration of domain knowledge.
Due to the abstract nature of our approach, integrating domain knowledge may
not be trivial. To that end, a comprehensive way of specifying the configurable
parts of our crossover (i.e., the split and crossover points) needs to be found.
Additionally, optimization problems often share structural similarities (e.g., the
existence of container objects in assignment problems). Whether or not this
knowledge can be used to prepare reusable patterns for the integration of domain

149



5 Conclusion

knowledge has to be investigated. In summary, a thorough study is needed to
determine the potentials and limitations of our crossover construction.

While we have studied soundness and completeness on (sets of) element muta-
tions operators only, the reachability and feasibility of solutions are typically
subject to all evolutionary operators. In particular, the role of soundness and
completeness in the design of crossover operators and also in the interplay be-
tween mutation, crossover, and selection needs to be investigated. As a first step,
Thölke and Kosiol have recently developed a multiplicity preserving crossover
operator [TK22] based on our generic crossover construction, but their approach
has yet to be implemented and evaluated. How other types of constraints can
be preserved by crossover operators in MB-MDO is still an open research ques-
tion.

A question not specific to MB-MDO, but to MDO in general, is how the efficiency
of MDO compares to traditional encoding approaches. Querying and copying
large models or performing model transformations on them can be costly and
become a bottleneck in the optimization process. Encodings specifically suited
for certain optimization problems, combined with specialized operators are likely
to be more efficient. A study comparing the model-driven and the traditional
encoding approaches is needed to validate this assumption. The automatic
translation of models into more concrete artifacts (e.g., platform-specific source
code) is as typical use case in MDE. Thus, future work might consider the
automatic generation of more efficient representations from the models and
model transformations used in MDO. A first paper in that direction is currently
under review [ADS23].

We see parallels between our research on soundness and completeness and the
problems currently associated with RB-MDO. The probably most pressing issue
in RB-MDO is the handling of dependencies between rule calls. Traditional mu-
tation and crossover operators are likely to break such dependencies ruining the
progress of an optimization. So far only trivial repair steps have been considered
to mitigate the problem [Bil+19]. While more sophisticated repair strategies
might be a route to go, we see more potential in evolutionary operators tailored
towards RB-MDO. Respecting dependencies can be considered a feasibility
constraint in RB-MDO. If evolutionary operators are sound in that regard, i.e.,
respect dependencies between rule calls in the first place, repair steps might
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become superfluous. Certainly, whether or not such sound operators can still
explore all relevant parts of the search space (i.e., are complete) will also be
important. It is up to future work to precisely define soundness an complete-
ness in the context of RB-MDO and to develop operators implementing these
properties.

Finally, we note that the development of a formal framework for MB-MDO has
been a driving force in extending and analyzing the approach. We are confident
that for advancing RB-MDO a similar framework would be of great value. In
fact, a comprehensive framework for MDO that can be instantiated to MB-MDO,
RB-MDO, and possibly other new encoding approaches is one of our long-term
goals.
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A
Appendix to Chapter 3

This appendix complements the presentation of the formal framework presented
in Chapter 3. It provides formal preliminaries, proofs, and details of the SCRUM
and NRP use cases which have been used in the evaluation.

A.1 Additional formal preliminaries and proofs

A.1.1 Formal preliminaries

Graphs. We first recall the definitions of graphs and typed graphs and their
morphisms.

Definition A.1 (Graph). A graph G = (GV ,GE ,srcG, tgtG) consists of a set GV

of vertices (or nodes), a set GE of edges, and two maps srcG, tgtG : GE → GV

assigning the source and target to each edge, respectively. By e : x→ y we
denote an edge e ∈ GE with srcG(e) = x and tgtG(e) = y.

Definition A.2 (Graph morphism). A graph morphism f : G→ H consists of a
pair of functions fV : GV → HV , fE : GE → HE preserving the graph structure:
For each edge e : x→ y in GE it holds that fE(e) : fV (x)→ fV (y) in H, i.e., we
have fV ◦ srcG = srcH ◦ fE and fV ◦ tgtG = tgtH ◦ fE . Morphism f is injective if
fV and fE are injective.

A typed graph is a graph that is mapped to a given type graph. A mapping
between two typed graphs over one and the same type graph has to be type-
conformant.
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Definition A.3 (Type graph, typed graph and typed morphism). A type graph is a
distinguished graph TG=(TGV ,TGE ,srcTG, tgtTG). A typed graph (G, typeG : G→
TG) which is typed by TG is a graph G together with a graph morphism typeG
from G to TG. A typed graph G is also called instance graph of graph TG and
the morphism typeG is called typing morphism.

Given a type graph TG, a typed graph morphism f : G→ H between typed
graphs (G, typeG) and (H, typeH) is a graph morphism f : G→ H such that
typeG = typeH ◦ f .

Categories. In this section, we give a short and semi-formal introduction into
all those notions of category theory we need for our approach. For more details
see, e.g., [Mac71], [AHS90], [Ehr+14], and [Ehr+12].

A category C is a mathematical structure that has objects collected in ObC

and morphisms MorC(A,B) relating pairs of objects A,B ∈ ObC in some way.
There needs to be a composition operation ◦ for morphisms f ∈MorC(A,B) and
g ∈MorC(B,D) as well as an identity morphism idA for each object A ∈ ObC.
The composition ◦ has to be associative and composition with identities has to
be neutral.

Examples are the category Set of all sets and functions, the category Poset of all
partially ordered sets and order-preserving mappings, and the category Graph
of all graphs and graph morphisms.

There are special types of morphisms: An isomorphism is a morphism to
which an inverse morphism exists, i.e., composing them in either order leads
to identities. Objects related by an isomorphism exhibit exactly the same
structure and can thus be considered as equal in many contexts. If we have
m◦ f = m◦g =⇒ f = g for any two morphisms f and g such that the composi-
tion is defined, m is called monomorphism. In the category Set, isomorphisms
are the bijective functions and monomorphisms are the injective ones.

Pushouts and pullbacks. A pushout can be considered as a kind of union of
two objects over a common one. Given two morphisms g : A→ B and h : A→C,
a pushout, if it exists, consists of an object D and two morphisms k : B→ D
and l : C→ D such that (1) k ◦g = l ◦h and (2) the following universal property
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holds: If there are morphisms k′ : B→ X and l′ : C→ X with k′ ◦g = l′ ◦h, then
there is a unique morphism x : D→ X with x◦ k = k′ and x◦ l = l′ (see the left
diagram in Fig. A.1).

A B

C D

X

(PO)

g

h k

l
k′

l′

x

A B

C D

Y

(PB)

g

h k

l

g′

h′

a

Figure A.1 – A schematic depiction of a pushout (left) and a pullback (right).

Reversing the direction of all morphisms, a pullback can be seen as a generalized
intersection of two objects over a common object. Given two morphisms k : B→
D and l : C→ D, a pullback consists of an object A and morphisms g : A→ B
and h : A→C such that k ◦g = l ◦h and the following universal property holds:
If there are morphisms g′ : Y → B and h′ : Y →C with k ◦g′ = l ◦h′, then there
is a unique morphism a : Y → A with g ◦ a = g′ and h ◦ a = h′ (see the right
diagram in Fig. A.1).

In the category Set, if a morphism g is injective, the pushout object is D =

C∪(B−g(A)). Since a pushout is unique up to isomorphism, any set isomorphic
to D would also be a pushout object. A pullback object, for l being injective, is
constructed by A = k(B)∩ l(C). In the category Graph, pushouts and pullbacks
can be constructed componentwise on node and edge sets. For these, and
more general computations, compare, e.g., [Ehr+06, Fact 2.17, Fact 2.23, and
Remark 2.24].

M -adhesive categories. We will prove our statements in a quite abstract
setting, namely the one of M -adhesive categories [Ehr+14; Ehr+12]. These
are categories where pushouts along monomorphisms interact in a particularly
nice way with pullbacks and encompass the categories of sets, of graphs, and
many graph-like structures, including typed attributed graphs. A category C
with a morphism class M is an M -adhesive category if the following properties
hold:
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– M is a class of monomorphisms closed under isomorphisms ( f isomor-
phism implies that f ∈M ), composition ( f ,g ∈M implies g◦ f ∈M ),
and decomposition (g◦ f ,g ∈M implies f ∈M ).

– C has pushouts and pullbacks along M -morphisms, i.e., pushouts and
pullbacks, where at least one of the given morphisms is in M , and M -
morphisms are closed under pushouts and pullbacks, i.e., given a pushout
like the left diagram in Fig. A.2, m ∈M implies n ∈M and, given a
pullback (1), n ∈M implies m ∈M .

– Pushouts in C along M -morphisms are so-called vertical weak van Kam-
pen squares, i.e., for any commutative cube in C where we have the
pushout with m ∈M in the bottom, b,c,d ∈M , and pullbacks as back
faces, the top is a pushout if and only if the front faces are pullbacks.

A B

C D

(1)

m

n

B′ D′

B D

A′ C′

A C
b

c

m n
d

Figure A.2 – A schematic depiction of an M -VK square.

Examples for categories that are M -adhesive are sets with injective functions,
graphs with injective graph morphisms and several variants of graphs with
special forms of injective graph morphisms. In particular, typed attributed graphs
constitute an M -adhesive category (where the class M consists of injective
morphisms where the attribute part is an isomorphism).

The definition of element mutation operators (i.e., rules) can easily be lifted
to this more general setting: An element mutation operator then is a span of
M -morphisms and a NAC is an M -morphism with domain L. The application
of such an element mutation operator is defined via the diagram depicted in
Fig. 3.5, requiring that both squares are pushouts. For details and, in particular,
a proof that the set-theoretic approach from Definition 3.4 coincides with the
here discussed category-theoretic one, we refer to [Ehr+06].

Next, we introduce a logic in M -adhesive categories that allows to reason
about objects as well as about morphisms in it. In the category of graphs,
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this logic turns out to be expressively equivalent to the ordinary first-order
logic on graphs [HP09]. Nested conditions express properties of morphisms;
the definition of nested constraints is based on these and allows to express
properties of objects. Constraints and conditions are defined recursively as trees
of morphisms. For the definition of constraints, we assume the existence of an
initial object /0 in the given category, i.e., of an object /0 such that for every object
A of the given category there is a unique morphism iA : /0→ A. In the category
of graphs, this is just the empty graph.

Definition A.4 ((Nested) conditions and constraints). Let C be an M -adhesive
category with initial object /0. Given an object P, a (nested) condition over P
is defined recursively as follows: true is a condition over P. If a : P→C is a
morphism and d is a condition over C, ∃(a : P→ C,d) is a condition over P
again. Moreover, Boolean combinations of conditions over P are conditions over
P. A (nested) constraint is a condition over the initial object /0.

Satisfaction of a nested condition c over P for a morphism g : P→ G, denoted
as g |= c, is defined as follows: Every morphism satisfies true. The morphism
g satisfies a condition of the form c = ∃(a : P→ C,d) if there exists an M -
morphism q : C ↪→ G such that g = q ◦ a and q |= d. For Boolean operators,
satisfaction is defined as usual. An object G satisfies a constraint c, denoted as
G |= c, if the initial morphism to G does so.

Remark A.1. When considering typed graphs with inheritance, the definition
of satisfaction of a nested condition should be adapted. The category of typed
graphs with inheritance is M -adhesive with M being the class of injective, type-
strict morphisms [Löw+15]. When simultaneously matches are not required to
be type-strict – as is usually the case in applications – evaluating conditions via
type-strict morphisms leads to an undesired semantics. Therefore, the semantics
of conditions should be defined using the same class of morphisms that is used
as matches, e.g., via injective morphisms (that are allowed to be down-typing).
Alternatively, instead of interpreting an application condition as a single applica-
tion condition, one could interpret it as representing all of its flattened versions
and check the validity of every flattened version via a type-strict morphism. The
same suggestions to deal with the semantics of conditions (i.e., adapting the
class of morphisms that defines their semantics to be the class of morphisms that
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is also used for matches or interpreting a condition as a class of conditions) have
been made and formalized for attributed structures [Her+14; Ehr+15]. In the
following proofs, we will always remark why our result remains true in case one
considers typed graphs with inheritance and defines the satisfaction of conditions
via injective morphisms (that are allowed to be down-typing).

A.1.2 Proofs

We now present the proofs of the statements in Chapter 3. We do so in the more
general setting of M -adhesive categories. This means, we obtain our results in
greater generality as stated in the chapter above. In particular, the case of typed
attributed graphs is covered by our proofs. For this, we first need to generalize
the notion of computation space to arbitrary M -adhesive categories.

Definition A.5 (Generalized computation space (cf. Definition 3.1)). Let C be
any M -adhesive category. A computation meta-model in C is a pair MM =

(⊆ : TGP ↪→ TG,LC) where ⊆ is an M -morphism from TGP to TG, and LC is
a set of nested constraints typed over TG, called language constraints. The set
PC ⊆ LC, called problem constraints, is the subset of constraints that can be
considered as already typed over TGP. (TGP,PC) is called problem meta-model.
A computation element or computation model (E, typeE) over MM is an object E
together with a morphism typeE : E→ TG such that E |= LC. The computation
space over MM is

CS := {(E, typeE) | (E, typeE) is a computation model over MM}.

Given a computation model (E, typeE) over MM, the model (EP, typeEP
) where

typeEP
: EP→ TGP and ⊆E : EP ↪→ E are obtained by pulling back typeE along

⊆ is the problem model and E \EP (if defined) is the solution part of (E, typeE)

(where initial pushouts [Ehr+06] can be used to lift the definition of the set-
theoretic difference operator \ to the categorical level).

A computation-model morphism, short cm-morphism, m between computation
models (E, typeE) and (F, typeF) is a morphism m : E→F such that m is compat-
ible with typing, i.e., typeF ◦m = typeE . A cm-morphism m is problem-invariant
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if mP, the restriction of m to the problem model of E, is an isomorphism between
EP and FP.

By the above description of pullbacks, since ⊆ : TGP ↪→ TG is an inclusion,
the definition of EP as E ∩ type−1

E (TGP) and of typeEP
via restriction ensures

that the typing morphism of a computation model (considered as a pair of
morphisms) constitutes a pullback square. In particular, the above definition
indeed generalizes the set-theoretic Definition 3.1. One important observation for
the following proof of Proposition 3.1 is that, therefore, cm-morphisms between
computation models constitute pullback squares, as well (compare Fig. 3.3):
Since both typing morphisms are pullbacks, pullback decomposition [Ehr+06,
Fact 2.27] implies that a cm-morphism is a pullback square. This means, all
squares depicted in Fig. 3.3 are pullbacks. Another important observation is that
the morphism ⊆E : EP ↪→ E is always an M -morphism as it arises by pullback
along one.

We first prove that validity of the problem constraints only depends on the
problem part of a computation model.

Lemma A.1. In any M -adhesive category C , given a computation meta-model
MM = (⊆: TGP ↪→ TG,LC) in C with a set of problem constraints PC ⊆ LC, a
typed object (E, typeE) satisfies the problem constraints from PC if and only if
(EP, typeEP

) satisfies them.

Proof. We show more generally that the corresponding statement holds for
conditions, not only for constraints. For this, let c be a nested condition over a
computation model (X , typeX) where c is typed over TGP. In particular, typeX
can be considered to already have codomain TGP. First, it is easy to check that
this implies that ⊆X : XP ↪→ X is an isomorphism. Without loss of generality,
we assume it to be the identity of X in the following; in particular XP = X . The
same holds for any other model occurring in the condition c.

This implies that, for every model (E, typeE), there is a one-to-one correspon-
dence between cm-morphisms g : X → E and typed morphisms gP : XP→ EP

between the problem parts: Given g, gP is obtained by pulling back g along
⊆E : EP→ E. Given a morphism gP : XP→ EP, g :=⊆E ◦gP : XP→ E defines
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a cm-morphism from X to E since XP = X (checking the induced square to
constitute a pullback square is routine). We show, via structural induction, for
any cm-morphism g : X→ E that g |= c if and only if gP |= c where gP : XP→ EP

is the restriction of g to the problem model.

The induction basis is trivial as every morphism satisfies true. In particular,
g |= true if and only if gP |= true.

Assume that the statement holds for conditions d1,d2,d. For the induction step,
first let c := d1∧d2. Then

g |= c ⇐⇒ g |= d1 and g |= d2

⇐⇒ gP |= d1 and gP |= d2

⇐⇒ gP |= c .

Similarly, for c := ¬d

g |= c ⇐⇒ g ⊭ d

⇐⇒ gP ⊭ d

⇐⇒ gP |= c .

Finally, for c := ∃(a : X → Y,d)

g |= c ⇐⇒ there exists an M -morphism q : Y → E

such that q◦a = g and q |= d

⇐⇒ there exists an M -morphism q : Y → E

such that ⊆E ◦qP ◦a =⊆E ◦gP and q |= d

⇐⇒ there exists an M -morphism qP : YP→ E

such that qP ◦a = gP and qP |= d

⇐⇒ gP |= c

where the second equivalence holds by the above explained correspondence of
morphisms and the third by monotonicity of ⊆E and the induction hypothesis.
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Proof of Lemma 3.1. Just instantiate Lemma A.1 to typed graphs noting that
graph inclusions are M -morphisms.

Remark A.2. The central ingredient for the proof of Lemma A.1 is the one-
to-one correspondence between cm-morphisms and morphisms starting at the
problem part (as used in the last induction step). While in the context of a
type graph with inheritance this cannot any longer be argued for in the same
way, the statement is still true as long as no solution element inherits from
a problem element. Therefore, the lemma also holds for typed graphs with
inheritance under the assumption of separate inheritance hierarchies for problem
and solution elements.

Definition A.6 (Generalized element mutation operator. Generalized element
mutation (cf. Definition 3.4)). Given a computation space CS over a meta-model
MM = (⊆: TGP ↪→ TG,LC), a generalized element mutation operator mo is

defined by mo = (L
le←↩ I

ri
↪→ R,ac), where L, I, and R are objects typed over TG,

le and ri are M -morphisms, and ac is a (nested) condition over L.

A generalized element mutation E =⇒mo F using mo at match m is defined as in
the diagram of Fig. 3.5 such that both squares are pushouts and m satisfies ac.

A sequence E = E0 =⇒mo1 E1 =⇒mo2 . . .En = F of generalized element mu-
tations (where mutation operators moi and mo j are allowed to coincide for
1≤ i ̸= j ≤ n) is denoted by E =⇒∗M F , where M is a set containing all general-
ized mutation operators that occur. For n = 0, we have E = F .

Instead of proving Proposition 3.1 as stated in the paper, we present a more
precise statement in the general setting of M -adhesive categories below.

Proposition A.1. Let C be an M -adhesive category and MM a computation

meta-model in C . Let mo = (L
le←↩ I

ri
↪→ R,ac) be a generalized element mutation

operator, and let E,F ∈ CS be computation models such that there is a general-
ized element mutation E =⇒mo F (compare Fig. A.3). Then the morphisms le′

and ri′ in Fig. A.3 are cm-morphisms, and the operator mo is problem-invariant
if the morphisms le and ri defining the operator mo are problem-invariant.
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I R

C F

TG

IP RP

CP FP

TGP

LP

L
EP

E

riP

ri′P

leP

le′P

le′

m

rile

ri′

Figure A.3 – Mutation of solution model E to solution model F explicitly showing the
problem model.

Proof. We have to show that (i) le′ and ri′ are cm-morphisms and (ii) the stated
equivalence. To prove both (i) and (ii) compare Fig. A.3: The front of the diagram
is basically the same as in Fig. 3.5; we just omit the application condition as
we already assume the rule to be applicable at match m. The typing morphisms
to TG are added; the ones for L, I,R are given by composition. The typing
morphism typeC is obtained by composition of le′ with typeE ; typeF : F → TG
is obtained by the universal property of F as a pushout object (using typeC and
typeR as comparison morphisms). The back of Fig. A.3 is then induced by pulling
back the front diagram along ⊆ : TGP ↪→ TG. In particular, this makes both the
squares (CP,EP,C,E) and (CP,C,FP,F) to pullback squares. This shows le′ and
ri′ to be typed morphisms; i.e., (i) holds.

Concerning (ii), if we show both squares in the back to be pushouts as well as
pullbacks, this implies (ii): Both pushouts and pullbacks of isomorphisms result
in isomorphisms again. For this, observe that both front squares are pushouts
by assumption. Moreover, since cm-morphisms constitute pullback squares, the
further squares (except for the two in the back) are pullbacks. This implies, by
the weak vertical van Kampen property of the front squares, that the squares
in the back are pushouts as well. Furthermore, because the top squares are
pullbacks, le,ri ∈M implies that also leP,riP ∈M . Therefore, as pushouts
along M -morphisms in an M -adhesive category, the squares in the back are
also pullbacks. Summarizing, leP and riP are isomorphisms if and only if le′P
and ri′P are isomorphisms.
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Proof of Proposition 3.1. Again, proving Proposition 3.1 just amounts to instan-
tiating Proposition A.1 to the category of typed graphs noting that the inclusion
of graphs is an M -morphism. Also, every negative application condition is a
nested condition.

Remark A.3. The short category-theoretical proof we gave for Proposition A.1
does not carry over to the setting of a type graph with inheritance. The reason
is that cm-morphisms between typed graphs with inheritance do not constitute
pullback squares anymore (compare the discussion before Lemma A.1). But
the claim of Proposition A.1 can still be proved elementary in that setting
by excluding every way in which it would be possible for a rule (defined via
problem-invariant morphisms) to alter the problem model. To exclude the
deletion of problem elements, however, it is necessary to assume that problem
elements cannot inherit from solution elements. Otherwise, a rule could specify
the deletion of a solution element but be applied to a problem element (via
down-typing).

A.2 Evaluation: Details of optimization
problems SCRUM and NRP

In the following, we present the meta-models and element mutation operators of
the optimization problems SCRUM and NRP. We also present their language
constraints an discuss why these constraints are preserved by their element mu-
tation operators. An argumentation for the preservation of language constraints
shared by all use cases can be found in Sec. 3.7.3. Furthermore, we discuss the
soundness and completeness properties of the different sets of element mutation
operators used in the evaluation. Explanations of the operators can be found in
Sec. 3.7.3.

A.2.1 SCRUM

Figure A.4 shows the meta-model of the SCRUM case. In the SCRUM case,
the type Sprint (along with its incoming and outgoing edges) and the attribute
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[0..*] sprints

[1..*] workitems
Backlog

[1..1] backlog

[0..*] isPlannedFor

[0..*] committedItem

Sprint

[1..1] stakeholder

[1..*] workitemsStakeholder

[0..*] stakeholder

Plan

maxSprints: int

minSprints: int

currentsprints: int

WorkItem

effort: int

importance: int

Figure A.4 – Meta-model of the SCRUM use case. White solid elements are invariant
problem parts, the colored, dashed elements and references are solution-related.

currentSprints are part of the solution. All other elements are part of the problem
meta-model. The element mutation operators of the use case are depicted in
Figure A.5.

Preservation of language constraints in the SCRUM case. In addition
to the EMF-specific language constraints common to all use cases (with Plan
being the root node), we consider the following language constraints specific
to the SCRUM case: The attributes minSprints and maxSprints require several
problem constraints. Their values must be between zero to the number of work
items, and minSprints must be less than (or equal to) maxSprints. Since the
edges of the solution part are unbound, only problem constraints arise from the
multiplicities of the meta-model (we will not enumerate all of them here). To
save computation time, the current number of sprints is recorded in the attribute
currentSprints. A language constraint requires that this attribute always reflects
the correct number of sprints currently available.

All element mutation operators, including those belonging to the set UC, pre-
serve the validity of these language constraints. With respect to the correct
value of currentSprints, we see that every operator that creates or deletes a
Sprint increments or decrements currentSprints accordingly; the other operators
do not change its value. Since all other constraints are problem constraints,
Proposition 3.1 and Lemma 3.1 ensure their preservation.
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Rule m

oveW
orkItem

ToN
ew

SprintRespectingM
ax(var c:EInt, var m

:EInt)

«preserve»
p:PlancurrentSprints=

c->
c +

 1
m

axSprints=
m

«preserve»
ps:Sprint

«preserve»
w

i:W
orkItem

«preserve»
b:Backlog

«create»
ns:Sprint

Condition RespectM
axSprints

c+
1 <

=
 m

w
orkitem

s
«preserve»

isPlannedFor
«create»

sprints
«create»

isPlannedFor
«delete»

sprints
«preserve»

backlog
«preserve»

(e)
m

oveW
orkItem

ToN
ew

SprintR
espectingM

ax
(SC

,SIC
)

Rule m
oveW

orkItem
ToN

ew
Sprint(var c:EInt)

«preserve»
p:PlancurrentSprints=

c->
c +

 1

«preserve»
ps:Sprint

«preserve»
w

i:W
orkItem

«preserve»
b:Backlog

«create»
ns:Sprint

isPlannedFor
«create»

backlog
«preserve»

sprints
«preserve»

w
orkitem

s
«preserve»

isPlannedFor
«delete»

sprints
«create»

(f)
m

oveW
orkItem

ToN
ew

Sprint
(U

C
)

Rule addU
nassignedW

orkItem
ToExSprint

«preserve»
ps:Sprint

«preserve»
p:Plan

«preserve»
w
i:W

orkItem

«preserve»
b:Backlog

«forbid#1»
fs:Sprint

backlog
«preserve»

isPlannedFor
«forbid#1»

sprints
«forbid#1»

isPlannedFor
«forbid#2»

isPlannedFor
«create»

w
orkitem

s
«preserve»

sprints
«preserve»

(g)
addU

nassignedW
orkItem

ToExSprint
(SC

,U
C

,SIC
)

Rule m
oveW

orkItem
ToExSprint

«preserve»
p:Plan

«preserve»
ds:Sprint

«preserve»
w
i:W

orkItem
«preserve»
cs:Sprint

«preserve»
b:Backlog

sprints
«preserve»

backlog
«preserve»

isPlannedFor
«create»

isPlannedFor
«delete»

sprints
«preserve»(h)

m
oveW

orkItem
ToExSprint

(SC
,U

C
,SIC

)
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operator
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are

given
in

parenthesis.(part2
of2)
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A.2 Evaluation: Details of optimization problems SCRUM and NRP

Soundness for SCRUM case. In the SCRUM case, there are four feasibility
constraints. First, two structural constraints require that each WorkItem is
assigned to exactly one Sprint (this is a lower and an upper bound). Furthermore,
it is required that the total number of sprints is between a minimum and a
maximum value; this is expressed as an attribute constraint via a counter. The
structural constraints of the SCRUM case have exactly the same structure as the
feasibility constraints of the CRA case, where it is required that each feature
is assigned to exactly one class. Moreover, each rule of the SCRUM case
that belongs to the set SC and/or SIC structurally corresponds to such a rule
in the CRA case (namely, addUnassignedWorkItemToNewSprintRespecting-
Max to addUnassignedFeatureToNewClass, deleteEmptySprintRespectingMin to
deleteEmptyClass, moveWorkItemToNewSprintRespectingMax to moveFeature-
ToNewClass, addUnassignedWorkItemToExSprint to addUnassignedFeatureTo-
ExClass, and moveWorkItemToExSprint to moveFeatureToExClass). Since the
rules for the CRA case are sound, the rules for the SCRUM case are also sound
with regard to the structural constraints.

With respect to the attribute constraints, it is sufficient to note that each rule in
the sets SC and SIC that creates or deletes a sprint has an application condition
that ensures that the number of sprints does not exceed the maximum and does
not fall below the minimum. Therefore, these rules also cannot transform a
model with a correct number of sprints to one with a number that violates the
minimum or maximum number of sprints allowed. Overall, the rules for the
SCRUM case that belong to the sets SC and/or SIC are sound with respect to all
constraints.

In the case of UC, it is obvious that there are rules that can create computation
models with too few or too many sprints, even if they start from feasible solutions.
Hence, the set is unsound.

Completeness for SCRUM case. In the SCRUM use case, completeness
can be argued for almost in the same way as in the CRA case. We just need
to additionally consider the given minimum and maximum number of sprints.
First, for any instance, we can use the rules addUnassignedWorkItemToNew-
SprintRespectingMax (or addUnassignedWorkItemToNewSprint in case of UC),
moveWorkItemToNewSprintRespectingMax (or moveWorkItemToNewSprint

167



A Appendix to Chapter 3

in case of UC), moveWorkItemToExSprint, and deleteEmptySprintRespecting-
Min (or deleteEmptySprint in case of UC) to transform any computation model
(feasible or not) into the model that contains the minimal number of sprints
and in which all WorkItems are assigned to the same Sprint. Using the rules
moveWorkItemToNewSprintRespectingMax (or moveWorkItemToNewSprint in
case of UC) and moveWorkItemToExSprint, this model can then be transformed
into any feasible model. Therefore, both sets SC and UC are complete.

In case of SIC, there is no rule to delete a sprint. Therefore, no instance can
be transformed into an instance with fewer sprints, making the rule set incom-
plete.

A.2.2 NRP

Figure A.6 shows the meta-model of the NRP case. In the NRP case, the solution
part comprises only the edge between Solution and SoftwareArtifact as well
as the attribute totalCosts. The element mutation operators of the use case are
depicted in Figure A.7.

Preservation of language constraints in the NRP case. In addition
to the EMF-specific language constraints common to all use cases (with NRP
being the root node), we consider the following language constraints specific
to the NRP case: Neither the dependency hierarchies of requirements nor of
software artifacts may contain cycles. Furthermore, the attributes value, amount,
percentage, and importance must be greater than zero. All of these requirements
are problem constraints. Again, only problem constraints arise from the multi-
plicities of the meta-model. To save computations, similar to the SCRUM case,
the attribute totalCosts is used to capture the sum of the costs of all selected
software artifacts. A language constraint must guarantee the correctness of its
value.

All element mutation operators, including those belonging to the set UC, preserve
the validity of these language constraints. With respect to the correct value
of totalCosts, all operators (de-)select a SoftwareArtifact, but also recompute
totalCosts accordingly. Finally, Proposition 3.1 and Lemma 3.1 again guarantee
that all problem constraints are preserved.
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A.2 Evaluation: Details of optimization problems SCRUM and NRP

[1..1] solution

[1..*] availableArtifacts

[1..*] requirements

[0..*] solution

[0..*] selectedArtifacts

[1..*] dependsOn

[1..*] contributesTo

[1..*] customers

NRP

budget: double

[1..*] assignedBy

[1..*] assigns

Customer

name: String

importance: double

Valuation

value: double

Requirement

name: String

RequirementRealisation

percentage: double

SoftwareArtifact

name: String

Solution

totalCosts: double

Cost

type: CostType

amount: double

[0..*] combines

[0..*] contributesTo [0..*] realisations

[1..1] requirement[1..*] valuations

[1..1] requirement

[1..*] costs

«enumeration»
CostType

MONEY

TIME

MANPOWER

RESOURCES

[0..*] requires

Figure A.6 – Meta-model of the NRP use case. White solid elements are invariant
problem parts, the colored, dashed elements and references are solution-related.

Soundness for NRP case. In the NRP case, we consider two feasibility con-
straints. A structural constraint states that a solution that contains a SoftwareArti-
fact also contains all SoftwareArtifacts that this SoftwareArtifact (transitively)
requires. An additional attribute constraint expresses that the total cost of a feasi-
ble solution does not exceed the budget. Since the depth of a requires-hierarchy
can be arbitrary, the structural constraint is not first-order in this case. Therefore,
we cannot use the tool OCL2AC and instead perform a manual analysis.

Let us assume that a feasible solution for the NRP case is given (for any problem
instance). This means that for each selected SoftwareArtifact, all (transitively)
required SoftwareArtifacts are also selected. The rules from SC and SIC that
deselect SoftwareArtifacts (removeArtifactRespectingHierarchy resp. remove-
ArtifactRespectingHierarchyAndDependents) both have a NAC that ensures
that the rule is only applicable if no other selected SoftwareArtifacts require
the one to be deleted. Therefore, only “leafs” of the requires-hierarchy can
be deleted, resulting in offspring that again satisfies the constraint. For the
rule that selects new SoftwareArtifacts (addArtifactRespectingHierarchyAnd-
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Rule addArtifactRespectingHierarchyAndBudget(var budget:EDouble, var total:EDouble, var cost:EDouble)

«preserve»
a:SoftwareArtifact

«forbid#1»
b:SoftwareArtifact

«preserve»
s:Solution

totalCosts=total->total + cost

«preserve»
c:Cost

amount=cost

«preserve»
n:NRP

budget=budget

Condition doesNotExceedBudget
total+cost <= budget

solutions
«preserve»

costs
«preserve» requires

«forbid#1»

selectedArtifacts
«create»

availableArtifacts
«forbid#1»

selectedArtifacts
«forbid#2»

availableArtifacts
«preserve»

(a) addArtifactRespectingHierarchyAndBudget (SC, SIC). The rule contains a nested NAC
which is not included in the visual syntax of Henshin. The nested application condition
further constrains software artifact b to artifacts that are not already selected. Obviously,
artifacts that are already selected for the next release should not prohibit the selection of
dependent artifacts.

Figure A.7 – The set of element mutation operators used for the NRP case. The
algorithm variants to which an operator belongs are given in parenthesis. (part 1/2)

Budget), the first application condition (annotated with forbid#1) prohibits the
SoftwareArtifact to be selected to require another SoftwareArtifact that is not
already selected. (Note that the second part of this application condition has
no counterpart in the visual representation of the rule in Fig. A.7a. However,
it is present in the programmed rule.) This means that only SoftwareArtifacts
that do not require other SoftwareArtifacts or for which all directly required
SoftwareArtifacts are already selected can be selected. However, for feasible
solutions, all SoftwareArtifacts required by them are also already selected (by
feasibility), which means that the overall result of applying addArtifactRe-
spectingHierarchyAndBudget to a feasible solution yields a solution where the
structural constraints are satisfied.

With regard to the attribute constraint, addArtifactRespectingHierarchyAnd-
Budget prohibits the selection of a SoftwareArtifact that would result in a budget
overrun. In summary, both sets SC and SIC are sound.

In addition, the set UC is obviously unsound. Both addRandomArtifact and
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A Appendix to Chapter 3

removeRandomArtifact can destroy an intact requires-hierarchy of the selected
artifacts. Moreover, addRandomArtifact may lead to budget violations.

Completeness for NRP case. Both sets SC and UC are complete. First,
with rule removeArtifactRespectingHierarchy resp. removeRandomArtifact, each
computation model can be transformed to the instance where no SoftwareArtifact
is selected at all. In the first case, this must be done from top to bottom along the
requires-hierarchy; in the second case, the order can be arbitrary. Subsequently,
the rule addArtifactRespectingHierarchyAndBudget resp. addRandomArtifact
can be used to create any feasible instance by selecting the appropriate Soft-
wareArtifacts. Again, in the first case this must be done in a definite order, here
from bottom to top, while in the second case, the order can be arbitrary.

With respect to the set SIC, it is not possible to deselect a SoftwareArtifact from
an instance if it is required by at least three other SoftwareArtifacts (cf. the NAC
annotated with forbid#2 in rule removeArtifactRespectingHierarchyAndDepen-
dents). In general, therefore, an instance in which such a SoftwareArtifact is
selected cannot be transformed to every feasible solution using this rule set.
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B
Appendix to Section 4.1

This appendix belongs to Section 4.1 which introduces the generic crossover
approach and contains proofs for the presented propositions and lemmas.

B.1 Proofs

The following lemma is the central ingredient for the proof of Proposition 4.1
and also used in the one of Proposition 4.3. For adhesive categories, it has
already been stated in the extended version of [Fri+18]. Here, we present it in
the more general context of M -adhesive categories. Because of that, we need to
additionally assume the existence of M -effective unions.

Lemma B.1 (Pullbacks as pushouts). In an M -adhesive category (C ,M ) with
M -effective unions, let (e1,e2) : L1,L2 ↪→ E be a pair of jointly epimorphic
M -morphisms. Then the pullback of (e1,e2) is also a pushout.

Proof. Given the diagram below, where P arises as pullback of (e1,e2), Q as
pushout of (p1, p2), and the morphism h from the universal property of Q, we
show that h is an isomorphism.

L1

P Q E X

L2

p1

p2

q1

e1

q2
e2

h
f

g
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First, since e1,e2 are M -morphisms, the morphism h is an M -morphism, as-
suming M -effective unions. This means that h is a regular monomorphism
(compare [LS05, Lemma 4.8], which is easily seen to also hold in M -adhesive
categories).

Secondly, given two morphisms f ,g : E→ X with f ◦h = g◦h, it follows that f ◦
h◦q1 = g◦h◦q1 which implies f ◦e1 = g◦e1; analogously, f ◦e2 = g◦e2 holds.
Since e1,e2 are jointly epimorphic, it follows that f = g, and h is an epimorphism.
Thus, h is epi and regular mono and therefore an isomorphism.

Prrof of Proposition 4.1. Given a solution split as depicted in Fig. 4.5, it is
straightforward to realize this split via the split construction. One just chooses
the already given morphisms s1 and s2. As the bottom square in Fig. 4.5 is a
pushout, s1 and s2 are jointly epimorphic. Moreover, in an M -adhesive category
that square is also a pullback because EI ↪→ E1 (or, equally, EI ↪→ E2) ∈M .

To show that the construction always computes a solution split, we have to show
that it produces a commuting cube of M -morphisms (with isomorphisms at
the top) such that the bottom square is a pushout and the four vertical squares
constitute ce-morphisms (i.e., are also pullbacks and are compatible with typing).
It is well-known that, in every category, in a cube that is computed via pullbacks
as stipulated by our construction, all squares are pullbacks; see, e.g., [Awo10,
5.7 Exercises, 2. (b)]. By closedness of M -morphism under pullbacks, this
in turn implies that all morphisms are M -morphisms (because e, s1, and s2

are). The two morphisms at the front of the top square are isomorphisms by
assumption; the other two become isomorphisms by closedness of isomorphisms
under pullback. Finally, in an M -adhesive category with M -effective unions,
the pullback of jointly epimorphic M -morphisms is always a pushout (see
Lemma B.1 above). Therefore, the bottom square (computed as pullback of the
jointly epic M -morphisms s1 and s2) is a pushout as desired. The typing of E1

and E2 is compatible with the typing of E by definition; moreover, the squares
obtained from the typing morphisms are pullbacks by pullback composition.

For the last statement, it suffices to observe that E2 can always be chosen as E,
embedded via the identity morphism (which then leads to EI ∼= E1).
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Proof of Lemma 4.1. To prove the statement, we have to show that there exists a
ce-morphism (aP,a) from CP := (id : PIP ↪→ PIP, tPIP , tp◦ tPIP) to EI such that
aP is an isomorphism and a ∈M ; the analogous statement for F I is proved in
exactly the same way.

PIP EI
P

(1)

PIP EI

id

∼
aP

eI

eI ◦aP

Figure B.1 – Showing CP to constitute a crossover point

We define such a ce-morphism using the isomorphism aP with tEI
P
◦aP = tPIP that

exists since EI is an element of the search space of PI. Figure B.1 depicts this.
The square commutes and a,eI ◦a∈M by closedness of M under isomorphisms
and composition. Moreover, using the fact that eI is a monomorphism, it is also
easy to check that the square constitutes a pullback. Finally, using tEI

P
◦aP = tPIP

we compute

tEI ◦ eI ◦aP = tp◦ tEI
P
◦aP

= tp◦ tPIP

which shows (aP,eI ◦aP) to be type-compatible.

Proof of Proposition 4.2. First, in an M -adhesive category, pushouts along M -
morphisms exist. This means that, given two solution splits and a crossover
point, crossover is always applicable. Since isomorphisms are closed under
pushout, the top squares in the construction consist of isomorphisms only. In
particular, (E1F2)P ∼= PIP ∼= (E2F1)P (because E1

P
∼= PIP ∼= E2

P by assumption).

By definition, o1 is the unique morphism such that

o1 ◦aP = a◦ e1 and o1 ◦bP = b◦ f 2 ,

where (aP,a) and (bP,b) denote the ce-morphisms from e1 and f 2 to o1 (see
Fig. 4.8). A standard diagram chase (using the facts that the top squares in
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Fig. 4.8 consist of isomorphisms only and that diagrams remain commutative
if one replaces isomorphisms by their inverses) then shows that a ◦ e1 ◦ a−1

P
(or, equally, b ◦ f 2 ◦ b−1

P ) exhibits this universal property. Therefore, o1 =

a ◦ e1 ◦ a−1
P ∈M as composition of M -morphisms. Again, this uses the fact

that M contains all isomorphisms.

Finally, that the typing morphisms of O1 induce even a pullback square over tp
(and not merely a commuting one) follows exactly as in the proof of Lemma 2.2
in [GL12], using the facts that the ambient category C is M -adhesive and
tp ∈M .

Proof of Proposition 4.3. Let solution O be computed via a crossover from E
and F . It is immediately clear from the construction that there exist the two
required ce-morphisms ī and j̄ such that i, j are jointly epic M -morphisms
because the projections of a pushout are jointly epi and M -morphisms are
closed under pushout.

For the converse direction, O is jointly covered by E1 and F2, which stem from
subsolutions E1 and F1 of E and F by assumption. If the underlying category
has M -effective unions, pulling these morphisms back results in a pushout.
Let CP be the object resulting from that pullback (exactly as in the proof of
Proposition 4.1). We merely have to show that there exist solution splits of E
and F that split up E into E1 and some suitable subsolution E2 of E and F into
F2 and some suitable subsolution F1 of F for which CP can serve as a crossover
point. As in (the proof of) the second part of Proposition 4.1, we can use E as E2

and, because of the symmetric nature of a solution split, F as F1 and obtain splits
of E and F with EI = E1 and F I = F2. Hence, CP, together with the morphisms
that stem from its computation as a pullback, can serve as a crossover point for
these splits, and applying the crossover construction computes the given solution
O.
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