
Robust Stream Indexing

Dissertation

zur Erlangung des Doktorgrades

der Naturwissenschaften

(Dr. rer. nat.)

dem Fachbereich Mathematik und Informatik

der Philipps-Universität Marburg

vorgelegt von

M.Sc. Informatik

Nikolaus Glombiewski
geboren in Bad Wildungen

Marburg, im August 2023

Vom Fachbereich Mathematik und Informatik der Philipps-Universität Marburg

(Hochschulkennziffer 1180) als Dissertation am 14. November 2023 angenommen.

Erstgutachter: Prof. Dr. Bernhard Seeger, Philipps-Universität Marburg

Zweitgutachter: Goetz Graefe, Ph.D.

Tag der Einreichung: 09. August 2023

Tag der mündlichen Prüfung: 17. November 2023

—Dedicated to my family.

Abstract

In many of today’s most challenging use cases, data is continuously produced and processed
in never-ending data streams. In addition to being processed online by a stream processing
system, in most instances, data streams also need to be stored long-term in a database. Modern
hardware exhibits excellent write speeds and thus can store streams with high throughput and
low latency. However, parts of the stream must also be retrieved efficiently to extract knowledge
from data. Decades of research have led to an incredible variety of index structures that can be
used to query data for a large variety of use cases. While stream indexes have seen significant
improvements in their efficiency, increasing their robustness is still a challenging and vital topic
because streams result in never-ending index maintenance. This maintenance requires resources,
leading to decreased or fluctuating performance for regular insertions and query operations.
Thus, more robust stream indexing can significantly reduce operational costs and improve the
user experience. As a result, this thesis’s main objective is to improve the robustness of stream
indexing.

B-trees are well-researched and widely adopted index structures. Since they are a core part of
many database systems, improving B-tree robustness has a wide-reaching effect. When used for
streaming data, insertions into B-trees can result in many node splits. After bulk loading B-trees,
these splits can occur in waves, affecting insertions and queries. However, this thesis shows that
these waves of split activity can be reduced or eliminated by changing the bulk loading strategies
used to create the B-tree.

Specialized stream index structures, such as log-structured merge trees, stepped-merge forests,
and their variants, avoid waves of node splits present in B-trees. These index structures consist of
multiple components, which are occasionally merged to improve query performance. This results
in periodic bursts of merge activity. As an alternative, this thesis presents continuous merging
with staggered key ranges. The main idea is a perpetual mergesort algorithm, which results in
a more robust performance for stream indexing.

Stream indexes are usually part of a more complex database system. ChronicleDB is an event
database system optimized for writing temporal streaming data. Improvements to B-trees
and continuous merging with staggered key ranges will be related to the overall design of
ChronicleDB. Furthermore, this thesis covers improvements made to ChronicleDB that use the
unique characteristics of temporal data. The results lead to a more robust event database sys-
tem.

iv

Zusammenfassung

Kontinuierliche Datenströme stehen im Zentrum von vielen anspruchsvollen und komplexen An-
wendungen. Neben der Online-Verarbeitung durch ein Datenstromsystem müssen Datenströme
auch langfristig in einer Datenbank gespeichert werden. Moderne Hardware kann Datenströme
meist mit sehr hohem Durchsatz und geringer Latenz persistieren. Allerdings müssen Teile des
Datenstroms auch effizient abgerufen werden können, um Wissen aus den Daten zu extrahieren.
Jahrzehntelange Forschung hat zu einer unglaublichen Vielfalt an Indexstrukturen geführt, die
für viele spezifische Anwendungen Anfragekosten reduzieren können. Obwohl die Effizienz von
Datenstrom-Indexstrukturen erheblich verbessert wurde, ist die Steigerung ihrer Robustheit nach
wie vor eine große Herausforderung, da das kontinuierliche Eintreffen von Daten eine ständige
Wartung von Indexstrukturen zur Folge hat. Diese Wartung verbraucht Ressourcen, was zu einer
geringeren oder schwankenden Leistung von regulären Einfüge- und Anfrageoperationen führt.
Eine Steigerung der Robustheit kann die Betriebskosten erheblich senken und die Benutzbarkeit
verbessern. Das Hauptziel dieser Arbeit ist daher, die Robustheit von Datenstrom-Indexierung
zu verbessern.

B-Bäume sind gut erforschte und weit verbreitete Indexstrukturen. Da sie ein zentraler Be-
standteil vieler Datenbanksysteme sind, hat die Verbesserung der Robustheit von B-Bäumen eine
weitreichende Wirkung. Wenn kontinuierlich neue Daten in B-Bäume eingefügt werden, kommt
es zur Aufspaltung von Knoten. Für einen durch Bulk-Loading neu erstellten B-Baum treten
diese Aufspaltung in Wellen auf, welche sich auf Einfügeoperation und Anfragen auswirken. In
dieser Arbeit wird gezeigt, dass durch Anpassungen an Bulk-Loading-Algorithmen diese Wellen
reduziert oder eliminiert werden können.

Auf Datenströme optimierte Indexstrukturen, wie Log-Structured Merge-Trees, vermeidenWellen
von Knotenaufspaltungen, die in B-Bäumen auftreten. Da diese Indexstrukturen jedoch aus
mehreren Komponenten bestehen, müssen die Komponenten durch eine Merge-Operation zusam-
mengeführt werden, um Anfragekosten gering zu halten. Dies führt zu periodisch auftretender
Reorganisationsaktivität. Als Alternative wird in dieser Arbeit Continuous Merging vorgestellt.
Die Hauptidee ist ein kontinuierlicher Mergesort-Algorithmus, der zu einer robusteren Leistung
von Datenstrom-Indexierung führt.

Datenstrom-Indexstrukturen sind oft Teil eines komplexeren Datenbanksystems. ChronicleDB
ist ein Ereignisdatenbanksystem, welches für das Schreiben von zeitlichen Datenströmen opti-
miert ist. Die Verbesserungen an B-Bäumen und Continuous Merging werden mit dem Gesamt-
design von ChronicleDB in Verbindung gebracht. Darüber hinaus werden in dieser Arbeit all-
gemeine Verbesserungen an ChronicleDB vorgenommen, welche die Besonderheiten von zeitlichen
Daten ausnutzen. Die Ergebnisse führen zu einem robusteren Ereignisdatenbanksystem.

v

Erklärung

Hiermit versichere ich, dass ich meine Dissertation mit dem Titel

Robust Stream Indexing

selbständig und ohne fremde Hilfe verfasst, nicht andere als die in ihr angegebenen
Quellen oder Hilfsmittel benutzt, alle vollständig oder sinngemäß übernommenen
Zitate als solche gekennzeichnet sowie die Dissertation in der vorliegenden oder
einer ähnlichen Form noch bei keiner anderen in- oder ausländischen Hochschule
anlässlich eines Promotionsgesuchs oder zu anderen Prüfungszwecken eingereicht
habe. Dies ist mein erster Versuch einer Promotion.

Marburg, den 9. August 2023 Nikolaus Glombiewski

vi

Acknowledgments

First of all, I would like to express my deepest gratitude to Prof. Dr. Bernhard
Seeger for supervising me through the course of this thesis. He gave me the
opportunity and freedom to explore a wide range of fascinating topics and new
ideas. His guidance and countless discussions helped me overcome problems that
I faced and led to immense professional growth.

I am also extremely grateful to Goetz Graefe for his support. His profound knowl-
edge helped me in finding opportunities and solutions. Through his advice, I
learned a lot about research, which influenced my approach to solving complex
problems.

I also want to thank my colleagues from the Database Research Group of the Uni-
versity of Marburg for the great working atmosphere, excellent discussions, and
helpful feedback. I appreciate all of them for having my back and taking over
less fun work duties whenever it was time for me to finish a research project. I
particularly want to thank Michael Körber and Andreas Morgen. Michael sup-
ported me in all my research through programming sessions, reading manuscripts,
and discussing ideas. My skill increased greatly through working together, which
positively impacted this thesis. Andreas and his calm demeanor helped me find
the right path forward whenever I got stuck. I would also like to recognize all co-
authors for their input on published research and all students for their implementa-
tion efforts that improved the systems used in this thesis.

My work was partially funded by the Deutsche Forschungsgemeinschaft (DFG)
under grant no. SE 553/9-1 and SE 553/7-3. My work was also partially funded
by the BMBF project FAIR Data Spaces (FAIRDS10).

Finally, I would like to thank my family and friends for accompanying me on this
journey and helping me through difficult situations. In particular, I thank Julia,
Emil, Halina, Stephan, and Witold for providing me with an environment to relax,
think about new ideas, and sometimes get work done.

vii

Attribution

This thesis contains parts of previous publications written by the thesis author.
Some parts have been rewritten and supplemented with new material. The pre-
vious publications are the definitive version of the original published article. The
previous publications fall under their respective copyright and licensing, not the
copyright and licensing of this thesis. Please refer to the individual publication for
the respective copyright and licensing information.

• Publication: Nikolaus Glombiewski, Philipp Götze, Michael Körber,
Andreas Morgen, Bernhard Seeger. 2020. Designing an Event Store for a
Modern Three-layer Storage Hierarchy. Datenbank Spektrum 20, 211–222
(2020). https://doi.org/10.1007/s13222-020-00356-6

Use in thesis: Pages 44-51 contain rewritten excerpts and images. Pages
165-168 are based on research conducted by Philip Götze. Pages 169-172 and
178-180 contain rewritten excerpts supplemented with new material. Pages
186-188 and 195-196 contain excerpts.

• Publication: Marc Seidemann, Nikolaus Glombiewski, Michael Körber,
and Bernhard Seeger. 2019. ChronicleDB: A High-Performance
Event Store. ACM Trans. Database Syst. 44, 4, Article 13 (2019).
https://doi.org/10.1145/3342357

Use in thesis: Pages 44-51 have been written using the publication as a
basis. Pages 172-177 and 180-186 contain slightly rewritten excerpts. Pages
205-212 contain excerpts supplemented with new material.

• Publication: Nikolaus Glombiewski, Bernhard Seeger, Goetz Graefe.
2019. Waves of Misery After Index Creation. BTW 2019, 77-96 (2019).
https://doi.org/10.18420/btw2019-06

Use in thesis: Pages 54-79 contain rewritten excerpts supplemented with
new material.

viii

Attribution

• Publication: Christian Beilschmidt, Johannes Drönner, Nikolaus Glom-
biewski, Michael Körber, Michael Mattig, Andreas Morgen, Bernhard Seeger.
2019. VAT to the Future: Extrapolating Visual Complex Event Process-
ing. OpenSky Workshop 2019, 25-36 (2019). https://doi.org/10.29007/wz4w

Use in thesis: Pages 213-216 have been written based on the publication
and contain rewritten excerpts.

• Publication: Christian Beilschmidt, Johannes Drönner, Nikolaus Glom-
biewski, Christian Heigele, Jana Holznigenkemper, Anna Isenberg, Michael
Körber, Michael Mattig, Andreas Morgen, Bernhard Seeger. 2019. Pretty
Fly for a VAT GUI: Visualizing Event Patterns for Flight Data. DEBS
2019, 224-227 (2019). https://doi.org/10.1145/3328905.3332507

Use in thesis: Pages 213-216 have been written based on the publication
and contain rewritten excerpts.

ix

Contents

Abstract iv

Zusammenfassung v

Erklärung vi

Acknowledgments vii

Attribution viii

1 Introduction 1
1.1 Data stream applications . 4
1.2 Robustness of performance . 8
1.3 Research questions . 10
1.4 Contributions . 12
1.5 Publications . 15
1.6 Thesis structure . 16

2 Fundamentals 18
2.1 Data stream processing . 18

2.1.1 Data stream model . 19
2.1.2 Data stream queries . 21

2.2 Stream indexing . 26
2.2.1 Indexing fundamentals . 26
2.2.2 B-tree techniques for write-efficiency 28
2.2.3 Log-structured indexes . 31

2.3 Robustness . 38
2.3.1 Requirements for robust stream indexing 40
2.3.2 External and internal robustness 41
2.3.3 Write operations . 42
2.3.4 Query processing . 42

2.4 ChronicleDB . 44
2.4.1 Basic primary index . 46
2.4.2 Secondary indexes . 48
2.4.3 Load scheduler . 49
2.4.4 Query processing . 50

2.5 Summary of fundamentals . 50

x

Contents

3 Waves of misery after index creation 52
3.1 Introduction . 52

3.1.1 Case study: ChronicleDB 52
3.1.2 Motivation . 54
3.1.3 Structure . 55

3.2 Related prior work . 55
3.2.1 Node splits and bulk loading 56
3.2.2 Uneven page utilization and fringe analysis 58
3.2.3 Summary of related prior work 58

3.3 Problem assessment . 59
3.4 Sound remedies . 61
3.5 Practical remedies . 64

3.5.1 Global strategies . 66
3.5.2 Local strategies . 67
3.5.3 Hybrid strategies . 69

3.6 Evaluation . 70
3.6.1 Sound remedies . 71
3.6.2 Practical remedies . 72

3.7 Summary . 79

4 Continuous merging 80
4.1 Introduction . 80

4.1.1 Case study: Log-structured indexes for ChronicleDB 81
4.1.2 Motivation for continuous merging 88

4.2 Related prior work . 91
4.3 Continuous merging with staggered key ranges 95

4.3.1 Merge strategies . 96
4.3.2 Search strategies . 107
4.3.3 Section summary . 108

4.4 Theoretical analysis . 108
4.4.1 Merge progress . 109
4.4.2 Queries . 120
4.4.3 Summary of theoretical analysis 124

4.5 Implementation . 124
4.5.1 Overview . 124
4.5.2 Partition generation . 125
4.5.3 Merging . 126
4.5.4 Query, cleanup and runtime metrics 128

4.6 Extensions . 129
4.6.1 Early merging . 129
4.6.2 Merging policies . 133

xi

Contents

4.7 Experimental evaluation . 139
4.7.1 Hypotheses . 139
4.7.2 Environment and implementation 140
4.7.3 Measurements and tests . 141
4.7.4 Merging performance . 141
4.7.5 Query performance . 146
4.7.6 Extensions . 150
4.7.7 Summary of the performance evaluation 159

4.8 Conclusions . 159

5 ChronicleDB extensions 161
5.1 Introduction . 161

5.1.1 Motivation . 161
5.1.2 Structure . 165

5.2 Persistent memory . 165
5.2.1 Overview . 165
5.2.2 Related prior work . 167

5.3 Out-of-order data . 169
5.3.1 Problem statement . 169
5.3.2 Out-of-order data on persistent memory 169
5.3.3 System time mode . 172
5.3.4 Experiments . 177

5.4 Custom lightweight indexing . 182
5.4.1 Problem statement . 182
5.4.2 Primary index extension . 183
5.4.3 Lightweight indexing on persistent memory 186
5.4.4 Alternative lightweight index structures 188
5.4.5 Experiments . 194
5.4.6 Discussion . 202

5.5 Use cases . 203
5.5.1 Maximum delay estimation 205
5.5.2 Visual analytics . 213
5.5.3 Delta predicates . 217

5.6 Summary . 224

6 Summary, conclusion and outlook 226
6.1 Summary and conclusion . 226
6.2 Outlook . 228

6.2.1 Waves of misery in main-memory index structures 228
6.2.2 Merging . 229
6.2.3 Storage- and index structures 230

xii

Contents

6.2.4 Query optimization . 231

Appendices 232

References 233

List of Figures 253

List of Tables 258

List of Algorithms 259

Curriculum Vitae 261

xiii

1
Introduction

The ever-growing amount of data has opened new challenges for computer scien-
tists for several decades. Big data and other catchy terms for new technologies
and challenges when dealing with massive or complex data have widespread use
in research, popular literature, and politics. While discussions about the makeup
of and measurements for very large databases have been around for a long time
[GMZ77], the circumstances of the times and data characteristics usually shape
the ongoing challenges. For example, one of the first prominent usages of big data
was in 1997 in a NASA paper [CE97] dealing with the visualization of hundreds
of GBs of data generated by supercomputers. A report on storage history by IBM
[MT03] estimates that just a year prior, digital storage overtook paper with re-
gard to cost efficiency, suggesting a large gap between big data in research and any
form of digital data in everyday life. In 2001, the three Vs often used to describe
big data problems - volume, velocity, variety - were introduced [Lan+01]. A key
contributor to the explosion of data volume at the time was e-commerce, with
more interactions and more data per interaction readily available to analyze cus-
tomer behavior. Somewhat in parallel, the first 3G network was launched in Japan
[Rob03] and started connecting people to a large amount of data from their mobile
devices. At the same time, significant research on dedicated data stream manage-
ment systems [Car+02; Aba+05] was conducted. While some essential building
blocks of modern data processing started to develop around that time, the general
availability of devices and people’s behavior took longer to adapt. Cisco IBSG
[Eva11] estimates that it was not until 2008 that connected devices overtook the
number of people worldwide, and smartphone production overtook regular phone
production as late as 2013 [MR14]. The smartphone adoption rate is estimated to
be 82% in North America in 2020 [Ass21]. The number of interactions with always-
connected devices plays a crucial role in modern data environments. Unlike in the
past, each connected person is a prosumer, i.e., both a continuous data producer
and data consumer, through their “personal streams of life” [RGR18] - positions,
news, reactions, and social media posts are continuously produced and consumed
from anywhere in the world. The International Data Corporation (IDC) [RGR18]

1

1 Introduction

observe

update model

push

Real Time Weather
Updates

generate measure

notify/inspect

Fitness
Tracking

Social Media

request status

1

take picture

notify share/receive

notify/inspect

send data

Figure 1.1: Example for data streams arriving from various sources.

estimated the summation of all data created, captured, or replicated by 2018 at 33
Zettabytes. It also predicts growth to 175 Zettabytes by 2025. With a prediction
of one data interaction every 18 seconds per connected person, this type of big
data will arguably shape life and research for years.

A key characteristic of the current and future data landscape is that data arrives
continuously as a stream . Instead of waiting for a doctor’s appointment or putting
on cumbersome special-purpose devices, some measurements about health can be
recorded and analyzed anywhere at any time via widely available and easy-to-use
smartwatches. Digestible text messages containing weather updates can be pushed
to smart devices almost in real time. Enthusiasts can also receive the latest radar
images and complex model predictions in a timely manner. Photos can be taken
and artificially enhanced instantly and shared with people worldwide via social
media platforms. As illustrated in Figure 1.1, all these data streams are available to
consumers through various devices. Streams can be produced, stored, and queried
locally or in the cloud. In addition to the consumer, they might be available to
companies that provide devices, platforms, or data-capturing equipment. Updates
for new data and continuously active queries, such as a subscription to a social
media platform, arrive quickly and in large quantities because of volume, data

2

1 Introduction

size, or frequency. Of the predicted 175 Zettabytes of data by 2025, the IDC
estimates 30% will arrive in real-time [RGR18]. Thus, a large amount of data will
be in the form of data streams, which presents unique challenges for research and
industry.

One challenge with big data is simply capturing or storing it. According to a 2019
web survey [Tec20] of mid-size and large businesses, survey respondents believe
that 44% of generated data is uncaptured. While some of this can be attributed
to internal business processes, large data volume also naturally translates to re-
search problems concerning scaling up and load shedding. A problem of scaling
up resources in real-time is that the operation may take a while. E.g., in Ama-
zon Kinesis, an already large configuration of 1000 shards may take over 8 hours
of reorganization to double the throughput [Ama; ZHW20]. More challenging
problems make capturing all data via a software solution nearly impossible. For
example, raw data from particle collectors in the Large Hadron Collider at CERN
exceeds 1 Petabit per second and requires specialized hardware such as FPGAs
to filter before storing it [Har21]. The realities of scaling and load shedding mean
that, in some cases, streaming data cannot be captured due to momentarily or
continuously high load.

Another challenge is the analysis of data. Although storing the sheer volume of
created data is challenging in and of itself, capturing it is ultimately pointless if
the data is not used. The data-information-knowledge-wisdom (DIKW) hierar-
chy [Row07] is a fundamental model for information, describing the relationship
between and transformation from raw data to knowledge or wisdom. Although
interpretations of this model may vary, at its core, it shows that data needs addi-
tional description about its structure or undergo processing (information) before
becoming actionable instructions (knowledge) and ultimately a higher human un-
derstanding (wisdom). In 2007, Jim Gray “described his vision of the fourth
paradigm of scientific research” [HTT09]. In the past, scientists used empirical
descriptions, theoretical models, and computational simulations. He noted that a
new era of data exploration began where scientists dealt with an unmanageable
amount of sensor or supercomputer data. While Jim Gray’s call for action also in-
cludes better tools to capture data, an equally important piece is the ability to help
scientists analyze and visualize it. In a similar vein, in 2013, Gary King wrote that
“big data is not actually about the data” [Kin16], noting that capturing more data
is just more expensive and that it is crucial to use innovative analytics to avoid
having “a very nice pile of numbers without any insights in return.” The need to
work with the data is at the core of all those models, proposals, and quotes. New
processing models have been developed, from stream processing systems looking
for patterns and large-scale utilization of machine learning. However, the volume

3

1 Introduction

of data remains a challenge, with naive methods taking a significant amount of
time and, thus, limiting exploratory research.

Indexing is a critical component in solutions for dealing with big data generated
by data streams. An index provides data with structure, either by organizing the
raw data in a specific way or by building auxiliary structures. Specific data items
can be accessed faster via an index. Thus, indexing influences storage and analyt-
ics, enabling efficient data exploration and serving as a connective tissue between
data producer and consumer. Database indexes have been around for a long time,
and certain fundamental truths (e.g., searching for a range of data items requires
sorting and probably a tree data structure) have been established. However, they
have also been improved to deal with more data efficiently by read- and write-
efficient variations. More recently, the immediacy of data streams and queries
has challenged the traditional way of storing data as fast as possible, “dumping
raw data on storage” [Xie+19] and building optimized formats afterward. Nowa-
days, data analysis needs to be fast and up-to-date. Furthermore, business data
storage strategies need to change to extract more value from data that is already
existing. According to a 2019 survey [Stu19], one crucial reason why data goes
unused in companies is that it exists in an unstructured format in some separate
system, making analysis impossible. Thus, efficient and fast index creation and
maintenance is crucial for better analysis or providing any analysis in the first
place. Although improvements in overall efficiency are paramount, it is also essen-
tial to consider the robustness of the stream indexing. High update rates from
real-time streams and challenging storing scenarios mean indexes change over time
while serving various innovative, explorative use cases.

Next, we will derive key requirements for a modern stream indexing system based
on three applications and discuss an introductory example of robustness in a stream
indexing system. Based on these examples, we will formulate the core research
questions and briefly summarize the main contributions of this thesis. After pre-
senting the main publications written during this thesis, we will conclude this
chapter by giving an outline for the thesis.

1.1 Data stream applications

Fitness tracking

Technology has made disease diagnosis and treatment better, more accessible, and
more efficient [Ele18]. In addition to improvements within traditional healthcare
environments, tracking personal fitness with mobile devices has become a growing

4

1 Introduction

07:30:00 08:00:00 08:30:00 09:00:00 09:30:00 10:00:00 10:30:00 11:00:00 11:30:00 12:00:00
0

20

40

60

80

100

120

140

160

Time (HH:MM:SS)

H
ea

rt
 R

at
e Morning Routine

Walking
Sittiing

Workout

Walking
Sittiing

Figure 1.2: Simulated time series data representing heart rate measurements in
varying situations.

market [Shi+21]. Smartphone applications and wearables such as fitness trackers
or smart watches give easy real-time insight into health-related statistics such as
heart rate, step counts, burned calories, and blood oxygen. One of the primary
devices on the market is the Apple Watch, which uses a photoplethysmogram to
track the wearer’s heart rate [App21]. There exist at least three possibilities to
trigger heart rate monitoring for a user.

1. The user can request a measurement and needs to wait until it is complete.

2. After starting a workout app, the watch will monitor the heart rate contin-
uously.

3. The heart rate is measured in the background, varying the measurement
intervals for stillness and walking activity.

Based on these possibilities, a snapshot of a morning measurement could look like
Figure 1.2, with various measurements and measurement intervals throughout dif-
ferent periods. Furthermore, the device can create notifications based on low or
high thresholds or detect patterns such as an irregular heart rhythm.

Fitness tracking reveals several critical aspects of data streaming. The data is
inherently temporal and thus has a temporal dimension expressing the time of
the measurement. However, the distance between two measurement points is not
necessarily equidistant. Either workouts or a manual trigger will result in addi-
tional measurements. Furthermore, data from different sensors may be combined
to detect activity such as walking, resulting in a different data capture pattern.
Thus, before displaying results to a user, processes are similar in functionality to

5

1 Introduction

a traditional filter and join query. It is also possible to look at sub-sequences of
the stream to detect patterns.

Home automation

Residents can install home automation devices to transform their living space into
a smart home [Str+10]. A smart home will feature multiple sensors to detect
events and measure essential information about the home. For example, a Sense-
box [sen21] allows the measurement of temperature, humidity, and air quality. An
occupancy sensor [Lu+10] or motion detector [Bos21] can detect the presence of
a person to turn on lights or turn off the heating system. More complex home
automation systems might monitor energy consumption [Jah+10]. Energy aware-
ness might facilitate energy scheduling strategies, resulting in more environment-
friendly and cheaper appliance utilization [Zho+16]. Multiple sensors and devices
generally connect to a central hub, which allows the resident to monitor and control
the home.

Sensors in home automation are perfect examples of streaming data. Data from a
large sensor box will combine multiple sensor readings per measurement (temper-
ature and humidity). The result is a multi-variate time series. Multiple readings
per timestamp can be correlated. For example, a higher temperature can natu-
rally lead to lower relative humidity [Bre18]. Data from a single sensor is generally
temporally ordered. If data from multiple sensors within the home arrives contin-
uously at the central hub, this hub might receive some temporally unordered data.
However, the degree of unordered data and delay can be either low or predictable.
For instance, a delay of one day between the temperature readings and the energy
readings is unlikely or predetermined.

When monitoring the home, users might be interested in the whole stream or only
a temporal aggregation, such as the average temperature during the night, which
requires efficient temporal access to data. Furthermore, the user might search
for specific points of interest. Looking at all instances of a presence to detect an
intruder or searching for unusually high energy consumption to optimize devices
will require efficient non-temporal access to data.

Flight monitoring

Monitoring flight data in real-time and collecting relevant data for post-flight anal-
ysis can improve airspace security, optimize fuel consumption and offer an overall
better experience for users through better predictions. An example of flight data

6

1 Introduction

is data collected by the OpenSky Network [Net21b]. It relies on Automatic Depen-
dent Surveillance-Broadcast (ADS-B) and Mode S technology to determine an air-
craft’s position, which, among other information such as aircraft identifiers, veloc-
ity, and altitude, is retrievable via a database and live APIs. The OpenSky Network
has collected over 300 billion data points from more than 450,000 aircraft, with over
150,000 new messages arriving each second [Net21a].

If collected in a central hub sorted by their timestamp, consecutive data points
might naturally be from different aircraft worldwide. Thus, it is more challenging
to reconstruct a path from a single flight, and there is a higher chance for data
arriving at the central hub out-of-order w.r.t. to time because some sensors might
fail, have a delay, and have less coordination with other data points. Furthermore,
consecutive points might be less correlated if they contain flight data from an
aircraft in Europe and one in the US.

Data access might be temporal such as live monitoring of recent aircraft positions
to avoid collisions. Data also needs to be organized and accessed in ways other than
temporal. For example, efficient spatial access is important if one monitors flights
near Frankfurt to improve airport procedures. Additionally, data scientists may
use such an extensive data set for exploratory data analysis. Traditionally, this
process is hypothesis-driven, with scientists searching for interesting queries in a
trial-and-error approach [SMK15]. For example, flight data from Frankfurt airport
might be correlated with noise data to produce new insights about noise emission
[Das23]. Alternatively, the flight positions might be correlated with streamed
weather data to find flights in dangerous circumstances [Bei+19a]. However, since
creating hypotheses and queries is exploratory, both queries and answers are un-
known, and thus, data access might be unpredictable.

Summary of requirements

Modern streaming systems must be able to handle general streaming data as well
as temporal data. Temporal data can have varying temporal distances between
measurements, periods of bursts, and out-of-order data. Data points can be multi-
variate with attributes having a temporal correlation. Queries can be static with
known configurations/requirements and ad-hoc queries from an exploratory work-
flow with an unknown result. Access to the data via query may require efficient
access to the temporal dimension or a non-temporal dimension. This thesis will
explore all these attributes with regard to robust stream indexing. Other re-
quirements from the given use cases, such as distributed streaming system (e.g.,
collecting flight data at various servers) or edge computing (e.g., computing some

7

1 Introduction

Figure 1.3: Robust query processing in databases (figure from [GKW09]).

results locally before sending them over the cloud), can benefit from the insights of
this thesis but are not explored and discussed directly.

1.2 Robustness of performance

The robustness of a database system can be difficult to define, partly because
there might not be a clear global metric to capture robustness and partly be-
cause a database system involves multiple components. For example, a query
optimizer might be able to create good execution plans for a single query, but
some variance in insertion performance can cause extreme behavior in the over-
all system. Alternatively, the execution of query might be fast, efficient, and
predictable, but if visualization for the end user is not robust, robust query exe-
cution somewhat loses its meaning. However, understanding and then improving
one component is the first fundamental step toward the overall goal of a robust
system.

A classic example of robust query performance is to look at a single database
query and compare execution times for different plans over varying input param-
eters. Figure 1.3 shows an experiment by Graefe et al. [GKW09] that we use as
an introductory example of robustness. The figure shows the execution of a range
query via either a full table scan or utilizing an index. The x-axis shows the num-
ber of rows returned by a query. The y-axis features the overall execution time of
the query. At first glance, a table scan might be the ideal solution in terms of ro-
bustness. Independent of the query’s parameters, the execution time is always the
same. Thus, it is very predictable for an optimizer, the query execution, and the

8

1 Introduction

end user. For each query execution, the system can allocate those resources, and
there will be no variance for executing this single query. However, it is easily beaten
by an index-based solution if the fraction of selected rows is low because the cost of
using the index does not outweigh the benefit of doing so. Therefore, even though
something might be very predictable, it is not necessarily desirable because using
fewer resources when possible benefits the overall system performance and the user
experience. As a rough guideline, good performance every time is arguably a bet-
ter motto to follow to achieve robust performance rather than great performance
sometimes or bad consistent performance every time.

To create an analogous example for a system dealing with a continuous data
stream, we can exchange the traditional query for a unique streaming query and
change the data scenarios from static to insertion-heavy.
As a query, we choose pattern matching as known from complex event processing
and the MATCH RECOGNIZE clause in SQL systems [Mic+18]. The query searches
for a subsequence within a data stream described by a pre-defined pattern. For
example, in a smart home, temperature sensors and smoke detectors can be com-
bined to detect a fire as follows: First, the temperature rises above a pre-defined
threshold, then it continuously rises before smoke is finally detected. This is a
simple pattern that can be described via three conditions.
We insert data streams into a streaming database system (ChronicleDB) for an
insertion-heavy data scenario. Data arrives into the system as a data stream sorted
by time. Each data item is inserted into an append-only index (i1). Furthermore, a
second B+-tree index over another dimension (i2) exists. We distinguish between
two variants of this experiments. In the first experiment variant, we insert the
data into i2 as it is streamed into the system. In the second variant, we build
i2 afterward by sorting the data according to the second dimension, resulting in
100% page utilization.

Figure 1.4 shows results for running pattern matching queries with varying number
of conditions (symbols). The pattern configurations are based on work by Körber
et al. [KGS21]. Some of those conditions may be able to use i2, and some do not.
We present averages over ten random queries with the given complexity. As in
Figure 1.3, a simple scan over i1 and then replaying the results into the pattern
query operators gives almost constant performance results over all queries. Using
i2 as much as possible will yield similar insights as in Figure 1.3, i.e., using it
too much can perform worse than a scan. However, a fully loaded i2 outperforms
the alternative and can outperform a replay-based solution for higher complexities
than an incrementally maintained index. Körber et al. [KGS21] also present an
optimized approach that can use a cost model to choose a more optimal usage of
indexes, shown as a yellow line in Figure 1.4 . However, in our experiments, even

9

1 Introduction

0 10 20 30 40 50
0

10
20
30
40
50
60
70
80
90

All Replay Optimizer All_100

#Symbols

Pr
oc

es
si

ng
 T

im
e

(s
ec

)

Figure 1.4: Robust query processing in stream databases.

the optimized variant can benefit from a fully loaded index with a performance
boost of up to 20% (not shown).

In summary, although a stream indexing system, like a traditional database, in-
volves multiple components with varying requirements, making an overall state-
ment about robustness is difficult. However, it is possible to look at components in
isolation. Adapting an example from robust query processing in database systems
shows that robustness in stream indexing systems not only raises similar questions
and involves similar techniques but introduces an additional layer because an in-
dex exposed to high insertions changes over time. This additional layer leads to
new parameters and fluctuations to consider.

1.3 Research questions

Data streams are ubiquitous in today’s processing environment. Storing and ana-
lyzing data is challenging, given the vast amount of streams and their continuous
nature. Index structures are essential for both those challenges and for handling
many temporal and non-temporal use cases. However, high insertion workloads
lead to new questions about the maintenance of index structures. Based on these
insights as derived from the previous sections, the core research question of this
thesis is:

How can index structures be improved to provide robust performance in data
stream scenarios?

10

1 Introduction

As a first step towards improving the robustness of stream indexes, it is essential
to characterize their behavior in an adequate context, identify their shortcomings
and then propose enhancements. Thus, the core research question naturally leads
to the following three sub-questions.

The first sub-question is: How do traditional index structures cope with high up-
date rates? Traditional indexes such as B-trees are ubiquitous and exist in widely
adopted long-existing databases and more modern specialized NoSQL stores. Even
if some systems build stream-optimized data structures for long-term storage, well-
known, tried-and-proven indexes are essential to support the wide breadth of an-
alytics necessary to extract knowledge from the data. As seen in the introductory
examples, this includes fast access to different dimensions requiring all sorts of
indexes. Thus, reevaluating behavior under these new circumstances is crucial to
improve robustness.

The second sub-question is: Are specialized streaming indexes for data streams ro-
bust? Besides analytics, the simple storage of streaming data is a challenge, lead-
ing to the wide adoption of write-efficient index structures such as log-structured
merge trees [ONe+96]. Research has tackled important questions concerning the
efficiency and enhancement of these indexes, leading to a large design space and
room for optimizations. However, some questions about predictable behavior,
query performance, and CPU utilization that contribute to an overall robust struc-
ture remain unanswered or only recently became a topic of interest. A closer look
at streaming indexes through the lens of robustness can improve an overall sys-
tem.

The third and final sub-question is: How can a streaming database adapt to support
robustness? Behavior and fluctuations within traditional and streaming indexes
are important building blocks, but a database consists of more than just the index
in isolation. A database has components to adapt to changing workloads, has to
be optimized for modern hardware, and interacts with other tools when used, for
example, in data exploration. Thus, looking at the context in which a stream
index is used is crucial.

The core question and the derived sub-questions cover a large area that may be
impossible to answer given the large variety of index structures, database systems,
and data scenarios. This thesis does not claim to completely alleviate all problems
or to answer all questions entirely but provides key contributions to each topic.
The sum of those contributions and answers to those questions provide important
building blocks towards a robust streaming database system with indexing at its
core.

11

1 Introduction

1.4 Contributions

When dealing with high insertion rates of modern streaming use cases, databases
must deal with constant reorganization operations and adapt to changing work-
loads. This, in turn, challenges their robustness regarding behavior, expected
costs, and actual performance results. In this thesis, key index structures are an-
alyzed and improved in terms of efficiency and robustness when deployed in data
stream environments.

Although the insights are widely applicable, we will motivate and classify each dis-
cussion around the research database system ChronicleDB. ChronicleDB is built
from the ground up to store temporal data streams known as event streams. It is
optimized for high insertion rates but also offers additional index structures and
specialized query execution strategies for both temporal and non-temporal event
queries, which cover use cases such as fitness tracking, home automation, and
exploratory flight monitoring, as mentioned above. Since it covers all essential
aspects of modern data streaming, it is an ideal target to identify shortcomings in
terms of robustness. Then, we look at the crucial components in isolation, contrast
them with existing literature and translate the improvements of robust stream in-
dexing into the larger research contributions of this thesis.

As specified in the discussion of the main research questions, this topic is examined
from three angles. First, we look at traditional index structures. Second, we look at
specialized streaming indexes. Third, we look at further extensions regarding out-
side factors, modern hardware, new features, and tools.

Waves of misery after index creation

B-trees are widely used to speed up queries because they enable quick access
to specific data ranges. Example queries in ChronicleDB that leverage B-trees
include finding direct answers for simple non-temporal filter queries (e.g., searching
for unusually high energy consumption) or efficiently processing complex pattern
queries (e.g., detecting a fire). A new index can be created and suspended as
determined by the user and load scheduler, which results in bulk loading the stream
data in a new structure. After creating a new B-tree, the new index may initially
speed up queries. However, after continuous updates, node splits cause fluctuations
in performance. These splits occur in waves, dubbed waves of misery, that affect
insertions and queries.

This thesis presents a theoretically sound way to avoid these waves of misery and
some simple and practical means to reduce their amplitude to negligible levels. In

12

1 Introduction

all cases, the idea is to change the initial loading process of a B-tree such that sub-
sequent index update operations naturally leave the index in a more robust state.
Experiments demonstrate that these techniques are also effective. Waves of misery
occur not only in stream databases such as ChronicleDB but also in traditional
databases and key-value stores, in primary and secondary B-tree indexes, after
load operations, and after B-tree reorganization or rebuild. The same remedies
apply with equal effect.

Continuous merging

Log-structured merge trees (LSM), stepped-merge forests, and their variants are
stream indexes designed to ingest new information continuously and concurrently
serve queries over recent and historical data. ChronicleDB supports both log-
structured merge trees and a variant called cache-oblivious lookahead arrays, which
are well-suited structures if the insertion rate of the system is very high. Achieving
a high insertion rate usually involves trading some (range) query performance for
write performance. In general, these stream indexes buffer writes in main memory,
and write-out memory runs to disk with 100% filled pages. In log-structured merge
trees, nodes are never split; thus, they avoid waves of misery as observed in B-
trees. However, they exchange one type of wave for another since log-structured
merge trees and their variants will have waves of merge activity to reduce the count
of partitions to improve read performance periodically. Waves of merge activity
lead to fluctuations of index maintenance and a sawtooth pattern in the count
of index partitions and, thus, in query performance, leaving room to optimize for
robustness.

Continuous merging with staggered key ranges is a novel design for stream in-
dexing. Unlike other stream indexing designs, the core merging algorithm is
designed to provide robust performance for stable inputs and does not require
any additional scheduling components. The main idea is a perpetual merge-
sort algorithm on multiple merge levels. The algorithm follows a pace that re-
sults in continuous input and output ingestion. This stabilizes index mainte-
nance activity and results in more efficient and, thus, more robust query per-
formance.

This thesis introduces the mechanisms behind continuous merging and establishes
a theoretical foundation to characterize its merge and query performance. Fur-
thermore, it covers optimizations for more eager merging and proposes policies for
dealing with bursts of activity.

13

1 Introduction

ChronicleDB extensions

Streaming data is either explicitly or implicitly temporal. ChronicleDB uses tem-
poral correlation for fast ingestion and low-cost indexing. However, as streaming
data and queries change in volume, composition, or type over time, the system
must be flexible and react to sustain robust performance. This thesis covers two
extensions to ChronicleDB’s core features to improve performance and flexibil-
ity.

To support efficient writes, a key component in ChronicleDB is to index tem-
poral dimension and offload data not arriving in temporal order to a separate
queue. Streaming scenarios generally will only have a certain degree of out-of-
order data. However, if the degree of out-of-order is high or changes, this degrades
the performance characteristics of the system, leading to data loss or performance
fluctuations. This thesis covers two optimizations to alleviate or circumvent this
problem. First, we will study how modern hardware, such as persistent memory,
can improve the overall handling of out-of-order data. Second, we discuss how the
load scheduling component of ChronicleDB can be improved to adaptively handle
changes in out-of-order data by switching the index dimension from application
time to system time.

To support a wide range of queries, we also enhanced ChronicleDB’s ability for
low-cost indexing of temporally correlated data. This is achieved by introducing
more generic types of aggregates in ChronicleDB’s main index structure. These
aggregates capture statistics of temporal regions well suited to answer streaming
queries (e.g., the average temperature at night). We also analyze the use of per-
sistent memory in keeping those aggregates and propose heuristics to choose more
complex lightweight index structures adaptively.

Finally, we will present and discuss three use cases for ChronicleDB. The first use
case covers the improvements in out-of-order handling and new aggregation meth-
ods by estimating delayed arrivals. The second use case enables aircraft monitoring
by connecting ChronicleDB to the VAT system, which can be used for interactive
data exploration and visual analytics. When used in larger-scale systems, robust-
ness in one component does not necessarily translate to the user. For example,
we discuss how a multi-query optimization architecture can help with robustness
when two systems interact. The third use case covers lightweight index structures
for subroutines in sequential pattern matching.

14

1 Introduction

1.5 Publications

The following papers were published in the course of this thesis:

• Michael Körber, Nikolaus Glombiewski, Bernhard Seeger:
Index-Accelerated Pattern Matching in Event Stores.
SIGMOD ’21: 1023-1036.

• Nikolaus Glombiewski, Philipp Götze, Michael Körber, Andreas Morgen,
Bernhard Seeger:
Designing an Event Store for a Modern Three-layer Storage Hier-
archy.
Datenbank-Spektrum 20(3): 211-222. (2020).

• Marc Seidemann, Nikolaus Glombiewski, Michael Körber, Bernhard Seeger:
ChronicleDB: A High-Performance Event Store.
ACM TODS 44(4): 13:1-13:45 (2019).

• Nikolaus Glombiewski, Bernhard Seeger, Goetz Graefe:
Waves of Misery After Index Creation.
BTW 2019: 77-96.

• Michael Körber, Nikolaus Glombiewski, Andreas Morgen, Bernhard Seeger:
Tpstream: low-latency and high-throughput temporal pattern
matching on event streams.
Distributed and Parallel Databases: 1-52 (2019).

• Michael Körber, Jakob Eckstein, Nikolaus Glombiewski, Bernhard Seeger:
Event Stream Processing on Heterogeneous System Architecture.
DaMoN 2019: 3:1–3:10.

• Christian Beilschmidt, Johannes Drönner, Nikolaus Glombiewski, Michael
Körber, Michael Mattig, Andreas Morgen, Bernhard Seeger: VAT to the
Future: Extrapolating Visual Complex Event Processing.
OpenSky Workshop 2019: 25-36.

• Christian Beilschmidt, Johannes Drönner, Nikolaus Glombiewski, Christian
Heigele, Jana Holznigenkemper, Anna Isenberg, Michael Körber, Michael
Mattig, Andreas Morgen, Bernhard Seeger:
Pretty Fly for a VAT GUI: Visualizing Event Patterns for Flight
Data.
DEBS 2019: 224-227.

• Michael Körber, Nikolaus Glombiewski, Bernhard Seeger:
TPStream: Low-Latency Temporal Pattern Matching on Event
Streams.
EDBT 2018: 313-324.

15

1 Introduction

1.6 Thesis structure

The remainder of this thesis is structured as follows:

Chapter 2 introduces fundamental concepts and related work relevant to this the-
sis’s other chapters. These concepts include the data stream model, index struc-
tures, related work on robustness, and the architecture of the target event database
ChronicleDB.

This chapter contains parts of [KGS18], [Sei+19], and [Glo+20].

Chapter 3 discusses waves of node splits in B-trees. Multiple examples introduce
the problem setting and establish the problem parameters. Furthermore, related
work that focuses on node splits is discussed. This chapter covers possible solutions
for avoiding waves of node splits, including a theoretical solution and multiple
practical solutions and their implementations. A set of experiments showcases
and confirms the suggested improvements.

This chapter is an enhanced version of [GSG19].

Chapter 4 presents continuous merging, a novel stream indexing mechanism that
avoids waves of merge activity by employing a perpetual merge sort on multiple
levels. Related work, especially regarding log-structured merge trees and their vari-
ants, is examined to differentiate continuous merging from all other approaches.
This chapter introduces the base method of continuous merging, its implemen-
tation, and a theoretical analysis of the approach. Furthermore, we discuss two
extensions to continuous merging covering reduced idle time and reactions to adap-
tive workloads. An experimental evaluation confirms the benefits of continuous
merging.

Chapter 5 presents extensions to ChronicleDB, the target database system of this
thesis. The extensions cover strategies to react to fluctuating insertion workloads,
temporal indexing strategies, and improvements made to ChronicleDB when using
modern hardware such as persistent memory. Experiments showcase the benefits
of these extensions. Furthermore, use cases for ChronicleDB show the benefits of
using ChronicleDB in practice.

This chapter contains enhanced parts of [Sei+19] and [Glo+20]. Furthermore,
this chapter contains parts of [Bei+19a] and [Bei+19b]. Philip Götze conducted
research for related work on PMem [Glo+20]. Prototype implementations for
uncompressed alternative lightweight index structures [El-19] and prototype im-
plementations for the evaluation of pattern matching queries [Bra22; Aka22] were
done in the course of co-supervised Master’s theses.

16

1 Introduction

Chapter 6 concludes this thesis. We summarize the main findings and highlight
directions for future work.

17

2
Fundamentals

This thesis deals with stream processing systems, index structures, and robust-
ness. In the following, we will first introduce the stream data model and highlight
important queries (Section 2.1). Then, we will establish indexing fundamentals
and discuss common techniques for write-efficient indexing (Section 2.2). After-
ward, we will describe related work on robust data management (Section 2.3).
Finally, we will summarize important aspects of our target system, ChronicleDB
(Section 2.4).

2.1 Data stream processing

A key aspect of data streams is that new items arrive continuously; thus, data
streams are potentially unbounded. This distinction does not exclude a data
stream from being stored and processed in a traditional database with a relation
model. It is possible to emulate core specialized temporal data stream operations
in a relational database system with standard SQL for low or moderate workloads
[Hoß+13]. However, making a distinction between a native data stream system and
others is helpful for understanding the requirements and native capabilities of each
system. Similar distinctions exist between online transaction processing (OLTP),
used for short-lived transactions, and online analytical processing (OLAP), used
for complex queries.

If a system is built from the ground up for streams, that usually means there are
optimizations on multiple levels, i.e., from the storage layer to direct user inter-
action. This affects how efficient the system is in processing operations and how
easy it is for the user to express queries and work with a system. For example, a
complex query such as temporal interval matching can be expressed in a variety
of languages, but a native operator produces simpler queries, better performance,
and, with a clearly defined algebra, unique optimization opportunities [KGS18;
Kör+21]. Next, we will introduce a basic stream model. Then, we will discuss

18

2 Fundamentals

possible queries for this model, laying the groundwork for possible indexing oppor-
tunities. Since this chapter deals with processing, it will focus on systems for online
processing. Section 2.2 covers indexing and databases.

2.1.1 Data stream model

We derive our data stream model from definitions from research on pattern match-
ing in data streams [KGS18].

Definition 1 (Data stream). A data stream D is a potentially unbounded se-
quence of data items ⟨d1, d2, ...⟩ totally ordered by a relation <D. di ∈ D refers to
the i-th data item in the stream according to that order. All data items are from
the same domain D. ⟨⟩ refers to an empty data stream.

In order to refer to multiple data streams, we will utilize the notationD1, D2, D3, . . .
with Di = ⟨di1, di2, . . .⟩, i.e., a superscript labels separate streams, while a sub-
script refers to the order within a stream. For the sake of simplicity and read-
ability, we will generally assume that each item in a data stream is unique (i.e.,
∀dij, dik ∈ Di : dij = dik ⇒ j = k) and refer to previous work on the matter of
handling potentially equal elements (see [Dem+07]).

Definition 2 (Continuous subsequence). Based on a data stream D, D[i,j] =
⟨di, . . . , dj⟩ with i < j refers to a continuous subsequence containing every data
item as it pertains to <D.

Due to a usually high arrival rate and a resulting large data volume, it is crucial
to be able to refer to subsequences in a data stream. One example would be only
looking at the most recent items (usually in memory). Another example could be
analyzing the system’s state at different points in time, such as looking at people’s
opinions in a social media stream before and after a big news item was released.
Both examples highlight another important aspect in some stream models: the
temporal dimension.

Definition 3 (Event). An event is a triple e = (p, t, s) consisting of a payload p,
an event timestamp t, and a sequence number s. p is from some domain D, and
t is from a discrete and totally ordered time domain T . The validity of p is the
instant t. The sequence number s is from N0.

In this thesis, we differentiate between two types of event streams.

19

2 Fundamentals

(p,1,0) (p,8,1) (p,4,2) (p,7,3) (p,10,4)

(p,1,0) (p,4,2) (p,7,3) (p,8,1) (p,10,4)
Application Time Event Stream

System Time Event Stream

Figure 2.1: Example for one stream in system time and application time order.

Definition 4 (System time event stream). A system time event stream E =
⟨e1, e2, ...⟩ is a potentially unbounded sequence of events. For two events ei, ej with
i ̸= j, ei.s ̸= ej.s, i.e., the sequence number is unique. The stream is totally ordered
by the sequence number s such that, for two events ei, ej: i < j ⇒ ei.s < ej.s.
The sequence number is the arrival order of an event in the data stream system
and is also referred to as the system timestamp.

Definition 5 (Application time event stream). An application time event stream
E = ⟨e1, e2, ...⟩ is a potentially unbounded sequence of events. For two events ei, ej
with i ̸= j, ei.s ̸= ej.s, i.e., the sequence number is unique. The stream is totally
ordered by the event timestamp t and the sequence number s such that, for two
events ei, ej: i < j ⇒ ei.t < ej.t ∨ (ei.t = ej.t ∧ ei.s < ej.s). The sequence number
is the arrival order of an event in the data stream system and is also referred to as
the system timestamp. The event timestamp t is also referred to as the application
timestamp.

The sequence number of an event is set upon arrival of the event in the system.
For the sake of simplicity, we assume a monotone increasing number with each
event. In practice, this could also be a timestamp taken with the wallclock of
the system to relate two event streams Ei, Ej with each other based on system
time. This could result in duplicate timestamps within a stream, which would
have to be considered for the total order of the stream. The main difference
between both event stream definitions is that the system time event stream does
not consider the event’s timestamp for ordering the stream. Since both streams
are based on the same event definition, this results in different orderings of the
stream. Figure 2.1 shows a data stream containing the same events as a system
time and an application time event stream.

Definition 6 (Out-of-order event). In an application time event stream, we call
an event ei out-of-order if ∃ej with j > i such that ej.s < ei.s.

20

2 Fundamentals

Out-of-order events are the difference between a system time and an application
time event stream. In the example in Figure 2.1, the events (p, 4, 2) and (p, 7, 3)
are out-of-order events. The application time stamps (4 and 7, respectively) are
lower than the application time of the event (p, 8, 1) with an application time of 8.
However, their system timestamps (2 and 3, respectively) are higher. Note that in
this thesis, we consider out-of-order events to be events that arrive late regarding
application time. However, it would also be conceivable to consider (p, 8, 1) as
an out-of-order event, i.e., events that arrive too early. Furthermore, one could
consider events out-of-order regarding system time. For example, (p, 4, 2) is out-of-
order regarding system time in the application time event stream. Since application
time is the validity of the event, we consider it the native time stamp of the real
world and define everything else to be out-of-order.

The terminology system time and application time can also be found in bi-temporal
database systems [Sno+94], also referred to as transaction time and valid time, re-
spectively. They are often associated with a time interval [ts, te] instead of a times-
tamp which signify that a data item was valid from ts to te. Data streams with
intervals instead of timestamps are sometimes called situations [KGS18]. Simi-
lar to the definition used here, system time in a bi-temporal database is given
by the database system (e.g., when a transaction starts). Application times-
tamps come from measurements in the real world. For the sake of simplicity,
we focus exclusively on events, which in bi-temporal databases also refer to an
instant.

2.1.2 Data stream queries

This thesis focuses on stream indexing, and its main contributions are improving
the efficiency and robustness of stream indexing structures. Naturally, indexes
speed up queries. We will list and briefly explain the most essential query op-
erations. Section 2.4.4 will describe how our target database, ChronicleDB, can
benefit from indexing to speed up some essential query operations. Since the
main contributions focus on a general improvement of index structures and do
not include improving a specific query through logical optimizations, we forego
an algebraic definition of the operators. For this purpose, we refer to stan-
dard work in database systems [KE09, Chapter 3] and stream processing systems
[KS09].

In the following, we distinguish between two classes of data stream queries. Regular
queries are known from database systems, and specialized event-processing queries
originate from main memory-based online streaming engines.

21

2 Fundamentals

Regular queries

Common database queries are filter, projection, aggregation, and join queries. A
filter query (σφ) has a Boolean expression (φ), which, in its simplest form, can be
evaluated on one data item of the stream. The results of a query are all data items
of the stream that fulfill φ. We refer to the selectivity of a filter query as the per-
centage of data items of the source streams that are the query results. Note that,
returning few items in a query means the query has low selectivity. Meanwhile,
an index is highly selective if the number of returned items is low. A projec-
tion query (Π{a1,...,an}) is used to return only a subset of attributes ({a1, ..., an})
from the source data items. An aggregation (GA) combines multiple data items
into one result by applying an aggregate function (A) on these items. Common
aggregate functions include maximum, minimum, sum, average, and count. For
example, the maximum aggregate can be used to find the largest data item in the
stream. A join (▷◁φ) combines at least two data streams Di, Dj by comparing
every data item of Di with every data item in Dj, usually by using a Boolean
expression φ. The results are tuples (dix, d

j
y) that fulfill the φ. Naturally, other

database queries such as specialized joins (natural join, inner join, outer join),
partitioning (e.g., only considering certain groups of data items for aggregations),
limits (e.g., only considering the top k items), or spatial operations (e.g., selecting
nearest objects) are also possible queries that a data stream system might need to
support depending on the use case.

Traditional database systems execute queries in an ad-hoc fashion. For example,
consider a user Jacqueline of a home automation system. Due to higher energy
prices, Jacqueline wants to inspect the temperature of her home, filter out periods
of high values and adjust the settings. For this purpose, a query is executed on
the database of the home automation system, which uses a projection query to
select temperature values and then a range query to apply the filter condition.
The relational data model for these queries is well-defined for fixed relations. In
contrast, the data model in Definition 1 uses a potentially unbounded sequence
of data items. This presents a challenge for the execution of these queries. For
example, an aggregation query finding the maximum item can technically never
return a value as long as the stream is not finished. Furthermore, the cost of
execution may continuously increase. For example, when joining two streams Di

and Dj, each new arrival in Di has to be compared with the entire history of
Dj, which is also increasing and potentially unbounded. The execution cost is a
technical problem and a problem for users such as Jacqueline. A high response time
means results arrive late and do not include the most recent data. E.g., querying
the latest temperature readings and receiving results a week later might be less
helpful in fine-tuning the temperature for the evening.

22

2 Fundamentals

To resolve this conflict between execution and data model, we assume that reg-
ular ad-hoc queries are executed on a continuous subsequence (c.f Definition 2)
of a stream. This can be done either explicitly by a user or implicitly by the
underlying system. An example of an explicit subsequence would be a temporal
aggregation query - in our home automation example, Jacqueline was searching
for large temperature readings. This could be further refined to limit the search to
find the maximum temperature on Monday. Thus, in the associated system time
event stream E, she chooses a i, j such that the subsequence E[i,j] only includes
events that arrived on Monday. An implicit subsequence would limit a data stream
D to D[1,j] such that dj is the latest arrival in the stream when the query executes
at the system. A similar concept of snapshot isolation exists for transactions in
a relational database system [Ber+95]. Finally, a third way of query execution
would be best-effort. A query can be associated with a budget and return re-
sults within the defined budget. For example, a filter query might be associated
with an I/O budget, meaning it can only read a certain number of pages or files
[Ana+10; Agi+21]. Once the budget is exhausted, the query returns the results.
If executed from the first arrival to the last arrival in the stream, this would mirror
the execution on a continuous subsequence D[1,j], with dj being the last item read
within budget restrictions.

Another challenge is the handling of out-of-order events. Regular queries executed
on an application time event stream E might feature events that should be in
a continuous subsequence E[i,j], but have not arrived at the time of the query.
This challenge applies to implicit, explicit and best-effort solutions. For example,
on Tuesday, Jacqueline queries the maximum temperature readings for Monday.
However, due to problems in the network, a delayed temperature sensor reading for
Monday arrives on Wednesday. Solutions for these problems exist in event stream
processing systems. Usually, they also work for a database. For example, the K-
slack [BSW04] method assumes that late arrivals will arrive within K time units.
Therefore, any continuous subsequence E[i,j] can be executed after the arrival of
an event with the timestamp ej.t+K.

Event processing queries

If a data stream system is used for events, it is important to support event pro-
cessing queries. Among other things, online event processing systems can deliver
timely reactions to changes in data streams. For example, the system can de-
tect a heart attack, a fire, or a collision, all requiring swift reactions to minimize
damages. Queries are continuous rather than ad-hoc to support fast reactions. A
query is defined once and then runs for a long time, continuously monitoring new

23

2 Fundamentals

window
window

window

t t+1 t+2 t+3 t+4 t+5t+4 t+5 t+6

Figure 2.2: Example for a temporal window of size 3 and slide 2.

data. Thus, results are also continuous and potentially unbounded, i.e., the result
of event processing queries are again data streams. For fast processing, an online
event processing system usually works on data in memory and only considers the
most recent events.

Nevertheless, a stream database should support these online queries for various use
cases. Post-mortem analysis, testing new and improving old continuous queries,
and rerunning queries with late arrivals are just a few use cases for event processing
query support in a database system, which can, in turn, benefit from robust and
efficient stream indexing [SS17; KGS21].

A key concept used in event processing systems to consider only recent data items
and produce continuous output streams is awindow. Two commonly used window
types are temporal and count windows, both having size and slide parameters. The
size parameter determines how far back the window goes, while the slide param-
eter determines the update granularity of a window. In temporal windows, those
parameters are temporal units like milliseconds, days, or weeks. For count win-
dows, they are natural numbers, determining the number of events. Items outside
the window can be safely discarded, reducing the system’s memory requirements.
The system produces results for each update granularity of the window, resulting
in a stream of results. Figure 2.2 shows an example of a temporal window with
size 3 and slide 2. On top, a temporal axis shows timestamps ranging from t to
t + 6. There are exactly 6 events, each of which has occurred on a unique times-
tamp. At t+ 3 there was no event. Applying the window operator to this stream
distributes events into three windows of size 3. Since the slide is smaller than the
size, each window overlaps by 1 temporal unit. The first and last windows consist
of three events. The window in the middle consists of only 2 events because at
t + 3 no event occurred. Thus, unlike a count window, the number of events in a
temporal window and, thus, the memory requirements for it may naturally vary
over time.

24

2 Fundamentals

p=3 p=1 p=2 p=1 p=5 p=2

t t+1 t+2 t+3 t+4 t+5t+4 t+5 t+6

p=6 p=3 p=8

window
window

window

Figure 2.3: Example for a sum aggregation on a time window of size 3 and slide 2.

With the help of windows, most common database operators such as filters, pro-
jections, aggregations, and joins can be directly translated into event processing
operators. The concept behind this translation is snapshot reducibility. The op-
erator is executed on events inside the window as if these items were a relation in
a relational database system. This is similar to the proposal to execute regular
queries on a continuous subsequence. However, to support “true” event processing
behavior, the reduction to a snapshot is not done once in an ad-hoc fashion but
continuous with each window update. Figure 2.3 shows an example of a sum ag-
gregation on temporal windows. The events from Figure 2.2 were enhanced with a
single-value numerical payload. The aggregation operator treats each of the three
windows as a snapshot and produces a result based on the events in the snapshot.
Thus, the first window aggregates the events 3, 1, 2 to 6, the second window ag-
gregates 2, 1 to 3, and the final window aggregates 1, 5, 2 to 8. The result of the
aggregation query based on windows is another stream. Usually, the timestamp of
the output would be the largest in the window, i.e., t+2, t+4, t+6 in the example
output stream.

The particulars of processing semantics depend on the system and its algebra.
For example, stream processing systems using intervals instead of timestamps
may combine multiple subsequent outputs carrying the same value into one out-
put with larger validity. Furthermore, executing a filter query on multiple time
windows with overlap would produce duplicate results, which may not be desir-
able.

In addition to well-known relation operators, event processing features novel op-
erators such as pattern matching [DIG07]. Pattern matching is used to search for
interesting subsequences in event streams. A user defines multiple symbols (A,

25

2 Fundamentals

B, C, ...), each featuring a Boolean expression that can be evaluated on one or
multiple events in the stream. We say an event fulfills a symbol if the Boolean
expression of the symbol evaluates to true upon the event’s arrival. Those sym-
bols are combined in a regular expression to specify the sequence in which they
should occur. For example, the sequence ABC+D means that one event fulfills A
and the next event fulfills B. This sequence is followed by one or multiple events
fulfilling C. The pattern produces a match, and thus a result, if the next event
in the sequence fulfills D. Similar to other operators, a pattern usually has to oc-
cur within a user-defined window to produce a result. Pattern matching uniquely
fits event processing operations because it has to be evaluated sequentially and
searches for temporal relations between events. Since 2016 it has also been part of
the SQL Standard [Mic+18]. More recently, Körber et al. [KGS21] showed how
the database operation could benefit from index structures, which, as shown in
Section 1.2, can benefit from robustness.

Similar to regular queries, event processing has to deal with the out-of-order prob-
lem. However, the techniques mentioned before (e.g., K-slack) can be applied
depending on the use case.

2.2 Stream indexing

2.2.1 Indexing fundamentals

A query searches and retrieves tuples from a database. Since a database can grow
very large over time, queries become more expensive and take longer because more
data needs to be searched. Most database systems support building a database
index. An index is a data structure that can improve a query in reading costs
and processing time. This comes at the tradeoff of building and maintaining the
data structure, which requires additional storage and processing resources during
insertions.

There is a large variety of index structures for many data types and queries. For
example, there are indexes for text [Fal85], temporal data [ST99], or spatial data
[Gut84]. Indexes might be very efficient at some operations, such as retrieving a
specific point, and useless at others, such as searching a range. Commonly, indexes
are built based on a key within the data. The key does not have to be unique and
does not have to be a single attribute of the data. For example, within an event
stream, the key could be the timestamp, but there could be multiple events with
the same timestamp. A compound key could involve multiple attributes of the
event, such as the timestamp and the sequence number. After building the index

26

2 Fundamentals

k
0
 k

1
 k

2
 k

3

Leaves +
Records

k
4
 k

5
 k

6
k
7
 k

8
 k

9
 k

10
k
n-5
 k

n-4
 k

n-3
k
n-2
 k

n-1
 k

n

...

...

Inner Node Leaf Record

Inner Nodes

Figure 2.4: Primary index in a database (adapted from [SSH11, p. 135]).

based on the key, searching for it (or parts of the key, such as a suffix) is usually
efficient.

Two broad and widely used index categories are hash indexes [SSH11, p. 176] and
tree indexes [SSH11, p. 157]. For hash indexes, the key is first hashed by applying
a hash function on it, which maps the key to a fixed-size value. The index is built
based on the resulting hash values. Usually, this results in efficient exact match
searches (O(1)) on the data. Tree indexes, such as a B-tree, organize data in a
tree-like structure. Tree structures have to be traversed from root to leaf. If this
path is balanced, this results in efficient searches with logarithmic cost. Structures
like the B-tree usually support equality predicates and range predicates, which can
retrieve a range of data. Due to their support for both common query types, most
contributions in this work are based on tree indexes.

For the layout and maintenance of an index, this thesis distinguishes between
primary indexes and secondary indexes [KE09, p. 211]. We refer to an index as a
primary index if the order of data items (records) on pages on the storage device
is the same order within the index structure. This is also called a clustered index
[SSH11, p. 135]. Figure 2.4 shows an example with a tree index as a primary
index. The index has three types of structures: inner nodes, leaves, and records.
Inner nodes help guide the search to leaves via separator keys (not shown). Within
the leaves, keys are stored sorted in the order k0, k1, . . . , kn. Records are on pages
in the storage device. In the case of a primary index, the order of records is the
same as the order in the leaves. Leaves directly contain the records. Note that, in
this thesis, a primary index does not have to have unique keys (primary key in a
database). In a secondary index, the order of data items (records) on pages on the
storage device differs from the order within the index structure. The key within
the index usually has a pointer to the location on another page. Secondary indexes
are otherwise known as non-clustered indexes [SSH11, p. 135]. In Figure 2.5 shows

27

2 Fundamentals

k
0
 k

1
 k

2
 k

3

Leavesk
4
 k

5
 k

6
k
7
 k

8
 k

9
 k

10
k
n-5
 k

n-4
 k

n-3
k
n-2
 k

n-1
 k

n

...

...

Inner Node Leaf Record

Inner Nodes

... Records

Figure 2.5: Secondary index in a database (adapted from [SSH11, p. 136]).

another tree index structure with the same components as in Figure 2.4. However,
this time the index is a secondary index. Leaves and records are in separate
locations, and a key ki has a pointer to the location of the actual record associated
with ki. As shown in the figure, the order of records does not reflect the order
k0, k1, . . . , kn. For example, k1 and k0 are not on the same page and k2 appears
after k7.

2.2.2 B-tree techniques for write-efficiency

The traditional B-tree [BM72] is a balanced search tree structure. Entries in
a tree node consist of keys and references to children. The number of entries
in a node is at least b and at most 2b. Since B-trees were primarily designed
for accessing persistent storage with pages, b is usually large. A node overflows
if the number of entries is larger than 2b, in which case it is split and a key
separating the split nodes is inserted into its parents. A node underflows if the
number of entries is smaller than b. In this case, it borrows keys from siblings or
is merged with them, which might also require adjusting the parent node. Those
operations guarantee a certain fill degree for each node in the tree. Furthermore,
they lead to a balanced tree. For n inserted keys, a B-tree has, at most, the height
logb(n).

A popular variant of B-trees are B+-trees [Com79]. In B+-trees, only leaf nodes
contain inserted keys (or records). Entries in inner nodes are used to guide search
but do not have to be present in the leaf nodes. Therefore, the size and struc-
ture of leaf nodes and inner nodes may differ, resulting in different b for those

28

2 Fundamentals

two node types. Leaf nodes in B+-trees are linked such that siblings have a
pointer. These can be either single-linked or double-linked. For range searches,
it is possible to create iterators that can navigate to neighbors without access-
ing parent nodes. Unless specified otherwise, when referring to B-trees, we mean
B+-trees.

Due to its long history and widespread usage in both research and industrial sys-
tems, there are many techniques for optimizing a B-tree for a large variety of use
cases. Hence, the goal of the discussion below is not to give a complete overview
of all possible techniques but rather highlight and summarize the most important
aspects that explain design decisions behind our target database (ChronicleDB)
and influence multiple aspects of this thesis’ main contribution. Most techniques
below are summarized in-depth in the book “Modern B-tree Techniques” [Gra11b]
as well as a more focused look at data streams in “B-tree indexes for high update
rates” [Gra06a]. Additional discussions about essential aspects for specific contri-
butions, such as free space in nodes, can be found in this thesis’s respective related
work chapters.

Access patterns

For either read or write operation, the tree must first be traversed from the root
to a leaf node. Unless the entire index is in main memory, this results in random
access. Once a leaf is reached, a range query might access leaves sequentially if
sibling nodes were stored next to each other on the storage device. The traditional
workload of B-trees is more read- than write-heavy. In that case, an occasional
more expensive write operation is more tolerable. Due to over- and underflow
operations, write operations may need to perform more work than simply inserting
a record into a node and also lock parts of the data structure in the process.
For data streams, the read/write ratio might be reversed. However, due to their
support for range queries, B-trees are still useful and must be tuned for more
efficient writes at the cost of read operations.

Tuning needs to account for the storage media. In general, persistent storage
media performs better for sequential access. The mismatch between random and
sequential access can also be observed in SSDs [Agr+08]. This can be attributed
to internal flash-block sizes, read-write-erase cycles, and internal parallelism of
the SSD. Therefore, performing more sequential than random access is a general
technique to improve any workload. Furthermore, for SSDs, parallelism can be im-
portant. Therefore, techniques such as read-ahead retrieval or prefetching a page
for a specific key can help both read- and write operations. To convert a B-tree to-
wards a more write-efficient structure, the access patterns have to be skewed more

29

2 Fundamentals

towards sequential access and parallelism, which can be achieved through buffering
and changing some elements of the tree structure.

Buffering

Classic examples of buffering in a B-tree are differential files or side files used
in bulk loading. A bulk loading operation can create a new index efficiently by
sorting the data first and then creating the tree. This operation might take a
long time if the data set is large. Thus, writes are effectively stalled. A simple
solution is to buffer all incoming writes during the bulk loading into a separate
side file structure. Once bulk loading is complete, all data items in the side files
are inserted into the newly loaded index.

The Buffer-tree [Arg95] is a B-tree-like structure that attaches buffers to internal
nodes. The buffers are very large (possibly occupying the entire available memory).
Insertions and deletions are inserted into the tree as buffer elements (deletions
are insertions of tombstone records). Once the node buffer reaches a specific size,
buffered items are potentially sorted and flushed to child nodes. Range queries can
also be buffered as specialized elements and performed lazily during the emptying
of buffers. The Buffer-tree was conceptualized as an offline data structure that
allows applying in-memory algorithms (like sorting) on persisted data with a good
amortized performance.

A more dynamic B-tree-like structure that supports buffering in internal nodes
with optimizations for “normal” operations is the Bϵ-tree [BF03]. Here, buffers
do not occupy a large amount of memory but share their space with pointers
within the node. The ϵ parameter specifies the percentage of space within a node
reserved for the buffer. Queries are not buffered, but the search accesses records in
leaf nodes and buffers encountered on the search path. Consequently, the Bϵ-tree
is more suitable for online problems.

Tree structure

In the worst case, a write operation in a B-tree causes cascading splits from the
leaf node to the root. A B-tree implementation might lock the entire path, af-
fecting other pending write and read operations. This occasional situation can be
tolerable for read-heavy workloads since concurrent read operations do not affect
one another. However, high-volume data streams can result in many insertion and
update operations. Such a workload slows down write and read operations and
limits parallelism in the data structure. Several proposals exist to offset those

30

2 Fundamentals

negatives. We want to mention some which change the B-tree structure and node
split algorithms.

The BLink-tree [LY81] extends the B-tree structure. Instead of having sibling point-
ers at the leaf level, internal nodes can also have sibling pointers. This allows a
level-order traversal of the tree. However, it also enables a different locking mech-
anism. Splitting a node becomes a two-step process. The first step is to create a
new successor node, copy entries to that node, and link the successor and the split
node. The parent node is unaware of the new child, but queries can still find it
via the link. Adding the new reference to the child is the second step. Separating
those steps enables more local locking operations.

Other techniques that change the write behavior of a tree include weight-balancing
to predict that a node cannot cause cascading splits and perform splits top-down
instead of bottom-up [AS13]. Furthermore, if multiple operations want to write
a node in parallel, a preemptive split might increase parallelism. Recent research
[AL21] showed that this approach increases write performance with a high degree
of parallel writers.

Write-optimized b-trees [Gra04] combine buffering approaches with changes in the
tree structure. For insertions, they support two mechanisms. In the first mech-
anism for read-optimized access, an insertion can happen in place, i.e., without
moving the page to a different location. The second mechanism collects multiple
pages and writes them in a batch to a new location. This results in a larger write
operation (or multiple sequential writes) that benefits log-structured file systems
and SSDs. However, if physical siblings pointers are used within leaf pages (or, in
the case of BLink-tree, also internal nodes), this movement means those pointers
need to be updated. The write amplification would negatively impact write perfor-
mance. Thus, write-optimized B-trees use fence keys that describe the maximum
range within a node instead of sibling pointers. Fence keys of neighboring nodes
do not have to be updated during a split, reducing write amplification. Range
queries that require sibling pointers can be performed efficiently by pre-fetching
pages based on fence keys in parent nodes. Furthermore, fence keys allow typical
index verification processes.

2.2.3 Log-structured indexes

At its core, the traditional B-tree is an update in-place structure. That means
records within a page are overwritten for new updates. Alternative B-tree imple-
mentations, such as the Bϵ-tree, change that behavior by buffering new insertions,
deletions, and updates before applying them in bulk. Buffering and the resulting

31

2 Fundamentals

sequential I/O improve the write performance of the index. An alternative group
of indexes that build on the same ideas to improve write performance are out-of-
place index structures. Among them, the log-structured merge-tree [ONe+96] has
been widely adopted by modern NoSQL systems such as HBase [Bor+18b], Cas-
sandra [Cas], AsterixDB [Als+14], InfluxDB [Inf], LevelDB [GD11] and RocksDB
[Don+17]. The key idea is to collect multiple updates, insertions, and deletions
in main memory before writing them into a new component on disk. However,
since the number of components would grow indefinitely over time, queries would
become slow since they need to consider multiple components. Usually, the index
structures feature multiple levels of components with components growing expo-
nentially in size for each level. Since components grow in size, this limits the growth
in the number of components and, thus, offsets some of the negative impacts on
queries. In this section, we will present the basic ideas of log-structured merge trees
[ONe+96], cache-oblivious lookahead arrays [Ben+07], and the stepped-merge al-
gorithm [Jag+97]. Our target database system, ChronicleDB, features the first
two, while the third index is a fundamental concept used for continuous merging.
Furthermore, we will briefly discuss the widely used optimization of Bloom filters
[Blo70], which is orthogonal to our work, but a key concept found in most practical
implementations. This thesis refers to log-structured merge trees, cache-oblivious
lookahead arrays, the stepped-merge algorithm, and their variants as log-structured
indexes.

Log-structured merge tree

The log-structured merge tree (LSM) was originally presented in 1996 [ONe+96].
At the time of its introduction, LSM was envisioned for use cases where insert oper-
ations are more common than queries. One key prediction was the need to provide
“indexed access to transactional log records” [ONe+96] because of long-running
transactions that might need reference beyond short-term history. Furthermore,
it was assumed that the activity log that could not be kept in memory “notwith-
standing the continuing decrease in memory cost” [ONe+96]. With modern stream
processing use cases and the importance of indexing data as fast as possible to pro-
vide insights close to real-time, the importance of LSM has grown over the years.
As such, it is unsurprising that it is widely adopted in modern NoSQL systems.
Furthermore, since the key motivation has proven correct, some core design ideas
have remained the same over its various iterations.

The original proposal included a multi-component index, as shown in Figure 2.6.
Each component is a separate index, which allows for sorted access to data within

32

2 Fundamentals

S0
S1

Capacity: T |S0|Capacity: |S0|

Sk

Capacity: Tk |S0|

...

Memory Secondary Storage

Figure 2.6: Partitions in a log-structured merge tree.

the component. Depending on the source, a component is also called run or parti-
tion. When talking about LSM components, we use partitions and run interchange-
ably. There is exactly one main memory partition S0 which holds a configurable
amount of |S0| records. In this partition, write operations are buffered in main
memory. Similar to Buffer-trees, this includes new insertions, updates, and dele-
tions. The latter are insertions of tombstone records, i.e., a record with the deleted
key and an indication that it is a deletion. Thus, LSM avoids updating the index for
every single write operation. Instead, write operations happen later as a batch op-
eration. Then, the S0 partition is merged with the next disk-resident partition S1.
In a multi-component design, there are k disk-resident partitions S1, . . . , Sk. They
grow in size exponentially using a factor T such that the maximum size of Si+1 is
T ·Si. For example, S1 is T times as large as the memory partition S0. Therefore,
for n data items, LSM has a logarithmic number of partitions (O(logT (

n
|S0|)). Each

partition has an index, for example, a B-tree.

Whenever the S0 partition reaches a size close to |S0|, merging in the original
LSM is performed via rolling merges. A couple of pages from the S1 partition,
covering the smallest keys (e.g., starting at −∞), are brought into main memory
and are merged with the same key range in the S0 partition. For write efficiency,
the result is written out-of-place, i.e., a new area on the storage device, to avoid
costly in-place updates. This process continues until the largest keys are reached
(e.g., +∞). Once the merge process has merged multi-pages from S0 to S1, it
updates pointers within the upper levels of the B-tree. In a multi-component
LSM, there are asynchronous rolling merges between pairs of subsequent partitions
(i.e., Si merged with Si+1) whenever a partition reaches its maximum size. The
merge process applies deletions and updates records during a merge, which can be
multiple records with the same key during a merge. However, in general, tombstone
records must be kept until the last partition Sk, since it may contain a previous

33

2 Fundamentals

insertion that has to be invalidated.

In modern implementations, rolling merges are called leveling [LC20b]. Each par-
tition is referred to as a level. Instead of a single B-tree, modern implementations
such as LevelDB or RocksDB organize levels in multiple sorted string tables (SSTa-
bles). SSTables consist of multiple data blocks and an index block. Each SSTable
covers a key range and is immutable and self-sufficient. Thus, the SSTable covering
a key range can be replaced/deleted/added for a merge operation. For distributed
systems such as Cassandra, the immutability allows for easy distribution of SSTa-
bles among multiple nodes. However, since each SSTable is usually a file, multiple
opening operations must be performed.

LSM supports point and range queries. Point queries start at searching by S0

partition. Then, the query iterates through every partition until a record is found.
Since the query searches partitions from youngest to oldest, it encounters dele-
tion/updates in the correct order. A range query considers multiple partitions. To
correctly handle deletions/updates, the query merges results from each tree with
a priority queue. The result of this process contains only the latest information
about a record.

Cache-oblivious lookahead arrays

Bender et al. proposed cache-oblivious streaming B-trees [Ben+07] for fast in-
sertions and range queries. In practice, data structures need to be tuned to the
underlying hardware. Memory hierarchies usually include multiple cache levels of
various sizes. Thus, an optimally configured data structure on one system may
underperform on another. One way to efficiently use multiple cache layers without
tuning to the specific cache sizes is to use cache-oblivious data structures. Cache-
oblivious means that these structures are theoretically optimal without knowing
the specific size of a cache. In a way, this makes the data structures more robust to-
ward changes in the hardware. Among the two presented cache-oblivious streaming
B-trees implementations, we want to briefly introduce the cache-oblivious looka-
head array (COLA) because it is similar in structure to LSM and because it is
used in ChronicleDB as a secondary index.

A COLA data structure consists of multiple arrays. For n data items, there are
⌈log2(n)⌉ arrays. We number the arrays from 0 to ⌈log2(n)⌉. The kth array has the
capacity for 2k items and is sorted based on the inserted keys. Thus, the structure
is made up of multiple partitions, whereas subsequent partitions exponentially
grow in size, like in LSM. An essential idea of COLA is that each array is either
full or empty. The status of an array can be computed based on the binary

34

2 Fundamentals

representation of n. If the kth bit of n is set, the array is full; otherwise, it is
empty.

An insertion into COLA conforms with incrementing n and changing the binary
representation accordingly. Conceptionally, an insertion means creating a new
array of size 1. The process is finished if the previous array of size one is empty.
Otherwise, the two arrays are merged into an array of size 2. This process continues
recursively until the algorithm reaches an empty array. This results in amortized
logarithmic insertion costs. However, the worst-case costs are merging all arrays.
De-amortization is possible by relaxing some structural invariants and merging
some elements during each insertion. While the theoretical analysis of COLA
uses a growth factor of two, the authors also mention arbitrary growth factors.
For example, a growth factor like in the Bϵ-tree would yield similar theoretical
performance to the Bϵ-tree while turning the structure into a cache-aware data
structure.

The basic COLA implementation might need to search each partition. Since each
partition is sorted, this can be done via binary search. However, since levels are
arrays and not searchable B-tree indexes, larger levels can still take much time to
search. Naive search has a complexity of O(log2 n) [Ben+07] because each level
uses binary search. To improve search performance across multiple partitions,
COLA uses fractional cascading [CG86]. The kth array will additionally keep every
8th element of the k+1 array and a pointer to those copies. Thus, upon finding a rel-
evant range in the kth array, the search can resume in the next array without start-
ing from scratch. This reduces the space each array has for actual data items, but
the guided search reduces the number of block transfers from one storage layer to
the next. The search on each level has to consider 8 elements at most as identified
by the look-ahead pointers in the previous level, which improves the COLA block
transfers to O(log n) (for a full proof, see [Ben+07]).

Stepped-merge algorithm

In a stream, data arrives continuously. Maintenance of an index, logging, and
hardware characteristics can result in additional data for each byte of actual data
that arrives. The difference between actual data and additional data written to
a persistent storage can be measured and is usually called write amplification.
In a traditional B-tree, writing data in a new leaf and cascading node splits can
result in a lot of write amplification - writing n data items with a page size of b
can cause O(b logb(n)) writes. LSM and COLA are usually better than B-trees
regarding write amplification [LC20b]. However, the above strategies still suffer
from write amplification, which may limit the system’s overall performance and

35

2 Fundamentals

S1

S1

S1

...

S2

Collect k partitions

Level 1

S1

S1

S1

...

S2

Merge to a new partition

S2

Size: k |S1|

S2

After merge

S2

Empty

Level 2 Level 1 Level 2 Level 1 Level 2

Figure 2.7: Stepped-merge algorithm example of a level 1 to level 2 merge.

cause performance spikes. A significant cause for write amplification is the merge
algorithm used in LSM. Once level i reaches a certain size, the data from level
i + 1 is read, merged with level i into a larger sorted run, and rewritten to disk.
Thus, data in level i+1 is written multiple times before eventually moving to level
i + 2. This is the common write amplification problem in rolling merges/leveling
policies.

The stepped-merge algorithm [Jag+97] is an alternative to traditional LSM that
suffers from less write amplification. Like in LSM, the stepped-merge algorithm
proposes multiple levels consisting of B-tree partitions that grow exponentially in
size. There are two key differences. First, each level has k partitions. Second, the
merge is a k-way merge. Data is first collected in main memory, and once enough
data has accumulated, it is written to a new partition on the first disk level without
any merge process. Once a disk level i reaches k partitions (of the same or similar
size), a merge process merges all k partitions into a new partition for the next level
i+1. This reduces write amplification because data on each level is written exactly
once. Furthermore, this improves merge efficiency because a k-way merge con-
sumes fewer CPU resources than k − 1 binary merges.

Figure 2.7 shows an example of merging partitions on level 1. First, k partitions
are collected. Then, they are merged into a new partition of size k|S1| on level 2.
Afterward, the partitions on level 1 are no longer needed because all data resides
on level 2. In the example, level 1 is empty and the following merge process will
be triggered when there are k partitions on level 1.

In modern LSM implementations, this strategy is also known as tiering. The
stepped-merge algorithm or tiering is closely related to external mergesort. Exter-
nal mergesort can reduce write amplification by increasing the merge fan-in and
thus decreasing the overall merge depth. Tiering reduces write amplification by

36

2 Fundamentals

increasing the number of partitions per level. In this thesis, we refer to an in-
dex structure using the stepped-merge algorithm either as a stepped-merge tree or
LSM with a tiering policy.

Although the stepped-merge tree reduces write amplification and can generally
tolerate a higher write throughput, this comes at the cost of query efficiency. Each
query has to search multiple partitions per level. Multiple partitions on each level
can be searched from youngest to oldest to achieve the same behavior as point
queries in LSM. Range queries query multiple partitions and combine the results
via a priority queue. Stepped-merge trees can also cause lower space utilization
since multiple entries for a key on a level may not be reduced to a single entry
until the k-way merge occurs.

Bloom filter

A Bloom filter [Blo70] is a probabilistic data structure that efficiently answers
whether an element was not inserted into the structure. The structure is a bit
array consisting of m bits, which are all set to 0 at first. Furthermore, k different
hash functions map the element to the m bits in the array. During the insertion
of an element e, each hash function is applied to e, resulting in up to k different
positions in the bit array. Each of those positions is set to 1. A query for an
element e applies k hash functions to e and inspects the resulting k positions in
the bit array. The element e is not a member of the data structure if at least one
of the positions is 0. Otherwise, giving a definite answer about the membership
is impossible. This default implementation of a Bloom filter does not support
deletions, but other variants, such as counting Bloom filters, support deletes to a
certain degree.

In index structures such as LSM, a Bloom filter is commonly used as an optimiza-
tion. For each disk partition, a Bloom filter is created. Since Bloom filters are
usually very small, they can fit into memory. A point query first checks the Bloom
filter of a disk partition. Depending on the result, the query can skip checking the
partition.

If a Bloom filter query cannot give a definite answer about the membership of
an element even though it was not inserted, this is called a false positive. Based
on the number of entries, the hash functions, and the number of bits, the Bloom
filter can be tuned to achieve the desired probability for false positives. For LSM,
achieving a desired false positive probability has a larger design space because
multiple Bloom filters are involved. The most common solution is to change the
number of bits in a Bloom filter for each partition such that the target false positive

37

2 Fundamentals

probability pr is the same for each partition. Thus, the overall LSM also achieves
pr. However, since larger partitions index more entries, this requires more bits
for larger partitions. Monkey [DAI17], a model for tuning LSM, showed how to
minimize costs by assigning different probabilities to each partition. The intuition
is that smaller partitions should receive a relatively higher number of bits. Larger
partitions require a lot more memory to achieve a high pruning rate and might
even forego a Bloom filter altogether since they are very likely to be accessed.
Alternatively, if memory consumption is less of a problem and index pages reside
in memory, it is also possible to assign Bloom filters to each leaf page to minimize
disk access [LC20b].

2.3 Robustness

The term robust is used in various ways in database research literature. The
R∗-tree is a “robust access method for points and rectangles” [Bec+90]. It is a
variant of the R-tree, a spatial index structure that uses minimum bounding rect-
angles in index nodes that summarize multi-dimensional objects. The authors
note that the index is robust because in their experimental evaluation, “there is
no experiment where the R*-tree is not the winner” [Bec+90] regarding perfor-
mance. Recent research on locking techniques in database systems also considered
robustness [Böt+20]. In particular, shared locks do not require a reader to acquire
a lock exclusively and were found to be a “more robust solution in mixed work-
loads” [Böt+20]. Thus, it is not the best solution in all situations, but if offers a
good performance balance for various degrees of reads and writes. Both examples
show that efficiency, either in all or some cases, is used to judge robustness. The
idea that a database component is robust if it is efficient in some or many cases
can easily be extrapolated to include a well-balanced structure that might not be
the most efficient in all cases. In a peer-to-peer database, robust can mean that
algorithms will terminate even when nodes appear or disappear in the network
[Fra+04]. For distributed hash tables, robustness can mean that objects can be
found even if nodes fail [RM06]. A survey on the latter definition also notes that
there “has been little consensus on robustness metrics” [RM06]. In both examples,
nodes disappearing from the network is a measure of robustness; thus, robustness
can also mean fault-tolerant. A series of seminars [Gra+10; Gra+12; BGL17]
analyzing robustness in database management systems focused on robust query
processing. The 2012 summary [Gra+12] of the results of the seminar held in 2010
concludes: “Unfortunately we failed to reach consensus on a clear definition of
robustness, how to measure it, and what sorts of tradeoffs to include.” Clearly, it
is not easy to define robustness, even if focusing on query processing components.

38

2 Fundamentals

Robustness could mean the accuracy of the query optimization component, i.e., the
ability to predict query costs accurately. Alternatively, dynamic query execution
strategies such as re-ordering joins during query execution might improve execu-
tion times. This might lead to a more robust system without affecting estimates
by the optimizer.

Based on the variety of ways in which robustness is used, it is possible to conclude
that, at best, it is a very broad term and, at worst, it means completely different
things when looking at different aspects of an overall system. However, key lessons
can still be applied to the overall system. For framing robustness, as discussed in
this thesis, we want to highlight two statements from the seminars on robust query
processing.

“[O]ne should not try to define robustness unless one addresses whose expectations
you are trying to satisfy [...].” ([Gra+12])

“All experienced DBAs and database users are familiar with sudden disruptions
in data centers due to poor performance of queries that have performed perfectly
well in the past.” ([BGL17])

The first statement clarifies that robustness needs context - a spatial index struc-
ture and a peer-to-peer network can have different requirements and definitions of
robust operations. Thus, a universal definition for a robust data stream system
with a single metric for success might be too ambitious. However, the second
statement shows that robustness can be easily tied to failing user expectations.
Although the statement refers to query performance, this concerns all examples
of robustness mentioned above. If we expect an index structure or locking mecha-
nism to perform best, the betrayal of that expectations shows that it is not robust.
When trying to query a distributed system, getting either different answers for the
same query or not being able to get an answer due to failure is irritating behav-
ior that is not robust. Finally, performance fluctuations are confusing even when
posing the same query to a single database at different points in time. Avoiding
all these pitfalls are signs of a robust system.

Since a clear-cut definition and a single metric might not be possible, to provide
context to our research, we will first briefly touch upon different aspects, such as
efficiency and performance fluctuations, while discussing common components and
use cases in data streams. Then, we will suggest some categories for robustness.
Finally, using those categories, we will summarize some related work on robust
data management.

39

2 Fundamentals

2.3.1 Requirements for robust stream indexing

So far, we have motivated the ubiquity of streams and derived essential functional
requirements and stream characteristics based on use cases. Furthermore, we
have defined the core data and query model. Judging these aspects from a user
perspective interacting with a system allows us to establish a context for robust
stream indexing.

One of the critical aspects of streams in the data model is that data arrives contin-
uously, and the amount of data can be very large, leading to challenging indexing
opportunities. Since our target database (ChronicleDB) is a storage system first,
a user expects it to store the stream as it arrives. Thus, the primary objective
of this work is to provide efficient write operations. At the minimum, a system
has to sustain a baseload of continuous writes. In the worst case, data loss has to
be avoided at all costs since this would betray user expectations of permanently
storing the data stream. Additionally, other user interactions with the system
through queries are not influenced when sustaining a baseload of streaming, i.e.,
there are no performance fluctuations in writes. Otherwise, slow interaction with
the system is difficult for the user to judge and explain. Ideally, increases or de-
creases in write workload, such as adding new sensors to a smart home or a burst of
activity during peak hours of flight monitoring, should be supported in some form.
Distributed systems achieve this through scalability options. Since ChronicleDB
is a single-node system, resources might be removed from other components. This
can result in temporary fluctuations or permanent performance decreases but can
be expected and is, thus, more tolerable.

The secondary objective of a stream storage system is its ability to query data. In
terms of robustness, a user expects a stream system to provide continuous updates
to queries. A user looking at the latest temperature readings in his home does not
expect query results to feature weeks-old data from some long-running batch job
building ideal index structures. In an ideal world, new arrivals are part of query
results in real-time in either traditional or event-processing queries. However, since
events must arrive at the system and undergo initial processing, it is more likely to
provide freshness guarantees regarding ingestion-to-query latency. This requires
continuous maintenance of structures used to answer queries. Furthermore, when
executing the same or similar ad-hoc queries, a user expects a low variance in the
response time of those queries. For continuous queries, the latency of produced
results should also be low and ideally have a low variance. We want to make a
purposeful distinction between this expectation and predictable query costs. A
well-designed cost model can accurately predict the costs of queries to database
administrators, which can provide a reasonable explanation for performance fluc-

40

2 Fundamentals

tuations. However, the user either has no insight or does not have enough technical
knowledge to understand these explanations. Especially under a streaming model,
new information can change query execution plans and result in drastically differ-
ent results, which might be predictable or explainable but not intuitive for a user.
Thus, low variance in response time and low latency for results, ideally constant
performance, is a desirable requirement for queries in a robust stream indexing
system.

2.3.2 External and internal robustness

In this thesis, we separate robustness into two broad categories: external robust-
ness and internal robustness. The necessity for this distinction comes from the
underlying streaming data model. For stream indexing, we expect the input to be
continuous; thus, the system’s base load automatically includes continuous write
operations. Consequently, we assume that a stream indexing system constantly
changes, even under a regular workload.

External robustness covers use cases if the performance of some database opera-
tion changes - becoming slower, faster, impossible, or offering different results -
this can be traced back to some external factors. Most external factors can be
easily summarized by assuming an idealistic database where the database entries,
indexes, etc., do not change. Then, any change in performance can be directly
traced to factors such as hardware failures, system failures, concurrent queries,
and recovery operations. Additional external factors in streaming workloads are
changes to the input stream, i.e., a change in distribution, arrival rate, or stream
composition.

Internal robustness covers changes in the absence of external factors. The physical
database constantly changes under the streaming data model, even if the stream
characteristics (e.g., arrival rate, key distribution, ...) do not. Even for a tradi-
tional relational database, query optimizers can lead to varying performance based
on new statistics and selected algorithms. The majority of contributions of this
thesis fall under internal robustness. However, some developed structures and al-
gorithms either have extensions for external factors or are promising candidates
to deal with them.

To better distinguish between different topics, we will group research results un-
der two categories: write operations and query processing. Each category covers
fundamental database operations, which makes it easy to understand their role in
the overall robustness of a system.

41

2 Fundamentals

2.3.3 Write operations

Providing a robust baseline for continuous write operations can be accomplished
through efficient write patterns and techniques. In particular, techniques such as
deferring updates through buffering, sequential write patterns, and avoiding lock
contention result in efficient writes. Index structures and enhancement to them,
as discussed in Section 2.2, fulfill these requirements. Especially log-structured
indexes are used for continuous indexing of streams.

De-amortization techniques reduce spikes in writes and reorganization, improving
the index structures’ internal robustness. The FD-tree [Li+10] is a tree index for
SSD. It is similar to LSM with a leveling policy in that the index has multiple lev-
els of sorted partitions, and each level grows in size. Furthermore, the FD-tree has
pointers between runs on multiple levels, also found in COLA. To offset the worst
case that each level hits its maximum size simultaneously, causing a cascading
merge operation, de-amortization in the FD-tree overlaps insertions with merge
operations. After each insertion at the top level of the FD-tree, a fixed number of
entries waiting in merge operations are propagated. Thus, each insertion becomes
more expensive, but the internal robustness improves. COLA [Ben+07] also pro-
poses a de-amortization technique. Unlike the FD-tree, de-amortization makes use
of two partitions for each level. After each insertion, a merge moves m records from
one level to the next. Two partitions from one level are merged into an empty par-
titions on the next. Thus, the structure guarantees no active merges on subsequent
levels. This idea is extended to three runs to support fractional cascading. To avoid
cascading node flushes in the Bϵ-tree, Bender et al. [Ben+20] propose randomized
flushing algorithms even when a node is not full.

Although FD-tree and COLA support de-amortization for leveling techniques,
more write-efficient stepped-merge trees have seen little attention in commercial
systems and research so far [LC20b; Sar+21]. However, since they are more write-
efficient than leveling techniques, it is crucial to develop more robust methods.
Chapter 4 covers these methods.

2.3.4 Query processing

Improvements to the query optimization components might be necessary to im-
prove the robustness of query processing. A typical query optimization problem is
cardinality estimation, i.e., estimating the number of results of a subquery in the
query graph. The problem of cardinality estimation is difficult - for join ordering,
even industrial-strength cardinality estimators can “routinely produce large errors”
[Lei+15]. Within the estimator, there is a trade-off between the accuracy of results

42

2 Fundamentals

and the speed of the estimation process. For example, assuming independence of
attributes is a common simplification in the process, which improves estimation
speed at the cost of accurate results. However, wrong estimates for cardinality can
lead to wrong plan choices. For example, a wrong high cardinality estimate of an
index usage means the index will not be used, leading to an expensive scan over
the primary index. More robust estimates can improve execution time or reduce
unexpected behavior. One technique for more robust plans is to not reduce the
estimated cardinality to a single value but compute a probability density func-
tion over possible cardinality [BKS99; BC05]. A single value can be chosen from
that distribution based on an additional parameter measuring the importance of
predictable behavior and tolerance for performance hits. A similar idea is to use
an interval for uncertain cardinality estimates and prefer plans with similar costs
alongside all points on the interval [BBD05]. This could lead to a proactive avoid-
ance of risky execution plans, which may perform worse than expected. More
details about those methods and additional methods, such as learning from previ-
ous query executions, are summarized in a recent survey [YHM15]. We generally
classify query plan choices under internal robustness unless they consider external
factors.

Query optimizers can recommend physical database design changes, such as build-
ing an index. Similar pitfalls regarding robustness based on inaccurate estimates
exist in addition to the challenge of changing workloads, which might make a
recommendation outdated. Akin to tolerance parameters for query plans, addi-
tional metrics [GA08], or parameters [MGY15] can make index recommendations
more robust to external factors like changing workloads. As an alternative to
offline index recommendation approaches, there are also adaptive indexing tech-
niques such as database cracking [IKM07]. The idea is to build and refine an
index with each incoming query incrementally. Naturally, this process is not in-
ternally robust, since, ideally, the database gets faster for the same query over
time.

Besides cardinality estimation, a query optimizer must choose suitable computa-
tion algorithms. For example, in join processing, a sort-merge join works well with
sorted data, a hash-join works well with small inputs, and an index-nested loop
join can leverage an existing index. However, based on statistics or cardinality
estimation, the optimizer might choose the wrong algorithm. As an alternative,
the generalized join [Gra11a] combines ideas from all three algorithms that can
be used as a universal, robust alternative. Since only one algorithm combines the
benefits of all others, there is no bad choice by default. Strategies to replace mul-
tiple implementations with one robust choice also exist for aggregations. Müller
et al. [Mül+15] use sorting of hash-value to combine benefits from hash-based and

43

2 Fundamentals

sort-based grouping. Do et al. [DG20] present a single algorithm for duplicate
removal, grouping, and aggregation that matches the best of prior algorithms.
More robust algorithms can provide both external and internal robustness de-
pending on the use case. Even if the workload changes, robust algorithms might
still perform well. Furthermore, they are robust towards wrong estimates inter-
nally.

When using a secondary index, the random access pattern will perform worse
than a full scan above a certain selectivity. This can also be observed in Sec-
tion 1.2. Even a more robust cardinality estimation, cost model, or algorithm
using the index might still result in fluctuating performance regarding index us-
age. For example, a single tuple can sway the cardinality estimation one way or
the other and thus guide the choice of using the index. Simple re-optimization
measures like aborting an index scan might be too costly. As an alternative, the
index access itself might be designed in a flexible way. SmoothScan [Bor+18a;
Bor16] introduces multiple morphing mechanisms that can slowly transform an
index-based access method into a scan. Instead of accessing a single record of
a page in a secondary index, SmoothScan can preemptively analyze all records
on the same page. This trades CPU performance (records might not be relevant
to a query) to save future I/Os (when the record is accessed in the index scan).
Furthermore, SmoothScan can prefetch subsequent pages in the primary index for
more sequential performance. Policies automatically drive the degree of analyzing
more records and prefetching. Since the algorithm automatically transitions from
index-based to scan-like access patterns, it is less susceptible to bad optimizer
decisions.

We view query optimization strategies as complementary to our work. More ro-
bust cardinality estimation, plans, index-building strategies, and algorithms are
all necessary for every robust database system. The most related approach to our
research is SmoothScan, which provides robust index access strategies. In con-
trast, Chapter 3, Chapter 4, and Chapter 5 offer more robust index maintenance
strategies. Furthermore, the techniques in Chapter 3 and Chapter 4 provide a
more robust state for the index structures, which benefit access methods, algo-
rithms, and cost optimization methods alike. Finally, Chapter 5 also discusses
robust index access regarding data stream queries.

2.4 ChronicleDB

ChronicleDB [SS17; Sei+19] is a database system for application time event streams
(cf. Definition 5). It is designed to run alongside a live event processing system.

44

2 Fundamentals

As such, its primary role is to store the event stream as the event processing sys-
tem evaluates continuous queries. This can serve multiple purposes. Since event
streams are stored, ChronicleDB can be used as a database for historical database
queries, i.e., similar to an event archive. However, it does not necessarily follow
some data warehouse workflows, where optimized indexes are occasionally bulk
loaded, leading to spikes in performance and resources. Instead, events arrive
continuously, and indexing is performed as best as possible on the fly. If the live
system experiences some failure, ChronicleDB can be used to restore the state be-
fore the failure. Furthermore, ChronicleDB can express the same types of queries
as an event processing system, and thus, it can be used for post-mortem analysis.
In addition, a user might test new live event processing system queries or query
the most recent history to build dashboards. Four performance requirements for
ChronicleDB can be derived based on these use cases.

(R1) Storing high input rate event streams with low ingestion-to-query latency.

(R2) Fast time-travel queries.

(R3) Fast processing of point and range queries on non-temporal domain.

(R4) Fast windowed aggregation queries.

Storing data arriving with high input rates, as specified in (R1) is crucial for deal-
ing with event stream systems, which can provide a lot of information through
multiple sensors in a short amount of time. A low ingestion-to-query latency is a
fundamental difference from some data warehouse systems, where data is occasion-
ally delivered in large batches. Since ChronicleDB stores the stream as it arrives,
users should also be able to query the latest as soon as possible. (R2), (R3) and
(R4) enable efficient query performance. In particular, (R2) is essential for tradi-
tional database queries on a sub-sequence of events and temporal queries. (R3)
covers non-temporal queries (e.g., finding unusually high energy consumption in a
smart home) and (R4) windowed queries, respectively.

ChronicleDB uses two key observations about event streams to fulfill the three
requirements.

(O1) Event streams arrive mostly in-order.

(O2) There is often a temporal correlation between event attributes.

These observations can also be found in the use cases described in Section 1.1. For
example, in a smart home setting, events from a single sensor will not be produced
out-of-order and, thus, will usually not arrive in or only have a limited degree
of out-of-order at the central hub (O1). Furthermore, subsequent temperature

45

2 Fundamentals

Time

Right Flank

 keys: [tsmin, tsmax]

 count: # of events

 A1: min(A1),max(A1),...

...

 An: min(An),max(An),...

 child pointer

Figure 2.8: TAB+-tree layout.

sensor readings throughout the day will be very similar. Thus, there is a temporal
correlation between readings (O2).

ChronicleDB is a very effective system for storing event streams. It can outperform
comparable systems for high-ingestion use cases. An important reason is that it is
optimized for event stream use cases. However, it is also optimized for single-node
deployment, trying to maximize the hardware of one system. Therefore, it can
achieve better performance on one node than scalable systems with several dozen
nodes, making it a cost-efficient solution. Because ChronicleDB is built for event
stream use cases, it is an ideal target to analyze and improve the robustness of
stream indexing components.

2.4.1 Basic primary index

The primary index of ChronicleDB is the Temporal Aggregated B+-tree (TAB+-
tree). It is an augmented B-tree index on the application timestamp. Thus, it sup-
ports efficient point- and range queries on the temporal domain (R2). The struc-
ture of the index is shown in Figure 2.8. We assume that time is increasing from left
to right. Thus, the left-most leaf in the tree has the oldest events (i.e., events with
the smallest application timestamps), while the right-most leaf has the most recent
events (i.e., events with the highest application timestamp). The path from the
root to the right-most leaf is called right flank in ChronicleDB.

Assuming that events arrive mostly in-order (O1), it is likely that when a new
event e arrives in the system, it is placed in the right-most leaf of the index. Thus,
ChronicleDB keeps the right flank in memory at all times. In-order events are in-
serted into the right-most leaf; whenever this leaf is full, a new one is created, and
references are added to the parent residing in the right flank. Consequentially, the

46

2 Fundamentals

TAB+-Tree

Out-Of-Order
Queue

1. Inserts

Sorted Full Queue
(Application Time)

TAB+-Leaf

3. Bulk merge

2. Spare

Event e

e.ts < max tree ts

e.ts ? max tree ts

Figure 2.9: Out-of-order handling in ChronicleDB.

in-order insertions work like a continuous variant of traditional bulk-loading algo-
rithms in B-trees. This results in an efficient append-only pattern, resulting in se-
quential writes required for write-efficient B-trees (R1).

Out-of-order data

Out-of-order events cannot be inserted in the right flank of the tree if their times-
tamp is too old. The solution of ChronicleDB is a three-step strategy, as shown
in Figure 2.9.

1. Out-of-order data is put into a dedicated out-of-order queue, similar to side
files in traditional B-tree loading algorithms. This preserves the sequential
pattern of the default’ write behavior. The queue is sorted in application
time order.

2. Nodes in the TAB+-tree can leave a pre-defined spare space to absorb future
out-of-order insertions without cascading node splits. For cheap spinning
disks used to store large amounts of data, this has the additional benefit of
preserving a sequential node layout.

3. The queue has a maximum size because, unlike bulk loading traditional B-
trees, the continuous insertions in ChronicleDB never stop. Upon reaching
the threshold, the entire queue is inserted into the primary index. This limits
the memory usage of the queue and can stabilize query performance due to
merging logical temporal regions into close physical regions (R2).

Storage layout

Due to the massive amount of continuously arriving data in data streams, it is ben-
eficial to minimize the storage cost. Since consecutive values in a data stream can

47

2 Fundamentals

be very similar (O2), compression is essential to minimize the storage footprint.
To allow arbitrary queries and correct replays, ChronicleDB uses lossless compres-
sion. For universal support, regardless of schema, compression is performed on
the granularity of pages (nodes in the tree) with LZ4, which is byte-oriented and
lossless compression. Due to this compression, nodes have various sizes, which can-
not be mapped to fixed-size block addresses. Multiple compressed blocks (logical
blocks) are buffered and combined into a bigger block of fixed size (MacroBlock).
This allows for write-efficient patterns like in write-optimized B-trees because Mac-
roBlocks access works via fixed-size block addresses. To find the original nodes,
ChronicleDB uses an address translation layer, which maps logical blocks to the
physical storage addresses. This layer is organized in a search tree structure and
stored interleaved with TAB+-tree nodes to avoid random writes. Since the ad-
dress space is growing, new translations are appended to the right flank of the
address translation tree, such that the right flank is always kept in memory. In
case of failure, the right flank of this translation is lost and needs to be recovered
by accessing the TAB+-tree.

2.4.2 Secondary indexes

While an append-only B-tree on the application time covers temporal queries,
non-temporal access is inefficient. For those use cases, ChronicleDB supports two
kinds of secondary indexes (R3): lightweight and heavyweight indexes. Lightweight
indexes are handled within the primary index, while heavyweight indexes are tra-
ditional secondary indexes (cf. Section 2.2.1).

Lightweight index

In addition to child pointers and application time indexing information, each in-
ner node in the TAB+-tree stores a lightweight index for each child reference. The
lightweight index is built for numerical attributes in the event stream. The index
consists of small materialized aggregates [Moe98], that is, the minimum, maximum,
average, and count of the numerical attribute within the subtree of the child ref-
erence. For example, the root node contains the minimum, maximum, average,
and count of the entire data stream, while the parent node of a leaf contains those
aggregates of the leaf. Queries can use aggregates directly, fulfilling the require-
ment (R4). Figure 2.8 shows an index entry of the root node, featuring the index
keys, child pointer, and lightweight indexes for A1 and An (min, max). Similar
to the SB-tree [YW03], those aggregates cover a temporal range. For temporally
correlated attributes, such as temperature, the aggregates can prune entire regions

48

2 Fundamentals

of the primary index without accessing them (O2). During a regular insertion of
an event, lightweight indexes of the parent nodes in the right flank need to be
updated. Since those reside in memory, this is an efficient operation. During an
out-of-order insertion, aggregates are not updated; thus, each query needs to con-
sider both the event in a queue and indexes in the primary index. However, upon
emptying the out-of-order queue, all aggregates on the path of impacted leaf nodes
are updated, which causes additional write operations.

Heavyweight index

Lightweight indexing provides little pruning power if attributes are not temporally
correlated. Furthermore, lightweight indexing can facilitate sorted access on the
temporal domain but not on the domain of the indexed attributes. For those
cases, ChronicleDB has log-structured merge trees with a leveling layout, COLA,
and B-tree (or TAB+-tree) implementations. While LSM and COLA provide good
insertion performance, B-trees are preferable for range queries. An attribute can be
indexed directly or with a composite key consisting of the attribute, the timestamp,
and the sequence number in the application time event stream. The latter variation
allows reconstructing the temporal order without accessing the primary index, if
necessary for a query. The implementations of all secondary indexes are single-
threaded. A secondary index is built incrementally alongside the primary index
and updated in bulk during an out-of-order merge.

2.4.3 Load scheduler

ChronicleDB supports a temporal split operation. A new TAB+-tree is created
during the split, and the old TAB+-tree is finalized. Thus, the old tree represents
a closed application time interval. This operation is called a regular time split and
can be performed after some fixed interval. In addition, the original ChronicleDB
paper proposes irregular time splits performed by a load scheduler. The purpose
of this operation is to handle heavy loads by prioritizing writes in the primary
index. Thus, under heavy load, an irregular split is performed. After the split,
secondary indexes, which take additional write operations and produce load, are
turned off to improve write performance. Whenever there is a low load, these
indexes could be rebuilt for the finalized time interval (e.g., after a regular time
split).

49

2 Fundamentals

2.4.4 Query processing

Regular data stream queries can extract a continuous subsequence of a data stream.
Through range queries on the TAB+-tree, this operation can be executed efficiently
in logarithmic time. A stream can be replayed via a contiguous subsequence into
an event-processing system for event-processing queries. In addition, ChronicleDB
supports two optimized variations for windowed aggregation and pattern match-
ing queries. Windowed aggregation queries can use lightweight indexes in inner
nodes to access partial aggregates that overlap with a window. These can be used
to compose a result without accessing all events in the temporal range. To opti-
mize access, instead of computing each window state individually, the window size
can be decomposed into the respective jump sizes for incremental computation.
Pattern-matching queries are difficult to process in a database because symbols
have sequential and temporal constraints, e.g., symbol A must occur before sym-
bol B. However, ChronicleDB can utilize lightweight and heavyweight indexes to
speed up execution. Suppose the Boolean expression of a pattern symbol contains
a range condition. These range conditions can be analyzed via secondary indexes
to identify potential temporal ranges where a pattern can be fulfilled because of
a symbol occurrence. The resulting ranges can serve as input into a sequential
pattern-matching execution. A cost model [KGS21] can be used to estimate the
value of using an index, such that the index access cost does not outweigh the
pattern-matching execution cost.

2.5 Summary of fundamentals

The data model of data stream processing consists of potentially unbounded se-
quences of data items, usually featuring two temporal domains. Data stream
queries use standard database operators (e.g., filters, aggregation, joins) and more
specific data stream operators (e.g., pattern matching). However, due to the un-
bounded nature of streams, special operations (e.g., windows) limit queries in
their temporal scope to produce results and reduce the processing time of opera-
tors.

Indexing can speed-up queries. As data streams are unbounded and usually
feature high insertion rates, write-efficient index structures are essential to re-
duce the ingestion-to-query latency, i.e., the time it takes for a data item to be
considered in the query result after it arrives in the system. Write-efficient B-
trees and log-structured indexes are excellent candidates for stream index struc-
tures.

50

2 Fundamentals

However, besides query processing capabilities and indexing, the robustness of a
streaming system is also important. Although difficult to define, robustness can be
categorized as internal and external. Internal robustness deals with the physical
database design. External robustness covers external factors such as changing data
rates. A robust data stream processing system has to keep insertions high while
reducing variance for both insertion and queries.

ChronicleDB is an event database system that can store streams and features
native data stream query capabilities. It uses fundamental indexing concepts as
described in this chapter. However, its index structures can still suffer from in-
ternal robustness issues. We will show the problems and discuss solutions in the
subsequent two chapters. Furthermore, external robustness may be low due to
changing out-of-order data rates and outliers in the key distribution. This will be
discussed in Chapter 5.

51

3
Waves of misery after index creation

3.1 Introduction

An important first step towards robust stream indexing is to analyze well-known
and widely-used traditional index structures. B-trees are well-studied structures
used to answer point and range queries in logarithmic time. Today, B-trees often
index large datasets that need to reside on secondary storage. Within a streaming
context, B-trees can answer both temporal and non-temporal queries. Due to their
broad usage and well-researched qualities, they are an ideal target for studying the
robustness of traditional index structures.

In the remainder of this section, we will first describe a general problem when
using B-trees within ChronicleDB to establish the setting. Then, we will motivate
the broader overlooked problem that this chapter solves and give an overview of
this chapter’s structure.

3.1.1 Case study: ChronicleDB

ChronicleDB has two components that (can) use B-trees. First, the primary index
is an augmented B-tree structure. Second, a B-tree or a TAB+-tree can be used as
a secondary index. As a case study, we look at the behavior as a secondary index
querying non-temporal attributes with a low temporal correlation. ChronicleDB
creates a secondary index by loading data from the primary index and performing
a bulk loading operation. Then, the index receives updates alongside the primary
index. The original ChronicleDB paper also proposes that a load scheduler can
automatically trigger this process during time splits.

As an experiment, we build a new TAB+-tree secondary index without aggregates.
We bulk load the index with 5 million entries consisting of one 64-bit integer value,
a 64-bit timestamp and a reference to the primary index. As a page utilization, we

52

3 Waves of misery after index creation

0 100 200
0

100

200

300

400

0

20

40

60

80

100

Query Node Fill Degree

Range Query (expected 2 million results)

Sample No.

Av
er

ag
e

Q
ue

ry
 T

im
e

(m
s)

Sa
m

pl
e

Fi
ll

D
eg

re
e

in
 %

Figure 3.1: Query performance for querying 2 million results in a ChronicleDB
TAB+-tree secondary index over time.

choose 80%, meaning that every page has 20% spare space to absorb insertions.
To disregard fluctuations caused by the operating system, we use the O DIRECT
flag to circumvent the operating system buffer strategy. Since this experiment is
conducted on an SSD, we use a large page size of 64 KB for maximum throughout.
We initially bulk load the index with 5 million entries (uniform distribution) and
insert an additional 30 million entries (uniform distribution) within a pre-defined
maximum key range.

The index should provide robust query performance. We measure query perfor-
mance for range queries. Based on the number of inserted values, the maximum
key range, and the distribution, we calculate the size of the range such that the
result consists of about 2 million entries. The start point of the range is chosen
based on a uniform distribution. Range queries are executed after 100,000 inser-
tions in batches of ten. We report the average results of those batches. Since
the buffer strategy might influence the performance, we circumvent the usage of a
buffer.

We report the results in Figure 3.1. The x-axis shows the number of the sample,
and the left y-axis shows the processing time of the range query in milliseconds.
The measurements are a blue line. Although there are small fluctuations for each
data point, the larger scope reveals that systematic fluctuations occur in waves.
As an explanation, we also sampled the fill degree of nodes in the tree by executing
a range query that examines the first 100 nodes, computing an average fill degree.
The results are a red line associated with the right y-axis. The performance fluc-

53

3 Waves of misery after index creation

tuations correlate with the fill degree of nodes. There are also small spikes in
low performance for queries (near samples 90, 200, and 250), which we suspect
can be attributed to a stop-the-world operation triggered by the Java Garbage
Collection.

The case study shows systematic performance fluctuations for high insertion sce-
narios when using B-tree-like structures as secondary indexes in ChronicleDB.
Thus, the index structure is not robust, even for predictable scenarios - neither
the amount of queried data items nor the distribution of insertions or queries was
changed throughout this experiment. This problem is not exclusive to ChronicleDB
but can be directly tied to the fill degree of nodes, leading to the general problem
as motivated in the next section.

3.1.2 Motivation

The purpose of adding an index to any database table is to improve query pro-
cessing performance. Unfortunately, after an initial honeymoon phase of using a
new index and enjoying fast queries, the index may grow and require many node
splits – thus creating a spike in buffer pool contention and I/O activity. In other
words, the index may reduce query performance or fail to achieve the expected
performance.

The example for ChronicleDB can be adapted to a general-purpose scenario appli-
cable to any database. First, a new secondary B-tree index enables fast look-ups
and fast ordered scans. In order to absorb updates without node splits, each node
might start with 10% free space – often a parameter of index creation. However,
once the table and the secondary index approach 10% growth, many of the B-tree
leaf nodes require splitting. Thus, there is a wave of split activity with contention
for the data structures for free space management, the buffer pool, and the I/O
devices. Once most of the original index leaves are split, this activity subsides
until the table and index grow above two times the original contents, whereupon
another wave of splits happens. During each wave of splits, both update and
query performance suffers, as do buffer pool contention and space utilization in
memory and on storage. Figure 3.2 illustrates the effect in a B-tree with 8 mil-
lion initial index entries and insertion batches of 10,000 entries, with leaf splits
per insertion batch varying from 0 to over 600. The details of the experiment
are in Section 3.6. In order to reduce these waves of splits, alternative strategies
for the initial bulk loading of B-trees are needed. The main contributions of this
work are a theoretical analysis and solution for reducing splits, as well as a vari-
ety of practical solutions that can easily be integrated into existing bulk-loading
techniques.

54

3 Waves of misery after index creation

0 1000 2000 3000 4000 5000 6000

0

200

400

600

800

Insert Batch (Batchsize 10,000)

L
ea

f
S

pl
it

s

Figure 3.2: Waves of misery after creating a new B-tree index.

3.1.3 Structure

In the remainder of this chapter, Section 3.2 reviews related prior work. After a
section illuminating the extent of the problem (Section 3.3), two sections suggest
both theoretically sound remedies (Section 3.4) and simple, practical remedies or
approaches (Section 3.5) to the problem. An evaluation section (Section 3.6) is
then followed by a summary (Section 3.7).

3.2 Related prior work

This thesis focuses on two important classes of index structures: B-trees and log-
structured indexes. Log-structured indexes do not update records in place and,
thus, usually only write full pages and avoid node splits. They do not suffer from a
wave of node splits but waves of merge activity which are discussed in Chapter 4.
B-tree indexes are ubiquitous in databases, key-value stores, file systems, and infor-
mation retrieval. There are many variants and optimizations [Gra11b]; a selection
of important techniques for write-heavy workloads are summarized in Section 2.2.2.
In the following, we will review techniques for splitting nodes and loading tree in-
dex structures, which directly relate to the problem setting of waves of node splits
presented in this chapter. Then, we will summarize important findings about
page utilization via fringe analysis, which serve as a baseline for our theoretically
optimal solution of eliminating bursts of node splits.

55

3 Waves of misery after index creation

3.2.1 Node splits and bulk loading

In a traditional B-tree, a node nold is split when its fill degree reaches 100% (or
it overflows). A new node nnew is created. Entries of nold are distributed among
the two nodes such that both nold and nnew reach about 50% node utilization.
Thus, if the key range of nold is [k1, k2, . . . , k100], the split key is k50 such that
keys smaller than k50 remain in nold while keys greater are inserted into nnew. We
also refer to this key as the 50% key. This technique guarantees at least 50%
page utilization in a B-tree. Alternative split strategies also exist. The B∗-tree
[Com79] distributes insertions that would lead to an overflow into sibling nodes.
Only once two sibling nodes nold1 and nold2 are 100% full, a new node nnew is
created. Among the key range covered by nold1 and nold2, the 33% and 66% keys
are used such that after the split each node covers 33% of the key range. Thus,
after a split each node is 2

3
full. This leads to an overall storage utilization of at

least 66%.

Another technique to improve storage utilization is to compress separator keys in
internal nodes of B-trees. By having shorter keys, an internal node can reference
more children; thus, there are fewer internal nodes This can lead to B-trees with
less height and also benefit cache-efficiency. In fact, more nodes can be kept in
main memory, and searching keys within those nodes can be faster if more keys
are fit into the cache. In order to maximize the caching effect by minimizing key
sizes, Bayer and Unterauer suggested suffix truncation when splitting a leaf node
[BU77]. Suffix truncation searches for a common prefix of possible separator keys.
Only the prefix is used as a separator, thus truncating the suffix. For example, the
common prefix of keys “cattle”, “catchweight” and “catchphrase” would be “cat”,
which is a shorter key than all the single words by themselves. The basic idea of
using suffix truncation for splitting a node is that rather than splitting rigidly at
the 50% key, choose the shortest possible key value separating, say, the 40% and
60% keys.

Similar techniques exist for other tree structures. The UB-tree [Bay97] is a multi-
dimensional index. It uses a space-filling curve to map multidimensional data to a
one-dimensional space. The results of this mapping are stored in a B-tree. When
using a Z-curve, this can preserve multidimensional clustering. Different regions of
the space of the curve create a disjunctive partitioning of the space. In practical im-
plementations of the split operation in the UB-tree [Ram+00], the shortest Z-value
between the two tuples at the 50% key range is chosen. This creates shorter keys
and less overlap of the regions in nodes, which benefits range queries. The R-tree is
a multidimensional index often used for spatial data. Index nodes store minimum
bounding rectangles (MBR) of indexed objects. MBRs guide search operation, for

56

3 Waves of misery after index creation

example by looking for an intersection of a searched object with the MBR. How-
ever, MBRs of different index nodes can overlap. In case of overlapping nodes,
queries need to search multiple paths. Thus, there is a need to strike a balance
between query performance and storage utilization. E.g., a split that minimizes
overlap might result in less than 50% average storage utilization as in traditional
B-trees. When bulk loading R-trees, relaxing the requirements of a fixed number
of objects per page can lead to a heuristic solution of minimizing costs for a query
profile or maximizing storage utilization [ASW12].

Optimizing split strategies has an apparent influence on performance. However,
many database implementations also have strategies to avoid splits since they
incur more write operations, buffer pool contentions, and temporally poor space
utilization. In order to avoid node splits immediately after index creation, e.g.,
during the first insertion into a new index, many implementations leave free space
within each B-tree node. For example, Microsoft SQL Server supports two free
space parameters while creating and reorganizing a B-tree index. The first one
controls how much free space is left within each B-tree node, both leaf nodes and
branch nodes (except along the right edge of the B-tree). The second parameter
controls the number of empty pages, or more specifically, the percentage of empty
pages in the sequence of B-tree pages. These empty pages will be allocated during
node splits. Leaving empty pages in this way ensures fast scans on traditional
hard disk drives even after many insertions and node splits. SQL Server does
not support free space fractions different for leaf and branch pages or free space
fractions per key range.

In addition to the ‘fill factor’ option, the ‘create index’ statement in Microsoft
SQL Server includes the option ‘pad index,’ which specifies whether to apply the
fill factor not only to leaf nodes but also to branch nodes. Sybase supports the
‘fill factor’ option and a related option ‘max rows per page.’ The Oracle database
and IBM DB2 support an index option ‘percent free’, which is the complement
to the fill factor in SQL Server. The Oracle database also supports many related
options regarding the number of pages reserved for future index growth. Many
other database systems support the Oracle or IBM syntax for free space within
indexes. The aspect important in the present context is that all products sup-
port a fixed amount of free space in all index leaves, which causes waves of node
splits.

All techniques mentioned above change the split behavior or try to avoid splits.
However, none of them deal with the timing of splits. If many splits occur si-
multaneously, this leads to waves of misery, which is the primary concern of this
chapter. A related idea is the preemptive splits of nodes. For a large degree of con-
current writes, nodes may be split before reaching 100% to reduce contention. A

57

3 Waves of misery after index creation

more recent work than the original proposal for reducing waves of misery analyzed
contention of multiple writing threads on a single node [AL21]. If, for example,
two nodes are updating different keys ki and kj, a contention split using a key
between ki and kj is performed. With many concurrent writes, such splits can
increase the throughput of the system. However, since this can lead to poor space
utilization, another procedure occasionally merges siblings to reclaim free space.
While contention splits increase throughput by changing node split timing during
insertions, this work increases robustness by proposing bulk loading strategies that
lead to predictable split behavior over time.

3.2.2 Uneven page utilization and fringe analysis

Instead of using a fixed amount of free space, more flexible rules for the initial
assignment of records to pages are required to mitigate or even avoid the waves
of misery. A theoretically sound rule presented in this paper dates back to an
analytical framework called fringe analysis [Yao78] that is originally used to prove
the expected storage utilization of B-trees and other search trees. The framework
of fringe analysis has been elaborated in [Eis+82] and later applied to the analysis
of various versions of B-trees [BL89]. However, none of the previous studies ad-
dressed the problem of bulk loading and the waves of misery identified in our work.
Closely related to fringe analysis is spiral hashing [Mar79], where the utilization
of the pages follows a logarithmic pattern. This avoids the undesirable oscillating
search performance of linear hashing [Lar88] because the page with the highest
expected load is always split next. However, spiral hashing aims to guarantee a
constant expected search performance while our approach addresses the problems
of constant insertion performance and buffer contention. Of course, the solution
also affects the performance of range queries.

3.2.3 Summary of related prior work

Various split techniques in B-trees and similar structures can improve overall space
utilization and cache efficiency. Bulk loading techniques for indexes can also opti-
mize for better space utilization and query performance. Furthermore, parameters
in many database implementations exist to avoid node splits for some time by
configuring a maximum free space in space. Storage utilization of B-trees can be
analyzed using fringe analysis, leading to a solid theoretical foundation about B-
tee behavior over time. However, no other prior work analyzes how different bulk
loading techniques influence B-tree split behavior over time, which leads to the
titular waves of misery addressed here.

58

3 Waves of misery after index creation

0 1000 2000 3000 4000 5000 6000

0

200

400

600

800

1000

Normal to Normal

Uniform to Uniform

Uniform to Normal

Normal to Uniform

Insert Batch (Batchsize 10,000)

L
ea

f
S

pl
it

s

Figure 3.3: Development of leaf splits for varying key distributions.

3.3 Problem assessment

While the introduction describes the problem in general terms and illustrates that
the problem indeed exists, the present section illustrates when the problem occurs,
when it does not, what characteristics or key value distributions cause the problem,
etc. The index (and its underlying table or data collection) must grow for B-tree
leaf splits to occur in substantial frequency. A B-tree with little update activity and
with little growth does not exhibit the issues discussed here. As discussed in the
preceding section, little or moderate update activity (without overall growth) could
be absorbed without splits if the initial index creation left free space in each node.
On the other hand, most databases have at least some tables and indexes that
capture continuous business activity, whether banking transactions, web activity,
sensor readings from internet-of-things devices, or other types of events. For B-tree
leaf splits to occur in discernable waves, the key value distributions in the initial B-
tree contents and in the set of insertions must match. The higher their correlation,
the sharper the waves. It is not required that this distribution be uniform or
any other particular form. Figure 3.3 illustrates these points. If both initial key
value distribution and insertions follow a normal or uniform distribution, there are
fairly sharp waves of node splits that even overlap in Figure 3.3. If, on the other
hand, their distributions differ, the waves are much less distinct. In a B-tree on
hash values, a high correlation between these distributions is extremely likely. B-
trees on hash values offer several advantages (over other traditional hash indexes),
e.g., efficient creation after sorting future index entries, simple implementation
of phantom protection (serializable concurrency control) by locking gaps between

59

3 Waves of misery after index creation

0 1000 2000 3000 4000 5000 6000

0

200

400

600

800

1000

1200

1400

50% Utilization

70% Utilization

90% Utilization

Insert Batch (Batchsize 10,000)

L
ea

f
S

pl
it

s

Figure 3.4: Development of leaf splits for varying initial page utilization.

existing index entries, efficient merge joins after index scans, and more. Note that
B-tree nodes with near-uniform key values permit interpolation search (instead of
binary search) and that a B-tree root and its immediate descendent nodes can
be cached as a single super-large node in memory. Thus, B-trees on hash values
offer advantages but suffer from waves of leaf splits just as much as other B-
trees, perhaps even more so because hash functions are specifically designed to
produce uniform distributions and thus equal distributions in initial contents and
insertions.

While free space left in each new B-tree node during index creation can absorb
moderate update activity, it cannot absorb long-term growth. Initial free space
merely delays the first wave of node splits, and it perhaps widens and weakens
the first and subsequent waves, but it does not prevent them. Figure 3.4 high-
lights this point: even with as little as 50% initial space utilization (and thus
also 50% free space on each index leaf), distinct waves occur. Thus, the facil-
ities found in commercial relational database products and their commands for
index creation do not prevent the waves of node splits addressed in the following
sections.

The diagram in Figure 3.5 illustrates that index size matters. In a very small index
(e.g., 1,000 leaf nodes), batches of 10,000 insertions force waves of node splits in
rapid succession. They widen and weaken after a few waves. In contrast, in very
large index (e.g., 500,000 leaf nodes), many batches are required to fill the initial
free space in each node, but then there are distinct, high, and wide waves of node
splits impacting database components such as the buffer pool for a longer period

60

3 Waves of misery after index creation

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0

200

400

600

800
1000 pages

10000 pages

100000 pages

500000 pages

Insert Batch (Batchsize 10.000)

L
ea

f
S

pl
it

s

Figure 3.5: Development of leaf splits for varying initial dataset sizes.

of time.

3.4 Sound remedies

The goal of this section is to provide a theoretically sound solution for loading B-
trees for which succeeding insertions will trigger a split with a constant probability.
Thus, there are no waves of misery. We limit our discussion first to the leaf level
and later extend it to the upper levels of the tree. We assume records of constant
size such that every leaf has a capacity of B records. For the sake of readability,
let B being odd. Thus, a split of an overflowing page results in two pages each
with (B+1)/2 records. A record has a unique comparable key that provides the
ordering required for the B-tree.

The basic idea of the following approach is to keep the filling degree of the leaf
pages in balance. Given a B-tree with n records, let fdi(n) denote the number of
pages with i records, (B + 1)/2 ≤ i ≤ B. The next insertion can only trigger a
split if it hits a full page, i.e., any of the fdB(n) pages existing after n insertions.
The key space spanned by n keys is n + 1 intervals while the space covered by
full pages is B · fdB(n). Thus, the probability that the next insertion triggers
a split is B · fdB(n)/(n + 1). For uniform free space used in many databases,
the initial distribution of pages is fdi(n) =

n
B
i and fdj = 0, with i the number of

records in a page with the uniform free space and i ̸= j. As shown in Section 3.1.1,
for i ̸= B, the probability B · fdB(n) is at first 0 (since there are no full pages),

61

3 Waves of misery after index creation

but grows over time and results in oscillating behavior. Extreme differences among
fdi(n), such as 50% half-full pages and 50% full pages, are also not desirable, since
the split probability is high at first, but then non-existent similar to a uniform
distribution. The sound solution is somewhere between these two extremes such
that the number of less populated pages is higher than the one of more populated
ones.

A key idea of our algorithm is that the probability of a split should be constant
over time, which naturally leads to predictable node split behavior. Thus, the
number of pages that are full needs to be constant. However, when a page is split,
the number decreases, and the number increases when an insertion hits a page
with B − 1 records. Therefore, our bulk loading algorithm produces fill degrees of
nodes that mirror a steady state of B-trees. It employs the steady-state probability
pj that a page with j records occurs in the sound solution, (B + 1)/2 ≤ j ≤ B.
In an iterative manner, the algorithm randomly determines j with probability pj,
(B + 1)/2 ≤ j ≤ B, and assigns the next j records from the input to a new page.
The iteration stops when the number of remaining records is less than (3B+1)/2.
Then the algorithm performs in the following way. If the remaining number of
records is at most B, these records are stored in one leaf. Otherwise, two pages
are created over which the records are equally distributed. Overall, this algorithm
guarantees that all pages are at least half full as required for a traditional B-
tree.

In order to analyze the split occurrence of the B-tree after loading, we assume equal
distributions such that the distribution of insertions mirrors the key value distribu-
tions of the records in the B-tree. More formally, a B-tree with n records partitions
the key domain into n+1 empty intervals, and the probability of an insertion hit-
ting such an empty interval is 1/(n+1). Note that this model is entirely different
from the restrictive uniform distribution assumption.

Theorem 3.4.1. Let us consider a B-tree with N records being created by our
loading algorithm such that the probability qj of the next insertion hitting a page
with j records is 1

α(j+1)
. Here, α = HB − H(B+3)/2 denotes a weight parameter,

where Hj =
∑︁

1≤i≤j 1/i is the partial harmonic series of size j. Furthermore,
records are continuously inserted into the initial B-tree assuming equal distributions
(i.e., insertion distribution mirrors the initial loading distribution). Then, the
following two statements are fulfilled:

• First, the probability that a record insertion triggers a split of a leaf is con-
stant, i.e., there are no waves of misery.

62

3 Waves of misery after index creation

• Second, the probability pj that a leaf consists of j records is given by pj =
B·ln(2)
j(j+1)

.

Proof : The proof follows the basic ideas of fringe analysis [Yao78; Eis+82; BL89].
In the following, we provide a rough summary and refer the interested reader to
the original literature. For the following fringe analysis, we restrict our discussion
to the leaf pages of the B-tree. The number of records partition the leaves into
classes Ci, (B+1)/2 ≤ j ≤ B. Class Ci consists of all the pages with i records. For
each class Ci, fi(n) denotes a counter for the corresponding number of leaf pages
in a B-tree with n records. Let qi(n) denote the probability that an insertion will
be in a page of class Ci. It follows that qi(n) = i · fi(n)/(n + 1) since there are a
total of i · fi(n) records in pages of class Ci, and every record is a left boundary of
an empty interval where the next insertion may occur with probability 1/(n+ 1).
Note that we make a negligible simplification because the first interval has not a
record as its left boundary. All these probabilities are collected in a vector q⃗(n).
The basic idea of the fringe analysis is to keep track of this vector over a sequence
of insertions. By using a quadratic transition matrix T with (B+1)/2 columns and
rows, it is possible to compute q⃗(n + 1) from q⃗(n) in a recursive way ([Eis+82]):

q⃗(n+ 1) = (I +
1

n+ 1
T)× q⃗(n) (3.1)

Here I denotes the identity matrix. The steady-state q⃗ = (q(B+1)2, . . . , qB) of this

recursive equation is then given by the solution of T × q⃗ = 0⃗. In [Eis+82], it is
shown that this results in

qj = 1/(j + 1) (3.2)

for j = (B + 1)/2, . . . , B. Because the leaf pages are filled in our initially loaded
B-tree with N records such that the probability q⃗(N + 1) = q⃗, it follows that
q⃗(N + k) = q⃗ for k = 1, 2, In particular, the probability qB(N + k) = qB
remains constant for k = 1, 2, . . . and so does the probability of a split. Thus, the
first statement of Theorem 3.4.1 is fulfilled.
For the proof of the second statement, we make use of qj(n) · (n+ 1)/j being the
expected number of buckets with j records [Eis+82]. Moreover, (n + 1)/(B · ln 2)
is the expected number of pages in a B-tree with n records because the expected
storage utilization of a B-tree is ln 2. The corresponding quotient of the two ex-
pected values is then B · ln(2)/j(j + 1). In fact, this quotient is asymptotically
equal to pj, the probability of a page comprising j records [BL89]. Thus, the sec-
ond statement is also fulfilled, and our iterative loading algorithm is equipped
with a theoretically sound rule for determining the filling degree of the next
page.

63

3 Waves of misery after index creation

So far, the discussion is limited to the leaf level only. Waves of misery still may
occur for the index levels when a threshold-based loading approach is used. How-
ever, it is easy to see that our algorithm is also directly applicable to every index
level. Also, note that the algorithm runs online on an input stream, and therefore,
the entire tree, including all index levels, is built from left to right as it is known
from the standard loading algorithm of B-trees.

The probability vector introduced in Equation 3.2 is also known as the steady-state
solution of the recursive equation. It is the foundation to show that the expected
storage utilization is ln 2 [Yao78]. Thus, the loading algorithm also creates B-
trees with an expected storage utilization of ln 2. This result can be guaranteed
by changing the algorithm to a deterministic one where the ratio of pages with i
records, (B+1)/2 ≤ i ≤ B exactly matches the probabilities. Then, the loaded B-
tree guarantees a storage utilization of ln 2. Unfortunately, there is no steady-state
solution with a higher storage utilization for the loaded B-tree. In order to obtain
a higher storage utilization and a B-tree without waves of misery, it is required to
change the split policy of the B-tree by using partial expansions or elastic pages
[BL89]. This is a direct extension of our approach and is not further elaborated
in this thesis.

The analysis in this section assumes that the key value distribution in the set of
insertions mirrors that of initial B-tree contents. Moreover, it assumes that an
overall space utilization of ln(2) ≈ 69% is sufficient for the application. Therefore,
the following section offers some practical approaches that do not require an overall
space utilization of ln(2). The subsequent section offers an evaluation of both the
techniques above and those below.

3.5 Practical remedies

With waves of node splits occurring in practice, although often not recognized,
practical remedies are required that fit into scalable data center operations. Al-
though the sound solution is ideal for a constant number of node splits at all times,
there might be multiple reasons why a practical system might forego implementing
it. Among others, we identified three main reasons.

• The solution trades predictable behavior for storage utilization. This might
be unacceptable for some applications, which require a higher storage uti-
lization over time. Still, these applications could benefit from flattening the
waves instead of eliminating them.

64

3 Waves of misery after index creation

• While we focus on high-volume stream indexing and ChronicleDB wants to
index as much as possible on the fly, administrators of traditional database
systems frequently reorganize (rebuild) their indexes to reset free space per
node. Thus, they would be more interested in a simple space-efficient solution
that impacts behavior directly after index creation rather than achieving a
steady state more quickly.

• B-trees could be at the core of a database (or operating system). Changing
the implementation details of such a structure can be very critical. Thus,
the solution should be simple to implement, easy to understand, and the
correctness easily verifiable.

For those use cases, we present five practical remedies.

For a better overview, we base our discussion on a simplified B-tree bulk loading
algorithm, as shown in Algorithm 3.1. First, the input data is sorted (line 1). Then

Algorithm 3.1 Bulk loading of B-tree leaf pages

Input: data: A sortable collection of data items to bulk load
Output: The root of the resulting B-tree
1: data.sort()
2: fillSize = getFillSize()
3: page = nextPage()
4: rightFlank = createFlank(page)
5: while data.hasNext() do
6: if page.size + data.peek().size < fillSize then
7: page.add(data.next())
8: else
9: finishPage(data, page)
10: rightFlank = adjustFlank(page)
11: fillSize = getFillSize()
12: page = nextPage()

13: return rightFlank.getRoot()

the fill size of the first node is generated (line 2). In commercial database systems,
this would correspond with a free space parameter (fill factor option, percent free).
A new page/empty node is reserved in memory (line 3) and installed in the right
flank of the B-tree (line 4). This corresponds to the continuous bulk loading
algorithm as used in ChronicleDB, i.e., the algorithm creates index and leaf nodes
in one go while keeping a right flank with leaf and index nodes with largest keys
in memory. Alternative strategies, such as building the leaf nodes first before
creating indexes nodes level-by-level afterward, could also be adapted similarly.

65

3 Waves of misery after index creation

100%

Filled

Free Space

getFillSize()

100%

(2t - 100)%

1st call
2nd call

Last call

...

95% 65%

...

60%

Results for t = 80%Strict Linear Function

Figure 3.6: Overview and example of the Strict Linear strategy.

Data is loaded from the smallest key to the largest key in a while loop (lines 5-13).
As long as the current leaf does not exceed the generated fillSize, data is inserted
into it (line 6-7). If the leaf exceeds the fillSize, a finishPage function finalizes the
leaf and installs it in the rightFlank (line 9-10). The adjustFlank function also
handles index pages, which may use the practical remedies as well. For the sake
of simplicity, we omit the details. Then, a new page and a fillSize for that page
are generated (line 11-12). We also omit the code for determining the fill degree of
the last page. The algorithm returns the tree’s root to allow access to the B-tree
(line 13).

3.5.1 Global strategies

The first set of strategies consists of global strategies. The goal is to achieve
a free space percentage of 100 − t%. Similar to the sound remedies solution,
instead of achieving 100 − t% in every node rigidly and precisely, this goal can
be accomplished by leaving a different amount of free space in each node. Global
strategies use a systematic approach that keeps track of all assigned free space
directly or indirectly and use that knowledge during the calls of getFillSize (lines
2+11) to steer the overall assignment towards an overall free space percentage of
100− t% in the B-tree.

The Strict Linear strategy is a global strategy that uses a linear function to
assign fill degree starting from a 100% filled node (0% free space) to a 2t− 100%
filled node. Figure 3.6 illustrates this strategy. The left side shows the progression
of calls to getFillSize. Each call reduces the returned size according to a linear
function. The right side shows the results for a desired target of 80% and a step size
of 5%. The fill degrees are assigned such that the first node has 100%, the second
95%, and the last two 65% and 60%, respectively.

This Strict Linear strategy favors some range queries and disfavors others.
For example, if querying the smallest keys, 100% filled nodes result in better query

66

3 Waves of misery after index creation

getFillSize()

100%

(2t - 100)%
2nd call

Alternating Linear Function

1st call
3rd call

...
4th call

Filled
...

100% 60% 85% 75%

Free Space

Results for t = 80%

Figure 3.7: Overview and example of the Alternating Linear strategy.

performance because fewer leaves need to be read compared to querying the largest
keys. We propose the Alternating Linear strategy to offset that deficit. It
also changes getFillSize calls according to a linear strategy that keeps track of the
entire bulk-loading process. However, fill degrees are assigned alternating from
high to low, as shown on the left side in Figure 3.7. The first node is assigned a
100% fill degree. The second node picks from the lower end of the linear function
and produces a 2t − 100% filled node. The third node picks from the upper end,
etc. The last call will be in the middle, ideally at t. On the right side, the example
for t = 80% and a step size of 5% shows that the first two nodes have a fill degree
of 100% and 60% while the last two calls of the getFillDegree function assign nodes
of 85% and 75%. In this example, a range query targeting the smallest key which
hits the first pages would access, on average, a fill degree of 80%. The same applies
to a query accessing the last two pages.

Both strategies require a step size that can be computed based on the number of in-
dexed data items. If the size is unknown (i.e., sorted data is streamed from another
source), strategies could use a fixed step size (e.g., 1%). Once the end of the assign-
ment strategy is reached (last call), the process is restarted. In this case, if a linear
function does only a few assignment cycles and does stops at the start of a cycle, the
target free space percentage of t might not be reached.

3.5.2 Local strategies

The second set of strategies consists of local strategies. Instead of systematically
assigning free space through a linear function, the decision about node size is local
for each node. I.e., no knowledge about the space of other nodes is required.
However, similar to the global strategies, it is still possible to approach an overall
target free space of 100− t%.

The Random strategy assigns a different amount of free space in each node by

67

3 Waves of misery after index creation

getFillSize()

(t+x)%

(t-y)%

Random Function

each call Filled
...

75% 98% 86% 87%

Free Space

Results for t = 80%

Figure 3.8: Overview and example of the Random strategy.

choosing the free space from a uniform random distribution. This only requires
changing the getFillSize() function at Lines 2 and 11. For a target utilization of
t, the random function can compute a value s such that 0 ≤ s ≤ x for an x with
t + x < 100 and t − x > 0. The left side of Figure 3.8 shows a more general
variation where the lower bound of the free space function is set with y and the
upper bound is set with x such that the fill degree is chosen within the interval
[t − y, t + x]. The right side of Figure 3.8 shows an example for t = 80%. The
parameters are x = y = 20%. Thus the free space will be randomly chosen from
the interval [60, 100]. On average, this will result in an overall space utilization of
80%. However, as seen in the example, each node has a different value for the fill
size. E.g., the first has 75%, the second 98%, etc. The same can be achieved for
a different value of x and y. E.g., for x = y = 5%, the average value will still be
80%, but with less variance.

The Suffix Truncation strategy follows the logic of suffix truncation/com-
pression that is already used in B-tree implementations. Originally conceived for
splitting nodes in the middle, it can be adapted to index creation and reorga-
nization when dealing with non-numeric keys. It requires changes to both the
getFillSize function as well as the finishPage function (Line 9). Similar to the
Random strategy, we can assign a value x and y such that the node size is picked
from the interval [t − y, t + x]. The getFillSize function can return the constant
value t − y, i.e., the lower bound of the interval. Thus, the page is loaded at
least to that lower bound. Afterward, within the finishPage function, the key
values within [t − y, t + x] are compared, and the shortest possible key value for
the B-tree branch node is determined. For that reason, at Line 9 in the algo-
rithm, we input both the remaining data and the page. For a traditional B-tree
implementation, this might not be necessary. If there is no correlation between
the shortest key value and its position, this approach promises a distribution of
node utilization similar to the random approach above, with the compression effect
added. The left side of Figure 3.9 illustrates the overall process. Unlike all pre-
vious strategies, the Suffix Truncation strategy uses the finishPage function

68

3 Waves of misery after index creation

finishPage()

(t+x)%

(t-y)%

Suffix Truncation

Filled
...

75% 98% 86% 87%

Free Space

Results for t = 80%

“cattle”

“catchphrase”
“catchweight”

...

Figure 3.9: Overview and example of the Suffix Truncation strategy.

call instead of getFillSize. Then it looks at the keys in the given interval. In this
case, keys are English words such as cattle, catchweight, and catchphrase. As a
key, we might choose the common prefix cat and finish the page at the lower end
of the interval t − y. The resulting distribution on the right side of Figure 3.9
for t = 80% and x = y = 20% shows results that are identical to the Random
strategy.

Since both local strategies do not require global counters or tracking of previous
assignments, they also work without knowledge about the size of the data that is
being indexed. They also do not necessarily suffer from the problems of the range
query as encountered in the Strict Linear Strategy. However, if the size
of the loaded index is small, the random distribution might suffer from statistical
noise or unwanted clusters of fill sizes. Thus, unlike the global strategies, they
do not 100% guarantee a desired overall space utilization but only approximate
it.

3.5.3 Hybrid strategies

Although the local and global strategies presented so far change the initial load
distribution of pages, they fail to approximate the pattern found in the ideal
solution existing for utilization of 69%. The general idea is that some pages are
ready to split immediately (100% filled), and many are only half-full. Thus, the
distribution is uneven. So far, no strategy guarantees varying nodes for different
fill degrees.

However, we can combine ideas from both global and local strategies to better
approximate this pattern. Technically, the result is a global strategy since it uses
global tracking of progress, but for presentation purposes, we cover it under a new
set of strategies called hybrid strategies. Figure 3.10 shows a hybrid linear and
random strategy that follows the idea of the ideal solution more closely. We refer to

69

3 Waves of misery after index creation

(t-y)%

(t+x2)%

Linear strategy

100%

(2t - 100)%

(t+x1)%

(t-y)%

50% Pages:
Random strategy with linear

decreasing upper bound

(t+x3)%

(t-y)%

...

50% Pages:

Figure 3.10: Overview of a hybrid strategy using the Linear and Random strate-
gies.

this strategy as Hybrid. In order to reduce the rigid constant distribution of the
linear strategy while keeping its overall range, only half of the pages are loaded
according to any of the two linear strategies. For the other half, randomness
is applied as follows: Utilization is first randomly chosen between (t+x)% and
(t-y)%. Afterward, the top of this range narrows linearly (i.e., less filled pages
become more likely) until the bulk loading is complete. This requires adjustments
of the getFillSize function. The same process could be applied with Suffix
Truncation strategy instead of the Random strategy.

3.6 Evaluation

All experiments were conducted on a workstation equipped with an AMD Ryzen7
2700X CPU (8 cores, 16 threads) and 16GB of memory, running an Ubuntu Linux
(18.04, kernel version 4.16). All strategies were implemented using the Java index-
ing library XXL [See01]. If not stated otherwise, the B-tree was initially loaded us-
ing 100,000 pages of 8KB. The tree holds records consisting of 21 integer values (to-
taling 84 bytes) of which 20 values are uniformly random. The last value is the key
and is randomly sampled according to a normal (Gaussian) probability distribu-
tion. The loading phase is succeeded with 60 million record insertions. The results
are shown based on the statistics of a batch of 10,000 insert operations. Having
batches of 10,000 records is not uncommon and allows for a reduction of statistical
noise. In the following, the practicality of the sound remedies, which are ideal for
69% utilization, are evaluated first. Afterward, the various practical remedies suit-
able for higher utilization requirements are analyzed.

70

3 Waves of misery after index creation

50 55 60 65 70 75 80 85 90 95 100

0

1000

2000

3000

4000

Ideal

Sound Remedy

Utilization in %

A
m

ou
nt

 o
f

pa
ge

s

Figure 3.11: The distribution of free space generated by an algorithm following the
ideal theoretical solution with the theoretical optimum.

3.6.1 Sound remedies

First, we compare the distribution of free space among all pages for an ideal
solution (i.e., a B-tree in a steady state) and the algorithm in Section 3.4. In
the ideal case, the overall space utilization amounts to ln(2) ≈ 69%. Figure 3.11
illustrates the results based on the different utilization (x-axis) and the number
of pages having them (y-axis). The ideal solution shows the basic notion of the
steady state: There are a few pages ready to be split right away (100% utilization,
no free space), many pages not even near their split point (50%), and having all
other utilization values in between them represented in the tree on a gradual slope.
The sound remedy has the same features but some slight spikes in the slope. This
is due to the asymptotic nature of the algorithm and its inherent randomness -
utilization is picked at random based on the described probability function. The
latter is an important feature of the algorithm due to range queries: If the slope
is perfect, a certain range of pages will have more free space than other pages.
Thus, those ranges require more pages to be read. As shown in Figure 3.12, the
sound remedy also performs well in practice if its assumptions are met. The x-axis
represents the progression of insert batches, while the y-axis shows the number of
leaf splits measured during each batch. While the constant strategy of each page
having the same utilization shows clear waves of splits, the sound remedy begins
in the steady state and never leaves it.

71

3 Waves of misery after index creation

0 1000 2000 3000 4000 5000 6000

0

200

400

600

800

Constant 69%

Sound Remedy

Insert Batch (Batchsize 10,000)

L
ea

f
S

pl
it

s

Figure 3.12: Leaf splits over time for constant free space in a node and an algorithm
based on the ideal theoretical solution (both 69% page utilization).

3.6.2 Practical remedies

We implemented the Strict Linear strategy, the Alternating Linear
strategy, the Random strategy, and the Hybrid strategy. Since suffix trunca-
tion depends on the given data, we chose not to evaluate associated strategies.
The most critical parameters for the experimental evaluation are the number of
data items to load, the target number of pages, and the overall space utiliza-
tion.

First, we will discuss individual experimental results of the following three strate-
gies: Strict Linear, Random, and Hybrid. Then, we present how waves of
misery impact the buffer pool. Finally, we go over the results of range query pro-
cessing. As before, the constant strategy of uniformly loading each page with the
same space utilization serves as a baseline for each evaluation.

Strict Linear

Figure 3.13 compares the impact of insertions on various initial space utilizations
(70%, 80%, and 90%). The y-axis shows the leaf splits, while the x-axis indicates
the number of batches inserted into the B-tree. Even at a high utilization of
90%, the linear strategy showcases slightly better leaf split performance than the
constant strategy at 70%. Thus, achieving a similar split behavior requires less
overall storage space for the same data. Furthermore, the lower the utilization,

72

3 Waves of misery after index creation

0 1000 2000 3000 4000 5000 6000

0

200

400

600

800

Linear 70%

Linear 80%

Linear 90%

Constant 70%

Insert Batch (Batchsize 10,000)

L
ea

f
S

pl
it

s

Figure 3.13: Leaf splits over time for various initial space utilization in the Strict
Linear strategy.

the more the impact of waves is reduced. Even at 80%, the behavior is close to the
steady state, and only short bursts of splits are present.

Random

Due to randomness, the final page count may differ from the expected page count
given the desired utilization, but those differences are expected to be negligible.
Figure 3.14 illustrates results for a space utilization of 80% with the same axis
labeling as in Figure 3.13. The different lines show a varying range from which
the random function chooses, i.e., Random 5% Range picks values between 75%
and 85% utilization, while Random 20% Range picks values between 60% and
100%. A small range of 5% shows surprisingly little benefit compared to the
constant strategy. However, wider ranges improve the desired effect significantly
and reduce the waves of misery.

Hybrid

Strict Linear and Random strategies can significantly reduce the waves of
misery and thus offer a good solution to implement in most systems. However,
the strategies still show slight waves compared to the sound remedies at 69%.
This is due to their initial load distribution. Similar to Figure 3.11, the results
in Figure 3.15 showcase the page utilization distributions for Strict Linear

73

3 Waves of misery after index creation

0 1000 2000 3000 4000 5000 6000

0

200

400

600

800

1000

Random 20% Range

Random 10% Range

Random 5% Range

Constant 80%

Insert Batch (Batchsize 10,000)

L
ea

f
S

pl
it

s

Figure 3.14: Leaf splits over time for expected 80% initial space utilization for
Random strategies with varying ranges.

30 40 50 60 70 80 90 100

0

1000

2000

3000

4000

5000

Ideal Linear

Random 31% Random 10%

Utilization in %

A
m

ou
nt

 o
f

pa
ge

s

Figure 3.15: Comparing the ideal initial
page distribution with
Strict Linear and
Random strategies.

30 40 50 60 70 80 90 100

0

1000

2000

3000

4000

5000

Ideal Hybrid

Utilization in %

A
m

ou
nt

 o
f

pa
ge

s

Figure 3.16: Comparing the ideal initial
page distribution with the
Hybrid strategy.

74

3 Waves of misery after index creation

0 1000 2000 3000 4000

0

100

200

300

Hybrid 69% Random 69%

Insert Batch (Batchsize 10,000)

L
ea

f
S

pl
it

s

Figure 3.17: Leaf splits over time for
the Hybrid and Random
strategies at 69% page uti-
lization.

0 1000 2000 3000 4000

0

100

200

300

Hybrid 80% Random 80%

Insert Batch (Batchsize 10,000)

L
ea

f
S

pl
it

s
Figure 3.18: Leaf splits over time for

the Hybrid and Random
strategies at 80% page uti-
lization.

and Random strategies compared to the ideal at 69% overall utilization. The
utilization is on the x-axis, and the number of pages is on the y-axis. The
best result for Random strategies requires a random range of 31%, resulting in
pages with less than 50% utilization. Conversely, a lower range of 10% does not
lead to less than half-full pages. However, the range of utilizations is lower than
the one for steady split rates. The Strict Linear strategy features the cor-
rect range of page utilizations, but their distribution is constant and thus not
ideal.

The Hybrid strategy combines both ideas to mitigate the differences. We chose
a utilization between 50% and 100% for the initial range for the Random part,
before narrowing the top linearly. Figure 3.16 shows the resulting initial page
utilization distribution. Combining those multiple simple strategies leads to a
good approximation of the ideal solution.

Figure 3.17 verifies this statement by showcasing results for the insertion experi-
ment for the first 4,000 insert batches at an overall target page utilization of 69%.
The Random strategy using a range of 31%, the best candidate for its class in terms
of splits, is used as a point of comparison. The Hybrid strategy outperforms it
and is in the steady state from the get-go. There are slight waves in the Hybrid
strategy for 80% utilization (Figure 3.18) because the B-tree does not have the

75

3 Waves of misery after index creation

0 1000 2000 3000 4000

50

55

60

65

70

75

80

85

90

95

Constant 69% Sound Remedy

Insert Batch (Batchsize 10,000)

B
uf

fe
r

U
ti

li
za

ti
on

 in
 %

Figure 3.19: Comparing buffer pool uti-
lization over time for 69%
page utilization for the
ideal solution and constant
free space in nodes.

0 1000 2000 3000 4000

50

55

60

65

70

75

80

85

90

95

Constant 80% Random 20% Range

Insert Batch (Batchsize 10,000)

B
uf

fe
r

U
ti

li
za

ti
on

 in
 %

Figure 3.20: Comparing buffer pool
utilization over time for
80% page utilization for
Random strategies and
constant free space in
nodes.

theoretically ideal target utilization. However, it can still outperform the Random
strategy and significantly reduces splits’ impact.

Buffer pool utilization

Until now, the evaluation focused on split frequencies, a natural indicator of I/Os
and buffer pool contentions. Next, experiments use an LRU buffer and measure its
statistics. The strategy implementations only consider leaf nodes. For this reason,
the setup has separate buffers for inner and leaf nodes to showcase the effect of
waves of misery on leaves.

The first experiment uses a buffer with 10,000 pages and compares the ideal solu-
tion with a constant strategy with a target utilization of 69%. Figure 3.19 shows
the results. Here, the y-axis shows the buffer utilization, i.e., the quotient of used
buffer pool bytes to totally available raw bytes. The waves of misery also appear in
the buffer utilization for the constant strategy, while an algorithm based on sound
remedies eliminates them. For a higher overall utilization of 80%, Figure 3.20 com-
pares the Random strategy with a range of 20% with a constant strategy. Waves

76

3 Waves of misery after index creation

0 1000 2000 3000 4000 5000 6000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

Constant 10k Buffer

Constant 20k Buffer

Constant 100k Buffer

Random 10k Buffer

Random 20k Buffer

Random 100k Buffer

Number of Insert Batches (Batchsize 10.000)

B
uf

fe
r

ev
ic

tio
ns

Figure 3.21: Buffer evictions (writes) over time for varying buffer sizes comparing
the Random strategy with constant free space in nodes.

for the constant strategy are even higher than at 69%. The random strategy
reduces waves of misery in buffer pool utilization.

Finally, both constant and Random strategies at 80% overall space utilization
were compared for different buffer sizes based on buffer evictions, i.e., leaf pages
being written out from the buffer onto disk due to other reads or writes requesting
another page. Figure 3.21 shows the total number of evictions (y-axis) per batch
(x-axis) while having varying buffer sizes (10,000, 20,000, and 100,000 pages) for
each strategy. At 10,000 and 20,000 maximum buffer capacity, the waves of misery
in the form of increased spikes of write operations are visible for the constant
strategy. Meanwhile, the Random strategy almost eliminates the effects. For a
larger buffer size of 100,000 pages, the additional writes are absorbed into the buffer
pool. Nevertheless, since the B-tree increases, more pages must be constantly
written out. The Random strategy allows for a more gradual increase. Meanwhile,
the constant strategy shows sharper steps at the points of the waves of misery since
there is a sudden increase in new pages.

Range queries

Since the proposed strategies do not load pages with a uniform free space, this
obviously has some impact on range queries. For example, in the simple case
of uniform key distribution, there is a chance that the same range span may hit

77

3 Waves of misery after index creation

0 M 10 M 20 M 30 M 40 M 50 M 60 M 70 M 80 M 90 M 100 M

300

350

400

450

500

550

600

650

700

Strict Linear

Alternating Linear

Range Start Point

P
ag

es
 A

cc
es

se
d

Figure 3.22: B-tree range queries (range 100k) with varying starting points that
cover the whole tree range.

varying degrees of full pages for different key ranges in the key space, resulting in
more page reads and a negative performance impact.

For the experimental evaluation, we load a tree with 500,000 pages at a targeted
utilization of 80% using a uniform key distribution ranging from the integer key
0 to the integer key of 100 million. Afterward, successive range queries target
the first 100,000 values, then the next 100,000, etc., until the last key. Figure 3.22
shows the results of this experiment for the Strict Linear and Alternating
Linear strategies. The x-axis shows the starting range of the range query. The y-
axis shows the number of leaf pages accessed in the query. The Strict Linear
performs best for the first couple of ranges because those ranges have the most
full pages. It deteriorates for the last ranges since those ranges feature fewer
occupied pages. The Alternating Linear strategy reduces this variation in
performance and constantly accesses 500 pages for each read operation. We also re-
peated this experiment for the constant free space in nodes, which performs about
the same as the Alternating Linear strategy. Furthermore, the Random
strategy also performs in the same ballpark, but, as expected, has slightly more
spikes due to its randomness.

78

3 Waves of misery after index creation

3.7 Summary

In summary, research in the past has overlooked the waves of node splits starting
soon after B-tree creation, load, or reorganization. There are multiple means
for avoiding or reducing them; many are simple and effective. The core idea is
not to avoid node splits but to always perform some. The load is distributed
across more operations by bulk loading B-trees with varying instead of constant
fill degrees.

79

4
Continuous merging

4.1 Introduction

Streaming workloads require write-efficient streaming indexes. Log-structured in-
dexes collect multiple updates, insertions, and deletions in main memory before
writing them into a component on secondary storage. This process generally im-
proves write efficiency. Background merge activity reduces the number of compo-
nents on secondary storage to reduce the latency of individual queries. Although
log-structured indexes are typically more write-efficient than B-trees, they suffer
from a fundamental tension between the bandwidth of data ingestion, the latency
of individual queries, and the latency from ingestion to inclusion in query results.
It is possible to trade off some performance in one dimension for another by chang-
ing the frequency and type of merge activity. For example, merging with a larger
fan-in improves data ingestion at the cost of query performance. In general, log-
structured indexes occasionally trigger a background merge process based on some
sort of policy. Continuous merging is a novel solution for robust stream indexing
based on a perpetual merge sort algorithm. The merge sort algorithm enhances the
efficiency of merging and querying, improving existing trade-offs between ingestion
and query performance.

In this introduction, we will first highlight the necessity for continuous merging
by presenting a case study for log-structured indexes in ChronicleDB and an-
alyzing state-of-the-art log-structured indexes optimized for write amplification
(Section 4.1.1). Then, we will give a brief overview of the continuous merging idea
(Section 4.1.2).

The structure of the following sections is as follows. Section 4.2 reviews related
prior work. Section 4.3 introduces continuous merging with staggered key ranges
in more detail and in more variations. Section 4.4 consists of a theoretical analysis
of the new algorithms. Implementation details of continuous merging are cov-
ered in Section 4.5. Section 4.6 introduces more aggressive merging strategies as

80

4 Continuous merging

well as policies to handle variations in input rates. All methods are evaluated
in Section 4.7. Finally, Section 4.8 summarizes the results and draws a conclu-
sion.

4.1.1 Case study: Log-structured indexes for ChronicleDB

Requirements and current limitations

In ChronicleDB, log-structured indexes can be used as a heavyweight secondary
index on some attribute of the payload. Since the index is a secondary in-
dex, data loss is less important. The entire index can be reconstructed from
the primary index. This process is simplified because ChronicleDB mostly ap-
pends data to its primary index or out-of-order queue and the most recent data
in LSM (which can be lost) resides in main memory. Therefore, to reduce the
overhead of the secondary index, write-ahead logging (WAL) of every entry in-
serted into the main memory component of LSM, as found in the default con-
figurations of some commercial systems, is not an important requirement for
ChronicleDB.

Since data loss is less important, memory components can be larger. For exam-
ple, in LevelDB, the default memory components are 4 MiB. However, investing
more memory for a secondary index reduces write overhead and keeps data in
memory longer, speeding up secondary index queries. RocksDB uses a default
configuration of 64MB for the main memory component, which, even after giving
up persistence guarantees of WAL, is a better trade-off for maintaining a sec-
ondary LSM index in ChronicleDB. However, even larger components might be
possible.

Log-structured indexes for ChronicleDB need to follow the requirements for ro-
bust stream indexing (Section 2.3.1). In particular, efficient write operations for
sustaining high input rates of data streams, predictable (ideally constant) index
maintenance and query costs, and low ingestion-to-query results latency. Fur-
thermore, ChronicleDB requires efficient range queries on the secondary index to
support secondary indexes in pattern-matching queries. While B-trees are ideal
for that use case, LSM can sustain higher write rates. Thus, LSM that supports
range queries as best as possible is necessary.

Currently, the LSM and COLA implementations of ChronicleDB are not robust.
Insertion and query costs of a single event have high variance. After reaching its
maximum size, the main memory component will be flushed to disk. An inser-
tion can also trigger cascading merge operations, which might involve merging all

81

4 Continuous merging

disk components. These operations are not asynchronous; thus, the number of
components and the cost for each insertion have wide performance swings. De-
amortization techniques, as known from FD-trees and COLA, are not present. Fur-
thermore, contrary to state-of-the-art LSM implementations, ChronicleDB lacks
multi-threading support for secondary index management. Thus, to further in-
vestigate LSM in a ChronicleDB context, we will analyze state-of-the-art imple-
mentations while considering ChronicleDB requirements rather than looking at
ChronicleDB directly. Since we want to support efficient writes, stepped-merge
trees or tiering implementations are an ideal target due to low write amplifica-
tion. Unfortunately, commercial systems have very limited support for tiering,
and only a few research prototypes with somewhat flexible merge algorithms ex-
ist. Thus, we base the discussion around the two most promising candidates,
PebblesDB and SifrDB, which beat the competition regarding efficient write op-
erations.

Memory component

First, we look at the management of the main memory component. In general,
any system will have some combination of three steps to manage these compo-
nents: insertion, sorting, and flushing to persistent storage. These steps can be
intertwined, such as inserting into a sorted main memory structure. Since both
PebblesDB and SifrDB use the LevelDB code basis, their main memory manage-
ment is very similar. For this thesis, a closer experimental look at PebblesDB is
sufficient.

For the experiment in Figure 4.1, we measured the time between creating a mem-
ory component and the conclusion of the final insert operation (Memory Run) and
the time between the beginning of the flush operation and its completion (Flush).
The experiment was performed on a workstation equipped with an AMD Ryzen7
2700XCPU (8 cores, 16 hardware threads), 16GB of memory, and a Samsung SSD
970PRO for persistent storage. The operating system is an Ubuntu Linux (kernel
version 5.3). We used three configurations (C1, C2, and C3) for experiments in
PebblesDB. Every configuration has a 16-byte key. C1 can fit up to 4 MiB of
data in the main memory component, which is the default PebblesDB configu-
ration. Furthermore, C1 attaches values of 48-byte size to each key. C2 uses 4
MiB main memory components and 240-byte size values. C3 uses 64 MiB main
memory components and 240-byte size values. Insertions into the main mem-
ory component can be batched for each component. The x-axis in Figure 4.1
shows the configuration and batch sizes. For executing the experiment, we use
the db bench tool provided by PebblesDB (as well as LevelDB, RocksDB, etc.).

82

4 Continuous merging

C1, Batch: 1

C1, Batch: 64

C1, Batch: 512

C2, Batch: 1

C2, Batch: 64

C2, Batch: 512

C3, Batch: 1

C3, Batch: 512

C3, Batch: 2048

0

100

200

300

400

500

600

700 Memory Run Flush
Ti

m
e

(m
ill

is
ec

on
ds

)

Figure 4.1: Flush operations in PebblesDB with three experimental configurations.
C1: 4MiB main memory component, values 48 Byte; C2: 4 MiB main
memory component, values 240 Byte; C3: 64 MiB main memory com-
ponent, values 240 Byte.

The insertion distribution is uniform. PebblesDB uses an in-memory skip list to
organize records in the memory component and SSTables to organize disk compo-
nents like in LevelDB. Across all results in Figure 4.1, creating a run in memory
takes longer than flushing it to disk, usually up to a factor of two. Increasing
the batch size to 512 offsets this discrepancy for smaller components with large
values (C2). For smaller values (C1), each component has more keys that require
sorting. Consequently, batching is less effective than for C2. For large components
(C3), batching has diminishing returns with negligible differences between batches
of 512 and 2048.

The results show a problem for robust stream indexing. The bottleneck in the
main memory component is the cost of sorting runs in memory, especially for
larger components and when using fast SSDs. If flushing is handled asynchronously
(as done in most implementations), periodic bursts of activity occur whenever a
component finishes. Additionally, since sorting is the bottleneck, this expands
to background merge activity, especially for stepped-merge trees. Sorting a run
of size n in memory takes n log(n), while merging a run of the same size with
F other runs takes n log(F)F . Usually, log(F) <<< log(n), which results in a
discrepancy between merge activity and initial run creation. I.e., building F ini-
tial runs takes longer than merging those F runs. Note that alternative memory
component structures, such as using vectors in RocksDB, do not alleviate this
problem. Appending to a vector is faster than insertion into a skip list. How-

83

4 Continuous merging

ever, sorting is then merely moved to the flush step, and thus the bottleneck
remains.

Merging performance - PebblesDB

Merge operations in PebblesDB are called compactions. A compaction is triggered
whenever the number of files (SSTables) or bytes on a level exceeds a certain
threshold. PebblesDB uses “guards” to separate files on a level by key ranges.
Each guard specifies one key range on a level. Key ranges of guards in a level do
not overlap. SSTables also implicitly cover a key range as determined by the keys of
records in an SSTable. If the key range of the guard fully contains the key range of
an SSTable, the SSTable is associated with the guard.

Conceptionally, in the beginning, a level consists of exactly one guard covering
the key range [−∞,+∞]. New guards are established over time. After a guard
has been established on a level, the key range of every SSTable on a level has to
be fully contained by the key range of exactly one guard. There may be multiple
SSTables associated with a guard. That is, there is an n:1 relationship of SSTables
to guards on a level. Guards are introduced on a level at random such that lower
levels (i.e., lower means closer to main memory and have smaller amounts of data)
are less likely to produce new guards. Level 0 does not produce any guards. After
creating a guard, it is possible to perform compaction for a key range by only
compacting files associated with a guard.

We used db bench to insert 40 Million uniformly distributed key-value pairs (a total
of 256 bytes per pair) in batches of 512. For the size of the memory component, we
chose 8MiB. For that configuration, we measured sorting to be a factor 1.7 slower
than flushing. For the compaction, we used the default compaction configuration
of PebblesDB. After multiple experiments, we altered the parameters to include 3
background compactions (i.e., three levels can be merged in parallel). Merges can
be triggered when the number of SSTables in a guard reaches 8 or the size of the
SSTables reaches 8 fold of the previous level. Effectively, this is a stepped-merge
algorithm with a fixed fan-in of 8. The default configuration includes 6 total levels;
thus, the last level is an archive level that is not further compacted. We executed
this experiment multiple times and picked a representative result shown in Fig-
ure 4.2. On the y-axis, we show the maximum SSTables per guard (i.e., effectively
the worst-case query costs). The x-axis shows the elapsed time of the experiment.
For legibility reasons, we only show results for levels 0 and 1. Clearly, over time
there is a wide variance of files per guard. Over time, the number sharply drops
and rises, showing variance in merge activity (merging up to 100 files at times)
and in files a query must consider. Files on level 0 exhibit sharp rises and drops

84

4 Continuous merging

20 40 60 80 100
0

50

100

150

200

250
Level 0 Level 1

Time in seconds

M
ax

im
um

 p
ar

tit
io

ns
 p

er
 g

ua
rd

Figure 4.2: Default compaction in PebblesDB (40 Million uniformly distributed
values, memory component size 8MiB, batch size 512, Fan-In 8).

in a sawtooth pattern because many files participate in a long-running merge, and
once it concludes, results are put into level 1. Oddly, level 1 does not exhibit the
same behavior, showing a bathtub pattern. Upon further inspection, the imple-
mentation of PebblesDB does not permit parallel merges on adjacent levels, so
merge activity on level 1 is periodically stalled.

We disabled this with a workaround that generally allows concurrent merge activi-
ties and stalls result installation on conflicts such as introducing new guards - this
can temporally delay the appearance of SSTables after that process concludes. We
repeated the same experiment for 160 million inserts. Furthermore, we reduced
the number of levels to 4 such that each level has a dedicated background com-
paction thread. In Figure 4.3, we show the results for the first 40 seconds of the
experiment. Instead of the worst-case performance, we show the average of parti-
tions per guard on the y-axis. In the beginning of the experiment, all levels show
somewhat of a sawtooth pattern as previously observed on level 0. There is merge
activity on every level, and the system can sustain the load, although still showing
a high variance of files per guard. With a long-term view, as seen in Figure 4.4,
the system quickly deteriorates, showing larger spikes, especially on levels 0 and
1. This is also surprising because initially, the system could sustain merging on
every level, and the input load remained constant.

Note that we picked a steady but high ingestion load that was initially sustainable.
If using less load that does not challenge merge activity, especially if it can be “hid-
den” behind the discrepancy of sorting and flushing, the system works as intended.
However, PebblesDB does not showcase robust behavior for high streaming work-

85

4 Continuous merging

5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

40
Level 0 Level 1 Level 2 Level 3

Time in seconds

Av
er

ag
e

pa
rti

tio
ns

 p
er

 g
ua

rd

Figure 4.3: First 40 seconds of adjusted compaction in PebblesDB (160 Million
uniformly distributed values, memory component size 8MiB, batch size
512, Fan-In 8).

50 100 150 200 250 300 350
0

100

200

300

400

500
Level 0 Level 1 Level 2 Level 3

Time in seconds

Av
er

ag
e

pa
rti

tio
ns

 p
er

 g
ua

rd

Figure 4.4: Adjusted compaction in PebblesDB (160 Million uniformly distributed
values, memory component size 8MiB, batch size 512, Fan-In 8).

86

4 Continuous merging

0 20 40 60 80 100 120 140 160 180
0

5

10

15

20
Level 0 Level 1 Level 2 Level 3

Time in seconds

Lo
gi

ca
l P

ar
tit

io
ns

Figure 4.5: Logical partitions of SifrDB (40 Million uniformly distributed values,
memory component size 8MiB, Fan-In 8).

loads, showing large fluctuations in merging effort and variance in files a query
has to consider. This is partly due to implementation details such as concurrent
access between levels. However, even disregarding those, there are evident fluctu-
ations because guards take time to install and calibrate and are prone to “wrong”
decisions.

Merging performance - SifrDB

SifrDB is also based on LevelDB and uses compaction of LSM files. However, it
does not use guards. Thus, it is an implementation closer to the original vision of
stepped-merge trees, where each run corresponds to a temporal partition. However,
the run is not a single B-Tree, but multiple SSTables.

We configured SifrDB to have 8MiB memory components, 3 background com-
paction threads, a maximum of 4 levels, and trigger compactions upon reaching
8 runs in a level. Then we inserted 40 million records using db bench, similar to
the experiment with PebblesDB. Figure 4.5 shows the result of the experiment.
Again, we performed it multiple times and picked a representative progression. On
the y-axis, we show the number of logical partitions present at any point in time.
We find the results to be more predictable than PebblesDB, with no huge jumps
in partitions. However, results are not robust, because there is huge variance in
partitions over time.

Note that the implementation we used for SifrDB [Sif] did not have a complete code

87

4 Continuous merging

basis for the feature of early deletions. Therefore, we show the logical partitions
for SifrDB, which are not influenced by this feature. Logical partitions represent
the worst case encountered by the query. We discuss other expected metrics in
Section 4.4.

Summary of case study

LSM and COLA in ChronicleDB suffer from single-threaded implementations,
which cause huge performance spikes without de-amortization optimizations. Fur-
thermore, they do not support the stepped-merge algorithm, which reduces write
amplification and is well-suited for high ingestion workloads produced by data
streams. As a result, ChronicleDB requires a new robust stream index for sec-
ondary indexes. Many state-of-the-art LSM systems lack a sophisticated stepped-
merge implementation. Two of the best-performing research systems show a bot-
tleneck in handling the main memory component. Disregarding this bottleneck,
background merge operations, when facing high load, show unpredictable behavior
or high variance in runs per level. Thus, they leave much room for improvements
in terms of robustness. Based on the insights in this case study, we will motivate
and present a new alternative approach for merging. Then, we will discuss the
implementation of this approach that also addresses bottlenecks encountered in
state-of-the-art LSM research systems.

4.1.2 Motivation for continuous merging

Log-structured indexes avoid waves of misery encountered in B-trees by turning
insertions into append operations, updates into insertions of replacement records,
and deletions into insertions of “tombstone” records. Unfortunately, these forms of
stream indexing introduce their own waves of misery, as observed in Section 4.1.1.
More specifically, a merge step starts whenever the count of partitions, also known
as runs or deltas, reaches a threshold. As stream indexes with their temporal
partitions resemble external merge sort, each merge level creates its own waves of
merging. If multiple merge levels require and initiate merge steps simultaneously,
they create something like a monster wave. Partial compaction is an approach
to de-amortize huge merge steps and possibly flatten waves of activity by limit-
ing merge activity to some key range. However, it is widely available only for a
merging policy called leveling. While leveling is read-efficient, it suffers from a
high write amplification and inefficient merging because one partition at level l is
merged with one partition at level l + 1 (see Section 4.7.4). Instead, the tiering
policy substantially decreases write amplification by merging a constant number

88

4 Continuous merging

Count of partitions

Merge fan-in F

Time
Partition generation

Merging

Combined effoort

Figure 4.6: Level-0 partition count for a stepped-merge forest.

of input partitions. As partial compaction is not widely available in tiering strate-
gies [Sar+21], choosing ill-advised long running-merges can cause waves of misery
again. It remains an open problem in systems like RocksDB [Don21], for example,
how to make tiering more incremental, i.e., how to flatten the undesirable waves
of misery.

This chapter presents a new merge approach to stream indexing, like write-efficient
tiering, that, under mild assumptions, does not produce waves of misery. Our
novel design paces each merge step such that there is an active merge at each
level at all times. Between merge steps, the amount of data moved during a
merge equals the amount of new data arriving for data ingestion as well as the
amount handled by the initial partition generation. Thus, the amount of data
waiting to be merged at each level remains practically constant. To emphasize the
difference from all prior designs for stream indexing, we call this design continuous
merging.

In order to clarify the difference to traditional merging, let us consider a merge
process from merge level l to l+ 1 that consumes a set of partitions and produces
a single partition. Afterward, there may be a waiting period, during which level l
builds up the appropriate count of partitions for the next merge step. Between the
start of each of these merge steps, the count of partitions found by queries varies
over time in a sawtooth pattern. For a desired merge fan-in F , a merge step com-
mences when F partitions exist; while the merge step does its work, the count of
partitions slowly grows towards 2F due to additional data ingestion; when a merge
step completes, the number of partitions drops by F .

For l = 0, Figure 4.6 shows the number of partitions over time and the time period
when merging occurs. Data ingestion and partition generation never end, contin-
uously increasing the count of partitions. Whenever the count reaches the desired
merge fan-in F , a merge step starts. When it finishes, the number of partitions
drops. The cycle repeats endlessly on each merge level. In this diagram, there is a
short pause between merge steps, reflecting the fact that merge bandwidth is a bit
higher than ingestion bandwidth. While the count of partitions never quite reaches

89

4 Continuous merging

2F , the count of partitions varies over time by more than a factor of two. If the
merge bandwidth perfectly matches the bandwidth of data ingestion and partition
generation, the count of partitions continuously oscillates between F and 2F . This
is precisely the result we observed in our case study on PebblesDB and SifrDB.
The diagram also shows the combined effort for ingestion (partition generation)
and for merging from level 0 to level 1. The waves of increasing and decreasing
active effort are clearly visible. With multiple merge levels, their wave frequen-
cies interact, leading to occasional monster waves of pending work and concurrent
effort.

In contrast to this sawtooth pattern, our design keeps the count of partitions
very steady. Our new and perhaps radical idea enabling continuous merging is
to add and drop partitions from an active merge step at key values other than
−∞ and +∞, or at the start and the end of a partition. Our new merge logic
adds a partition immediately when the partition becomes available for merging,
and it adds the partition at the key value that reflects the current progress of the
merge step. If the pacing is perfect, this will occur at quantiles 1

F
, 2
F
, 3
F
, . . . , F−1

F

and, once every F partitions, at ±∞. The merge logic keeps its inputs active
when it wraps from +∞ to −∞ and starts a new output partition. It drops each
partition when it reaches the key value at which it previously added the partition.
Adding a partition at these key values is efficient because each partition is a B-
tree, as partitions must enable not only merging but also searching. Due to this
sequence of key values, we call this design continuous merging with staggered key
ranges.

The sawtooth pattern in the number of partitions affects the write performance
and the performance of individual queries. Multiple waves (at multiple merge
levels) overlap if a query searches across long time intervals. These waves are
neither predictable for users nor easily explainable. Thus, a user might not see
the waves of merging but experiences these waves in query performance as another
kind of wave of misery. With continuous merging, partition generation, and each
merge level could move data all at the same bandwidth, paced by data arriving
for ingestion and indexing. If this approach is feasible, the data volume at each
level of partitions remains very steady, and the count of partitions, as well as the
volume of data waiting to be merged, are practically constant, stabilizing query
performance.

Finally, progress and scheduling in continuous merging can be purely driven by
the data input. Unlike traditional merging, continuous merging requires neither a
fixed set of input partitions while merging nor an additional scheduling component.
Adding and removing partitions from an active merge flexibly avoids the issue of
being locked into a long-running merge process chosen by a pre-configured rigid

90

4 Continuous merging

merge policy - a root cause for waves of misery. This rigidness was also recently
observed in LSM systems, which have a great variety of merge strategies, but they
are “often treated as a black-box and [...] rarely exposed as tunable knob” and
“choosing an appropriate [merge] strategy requires a human in the loop” [Sar+21].
While some future combination of handcrafted knobs might achieve similar results
in some cases, continuous merging leans more towards the following ideal: “No
knobs is the only thing that makes any sense.” [Sto11]

A prerequisite for reducing the reliance on human experts and not introducing
further black-boxes and unclear knobs in the process is a formal understanding
of which (and how) parameters impact performance. Thus, we develop a theo-
retical foundation for continuous merging in our target use cases covering merge
progress and query performance. We apply the same model to similar strategies
and highlight the differences. Furthermore, we use those results to develop multiple
hypotheses for our experimental analysis.

The sections below cover mechanisms for steady-state continuous merging with
staggered key ranges as well as handling of insertion bursts; policies for disruptions,
recovery, changes in key distribution, etc. are a possible next big step in this line of
research. In particular, our contributions are as follows:

• Introduce the merge and query mechanisms for continuous merging with
staggered key ranges to combat waves of misery in write-efficient merging
scenarios.

• Theoretically analyze the best-, expected-, and worst-case performance of
continuous merging for initialization and steady-state scenarios. Further-
more, we contrast those results with competing approaches.

• Develop extensions for more eager merge strategies as well as policies for
more external robustness.

• Experimentally evaluate nine hypotheses about the run time behavior of
continuous merging, showcasing the benefits of the proposed technique.

4.2 Related prior work

There is a vast amount of research literature on database indexes, their use in
queries, and their efficient maintenance. The most important aspects are available
in textbooks. Here, we focus on indexing streams, i.e., continuous high-bandwidth
insertions and high-performance queries. A particular challenge in stream indexing

91

4 Continuous merging

is information availability close to real-time, i.e., with a short delay from inges-
tion of a data item to its first inclusion in a query result. Thus, the principal
performance metrics of stream indexing are

1. indexing bandwidth/write amplification, i.e., the CPU effort and I/O count
per input row;

2. query performance, i.e., the count of partitions or runs to be searched;

3. latency, i.e., the delay from a row’s ingestion to its first contribution to a
query result; and

4. robustness, i.e., predictable read/write performance and resource consump-
tion over time.

There is a tension between these four goals that seems impossible to resolve. The
present work merely alleviates this tension; there is no pretense that it can over-
come it entirely.

Multiple prior storage structures and algorithms could be considered for indexing
streams, many of which were discussed in Section 2.2. For LSM trees, an essential
distinction in terms of robustness and overall performance is the strategy for back-
ground merge processes. Modern merge strategies in LSM were recently classified
in a taxonomy featuring four design primitives for compactions (i.e., merges in
LSM systems) [Sar+21]. The compaction trigger refers to events that lead to a
compaction job, e.g., the number of runs is above a threshold. The compaction
granularity refers to the amount of data moved during a compaction, e.g., mul-
tiple sorted runs. The data movement policy describes what is moved during a
compaction, e.g., the least recently accessed runs. Finally, the data layout refers
to the data organization. A leveling layout means one (partial) run from level l
is merged into one (partial) run from level l + 1. A tiering layout means multiple
runs from a level l can be merged into level l+1. For the following discussion, we
present an excerpt from the classification of state-of-the-art systems as compiled
by Sarkar et. al [Sar+21] in Table 4.1. The full table is available in the original
work [Sar+21]. A comprehensive survey of LSM was also provided by Luo and
Carey [LC20b].

RocksDB [MDL20] and LevelDB [GD11] are two well-known implementations of
LSM. The default merge policy has a leveling data layout. Each merge level l > 0
consists of one run covering the entire key range split into fixed-size files called
SSTables (sorted string tables). A merge scheduler picks adjacent SSTables at
a level for merging [Don+17]. Although different data movement strategies for
picking SSTables can tweak performance characteristics (e.g., maximum number
tombstone-records for eager deletions [MDL20; Don16]), it shares most of the

92

4 Continuous merging

Database Data layout Trigger Granularity Data Movement

L
ev
el

S
at
u
ra
ti
on

S
or
te
d
R
u
n
s

F
il
e
st
al
en
es
s

S
p
ac
e
am

p
.

T
om

b
st
on

e-
T
T
L

L
ev
el

S
or
te
d
R
u
n

F
il
e
(s
in
gl
e)

F
il
e
(m

u
lt
ip
le
)

R
ou

n
d
ro
b
in

L
ea
st

o v
er
la
p
(+

1
)

L
ea
st

ov
er
la
p
(+

2
)

C
ol
d
es
t
fi
le

O
ld
es
t
fi
le

T
om

b
st
on

e
d
en
si
ty

N
/A

(e
n
ti
re

le
ve
l)

RocksDB [MDL20],
Monkey[DAI17]

Leveling
√ √ √ √ √ √ √ √

Tiering
√ √ √ √ √

LevelDB[GD11],
Monkey[DAI17]

Leveling
√ √ √ √ √

bLSM [SR12] Leveling
√ √ √

PebblesDB[Raj+17]
Hybrid
Leveling

√ √ √ √

SifrDB [Mei+18] Tiering
√ √ √

Table 4.1: Compaction strategies in state-of-the-art log-structured index systems
(excerpt from [Sar+21]).

problems with original binary merging: A key range of an SSTable at level i usually
covers multiple SSTables at level i + 1. Thus, the inefficiencies of many merge
levels, unbalanced merging, and high write amplification remain. Furthermore, on
the topic of robustness, Luo and Carey [LC20b] note: “[LSM-trees] often [exhibit]
write stalls and unpredictable write latencies since heavy operations such as flushes
and merges run in the background.” Performance predictability due to write stalls
remains an open challenge [SA22].

Among leveling data layouts, bLSM [SR12] is most similar to continuous merging
due to its spring and gear scheduler for merges. The scheduler tracks the merge
progress on each level and aims to synchronize merges among adjacent levels such
that they complete at the same time. While this leads to more predictability, bLSM
suffers from the write amplification issues of binary merging. Furthermore, it “was
only designed for the unpartitioned leveling merge policy” [LC20b] and “[ignores]
the queuing latency, which is often a major source of performance variability”
[LC20b].

Stepped-merge trees [Jag+97] invoke a merge step whenever a sufficient count of
runs exists on the same merge level. Increasing the merge fan-in is the most effec-
tive way to reduce write amplification. Consequently, stepped-merge trees reduce
write amplification in comparison to leveling data layouts. However, the count of
runs in each merge level exhibits a sawtooth pattern, and query performance mir-
rors these waves. In the LSM compaction taxonomy, this stepped-merge trees can

93

4 Continuous merging

be classified under the tiering data layout. In most modern implementations, this
results in a compaction granularity of sorted runs and data movement of entire lev-
els, resulting in long-running uninterruptible merges [Sar+21] and waves of misery.
One notable exception is PebblesDB [Raj+17]. It has a hybrid leveling data layout,
meaning some levels have a tiering and some have a leveling layout. PebblesDB
opts for various-sized SSTables regardless of layout and groups SSTables on a level
to key ranges. Even though merges per key ranges are allowed for tiering layouts
in PebblesDB, PebblesDB starts without any key ranges for grouping SSTables.
They are only slowly added over time, leading to unpredictable performance even
in steady-state workloads. To avoid this, LSMTrie [Wu+15] uses hash functions
for data while sacrificing range query support.

Some interesting approaches also exist between leveling and tiering. Lazy leveling
[DI18] keeps levels closer to main memory as tiering and larger levels in leveling
layout. For all but the last level, Autumn [Zha+23] introduces an additional scal-
ing factor between 0.5 and 1 between consecutive levels. As data storage grows,
so does the size of smaller levels. Thus, more data can be kept in a few levels,
improving worst-case point and range query performance. Another comparison of
LSM merge policies [Mao+21] takes a closer theoretical look at bounded-depth
stack-based policies, which minimize write amplification. Since continuous merg-
ing uses staggered key ranges, and thus, some divide of the key space, they do not
fit the stack-based policies class. Spooky [Day+22] is a method to decide on vary-
ing compaction granularities for different levels. Generally, smaller levels merge
entire runs, while larger levels merge only some key ranges. Spooky is generally
compatible with various merge strategies and could be integrated into continuous
merging.

Merging policies and mechanisms are the essential difference between continuous
merging and all earlier approaches to leveling and tiering. All aforementioned
policies and implementations pick multiple SSTables according to a compaction
trigger, execute the merge on this fixed set of SSTables to completion and install
results in some fashion. In contrast, continuous merging uses the new idea of
adding and dropping merge inputs from an active merge step. To the best of our
knowledge, no other stream indexing implementation uses this approach. The only
two related ideas can be found in SifrDB [Mei+18] and SILK [Bal+19]. SifrDB
has a tiering layout, i.e., it waits for the accumulation of F sorted runs in a level
and merges them to completion. Already merged SSTables of an active merge can
be deleted early for better space amplification and result in a smaller compaction
granularity than all tiering approaches other than PebblesDB. Although SifrDB
had a more predictable performance than PebblesDB in our case study, the re-
sults also revealed that it does not improve worst-case query performance like our

94

4 Continuous merging

approach.

SILK [Bal+19] focuses on stable writes in LSM, and highlights write stall issues
in both RocksDB and PebblesDB, because “writes get blocked by [main mem-
ory components] filling up” due to either a full level 0 or concurrent merges. A
scheduler resolves this issue by prioritizing lower-level merging during peak work-
loads and catching up on other work during low write times. Luo et al. [LC19a;
LC19b] propose a greedy scheduling algorithm that prioritizes merges with the
lowest number of bytes left to merge. Although SILK focuses on binary merging,
it allows the preemption of active merges in favor of lower-level merges. Results
of aborted merges may be discarded.

Accordion [Bor+18b] is an algorithm for the memory management in LSM. New
data items are appended to a segment with a skip-list index. Occasionally, a seg-
ment becomes immutable. An ordered array replaces the skip-list index to reduce
memory consumption, improve cache efficiency, and speed up garbage collection.
It is possible to merge the array of multiple immutable segments such that it points
to multiple segments. In the continuous merging pipeline, we also essentially keep
multiple segments in main memory, but sort them in parallel in preparation for
merging. A publication by Luo and Carey [LC20a] also analyzes the memory com-
ponent in binary LSM. The proposed improvements include range-partitioning the
memory component, adding in-memory compaction levels, and flushing of partial
ranges. Runs at level 0 are also range-partitioned, unlike in RocksDB. Doing more
work in memory reduces write amplification on other levels. Furthermore, an auto-
tuning component divides memory into write memory for the memory component
and buffer cache region to support efficient memory allocation for this additional
memory work. Continuous merging also uses range partitions for all levels but
focuses on multiple runs per level for higher write throughput, comparable to
stepped merging. Some levels of LSM can be placed on non-volatile main memory
to reduce the speed gap between devices [JCY22].

4.3 Continuous merging with staggered key ranges

The essence of continuous merging is indexing a stream by eternally running a
variant of external merge sort. The goal is to carry over to stream indexing as
much of the efficiency of external merge sort and traditional index creation. This
requires merging with high fan-in as well as merging partitions of similar sizes and
thus managing partitions and merge steps in levels. In traditional index creation,
the memory size (divided by page size) limits the merge fan-in, as the maximum
fan-in ensures the minimum count of merge levels, the minimum I/O per index

95

4 Continuous merging

entry, and the fastest index completion. In stream indexing, index creation never
ends; thus, the external merge sort must run forever (or as long as the input stream
continues). Sorted partitions are not flat files but index trees (or partitions within
a partitioned B-tree) to permit efficient search queries. Merge fan-in and merge
levels are governed less by memory size and completion time than by the count of
partitions that queries must search.

4.3.1 Merge strategies

Overview

Continuous merging reduces the count of partitions by never letting a partition
wait; instead, a merge step adds it to its inputs as soon as a partition is ready
for merging. Thus, whenever a partition at level l becomes available for merging,
there must be an active merge step from level l to level l + 1. On the other
hand, to ensure that the merge fan-in does not drop too low, each such merge
step is paced to consume F partitions in the same time that F partitions are
created by data ingestion and partition generation or by the next-lower merge
level.

Of course, to retain its efficiency, a merge step can add a partition as an additional
input only at the key value corresponding to its current progression through the
key domain. Since each partition is a B-tree (or a partition within a partitioned
B-tree), starting a scan with a given key value is easy and efficient. In consequence,
each partition on level l contributes to two partitions on level l + 1, with a few
exceptions. In the opposite perspective, each partition on level l contains key
values from 2F − 1 partitions on level l − 1. It is not 2F partitions because a
merge step adds and drops 1 in F partitions at ±∞, or at the start and the end
of a partition.

Ideally, the switch-over events occur at a steady rate and with even intervals. Such
regular switch-over events occur if the switch-over key values equal the distribu-
tion’s quantiles 1

F
, 2
F
, etc. One of the switch-over events occurs at the start and

end of the key domain, say at ±∞. With switch-over events distributed evenly
within a merge step, we describe this strategy as using staggered key ranges. In
order to achieve this staggered switch-over pattern, initialization of each merge
level must be a little bit inefficient, i.e., merge some partitions and key ranges
with a fan-in less than the desired fan-in F .

During initialization of the first merge level, the merge fan-in builds up, starting
as a “1-way merge” as soon as the partition generation finishes its first partition,

96

4 Continuous merging

(I) Third run beng generated

(II) Third run finnalzng

(III) Third run jons actve merge

Figure 4.7: Initialization phase of continuous merging.

becoming a binary (2-way) merge when partition generation finishes its second
partition, etc. It becomes a full F -way merge when partition generation finishes
its F th partition, i.e., when a traditional merge pattern starts its first F -way merge
step. With partitions exiting and entering the merge logic at each quantile, the
merge remains an F -way merge forever after the initialization of a merge level.
During initialization, the merge bandwidth is proportional to its current merge
fan-in. Higher merge levels, e.g., level l, initiate in the same way, with partition
generation in the preceding description replaced by the next-lower merge level,
e.g., level l − 1.

Figure 4.7 shows a sequence of three example stages in the initialization phase.
In the first diagram (I) of this sequence, the writer, e.g., partition generation, has
recently finished the second partition and has started the third partition (shown
in purple). When that happened, the reader, e.g., merging level-0 partitions to
create the first level-1 partition, became a binary merge (shown in red). The next
diagram (II) shows a later point in time during the initialization of a merge level.
The writer is about to finish its third partition, and the reader is about to expand
the 2-way merge into a 3-way merge. The final diagram (III) in this sequence shows
another point in time during the initialization of a merge level. When the writer
finished the third partition and started the fourth partition, the reader expanded
the 2-way merge into a 3-way merge.

Example

To show the complete process of continuous merging in action, we introduce an
example covering 5 input partitions, each consisting of 6 integer keys for a target

97

4 Continuous merging

2 19 27 36 42 57Partition 0

7 18 22 29 40 48

5 15 25 35 45 55

3 12 28 41 49 58

1 16 26 29 47 52

4 13 20 31 44 60

Output Partition 0 2 19 22 27 29 33 40 42 45 48 55 57

Output Partition 1 3 5 7 12 15 18 25 26 28 29 41 44 47 49 52 58 6032

7 10 22 29 40 48

Partition 1

Fan-In: 3, Quantiles 1/3,
Input Partitions:

1s
t c

yc
le

2n
d

cy
cle

Partition Intilization

Partition 1

Partition 2

Partition 3

Partition 4

Partition 5

Figure 4.8: Example for creating the first two output partitions in continuous
merging.

merge fan-in of 3. For this configuration, the 5 input partitions will cover the
initialization phase and the first cycle of the steady phase process, i.e., covering
the range of −∞ to +∞.

Figure 4.8 shows the complete example. The top left side shows the input parti-
tions. The keys of the partitions are sorted in ascending order. The partitions only
consist of keys; no additional values are stored. The top right side of the example
shows how one example partition (partition 1) is accessed while being merged. The
bottom of the figure shows the two output partitions, again sorted in ascending
order. Output partition 0 is the result of the initialization phase, while output
partition 1 is the first output of the steady state phase.

The initialization phase covers parts of the first three partitions (partition 0, par-
tition 1, and partition 2). The keys in the input partitions are color-coded based
on the output partition they contribute to, red for output partition 0 and green for
output partition 1. All values in partition 0 will be merged into output partition 0.
For the initialization phase, it can join the process immediately in a 1-way merge.
To utilize staggered key ranges and increase the number of partitions gradually

98

4 Continuous merging

to the target fan-in, partition 1 joins at roughly one-third of the key range. I.e.,
after partition 0 contributed two keys to the output partition (2, 19), partition 1
joins the merge with its third value (22). The index guides the search to find the
first value greater than 19. This search is visualized by the first cycle arrow on
the right side of the figure. After a 2-way merge merges values from partitions 0
and 1 (22, 27, 29, 33), partition 2 joins in the same fashion at the key 45. Thus,
the merge now operates at the target fan-in of 3. The remaining keys greater than
33 (40-55) are sorted and included in the output partition, which completes the
initialization phase.

For the beginning of the steady state phase, partition 0 is discarded since it already
merged its entire key range into the output. Partition 1 and partition 2 joined the
initialization phase at keys other than −∞ and thus, they still need to contribute
keys in the range before they joined the merge process. Searching for the first
key greater than −∞ leads to the respective starting point. For partition 1, this
search is illustrated by the second cycle arrow, landing at 7. Similarly, partition 2
will join at key 5. During the last merge step of the initialization phase covering 6
keys (40-55), partition 3 would be completed from the previous merge level or the
partition generation since it also covers 6 keys. Thus, it joins the merge process
at the beginning at key 3.

As a three-way merge, the merge process can continue until all keys from partition
1 are completely merged into the next level. Since partition 1 joined at roughly
one-third of the key range, this will happen at roughly one-third of the key range.
In this case, partition 1 finishes after contributing 18, because output partition
0 contains 22. Merging 3 partitions of one-third of the key space means that
partition 4 will be completed. It joins the merge process at the key 26 since this is
the first key greater than 18. Smaller keys in partition 4 (1, 16) will be part of the
third output partition (not covered in the example) and are thus color-coded in
blue. Partitions 2, 3 and 4 contribute to the next third of the key range. Partition
2 has exhausted all its keys after merging key 35 and will leave the merge process
accordingly. Since partition 5 will be completed in the meantime, it can join the
merge process at key 44. Then, partitions 3, 4, and 5 merge their remaining keys
into output partition 1. At this point, we reached the end of the key range, and
output partition 1 is complete. Partition 3 has contributed all its keys to it and,
thus, will leave the merge process. Partitions 4 and 5 will begin the next cycle
with a new partition 6 by starting again at −∞. As long as new input is delivered,
this process can run indefinitely.

99

4 Continuous merging

Index

k1 k2 k3 k4 k5 k6

Start: ka
End: kz
Current: kc

Partition:
k7 k8

v1 v2 v3 v4 v5 v6 v7 v8

Figure 4.9: Structural partition information in continuous merging algorithms.

Algorithms

There are two phases in continuous merging - an initialization phase and a steady-
state phase. At their core, each algorithm is a variant of a merge sort that uses a
heap for sorting keys of multiple partitions. While each phase has a distinct algo-
rithm, they share some requirements about information kept for each partition and
some steps for establishing the merge process and adding new partitions to a heap.
In the following, shared information and steps will be presented first before going
into the overall algorithms for the two distinct phases.

Figure 4.9 shows the structural information about a partition participating in the
continuous merging process. First, the partition itself and its keys/values can be
accessed. Second, there is an index present to search for keys efficiently. Third,
there are three fields with meta-information about the merge progress: Start, End,
and Current. Each field represents a key in the partition. Start is the first key
that was (or will be) added from this partition to the output partition currently
produced in a level. Analogously, End is the last key that will be added, and
Current the next key. At all times, the meta-information fulfill the condition Start
≤ Current ≤ End.

Algorithm 4.1 Continuous merging - create merge variables

Input: initialPartitions: Partitions from which a heap structure will be created
Output: All created fields in order of their creation
1: function createMergeVariables(initialPartitions)
2: heap = initialize heap from initialPartitions
3: mergedPartition = initialize empty partition
4: lastAddedKey = −∞
5: carryOver = initialize empty list
6: expiredCount = 0
7: return (heap, mergedPartitions, lastAddedKey, carryOver, expiredCount)

Algorithm 4.1 shows the creation of common structures and variables in a merge

100

4 Continuous merging

process running from −∞ to +∞ as a function createMergeVariables. As an
(optional) input, the function receives some partitions (initialPartitions). A heap is
created based on the desired sorting criteria. If the initialPartitions exist, they are
added to the heap. The output of the merge process is a new partition (mergedPar-
tition) which is empty initially (line 3). During the merge process, lastAddedKey
keeps track of the key that was last added to mergedPartition. Since the merge
process started by this function call starts at −∞, lastAddedKey is initialized as
−∞ (line 4). These three variables are also commonly used in a traditional merge
sort. For continuous merging, we also need a list of partitions that were only par-
tially merged during a merge process (carryOver). In line 5, we initialize this list.
Finally, continuous merging keeps track of the number of expired partitions (ex-
piredCount). Expired partitions are those which cannot contribute any new keys to
an ongoing merge either because the partition reached +∞ or because the partition
contributed all its keys to the output partition. Note that in continuous merging,
those are not necessarily the same condition. Initially, expiredCount equals 0 (line
6). Those variables are returned to the caller, i.e., either the initialization phase
of continuous merging or the steady-state phase.

In a traditional k-way merge sort using a heap structure, for each partition, the
heap holds the next key kp and a reference p to the partition. In each step, the
heap returns the next key according to the sorting criteria. That key (and possibly
values) are added to the output. Using p, kp is updated to the next key of p. Then,
kp and p are added back to the heap. For each partition, this process continues
until it reaches +∞.

In continuous merging, further distinctions are necessary. Algorithm 4.2 summa-
rizes those in a conditionalHeapAdd procedure. The procedure manipulates
its input, which are four variables: The partition which might be added back to
the heap, the heap itself, the expiredCount, and the carryOver variable, as previ-
ously discussed. There are three cases to consider: First, the partition contributed
all its keys to the next level, in which case we refer to it as empty (line 2). Then
the expiredCount is increased (line 3). Second, the partition reached +∞ (line 4)
but is not empty. In this case, we flip the partition (line 5). This changes the
three meta fields (Start, Current, End) to prepare the partition for the next merge
cycle (lines 5-7), essentially flipping start and end. Furthermore, it is added to
the carryOver list (line 8), and the expiredCount is increased (line 9). Third, the
partition is neither empty nor has it reached +∞. Thus, it can still contribute
keys to the ongoing merge process. The next key as well as a reference to the
partition are added back to the heap (line 11).

101

4 Continuous merging

Algorithm 4.2 Continuous merging - conditional heap add

Input: partition: Partition to be added to a heap
Input: heap: Heap used in active merge sort routine
Input: expiredCount: Number of partitions not added back into heap
Input: carryOver: Partitions that expired, but were not fully merged
1: procedure conditionalHeapAdd(partition, heap, expiredCount, carry-

Over)
2: if partition.isEmpty() then
3: expiredCount = expiredCount + 1
4: else if partition.isAtEnd() then
5: partition.end = partition.start
6: partition.start = −∞
7: partition.current = −∞
8: carryOver.add(partition)
9: expiredCount = expiredCount + 1
10: else
11: heap.add(partition.getCurrentKey(), partition)

Initialization phase Algorithm 4.3 shows the process of the initialization of a
level L. We assume the level has a fixed fan-In F , an input queue for receiving
new partitions, and an output queue to transfer the first output partition. Merging
uses several fields created and initialized by the previously introduced create-
MergeVariables function (line 1), which is called without any initialPartitions.
I.e., the heap starts as empty. The initialization phase keeps track of the total
number of partitions added during it (totalPartitionCount), which is 0 at the start
(line 2). To initialize switch-over keys at the desired quantiles of the key range, we
compute the number of expected keys for the output (currentStep, line 3). This
computation needs to consider the first partition’s expected size on each preced-
ing level. Each first partition will be part of the first partition on all subsequent
levels. Due to staggered key ranges, the first partition on each level is expected to
be smaller than all other partitions on that level - we will discuss how to compute
the expected size in Section 4.4. The creation of the first partition lasts until F
partitions reach the end of the key domain (line 4) and is handled during the while
loop in lines 4-15.

There are two distinct parts to the merge process. In lines 5-8, keys from and
references to new partitions are added to the heap. In line 6, a busy waiting
poll waits for a new partition to arrive from the level below. After receiving
one, a partition’s meta-information (Start, End, and Current) is initialized based
on the lastAddedKey (line 6). Here, both Start and Current will be set to the

102

4 Continuous merging

Algorithm 4.3 Continuous merging - initialization phase

Input: L: Level
Input: F: Merge fan-In
Input: inputQueue: Input for merge
Input: outputQueue: Output for merge
Output: carryOver: A list of partitions which were not fully merged during this

phase
1: (heap, mergedPartition, lastAddedKey, carryOver, expiredCount) = create-

MergeVariables(empty list)
2: totalPartitionCount = 0
3: currentStep = computeInitialStep(L)
4: while expiredCount < F do
5: if totalPartitionCount < F then
6: newPartition = inputQueue.poll().initMeta(lastAddedKey)
7: heap.add(newPartition.getCurrentKey(), newPartition)
8: totalPartitionCount = totalPartitionCount +1

9: for i = 0; heap.hasElements() ∧ i < currentStep; i = i+1 do
10: (currentKey, currentPartition) = heap.remove()
11: currentValue = currentPartition.progress()
12: mergedPartition.add((currentKey, currentValue))
13: lastAddedKey = currentKey
14: conditionalHeapAdd(currentPartition, heap, expiredCount, carry-

Over)

15: currentStep = updateStep(L)

16: outputQueue.put(mergedPartition)
17: return carryOver

103

4 Continuous merging

first value greater than lastAddedKey. End will be set to +∞. That is, we use
the index to find the successor of the last key added during the merge process.
The partition will leave the process at the end of the key range. Then, the new
partition is added to the heap and accounted for in the totalPartitionCount (lines
7-8).

The second part of the merge process (lines 9-14) adds new keys to the out-
put partition sort. As long as the heap has elements (line 9), the partition with
the next key in sort order is retrieved (line 10). The process retrieves the value
associated with the key (line 11) and progresses the partition to the next key-
value pair. Then, it adds the previously extracted key and its value to the
output partition (line 12). Those steps follow the traditional merge sort proce-
dure.

For pacing the merge process such that we reach a fan-in of F , only currentStep
many keys are added (line 9) in a for-loop. Since partitions join the merge process
at arbitrary points, we use the conditionalHeapAdd procedure (line 14) to
either add the partition back into the heap, add it to the carryOver list or discard
it completely. Merging only considers the key range from the updated Start to End
range from partition in the carryOver list because the initialization phase already
merged the previous range. After adding at most currentStep many keys to the
mergedPartition, we update currentStep for the next iteration in the while-loop
(line 15). In particular, this value will grow since x partitions contribute more
keys in the same quantile than x − 1. The details are in Section 4.4. After F
partitions reached +∞, we can transfer the mergedPartition to the next level (line
16) and return the partitions of which some range have yet to be merged (line 17).
They will be handled as the initial set of partitions in the steady-state phase of
continuous merging.

After the first full output partition, a merge level is fully initialized. At that
time, the next merge level begins its initialization. Thus, there is always one
merge level in initialization (unless a final “archival” level does not require merg-
ing). All fully initialized merge levels runs with a bandwidth equal to that of
partition generation. Thus, the amount of temporary storage for each level of
partitions, or more precisely, the amount of unmerged data at each merge level,
remains constant (once a merge level is fully initialized). The amount of tempo-
rary storage currently in use can be used to pace a merge level, which should run
at full bandwidth whenever the size of its input exceeds the allocated temporary
storage.

104

4 Continuous merging

Algorithm 4.4 Continuous merging - steady-state phase

Input: initialPartitions: Partitions from the initialization phase
Input: inputQueue: Input for merge
Input: outputQueue: Output for merge
1: (heap, mergedPartition, lastAddedKey, carryOver, expiredCount) = create-

MergeVariables(initialPartitions)
2: newPartition = inputQueue.getPart().initPointers(lastAddedKey)
3: heap.add(newPartition.getCurrentKey(), newPartition)
4: while active do
5: (currentKey, currentPartition) = heap.remove()
6: currentValue = currentPartition.progress()
7: lastAddedKey = currentKey
8: mergedPartition.add((currentKey, currentValue))
9: conditionalHeapAdd(currentPartition, heap, expiredCount, carry-

Over)
10: if addNewPartition(inputQueue, currentHeap, output) then
11: newPartition = inputQueue.poll().initPointers(lastAddedKey)
12: if newPartition.isAtEnd() then
13: carryOver.add(newPartition)
14: else
15: heap.add(newPartition.getCurrentKey(), newPartition)

16: if outputComplete(lastAddedKey, heap, expiredCount) then
17: outputQueue.put(mergedPartition)
18: (heap, mergedPartition, lastAddedKey, carryOver, expiredCount) =

createMergeVariables(carryOver)

105

4 Continuous merging

Steady-state phase Algorithm 4.4 shows the process of merging after initializa-
tion - under the assumed circumstances, this will be the steady state with expected
constant costs. The input for this algorithm contains a list of initial partitions
(the carryOver list returned by the initialization phase Algorithm 4.3) as well as
queues for new inputs and completed outputs. Merging fields are created with
the createMergeVariables function (line 1). Unlike the previous phase, the
steady-state phase uses the initalPartitions as input for the heap, and thus, the
heap will (usually) not be empty. In Algorithm 4.3, the first partition that joined
the merge was completely merged and, thus, is not part of the initalPartitions.
That means the heap structure only has an expected number of F − 1 partitions
below the target fan-in. However, under ideal circumstances, the pacing of the
initialization means that the next partition is already ready to join the merge pro-
cess. Thus, in lines 2-3 we add its next key and a reference to the partition to
the heap. This can be implemented as a busy waiting operation. The process of
adding the partition is the same as in Algorithm 4.3.

Then, we start a version of merge sort (lines 4-18). In lines 5-8, we extract the
next smallest key-value pair in the heap data structure and add it to our out-
put. Line 9 handles the state of the partition from which the last key-value pair
originated, analogous to line 14 in Algorithm 4.3. In line 10, we potentially add
new partitions from the inputQueue based on a function call to a addNewParti-
tion function. The implementation details of this function can slightly alter the
algorithm’s behavior. This function can simply check if a new partition exists in
the inputQueue. Under ideal circumstances, this will be the case whenever an
old partition expires. However, we can also force this behavior by aggressively
checking if the count of partitions in the heap is lower than F , keeping a stable
fan-in at all times. Alternatively, if access to the queue is expensive, we can only
occasionally check for new partitions, using the number of items in the current
output as guidance. We abstract this function with all three relevant inputs to
leave this behavior to the implementation. If addNewPartition returns true, a new
partition is added to the heap. The functionality is very similar to the process in
Algorithm 4.3. However, in line 12, we need to handle the edge case if a partition
cannot contribute anything to the current merge process. Then, we immediately
add it to partitions waiting for the next cycle (line 13).

Finally, we need to determine when an output is finished. For this purpose, we use
a function outputComplete (line 16), which can be implemented in different ways.
If +∞ is used as a physical marker in each partition, it can simply check the las-
tAddedKey for +∞. If +∞ does not exist in partitions, it can check for an empty
heap or expiredCount. Without data skew, an empty heap would suffice, but if
there are regions that do not feature the expected number of keys, the desired

106

4 Continuous merging

fan-in could fluctuate. The expiredCount field could be used to counterbalance
this, forcing F partitions to contribute to each output. Again, the implementation
details of this function can result in slightly different behavior - we present an ab-
stract function with all necessary fields as input. When outputComplete evaluates
to true, the finished partition is added to the outputQueue (line 17). If there is
another level, this outputQueue is the inputQueue of the next level. Then, we
need to reset the relevant fields to start a new merge cycle with an empty output
partition at −∞ (lines 18). Note that the heap will be replaced with a new heap
consisting of carryOver partitions, while carryOver partitions will be reset to an
empty list.

The presented steady-state algorithm can run eternally for an endless input data
stream. Flexible adjustments for data skew exist in the corresponding abstract
Boolean functions. We will discuss how to adapt them in our extensions in Sec-
tion 4.6.

4.3.2 Search strategies

In the simplest variant of stepped-merge forests, each partition holds all data
ingested during a time window. This is true not only for initial partitions created
by partition generation but also for partitions created by merge steps. A query for
a given key value (or key range) within a time window maps to searching a set of
B-trees for the given key value (or key range).

In continuous merging, the relationship between partitions and ingestion time is
more complex. If all merge steps add and drop partitions only at rigidly enforced
key values (presumably the 1

F
quantiles of the key value distribution), it remains

feasible to determine a set of partitions to search for a key value (or even a key
range). If, however, there is any variation or flexibility in switch-over keys, e.g.,
in response to bursts of input or delay in merge progress, then it seems more
practical to search all partitions because a precise mapping of a time window to a
set of partitions requires tracking and analysis of switch-over keys. The partition
generation can compute and retain a time window (of ingestion times) for each
partition.

Unfortunately, bit vector filtering works well only for data collections with a mod-
erate count of distinct key values, and a pair of minimum and maximum key values
works well only if there is a strong correlation between key values and the physical
organization of the storage structure. Thus, query execution and cost functions
in query optimization must reflect that most queries must search most partitions.

107

4 Continuous merging

This is why reducing the count of partitions is important and a focus in the design
of continuous merging with staggered key ranges.

It should be noted that although timestamp and time range queries are more
difficult, merely querying for the most recent version of a key does not require any
change for continuous merging. Traditionally, in this query, a key is searched from
the most recent level 0 partition to the last partition level-by-level. The query can
be stopped as soon as the key is found. This also applies to continuous merging.
Within a level, more recent partitions contains more recent versions of a single
key.

4.3.3 Section summary

In summary, continuous merging with staggered key ranges is the next development
stage in indexing and querying streams near real-time. In broad strokes, log-
structured merge forests adapted B-trees for low write amplification and high
insertion bandwidth. Stepped-merge forests adapted external multi-level merge
sort to endless input. As the next development, continuous merging, removes
the waves of misery from both indexing and querying, or from both merge and
search.

4.4 Theoretical analysis

In the following, we theoretically analyze and compare the expected behavior of
stepped-merge trees (SM), stepped-merge trees with early cleaning (SME), and
continuous merging with staggered key ranges (CM), all operating with a fan-in F .
SME represents the behavior of SifrDB ([Mei+18]) which deletes merged partitions
during an active merge. For all methods, the initial partition generation places
partitions of constant size S0 on level 0. For SM and SME, the merge process on
each level l ≥ 0 merges F partitions of constant size Sl from level l to one partition
of size Sl+1 on level l+1. That means, Sl+1 = F ·Sl = F l ·S0. For CM , partitions
do not only join the merge process at ±∞. Thus, we expect a slight variance in
the size of the partitions that belong to one level. However, we also expect the
average size to be equal to the one of SM . For reasons of feasibility, we make the
following assumptions:

(A1) For all levels l, 0 ≤ l ≤ L, with the exception of the first partition, the size
Sl of partitions on level l is constant for CM .

108

4 Continuous merging

(A2) Merging n records spread over F partitions requires a total of n log2(F)
comparisons.

Assumption (A1) is justified for inputs with a stable key distribution. Section 4.7
will discuss and experimentally verify the validity of (A1) in context of hypothesis
H2. Assumption (A2) states that the cost for merging F partitions with n records
equals n log2(F) which is asymptotically equal to the average case cost. Further-
more, the cost for the initial generation of partitions of size S0 is assumed to be
S0 log2(S0) as it requires sorting. For sake of simplicity, we do not take constants
into account that are known to increase the above cost functions for sorting and
merging only by a small percentage.

In order to process the data continuously in a streaming manner, it is important
to balance the cost on each level such that the output rates are equal. For level 0,
the cost for the generation of F initial partitions (F · S0 · log2(S0)) will be greater
than the cost of merging at level 1 (F · S0 · log2(F)) because S0 ≫ F holds in
general. In order to overcome this cost imbalance, more CPU cycles are assigned
to level 0 than to level 1 (and the other ones). If level 0 receives the CPU more
often than level 1 by a factor of log2(S0)/ log2(F), we obtain a perfect cost balance
between level 0 and level 1. As a consequence, the corresponding output rates
are equal. This approach is also easy to generalize for all the other levels l with
l > 1.

Based on this setup, we will first establish the difference in merge progress of
the different methods. Then, we will derive the worst, best, and expected case
performance for range queries.

4.4.1 Merge progress

We measure the merge progress in terms of units of progress on level 0. Since
continuous merging captures progress based on the quantiles of the key range, a
unit of progress represents 1

F
of a continuous data range from a partition on level

0. In the following, x is that unit. For example, if there are 4 full partitions on
level 0, x equals 4F . If F is an even number and an additional half partition is
generated by the partition generation, x equals 4F+ F

2
.

In the following, we derive functions MP SM
l (x) and MPCM

l (x). Each function
returns the number of records in units of x that were ever present at level l > 0
for SM and CM , respectively. These functions allow a direct comparison of the
progress among SM and CM . In the case of merge progress, SME is equal to
SM , because a merge starts and finishes at the same time for both methods. The
functions also serve as an indicator of the query performance of the methods.

109

4 Continuous merging

However, they cannot be used to measure query performance directly for two
reasons. First, units move from level to level; thus, a function that captures
the total units that ever resided on the level does not account for that being
removed from that level. Second, many implementations of SM only make a
new partition available to queries once the merge process concludes, resulting in
the distinctive sawtooth pattern. Although both deficiencies can be eliminated
through further adaptions of the formulas, for the sake of simplicity, we will only
focus on merge progress in this section and analyze query performance differently
in Section 4.4.2.

Merge progress of stepped merging

First, let us consider MP SM
l (x). For an arbitrary level l ≥ 1, a partition ex-

ists if level l − 1 had previously constructed F partitions and the correspond-
ing merge completes. Based on Assumption (A2), during the merge of F · Sl−1

records, another F partitions on level l − 1 are created. Thus, the first parti-
tion at level l is created when there has been a total of 2F partition on level
l − 1.

Example 4.4.1. Let us consider level 1 and determine when the first and second
partition complete, i.e., MP SM

1 (x) = F 2 and MP SM
1 (x) = 2F 2. Since the level

below is level 0, x is simultaneously the total number of units ever seen at level 0.
Given the CPU assignment for cost balance as explained above, the progression of
MP SM

1 (x) is as follows:

MP SM
1 (0) = 0,MP SM

1 (1) = 0, . . . ,MP SM
1 (F 2) = 0[merge 0 start],

MP SM
1 (F 2 + 1) = 1, . . . ,MP SM

1 (2F 2) = F 2[merge 0 finish][merge 1 start]

MP SM
1 (2F 2 + 1) = F 2 + 1, . . . ,MP SM

1 (3F 2) = 2F 2[merge 1 finish][merge 2 start]

The starting delay of a merge is present on any level. In a streaming setting with
continuous input, this delay is never overcome, i.e., there are always at least F
unmerged partitions on each level below the last one. If F unmerged partitions
are entirely processed on level l, i.e., all their records are merged into a partition
of the next level, the next F unmerged partitions are available again. In between,
the number of unmerged partitions increases up to 2F − 1. Thus, for level l there
is a cumulative lower bound of partitions that needs to be reached on all preceding
levels i < l before registering progress.

110

4 Continuous merging

1 1 1 1 1 1 1 1 1 1 1 1

1 2 3 F F F F F

...

...

...

... F F F F

...

... ...

...

F units F units F units

1+2+3+...+F units F2 units F2 units
P10 (1st cycle ouput) P11 (2nd cycle ouput) P12 (3rd cycle ouput)

Level 1

Level 0

P00 P01 P02

Figure 4.10: Continuous merging output on level 1 measured in units (one unit
equals one level 0 quantile).

Definition 4.4.1 (Stepped merging - merge progress).

MP SM
l (x) = max(0, x−

l∑︂
i=1

F i+1)

Definition 4.4.1 is a direct consequence from the cumulative lower bound as well as
the linear progress after reaching it. Level l only registers progress after level l− 1
has reached F full partitions (i.e., F l+1 units). Since this has to occur recursively on
each preceding level

∑︁l
i=1 F

i+1 represents the cumulative lower bound to register
progress. Afterward, under ideal circumstances with steady progress on each level,
each new unit on level 0 means a unit is moved from level 0 to level 1, from level
1 to level 2, from level 2 to level 3, etc.

Merge progress of continuous merging

First, we introduce a notation to refer to specific partitions in continuous merg-
ing.

Definition 4.4.2 (Continuous merging - partitions). Given the chronological order
of the partition creation on level l, the i-th partition according to that order is
referred to as P i

l . The chronological order starts with 0, i.e., P 0
l is the first partition

created on level l.

To define MPCM
l (x), let us consider the merge progress for two examples. The

111

4 Continuous merging

1 2 3 F F F F F F F F F

1 2+F 3+2F F2 F2 F2 F2 F2

...

...

...

... F2 F2 F2 F2

...

... ...

...

1+2+3+...+F units F2 units F2 units

1+(2+F)+...+(F2) units F3 units F3 units
P20 (1st cycle ouput) P21 (2nd cycle ouput) P22 (3rd cycle ouput)

Level 2

Level 1

P10 P11 P12

Figure 4.11: Continuous merging output on level 2 measured in units (one unit
equals one level 0 quantile).

first example in Figure 4.10 shows the output of the first three cycles generated
on level 1. To highlight what is happening during the initialization phase, the
first three input partitions for level 0 (P 0

0 , P
1
0 , P

2
0) are also shown. We assume

F > 3. Thus, they each contribute some key-value pairs to the first partition on
level 1 (P 0

1 shown in red). Since the quantiles in each level are the same, every
partition will contribute exactly one unit to the matching quantile of one output
partition on level 1. To achieve staggered key ranges, the first quantile in P 0

1 only
gets input from P 0

0 . The second quantile of P 0
1 consists of one unit each from P 0

0

and P 1
0 , and the first quantile of one unit each of P 0

0 , P
1
0 , and P 2

0 . Thus the total
number of units in the entire key space of P 0

1 after achieving the target fan-in of
F is 1 + 2 + 3 + · · · + F units. In contrast, all other partitions on level 1 have
a total of F 2 units, each quantile consisting of F units, since the target fan-in is
reached and maintained. For example, the first quantile of P 1

1 gets contributions
from P 1

0 and P 2
0 (shown in green) as well as from P 3

0 , P
4
0 , . . . , P

F
0 (not shown in

the figure).

The second example in Figure 4.11 shows the output of the first three cycles
generated on level 2 analogously. The most important aspect is the composition
of P 0

2 . Again, only P 0
1 contributes to the first quantile. Since it is only composed

of 1 unit, this is the size of the first quantile of P 0
2 as well. For the second quantile,

P 0
2 receives input from the P 0

1 (2 units) and P 1
1 (F units). Each new quantile is

larger than the last by 1 + F units, stemming from the linear increase from P 0
1 (1

unit increase) and the new partition added to the merge (F units increase). Thus,
P 0
2 has a total number of 1 + (2 + F) + · · ·+ F 2 units for its entire key range. In

contrast, all other partitions on level 2 have a size of F 3 units with F 2 units per
quantile.

112

4 Continuous merging

Init l

MPlCM TPl

InitKQl

CLBISl

1

2

3

x0 x1
x

SKQl(x1)

SKQl(x0)
UBl(x0)

UBl(x1)

Figure 4.12: Continuous merging - overview of notations for a level l with a fan-in
of 3.

Overview of notations Figure 4.12 shows the notations we will use in the up-
coming lemmas as part of an example showing the evolution of the total merge
progress on a level l. Using the example, we will first briefly describe the idea
behind each notation before formally introducing them in the subsequent sec-
tion.

Axis: The x-axis shows the smallest unit of progress used for our theory, i.e., x
as the number of 1

F
quantiles of partitions on level 0. The left y-axis shows the

target function MPCM
l (x), i.e., the number of units of progress residing on level

l. The right y-axis has TPl(x), the total number of complete partitions on level
l.

Output: As in Figure 4.10 and Figure 4.11, there are three total partitions shown.
The initial partition finishes at TPl(x) = 1. The progress is staggered as more
partitions join during initialization. After the fan-in reaches 3, the progress is
and remains linear with a growing x. Note that the illustration of the output is
simplified. Technically, we only measure progress in units of x. Thus, between
subsequent values of x, there should be a jump. Instead, the example uses a
straight line to highlight the linear progress. For the initial partition, a dotted
triangle shows the hypothetical linear progress of the initial partition in contrast
to the actual staggered progress.

Values not relying on x: Three values do not use x as input. The first is the
constant value CLBISl at the bottom of the x-axis. This is the point when
merging on a level l starts. Naturally, if there is no data on level l − 1, there

113

4 Continuous merging

cannot be a merge on level l. Thus, there is starting delay. The second is the
constant Initl, the size of the initial partition. When TPl(x) = 1, MPCM

l (x)
holds exactly the size Initl. The third is InitKQl. InitKQl determines the
number of items in a key range quantile of Initl. The fan-in of the merge is used
as input.

Partition-building functions: Two functions determine fine-grained progress while
a partition is built. Example output is shown for two possible values for x (x0 and
x1). UBl is an upper bound for the progress of the current partition that assumes
linear progress at all times. Since it only considers the current partition, this
results in a piece-wise linear function. UBl(x0) clearly overestimates the progress.
Meanwhile, during the steady state phase, UBl(x1) is the exact size of the progress.
SKQl shows the maximum number of data units in the key range quantile that is
currently built on level l. It will be reached at the end of the key range quantile.
In the case of x0, the second quantile of the current partition is being built. Thus,
it will reach the size of InitKQl for a fan-in of 2. Note that SKQl uses x as a
parameter and, thus, can relate that size to progress while InitKQl is determined
by the fan-in f and thus is not used for progress. For x1, the first quantile of
the third partition is being built. Here, SKQl(x1) reaches the steady state size
of data units, which is the same for each quantile once merging is in the steady
state.

General idea: For the following definitions, except forMPCM
l (x), each notation will

be first formally introduced as a Lemma. Then, they will be combined to determine
MPCM

l (x). The general idea is to use CLBISl, TPl, Initl, and InitKQl to capture
milestones in a coarse-grained view of the overall merge progress. Meanwhile, UBl

and SKQl can be combined to determine fine-grained progress for the current
(unfinished) partition.

Merge progress definitions First, we generalize the examples in Figure 4.10
and Figure 4.11 to determine the number of data units in each quantile of initial
partitions. The total size of the initial partition directly follows from number of
data units in each quantile.

Lemma 4.4.1 (Continuous merging - key range quantile size of initial partition).
For a fan-in f > 0 of input partitions, the number of data units in the f -th key
range quantile of the initial partition is determined by

InitKQ0(f) = 1

InitKQl(f) = 1 + (f − 1)
F l − 1

F − 1

114

4 Continuous merging

Proof sketch: By definition, each key range quantile on level 0 contains exactly 1
data unit. For level l > 0, the number of data units can be determined recursively.
Since P 0

l−1 contributes all its data to P 0
l , InitKQl(y) contains at least InitKQl−1

units. Each partition after the first contributes all data units in the same key
range quantile (F l−1). This results in:

InitKQl(f) = InitKQl−1(f) + (f − 1)F l−1

= 1 + (f − 1)
l−1∑︂
i=0

F i

= 1 + (f − 1)
F l − 1

F − 1

Lemma 4.4.2 (Continuous Merging - size of P 0
l in data units).

Initl =
F l+1 + F

2

Proof : The size of P 0
l is the sum of quantiles resulting from fan-in 1 to F . Trivially,

Init0 = F . For l > 0:

Initl =
F∑︂
i=1

InitKQl(i)

=
F∑︂
i=1

(1 + (i− 1)
F l − 1

F − 1
)

= F +
1

2

F l − 1

F − 1
(F − 1)F

=
F l+1 + F

2

This proofs Lemma 4.4.2.

Continuous merging on a level l starts if level l− 1 finishes its first partition. The
number of units necessary for the start of a merge on l > 1 can be defined in terms
of units on level 0.

115

4 Continuous merging

Lemma 4.4.3 (Continuous merging - cumulative lower bound for initialization
start on level l).

CLBISl =
l∑︂

i=1

F i

CLBISl =
F l+1 − F

F − 1

Proof sketch: The reasoning for Lemma 4.4.3 is as follows. For the first level,
CLBIS1 = F since, by definition, P 0

0 consists of F units. For all subsequent levels
l > 1, we can determine CLBISl recursively. After the first partition on level l−2
completes, it takes an additional F − 1 full partitions of size F l−1 on level l− 2 for
the merge fan-in to reach F . Then, it takes an additional F l−1 units to complete
the first partition on level l−1, thus, starting the merge progress on level l. Thus,
CLBISl = CLBISl−1 + (F − 1)F l−1 + F l−1 = CLBISl−1 + F l. Resolving the
recursion results in Lemma 4.4.3.

Using Lemma 4.4.3, we can determine the number of total partitions on a level.

Lemma 4.4.4 (Continuous merging - total number of finished partitions on level
ll).

TPl(x) = max(0, ⌊x− CLBISl

F l+1
⌋)

Proof : The proof follows the reasoning of Lemma 4.4.3. The P 0
l starts being built

as soon as x reaches CLBISl, i.e., when P 0
l−1 is finished. To achieve fan-in F , there

needs to be an additional F − 1 full partitions of size F l present on the previous
level. Then, it takes an additional F l units to complete the first partition. Thus,
the first partition completes when x = CLBISl + F l+1. Afterward, a partition
finishes in cycles of F l+1. Thus, taking the lower bound of fractions of F l+1 gives
the exact number of total partitions built on a level l. Since x−CLBISl is negative
before x reaches CLBISl, TPl(x) requires a maximum function to summarize all
progress beforehand as 0 partitions.

Note that even though Initl is smaller than all other partitions, we can still use
fractions of F l+1 to compute the total number of partitions. Using Lemma 4.4.1
and Lemma 4.4.4, for each partition currently being constructed on a level l, we can
determine the size of the key range quantile currently being constructed.

116

4 Continuous merging

Lemma 4.4.5 (Continuous merging - size of currently merging key range quantile
on level l in data units).

SKQ0(x) = 1

SKQl(x) = min(F l,max(0, 1 + (TPl−1(x)− 1)
F l − 1

F − 1
))

Proof : For SKQ0, the total size of the partition is F . Thus, each quantile contains
1 unit. Since we assume partition generation never stops, this is trivially always
the case.
For l > 0, there are two distinct phases. After the first partition completes (i.e.,
after the initialization phase), each quantile trivially has the size F l. Since key
range quantiles in the initialization phase contain fewer data than quantiles of full
partitions, we can summarize progress after initialization by taking the minimum
of F l and a function determining the size during initialization.
During initialization, InitKQl(f) determines the size of quantiles for a fixed fan-
in f . Since continuous merging is designed such that each finished partition on
level l− 1 contributes to the active merge on level l, TPl−1(x) is also the fan-in of
the merge currently in progress during initialization. Thus, InitKQl(TPl−1(x)) =

1 + (TPl−1(x) − 1)F
l−1

F−1
determines the size during initialization. However, since

initialization only starts after the first partition on level l − 1 completes, a max-
imum function must remove negative values. Putting everything together results
in Lemma 4.4.5.

Lemma 4.4.4 and Lemma 4.4.5 together can be used to determine the merge
progress of continuous merging in a coarse-grained way as the number of finished
partitions and finished quantiles of the latest unfinished partition. To give an ac-
curate number in the desired units of quantiles on level 0, the latter needs to be
broken down further into those units. We can determine an upper bound for those
units by using Lemma 4.4.3 and Lemma 4.4.4.

Lemma 4.4.6 (Continuous merging - upper bound for data units in incomplete
partitions on level l).

UBl(x) = max(0, x− CLBISl − TPl(x)F
l+1)

Proof : The first unit to level l is transferred once x reaches CLBISl. Thus,
x = CLBISl gives a lower bound of progress. Using a maximum function, any

117

4 Continuous merging

number lower is discarded though equating it to 0. After reaching CLBISl, UBl

assumes linear progress in data units as in the steady state phase of the algorithm.
This is an upper bound for units present on level l, because progress starts after
CLBISl and is never larger than linear.
Since UBl captures units of incomplete partitions, completed partitions of size
TPl(x)F

l+1 need to be subtracted. Although Initl < F l+1, UBl uses linear
progression for every partition including the first. Thus, even after subtracting
TPl(x)F

l+1, UBl(x) gives an upper bound for units present on l.

Lemma 4.4.7 (Continuous merging - data units in current quantile on level l).
The number of data units on a level l added to the current quantile of an incomplete
partition is

min(UBl−1(x), SKQl)

For TPl−1(x) ≥ F , min(UBl−1(x), SKQl) = UBl−1(x).

Proof : There are three cases to consider.
The first case is that the first partition on level l − 1 has not yet finished, i.e.,
x < CLBISl−1 + F l. In this case, TPl−1(x) = 0. Thus, SKQl(x) = 0. Since
UBl−1(x) ≥ 0, it follows that min(UBl−1(x), SKQl) = 0. This is the number of
data items on level l, since continuous merging does not start until the first parti-
tion on level l − 1 is complete.
The second case is x ≥ CLBISl−1 + F l. Therefore, TPl−1(x) ≥ 1. First, con-
sider x = CLBISl−1 + F l, i.e. TPl−1(x) = 1. In this case, UBl−1(x) = 0 and
SKQl(x) = 1. It follows that min(UBl−1(x), SKQl) = 0. Since the first partition
on level l − 1 just finished, there is no progress. Afterward, UBl−1 grows linearly
with each new data unit arriving at level 0 but is limited to SKQl(x) = 1. Thus,
the function correctly captures progress during the first quantile. The same notion
holds for other values of TPl−1, i.e., UBl−1 grows linearly to the proper size of the
current quantile being built as determined in SKQl.
The third case is TPl−1(x) ≥ F . We can simplify min(UBl−1(x), SKQl) to
UBl−1(x), because SKQl(x) = F l. As UBl−1(x) subtracts all multitudes of F l, F l

is the upper bound for UBl−1(x) without considering SKQl(x).

118

4 Continuous merging

Theorem 4.4.1 (Continuous merging - merge progress).

MPCM
l (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if TPl−1(x) = 0

min(UBl−1(x), SKQl(x))

+(TPl−1(x)− 1)

+1
2
F l−1
F−1

(TPl−1(x)− 2)(TPl−1(x)− 1) if TPl−1(x) ≤ F + 1

UBl−1(x)

+Initl

+(TPl−1(x)− (F + 1))F l if TPl−1(x) > F + 1

Proof : There are three cases to consider.
The first case is TPl−1(x) = 0. MPCM

l (x) = 0 is trivially true as continuous
merging does not start until the first partition on the preceding level completes.
The second case is TPl−1(x) ≤ F + 1, i.e., the initialization phase of continuous
merging on level l. The result consists of three summands. min(UBl−1(x), SKQl(x))
directly follows from Lemma 4.4.7. The second and third ones represent data
units on the level through quantiles of the first partition that already finished. If
TPl−1(x) partitions finished on level l−1, this can be calculated as:

TPl−1(x)−1∑︂
i=1

InitKQl(i) =

TPl−1(x)−1∑︂
i=1

(1 + (i− 1)
F l − 1

F − 1
)

= (TPl−1(x)− 1) +
1

2

F l − 1

F − 1
(TPl−1(x)− 2)(TPl−1(x)− 1)

Note that the upper bound of the sum is TPl−1(x)− 1, since the current quantile
that features TPl−1(x) is already considered in min(UBl−1(x), SKQl(x)).
The third case also consists of three summands. The first one follows directly from
Lemma 4.4.7. The second summand gives the total accumulated data units for
the initialization phase as determined in Lemma 4.4.2. Any current quantile of
level l after initialization contributes exactly F l units and finishes after a partition
on level l − 1 finishes. Thus, any additional partitions after number F + 1 (i.e.,
TPl−1(x)− (F + 1)) adds F l units, which is the third summand in the third case
of MPCM

l (x). This proofs Theorem 4.4.1.

119

4 Continuous merging

Comparison of merge progress

Corollary 4.4.1 (Steady state comparison of merge progress). After reaching the
steady state on a level l, continuous merging has an advantage in merge progress
that can be quantified as F l+1−F

2
.

Proof of Corollary 4.4.1: The steady state of continuous merging on a level is
established after the initialization has finished. This is the case after the pre-
vious level has finished F + 1 partitions; thus, at the end of case two of The-
orem 4.4.1. Since continuous merging progresses linearly after initialization, we
pick TPl−1(x) = F +2 for calculating the merge progress because the formula does
not change after reaching case three.

First, we establish the size x for reaching the case by resolving TPl−1(x) = F + 2
to x. The earliest case is for x̃ = (F +2)F l +

∑︁l−1
i=1 F

i. Thus, MP SM
l (x̃) = F l +F

and MPCM
l (x̃) = 1

2
F (F l + 1) + F l respectively.

For the difference in merge progress, we calculate

MPCM
l (x̃)−MP SM

l (x̃) =
1

2
F (F l + 1) + F l − F l + F

=
F l+1 − F

2

This proofs Corollary 4.4.1.

4.4.2 Queries

For log-structured indexes, two aspects impact query performance positively. (1)
A large number of records within a single index. (2) A low number of partitions.
Aspect (1) is already covered by the merge progress discussed in the previous
subsection. Since CM has, at any time, more keys in a higher level, this benefits
queries because each leaf has more keys within a smaller key range. This subsection
covers aspect (2). In particular, we will analyze the number of partitions a query
has to consider for an arbitrary level l in the steady state. This ties back to aspect
(1), because SM has fewer partitions outside of the steady state. However, this is
bad for query performance.

120

4 Continuous merging

MergePointer (MP)

Key Ranges kr

kr
1

kr
2

kr
3

kr
4

kr
5

pi

pi+1

p
i+2

pi+3

pi+4Pa
rt

it
io

ns
 b

ei
ng

 m
er

ge
d MergePointer (MP)

Key Ranges kr

kr
1

kr
2

kr
3

kr
4

kr
5

pi

pi+1

p
i+2

pi+3

pi+4

p
i+5

Merged key range Unmerged key rangeLevel l; Fan-In 5

Configuration C
i

Configuration Ci+1

Sl Merge

 Steps

Pa
rt

it
io

ns
 b

ei
ng

 m
er

ge
d

-∞ +∞

-∞ +∞

Figure 4.13: Active merge progress with staggered key ranges.

Query costs

The steady-state query performance for SM is characterized as a sawtooth pattern:
At best, there are F partitions to consider. At worst, there 2F−1 partitions. Since
each configuration in the span of F and 2F − 1 is equally likely, the expected case
is 3F−1

2
. SME can additionally apply early cleaning of partitions in the following

way: When merging a key range (SSTable) is completed, completely merged key
ranges are deleted. Starting the merge at F partitions and assuming a stable
key distribution, an arbitrary level l completing x base units (quantiles in level
0) of the merge means that those x units on level l − 1 can be removed from
query consideration. However, due to continuous ingestion, x new results will
arrive from the merge of the lower level. Thus, the total amount of data on a
level does not change, only its distribution since newly arrived data is distributed
among the whole key range. In contrast, merged data is limited to the currently
merging key range. Nevertheless, assuming that the query distribution matches
the insertion distribution, a query will hit F partitions on average. The best case
for a query would be 1 (directly after completing a merge). The worst case remains
at 2F − 1, since the end of the key range remains at F partitions until the merge
completes. During that time, ingestion or the previous level linearly adds F − 1
partitions.

For CM , there are three parameters to consider: the current status of the merge
progress, the query start point, and the query size. The importance of those
parameters for query performance will be discussed based on Figure 4.13 for an
arbitrary merge level l with a fan-in F = 5. The steady-state case for PCM

l fea-
tures 5 partitions being merged. For configuration Ci, the partitions pi, . . . , pi+4

are arranged along the y-axis. The x-axis shows the key domain. Due to staggered

121

4 Continuous merging

key ranges, each partition has two different key ranges: one that has been merged
(hatched pattern) and the other that has yet to be merged (clear). Assuming per-
fectly staggered partitions at i

5
quantiles (1 ≤ i ≤ 4), the x-axis can be partitioned

into 5 key ranges kr1, . . . , kr5. The edges of each key range represent points at
which partitions left/joined the merge progress. Following Assumption (A1), after
merging Sl keys, one partition leaves (pi), and a new partition joins (pi+5) the
merge process. This changes configuration Ci to Ci+1 as illustrated on the right
side of Figure 4.13.

This progress is the first parameter to consider. A merge pointer (MP) along
the key domain describes this parameter. In the example, a query hitting kr1 in
configuration Ci must consider all 5 partitions. The same query has to consider
only the recently joined partition pi+5 for Ci+1 since all other partitions are already
merged into the upper level. This is a variation of Knuth’s snowplow analogy used
to describe external merge sort [Knu98]. Directly in front of the snowplow/merge
pointer is the largest number of keys left to sort/search, while directly behind it
is the least number. In between, there is a gradual descent visualized as steps in
case of CM .

The importance of the merge pointer position directly applies to the query start
point parameter. In Ci+1, queries hitting exactly key ranges kr1 and kr2 have differ-
ent costs in terms of partitions to be searched. Finally, the query size also impacts
performance: For Ci+1, a query hitting just kr1 needs to consider one partition,
while a query stretching to kr2 must consider all five.

Lemma 4.4.8 (Range query partitions). Without loss of generality, let an arbi-
trary query be given for a fixed size of k ≥ 1 key ranges covering kr1, . . . , krk.
Furthermore, let the merge pointer position be variable, aligned at the end of a key
range, with each position being equally likely. Then, the overall cost in terms of
partitions to search for a query follows the function

RQF (k) =
F−1
2

− k
2F

× (k − 1− 2F)

Proof of Lemma 4.4.8: Due to the staggered nature of key ranges, the number
of partitions a query for kr1, . . . , krk has to search is the maximum number of
partitions in a key range kri, 1 ≤ i ≤ k. There are two cases to consider based
on the position of the merge pointer (MP): (1) MP < krk and (2) MP ≥
krk.

For (1), the query stretches into the key partition directly in front of MP, which
features all F partitions. Since each MP position is equally likely, the probability
for F partitions is k−1

F
.

122

4 Continuous merging

For (2), the query does not cross this boundary and, thus, has to consider less than
F partitions. In this case, the number of partitions is equal to unmerged partitions
in kr1, because the staggered key ranges result in subsequent kri, 1 ≤ i ≤ k, having
a decreasing number of partitions until MP is reached. The number of unmerged
partitions in kr1 is equally distributed among k, . . . , F . Less than k partitions are
impossible due to the gradual partition descent as determined by the configuration
shape due to the corresponding condition of case (2).

Together, (1) and (2) result in the formula k−1
F

· F +
∑︁F

i=k
1
F
· i, which can be

simplified to RQF .

Discussion

For a fixed F , RQF (k) is a parabola with a downward opening. The peak is at
F + 1

2
. Since only values up to F are valid, the plausible maximum is at F . The

peak expected costs are the maximum fan-in because RQF (F) = F . Furthermore,
the plausible minimum of RQF (k) is at k = 1. Therefore, CM ’s worst case is
as good as SM ’s best case. It should be noted that the formula above does not
consider that for an arbitrary level l in the steady state, a query may hit the partial
partition currently being built by level l− 1. This is true for a merge pointer state
kri < MP < kri+1. This adds one partial partition of varying size for RQF (k) that
may or may not cover the current range as determined by k. For the worst-case
query scenario of k = F , this results in worse performance than SM ’s best case.
In comparison to SME, the worst and average case improves by a factor of almost
2, which is the benefit gained from early merging that is sustained through the
flexible addition of partitions mid-merge process.

Other merge strategies

The discussion above is based on a multi-threaded merge process where each level
can work independently. In practice, there are also single-threaded implementa-
tions where one thread manages multiple levels. In those cases, F partitions can’t
accumulate on any level l > 0, because the single thread cannot produce waiting
partitions in parallel to an ongoing merge process that reduces the number of parti-
tions. Thus, the query performance is better for a single-threaded stepped-merge
strategy, but it can neither sustain high insertion rates nor does it fully utilize
modern multi-core hardware. A similar argument can be made for (unbalanced)
binary merges.

123

4 Continuous merging

Merging

Partition
Generation

Partition
Queue

Version
Control Cleanup

Runtime
Metrics

Query

Data Stream

Figure 4.14: Principal components of continuous merging.

4.4.3 Summary of theoretical analysis

For stepped merging and continuous merging with staggered key ranges, the merge
progress can be expressed in a function that tracks the number of keys on the
largest level. It quantifies the head start of continuous merging and shows that
when stepped merging finishes up its first partition on level l, continuous merg-
ing is almost halfway through building its second partition. Thus, regardless of
merge snapshot mechanics, continuous merging is always ahead regarding keys
on the largest level. For range queries, continuous merging improves upon the
best, worst, and expected cost of queried partitions. In the simplest case of point
queries, the expected partitions of continuous merging is F+1

2
as opposed to 3F−1

2

for stepped merging. The worst-case performance exhibits a speed-up factor of
almost 2.

4.5 Implementation

4.5.1 Overview

Our initial prototype implementation consists of six major components shown
on the right side in Figure 4.14. The partition generation component receives
incoming data streams. Partition generation is directly coupled to the merging
component via a queue, where completed partitions are stored. Both the par-
tition generation and the merging component are also connected to the version
control component to report progress which the last three components can use.
These consist of a query component for user queries, a cleanup component to free

124

4 Continuous merging

Unsorted
Partition

Input
PartitionData Stream Partition

Queue

Partition Generation

...

Partition

Unsorted Insert
Partition

Partition

Sorted
Partition

Sorted
Partition

Sorted
Partition

...

Unsorted
Partition

Unsorted
Partition

Sorting
Thread

Sorting
Thread

Sorting
Thread

Merging
Thread

Sorted
Partition

Put Into

Figure 4.15: Implementation of partition generation.

space, and a runtime metrics component, which collects statistics about the overall
system.

In the following, we will describe the implementation details of the partition gen-
eration and merging components. Then, we will briefly describe relevant fea-
tures of the query, cleanup, and runtime metrics components. The version con-
trol component is a connective tissue between all other components. Conse-
quently, we describe the individual functionalities when discussing other compo-
nents.

4.5.2 Partition generation

The procedure described in Section 4.3 is designed to fill the gap of a more in-
cremental and dynamic merging process for tiering and thus reduce fluctuations
in the merging process. However, it does not solve the bottleneck occurring in
flush operations, as demonstrated in Section 4.1.1. As discussed in Section 4.4,
part of the bottleneck is the mismatch between the theoretical run time of sorting
the initial partition and the time for external merge sort in the merging compo-
nent.

We can assign more CPU time to the partition generation to resolve this mismatch.
In practice, we use a parallel sorting approach as shown in Figure 4.15. The input
partition receives some items from a data stream. For quick insertions, we append
data to the partition. Furthermore, a sorted insertion would result in the runtime
mismatch we want to avoid. Once the input partition reaches a target size (S0),
we split the partition into a configurable number of partitions (x) of equal size
(S0

x
). A dedicated sorting thread sorts each partition. Initially, we used sorting

algorithms from the Java standard library. However, upon further inspection, this

125

4 Continuous merging

Partition
Generation Level 0 -> 1 Merge Level 1 -> 2 Merge

Merging

Partition
Queue

...Partition
Queue

Partition
Queue

Merging
Thread

Merging
Thread

Figure 4.16: Implementation of merging.

caused frequent triggers of the Java garbage collection and unusual fluctuations
when writing data to storage after the next step. We assume the latter can be
attributed to memory management, such that sorting only sorts references rather
than the actual data. Thus, we implemented a sorting algorithm based on off-
heap ByteBuffers, which the Java Garbage Collection does not manage. This
reduces garbage collection. Furthermore, since sorting moves the actual data,
this removes performance fluctuations when writing data. As a sorting algorithm,
we used quicksort with a Hoare partition schema. A merging thread performs a
merge sort on the sorted partitions in a final step. We use a tree-of-losers priority
queue for merging multiple partitions. The merging thread writes the results in
fixed-size pages into a separate file and simultaneously builds a B-tree with a bulk
loading strategy. The process is pipelined such that after the first initialization
period, ideally, each step (insertions, parallel sorting, the final merge sort) happens
concurrently and is always active.

Once a partition is complete, it is put into a queue. The queue has an optional
maximum capacity - if exceeded, this results in back pressure, i.e., write stalls for
stream ingestion and a maximum ingestion data rate. Furthermore, the version
control component receives results of a completed partition from partition gener-
ation such that future query operations can search the persisted partition on the
storage medium.

4.5.3 Merging

Merging connects to the partition generation via a dedicated queue. For each level
y outside of the initial partition generation (level 1, 2, . . .), a dedicated merge
thread takes partitions from the previous input level x and produces a partition
(level x ⇒ y Merge). As shown in Figure 4.16, these threads are directly connected
via queues. This follows the core design philosophy of continuous merging - a

126

4 Continuous merging

merge level is always active and, thus, needs to be able to receive new input
autonomously.

Each merge thread starts by running the initialization phase algorithms as shown in
Algorithm 4.3. We use a level indicator L and Lemma 4.4.2 to compute the size of
the first partition. We can use FL×S0 for all other partitions to estimate their size.
Based on those sizes, we can compute the step size in Algorithm 4.3, after which
we need to wait for new partitions to arrive. This creates staggered ranges. After
the partition is complete, the merge thread reports this result to the output queue,
which serves as the input queue for the next level. In our default implementation,
the merge thread registers this progress to the version control component. This
means that the initialization phase has a coarse progress granularity, and the first
partition on a level only appears once it is complete.

After the initialization phase, the merging thread runs Algorithm 4.4. Our default
implementation adds new partitions whenever a previous partition is empty, i.e., all
keys were merged into the next level. This guarantees a steady merge fan-in. The
output is complete whenever all partitions reach the end of their key domain, i.e.,
when the heap data structure is empty. Whenever a new partition is added to the
merge process, the merge thread reports the progress to the version control compo-
nent. In the version control component, empty partitions are marked as obsolete.
For all other partitions that contributed to an output partition, the respective key
ranges which were already merged are marked as such.

Similar to the partition generation component, we use a tree-of-losers as our main
heap data structure. To hide I/O latency, we use a double buffering strategy.
Whenever the merge process adds a new page, it reads the next page’s pointer and
asynchronously requests it. The same strategy is applied to write operations. We
use a B-tree bulk loading technique, as in ChronicleDB, to build an index on top
of the data.

Although continuous merging is designed as an eternal process, the component
must be able to shut down in practice. For that purpose, the active variable of the
main while loop in the steady state can be set to false. We also introduced another
variable into the for-loop of the initialization phase. For a proper shutdown, once
those variables are set to false, the progress is reported to the version control
component. Partition generation is always run to completion to minimize data
loss.

127

4 Continuous merging

4.5.4 Query, cleanup and runtime metrics

The version control component receives updates from the partition generation and
merging components. Each update produces a new snapshot. The version control
keeps a list of snapshots. A query uses the latest available snapshot. The query
registers itself as a reader of the latest snapshot and delivers results as it pertains
to it. To keep result consistency simple, future updates and, thus, later snapshots
do not affect a registered query. A query uses all non-obsolete partitions and
key ranges that were not merged in a merging process at snapshot creation time.
The current implementation supports point and range queries. Furthermore, it
supports best-effort queries with a budget, which we refer to as budget queries.
Budget queries use the number of partitions as a budget and query partitions
chronologically from oldest to youngest until the budget is exhausted. Thus, the
results naturally represent a temporal period and can be measured in temporal dis-
tance to real-time. For experimental purposes, it is possible to pause all partition
generation and merge processes to evaluate query performance in isolation. This is
an important setup as real-world systems may have separate compute and storage
units for ingestion/merging and query processing. It is associated with callbacks
so that the caller of the pause will proceed once every thread has confirmed it has
paused.

The cleanup component consists of a separate thread that runs in fixed inter-
vals. It analyzes the list of snapshots in the version control unit to identify ob-
solete partitions. These include partitions not used in the most recent snapshot
and not used by any snapshot with registered queries. Cleanup consists of sim-
ply deleting files from partitions. However, we also implemented a strategy that
overwrites files, which showed superior performance. Thus, future work should
consider a storage layout similar to traditional database systems rather than the
file-based LSM structure. Linear-partitioned B-trees with continuous merging and
fine-granular free-space management would likely improve the overall system per-
formance.

The runtime metrics component observes the state of the overall system. It fea-
tures multiple threads which query the version control component at fixed inter-
vals about the current number of partitions in each level, partition sizes, merge
progress, and speed of different operations (partition generation, sorting, merging,
etc.). In addition to queries, they are used to judge the overall performance of the
implemented strategies and competitors.

128

4 Continuous merging

4.6 Extensions

4.6.1 Early merging

Concept

In the original proposal for continuous merging, whenever a partition finishes, it
joins the merge process of the level above at the current key of the merge process.
As theoretically shown in Section 4.4.1, this results in early merge result production
and, thus, earlier creation of the desired stream index. However, especially during
the initialization phase, a merge process may have to wait for a new partition
to finalize before it can join the merge process. This results in idle time for
the CPU and performance fluctuations. Instead of waiting, the merge process
could continue with a lower fan-in, but low fan-in results in more merge levels to
achieve the same query performance, a higher write amplification, and inefficient
merging.

Alternatively, reducing the waiting time by including partial partitions into an
active merge process is possible. A partial partition has yet to finish its merge
process, i.e., the active merge has not reached +∞. Whenever a partition at level
l reaches the key range of the active merge step from level l to level l + 1, we
can include the partition in the merging process. We call this continuous merging
variant early merging. Not waiting for a partition to complete reduces (but does
not eliminate) the idle time of the CPU.

Partitions in continuous merging can easily join a merge process because each
partition is a B-tree, and it can efficiently find the key km of the merge process it
wants to join. This also applies to early merging, but an additional requirement
is that each merge level needs to keep track of the largest key kc of the partition
currently being created. Only if kc ≥ km, the partition can be included in the active
merge step. Otherwise, it cannot contribute to merge results since keys below km
have already been sorted and written to storage.

The initialization phase requires the following adjustments. For a desired target
fan-in of F , partition generation still starts as a “1-way-merge” and builds up to
a F -way merge before the first partition of the level is complete. Partitions join
at the same quantile of the given key distribution as in continuous merging but
do not have to be complete to join. In Figure 4.17, a sequence of three diagrams
shows different points in time during the initialization of a merge level. In the first
diagram (I), the first and second partitions have been completed, generated, and
are being merged (shown in red). The third partition is currently being created

129

4 Continuous merging

(I) Third run beng generated

(II) Third run jons actve merge

(III) Third run finnalzed

Figure 4.17: Initialization phase of early merging.

(shown in purple). Diagram (II) shows a later point in time in which the merge of
the first two partitions has progressed, and the generation of the third partition
has caught up to this progress. It immediately joins the merge (another red arrow),
although it is still incomplete (the purple arrow remains), expanding the merge
from a 2-way to a 3-way merge. In the third diagram, the generation of the third
partition has finished, and the fourth partition has started. It could join if the
fourth partition catches up to the merge progress before it reaches +∞. Otherwise,
it will join the next cycle at −∞.

When comparing Figure 4.17 to the initialization of continuous merging in Fig-
ure 4.7, there are two notable differences. First, although showing similar points
in time, there is already a 3-way merge in the second diagram. Second, the merge
progress of the active merge is more advanced in all three diagrams because they
did not have to wait for a partition to finish. However, there is also an important
similarity: The key at which the third partition joins in the Figure 4.17 diagram
(II) is the same as in Figure 4.7 diagram (III). For a perfectly paced continu-
ous merging process after the initialization phase, the quantiles do not change.
Only the time between reaching the quantile and joining the merge step is re-
duced.

The initialization process completes once a level completes the first full output
partition. The steady-state process for fully initialized merge levels is generally
the same as in continuous merging, with the lone difference being that the latest
partition in the merge process is partial. The bandwidth per merge level remains
the same, as does the number of expected partitions per level, which is still con-
stant. However, there is better CPU utilization during initialization and a gain in
the overall merge progress.

130

4 Continuous merging

As a potential downside, once a partition joins, it may cause write stalls due to not
being complete. However, that scenario is unlikely in our target setting of steady
input rates and distributions. At any level, there is at most one partial partition.
Assuming each partition has a similar key distribution, the amount of keys in every
key range on each level is similar. However, partitions at level l will have fewer keys
in the same range than partitions at level l+1. Thus, after reaching a key kc ≥ km,
the remaining keys in the range [kc,−∞] are less for the partition generation
than the merge process. Therefore, the partition generation for level l partitions
will generally outpace the merge from level l to level l + 1. Nevertheless, the
implementation needs to account for the possibility by assuring that the condition
kc ≥ km remains true for the latest partition.

Implementation

The main difference between previous implementations is that partitions must join
the merge process while being built. We also refer to this partition as a partial
partition. Thus, the information about their progress needs to be propagated to
higher levels.

For the partition generation component, recall that multiple threads are sorting
parts of the partition in parallel before a single thread merges the sorted parts
and writes them to the storage medium. We adjusted the implementation of the
single merging thread. First, instead of adding the finished partition into the
queue connected to the first merge level, a partition is added as soon as it starts.
Second, a partition is associated with a memory-residing variable M0 containing
the latest key update k0

M and a Boolean flag b0M indicating whether the parti-
tion is complete. Partition generation updates the variable upon adding a new
key to the partition. This information is added to the queue alongside the parti-
tion.

The merging component requires similar adjustments. A partition is added to
the subsequent queue as soon as it starts, and a variable M l in main memory is
associated with it keeping track of the updates (last key kl

M and a Boolean flag blM
for finished partitions). Whenever the merging component for producing level l
partitions calls the addNewPartition function, the variable of the partial partition
in level l− 1 is checked. If kl−1

M exceeds the current merge pointer (lastAddedKey)
or if bl−1

M is true, the partition joins the merge process. Otherwise, the function
evaluates to false.

There is a performance trade-off to consider in updating and reading the shared
variable M l. For consistency, we surround it with locks, but this causes contention.

131

4 Continuous merging

To limit this, we only update the variable once the writing thread finishes a new
page. Similarly, we decrease the call granularity to addNewPartition. By default,
this only occurs whenever the fan-in decreases below the target. However, an
alternative could also consider new entries only when a page writing in merge
progress.

We also adjust the double buffering process in the merging component to handle
the edge case of a previous level stalling the merge progress. Whenever we request
a new page of a partial partition, we compare the lastAddedKey on the merge
level with kl−1

M . Since we update M l−1 in the granularity of pages written, we can
wait for kl−1

M to pass the lastAddedKey.

The partition generation and the merging component report their progress to the
version control. This timing is unchanged, but partial partitions are added with
M l to inform queries.

Theoretical analysis

Early merging merges the same key ranges of the same partitions as continuous
merging. Thus, the size of the initial partition (or any other partitions) does
not change. Therefore, the analysis for query processing on a level in the steady
state is the same as for continuous merging. The only aspect that changes is
the merge progress and when the steady state is reached. We focus on the addi-
tional merge progress compared to continuous merging after both reach a steady
state.

Lemma 4.6.1 (Additional merge progress for early merging). The additional
merge progress of early merging in comparison to continuous merging after both
reached their steady state can be quantified as:

F l − 1

F − 1

Proof sketch: In continuous merging, after the F th partition joins the merge on
level l−1, the progression of partitions in level l is linear. I.e., for every unit added
on level l − 1, a unit is added on l. Thus, the progression on level l linear when
Tl−1(x) = F . This is the case for x = F l+1 +

∑︁l−1
i=1 F

i.

In early merging, the progression on level l is linear after the F th partition on level
l−1 reaches the last quantile. Thus, while the F th partition on level l−1 finishes,

132

4 Continuous merging

additional progress in the size of the quantile can be made on level l. This progress
is cumulative per level. Therefore, the additional merge progress of early merging
on level l can be equal to the sum of the size of quantiles in each preceding level,
i.e.,

∑︁l−1
i=0 F

i = F l−1
F−1

.

4.6.2 Merging policies

Given a steady input, continuous merging should perform constant merging ef-
fort while keeping the worst case and average query costs constant, eliminating
any waves of misery. A key mechanism that leads to this result is that merges
happen in parallel on every level, and the merge process never stops. In con-
trast, other merge strategies pick partitions to be merged and run this merge to
completion.

By removing the assumption of a steady input rate, there are two possible new
scenarios for continuous merging. First, the input rate might the lower than the
steady-state baseline, thus, not taking advantage of the available hardware re-
sources assigned to continuous merging. Second, the input rate might be higher
than the baseline, potentially overloading the system.

Since other merging strategies do not have continuously running merge processes,
they can prioritize merges based on how they pick the next merge. For example, in
RocksDB, it is possible to schedule runs for merging once they exceed a threshold
for dead records [Don16]. Thus, this implicitly prioritizes merges with more dead
records. Luo et al. [LC19a] presented a more explicit scheduling mechanism for
log-structured merge trees. They use a greedy algorithm to select merges with the
fewest bytes left. SILK [Bal+19] goes a step further and will preemptively abandon
active merges to prioritize a level 0 to level 1 merge. As seen in our introduction,
this tends to be the bottleneck of merging. Thus, this strategy resolves build-up
at the most crucial stage in log-structured merge trees.

However, most research focuses on leveling strategies [LC20b]. Furthermore, none
have the ability for runs to join an active merge process. This ability of continuous
merging allows it more flexibility. Thus, continuous merging has all pieces in
place to natively improve the external robustness of a system. To unlock this
flexibility, we need to present solutions for the two novel scenarios not covered
by the base method of continuous merging. In this case, the overload scenario
is the most challenging since it directly contradicts the assumption that every
merge can proceed simultaneously. In case of an overload, there are not enough
resources in the system to satisfy all levels equally. Thus, we must prioritize some

133

4 Continuous merging

merge processes over others similar to SILK [Bal+19] and the greedy scheduler
[LC19a].

Next, we will discuss the main mechanisms and policies to achieve that in the
context of continuous merging. Then, we will discuss the necessary changes to the
baseline implementation of continuous merging.

Configurable fan-in

The first change we make is regarding the fan-in. Each level in continuous merging
has a target fan-in of F , enforced through staggered key ranges in the initialization
phase. Under steady input assumptions, the fan-in should be somewhat sustained.
I.e., whenever a partition joins the merge process, another one will leave the merge
process. In practice, a partition may join a little early or leave a little late due
to natural fluctuations. Thus, the fan-in might also fluctuate around F , but be
constant on average.

If the input rate goes below the steady state, partition generation on level 0 will
produce a partition more slowly. Thus, the merge process from level 0 to level 1
will outpace the partition generation. In turn, the fan-in will fall below F , since
multiple partitions might leave the merge process when a new partition joins.
Throttling the merge progress on all levels would offset this. However, this means
that hardware resources will be idle. Instead, we allow users to configure a target
fan-in range, e.g., [F − 5, F + 5]. As long as merging operates within that range,
will continue as specified before. If the fan-in falls below the target range, it will
be throttled. No new partitions are added to the merge process if the fan-in grows
beyond the target range. Therefore, partitions and data will accumulate on this
level.

This process allows us to keep the core mechanism of continuous merging in tact
while adding new flexibility.

Priorities

Whenever data rates reach an overload status, the fan-in will grow up to a config-
urable maximum beyond the target fan-in. In a level with a growing fan-in, more
data will accumulate. Furthermore, more hardware resources will be consumed on
this level because it will issue more read requests in parallel and possibly have a
larger merge fan-in and, thus, a larger merge tree. There needs to be a decision-
making process for distributing resources in case of overload. Our following five
policies summarize this decision-making process. All policies have in common that

134

4 Continuous merging

we assign partition generation the highest priority since this is where data could
be lost. Although in the context of secondary indexes in ChronicleDB, data loss is
not crucial, in standalone use cases, preventing data loss should take priority over
query performance.

FIFO policy The first-in first-out (FIFO) policy determines priority based on the
sequence of requests. E.g., if a decision between a level 0-to-1 merge and a level 1-
to-2 merge has to be made, the level will be prioritized, which requested resources
first. FIFO is the default policy in most systems because if no explicit policy exists,
concurring processes are served on a first-come, first-serve basis. For example, if
the application is I/O-bound and both merge level 0-to-1 and merge level 1-to-2
have pending read requests, the first read request will be answered. However, these
might be batched or re-ordered in truly asynchronous I/O implementation or due
to the operating system.

If partition generation receives priority, data will accumulate more quickly on level
0. Since each merge level has an equal chance of getting data processed, but level 0
deals directly with the higher data rate and a potentially higher fan-in, we expect
the FIFO policy to accumulate more partitions on level 0. Thus, the overload will
result in rising level 0 partitions.

Level policy The Level policy determines priority based on the level number
such that a lower merge level has a higher priority. E.g., if a decision between a
level 0-to-1 merge and a level 1-to-2 merge has to be made, the level 0-to-1 merge
will be prioritized. A level policy is similar to SILK. The latter even aborts other
ongoing merges to prioritize level 0-to-1 merges. However, unlike SILK, the Level
policy also determines ordering higher-level merges.

Since the level 0-to-1 merge has the highest priority among merge levels, data
should not accumulate on this level. However, in an overload scenario, this priority
will be enforced indefinitely. Thus, we expect data to accumulate on level 1. The
overload will result in a rising number of level 1 partitions.

Partition policy The Partition policy determines priority based on the number
of partitions present in a level. The level with the highest number of partitions
will receive the highest priority. E.g., if level 0 has 20 partitions and level 1 has 25
partitions, the level 1-to-2 merge will be prioritized.

In continuous merging, we expect the number of partitions per level to rise in
lockstep with each other slowly. Level 0 will receive the most partitions initially,

135

4 Continuous merging

increasing its priority. However, since it produces the most output at this time,
new output partitions will accumulate on the next level. Since these outputs will
join in an active level 1 merge, level 1 will thus catch up and outpace level 0
partitions briefly. Consequently, level 0 will accumulate more partitions from the
partition generation. We expect this ping-pong effect to translate for all other
levels such that each level receives priority for a short time. Thus, all levels can
make progress.

Waiting Records

Total Waiting Records policy Instead of a granularity of partitions, the Total
Waiting Records policy uses the number of records on a level. If we increase the
fan-in due to overload, partitions on a level will grow larger. Thus, even though
two large partitions with a lot of data may be waiting to be merged on level 1, the
Partition policy would still prioritize a large over a smaller number of partitions
on level 0. To determine waiting records, we account for the size of partitions.
We subtract data already moved to a larger level. Thus, all data not merged on a
level will be used to determine priority. The merge with the most waiting records
will receive the highest priority. For example, level 0 has three partitions with 40,
70, and 100 waiting records, respectively, and level 1 has two partitions with 100
and 120 records, respectively. Then, level 0 would have a total number of waiting
records of 210, while level 1 would have 220 waiting records. Thus, level 1 would
receive priority.

Note that greedy scheduling, as presented by Luo et al. [LC19a], prioritizes the
minimum number of bytes left in a merge. Since continuous merging is always
ongoing, the number of bytes left cannot be directly applied. However, data not
merged is a similar metric. Greedy scheduling based on the minimum total waiting
records would invert priorities of the Total Waiting Records Policy. In practice,
we found the performance characteristics similar to the Level Policy (generally
favoring level 0-to-1 merges) but slightly worse, so we do not discuss this fur-
ther.

Normalized Waiting Record policy The Total Waiting Records policy disre-
gards the fact that we expect a certain number of records to be waiting. This
number is constant per level in continuous merging with a steady input rate.
However, since partitions grow exponentially from one level to the next, level 1
is expected to have more waiting records than level 0. We use the Normalized
Waiting Record policy to account for that in our scheduling. Here, we divide

136

4 Continuous merging

the total number of waiting by the expected number of waiting records as de-
termined by our theoretical analysis. For example, consider the Total Waiting
Records policy example with an expected number of records of 200 for level 0
and 600 for level 1. Then, for level 0, the normalized waiting records are 1.05.
For level 1, the normalized waiting records are 0.37. Thus, level 0 will receive
priority.

Discussion Waiting records are updated more frequently than the number of par-
titions. Thus, we expect levels to rise at different rates than in the Partition policy.
Since we decouple priority from the partitions and thus merge fan-in, levels can
gain priority without changing the number of partitions. Therefore, partitions on
each level do not have to rise in lockstep because level 1 can gain priority by merg-
ing larger but fewer partitions. The Total Waiting Records policy prioritizes total
data on a level, while the normalized variant introduces a component to prioritize
lower levels. Thus, the number of level 0 partitions should remain lower for longer
as it has an implicit priority due to normalization.

Implementation

Since continuous merging is built assuming that each merge is always active and
is explicitly designed to work without a dedicated scheduler to avoid possible
pitfalls, introducing an explicit scheduling component significantly increases code
complexity while removing some of its benefits. However, policies like Waiting
Records require fine-grained scheduling decisions that cannot be made after each
−∞ to +∞ merge cycle. Thus, our implementation needs to strike a balance
between minimal added code complexity and minimal invasion into the continuous
merging process on the one hand but also allow for flexible policy definitions on
the other hand.

Introducing a target fan-in range is a straightforward process. We leave the initial-
ization phase unchanged, so each level starts with the original target fan-in. For the
steady phase, we need to adjust the addNewPartition function (cf. Algorithm 4.4
line 24). Here, this function switches to a busy waiting approach if the fan-in falls
below the target range and evaluates to false if the fan-in reaches the maximum
fan-in range. This requires minimal code adjustments.

For introducing priorities, we chose to add a step in our I/O layer. The top
of Figure 4.18 shows a simplified version of our original concept - the merging
thread for a level creates I/O requests and communicates those to the I/O layer.
Figure 4.18 shows the updated implmentation. The merging thread adds requests

137

4 Continuous merging

I/O Request Queue

Merging
Thread

I/O Request

Priority
Thread

I/O Layer

Runtime
Metrics

has access to

Merging
Thread

I/O Request I/O Layer

Figure 4.18: I/O layer for merging policies.

to a queue instead of directly communicating with the I/O layer. An additional
thread (priority thread) picks an item from the queue and poses the request to the
I/O layer. The priority thread has access to the previously introduced runtime
metrics component, where information such as the number of partitions is stored.
Thus, the thread can use the information to prioritize certain I/O operations. Since
I/O capacities are limited, the priority thread also is informed about completed
I/O operations. Once it reaches a certain threshold, the priority thread will not
pick further requests from the queue until an I/O operation finishes. Thus, the
requests will accumulate in the queue. Since we use a double buffering strategy for
our merging thread, any thread will automatically block once the requested page
is needed in the merge process (i.e., the other page is completely merged (read
requests) or constructed (write requests)). Thus, we do not need to change the
code of our merge process. We also do need to schedule or explicitly abort merges.
This will be handled automatically at the I/O layer.

The priority thread does not have to do anything for the FIFO policy implemen-
tation. For the Level policy, we expanded the I/O request to include the request
level. The priority thread can use this to prioritize lower over higher levels. For
the Partition and Waiting Records policies, the priority thread accesses the run-
time metrics to construct a sorted list of levels by the number of partitions, total
waiting records, or normalized waiting records. Then, it picks the I/O request
with the highest priority based on the sort order.

The granularity of priority updates is not in completed merges (as in most systems)
or partitions but is decided on a page basis. Since I/O requests break out of the cre-
ation loop, this introduces minimal overhead to the overall process. An added ben-
efit of our queue-based approach is that it can work well with novel asynchronous
I/O approaches in operating systems such as io uring in Linux [Cor19; Wu+21].

138

4 Continuous merging

Since io uring also uses a queue-based approach to improve throughput and paral-
lelism, this could be exploited for performance gains. Improved asynchronous I/O
support is beneficial for database system performance [HHL20]. However, since
support in Java for io uring (or libaio) is limited at the time of writing, we will
leave improvements on that front for future work.

4.7 Experimental evaluation

In the following section, we will propose nine hypotheses for expected performance
characteristics of continuous merging compared to binary merge steps and stepped-
merge trees. Those hypotheses are based on the proposed procedure (Section 4.3)
as well as the theoretical analysis (Section 4.4). Then, we will discuss our first
implementation of continuous merging as well as our implementation of competing
methods. All methods consist of multi-threaded partition generation, merging, and
snapshot methods for point, range, and limited I/O budget queries to offer realistic
and complete implementations. We also describe our execution environment for
experiments before detailing experimental results for insertions (runtime, partition
overview) and query measurements. The results are the answers to our proposed
hypotheses.

4.7.1 Hypotheses

Based on our analysis, we expect

H1 a steady count of partitions at each merge level, not a sawtooth pattern;

H2 the size of partitions is nearly constant for continuous merging (see assump-
tion A1);

H3 at each merge level in steady state (except the highest merge level still in its
build-up phase), a steady amount of data waiting to be merged;

H4 query performance (latency of individual queries) proportional to the count
of partitions each query needs to search;

H5 the key value distribution in the data collection does not matter - it matters
whether the key value distribution in queries and query ranges mirrors the
key value distribution in the data;

139

4 Continuous merging

H6 compared to traditional log-structured merge-forests, continuous merging
with staggered key ranges can use a higher merge fan-in (with the same
count of partitions per query);

H7 for budget-limited queries, which can only access a limited amount of par-
titions starting with the oldest data, continuous merging allows for near
real-time queries;

H8 early merging improves the ingestion-to-merge latency; and

H9 merging policies adapt continuous merging to the workload and input-driven
policies allow for a more robust increase in partitions in case of overload.

4.7.2 Environment and implementation

The experiments are conducted on a workstation equipped with an AMD Ryzen7
2700XCPU (8 cores, 16 hardware threads), 16GB of memory, and a Samsung SSD
970PRO for persistent storage. The operating system is an Ubuntu Linux (kernel
version 5.3). We implemented the strategies in Java and use the Oracle JVM 13 for
execution. I/O operations use the ODIRECT flag to reduce buffering effects of the
operating system. A custom thread pool of 8 threads executes I/Os asynchronously
with a double-buffering strategy via the AsynchronousFileChannel class.

Following related contemporary state-of-the-art research on log-structured merge
trees and their experiments [DAI18], we use datasets with uniformly randomly
generated key-value records. Our records consist of a 64-bit integer key within
an experiment-specific key range and a randomly generated string value of 50
bytes. For H5, we also generate datasets with a normal (Gaussian) key distribu-
tion.

All implementations were integrated into our system as described in Section 4.5
for a fair comparison. In particular, initial partition generation and merging occur
concurrently. Furthermore, we use multiple threads to sort initial partitions in par-
allel. Partitions are indexed via a B-tree. Unless stated otherwise, queues between
levels can reach a maximum capacity, resulting in back pressure. We implemented
five merging strategies: binary st, binary mt, stepped mt, stepped st,
continuous. Here, binary represents binary merges as presented in the orig-
inal LSM paper (also known as leveling) while stepped represents multi-way
merging (also known as tiering). The suffixes st and mt refer to single-threaded
and multi-threaded implementations, respectively. While in st, only one thread
supervises all merging, mt employs a thread for each level, and levels communicate
via blocking queues. The continuous label refers to the novel merging method

140

4 Continuous merging

proposed in Section 4.3. The result of all merge strategies is another partition on
a higher level.

A background thread in the cleanup component cleans unused snapshots and the
associated storage every 500ms. In our runtime metrics module, a thread collects
statistics every 200ms. The results of those statistics are the basis for following
ingestion-based measurements.

4.7.3 Measurements and tests

We separate the measurements into two categories. The first category is merging
performance, i.e., the number of key comparisons and partitions during merging.
The second category is query performance and includes execution time measure-
ments for queries. After evaluating the core continuous merging process in those
two categories, we also evaluate the proposed extensions.

4.7.4 Merging performance

Unless stated otherwise, the insertion experiments feature a total 2.5 billion record
insertions (about 130GiB). Duplicate keys are possible, and the merge process
removes them by only keeping the latest version of a duplicate key. The parti-
tion generation uses 6 threads. Unless stated otherwise, there are 3 merge levels,
each using one thread. The page size is set to 128KiB based on a preliminary
throughput experiment. In the throughput experiment, we used stepped mt as
a baseline and varied page sizes from 8KiB to 512KiB. There were only noticeable
improvements until 128KiB. This is somewhat in accordance with recent research
on hidden SSD parameters where 64KiB was determined to be the chunk size for
the similar Samsung 960 EVO SSD [Kak+19]. A level-0 partition consists of 1M
records, which results in a file size of 52MB.

We configure a maximum data rate of 8M records/second to measure the overall
write throughput. Due to backpressure, the data rate falls below this target during
the following experiment comparing the five different merge strategies. Figure 4.19
compares the average data rate for inserting a normal key distribution in the key
range of (0, 20 billion) with µ = 10B, σ = 7M . Clearly, stepped mt(10) and
continuous(10) outperform the other strategies. Both strategies use a merge
fan-in of 10 at each level. Continuous(10) has a slightly worse overall data
rate than stepped mt(10) due to two reasons. First, at the beginning of the
experiment, stepped mt(10) meets the maximum rate of 8M records/second
because only the first merge level is active. Thus, we also report the data rate

141

4 Continuous merging

binary_st

binary_mt

stepped_st(10)

stepped_mt(10)

continuous(10)

stepped_mt(4)

continuous(4)

0
1M
2M
3M
4M
5M
6M

Overall Steady

N
ew

 re
co

rd
s/

se
c

Figure 4.19: Average data rate for a maximum of 8M records/sec for different
merging strategies.

of the steady state that only considers the second half of the experiment, where
data rates are much closer. Second, after all merge levels are active for both
strategies, stepped mt(10) is better by about 4% on average. This is due
to the overhead of continuous merging. In particular, per partition, there are
two root-to-leaf searches (read I/O), periodic progress snapshots (write I/O), and
additional code branches for inquiring about new partitions. Those periodic loop
interrupts may not be optimized by the JVM runtime optimization in the same
way as the sequential stepped mt is. As another point of comparison, we use
stepped mt(4) and continuous(4). Both operate with a fan-in of 4 per level
and use an additional merge level. While the overall ingestion rate is smaller for
both variants, the steady rate is within 2.4%. Some of that difference is due to
the lower overhead per merge, i.e., only 4 root-to-leaf traversals per merge cycle.
The performance of binary mt is lower than other mt strategies because of the
difference in merge effort - to produce a partition of similar size, binary mt needs
to perform multiple merge steps with partitions of varying sizes, which results in
more key comparisons and write operations.

In a more detailed look at stepped mt(10), Figure 4.20a shows the number of
partitions for each level as well as the total number of partitions. The setup is the
same as above. The x-axis indicates the total run time of the experiment. In the
initialization phase, the system easily maintains the data rate, and the number of
files is below the worst-case expectations. However, at about the 15-second mark,
the level 2 merge begins. This results in back pressure. In turn, the sawtooth
pattern with a peak of 2F − 1 = 19 partitions appears in both levels and in sum
for the total number of partitions.

Figure 4.20b shows the same setup for continuous(10). There are two notable
observations. First, continuous generates partitions for each level more quickly
than stepped mt (i.e., the first two level 2 partitions are created in about 25

142

4 Continuous merging

100 200 300 400
0

10

20

30

40

50

60

Level 0 Partitions Level 1 Partitions
Level 2 Partitions Level 3 Partitions
Total Partitions

Time in seconds

Pa
rti

tio
n

C
ou

nt

(a) stepped mt

100 200 300 400
0

10

20

30

40

50

60

Level 0 Partitions Level 1 Partitions
Level 2 Partitions Level 3 Partitions
Total Partitions

Time in seconds

Pa
rti

tio
n

co
un

t

(b) continuous

Figure 4.20: Merge progress for 8M records/sec (normal key distribution).

seconds, and the first level 3 partition is complete at 190 seconds). Second, the
number of partitions is not a sawtooth pattern but a rather steady line of F+1 = 11
partitions with some short outbursts below and above it. This confirms hypothesis
H1. As discussed in Section 4.4.2, there are sometimes 11 instead of 10 partitions
because the level below builds a partial partition.

We also report the standard deviation of resulting partition sizes in Figure 4.21 for
the same setup. While the average sizes for stepped mt and continuous are
nearly identical, the first partition for continuous is an outlier, about half as
large as the other partitions due to its initialization phase. Thus, we also report an
adjusted standard deviation without the first partition. In this case, both variants
are very close to the average size. E.g., on level 1, continuous is within 0.1%
while stepped mt is within 0.005% of the expected size. These results confirm
hypothesis H2, and thus justify our assumption (A1) in our theoretical analysis
(Section 4.4).

We ran a similar experiment for a uniform instead of normal key distribution
in the same key range. The 8M records/second setup delivers nearly the same
results as the previous experiment. Thus, we discuss a configuration with a limited
data rate of 5M records/second. This is below the previously measured rate for
both continuous and stepped mt. Therefore, the system is not at capacity,
allowing a more varying partition count over time. Figure 4.22a and Figure 4.22b
show the respective results. First, the sawtooth and steady patterns also appear
for a uniform distribution. This shows that the key distribution does not matter
as long as each partition exhibits the same distribution (H5). Second, due to the

143

4 Continuous merging

level 1 level 2 level 3

100

1000

10k

100k

1M

10M

100M

stepped_mt continuous
continuous (stable)

St
d

de
v

(p
ar

tit
io

n
si

ze
)

Figure 4.21: Standard deviation from final partition sizes per merge level.

100 200 300 400
0

10

20

30

40

50

60

Level 0 Partitions Level 1 Partitions
Level 2 Partitions Level 3 Partitions
Total Partitions

Time in seconds

Pa
rti

tio
n

C
ou

nt

(a) stepped mt

100 200 300 400 500
0

10

20

30

40

50

60

Level 0 Partitions Level 1 Partitions
Level 2 Partitions Level 3 Partitions
Total Partitions

Time in seconds

Pa
rti

tio
n

co
un

t

(b) continuous

Figure 4.22: Merge progress for 5M records/sec (uniform key distribution).

144

4 Continuous merging

100 200 300 400
0

0.5B

1B

1.5B

2B

level 1 (stepped_mt)
total (stepped_mt)

level 1 (continuous)
total (continuous)

Time in seconds

W
ai

tin
g

R
ec

or
ds

Figure 4.23: Waiting records per merge level (5.5M records/sec (uniform key dis-
tribution)).

lower input rate, stepped mt is not entirely at capacity. Thus, the partition
count drops below the fan-in of 10 before and after level 3 merges. However, on
average, the overall partition count of continuous is still below stepped mt
when all merge levels are active. Furthermore, to keep partition sizes within a level
consistent, in this experiment, continuous implementation waits for enough
partitions to accumulate during a merge.

Finally, even though the partition count is one indicator of the behavior of different
strategies, continuous merging also has partially merged partitions. To showcase
this effect, we repeat the previous setup for stepped mt and continuous for
a maximum data rate of 5.5M records/sec, i.e., slightly above what both meth-
ods can handle when all merge levels are active. For this experiment, we keep
track of records waiting to be merged per level. This excludes records on the last
level. Figure 4.23 shows the result for both strategies. We only display results for
level 1 and the total number of records for presentation purposes. In both cases,
the number of records for continuous is lower, while stepped mt has a saw-
tooth pattern with a large amplitude. However, hypothesis H3 can only partially
be confirmed because continuous also features a smaller sawtooth pattern. The
explanation for this is as follows. On each level, the merge thread is currently
building one partition that only joins the merge process once it is complete, re-
placing another partition that has been completely merged. The rising number
of waiting records belong to the latest partial partitions, and the sharp fall is the
moment of replacement. Thus, our current snapshot mechanism is the cause of the
continuous sawtooth pattern. More frequent snapshots of the merge progress

145

4 Continuous merging

20 40 60
0

5

10

15

20

0

20

40

60

stepped_mt (time)
stepped_mt (partition)
continuous (time)
continuous (partition)

Query batch number

Ti
m

e
in

 m
ill

is
ec

on
ds

Pa
rti

tio
n

co
un

t
(a) result size=100; F=10

20 40 60
0

5k

10k

0

20

40

60

stepped_mt (time)
stepped_mt (partition)
continuous (time)
continuous (partition)

Query batch number

Ti
m

e
in

 m
ill

is
ec

on
ds

Pa
rti

tio
n

co
un

t

(b) result size=100M; F=10

Figure 4.24: Range query results for merging strategies with a fan-in F=10 with
various result sizes.

would result in a more continuous line. However, since this is the state that queries
use, we reported our results based on those snapshots.

4.7.5 Query performance

We insert 320M records from the uniformly distributed synthetic data set to mea-
sure query performance. After inserting 120M records, queries happen in intervals
of 2.5M inserted records. These experiments use a slightly adjusted implemen-
tation with interruptable merges to measure query performance without other
system effects. Before each query point, all merge processes and partition gener-
ation stop. Then, the system answers ten successive range queries. Therefore, all
results are an average of ten measurements. Any query uses a target key range
of x keys such that the number of keys returned in a query is constant over time.
In particular, the range decreases over time since the key density of a fixed region
increases with more insertions. Queries use a tree-of-losers priority queue to merge
results in the correct order and filter out duplicates. Thus, a query returns a sorted
output.

Figure 4.24a compares the results for stepped mt and continuous for a target
key range of 100 keys. The x-axis shows the total number of query points. There-
fore, although the overall merge progress may differ between the variants over time,

146

4 Continuous merging

20 40 60
0

100M

200M

300M

400M

500M

600M

stepped_mt continuous

Query batch number

N
o.

 o
f c

om
pa

ris
on

s

Figure 4.25: Comparisons to produce range query results for an expected number
of 100M keys (F=10).

the number of keys within the system is the same. The left y-axis shows the aver-
age processing time of a query (solid lines). The right y-axis shows the partition
count relevant to a query (dotted lines). In the case of continuous, the parti-
tion count filters out partitions that may exist but do not cover the query range
due to staggered key ranges. The merge progress of a partition may also result
in two root-to-leaf traversals. We count those as two partitions. The query per-
formance of continuous is better than stepped mt and, unlike stepped mt,
does not feature the sawtooth pattern. The partition count for both confirms those
patterns. Furthermore, there is a sharp dip for stepped mt. This is due to a
level 2 merge completing (i.e., the end of a monster wave). In total, this confirms
hypothesis H4.

Figure 4.24b shows the same experiment but for a larger key range of 100 million
keys. The overall query processing time increases, but the relative results differ.
At first glance, this is somewhat surprising. The time to produce query results
for many results dwarfs the time to open and navigate trees. Figure 4.25 shows
one reason for this difference. The figure displays the average number of compar-
isons done for each query. While slightly less pronounced, the same sawtooth and
steady line patterns are present. With an increasing number of partitions, the
tree-of-losers priority queue for producing results increases in depth. Thus, to get
results in a sorted manner, deeper priority queues need more processing effort (i.e.,
comparing keys). While not every query may need sorting, this is important for
streaming indexes with tombstone records and duplicate key removal queries be-
cause they may require sorting to handle those aspects. We suspect the remaining

147

4 Continuous merging

20 40 60
0

50

100

0

20

40

60

stepped_mt (time)
stepped_mt (partition)
continuous (time)
continuous (partition)

Query batch number

Ti
m

e
in

 m
ill

is
ec

on
ds

Pa
rti

tio
n

co
un

t
(a) result size=1M; F=4

20 40 60
0

50

100

0

20

40

60

stepped_mt (time)
stepped_mt (partition)
continuous (time)
continuous (partition)

Query batch number

Ti
m

e
in

 m
ill

is
ec

on
ds

Pa
rti

tio
n

co
un

t

(b) result size=1M; F=16

Figure 4.26: Range query results for merging strategies with 1M expected results
and a varying fan-in.

processing time difference is due to less parallel I/O activity for continuous.
In general, we use a double-buffering strategy, i.e., while producing results for
one batch of pages, the next pages have already been requested. Although the
query range is quite large and most partitions are needed for the first couple of
keys, staggered key ranges mean some partitions may be discarded more quickly
in continuous. There are fewer parallel read I/O requests when processing later
parts of the key range.

Finally, Figure 4.26a and Figure 4.26b show range query experimental results for
a target size of 1M with a fan-in of 4 and 16, respectively. For a fan-in of 4, the
sawtooth pattern of stepped mt is less visible because of the sample size of 2.5M.
This skips a couple of partition creation points. At the same time, continuous
exhibits less of a flat line because slight variations of one or two partitions per
level are more noticeable for a smaller fan-in. However, overall, the performance
of continuous is better than stepped mt. For a fan-in of 16, there is a sharp
dip in query processing time at about the 62 query number mark. In the case of
a larger fan-in, it takes longer to create the first level 2 partition, which, for this
setup, appears at that mark. In the current implementation, the first partition
is only queried once it is complete. This explains the sudden dip during level
initialization. Afterward, merging uses more granular snapshots, i.e., whenever
partitions join/leave the merge process. This also shows the benefits of early
merge results on higher levels.

The range query results and our initial data rate experiment confirm hypothesis

148

4 Continuous merging

0 100 200
0

50

100

150

200

250

300

0

10

20

30

40

50

60

70

80
stepped_mt (time)
stepped_mt (partitions)
continuous (time)
continuous (partitions)

Query number

D
is

ta
nc

e
to

 re
al

 ti
m

e
(s

ec
.)

Pa
rti

tio
n

co
un

t

Figure 4.27: Real time distance for a limited I/O budget query (maximum 10 par-
titions).

H6. Due to having a higher fan-in, continuous merging can sustain a higher inser-
tion rate than traditional log-structured merge forests with a lower partition count
per query than stepped merging.

Finally, we look at point queries with a limited I/O budget. This type of query
originates from use cases in large data centers. The budget represents an upper
bound for the number of files a query can access. The query starts at the oldest
partitions on the largest merge level and, in order of their oldest records creation
time, adds as many partitions from this level as possible within the budget con-
straints. The process repeats with the next largest merge level until the budget
is exhausted. In Figure 4.27, we show the results of this query. The basic setup
is the same as in our range query experiments for a fan-in of 10 and a budget of
10, but we ran the experiment for 640M insertions and ran queries after every 1M
insertions. The y-axis features the results as distance to real-time based on the
following computation. Each level-0 partition saves its completion time (system
time). On larger levels, each partition keeps track of the initial partition times-
tamps it is composed of. Then, the distance to real-time is the subtraction of the
query timestamp and the maximum timestamp for all considered partitions within
the budget.

Stepped mt showcases a sawtooth pattern in the real-time distance because, dur-
ing a merge, newer partitions cannot be considered until the old merge completes.
In contrast, continuous has more frequent snapshots and a steady number of
partitions and, thus, has a more continuous line w.r.t. real-time distance. Stag-
gered key ranges amplify this effect because, based on merge progress, a query does

149

4 Continuous merging

not have to consider some partitions, freeing up the budget for other partitions.
Overall, this confirms hypothesis H7. While this experiment focused on point
queries, range queries might access only fractions of temporal partitions. There-
fore, the more complicated temporal association of partitions caused by staggered
key ranges needs further evaluation.

4.7.6 Extensions

Early merging

For the basic continuous merging algorithm, previous experiments showed a change
in the pattern of available partitions (from a sawtooth pattern to a linear pattern)
and improvements in query performance. Early merging changes the point at
which a partition joins the merge process but does not change the pattern or
the steady-state query performance. Therefore, we focus on experiments that
capture the change in merge progress. For this purpose, we measure the merge
progress as the time from when the first record is inserted into a partition until the
entire partition is completely merged into the subsequent level. Since a partition
joins the merge process earlier in early merging, the expected improvements in
merge progress should be directly translated into improvements concerning this
measurement.

Using the same setup as in previous experiments, we tested a variety of level-
0 partition sizes, data rates, and fan-ins. Small level-0 partition sizes generally
result in a higher variance in the number of data items in different key ranges.
This influences early merging results since an unexpected low or high number
of keys in a range changes the ability of a partition to join the merge process.
Since high variance in key distributions is outside the scope of this work, we set-
tled on level-0 partitions consisting of 2M records. As previously, a maximum
data rate of 8M records/second proved a good configuration for continuous in-
gestion in our system. We compared the merge progress of the base continu-
ous merging method with early merging. We executed the experiment 5 times,
measured the results for 300 seconds, and picked a representative result for each
method.

Figure 4.28 shows each method’s average merge time (i.e., the time from when a
partition is created until it is completely merged into the next level). We only mea-
sured the merge time for level 0 partitions. For continuous merging, base cm(4)
shows the results for a fan-in of 4 and base cm(10) results for a fan-in of 10.
For early merging, early(4) shows the results for a fan-in of 4, and early(10)
results for a fan-in of 10.

150

4 Continuous merging

base_cm(10) early(10) base_cm(4) early(4)
0

1000

2000

3000

4000

M
er

ge
 T

im
e

(m
s)

Figure 4.28: Time to completely merge level 0 partitions for continuous merging
(base cm) and early merging (early) for fan-ins 10 and 4.

Cleary, early merging improves the ingestion-to-merge latency. This proves hy-
pothesis H8. However, for both fan-ins, the results fall short of the theoretical
optimum. For a fan-in of 10, there is an improvement of 7.6% instead of the
expected 10%, i.e., an underperformance of 24%. For a fan-in of 4, there is an
improvement of 17.54% instead of the expected 25%, i.e., an underperformance of
29.84%. We assume this can be attributed to two factors. First, a synchroniza-
tion overhead is added between levels as progress needs to be synchronized more
frequently. Second, whereas in continuous merging performance variations could
balance themselves out, if the benefit of early merging is lost, it is more difficult
to catch up in more fine-grained synchronization schemes. Nevertheless, the over-
all trend predicted by the theoretical model (relatively more improvements for a
smaller fan-in) can be confirmed.

Our experiments showed an overall improvement across the board. Thus, early
merging is a beneficial addition to continuous merging. However, early merging
does increase code complexity through additional synchronization methods. Since
the benefits of early merging are more pronounced for smaller fan-ins and our
targets are large fan-ins to reduce write amplifications in streaming workloads, we
did not pursue further optimization of our implementations to reach the theoretical
optimum.

Merging policies

For merging policies, we use a different I/O layer implementation. Partition gen-
eration circumvents the I/O request queue and, thus, always has a high priority.
All merging threads put their requests into the queue. We configured a queue size
of 10, but never ran into an issue of it being full. To not limit the performance of
partition generation, we only allow one parallel request from the I/O request queue

151

4 Continuous merging

to be forwarded to the actual I/O layer of the operating system. This limits the
overall throughput of merging in comparison to other experiments but limits unin-
tended side effects between partition generation and merging. We used a uniform
key distribution for all merging policy experiments. Records have a size of 58 bytes.
We analyze four setups: a low data rate, two high data rates and one changing data
rate. Unless stated otherwise, we use 2 merge levels and allow a variable fan-in
after the initialization of all levels completes. Furthermore, we ran experiments 10
times and picked a representative merge progression.

In the low data rate experiments, we used an input rate of 4M records/sec and
inserted 1.5 billion records. This rate is lower than the system could handle in
the steady state. Furthermore, the fan-in could fluctuate between 2 and 80. In
all setups, we noticed slight fluctuations in the results. For this reason, we show
both bad and good cases for each policy. Since the system can handle the data
rate, the fan-in should be reduced to two. Thus, policies that quickly reduce their
fan-in can react quickly to the circumstances. Figure 4.29 shows results for the
FIFO policy and the Level policy. After the initialization phase finishes at about
1 minute, both policies slightly increase level 1 partitions before converging to a
fan-in of 2. FIFO reacts more quickly in the good case, while the Level fan-in
rises more and takes longer to reach its final state. The reason is that Level policy
converges more quickly for lower levels, producing many level 1 partitions that do
not have priority to merge.

Figure 4.30 shows results for other policies. The Partition policy reduces parti-
tions equally among all levels, proving to be most robust in reducing the overall
count of partitions and doing so for all partitions. The Waiting Records Total
policy shows the most fluctuations of all policies since the total records of level
0 will rise while level 1 has priority and vice-versa. The Waiting Records Nor-
malized policy behaves similarly to the FIFO and Level policy but proves slightly
more consistent between bad and good cases. Generally, all policies react quickly,
but the Partition and Normalized Waiting Record policies show the most robust
results.

For the first high-rate setup, we chose a 6.5M records/sec data rate and inserted
1.5 billion records. This overloads the system significantly. All results are shown
in Figure 4.31. In the case of the FIFO policy, the overload results in a rising
count of level 0 partitions. This is consistent with results for traditional LSM
systems. Continuous merging does not protect against the effect alone because
the fan-in of an active merge keeps rising very fast, reaching a maximum of 80
while competing with other active merges. For this reason, disabling other merges
preemptively to prioritize level-0-to-1 merges was previously suggested. Our Level
policy result achieves similar results without completely stopping active processes.

152

4 Continuous merging

0 1 2 3 4 5 6
0
5

10
15
20
25
30
35
40

Level 0 Partitions Level 1 Partitions
Level 2 Partitions

Time in minutes

Pa
rti

tio
n

C
ou

nt

(a) FIFO - bad case

0 1 2 3 4 5 6
0
5

10
15
20
25
30
35
40

Level 0 Partitions Level 1 Partitions
Level 2 Partitions

Time in minutes

Pa
rti

tio
n

C
ou

nt

(b) FIFO - good case

0 1 2 3 4 5 6
0
5

10
15
20
25
30
35
40

Level 0 Partitions Level 1 Partitions
Level 2 Partitions

Time in minutes

Pa
rti

tio
n

C
ou

nt

(c) Level - bad case

0 1 2 3 4 5 6
0
5

10
15
20
25
30
35
40

Level 0 Partitions Level 1 Partitions
Level 2 Partitions

Time in minutes

Pa
rti

tio
n

C
ou

nt

(d) Level - good case

Figure 4.29: Adapting to a low ingestion rate of 4M records/sec, fan-in between 2
and 80 for FIFO and Level policies.

153

4 Continuous merging

0 1 2 3 4 5 6
0
5

10
15
20
25
30
35
40

Level 0 Partitions Level 1 Partitions
Level 2 Partitions

Time in minutes

Pa
rti

tio
n

C
ou

nt

(a) Partition - bad case

0 1 2 3 4 5 6
0
5

10
15
20
25
30
35
40

Level 0 Partitions Level 1 Partitions
Level 2 Partitions

Time in minutes

Pa
rti

tio
n

C
ou

nt

(b) Partition - good case

0 1 2 3 4 5 6
0
5

10
15
20
25
30
35
40

Level 0 Partitions Level 1 Partitions
Level 2 Partitions

Time in minutes

Pa
rti

tio
n

C
ou

nt

(c) Waiting Records Total - bad case

0 1 2 3 4 5 6
0
5

10
15
20
25
30
35
40

Level 0 Partitions Level 1 Partitions
Level 2 Partitions

Time in minutes

Pa
rti

tio
n

C
ou

nt

(d) Waiting Records Total - good case

0 1 2 3 4 5 6
0
5

10
15
20
25
30
35
40

Level 0 Partitions Level 1 Partitions
Level 2 Partitions

Time in minutes

Pa
rti

tio
n

C
ou

nt

(e) Waiting Records Normalized - bad
case

0 1 2 3 4 5 6
0
5

10
15
20
25
30
35
40

Level 0 Partitions Level 1 Partitions
Level 2 Partitions

Time in minutes

Pa
rti

tio
n

C
ou

nt

(f) Waiting Records Normalized - good
case

Figure 4.30: Adapting to a low ingestion rate of 4M records/sec, fan-in between 2
and 80 for Partition and Waiting Records policies.

154

4 Continuous merging

0 1 2 3 4
0

2M

4M

6M

8M

Time in minutes

R
ec

or
ds

/S
ec

(a) Data rate

0 1 2 3 4
0

20
40
60
80

100
120
140

Level 0 Partitions Level 1 Partitions
Level 2 Partitions

Time in minutes

Pa
rti

tio
n

C
ou

nt

(b) FIFO

0 1 2 3 4
0

20
40
60
80

100
120
140

Level 0 Partitions Level 1 Partitions
Level 2 Partitions

Time in minutes

Pa
rti

tio
n

C
ou

nt

(c) Level

0 1 2 3 4
0

20
40
60
80

100
120
140

Level 0 Partitions Level 1 Partitions
Level 2 Partitions

Time in minutes

Pa
rti

tio
n

C
ou

nt

(d) Partition

0 1 2 3 4
0

20
40
60
80

100
120
140

Level 0 Partitions Level 1 Partitions
Level 2 Partitions

Time in minutes

Pa
rti

tio
n

C
ou

nt

(e) Waiting Records Total

0 1 2 3 4
0

20
40
60
80

100
120
140

Level 0 Partitions Level 1 Partitions
Level 2 Partitions

Time in minutes

Pa
rti

tio
n

C
ou

nt

(f) Waiting Records Normalized

Figure 4.31: Adapting to a high ingestion rate of 6.5M records/sec, fan-in between
6 and 80.

155

4 Continuous merging

In this case, level 0 partitions reach the lower end of the fan-in (6) while level
1 partitions continue to rise. The Partition policy proves to be an even better
alternative. In each level, partitions rise in lock-step with each other. Thus the
overall partition count over all levels is almost 40% lower than for the Level policy.
Waiting Records Total proves to be a failure, behaving very similarly to FIFO.
This is unsurprising since each merge will get priority rather consistently by just
considering the total amount. The Waiting Records Normalized policy proves
more robust. However, level 0 partitions still grow faster than level 1 partitions,
almost mirroring the Level policy with 0 and 1 being reversed. This is somewhat
surprising. While the rate almost grows in lock-step, continuous new input to level
0 and level 1 partitions does not allow any level 1 partitions to finish. Thus, level
1 partitions grow in size and waiting records, but no merge ever finishes in this
setup.

For the second high-rate setup, we chose a data rate of 5.0M records/sec and
inserted 3 billion records. This is a slight overload of the system. All results are
shown in Figure 4.32. Results for FIFO, Level, and Waiting Records Total policies
mirror the previous experiment. However, reaching a similar partition count for
each setup takes almost twice as long. The Partition policy performs the best.
Of note is the Waiting Records Normalized policy, as it can produce fewer overall
partitions than the Level policy in this setup. We attribute this to the lower
overall data rate and the long run time, allowing multiple level 2 partitions to be
produced. Thus, level 1 partitions can plateau. Still, the overload is reflected in
the level 0 partitions.

From the high-rate experiments, we can derive two take-home messages. First,
it is wise to limit the number of partitions joining each merge cycle. Otherwise,
the system can easily cascade out of control for some prioritization policies. With
up to 80 parallel reads, that is a lot of concurrent background I/O. However,
some policies are more prone to this than others, namely FIFO, Level, and Wait-
ing Records Total. While Waiting Records Normalized can be somewhat resis-
tant, the Partition policy has proven robust and keeps the overall partition count
low.

The final experiment uses a rate of 4.7M records/sec, slightly above a stable data
rate. Based on the previous lesson, we cap the maximum fan-in at 16. Further-
more, we use a dynamic rate, with a high rate burst at around the 2-minute mark
and valley at the 6-minute mark. Figure 4.33 shows the overall data rate and all
results. All policies correctly react to changes in the data rate and rising/falling as
previously determined. At their peak, the Partition and Waiting Records Normal-
ized policies reach 44 overall partitions while the Level policy reaches 50. Thus, all
three show similar overall results regarding worst-case partitions a query needs to

156

4 Continuous merging

0 2 4 6 8 10
0

2M

4M

6M

8M

Time in minutes

R
ec

or
ds

/S
ec

(a) Data rate

0 2 4 6 8 10
0

20
40
60
80

100
120
140

Level 0 Partitions Level 1 Partitions
Level 2 Partitions

Time in minutes

Pa
rti

tio
n

C
ou

nt

(b) FIFO

0 2 4 6 8 10
0

20
40
60
80

100
120
140

Level 0 Partitions Level 1 Partitions
Level 2 Partitions

Time in minutes

Pa
rti

tio
n

C
ou

nt

(c) Level

0 2 4 6 8 10
0

20
40
60
80

100
120
140

Level 0 Partitions Level 1 Partitions
Level 2 Partitions

Time in minutes

Pa
rti

tio
n

C
ou

nt

(d) Partition

0 2 4 6 8 10
0

20
40
60
80

100
120
140

Level 0 Partitions Level 1 Partitions
Level 2 Partitions

Time in minutes

Pa
rti

tio
n

C
ou

nt

(e) Waiting Records Total

0 2 4 6 8 10
0

20
40
60
80

100
120
140

Level 0 Partitions Level 1 Partitions
Level 2 Partitions

Time in minutes

Pa
rti

tio
n

C
ou

nt

(f) Waiting Records Normalized

Figure 4.32: Adapting to a high ingestion rate of 5M records/sec, fan-in between
6 and 80.

157

4 Continuous merging

0 2 4 6 8 10
0

2M

4M

6M

8M

Time in minutes

R
ec

or
ds

/S
ec

(a) Data rate

0 2 4 6 8 10
0

10
20
30
40
50
60
70
80

Level 0 Partitions Level 1 Partitions
Level 2 Partitions

Time in minutes

Pa
rti

tio
n

C
ou

nt

(b) FIFO

0 2 4 6 8 10
0

10
20
30
40
50
60
70
80

Level 0 Partitions Level 1 Partitions
Level 2 Partitions

Time in minutes

Pa
rti

tio
n

C
ou

nt

(c) Level

0 2 4 6 8 10
0

10
20
30
40
50
60
70
80

Level 0 Partitions Level 1 Partitions
Level 2 Partitions

Time in minutes

Pa
rti

tio
n

C
ou

nt

(d) Partition

0 2 4 6 8 10
0

10
20
30
40
50
60
70
80

Level 0 Partitions Level 1 Partitions
Level 2 Partitions

Time in minutes

Pa
rti

tio
n

C
ou

nt

(e) Waiting Records Total

0 2 4 6 8 10
0

10
20
30
40
50
60
70
80

Level 0 Partitions Level 1 Partitions
Level 2 Partitions

Time in minutes

Pa
rti

tio
n

C
ou

nt

(f) Waiting Records Normalized

Figure 4.33: Adapting to a steady ingestion rate of 4.7M records/sec with rising
and falling patterns, fan-in between 6 and 16.

158

4 Continuous merging

consider. However, their make-up is slightly different, with the Level policy having
the most partitions being level 1, the Partition policy having an equal amount on
both levels, and Waiting Records Normalized having the most level 0 partitions.
Since level 1 partitions hold more records, the Level policy could be preferable
for a short burst. However, it shows the worst recovery since level 1 partitions
keep rising even after returning to the final normal rate. This mirrors our low-rate
experiments. Thus, the Partition policy seems to be the best compromise for ro-
bustness. It keeps the count of partitions and the progress on all levels very steady
while also producing level 1 partitions with a higher fan-in; thus, they hold even
more records than the Level policy results.

4.7.7 Summary of the performance evaluation

In this section, we have established nine hypotheses that characterize the perfor-
mance of continuous merging compared to binary- and stepped-merging strate-
gies. Based on experimental results, we could confirm all hypotheses. In particu-
lar, continuous merging exhibits steady and predictable merge and query perfor-
mance while bridging the gap between a large fan-in for merging (stepped-merging)
and a low partition count for queries (binary). Furthermore, the lower constant
amount of partitions allows point queries with a limited I/O budget to query re-
sults closer to real-time. Extensions to the base method of continuous merging
can further improve the method’s applicability and performance. Early merging
reduces ingestion-to-merge latency to improve overall CPU utilization. Various
policies for handling bursts provide external robustness to continuous merging.
Among the evaluated policies, using the number of partitions and waiting records
in a level as metrics for deciding on prioritization for merges stabilizes the overall
number of partitions a query has to consider. We suspect, this also renders query
performance more robust.

4.8 Conclusions

Stream indexing is ubiquitous in data warehousing, real-world monitoring, web
log processing, financial analysis, statistical aggregation, and scientific inquiry.
Existing techniques (notably log-structured indexes) suffer from a fundamental
tension between the bandwidth of data ingestion, the latency of individual queries,
and the latency from ingestion to inclusion in query results. This tension can easily
lead to fluctuations in performance and, thus, reduce the overall robustness of a
stream indexing system. A new technique, continuous merging with staggered

159

4 Continuous merging

key ranges, improves the efficiency of merging and querying by eager yet balanced
merging with a wide fan-in.

The primary performance effect of continuous merging is that partitions never
wait to be merged; instead, the next merge step includes a new input partition
immediately. This removes the saw tooth pattern in the count of partitions on each
merge level. It has two effects on query performance: first, fewer partitions require
searching; and second, all queries search the same count of partitions, eliminating
the waves of fast and slow queries due to the saw tooth pattern. With queries
faster on average and always fast, fewer resources can be provisioned for query
processing. Alternatively, the target merge fan-in can be set higher, reducing the
count of merge levels and, thus, the overall merge effort. If queries have a fixed and
limited budget in the count of partitions to search, fewer partitions per merge level
permit searching in even the most recent merge levels, thus reducing the ingest-to-
query latency to near-real-time. Continuous merging can be adapted with various
policies for workloads with bursts of inputs. The fan-in can be temporarily changed
in some or all merge levels. Furthermore, some merges can be prioritized such that
the overall count of partitions remains steady and low.

In conclusion, data centers benefit in two ways from the new techniques for merge
and search. First, a wide merge fan-in and a few merge levels reduce the overall
merge effort, and a few existing partitions reduce the search effort in every query.
Second, steady, continuous merge effort and steady query performance avoid waves
of misery and require less over-provisioning for peak demand. Users and applica-
tions also benefit from predictable performance. For example, robust query per-
formance enables more responsive and smoother user experiences in GUI-driven
visual analytics.

160

5
ChronicleDB extensions

5.1 Introduction

5.1.1 Motivation

The previous two chapters primarily focused on the internal robustness of index
structures for a somewhat stable use case. Although designing singular components
and their baseline performance towards robustness is crucial for an overall robust
system, the target use case within ChronicleDB for traditional B-trees and con-
tinuous merging are heavyweight secondary index structures. In addition, some
of the other components, such as the primary index, lightweight indexing, load
scheduling, and query processing, can also benefit from the proposed improve-
ments. However, to build an overall robust streaming database, enhancing and
extending these components is important. Furthermore, looking at potential re-
quirement changes is essential for studying different scenarios and preparing the
overall system for robust responses. Fundamentally, for large streaming scenar-
ios, this goes back to the core challenges as sketched in the introduction: High-
volume streams are difficult to store, but storage without analytics is ultimately
useless. Therefore, indexing and the database must bridge the gap between both
worlds while considering robustness as a goal. Thus, this chapter covers exten-
sions for challenging use cases in ChronicleDB, which cover both ingestion and
analytics.

To sustain high data rates, ChronicleDB relies on a continuous bulk loading pro-
cedure in the primary index, which indexes the temporal dimension. Assuming
that data arrives somewhat in temporal order allows ChronicleDB to proceed in a
mostly append-only fashion. However, deviation from the ideal use case leads to
challenging ingestion scenarios. For example, consider the experimental results in
Figure 5.1. Here, data arrives mostly in order except for a varying percentage of
the data (called the out-of-order degree). The out-of-order data follows either a

161

5 ChronicleDB extensions

Uniform 10%

Exponential 10%

Uniform 5%

Exponential 5%

Uniform 1%

Exponential 1%

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

0% Spare 5% Spare 10% Spare

Million Events/s

Figure 5.1: Ingestion performance in ChronicleDB with exponential and uniform
patterns for late arriving events for various various out-of-order de-
grees.

uniform distribution (covering the whole temporal range) or an exponential distri-
bution, with smaller delays more likely than longer ones. Additional spare space
in nodes can offset lost performance best when data arrives in an exponential
distribution of out-of-order data. While still beneficial, it has less effect when
out-of-order arrives in a uniform distribution. Furthermore, out-of-order data, in
general, greatly impacts performance in ChronicleDB. Increasing the degree by
4%, decreases performance by 30%. If the rate changes over time, the system suf-
fers, leading to worse performance or even data loss if the system cannot sustain a
certain rate. This is neither efficient nor robust, presenting a challenging insertion
scenario. The ability to deal with various out-of-order degrees is an important
requirement for a streaming database. For example, collecting aircraft monitoring
data across the globe has more potential for slower arrivals at a central station
than sensors within a single home. Consequently, the out-of-order degree patterns
may vary across different use cases.

Efficient and robust analytics require efficient and robust index structures. How-
ever, they also require flexibility. The original proposal for ChronicleDB is to
provide lightweight indexing in the following way: In addition to temporal sep-
arator keys and references to a child node, each index node entry includes the
minimum value, the maximum value, the sum, and the count of numerical val-
ues for its child tree. This works well for use cases such as home automation.
Sensor readings such as energy consumption, temperature, and humidity are all
numerical values. Humidity and temperature probably offer some temporal cor-
relation. However, there is no possibility for lightweight indexing for data with
spatial positions, such as in aircraft monitoring, even though positions from a
single aircraft would be highly correlated. As another example, let us consider
nature observation data [VL22]. The dataset [GBI22] contains 39,969,765 events
with a temporal scope of 120 years. Each event signifies an occurrence of a flora

162

5 ChronicleDB extensions

1.0E-8 1.0E-7 1.0E-6 1.0E-5 1.0E-4 1.0E-3 1.0E-2

1

10

100

1000

Scan Lightweight Index Secondary Index

Selectivity

Ti
m

e
(m

s)

Figure 5.2: Query performance for filtering spatio-temporal data in ChronicleDB
for various indexing strategies.

and fauna species. When inserted into ChronicleDB and querying a specific spa-
tial region, the primary index cannot prune any data, resulting in a scan of the
entire dataset. A secondary spatial index, such as B-tree for Z-values (ZB+-tree)
[TH81; OM84; Ram+00] can speed up the query. However, this comes at the cost
of building and maintaining the secondary index (i.e., random writes into the sec-
ondary index can slow down the ingestion speed of the system). As an alternative
to balance ingestion speed and query performance, a bounding box similar to an
R-tree within ChronicleDB could be a solution. In Figure 5.2, we inserted the
dataset into ChronicleDB and measured query speeds for a primary index scan,
a heavyweight index (ZB+-tree), or including a custom rectangle aggregate into
the primary index. The results are averages of over 10 measurements. The system
used was equipped with two AMD EPYC 7742 64-Core processors and a Toshiba
KIOXIA XG6 1TB NVMe SSD, running an Ubuntu 20.04 system. Clearly, the
secondary index performs best for low selectivities. However, the custom rectangle
aggregate shows definitive performance improvements over a scan and a somewhat
robust performance over varying selectivities. Furthermore, it can outperform the
secondary index for low selectivity. Thus, to support more flexible queries for
more use cases without sacrificing too much ingestion performance, custom aggre-
gates within the ChronicleDB primary index would be beneficial and improve the
analytics.

In addition to changes in data and queries due to changing use cases and workloads,
a database must adapt to new hardware. Although some benefits, such as faster ac-
cess times of new storage or faster processing of new processors, can automatically
improve a system, it has been shown for stream processing systems that a highly
optimized single node implementation using modern hardware can outperform
even large processing clusters [Zeu+19]. Similarly, ChronicleDB, even without
modern hardware, outperforms general-purpose systems designed for scaling-out
[SS17; Sei+19]. A modern storage technology to consider for ChronicleDB is per-

163

5 ChronicleDB extensions

Figure 5.3: Estimated costs (2020) of using PMem in ChronicleDB in different
configurations.

sistent memory (PMem) because it offers an entirely new access philosophy - reads
and writes can be byte-addressable but still persistent. However, database compo-
nents must be placed selectively on PMem for a balanced and robust system. For
example, Figure 5.3 shows the estimated dollar costs for a ChronicleDB system
for varying deployment of PMem. A configuration using SSD and DRAM (1) has
a low dollar cost. However, data in DRAM will be lost in case of a crash. Us-
ing more DRAM (2) might improve processing speed but increases recovery cost,
which causes huge spikes in user performance in case of a crash. This is not ideal
when designing a robust system. PMem as an SSD replacement might lower some
processing and recovery time due to faster access speeds but is not monetarily
viable. The main advantage of PMem is that it is persistent, such that fewer data
has to be recovered, so replacing DRAM with PMem decreases recovery costs (4,
5), but at the cost of the processing speeds of DRAM. This is a negative change for
user experience during “normal” processing. A truly balanced system (6) would
use all three layers, keeping both recovery and processing times robust, lower than
before, and balanced while also considering the overall system’s dollar cost. Since
PMem offers much potential to improve the system and make it more robust in
case of system crashes, this thesis covers how to deploy and optimize the usage of
PMem when facing the two main challenges (out-of-order data and aggregation)
covered in this chapter.

Finally, we present three use cases developed for ChronicleDB. We frame each
use case using pattern matching queries. The first use case estimates the max-
imum delay regarding out-of-order data, showcasing how custom aggregates can
be used and how to deal with out-of-order processing. The second use case shows
how to connect ChronicleDB with a visual analytics platform and how to perform

164

5 ChronicleDB extensions

CPU DRAM

Cacheline:
64 byte

Controller

Channel 0

Channel 1

SSD

Pages:
e.g. 8KB

Figure 5.4: Access to a DRAM and
SSD storage architecture.

Controller

Blocks:
256 Byte

Optane Media

PMem

CPU

Cacheline:
64 byte

Figure 5.5: Access to a PMem storage
architecture.

exploratory workflows. Interaction between multiple systems introduces new chal-
lenges regarding robustness because queries and data access patterns are unknown.
We discuss possible solutions. The third and final use case deals with indexing
delta predicates, which analyze the numerical difference between two data items
in a stream while considering sequence constraints.

5.1.2 Structure

The next section briefly describes persistent memory (Section 5.2) and related
work on systems using persistent memory. Then, we will cover the out-of-order
data problem and possible solutions (Section 5.3). Afterward, extensions to sup-
port custom aggregates in ChronicleDB are discussed (Section 5.4). We describe
three unique use cases to show the range of possible use cases for ChronicleDB (Sec-
tion 5.5). Finally, we summarize our results (Section 5.6).

5.2 Persistent memory

5.2.1 Overview

In the context of this thesis, PMem stands primarily for Intel’s Optane DC Persis-
tent Memory Modules (DCPMM). The basic properties are byte-address-ability,
near-DRAM latency, and persistence. In particular, some additional constraints
must be considered with DCPMMs to make the most efficient use of PMem
(cf. [Yan+20]).

The first important aspect is transfer size and the access hierarchy. Consider,
for example, a simplified baseline storage hierarchy for ChronicleDB as shown
in Figure 5.4. The CPU accesses data from DRAM in cache lines, each usually
a size of 64 bytes (disregarding additional caches). However, upon power loss,
data in DRAM is lost. To access persistent data, the CPU can also fetch data
from the SSD in units of pages. Default operating system page sizes could be

165

5 ChronicleDB extensions

4KB or 8KB. However, internally, the SSD also has a complex storage hierarchy
managed by a controller, which, among other things, performs logical to physical
address translations, garbage collection, etc. The controller will also pad smaller
requests to match the SSD units of writes (e.g., padding a 4KB request to the
internal flash page size of 8KB, resulting in write amplification). Users should also
consider other aspects of the hierarchy within the SSD for better throughput, such
as channels. Multiple channels can be accessed in parallel; thus, larger requests
than the SSD’s internal page size (or many buffered parallel requests) can increase
throughput. PMem includes aspects of both access methods as shown in Figure 5.5.
The transfer size from CPU to PMem is also a cache line of 64 bytes. However,
unlike DRAM, PMem is persistent. Like an SSD, a controller performs address
translation, among other things. Furthermore, it will buffer multiple requests to
larger blocks of, ideally, 256 bytes which is the transfer size of the Optane media.
Consequently, for PMem, access, and data structures should be a multitude of
256 bytes in size (for efficient access within PMem) and 64-byte aligned (for cache
efficiency).

The second important aspect is the device latency and bandwidth. In general,
PMem has higher latency and lower bandwidth than DRAM and lower latency
and higher bandwidth than an SSD. Furthermore, like DRAM and SSD, PMem
exhibits a read-write asymmetry in the performance, i.e., writes are slower than
reads. This general trend could be confirmed for the test machine used for PMem
experiments in this thesis. Table 5.1 includes the benchmark results as performed
by Philipp Götze for the joint research publication that originated from this work
[Glo+20]. Of particular note is that despite the byte-addressability of PMem,
there is still a relatively large discrepancy between sequential and random access,
which other sources can confirm [Int19; Ler+19; Yan+20]. However, DRAM’s low
maximum write bandwidth, which should be closer to the read bandwidth, is an
anomaly not present in other work.

Given that the performance and characteristics are somewhere between DRAM
and SSD, one suggestion is to simply replace either with PMem. However, as

Table 5.1: Measured performance of memory/storage technologies within the
server used for experiments.

DRAM DCPMM TLC Flash

Idle seq. read latency 81 ns 174 ns 14 µs
Idle rand. read latency 88 ns 325 ns 206 µs
Max. read bandwidth 85 GB/s 32 GB/s 3 GB/s
Max. write bandwidth 46 GB/s 13 GB/s 0.6 GB/s
Random reads 931 M/s 45 M/s 299 K/s
Random writes 703 M/s 30 M/s 61 K/s

166

5 ChronicleDB extensions

shown in Figure 5.3, this is probably not the most cost-effective. Thus, we consider
what ChronicleDB components could benefit from an additional PMem layer or
a replacement. Following the challenging use cases in this chapter, this thesis
includes results for out-of-order queue and lightweight aggregation components
of ChronicleDB. The full research paper [Glo+20] also covers regular insertion
operations and the address translation component.

5.2.2 Related prior work

Research on related prior work concerning PMem was conducted by Philipp Götze
for the joint research paper that originated from this work [Glo+20]. For context
purposes, we include the most important results from that publication.

At the time of conducting the research, there were, to our knowledge, no con-
siderations for PMem in event stores or time series databases such as Tidal-
race [JS15], DataGarage [LSN10], tsdb [DMF12], Gorilla [Pel+15], and InfluxDB
[Inf20].

Therefore, here we elaborate on two existing directions for data management using
multiple memory and storage technologies, including PMem. The first direction
comprises individual data structures that use at least two memory layers. The
second part deals with more complex systems or storage engines that try to exploit
the entire memory hierarchy.

Multi-level data structures

Most previous work for PMem-based data structures focused on the B+-tree. How-
ever, only the FPTree [Ouk+16] adopts a DRAM/PMem hybrid approach. They
propose a persistent linked list of leaf nodes while keeping the inner nodes in
DRAM rebuilt upon recovery. Evaluations on real hardware have already shown
that this division is practical for hiding PMem’s higher latency and achieving
DRAM-like performance [Ler+19]. With the LB+-tree[LCW20], the authors refine
the concept for Intel’s DCPMMs by utilizing multi-256-byte nodes and limiting the
number of PMem line writes. In [Jib+20], it is shown that the selective persistence
concept of the FPTree is similarly applicable to other data structures. The use
case here is a persistent trie-like structure enhanced with various DRAM caching
strategies. Instead of splitting up a single data structure, the authors of HiKV
[Xia+17] opt for using two separate structures. Here, a partitioned hash index is
kept in PMem for efficient single key-value operations while an additional volatile

167

5 ChronicleDB extensions

B+-tree enables faster scans. What is further proposed are multi-tier general-
purpose buffer pools, which are supposed to exploit the respective properties of
the diverse memory and storage technologies [APM19; LLO19; Ou+14; Pel+13;
Ren+18].

PMem-aware storage engines

Besides the individual data structures, there have been more extensive redesigns of
storage engines including PMem. One of the first proposals considering a modern
OLTP engine on future hardware was FOEDUS [Kim15]. PMem is used here to
store log entries and immutable snapshots. Another relatively early hybrid storage
engine is SOFORT [Ouk+14], designed to support both transactional and analyti-
cal workloads. It is organized column-wise. All primary data is directly stored and
processed on PMem. Only secondary data, such as indexes (e.g., dictionaries), are
stored in DRAM to ensure near-instantaneous recovery. The authors of [GBS18]
also target analytical workloads but use a multi-dimensional clustering approach
instead of secondary indexes to reduce writes to PMem. They distinguish between
hot blocks placed in PMem and cold blocks moved to flash. Since the primary index
can also be volatile, this results in a three-layer storage engine. The SAP HANA
database has also been extended to support PMem [And+17]. Like SOFORT,
the recent data resides in write-optimized deltas in DRAM, which are periodically
merged into the read-optimized main store in PMem.

Another representative from the industry is Facebook, who proposes the key-
value store MyNVM [Eis+18] to reduce the DRAM footprint and consequently
the total cost of ownership. This work, PMem is used as a second-level block
cache, whereas the database and logs stay on flash. Also, based on RocksDB,
in NVMRocks [LPD17], the placement of LSM components is revised. The au-
thors propose two possible adaptions. At first, they simply replace flash with
PMem and remove unnecessary components. The second approach also considers
moving MemTables to PMem to avoid logging. This is further enhanced with a
multi-tier read-cache. NoveLSM [Kan+18] is another approach to extending the
LSM design. Instead of moving all MemTables from DRAM to PMem, the au-
thors propose a larger additional persistent replication. When the volatile part is
full and compaction to an SSTable starts, the PMem replication is used for con-
current queries. A proposal for a key-value store is RStore [Ler+20]. It can be
summarized as log-structured storage plus index. The data resides in PMem as
append-only blocks, whereas the index is volatile and rebuilt during recovery. Fur-
thermore, they use a small recovery log per partition and other auxiliary structures
in PMem.

168

5 ChronicleDB extensions

With few exceptions, hardly any approach exploits all three layers (DRAM, PMem,
and flash). Furthermore, to our knowledge, PMem has never been considered in
the context of event stores and streaming.

5.3 Out-of-order data

5.3.1 Problem statement

There are three main challenges when handling out-of-order data in ChronicleDB.
First, out-of-order data requires an additional data structure to keep in-order pri-
mary index insertions efficient. Managing two primary data structures introduces
performance trade-offs regarding insertions, queries, and recovery. Second, differ-
ent types of out-of-order data require different solutions. If the temporal distance
of an out-of-order event to the last in-order insertion is small, data might still
reside in the main memory. This requires a different strategy than if the distance
is large. Third, the degree of out-of-order data is important. The larger the de-
gree, the more ChronicleDB performs like a traditional B-tree. Random insertions
significantly impact performance.

In the following, our persistent memory solution (Section 5.3.2) resolves the first
challenge and improves the overall performance, impacting challenges two and
three while presenting an efficient solution for occasional out-of-order insertions.
Then, we will discuss a universal solution for bursts of high out-of-order degrees
(Section 5.3.3), which covers a different aspect of the second and third chal-
lenges.

5.3.2 Out-of-order data on persistent memory

Figure 5.6 summarizes our strategies for out-of-order merging. The current out-
of-order strategy (Original in Figure 5.6) tries to keep a balance between query
performance, recovery guarantees, and insertion performance. However, there is
an inherent trade-off for all three factors. For good query performance, the queue
is kept in main memory such that any query has fast access to data. Large queues
spanning multiple page sizes are backed by a traditional secondary storage medium
to avoid data loss. Full pages are written out to the storage medium in an effi-
cient append-only manner. This solution favors query performance, but the dual
maintenance of the queue drains main memory resources. At the same time, a full
page of data can still be lost. Recovery alternatives, such as writing each record

169

5 ChronicleDB extensions

Queue

...

Queue

Queue

Index

Queue

Legend

Mirror Log

DRAM PMem SSD Event Data Flow

page

Original PMem Queue Indexed Queue

Figure 5.6: Overview of out-of-order queue implementations in ChronicleDB.

individually, would incur the same insert problem the queue is designed to resolve.
Meanwhile, the queue improves TAB+-tree insertion performance because merg-
ing a full queue can lead to favorable bulk insertions. However, some performance
hits are merely delayed. Given enough out-of-order data, several leaves need to
be adjusted, and uniform spare space can lead to widespread node splits [GSG19].
At worst, this drives ChronicleDB to a halt during a merge, potentially resulting
in the loss of newly arriving events. The following will explore how an additional
PMem layer can improve these deficiencies.

Persistent memory queues

The tension between query and recovery requirements can be attributed to the lack
of persistence in main memory and inadequate access granularity in secondary
storage. PMem characteristics inherently address both issues. At its core, our
new approach redirects each incoming out-of-order event to a persistent memory
queue (PMem Queue in Figure 5.6). The queue is stored in system-time order,
i.e., events are inserted in a fast append-only manner. For a batch of out-of-order
events, this also utilizes faster sequential writes. Since out-of-order events are
expected to be rare, a force command on PMem follows each insertion. Thus, the
queue is fully persisted, and there is no data loss in case of a crash. This improves
upon the original recovery guarantees; consequently, there is no additional layer
on secondary storage.

170

5 ChronicleDB extensions

Indexing

Standard ChronicleDB keeps a main memory copy of the out-of-order queue for
two reasons. First, it allows direct access to single elements of the queue. Without
the main-memory copy, accessing events on inherently unordered data would fetch
a page from secondary storage for each event in the worst case. Second, the main
memory copy is ordered by application time. This enables efficient processing
of queries on the time domain and fast bulk merging into the primary index.
PMem is byte-addressable and, compared to flash storage, offers excellent random
access performance. This automatically resolves the first reason for a copy. We
replace the full queue copy with a lightweight in-memory application time index
(Red-black-tree) for efficient application time access. The index refers to the byte
offset within persistent memory (Indexed Queue in Figure 5.6). This reduces
the main memory footprint. Furthermore, random access for fetching events in
application time order is expected to be less of a problem on PMem than on flash
storage.

Adaptive out-of-order handling

While the in-memory index is expected to cushion the absence of an application-
time queue, it does not eliminate the negative performance hit on TAB+-tree
insertions during a merge process. One solution would be eliminating the merge
altogether and keeping the queue indefinitely. However, since the queue and the
index are growing, this could degrade query performance and drain valuable mem-
ory resources. Instead, there is an opportunity to explore adaptive out-of-order
solutions based on the data distribution.

To visualize the potential merge impact for different distributions, consider the
following two extreme scenarios based on multiple data sources sending events
every few seconds. For the first scenario, one source is out-of-sync and consistently
sends events several seconds behind other sensors’ application time. Upon merging,
one out-of-order event hits exactly one leaf. Thus, batch insertion has minimal
positive impact. At worst, each leaf may need to be rewritten upon merging, which
in fixed periods halts ChronicleDB completely and doubles the overall insertion
time of that period. For the second scenario, multiple sensors temporarily lose
connection and send all occurred events in batches upon reconnecting. This results
in event batches in close temporal proximity. Thus, multiple events are merged
with one leaf, resulting in efficient batch insertions.

Persistent memory can help to bridge the gap between those extreme scenarios in
the following way. Upon a full merge queue, the application time index is scanned.

171

5 ChronicleDB extensions

The scan identifies temporally dense regions. Given a time interval [tstart, tend]
and the number of unique events uqetstart,tend, density is defined as

uqetstart,tend

tend−tstart
.

Only regions over a predefined density threshold are merged into TAB+-tree. The
associated events are persistently marked as merged within the queue and removed
from the index. All other events remain in the queue. This process avoids costly
unbalanced merges, potentially minimizing the overall merge costs and, thus, flat-
tens insertion cost peaks. Furthermore, non-dense regions are buffered and can
become part of a more cost-effective merge later.

This approach is particularly enticing for the proposed byte-addressable queues.
Since the queue is managed in system time order, the original paged storage would
suffer if data is dense over the whole queue but not in the storage order. Persis-
tent invalidation of records in persistent memory can be precise without page-scale
write amplification and increasing page sparsity. Since marked events leave dead
regions within persistent memory, the current implementation occasionally cleans
those regions by shifting later records back. However, in the future, more elab-
orate free-space management, such as free slot bitmaps plus indirection similar
to [CJ15], would be possible. An index-only invalidation is also feasible. This
would require an additional merge log, which would incur random writes for per-
sistence. Alternatively, a recovery could scan the TAB+-tree in case of a crash
to determine which records were already merged. Given the nature of persis-
tent memory, directly marking those records upon merging can avoid both draw-
backs.

5.3.3 System time mode

A high degree of out-of-order events causes two issues. First, unlike the right
flank of the tree, index and leaf pages for these out-of-order events may not be in
main memory, causing expensive secondary storage access. Second, if the degree is
higher than the reserved spare, this causes node splits, which result in additional
write operations and buffer pool pollution. The latter can also occur in waves,
causing fluctuations in performance and an overall less robust system. Due to a
high degree of out-of-order events, ChronicleDB’s primary index essentially degen-
erates to B-tree performance characteristics. Since ChronicleDB’s main purpose
is storing high-volume data, we explore ways to offset these pitfalls and preserve
high insertion rates automatically.

We generally consider constant high out-of-order rates unlikely, especially in em-
bedded scenarios. If high constant rates are the case, highly optimized robust
LSM solutions would be better than ChronicleDB. However, sensor failures may
result in brief periods of heightened delay in information delivery - a burst of

172

5 ChronicleDB extensions

out-order events that reduces ChronicleDB’s overall performance. To handle these
bursts, we need ChronicleDB’s internal processing strategy. In the following, we
will first describe how to extend the original load scheduler proposal to guide
this decision-making process to include a system time mode. This switches the
temporal domain of the primary index. Then, we will discuss how this switch
impacts insertion behavior. Finally, we explain how queries are affected by this
change.

Load scheduling extension

The storage engine of ChronicleDB can be expressed through three logical com-
ponents: event queues, workers, and disks. The general workflow is that multiple
event producers are pushing events to the event queues while the workers write
all data to disks. Therefore, our load metrics are derived from information about
producers, event queues, and workers.

The most critical components for estimating the current load are the event queues
since they are the first to come in contact with new data, effectively connecting
ChronicleDB to the event scenario. Intuitively, a growing queue indicates that
the current load is difficult to handle. This can be due to a rise in producer
production or a problem among the workers. Similarly, a constant queue size
demonstrates that data is being put into and pulled out of the queue at about
the same rate, signifying an adequate workload. Finally, a decreasing queue size
(capping at 0) indicates that ChronicleDB can handle the load very well and could
make use of unused resources to boost its query performances further. Based on
this observation, we identified four core metrics that the load scheduler keeps track
of:

Queue size : Current amount of events in the queue

Input rate : The amount of producer-based pushes to the queue

Out-of-order rate : The number of events arriving out of order

Average delay : The average delay for an out-of-order event

In general, those four values should be tracked in a window query, e.g., the input
rate should consider the recent history rather than the whole lifetime of Chroni-
cleDB to react to changes effectively. All the proposed metrics can be computed
incrementally; thus, for a counting window, this only introduces a small constant
overhead per event.

173

5 ChronicleDB extensions

Based on the description above, the queue size is an obvious inclusion. The input
rate helps us to identify the root cause for a changing workload. If input rate rises,
there is an increased workload from outside. However, a growing queue without
an increase in the input-rate signifies that the problem lies within the workers.
Besides hardware failures, we identified three reasons for the increased processing
times of events within ChronicleDB. First, events must update secondary index
structures such as B-trees or LSM. If these structures have fluctuations in perfor-
mance, this causes fluctuations in the overall system. A straightforward solution
is to make these structures more robust, as proposed in previous sections of this
thesis. Second, the maintenance of the out-of-order queue can cause spikes in
performance. To identify this cause, the two final metrics we keep track of are
the out-of-order rate and the average delay. The out-of-order rate indicates the
current status of additional work the index has to do to accommodate late-arriving
events. Meanwhile, the average delay indicates the pattern of late-arriving events.
E.g., a small average delay signifies that most events arrive near their supposed
insertion time and can be handled within the right flank of ChronicleDB that is
already in memory. Obviously, this scenario should be handled differently than a
consistently large average-delay.

The third reason for increased processing times is write stalls for writing out right-
flank pages. A straightforward cause is a high input rate, i.e., right-flank pages
are produced more quickly than written to storage. The load scheduler tracks this
metric, and the problem can only be resolved by turning off other components
of ChronicleDB that compete for hardware resources. Another cause for write
stalls in the right flank can be compression caused by the compression algorithm’s
performance and result size variations. Resolving this would require a deeper
analysis of time series compression algorithms. This is ongoing work but beyond
the scope of this thesis. Furthermore, ongoing queries can compete for resources.
However, since ChronicleDB was developed for use cases that prioritize insertions,
we discuss these tradeoffs for a load scheduler.

The proposed metrics can be directly applied to enhance the decision-making pro-
cess behind the original proposal of irregular splits and partial indexing mode.
Irregular splits occur at a configurable queue-size parameter δ with δ < queue ca-
pacity. If producers have a certain tolerance for back-pressure and can hold events
themselves, then allowing δ > queue capacity within that tolerance would be pos-
sible. Irregular splits result in a change in the ChronicleDB indexing strategy.
The decision for partial indexing mode, which turns off secondary index structures
in some order, should occur once the queue-capacity reaches δ and if the input
rate is high, while the out-of-order rate is low since it signifies exclusively external
pressure and possibly undesirable secondary index performance. Conversely, once

174

5 ChronicleDB extensions

the queue capacity falls to 0, another irregular split could turn on and possibly
rebuild secondary indexes.

In addition to partial indexing mode, we also propose a new system time mode,
which handles the case of δ < queue size, but with a high out-of-order rate. In this
case, the out-of-order rate greatly influences the overall performance and should
be handled with priority. Changes in insertion and query strategies during system
time mode are discussed in the following sections.

Insert strategy

In system time mode, ChronicleDB timestamps incoming events, adds this infor-
mation as a system time attribute to each event upon its arrival and uses it to
build the primary index. Essentially, we switch the definition of the event stream
from an application time to a system time event stream, indexing the sequence
number. As a result, each event arrives chronologically - an ideal scenario for
ChronicleDB’s storage layout. Furthermore, since it is a numerical attribute, we
utilize a lightweight index on application time. This consumes little additional
space and adds negligible complexity to the insertion algorithm, i.e., it has almost
no impact on ChronicleDB ingestion speed. Furthermore, the lightweight index
automatically exposes information about the current out-of-order rate. Thus, we
could use this instead of tracking it outside the tree. The overhead introduced by
the extension of the event and the additional lightweight index needs to be offset
by the savings due to out-of-order.

The insertion of events outside of system time mode has to be adjusted according
to the presence of system time trees among all trees created through time splits. As
long as the current tree is in system time mode, we insert any out-of-order events
into it, regardless of whether they would fit into past application time-based trees.
The reason for that is simple: Opening a past tree and loading multiple tree
paths into memory consumes many resources. However, the activation of system
time mode happened due to insufficient resources. To keep the ingestion rate
consistently high, we do not make any inserts into past trees in this scenario. If the
current tree indexes events based on application time, we are not at our absolute
limit and insert events into already closed trees.

Figure 5.7 shows the three possible scenarios for an insertion into an older tree.
Scenario (1) is the normal situation present during regular splits. The covered
application time interval of a successor application time-based tree cannot overlap
with the previous tree. Thus, we can insert an event into the appropriate tree.
If there is a gap between the covered time ranges, we pick the (more recent)

175

5 ChronicleDB extensions

Any
Time

Application
Time

Any
Time

System
Time

Any
Time

System
Time

(1) (2) (3)

Tree Type

Covered Application Time Range

Figure 5.7: Possible insert scenarios after a tree split in ChronicleDB.

application time tree. The same method applies to the somewhat unlikely scenario
(2), in which a system time tree created during high out-of-order scenarios does
not have an application time overlap with its immediately preceding tree. Finally,
scenario (3) covers the case that a system time tree overlaps with its predecessor.
In this case, we could insert the event into both trees. Since both trees are already
closed and flushed to disk, the main cost is reading the necessary path into main
memory. Thus, we choose the predecessor for events falling into the overlap range
since it could be an application time tree, and the event would fall into the correct
position according to application time. This is preferable to the system time tree,
where it would always fall into the right flank, being a guaranteed large temporal
outlier.

Query strategy

We can formulate a fitting query strategy based on the insert strategy of system
time mode. In general, the user expects ChronicleDB to work based on application
time, and thus, we need to process results accordingly. If a query covers one
application time tree, we query it normally. If a query covers one system time
tree, we can leverage the lightweight index on the application time to speed up
queries. For the designated burst scenario, this can perform well. A leaf will
contain records from this burst and, thus, be highly temporally correlated. SMAs
can guide queries toward that leaf. SMAs will somewhat overlap for occasional out-
of-order insertions but, with a reasonable temporal correlation, still have pruning
power. Other indexes with dedicated reorganization capabilities, such as LSM,
should be used for constant high out-of-order rates. A problematic use case for
ChronicleDB would be an occasional large outlier, which is difficult to detect and
react to. We discuss leveraging custom aggregates to offset problems in our use
cases section.

If the query overlaps with the application time range of multiple trees, we have to
query each of them individually and combine their results. With only regular splits,

176

5 ChronicleDB extensions

Any
Time

Merge Step

Any
Time

System
Time

(1) (2)

Tree Type

Covered Application Time Range

Normal Query
Normal Query

Normal Query
Normal Query

Any
Time

Figure 5.8: Possible query scenarios after a tree split in ChronicleDB.

as illustrated in scenario (1) of Figure 5.8, we can query the trees sequentially since
there is no overlap. The new scenario which arises due to the inclusion of system
time mode is scenario (2). A system time mode tree can overlap with potentially
all preceding trees. Thus, we have to sort the query results of each tree. Since
data streams kept in ChronicleDB are large and not kept in main memory, trees
will also be large. Thus, external merge sort is the default strategy for sorting any
dimension in ChronicleDB. However, in practice, the overlap is unlikely to span
multiple preceding trees and is probably a small temporally correlated range. We
can use strategies for efficiently sorting a limited requested timespan in the system
time tree (see Section 5.5.1) and then combine the results with its predecessor in
a final merge step, with the two sorted input runs being the trees themselves. The
process will initially read the first page of each tree. Afterward, as illustrated in
Figure 5.8, the normal query of the preceding tree will be processed sequentially
until the overlap begins. Rare outliers of the system time tree, which may enhance
the overlapping region, can probably be resolved within the first page of the sorted
system time tree. Afterward, a small amount of random I/O for the densely
correlated overlapping region will follow before continuing with a normal system
time mode query. This is an adequate solution for most queries if the overlapping
region is huge and contains many temporal successors being unfavorably scattered
across both trees.

5.3.4 Experiments

Setup

Experiments were performed on two machines. For evaluating PMem, we used
SystemPMem, a PMem-equipped server as detailed in Table 5.2. Six DCPMMs

177

5 ChronicleDB extensions

are grouped into a single region and namespace per socket. They are accessed
via an ext4 file system and mounted with the DAX option. The operating mode
of the modules is set to App Direct. The system time mode experiments were
executed on SystemWS, a workstation equipped with an AMD Ryzen7 2700X
CPU (8 cores, 16 threads), 32GB of memory, a 1TB HDD, and a 512GB NVMe
SSD, running an Ubuntu Linux (18.04, kernel version 4.16). For ChronicleDB,
we configured a tree-node size of 8KiB and used the LZ4 algorithm to compress
nodes. The block-size of the storage layer was set to 32 KiB. For accessing per-
sistent memory via Java’s ByteBuffer interface, we used the JDK 14 exten-
sions.

Persistent memory

For the PMem solutions, we perform two experiments. First, we micro-benchmark
the out-of-order queue in isolation (without ChronicleDB). Then, we measure the
insertion performance of a mixed workload with occasional out-of-order events.

For the micro-benchmark, we evaluate five out-of-order queue implementations. A
pure In Memory implementation stores events in a red-black tree ordered by the
application timestamp attribute. Persistent solutions include PMem, which uses
persistent memory, and Flash, which uses SSDs and manages records on 8-KiB
pages. For both persistent solutions, we differentiate between a pure solution and
one with an additional in-memory application time index (Indexed). We inserted
events simulating a stock ticker with four attributes: sequence number, symbol,
price, and volume. Including the timestamp, events are 28 bytes in size. The micro-
benchmark queue size is 100 MiB (approx. 3.5M events).

Figure 5.9 shows results for measuring the write, recovery, and query performance
of the queues, all in units of milliseconds. Clearly, write performance is best
for In Memory, requiring only 1.8 seconds for inserting all events. PMem and
PMem Indexed cannot compete with In Memory. They are slower by 2x and

Table 5.2: Setup for PMem experiments.

Processor 2 Intel® Xeon® Gold 5215, 10 cores / 20 threads each, max. 3.4 GHz

Caches 32 KB L1d/L1i, 1024 KB L2, 13.75 MB LLC

Memory 2×6×32 GB DDR4 (2666 MT/s),
2×6×128 GB Intel® Optane™ DCPMM

Storage 1 TB Intel® SSD DC P4501 Series

OS & Compiler CentOS 7.8, Linux 5.6.11 kernel, OpenJDK 14.0.1

178

5 ChronicleDB extensions

Write Recover Query HIT Query MISS
0.0001

0.001

0.01

0.1

1

10

100

1000

10000

100000

In Memory Pmem Pmem Indexed Flash

Flash Indexed

P
ro

ce
ss

in
g

T
im

e
(m

s)

Figure 5.9: Comparison of insert, recov-
ery, and query performance
of various out-of-order queue
approaches.

1,00 % 5,00 % 10,00 %

100

200

300

400

500

In Memory Pmem Pmem Indexed

Flash Flash Indexed Pmem Dense

Out-of-Order rate

P
ro

ce
ss

in
g

T
im

e
(s

)

Figure 5.10: Inserting 100M events with
occasional out-of-order oc-
currences, and merges of
out-of-order events into the
primary index.

3x, respectively, because we flush each event directly to persistent storage. The
performance penalty could be decreased by flushing events in small batches. Both
PMem variants still outperform both flash-based variants by 3x (PMem) and 2x
(PMem Indexed), respectively. During recovery, only the persistent Indexed
variants have to perform work besides opening the log. In this case, PMem and
Flash exhibit similar performance because the recovery time is dominated by
rebuilding the index while the cost of scanning data is negligible. Since it cannot
recover data, the In Memory variant does not have a measurement. We executed
application time point queries for query performance and measured the average
query time while distinguishing between HIT (query has a result) and MISS (query
has no result) queries. For MISS-queries, all (Indexed) variants exhibit the same
performance since only the index has to be considered. However, for HIT-queries,
Flash Indexed suffers from reading a full page from the log for each query. In
contrast, PMem Indexed can directly access the corresponding event and thus is
as fast as DRAM.

In the second experiment, we measure the performance of out-of-order implemen-
tations in combination with the TAB+-tree. In addition to the queue implemen-
tations used in the previous experiment, we introduce a new variant called PMem
dense, which only merges temporally dense regions as described in Section 5.3.2.
To create out-of-order data, we generate various out-of-order degrees from the
stock event stream. In particular, for an out-of-order fraction of x%, (100-x)%
of events are inserted in application time order. From the remaining x% events,

179

5 ChronicleDB extensions

10% are randomly uniformly distributed over the application time span. The other
90% are equally distributed over 10,000 equidistant temporally close batches. This
workload represents occasional out-of-order data coupled with short bursts. The
capacity of the out-of-order queues was limited to 100 MiB, resulting in merge
operations during insertion. Since a low out-of-order rate might not necessarily
fill the queue, we manually trigger a merge operation at the end of each experi-
ment.

Figure 5.10 shows the results for 1%, 5% and 10% out-of order fractions. Due
to unordered data, non-indexed variants cannot take advantage of bulk merging
and suffer from random access during merge phases. Interestingly, for 5% and
10%, Flash Indexed performs worst by far. This is because even though data
is merged in proper order, reading data in this order from the log incurs random
access to pages. In the worst case, a whole log page is read, and only a single
event on this page is merged. As expected, PMem Indexed does not suffer from
this drawback and, thus, achieves the best of both worlds and is very close in
performance to In Memory. Finally, the overall processing time of PMem dense
is lower than all other variants because cost-inefficient insertions into the TAB+-
tree are avoided at the cost of leaving temporally non-dense regions in the queue
after a merge. As expected, PMem deletions and defragmentation costs do not
outweigh those benefits. This proves our proposition that merge operations should
consider the overall data distribution, and PMem can be used for the resulting fine
granular data management tasks.

System time mode

We generated multiple runs of 100 million 64-byte events to evaluate our load
scheduling proposal for system-time-based indexing. Then, we inserted those into
the ChronicleDB and measured the maximum possible ingestion rate for different
configurations of out-of-order data and delays, averaging the results.

First, we measured the impact of splits. For this purpose, we performed regular
splits on various time intervals ranging from 10,000 (5,000 splits) to 100 million
milliseconds (no split). Figure 5.11 shows the results. Too frequent splits (less
than 10 Million) have a huge negative impact on the ingestion performance. At
the same time, an occasional split is very manageable (more than 25 million),
confirming our strategy of rarely doing irregular splits.

Considering that a split consumes resources, we next evaluate the performance
gains of a system time mode tree. We vary the amount of out-of-order data from 0
to 50% and choose an exponential delay pattern. The results in Figure 5.12 show

180

5 ChronicleDB extensions

0 10 20 30 40 50 60 70 80 90 100

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

Regular Time Split Interval in Million Events

M
ill

io
n

Ev
en

ts
/s

Figure 5.11: Ingestion performance for
various tree split intervals.

0 5 10 15 20 25 30 35 40 45 50

0.0

0.5

1.0

1.5

2.0
System Time Application Time

Out-Of-Order Events (%)

M
ill

io
n

Ev
en

ts
/s

Figure 5.12: Ingestion performance of
system time mode.

0 10 20 30 40 50 60 70 80 90 100

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

System Time Switch Application Time Switch No Switch

% of Inserted Events

M
ill

io
n

Ev
en

ts
/s

Figure 5.13: Ingestion performance with adaptive load scheduling with an increase
in out-of-order data at 40% of inserted events and a switch of config-
uration at 60% of inserted events.

that system time mode is not preferable for a low out-of-order rate of under 1%
because attaching new time stamps to each event adds some complexity. How-
ever, for larger out-of-order rates, system time mode significantly outperforms the
standard ChronicleDB configuration.

Figure 5.13 shows the results of an active switch by the load scheduler. For this
experiment, we started inserting events with an out-of-order rate of about 1%
into a standard ChronicleDB configuration. At about 40% of the inserted events,
we triggered a sudden increase of out-of-order events to 15%. We configured the
queue-size parameter δ to trigger a switch at about the 60% mark. We ran three
configurations: A switch to system time mode tree, a switch to another application
time tree, and no switch. Before the switch, all three configurations suffer the same
significant dip in ingestion speed at the 40% mark. For this experiment, input
events are inserted at the maximum rate, and the switch is induced synchronously,
i.e., the queue piles up while we create new files and data structures. Therefore,
both switch configurations suffer another dip between the 50% and 60% mark due

181

5 ChronicleDB extensions

to creating a new tree. For lower, steady data rates, this second dip can be hidden.
Furthermore, asynchronous switches might also allow to hide the performance at
the cost of additional hardware resources. Nevertheless, the system time mode has
a huge boost in performance that even improves upon the previous rate before the
out-of-order increase. Meanwhile, the other configurations stay at a lower ingestion
rate.

Our system time mode load scheduler can improve the ingestion rate of ChronicleDB
on-the-fly during high load, high out-of-order rate situations. However, the user
has to choose a suitable delta so there are enough resources first to perform
an irregular switch before the ingestion performance improves. Furthermore,
lower query performance must be expected depending on the type of out-of-
order data and the temporal correlation between system time and application
time.

5.4 Custom lightweight indexing

5.4.1 Problem statement

There are two main challenges in providing custom lightweight indexing. First, in-
dexes need to be flexible enough to cover a variety of use cases. This requires careful
consideration to provide users with an interface that allows for easily extendable
definitions. Second, lightweight indexes change the performance characteristics of
a system. In general, not maintaining an additional heavyweight secondary index
can be beneficial. As shown in the original ChronicleDB paper, providing a couple
of small materialized aggregates within a B-tree introduces only a limited perfor-
mance hit. However, when providing more flexible lightweight indexes and, thus,
potentially having more of them within each internal node, the maintenance cost
has to be weighed against the query benefits.

The first challenge of flexibility is covered in Section 5.4.2 and Section 5.4.4. In
particular, we first discuss integrating and extending general aggregate definitions
into the primary index of ChronicleDB. Then, in Section 5.4.4, we extend the de-
sign to include more than just aggregated information into the index. The second
challenge is primarily discussed in the context of persistent memory (Section 5.4.3).
Index nodes generally use significantly less space than leaf nodes with actual data.
However, when using persistent memory, space is more expensive. Furthermore,
additional lightweight index information impacts primary indexing performance.
Lessons learned can be transferred back to non-persistent memory deployments

182

5 ChronicleDB extensions

Table 5.3: Decomposition of aggregations into functions init, merge and eval in-
cluding definitions for IN,AGG,OUT [Tan+15].

Aggregate Types Functions

IN AGG OUT init(v:IN):AGG merge(a:AGG,
b:AGG):AGG

eval(a:AGG):OUT

Count T Int Int 1 a+b a
Sum T T T v a+b a
Min T T T v min(a,b) a
Max T T T v max(a,b) a
Average T {n:Int,s:T} T {1, v} {a.n+b.n, a.s+b.s} a.s/a.n

Pop. StdDev T {n:Int,s:T,sq:T} T {1, v, v2} {a.n+b.n, a.s+b.s,
a.sq+b.sq}

√︂
1

a.n

(︁
a.sq - a.s

a.n

)︁
Max2 T {m1:T,m2:T} T {v, ⊥} {max(a.m1,a.m2,

b.m1,b.m2),
max2(a.m1,a.m2,

b.m1,b.m2)}

{a.m1, a.m2}

Min2 T {m1:T,m2:T} T {v, ⊥} {min(a.m1,a.m2,
b.m1,b.m2),

min2(a.m1,a.m2,
b.m1,b.m2)}

{a.m1, a.m2}

and are considered when discussing more advanced lightweight indexing opportu-
nities in Section 5.4.4.

5.4.2 Primary index extension

Each inner node of the TAB+-tree manages aggregated information (min, max,
sum, count) for its referenced subtrees on a per attribute basis. We call these
aggregated information partial aggregates as they summarize only a fraction of the
stored data. These partial aggregates are computed incrementally during insertion.
Every time an event is received, it is appended to the rightmost leaf node, and
all aggregates are updated accordingly. Whenever a leaf is written to disk, the
partial aggregate is propagated to the parent level. The handling for inner nodes
is similar: If an inner node is pushed out, all partial aggregates of its children are
merged and propagated up the tree.

In order to consistently maintain these aggregations inside the TAB+-tree, we
must be able to incrementally update a partial aggregate as new events arrive and
merge the values of two partial aggregates. We use and extend the techniques for
incremental aggregation presented in [Tan+15] to achieve this. Every aggregate
in ChronicleDB is implemented via three functions:

183

5 ChronicleDB extensions

init(v:IN):AGG Computes a partial aggregate from an event’s
attribute value.

merge(a:AGG, b:AGG):AGG Merges two partial aggregate values.

eval(a:AGG):OUT Transforms the given partial aggregate into a
value of the output type.

These functions are used as follows: on the arrival of an event, we call the init func-
tion for each defined aggregate with the corresponding attribute’s value and merge
the result with the partial aggregate of the affected leaf. The levels above use the
merge function to combine the aggregations of their subtrees. eval is called when-
ever the value for a specific aggregate is requested (e.g., by a temporal aggregation
query). Table 5.3 lists the decomposition for some popular aggregations. Sum, for
example, uses the identity function for init and eval and the + operation of the un-
derlying numeric data type for merge. Average and Population StdDev use a tuple
(triple) of values as the data type for partial aggregates (AGG), and the eval func-
tion is used to compute the actual aggregation value.

We enable users to define their own aggregates by providing implementations of
init, merge, and eval and the corresponding data types. Once defined, these ag-
gregates are made available and accessible via a unique id. When defining a new
event stream, the user supplies the ids of the additional aggregates to compute,
and ChronicleDB uses the defined functions to manage them inside the TAB+-
tree. We offer three options to attach a new aggregate to an existing stream. As
ChronicleDB creates a series of TAB+-tree instances per stream, by default, we
begin storing the values of the new aggregate when a new tree is started. For
the current and previous trees, the aggregate is computed on a per-query basis.
The second option is to force the start of a new tree and begin storing the new
aggregate immediately. Querying the aggregate before that time behaves the same
as for the first option. The last and most costly option is to compute the aggre-
gation value for all events/trees in bulk and – depending on the spare space of
the tree’s internal nodes – store them inside the existing trees or rebuild the trees
from scratch.

Virtual & dependent aggregates

Every aggregate stored in the internal nodes of the TAB+-tree reduces its fan-out.
We introduced the notion virtual aggregates to be as space-efficient as possible.
A virtual aggregate comprises values from other aggregates. For example, recall
the definition of average from Table 5.3. The data type of partial aggregates is
a tuple of two primitive values, namely count and sum. So instead of storing

184

5 ChronicleDB extensions

these values twice (once for the primitive aggregates and once for the average
aggregate), we define average as virtual aggregate with dependencies to sum and
count. This also simplifies the definition of composite aggregates, as we only
require the unique ids of its dependencies, the definition of the eval function,
and the output data type (OUT). Note that the signature of eval, in this case,
changes to eval(v1 : T1, ..., vn : Tn) : OUT with Ti being the output type of the ith

dependency.

A hybrid between aggregates that can be stored as atomic values and pure virtual
aggregates are so-called dependent aggregates. They have dependencies on other ag-
gregates but also need to store a value. Consider, for example, the max2/min2 ag-
gregates, which compute an attribute’s 2nd largest/smallest value. They tend to be
more resistant against outliers than max/min and thus may be preferred by some
analytical queries. Their partial aggregate is a tuple holding max and max2 (min
and min2) values, whereby ChronicleDB’s default aggregates already provide max.
So it is sufficient to store only the max2/min2 value and use max/min from the
existing aggregates. To define a dependent aggregate, the user provides implemen-
tations for init, merge and eval, as well as the unique ids of the dependencies. How-
ever, the signatures of merge and eval are slightly different: merge(a:AGG,b:AGG,
l1:T1, r1:T1 . . ., ln:Tn, rn:Tn):AGG and eval(a:AGG, v1:T1 . . ., vn:Tn):OUT. eval
consumes the stored partial aggregate value (a) as well as the output values of
all dependencies, merge works similarly, consuming the stored partial aggregate
values (a,b) and the partial aggregates of the dependencies (l1, . . ., ln and r1, . . .,
rn).

Rough estimates

Some aggregates cannot be computed incrementally, i.e., it is impossible to define
an exact merge function for them. The median or the statistical mode are typical
examples of such aggregates. Another example is a Top-K query with non-trivial
scoring/ranking functions, e.g., “Find the top three (in terms of count) values of
attribute ai, whose events have a value x for attribute aj”. Nevertheless, a rough
estimate for these values may be sufficient in some cases. Hence, we offer a slightly
modified interface for defining such aggregates:

init(v:List[IN]):AGG Computes a partial aggregate from a list of values.

merge(l:List[AGG]):AGG Merges a list of partial aggregate values.

eval(a:AGG):OUT Transforms the given partial aggregate into a
value.

The main difference here is that partial aggregates are computed in bulk by both

185

5 ChronicleDB extensions

the init and the merge function to reduce the information loss induced by binary
merges. However, an upper bound for the introduced error cannot be given. The
init function is invoked once a leaf node becomes full and is written to disk.
Consequently, the aggregation value is computed based on all events stored in
that leaf, and the direct parent node has exact values. Writing an inner node
triggers the same process: the merge function processes the partial aggregates for
all referenced subtrees in bulk and propagates the result up the tree. However,
the quality of results can decrease with every level since the basis for computing
aggregates is not accurate at higher node levels.

5.4.3 Lightweight indexing on persistent memory

Lightweight indexes boost the performance filter and temporal aggregation queries.
However, the more aggregates are stored, the smaller the fan-out of index nodes.
Given a page size b bytes, size for metadata in an index node m, a 64-bit temporal
key, a 64-bit reference pointer, and lightweight indexing information of size S, we
can compute the fan-out of a page as f = b−m

16+S
. For instance, with a page size of

8 KiB, we measured a fan-out decreases from 459 to 43 when lightweight indexing
(via three partial aggregates sum, min, max) is applied to six 64-bit floating-point
values.

ChronicleDB showed little impact on the writing performance when introducing
lightweight indexing. Thus, lightweight indexing has proven to be a good solu-
tion regarding ingestion robustness. However, the query performance was pre-
viously not considered. In particular, a decreased fan-out impact increases the
tree’s height and thus can negatively impact the performance of temporal queries.
As we introduce more lightweight indexing methods, this performance trade-off
must be reconsidered. The tree’s height can be computed based on the given
fan-out. If the fan-out of index nodes without any lightweight indexing is fo and
increasing S leads to a fan-out of fS, then the tree height increases by a factor of
fo
fS
.

When re-designing ChronicleDB to work with persistent memory, decreased fan-
out is a prime candidate to alleviate through the usage of a new layer in the storage
hierarchy by moving some information to persistent memory. At the same time,
aiming for a balanced and cost-efficient system, the increased storage cost also
needs to be considered since a lower fan-out results in more indexing information
that needs to be stored. We considered two ways to integrate persistent memory
into the storage hierarchy for lightweight indexing.

186

5 ChronicleDB extensions

Aggregate-only

For the first variant, we moved only the lightweight index information (i.e., the
aggregates) to persistent memory. This keeps the amount of information on PMem
as limited as possible. As with the previous primary index extension, aggregates
are computed bottom-up during the insertion of events. For persistent memory,
we opted for a bulk aggregation method as applied in rough estimates to reduce
storage access. I.e., whenever a leaf node becomes full and is written to secondary
storage, the aggregates for all events within this leaf are computed in batch and
propagated to the parent level. The parent node attaches this information to
the regular index entry (key, child pointer). For an index node, the handling
is similar: If it becomes full, the aggregates of its index entries are merged and
propagated up the tree. We assume that aggregate functions are decomposable as
discussed in Section 5.4.2. By keeping aggregates within the index nodes, storing
and accessing them incurs only very little cost. The overhead of managing the
aggregates on PMem must be as small as possible to be competitive. Thus, we
modeled the aggregate store on persistent memory as a flat array. Each array slot
holds the aggregated values of one node of the primary index. The capacity of a
slot is a multiple of 64 byte to maximize cache efficiency during read operations.
Let S denote the size of the aggregated values in bytes. Then, this layout allows
us to directly calculate the byte-offset Oi of aggregate entry i within the array
as:

Oi = i ·
⌈︃
S

64

⌉︃
Additionally, the TAB+-tree assigns node IDs in an increasing fashion starting at
0. Thus, accessing the aggregates of a page with ID i translates to a lookup of slot
i in the persistent memory array.

The increased fan-out of inner nodes reduces the tree height and, thus, is ben-
eficial for queries on the time domain of events. However, compared to stan-
dard ChronicleDB, query processing now incurs access to secondary storage (in-
dex nodes) and persistent memory (aggregates). This performance trade-off is
evaluated in Section 5.4.5.

Index nodes

Our next approach stores only leaf nodes on secondary storage and manages the
index nodes of the tree on persistent memory to tackle the double-access problem
introduced by outsourcing aggregates to persistent memory. As a result, all index
navigation and aggregate access are handled without accessing secondary storage.

187

5 ChronicleDB extensions

This approach requires only minimal modification of ChronicleDB’s insert mech-
anisms. Similar to aggregates, the required persistent memory space is managed
as a flat array. The capacity of one array slot matches the configured page size
(typically 4 KiB or 8 KiB), and each slot contains one index node. Due to two in-
dependent storage locations, we also require two ID sequences. One for leaf nodes
and one for index nodes. Hence, an additional bit of information is required to
uniquely identify a page to determine whether the given ID refers to a leaf or an
index page. The benefit of using two independent ID sequences is that we achieve a
sequential write pattern for both secondary storage and persistent memory, which
in both cases, improves write throughput.

Compared to the aggregate-only solution, this approach requires additional space
on PMem (20 bytes page header, 16 bytes for key and child ID per entry). In most
cases, the space efficiency is even better than only storing aggregates. This is
because for the aggregate-only variant, we manage an entry in the array for every
node of the tree (including leaves), and every entry is padded to a multiple of 64
bytes. In contrast, padding is fully avoided for this approach by configuring the
node size to be a multiple of 64 bytes. The padding is done within a node, losing
at most the size of a single index entry (i.e., aggregate size + 16 bytes) per fan-out
entry. However, it fully excludes secondary storage when accessing inner nodes
and thus is expected to achieve better query performance than the aggregate-only
solution.

5.4.4 Alternative lightweight index structures

Combining small materialized aggregates (sum, min, max, and count) [Moe98]
with a temporal index in ChronicleDB can help overall query performance while
limiting the maintenance cost by avoiding an additional structure. In particular,
ad-hoc aggregation queries or sliding window aggregations can directly leverage the
aggregates present in index nodes for a speed-up in performance [Sei+19; Kör22].
Furthermore, filter queries can benefit from a node’s minimum and maximum
value to exclude temporal regions. Our primary index extension allows for a larger
variety of aggregation queries and filtering mechanisms. Re-designing the structure
for PMem can further improve performance through modern hardware. In this
context, we discussed the trade-off in primary index performance. However, the
core benefits of small materialized aggregates and all the extensions lie in the
temporal correlation of lightweight index information. For example, consider an
event stream, including a temperature sensor. If the temperature sensor is outside,
the minimum and maximum values will vary over time depending on the time of
day and seasons. Thus, different temporal regions can exhibit changes in those

188

5 ChronicleDB extensions

values and within these regions, values are highly temporally correlated. However,
a temperature sensor in a highly regulated room with little fluctuations will report
almost constant values over time. Although values are highly correlated, minimum
and maximum values in index nodes close to leaf nodes provide no benefit for a
query beyond the information already in the root. The same applies to data that
shows no correlation. In this case, minimum and maximum values in index nodes
might be the same as in the root.

In this section, we will take a closer look at temporal correlation. In particular,
we will discuss, analyze and adapt several additional lightweight index structure
candidates for a ChronicleDB integration. Based on experiments, we will discuss
metrics to use when deciding between those structures, either for manual configu-
ration or on the fly. We limit our discussion to lightweight indexes in ChronicleDB.
Based on these results, a broad answer for the adaptivity of lightweight indexes is
an interesting direction for future research [Idr+18].

We will use small materialized aggregates as a baseline method for our discussion.
In particular, the sum and count aggregates are useful for aggregation queries but
might be less useful in answering other queries (e.g., temporal filters). Thus, they
might be replaced by other lightweight indexing solutions in scenarios where ag-
gregates are unnecessary. Since we replace those aggregates, this does not change
the overall storage layout of ChronicleDB. However, for index nodes not directly
pointing to leaves, any of the following designs requiring bulk computations are
unsuitable. Due to limited space in index nodes, we considered existing index struc-
tures from the literature with a small memory footprint. Furthermore, we exclude
Bloom filters and similar data structures from our discussion since their original
purpose is to optimize point queries. At the same time, we also wish to support
range queries within our lightweight indexing solution. In the following, we divide
solutions proposed from the literature into three groups. We will first introduce
the lightweight index structure for each group before discussing implementation
considerations for a ChronicleDB integration.

SMA, zone map and zone filter

Small materialized aggregates (SMA) [Moe98] were used in ChronicleDB [SS17] as
described in Section 2.4.2. Minimum and maximum values in SMAs can be used
to filter out regions of the primary index. A zone map uses just the minimum and
maximum values of an attribute to describe the zones of a database table. Zone
maps can be found in common database system implementations [Ora]. A zone is
typically one or multiple blocks of data. A zone filter [Gra09; GK10a] is a more
generalized form of a zone map. Instead of just the minimum and maximum values,

189

5 ChronicleDB extensions

a zone filter keeps track of the i highest and j lowest values (i is not necessarily
equal to j).

Although data summarized by index nodes might be highly temporally correlated,
outliers at the minimum and maximum values can reduce the pruning power of
SMAs. Filter queries encountering the larger range will produce many false positive
events though only very few values lie in the given range. Thus, swapping out
sum and count values by additional min and max values (e.g., a max3 and min1
configuration) can improve the pruning power. Furthermore, zone filters enable the
search for outlier values at the edge of the key range.

Implementation Zone maps and zone filters can be automatically used through
our primary index extension. E.g., max2 and min2 as defined in Table 5.3 are spe-
cial cases of a zone filter for i = j = 2. Since consecutive minimum and maximum
values can be correlated, we also implemented a variant that uses compression
to store zone filters for integer values. For this purpose, we divide the storage
space for a lightweight index between min and max values. Then, we sort each list
and apply a delta compression followed by a ZigZag compression [Goo] followed
by variable-length quantity code [CP90]. This can naturally result in a varying
number of min and max values. E.g., if we replace 16 bytes previously used for
sum and count aggregate, variable-length quantity code can result in up to 8 mini-
mum and 8 maximum values. However, in the worst case, variable-length quantity
code adds one byte of information. Thus, for an 8-byte integer, there might be 0
minimum and maximum values.

Bit vector structures

Bitmap indexes are widely used in database systems as a secondary index. They
are particularly useful in data warehouses to represent a large amount of read-only
data in a highly compressed but still queryable form. A bitmap index can be built
for one table attribute or column. The index is an array of bits. For each value
of the column, a bit is either set to 1 or 0, depending on the query the secondary
index is built for. A straightforward translation is a Boolean column. For example,
in a flight data stream, planes may have a column indicating whether a plane is
currently in the air. A bit vector representation would use a 1 to indicate that a
plane is in the air and a 0 to indicate that it is not. Due to their low storage require-
ments, bitmap indexes can be either kept in main memory or easily retrieved from
storage. Furthermore, queries can be performed efficiently by performing bitwise
operations directly on the vector. For example, to retrieve all planes currently in
the air, the query needs to locate the position of all 1s in the vector by performing

190

5 ChronicleDB extensions

0 1 1 0min max0 1 0

d

Figure 5.14: Bit vector structure covering a range within [min,max] with equi-
distant bucket ranges.

an AND operation with a bitmask consisting of only 1s. Then, those positions can
be used to retrieve the planes from the database.

Bitmap indexes can be compressed to reduce storage requirements, e.g. run-length
encoding [WOS06] can summarize sparse and dense regions for an index. A state-
of-the-art alternative to run-length encoding are Roaring Bitmaps [Cha+16], which
partition the index into multiple chunks and uses different compression scheme for
sparse and dense chunks.

A Column Imprint [SK13] is a cache-conscious secondary index based on bitmap
indexes. Instead of mapping each column value individually to a bit, column im-
prints combine multiple values of a cache line into bit vectors (named imprints)
by performing a bitwise OR operation. Thus, a user can query whether a value
resides in a cacheline but cannot retrieve its specific position. However, since
the data will be read into caches, this provides a cache-efficient way of data ac-
cess. Column Imprints can be extended to larger attribute domains by mapping
attribute ranges to a position in a bit vector rather than single values. Further-
more, they can be compressed by applying run-length encoding to multiple cache
lines.

Implementation The idea of Column Imprints is a natural fit as a lightweight
index structure in ChronicleDB. However, instead of combining multiple items in
a cache line, we can combine multiple events in a subtree referenced by an index
node. We analyze two variations of this idea of bit vector filters. In the first
variation, we use one bit vector per index node as shown in Figure 5.14. For this
vector, we store the min and max values. Each bit in the vector represents a
range d. Given m bits in the vector, d = max−min

i
. Thus, each bit is essentially

an equidistant bucket in a histogram. A bit is set if some event in the index node
falls into the bucket. Thus, the number of bits set in the bit vector indicates its
pruning power.

Assuming a uniform distribution of values, k bits in the bit vector, and n inserted
values, the expected pruning power p is the number of bits not set after n in-
sertions. This can be modeled as a well-known ball (n) in bins (k) problem. In

191

5 ChronicleDB extensions

00 10 10 11 00min max

0 1 1 0 0 1 0 0

d1

d2

min+d1 min+2d1 min+2d1 min+3d1

Figure 5.15: Hierarchical bit vector structure for a [min,max] range with first
encodings for empty (00) and full (11) ranges and a second level with
additional bit vector structures for partially full ranges.

this case, p is the number of expected empty bins divided by the total number of
bins:

p = (1− 1

k
)n

Consequently, we can improve the pruning power by indexing fewer values per
bit vector or increasing the number of bits in the vector. Since each bucket is
equidistant, data skew can result in sparse and full regions, which results in wasted
space and pruning power. Due to limited space in a lightweight index, compressed
bitmaps and roaring bitmaps are no alternatives to combat these issues within
the primary index. Instead, for our second variant, we use hierarchical bit vector
filters [Gra11b, p.250] for a slightly more adaptive approach. The main idea is
to have a two-level index. The first level has a bit vector with coarse granularity.
Each bit in the vector references a second bit map which further divides the range
of the first level. The vector structure can be skipped if a bit in the first level is
not set. Thus, the additional bits can be equally distributed among other vectors
on the second level to improve pruning power. We implemented a variation of this
idea as shown in Figure 5.15. Instead of a single bit in the first level, we use two.
The first bit indicates whether the referenced second-level vector is empty. The
second bit indicates whether the referenced vector would be full. In both cases,
we re-distribute the bits to other vectors.

For both implementations, we first collect the values and create the vectors in a
bulk operation. For the second variant, we first build the index by assuming an
equal distribution of bits. Then, we analyze the results to do the redistribution.
We can also compress min and max values by using a variable-length quantity code
as an additional optimization. Furthermore, since multiple index entries within
an index node might have similar min/max values, we can use delta encoding for
consecutive index entries. Savings by compression are added to the number of bits

192

5 ChronicleDB extensions

in the bit vector structure.

Postional SMAs

Positional SMA (PSMA) was introduced in the context of Data Blocks [Lan+16],
a compressed columnar storage format for cold data, and represents a lightweight
index structure for integer values. A key motivation for PSMAs is that min/-
max values to rule out data in a compressed block on cold storage are prone to
outliers and to data being uniformly distributed in the indexed relation. This
mirrors our motivation in the search for a more robust lightweight index solu-
tion in ChronicleDB. If data in ChronicleDB index nodes have large outliers or
mirror a root node’s overall min/max values, they do not provide much pruning
power.

PSMAs consist of two components - min/max values for each block and a lookup
table. Each entry in the lookup table represents a range of attribute values and
references a position range where those values can be found in the block. Thus,
upon a successful lookup, it is possible to navigate to a fraction of the indexed
data directly. Our lightweight indexing approaches must scan the entire leaf page
if it falls into a range.

PSMAs leverage the byte representation of integer values for fast computation of
the lookup table. Since one byte can represent 256 integer values, each byte is
given a range of 256 entries in the lookup table. Thus, a 2-byte integer will have a
lookup table of 512 entries, with 256 entries given to the first byte and 256 to the
second byte. An integer i is mapped to its table entry by determining its highest
non-0 byte h. The position p of h within the byte representation of i determines
which 256 entry range i is mapped to. The value of h determines which entry it is
mapped to within the range. Figure 5.16 has an example for this mapping. The
4-byte integer value 267008 is mapped to a corresponding PSMA with 1024 entries.
The byte representation is 00041300. The highest non-0 byte is at position 3 with
a value of 4. Thus, 267008 maps to the third range of 256 entries at position 4.
The computation is 4 + 2× 256 = 516. As a result, it will be mapped to position
516 in the lookup table.

PSMAs include a natural skew towards small values since the first byte represents
256 values which will receive 256 entries in the table. High numbers cover a larger
range of bytes after the highest non-0 byte is all mapped to the same position.
In our example, 262144 − 327679 would all be mapped to entry 516. To slightly
offset this, each indexed value in a PSMA is mapped using its distance to the min
value in the PSMA. Ranges in the lookup table consist of exactly two positions.

193

5 ChronicleDB extensions

00 04 13 00

min max

Lookup Table

Integer
(Byte representation)

PSMA

Table Position =
4+2*256

[0,11)

0

[4,20)

1

[0,0)

...
1024

Figure 5.16: Example for a PSMA representation and computing the position
within the look-up table.

Thus, they signify the lowest and highest position in the data block where the
index’s value/range might occur. This range needs to be scanned entirely in a
query.

Implementation Although PSMAs follow similar motivations and goals, includ-
ing a range per entry in the look-up table results in PSMA sizes of multiple
KBs. Within an 8KB page consisting of hundreds of index entries, this is not
useful as a lightweight index for each entry within a primary index node. For
our PSMA experiments, we implemented a look-up table with positional infor-
mation and one consisting of a bit vector to indicate whether any range ex-
ists.

Similar to our bit vector implementations, PSMAs are built in a bulk operation
when all values are present. This is because the mapping uses the minimum value
to map more entries to the more precise data range. Thus, we must have all values
present to determine the minimum value.

5.4.5 Experiments

Setup

The hardware setup is identical to the one described in Section 5.3.4.

194

5 ChronicleDB extensions

In
se

rt

Poin
t Q

ue
ry

Agg
re

ga
tio

n
(1

%
 K

ey
-R

an
ge

)

Agg
re

ga
tio

n
(5

%
 K

ey
-R

an
ge

)

Agg
re

ga
tio

n
(1

0%
 K

ey
-R

an
ge

)

Agg
re

ga
tio

n
(2

0%
 K

ey
-R

an
ge

)

Filte
r (

0,
1%

 S
ele

cti
vit

y)
0 %

50 %

100 %

150 %

Aggregates on Pmem (unaligned) Aggregates on Pmem (aligned)

Index nodes on Pmem

P
ro

ce
ss

in
g

tim
e

co
m

pa
re

d
to

 b
as

el
in

e

Figure 5.17: Comparison of insert and query performance for TAB+-tree aggre-
gates/index nodes managed on flash storage and persistent memory.

Persistent memory

First, we discuss the impact of storing lightweight index information (i.e., aggre-
gates) and inner index nodes on persistent memory. For aggregates on PMem,
we implemented two variants. The first variant stores aggregates densely, while
the second variant aligns them on 64-byte boundaries for cache efficiency. We
inserted 100M events from a Sine data source into the TAB+-tree and measured
the wall-clock time to completion. The data source comprises events with six
64-bit floating-point attributes. Thus, the size of an event is 56 bytes, including
the 8-byte timestamp value. For the ith event, the corresponding attribute values
are generated as sin(i mod 1M

1M
· 2π). For every 1M event, each attribute describes

a full sine wave. This allows us to control the selectivity of filter conditions on
secondary attributes. By default, Sine uses increasing timestamps (i.e., ei.t = i)
and consists of 100M events.

Additionally, we executed three different types of queries and measured the average
response time. We ran point queries on the time dimension of events (i.e., using the
primary indexed attribute), issued temporal aggregation queries covering various
fractions of the source stream, and issued a filter query on a secondary attribute
with a selectivity of 1%. Both the temporal aggregation and filter query utilized
lightweight index information.

Figure 5.17 summarizes the results. It shows the run time compared to the origi-
nal ChronicleDB implementation for event insertion and the different query types.

195

5 ChronicleDB extensions

As a first result, the insert performance is unaffected by any approaches. This
is expected since writing the leaf nodes to secondary storage is the dominant
part of insertion. Furthermore, aligning aggregates on cache-line boundaries had
no visible effect on the query performance. This could be explained by the fact
that only some of the PMem bandwidth is utilized in this setup. Hence, we do
not distinguish between aligned and unaligned in the remainder of this discus-
sion.

As expected, the higher fan-out achieved when storing aggregates on PMem is
beneficial for point queries. Their execution time could be reduced by approx. 15%.
However, double access (index node + aggregate) for temporal aggregation queries
introduces a performance penalty of 10% to 25%. Finally, when using lightweight
indexing for filter queries, the benefit of accessing fewer index nodes due to the
higher fan-out is almost fully eliminated by the extra access to PMem for accessing
aggregate information (approx. 4% improvement). In contrast, storing whole
index nodes on PMem results in a performance boost for all query types (35%-
40%) because index navigation and aggregate access do not incur read operations
on secondary storage.

Data structures

Next, we discuss our considerations for additional light indexing data structures.
Across experiments, we have five baseline implementations: SMA, ZoneFilter,
Bit Vector, Bit Vector Opt and PSMA. While Bit Vector uses a flat bit
vector, Bit Vector Opt designates our implementation of a hierarchy bit vec-
tor. All baseline implementations do not use any compression techniques. We will
outline these as variants and discuss their benefits in the experiments.

We used two data sets: LineFloat, LineInteger, and Zipfian. All data
sets uses an increasing timestamp. The LineFloat dataset represents a straight
line starting from the floating point value 0 and ending at one 1. It has two
parameters, n and s. n represents the number of events in the data set. Based on
the number, the step size is computed such that the distance between values of
consecutive events is constant. s introduces noise into the data set. In particular,
we add a Gaussian distributed offset to every value with a µ = 0, σ = s such
that the result is between 0 and 1. Thus, for s = 0, LineFloat is an actual
straight line, and for s = 1, it is uniformly distributed. The LineInteger works
the same as the LineFloat but generates integer values. Further, an additional
parameter m sets the maximum value generated in the dataset, which is used
to compute the step size. Finally, Zipfian is a Zipfian distribution with an

196

5 ChronicleDB extensions

2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

0

10

20

30

40

50

60

70

80

90

100

SMA ZoneFilter Bit Vector

Bit Vector Opt

Indexed Data

Pr
un

in
g

(in
 %

)

Figure 5.18: Lightweight index prun-
ing power when query-
ing the LineFloat
dataset with s=1.0.

2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

0

10

20

30

40

50

60

70

80

90

100

SMA ZoneFilter Bit Vector

Bit Vector Opt

Indexed Data

Pr
un

in
g

(in
 %

)

Figure 5.19: Lightweight index prun-
ing power when query-
ing the LineFloat
dataset with s=0.1.

exponent of 1.5 and a parameter m to set the maximum key of the generated
range.

We evaluate the data structures in isolation and perform point queries. Point
queries are uniformly distributed over the previously inserted key space unless
stated otherwise. Although we measured some performance differences among
them, on our test machine, the query performance was multiple orders of magni-
tude lower than the I/O cost to retrieve data pages. Thus, we report the Pruning
% of the data structures. Pruning % is the number of positive queries reported by
the index structures in relation to the number of queries performed. Unless stated
otherwise, our measurements are averages based on 100 experiments. First, we
evaluate all baseline implementations except PSMA. PSMAs are handled in the
last subsection.

Float values As we replace the sum and count values in SMAs, Zone Filter
has two min and two max values. Bit Vector features 126 bits, and Bit
Vector Opt has an 8-bit level 0 configuration and uses the remaining 118 bits
for level 1-bit vectors. We excluded two bits to account for some meta informa-
tion.

In Figure 5.18, we see the result for the experiment for choosing s = 1.0 (uniform

197

5 ChronicleDB extensions

distribution) and varying m. We created 10 data blocks with a varying num-
ber x of data items per block shown on the x-axis such that m = 10x. Each
block is indexed by one lightweight index structure. x controls the degree of
temporal correlation within a block. If few values are indexed, there are many
duplicates, and the temporal correlation is high. As the overall data is uniformly
distributed, both SMA and ZoneFilter lose pruning power fast as x increases.
Meanwhile, both Bit Vector variants are more robust and fit the theoretically
determined pruning power well. As a benchmark point, we would like to refer
to the result for x = 128. For example, for the real-world DEBS soccer data set
[DEB13] and 8 KiB pages, ChronicleDB leaves would hold 120 unique entries at
most. Even if data were uniformly distributed, Bit Vector lightweight indexes
would prune more than 20 times more queries than SMA and more than 10 times
more queries than ZoneFilter. Bit Vector Opt is able to slightly outper-
form Bit Vector for x < 16 and provides up to 4.6% more pruning power for
x > 128. However, it performs slightly worse otherwise. That trade-off is to be
expected since fewer bits are available if most regions are somewhat populated.
Meanwhile, more bits are available where needed for many dense or sparse re-
gions.

In Figure 5.19, we repeated the same experiment for s = 0.1. Thus, there is some
variance in the data, but the overall rising trend is still represented within the
data nodes such that the first block has values closer to 0 while the last block
has values closer to 1. Consequently, in the experiment, all methods converge
towards a higher pruning power above 30%. How regions in index nodes relate
to the overall distribution is thus the most deciding factor for lightweight indexes.
Alternative structures and methods mainly protect against outliers or changing
distributions. Still, both Bit Vector methods can outperform other methods
up to 30%. The better performance of Bit Vector Opt for more dense regions
can be observed for all values of x > 128.

Finally, we perform the same experiment for a value of s = 0.01. Furthermore,
we introduce a 5% chance that the next value in LineFloat is an outlier in
either the bottom or top 10% of the overall key range. Especially when us-
ing system time indexing, such outliers can occur since late-arriving events are
added to the latest node instead of their application time occurrence, thus, break-
ing possible correlation. Figure 5.20 shows the results. The overall trend is the
same. All three alternatives to SMA are more robust towards outliers. However,
Bit Vector variants can sustain the higher correlation due to a lower s for
the entire experiment setup. Furthermore, Bit Vector Opt outperforms Bit
Vector for most ranges, since large outliers produce more sparse regions at the
edges.

198

5 ChronicleDB extensions

2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

0

10

20

30

40

50

60

70

80

90

100

SMA ZoneFilter Bit Vector

Bit Vector Opt

Indexed Data

Pr
un

in
g

(in
 %

)

Figure 5.20: Lightweight index pruning power when querying the LineFloat
dataset with s=0.01 with a 5% outlier chance in either the bottom or
top 10% of the overall key range.

Integer values For our integer-based experiments, LineInteger is more likely
to produce duplicate values. However, we can utilize our compression-based op-
timizations. For this purpose, the following experiments include three additional
methods. ZF Compressed are Zone Filters with a variable number of com-
pressed min/max values. BV Delta uses all described compression techniques
for Bit Vector. BV Opt Delta does the same for Bit Vector Opt. We
do not distinguish between using different variants because the presented variants
performed best almost across the board.

First, we set s = 1.0,m = 200M . The remaining setup of the experiment is the
same as for our float-based experiments without outliers. Since we use ten blocks
per experimental run, we leverage deltas in consecutive blocks to do compression in
BV Delta and BV Opt Delta. Figure 5.21 shows the results. Compression for
all methods improves pruning power. For our benchmark value of x = 128, the best
variant BV Delta achieves an improvement of factor 30 in comparison to SMA and
factor 14 in comparison to uncompressed ZoneFilter.

For the results shown in Figure 5.22, we set m = 1000000, i.e., we decreased
the overall key space. Due to the smaller domain, compression works better.
For x = 128, compressed Bit Vector have pruning improvements of about
20%. Meanwhile, for a low number of indexed values (x < 32), ZF Compressed
outperforms all other methods.

199

5 ChronicleDB extensions

2 4 8 16 32 64 128 256 512 1024
0

10

20

30

40

50

60

70

80

90

100

SMA ZoneFilter
Bit Vector Bit Vector Opt
ZF Compressed BV Delta
BV Opt Delta

Indexed Data

Pr
un

in
g

(in
 %

)

Figure 5.21: Lightweight index prun-
ing power when query-
ing the LineInteger
dataset with s=1.0 and
m= 200M.

2 4 8 16 32 64 128 256 512 1024
0

10

20

30

40

50

60

70

80

90

100

SMA ZoneFilter Bit Vector
Bit Vector Opt ZF Compressed BV Delta
BV Opt Delta

Indexed Data

Pr
un

in
g

(in
 %

)

Figure 5.22: Lightweight index prun-
ing power when query-
ing the LineInteger
dataset with s=1.0 and
m= 100k.

Finally, we used Zipfian for m = 200M . Since we do not have any tempo-
ral regions based on an increase, we only used one block of data for this ex-
periment. Point queries follow the same distribution. The results are shown in
Figure 5.23. Since most values in the distribution are small and large values
are outliers, queries naturally hit small data regions. Thus, the overall pruning
power of all variants decreases compared to previous experiments. Furthermore,
ZF Compressed can outperform all other variants across the board. Even for
x = 64, most values are duplicates, and thus, ZF Compressed can capture the
entire data space in compressed form, leading to a pruning of 20%. Since tem-
perature values might not change much over time, ZF Compressed is a true
alternative in some use cases. Bit Vector variants do not react well to poten-
tial large outliers and uneven sparse/dense regions. BV Opt Delta proves to
be the best and most robust among them since compression leads to more bits,
which are redistributed based on dense regions for smaller values and sparse regions
otherwise.

PSMAs Finally, we look at PSMAs. Even for the smallest capacity without
positional information, PSMAs require a 256-bit vector, which is double the size of
all previously used configurations. Furthermore, compression for min/max values

200

5 ChronicleDB extensions

2 4 8 16 32 64 128 256 512 1024
0

10

20

30

40

50

60

70

80

90

100

SMA ZoneFilter Bit Vector
Bit Vector Opt ZF Compressed BV Delta
BV Opt Delta

Indexed Data

Pr
un

in
g

(in
 %

)

Figure 5.23: Lightweight index pruning power when querying the Zipfian
dataset with m=200M.

cannot be trivially redistributed to PSMA, leaving it at a disadvantage to our
proposed optimization.

First, we use the LineInteger dataset in two variants. The first variation uses
s = 1.0 and m = 256. The second variation uses s = 1.0 and m = 232. Thus,
we index 1-byte and 4-byte integers, respectively. Since Bit Vector implemen-
tations performed best in most cases in the previous sections, we only compare
PSMA with the default Bit Vector. Results are shown in Figure 5.24. To indi-
cate the 1-byte and 4-byte setup, we noted 1 and 4 at the two implementations.
For 1-byte values, both behave the same because each value has exactly one entry
in the look-up table or bit in the bit vector. For the 4-byte setup, Bit Vector
can improve its performance. Since PSMA uses a 1024 look-up table, we increased
the number of bits in the Bit Vector accordingly. This follows the trend of
previous experiments. Meanwhile, PSMA loses performance since more values are
inserted and queried in less precise regions of the structure. Thus, PSMA is not a
good alternative for many large values.

In Figure 5.25, we repeated the same experiment with a Zipfian dataset and
m = 216, i.e., inserting 2-byte integer values. We changed the space for Bit
Vector to match the space used by PSMA. Similar to ZF Compressed in a
previous experiment, PSMA can perform best. The distribution aligns perfectly
with the PSMA since small values are most likely, which are indexed most precisely.
We included Bit Vector Opt as an additional method. It can adapt to skew a
bit and outperforms the traditional Bit Vector, but does not outperform PSMA.

201

5 ChronicleDB extensions

2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

0

10

20

30

40

50

60

70

80

90

100

Bit Vector 1 PSMA 1

Bit Vector 4 PSMA 4

Indexed Data

Pr
un

in
g

(in
 %

)

Figure 5.24: PSMA and default bit
vector index pruning
power when querying
the LineInteger
with s=1.0 and m=256.

2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

0

10

20

30

40

50

60

70

80

90

100

Bit Vector 2 Bit Vector Opt 2 PSMA 2

Indexed Data

Pr
un

in
g

(in
 %

)

Figure 5.25: PSMA and default bit
vector index pruning
power for the Zipfian
with m=216.

We also repeated this experiment with ZF Compressed, which performs closely
or slightly outperforms PSMA for x < 256. Then, it is usually outperformed by
about 3%. Since those results are very close, we did not include them in the figure
for legibility reasons.

5.4.6 Discussion

The primary index extension allows for more flexible lightweight indexing. By
integrating and adapting custom, decomposable aggregation solutions as known
from sliding window aggregation queries, we broaden the number of use cases for
ChronicleDB. The introduction to this chapter showed that custom aggregates
for spatial use cases in ChronicleDB for low selectivity can perform similarly to
heavyweight secondary indexes.

However, these index extensions result in reduced fan-in and, thus, temporal query
performance. Modern hardware, such as persistent memory, can offset some defi-
ciencies by moving only aggregates to persistent memory for a cost-efficient solu-
tion or the entire index structure. Only moving aggregates come at a performance
penalty for aggregation, not filter queries.

202

5 ChronicleDB extensions

Finally, skew in the data or changing data rates may challenge the benefits of
lightweight index distribution in node approaches to the overall key distribution.
Alternative lightweight indexes known from the literature can alleviate some prob-
lems while boosting the overall pruning power of lightweight indexes. However,
due to bulk computations, many alternative lightweight indexes do not work well
if out-of-order data change existing minimum or maximum values. This should
be considered in a proper ChronicleDB integration, e.g., by keeping additional
min/max values for late arrivals.

Based on our experimental results, we suggest three decision criteria to choose the
proper lightweight index beforehand or, if possible, on the fly. First, the pruning
performance of lightweight indexes deteriorates as more values are indexed. Thus,
index information beyond min/max is valuable for index nodes close to leaves.
However, as the tree grows in height, lightweight index solutions such as bit vec-
tors, PSMA, and zone filters lose efficiency. Thus, they should not be considered.
A more detailed study on lightweight index placement based on tree height is left
for future work. Second, if aggregation queries are not used, sum and count ag-
gregates in ChronicleDB should be replaced on index nodes close to leaves with
bit vector filters, zone filters, or PSMA-style indexes without positional point-
ers. Compression should be used to improve the performance of bit vector and
zone filters, making them more robust to outliers. Third and finally, ChronicleDB
should keep track of some statistics to choose the correct lightweight index. The
min/max values of an index should be related to the overall min/max value in
the index (present as a root aggregate). If these value correlate, traditional SMAs
should be replaced with an alternative structure. The number of unique items
in a data node is a crucial statistic. Compressed zone filters are the lightweight
index of choice if they are low since they can prune large regions and directly an-
swer existing queries without accessing leaves. Otherwise, bit vectors offer the best
overall performance. The values’ size and distance to the minimum value are other
crucial statistics to identify opportunities for compression and to identify distri-
butions with a strong skew towards extreme values. In those cases, PSMAs can
be the best choice. Besides integrating this approach into ChronicleDB, adapt-
ing signature-based tree structures such as the S-tree [Dep86] is an interesting
alternative.

5.5 Use cases

Indexing is a crucial bridge connecting data storage to data analysis. So far,
we have established multiple indexing techniques and extensions to ChronicleDB,

203

5 ChronicleDB extensions

Listing 5.1: Analytical pattern matching query for landing maneuvers.

1 SELECT COUNT(*) FROM FLIGHT MATCH_RECOGNIZE(
2 ORDER BY T
3 MEASURES S1.T AS TS, S4.T AS TE
4 PATTERN (S1 S2 S3+ S4) WITHIN 15 MINUTES
5 DEFINE
6 S1 AS VEL >= 140 AND PA >= 500,
7 S2 AS VEL < 140 AND PA < 500,
8 S3 AS PREV(VEL) >= VEL AND PREV(PA) >= PA,
9 S4 AS VEL < 83 AND PA < 250

10)

which can be leveraged for analytics in a streaming database. In the following, we
will discuss multiple practical use cases developed during this thesis to demonstrate
multiple ChronicleDB extensions. Although the use cases can be translated into
a wide application domain, we will frame the discussion around pattern-matching
queries. For this purpose, we will use one pattern-matching query as a common
example to discuss different challenging requirements for that query in various
circumstances.

In event stream processing, pattern matching identifies interesting sequences of
events. During the evaluation, the order of items in event streams is crucial for
pattern-matching results. This makes it one of the most important queries in event
stream processing because the streaming nature of the input, i.e., events arriving in
a certain order, is at the core of the operations. Since 2016 pattern matching is also
part of the SQL standard [Mic+18] through the MATCH RECOGNIZE clause and, as
such, available in traditional database systems. A regular expression of symbols
defines the pattern searched in the event stream. Each symbol consists of an
expression that generally uses the event attributes as input and returns a Boolean
value signifying whether an event fulfills the expression. A match of the pattern is a
subsequence of events in the stream where the events fulfill the symbol’s expression
in the order specified by the regular expression.

Listing 5.1 shows a simplified example for a pattern matching query [KGS21]. The
query can be used to find landing maneuvers. The input of the query (FLIGHT)
consists of a stream of data from an airplane, which, among other things, in-
cludes the position of the plane, its velocity (VEL), and its pressure altitude (PA).
The pattern is defined in the MATCH RECOGNIZE clause. As an input order, the
ORDER BY clause (line 2) specifies the application time T . The output specified
in the MEASURES clause (line 3) is the time range in which the pattern appears.
The regular expression for the pattern (line 4) consists of four symbols, which are

204

5 ChronicleDB extensions

specified in the DEFINE clause (lines 5-9). S1 is the first symbol in the sequence,
requiring the first matching event to have VEL and PA values above a certain
threshold. In the second symbol, S2, both values must fall below that threshold.
The third symbol, S3, is a Kleene-Plus symbol, i.e., multiple events in a sequence
can fulfill this condition in a row. It features the navigational function PREV to
specify that the current event has to be smaller or equal to its immediate predeces-
sor. This showcases a more advanced usage of sequential constraints beyond the
sequence imposed through the symbol order in the regular expression. Finally, the
pattern will match if events fulfilling the conditions of S1, S2, and S3 are followed
by an event that fulfills S4, which specifies that VEL and PA are below another
threshold. As an additional condition, the pattern has to occur within 15 minutes.
I.e., the temporal distance of the event matching S1 and S4 has to adhere to that
condition. The MEASURES clause defines the output for a match. In this case, it
is the application time of the first and last events in a match. In total, the query
aggregates the number of landing maneuvers.

Pattern-matching queries are commonly evaluated using an automaton. The reg-
ular expression is transformed into states of the automaton such that each symbol
represents a state, and transitions are triggered if events fulfill the expression of the
symbol. While event stream systems hold the most recent event in main memory,
an event-by-event evaluation through the automaton is often sufficient. However,
for a streaming database, the evaluation of a query such as Listing 5.1, often results
in a costly replay of the entire event stream into the automaton with only limited
support for more efficient selective approaches [KGS21; ZHC23]. Next, we will
discuss three use cases. The first use case deals with out-of-arrivals based on our
out-of-order and aggregation extensions. The second use case shows the benefits
and challenges of using visual analytics to evaluate pattern matching queries. Fi-
nally, the third use case discusses (lightweight) indexing solutions for navigational
operators within the pattern matching query.

5.5.1 Maximum delay estimation

Setting

Using system time mode, as discussed in Section 5.3.3, can prevent data loss dur-
ing heavy load. In turn, application time queries become more expensive. A
lightweight index on application time offsets some performance loss. However,
this can be challenging when considering a pattern-matching query as in List-
ing 5.1. The ORDER BY clause specifies the application time T as the input

205

5 ChronicleDB extensions

order for pattern matching. As the operator is evaluated by streaming the in-
put according to the order into an automaton, this requires an additional sorting
step.

For a large temporal dataset, possibly spanning multiple months of measurements,
loading the entire data set into memory and sorting it requires a large amount of
memory. This is either infeasible or affects other parts of the system due to reserv-
ing memory for this step. A more robust and universal solution uses an external
merge sort with a main memory-based heap. The memory used for the heap can
have strict constraints, which allows a predictable (and possibly low) memory al-
location for answering that single pattern query. However, external merge sort re-
quires additional I/O resources and potentially multiple passes over the data, slow-
ing down the query. In this case, some temporal regions (data stored in application
time order) might be faster than others (data stored in system time order). In
this setting, the order of evaluation in sequential pattern matching query presents
unique challenges for robustness in query execution.

Query strategy

An external merge sort presents a universal solution to sort a stream in application
time order before streaming the input into a pattern-matching operator. However,
avoiding an external merge sort and the additional I/O is possible by considering
the maximum-delay present in the data. We define the maximum delay as
follows:

maximum-delay := max
ei∈events

{i− j | j < i ∧ ei.ts < ej.ts}

In other words, the maximum-delay is the maximum number of events between
an out-of-order event and the place it should have been inserted according to
application time. Ifmaximum-delay·eventsize < heapsize, we can sort the events
in memory without relying on an external merge-sort.

When developing this use case, most literature on out-of-order handling in event
processing systems was based on punctuation events [Tuc+03] inside the event
stream. Alternatively, there are also passive approaches relying on a user-provided
maximum-delay value for sorting events in queues or aggressive strategies using re-
traction events to correct operator results afterward, provided the necessary events
for result construction are not evicted from the system yet [Liu+09].

In ChronicleDB, we can use the TAB+-tree’s aggregation capabilities to estimate
maximum-delay on the fly. Since we have access to the maximum aggregate on the

206

5 ChronicleDB extensions

application time through lightweight indexing, we can use a user-defined aggregate
with a leaf level definition of:

appDelay := max
ei∈node

(appMax− ei.ts)

This aggregate can be propagated to the root level. However, appDelay is neither
an upper nor a lower bound for maximum-delay. For a specific range of events,
adding the number of duplicates and out-of-order events within that range pro-
vides an upper bound. We can lower that bound by considering gaps within the
application time range. When combining those four metrics into user-defined ag-
gregates, it is possible to provide an upper bound for the overall maximum-delay
as a root-level aggregate.

Using the root-level aggregate is a very efficient baseline solution, as it only consid-
ers a single node. However, it is not a robust solution with regard to accuracy. A
single event with a huge delay, a large number of duplicates, or a large number of
out-of-order events increases the estimate for the maximum-delay at the root-level
aggregate. Consequently, returning results in application time order may require
an external merge sort, even though the actual maximum-delay may not. For a
more robust and efficient solution, we combine five techniques.

In-order application time Instead of keeping track of the maximum applica-
tion time per leaf, we keep track of the maximum application time of in-order
events (maxInOrder). Compared to the baseline solution, this adds virtually
no overhead besides requiring a bulk computation of the aggregate (see Sec-
tion 5.4.2).

In-memory ring buffer If events have a fixed size, each leaf has at most k events.
In this case, we can optionally keep track of maxInOrder for the latest x leaf
nodes in a ring buffer. Whenever a leaf L is full, for the smallest out-of-order
timestamp tsomin in L, we search the ring buffer for tsimax such that tsimax is
the largest maxInOrder value smaller than or equal to tsomin. Let distL be the
distance from L to the leaf having tsimax. Then, distL · k is an upper bound for
the maximum-delay of L. Instead of appDelay, we can store this value as an
aggregate.
Ring buffers for inner node levels can be kept the same way. If, among x leaf
nodes, no tsimax value is found, the approach can continue with buffers for inner
nodes. If no tsimax value is found in inner nodes, we can set the aggregate as the
total number of events in the TAB+-tree.

207

5 ChronicleDB extensions

. . .

1. Level

Leaf Level

Root Level

R R

Figure 5.26: Lightweight index-based processing for estimating delays.

This approach introduces a fixed-size memory overhead. However, outside of sys-
tem time mode, the out-of-order queue also requires memory. Thus, x can be set
to introduce no memory overhead. The buffer is only kept in main memory to
avoid performance drawbacks, as observed for the maintenance of the out-of-order
queue (Section 5.3.4). Recovery is theoretically possible by reading the latest x
nodes in the buffer, but not practical since it may require a lot of random I/O
that system time mode wants to avoid. Searching and maintaining the buffer
structure does introduce a computational overhead and, thus, can decrease the
overall ingestion performance. However, maximum-delay estimates, especially at
the root level, can be more accurate if a fitting maxInOrder resides in a ring
buffer structure.

Tree traversal We adjust the tree traversal as shown in Figure 5.26. Instead
of trusting a possibly overestimated maximum-delay, we travel down the tree to
the first level just above the leaves. Here, we find more accurate aggregates.
Due to the linkage between nodes on a level in ChronicleDB, we can traverse the
first level and make a more educated guess based on the relevant nodes (marked
as R in Figure 5.26) for the query. In particular, we can collect all relevant node
aggregates, and for each node, we can compute for distL similar to the computation
in the optional in-memory ring buffer structure. Since each node only needs to
consider its predecessors, computing distL for n nodes takes O(n log n). In our use
case, and for the sake of simplicity in the following optimization, we assume events
have a fixed size. However, an additional event count aggregate per leaf node can
be used to compute an upper bound for maximum-delay based on the maximum
distL.

Sorted sequences If only a certain percentage of events are out-of-order, each
leaf also contains sorted sequences of events. We can reduce the number of overall
comparisons by creating an unbalanced heap [Gra06b]. When storing events in the

208

5 ChronicleDB extensions

TAB+-tree, each event receives an additional Boolean flag that indicates whether
the event was in-order or out-of-order. Upon reading events from the TAB+-tree,
in-order events are put into an in-memory ring buffer, while out-of-order events are
put into a heap. We compare the smallest event from the ring buffer and the heap
to determine the next event in application time order.

Outlier Rare outliers increase the maximum-delay and, thus, the memory re-
quirements for the heap. We adapt techniques from sorting algorithms with mem-
ory constraints. In particular, Flash MinSort [CL10] builds an index of minimum
values for regions consisting of one or multiple pages. The next smallest value can
be extracted from this index, and the index updates the minimum value for the re-
gion. The algorithm effectively trades sequential writes (e.g., external merge sort)
for random reads because random reads on flash memory are fast. It works well
for sensor nodes with very small main memory (e.g., 1 KB). In ChronicleDB, we
do not have to optimize for such small main memory sizes. However, for outliers,
we can leverage the lightweight index on application time to identify outliers and
then perform some random reads to reduce the overall memory requirements.
We identify outlier leaf nodes as follows. After collecting all relevant node aggre-
gates as described in the adjusted tree traversal, we compute avgdist, which is the
average value of all distL. Based on a configurable factor foutlier, we compute a
threshold foutlier ·avgdist. In an additional pass over the nodes and their computed
distL values, all relevant nodes above the threshold are collected as outlier leaves.
All other nodes are collected as regular leaves. During sorting, each group of nodes
is managed in a separate heap. It is necessary to compare the smallest elements
from each heap to produce a result. For outlier leaves, we can compute the size
of the maximum sequence of leaves that are within the maximum-delay distance
of each other. Then, during sorting, the heap only needs to keep the respected
number of leaves in main memory. For regular leaves, we can compute another
maximum-delay distance based on the remaining distances in that group.
In case of large outliers, this process can significantly reduce the memory require-
ments for the heap. For example, assume that all but one out-of-order event have a
maximum-delay of the size of five leaf nodes. Then, one large outlier event that fits
into the application time range of the first leaf of the TAB+-tree is inserted into the
last leaf. The maximum-delay would be the size of TAB+-tree. With this alterna-
tive processing scheme, we leverage the index and some random I/O such that the
heap for regular leaves contains events from five leaf nodes, and the heap for outlier
leaves consists of events from exactly one leaf node.

209

5 ChronicleDB extensions

1E-5
1E-3

1E-2
1E-1

1E0

10

100

1000

Heap (Memory)
Heap w/o Outliers (Memory)
Merge Sort (Memory)
Merge Sort (with I/O)

Selectivity

Q
ue

ry
 T

im
e

(m
s)

1E-5
1E-3

1E-2
1E-1

1E0
0

20
40
60
80

100
120

Selectivity

C
ap

ac
ity

 R
eq

ui
re

m
en

ts
 (%

)

Figure 5.27: Application time range queries on TAB+-tree with 10% exponentially
distributed out-of-order data. Runtime of queries is shown on the left.
Capacity savings by optimizing for outliers is shown on the right.

Discussion

In this setting, we are interested in the cost of sorting events in ChronicleDB, e.g.,
before evaluating a pattern matching query. The best performance is achieved
when no system time mode is used, and events are already in application or-
der. We set up a simple experiment to measure the goal of keeping the sort-
ing performance as respectable as possible during system time mode. For the
setup, we used SystemWS, as described in Section 5.3.4. In a ChronicleDB in-
stance, we inserted 10 million 24-byte events with varying out-of-order occur-
rence settings. Then, we performed random application time range queries with
varying selectivities, reporting the average of five measurements after a warmup
phase.

We show results for four methods. Heap (Memory) uses the optimized tree
traversal technique as well as sorted sequences. Heap w/o Outliers (Memory)
additionally uses optimization for outliers with foutlier = 1.5. Merge Sort
(Memory) uses the same memory as Heap (Memory) for initial run generation
and sorts runs using the default sort implementation in Java. Intermediary runs
are all kept in main memory. Merge Sort (with I/O) additionally writes and
reads intermediary runs to secondary storage. We also report on relevant other op-
timizations (i.e., the additional in-memory ring buffer for aggregate computations)
in the description of experiments.

Figure 5.27 shows the results for a constant out-of-order occurrence probability of
10% with out-of-order data following an exponential distribution with λ = 0.001.
The left diagram shows the query run time in milliseconds for various selectivities.

210

5 ChronicleDB extensions

1E-5
1E-3

1E-2
1E-1

1E0

10

100

1000

Heap (Memory)
Heap w/o Outliers (Memory)
Merge Sort (Memory)
Merge Sort (with I/O)

Selectivity

Q
ue

ry
 T

im
e

(m
s)

1E-5
1E-3

1E-2
1E-1

1E0
0

20
40
60
80

100
120

Selectivity

C
ap

ac
ity

 R
eq

ui
re

m
en

ts
 (%

)

Figure 5.28: Application time range queries on TAB+-tree with 90% exponentially
distributed out-of-order data. Runtime of queries is shown on the left.
Capacity savings by optimizing for outliers is shown on the right.

The right diagram shows capacity savings when using Heap w/o Outliers
(Memory) for the same experiment. For Merge Sort variants, avoiding addi-
tional I/O saves about 50% of run time. Across the board, Heap (Memory)
outperforms all other methods. In comparison to Merge Sort (with I/O),
Heap (Memory) improves by up to a factor of 4.2. Heap w/o Outliers
(Memory) performs slightly worse than Heap (Memory). However, as shown
on the right side, it reduces memory requirements by up to 34%. We also repeated
the same experiment for larger events (e.g., 64-byte events), and we measured
that the performance of Heap w/o Outliers (Memory) was 40% worse than
Heap (Memory), which is a larger discrepancy than shown in Figure 5.27. The
overhead for finding outlier leaves was negligible, so the additional random read
I/O likely caused the difference. However, the relative improvements of other
methods remain the same.

Note that the results are an improvement over previously published results of a
similar experiment [Sei+19]. In particular, we improved some implementation
details of the traversal and computation of aggregates in TAB+-tree, and the
experiment was performed on an SSD. Due to faster random reads, the overhead
of the tree traversal was almost eliminated, routinely being well under 10% of the
overall Merge Sort (Memory) run time. Thus, it is almost always favorable to
consider level 1 aggregates instead of root aggregates.

Figure 5.28 shows results for the same experiment but with a much higher out-
of-order occurrence probability of 90%. In this case, avoiding I/O is the main
benefit for the overall runtime of a query. For a selectivity of 0.1%, Heap w/o
Outliers (Memory) requires more memory than other methods. This can

211

5 ChronicleDB extensions

1E-5
1E-3

1E-2
1E-1

1E0

10

100

1000

Heap (Memory)
Heap w/o Outliers (Memory)
Merge Sort (Memory)
Merge Sort (with I/O)

Selectivity

Q
ue

ry
 T

im
e

(m
s)

1E-5
1E-3

1E-2
1E-1

1E0
0

20
40
60
80

100
120

Selectivity

C
ap

ac
ity

 R
eq

ui
re

m
en

ts
 (%

)

Figure 5.29: Application time range queries on TAB+-tree with 10% exponentially
distributed out-of-order data with a 0.01% chance for large outliers.
Runtime of queries is shown on the left. Capacity savings by optimiz-
ing for outliers is shown on the right.

easily be avoided by not choosing the method in case there a no improvements for
capacity requirements. Heap w/o Outliers (Memory) can still reduce the
overall capacity requirements for larger selectivities.

For all the experiments above, using the in-memory ring buffer for delay compu-
tation, we can gain results within 92% accuracy for the overall maximum-delay
estimation even for low memory requirements such as 2KiB. However, just us-
ing root aggregate cannot leverage optimization for outliers, sorted sequences, or
smaller application time ranges. For insertions, we measured an overhead of about
3%.

Figure 5.29 shows the results for a constant out-of-order occurrence probability of
10%. Most out-of-order data follow an exponential distribution with λ = 0.001.
However, each event has a 0.01% chance of being an out-of-order event with a
delay following an exponential distribution with λ = 0.00001. This setup has
rare, large outliers for out-of-order data. Compared to Figure 5.27, Heap w/o
Outliers (Memory) has significantly smaller memory requirements, i.e., re-
quiring less than 10% than other methods for large selectivities due to recognizing
outliers.

Overall, this use case shows the pitfalls of using system time mode for queries.
Obviously, additional sorting introduces an overhead not present for an index in
application time order. Sorting reduces the individual query latency of complex
queries such as pattern matching. However, lightweight indexing slightly above
the leaf level can reduce performance fluctuations and overall memory require-
ments, creating a more robust system. Furthermore, using a heap-based solution

212

5 ChronicleDB extensions

reduces the latency of the first result produced by a query. Stream processing op-
erators usually work incrementally. Thus, in the overall query pipeline, reducing
the latency of the first result is an important optimization criterion because the
following operators can also start computation early.

5.5.2 Visual analytics

Setting

Finding good pattern matching queries is a fairly complex process. Users have
to find symbols that represent different parts of the pattern. The symbols should
be selective to filter out uninteresting parts of the event stream. However, each
symbol individually should also not be too selective as their combination in a
sequential pattern gives the most useful results when matching the pattern. After
finding good symbols, they also need to be combined in a regular expression that
makes sense for the given question. However, often, data scientists have a certain
direction for a question in mind but do not know the exact manifestation of it.
This makes the formulation of the actual SQL query and the research question
an exploratory process. Users should be given an environment that lets them try
out different variations of queries with inherent feedback loops that assist this
exploration.

Listing 5.1 has multiple aspects that showcase the need for an exploratory ap-
proach. To find the landing, a user needs to set sensible thresholds for identifying
the start and end of the landing phase. However, the exact velocity and altitude
may depend on the aircraft, the environment, or be judgmental calls depending
on the broader research topic. Furthermore, there may be pitfalls, such as the
definition of S3. The presented definition is a decrease of both parameters when
comparing one event to the next. However, in practice, slight fluctuations in ve-
locity may need to be accounted for.

The type of data used can facilitate an exploratory approach. The flight data used
in Listing 5.1 includes positional information about the flight. Spatial data is in-
herently visual because the positions can be used to display the data on the map.
This also allows us to display (intermediate) query results on the map. For this pur-
pose, we build a demonstrator that combines ChronicleDB with VAT [Bei+19a],
a system for visual analytics on spatial data. Figure 5.30 shows the overall archi-
tecture of this combination. The VAT system features two components: WAVE
and MAPPING. WAVE is a fronted component that displays spatial data on a
map. MAPPING is a backend component that processes vector and raster data.

213

5 ChronicleDB extensions

Vector Data

Raster Data

VAT System

WAVE MAPPING

JEPC

Users

Event DataChronicleDB CEP

Figure 5.30: System architecture for combing ChronicleDB with the VAT system.

Figure 5.31: Pattern query results for identifying tracks of starting (green) and
landing (red) aircraft.

ChronicleDB can be used with a live complex event stream processing (CEP) sys-
tem to process event data. Both systems share a common query language through
Java Event Processing Connectivity (JEPC), which includes a pattern-matching
operator. For the demonstrator, we enhanced the VAT system by allowing the
formulation of JEPC queries in WAVE. Those queries are routed through MAP-
PING to ChronicleDB for processing. The results are ultimately displayed to the
user through WAVE on a map.

Since VAT is a system for exploratory research, users can easily try out different
query variations. Figure 5.31 shows the system in action. We use flight data from
the OpenSky Network [Net21b] as input. In the top right corner are three queries
(Starting, Landing, All Flights). The first two are pattern matching queries sim-

214

5 ChronicleDB extensions

ilar to Listing 5.1 that aggregate a starting or landing phase of an aircraft into
a LineString. The third is an aggregation query aggregating flight data from one
flight to a single LineString. In the top middle, users can select the temporal inter-
val for evaluating the queries. At the core of the visualization is a map displaying
the region around Frankfurt airport. Users can also change the spatial region by
zooming in/out or panning around the map. Results of queries are shown as lines
on the map such that each query has a distinct color.

The use case demonstrates the ability to tune query parameters in an exploratory
fashion. The pattern matching query results lay on top of all flight data in the
selected time frame, making it very simple for the user to see which part of the
flight the pattern matching query covers. Then, each query can be edited to
change symbols or parameters. For example, the thresholds for when a landing
phase starts could be changed. In this case, red lines could be longer or shorter.
However, adding and changing queries introduces unknown processing parameters
that may make the system unresponsive, causing a bad user experience. Thus, it is
important to explore avenues to increase the external robustness of the combination
of VAT and ChronicleDB [Bei+19b].

Query strategy

To facilitate a smooth user experience, we must minimize processing delays to en-
courage an ongoing exploratory process. Generally, users will start creating queries
by requesting data from a data source. When trying out different operators and
combining information to derive new insights, a user will create multiple branching
operator graphs from a data source. In essence, this operational pattern results
in multiple WAVE operators requesting the same data source over and over again.
This effect is amplified due to the spatiotemporal nature of the systems - queries
are usually created and evaluated in a specified time interval and region. After-
ward, the same query may be visually verified and changed in other spatiotemporal
bounding boxes.

Although repeated requests to the same data can be efficiently handled through
caching mechanisms (e.g., an LRU main memory cache), replaying high-volume
data streams such as flight event data requires a very large cache to avoid cache
misses. Furthermore, stateful event processing operators such as joins, aggregation
and pattern matching require interim results, further degrading the overall cache
performance. Given the unknown target of the data exploration process, dropping
operators, changing regions, and changing time intervals may render the Chroni-
cleDBs system cache useless with just a few clicks.

215

5 ChronicleDB extensions

VAT Event
Query
Merged
QueriesChronicleDB

VAT Event
Query Collected

Queries
Merge

Multi-Query
Optimization

Collect x queries.
Wait for up to y
timestamps

Figure 5.32: Overview of multi-query optimization process.

Therefore, we support the caching mechanism with an additional optimization
layer targeted towards multi-query optimization. Figure 5.32 illustrates the over-
all optimization process. After receiving an event query issued through VAT,
ChronicleDB does not start to process this query immediately. Instead, after
registering the first query, the system collects up to x additional queries while
waiting at most y timestamps for them to arrive. We merge overlapping com-
ponents into one query graph based on the collected queries. During merging,
we consider unique aspects of CEP queries to achieve better results - e.g., simi-
lar window constraints close to the source are merged, and additional operators
are placed within the query graph to correct merged constraints at the output
level.

Discussion

The additional optimization layer enhances ChronicleDBs processing capabilities
based on the nature of exploratory workflows - utilizing shared query components
of branched paths and requesting the same spatiotemporal regions of a single
WAVE screen. Furthermore, this design allows us to share the state of event
processing operators naturally. This is especially beneficial for pattern matching,
which features a potentially large state that has to be built up through strictly
sequential processing, limiting the ability to reuse interim results otherwise. Thus,
we open up our overall system for various pattern-matching optimization tech-
niques [RLR16]. However, collecting multiple queries alone already results in less
redundant computations for multiple similar queries. In turn, this makes the sys-
tem more robust to various inputs, which results in a smoother user experience in
this demonstrator.

This basic prototype can be enhanced in various ways in future work. First, tighter
integration between VAT and ChronicleDB can be achieved by reducing redundant
data transmission. Clearly, in Figure 5.31, multiple queries share data points, and
if VAT could share those in visualization, fewer data needed to be transmitted.
Second, approximate query computation could reduce query times and enhance
the user experience. Finally, while a VAT and ChronicleDB combination works

216

5 ChronicleDB extensions

well for spatial data, similar results could be achieved for non-spatial data. For this
purpose, efficient cost models approximating symbol and pattern occurrences could
be used as interactive feedback during query formulation. This would give users
direct feedback for the frequency of their pattern without actually computing it,
and this interactively guides better query formulation.

5.5.3 Delta predicates

Setting

The naive solution for supporting pattern matching queries in a database system
is to scan the entire event stream and replay it into a pattern matching opera-
tor. For the sake of simplicity, we assume, in the following cases, that the event
stream does not feature any out-of-order data. In some cases, improving this ap-
proach through a more selective replay of the stream is possible. For example,
if a mandatory symbol A contains a range predicate RA, it is possible to search
selectively for the set of events EA that all fulfill RA. This can be achieved through
a secondary index that efficiently evaluates RA to construct EA. Using the win-
dow constraint of the pattern, we can select events within the window around
events in EA. Then, only those need to be streamed into the pattern-matching
operator. For example, in Listing 5.1, the symbol S1 is mandatory in the pattern
and contains two range predicates. If an index exists on the velocity attribute,
the index can be used to identify events with a velocity above 140. For each
result, only the next 15 minutes of events must be replayed into the pattern-
matching operator. This can be achieved efficiently with the primary index in
ChronicleDB.

Körber et al. [KGS21] extended this idea to multiple range predicates for a highly
efficient index-supported pattern solution algorithm. However, this state-of-the-art
method is not a universal solution for various reasons. First, the pattern matching
query might not have range predicates. Second, there might not be an index that
allows the evaluation of the predicate, either because the user did not create it or
because it was turned off due to a high insertion load. Third, the range predicates
might not be selective enough, i.e., many events fulfill the condition, and thus, the
index does not filter much of the data.

To make the solution more robust for situations where the range-predicate method
does not apply, we look at a second class of predicates, often part of pattern
matching. In particular, we will focus on predicates with a numerical attribute A,

217

5 ChronicleDB extensions

an offset j, and a numerical value δq with the form:

A− PREV (A, j) < δq

It is possible to access the attribute of predecessors or successors for a given event
using the navigational functions PREV and NEXT . More formally, for an event
ei in a stream and an offset j, PREV will select the predecessor ei−j, and NEXT
will select the successor ei+j. Usually, PREV and NEXT compare numerical at-
tributes of ei and the predecessor/successor to detect a trend within the sequence of
pattern matching, like a falling or rising value. Since a numerical comparison to de-
tect a value rising or falling is essential for the computation of deltas between those
values, we call these types predicates delta predicates.

An example of delta predicates is in Listing 5.1. Symbol S3 contains two delta
predicates to detect a falling velocity and pressure altitude in the flight. De-
veloping an index-based query strategy for these widespread predicates makes the
overall pattern-matching evaluation within ChronicleDB more universal and, thus,
more robust. To simplify the setting, we assume no out-of-order events exist in
this use case. Furthermore, we limit the navigational operator to the PREV
function.

To the best of our knowledge, no existing index solution focuses on delta predicates
in pattern matching. Pattern matching solutions for strings [KJP77; KR87; Wei73;
MM93; Lew11] do not directly apply, because delta predicates use Boolean expres-
sions on attributes instead of static characters in a string. Körber et al. [KGS21]
focus on range predicates. Zhu et al. [ZHC23] focus on query rewrites to leverage
join processing for conditions dependent on other symbols but not the physical off-
set. Additionally, for window constraints, Zhu et al. propose adding a new column
to the data that essentially adds unique identifiers for windows to each row. How-
ever, they do not discuss specific indexing solutions.

Query strategy

One potential solution is to keep the latest event elatest in main memory. For each
new event en that arrives in the system, we compute δs = en − elatest and add
it as an additional attribute to the event. Then the latest event is replaced with
the new arrival. Given an PREV function with an offset of 1, it is possible to
maintain a B-tree index on δs. Then, the index can be used like the range-query
solution, i.e., for a predicate with δq, it is possible to search the index for all
δs < δq.

218

5 ChronicleDB extensions

Level 1 Nodes

offset

innerouter outer

Figure 5.33: SMA-based evaluation for delta predicates.

However, the offset j can vary for different queries. Reusing an index for one offset
for another is not straightforward because a B-tree index on δs loses the positional
information. Thus, a more robust indexing approach must apply for arbitrary
offsets. We present two possible solutions.

SMA solution The first solution is to use three lightweight indexes in the primary
index. The first keeps track of the overall count of events (count). The other two
track the minimum (minA) and maximum (maxA) value of the desired attribute A.
For notation purposes, we refer to the aggregate of a node N via a dot notation, i.e.,
N.minA refers to the minimum value of A in node N .

We traverse the first level above the leaf level as shown in Figure 5.33. We create a
window with the size of the offset j and apply it to level 1 nodes. Conceptionally, at
all times, two nodes at the edges of the window are potentially partially covered by
the window (outer), and an arbitrary count of nodes is fully covered by the window
(inner). The window has a pointer to the leftmost node L (low timestamp) and
the rightmost node R (high timestamp). The window also keeps track of the sum
of all count aggregates of nodes in the window scount.

As an invariant, we have scount ≥ j > scount − R.count. A window is a potential
candidate for matching a delta condition, as it covers the requested offset. More
specifically, (some) events in L are the predecessors of (some) events in R with
the offset of j. To further prune L and R, we can check the condition R.minA −
L.maxA < δq. R.minA − L.maxA describes the smallest possible delta between
nodes L and R (although it does not have to exist). As such, it can be used as a
filtering criterion for candidate nodes.

To create the initial window, we traverse the count aggregate of level 1 nodes from
left to right, keeping track of the pointers and scount until scount ≥ j for the first
time after adding a new node. We subtract L.count from scount and set L to its
successor to progress the window. After this step, the window might still have
scount ≥ j and be an additional candidate that needs to be checked. Thus, this

219

5 ChronicleDB extensions

e1 e2 ekLeaf Node

max

0

1

2b-1

Equi-Distant
Histogram H

min / max
of c events

min

max

bucket id
of min in H
bucket id

of max in H

id-sequence

min / max
of c events

bucket id
of min in H
bucket id

of max in H

mincount

min / max
of c events

bucket id
of min in H
bucket id

of max in H

...

Leaf Node
Aggregates

...

...

Figure 5.34: Bit vector index for evaluating delta predicates.

step is continued until scount < j. Only then the right node is changed by setting
R to its successor and adding R.count to scount.

Bit vector solution As covered in Section 5.4.4, the SMA solution can be prone to
outliers or low temporal correlation. However, we cannot directly use the solutions
in Section 5.4.4 because most lack positional information. The only exception to
that is a PSMA. However, the positional array can be large and hard to scale to
various space requirements. Instead, we focus on bit vector solutions based on
lossy compression. Figure 5.34 shows an overview of the basic components of the
index structure. As before, we keep track of count, minA, and maxA aggregates
for each leaf. Based on a parameter b, minA, and maxA, we create an equidistant
histogram H with 2b buckets. Thus, each bucket in the histogram can be uniquely
identified by b-bit integer.

We group c consecutive events in the leaf in a group G. This resembles a cache
line in a Column Imprint [SK13]. For each G, we determine the minimum (minG

A)
and maximum (maxG

A) attribute value in the group and compute two respective
bucket identifiers bidGmin and bidGmax in H that cover the respective two values. We
store the resulting identifiers for each group in sequential order (referred to as id-
sequence) and associate the id-sequence with the corresponding lightweight index
in level 1 nodes.

Effectively, this is a lossy compression of groups of min and max values within
a leaf. For queries, we use the same steps as in the SMA solution, but if the
condition R.minA − L.maxA < δq is fulfilled, we gather the id-sequences from L

220

5 ChronicleDB extensions

and R. Then, we find upper bounds for each event in L by using each group’s
bidGmax bucket identifier and picking the upper end of the bucket range in H. For
R, we use the bidGmin bucket identifier of each group and pick the lower end of
the bucket range in H for a lower bound for the attribute value of an event. We
can use the bounds to match events with their respective partners at their actual
position. If no event in a leaf fulfills this additional check, the leaf cannot contain
a match for the delta predicate and can be skipped.

While this baseline solution adds positions to a bit vector-based lightweight index,
it does not resolve problems with outliers as covered Section 5.4.4. As an addi-
tional optimization, we also compute each group’s second smallest value (min2GA)
and second largest value (max2GA). Whichever of minG

A, maxG
A has the largest dis-

tance from the second value, is marked as an outlier. We store the outlier bucket id
and its position within each group of the id-sequence. If no other event in the group
shares the outlier bucket id, we store min2GA or max2GA as the group’s bounds in-
stead of the outlier. When computing upper or lower bounds for the events, we can
use the outlier bucket id for the event at the outlier position directly. Thus, a single
outlier does not expand the range of the entire group.

For the special case of c = 1, we optimize the layout by directly storing the
bucket id of the single value instead of ranges and outliers. Note that, for c = 1,
the design follows the basic principles of a compression map as introduced in
Column Sketches [HKI18]. However, since we expect some temporal correlation
in a streaming database and want to minimize space requirements, we do not use
equiprobable histograms and do not handle frequent values as proposed in the
numerical compression map approach.

For a leaf with a capacity for k events, the space requirements for the id-sequence is
⌈k
c
⌉(3b+⌈log2(c)⌉) bits. The space requirements for c = 1 are k·b bits.

Discussion

In this setting, we are interested in the cost of evaluating delta predicates on an
event stream, which serves as a preprocessing step for a pattern matching query.
Since the predicate needs to be evaluated anyway, this also is a lower bound for
the overall evaluation cost of the full pattern matching query. We set up an ex-
periment to measure the time to evaluate delta predicates with either a full scan
of the primary index (SCAN), the SMA solution (SMA), or the bit vector solution.
For the bit vector solution, we used the parameter b = 5 (which we experimentally

221

5 ChronicleDB extensions

1.0E-3
1.0E-2

1.0E-1
1.0E0

0

1000

2000

3000

4000

Scan SMA BV_40 BV_10 BV_5 BV_1
Ti

m
e

(m
s)

Figure 5.35: Evaluating delta predicates evaluation run time with an offset of 10k
events on the SINE10000 dataset.

determined to be the best tradeoff between space and run time) and four configu-
rations for c (40, 10, 5, 1). In the results, we refer to the different configurations
as BV 40, BV 10, BV 5, and BV 1 respectively.

As an input, we use two data sources (SINE10000, SINE100) consisting of 50M
events, each having one 8-byte floating-point attribute and two 8-byte increasing
timestamp values (system and application time). For SINEk the ith event, we
generate a value v as sin(i mod k

k
· 2π) and a value w uniformly distributed in

the range [0, 0.1). The attribute value of the ith event is v + w, such that the
attribute follows the trend of a sine wave with some added noise. SINE10000 is a
dataset with a strong temporal correlation for leaf nodes while SINE100 has little
temporal correlation because each leaf features at least three sine wave cycles. For
each data set, we evaluate delta predicates such that the event pair that leads
to the result is at the peak and valley of a single sine wave cycle. This way, we
can control the selectivity of a query through a larger distance between the peak
and valley of a sine wave. We execute each experiment 10 times, measure the
wall clock time to completion, and report the average time for each experiment
variation.

For the first experiment, we use SINE10000 and evaluate delta predicates with
an offset of 10000 events and vary the selectivity from 0.001% to 1%. The re-
sults are shown in Figure 5.35. The strong temporal correlation means the SMA
solution performs well across the board. At a low selectivity, the additional prun-
ing of the bit vector-based solutions improves performance by up to a factor of
2.8.

In the second experiment, we use SINE100 and evaluate delta predicates with an
offset of 100 events and vary the selectivity from 0.001% to 1%. The results are

222

5 ChronicleDB extensions

1.0E-3
1.0E-2

1.0E-1
1.0E0

0

1000

2000

3000

4000

Scan SMA BV_40 BV_10 BV_5 BV_1
Ti

m
e

(m
s)

Figure 5.36: Evaluating delta predicate evaluation run time with an offset of 100
events on the SINE100 dataset.

1.0E-3
1.0E-2

1.0E-1
1.0E0

0

20

40

60

80

100

SMA BV_40 BV_10 BV_5 BV_1

A
cc

ur
ac

y
(%

)

Figure 5.37: Evaluating accuracy of secondary index structures (i.e. % of correctly
accessed leaves in the primary index) when evaluating delta predicates
with an offset of 100 events on the SINE100 dataset.

shown in Figure 5.36. Due to low temporal correlation, indexing variants do not
outperform a SCAN at higher selectivities. The additional pruning steps of bit
vector solutions lead to worse performance. However, bit vector solutions can
outperform all other variations at lower selectivities. To exclude implementation
details as a possible cause, Figure 5.37 shows the accuracy of the approaches for the
same experiment. We define accuracy as the number of candidate leaves identified
by the index approach that lead to a result. Accuracy confirms the overall trend
that more space leads to more accurate results, but also shows that the optimized
layout for BV 1 slightly improves the run time as well.

In both experiments, there is an apparent tradeoff between additional space for
indexing and the accuracy of results. An adaptive lightweight indexing solution

223

5 ChronicleDB extensions

should recognize the temporal correlation, opt for less space when allocating a
lightweight index, and choose a simple pruning method if the query is not very
selective. However, more complex methods can speed up the query significantly
for lower temporal correlation. For bit-vector solutions, a smaller c improves per-
formance for low selectivities, but space requirements must be considered. For
example, in Figure 5.37 for a selectivity of 0.001%, BV 1 improves performance
by 35% over BV 10 but requires almost three times as much space. Due to a de-
creased fan-out of nodes, the larger required space makes it a less ideal candidate
for a lightweight index. However, that solution could be used as a heavyweight
secondary index.

This use case shows how adaptive, lightweight indexing capabilities in ChronicleDB
can be expanded to provide index support for unique event processing queries
such as pattern matching. While the experiments evaluated delta predicates in
isolation, a more comprehensive study that develops a cost model for choosing
different index-based pattern-matching evaluation strategies is an obvious next
step. Furthermore, an adaptive index recommendation tool that considers the
lesson learned from this use case focusing on delta predicates is an exciting re-
search prospect. In particular, we focused on lightweight indexing that directly
corresponds to leaves in the primary index and may work within the limited space
of the internal index node. However, evaluating different ways to represent com-
pressed data with positional information [Nav14; Li+20], introducing error-bound
solutions, or more sophisticated ways to deal with outliers over the entire data
set are all possible new research opportunities building on the foundation laid
here.

5.6 Summary

ChronicleDB is a special-purpose database system for event streams. It leverages
temporal correlation between events and arrival order for efficient indexing. To
increase the robustness of ChronicleDB, we looked at challenging scenarios for the
baseline implementation and developed solutions to improve them.

For ingestion, events not arriving in temporal order reduces the overall perfor-
mance. We presented two possible solutions. First, adapting the temporal index
domain from application time to system time under heavy load improves per-
formance. Lightweight indexes on application time can answer application time
queries. Second, we developed solutions for PMem hardware to resolve the out-of-
order problem in systems where PMem is available. In particular, managing the

224

5 ChronicleDB extensions

out-of-order queue on PMem with custom merge strategies proved to be the best
bet in terms of performance.

For query processing, lightweight indexes in ChroniclDB use the temporal corre-
lation in event streams to answer queries efficiently without maintaining a sep-
arate index structure. We looked at multiple possible extensions to the exist-
ing lightweight indexing solutions and their placement in a system equipped with
PMem. Overall, compression of lightweight indexes can increase the accuracy of re-
sults and make the indexing solution more robust against outliers.

Finally, we presented three use cases developed to showcase the capabilities of
ChronicleDB. A combination with the VAT system shows how ChronicleDB can
be used in exploratory spatiotemporal data analysis. Estimating the temporal
delay in data and evaluating pattern matching queries can be accomplished with
lightweight index-based algorithms. We showed how lightweight indexes can be
enhanced for pattern matching to handle unique predicates on the event position
within a stream.

225

6
Summary, conclusion and outlook

6.1 Summary and conclusion

Indexing is a fundamental database operation to enable the fast extraction of
knowledge from a large amount of data. Indexing is particularly challenging for
multiple reasons in the case of streaming data. First, data streams are never-
ending. Consequently, indexing also never stops, and indexes require continuous
maintenance. Second, the latency from a data item arriving at a database to it
appearing in a query results needs to be low to give users an up-to-date view of a sit-
uation. Third, ingestion performance, query performance, and index maintenance
need to be balanced and tuned in different ways to fulfill various requirements.
This balance includes offering various index structures and flexibility within in-
dexes to meet various workload characteristics.

Robust stream indexing improves a streaming database system and solves multi-
ple challenges when indexing data streams. For various index structures, robust
stream indexing reduces, and sometimes eliminates, fluctuations in maintenance
activity and cost. Administrators can leverage predictable maintenance costs to
provision resources and provide continuous indexing correctly. Furthermore, ro-
bust stream indexing improves the efficiency of indexes by reducing the amount of
data to consider for a query. Finally, a combination of modern hardware, adaptive
index choices, and prioritization policies for overloads results in flexible stream-
ing database components that can handle many of today’s most challenging use
cases.

For developing robust stream indexing, this thesis formulated and tried to an-
swer the primary question: How can index structures be improved to provide
robust performance in data stream scenarios? Since this question is purpose-
fully broad and includes many components, we further divided it into three sub-
questions for more specific problem areas. A summary of the core contributions

226

6 Summary, conclusion and outlook

of this thesis and the conclusions derived from it are answers to each of these
sub-questions.

Q1: How do traditional index structures cope with high insertion rates?

B-trees can be found in many database systems. High update rates will result in
many node splits. When bulk-loading B-trees, it is possible to define free space
in each node to absorb some updates and delay node splits. However, we showed
that this results in waves of node splits, dubbed waves of misery. The fluctuating
index maintenance activity represented by these waves can increase buffer pool
contention and influence query performance. Updated bulk loading algorithms, as
presented in this thesis, based on tried-and-true B-tree theory, reduce and some-
times eliminate these waves. These new mechanisms improve the robustness of
traditional index structures in data stream scenarios. The solutions are easy to
implement and widely applicable.

Q2: Are specialized streaming indexes for data streams robust?

A common streaming index is the log-structured merge tree (LSM). We showed
that while LSM eliminates problems of traditional index structures, namely, waves
of node splits, it has to cope with waves of merge activity. These waves cause
similar issues of resource contention and fluctuating query performance. Thus,
while streaming indexes can be very efficient, they are not necessarily robust. We
identified that a key reason for this is the core design of log-structured indexes,
which picks some partitions for a merge based on pre-defined criteria and merges
these partitions to completion. Continuous merging with staggered key ranges
is a novel stream indexing approach based on merge sort. We showed that it
avoids pitfalls of other log-structured indexes, reduces fluctuations, and improves
overall query performance. Extensions to continuous merging can further leverage
its flexible merging mechanism to react to different load scenarios. We designed
policies to react to (temporary) overload and showed which policies result in more
robust behavior.

Q3: How can a streaming database adapt to support robustness?

ChronicleDB is a streaming database specialized for event streams. As a database,
it features a primary B-tree-based index and multiple options for secondary index
structures. While these can benefit from answers to Q1 and Q2, there are also
more specific challenges unique to ChronicleDB. Its robustness can be increased
regarding ingestion performance by leveraging modern hardware, switching the
temporal index domain on the fly, and developing more sophisticated solutions for
handling out-of-order data. Furthermore, query performance can be made more
robust through modern hardware, through introducing additional index structures,

227

6 Summary, conclusion and outlook

and through exchanging existing lightweight indexes in primary index nodes with
more robust candidates. The improvements made to ChronicleDB result in new
use cases developed during this thesis.

We formulate an overall conclusion to our primary research question based on
these three answers. Improving the performance robustness of index structures in
data stream scenarios requires a detailed analysis of both internal and external
robustness. Internal robustness suffers from continuous insertions caused by data
streams. Over time, spikes caused by large index reorganization operations impact
the index’s overall performance. These deficiencies in internal robustness can be
resolved by adapting and developing new mechanisms within the index structure
to de-amortize large spikes of activity into smaller, continuous indexing activity.
This applies to traditional indexes, streaming indexes, and a streaming database.
External robustness suffers due to changes in the workload. For this purpose, new
mechanisms must be flexible enough to react to these changes. Then, robustness
can be improved by designing and putting policies that choose the correct indexes
and mechanisms on the fly. Ideally, the search space of policies is limited such that
bad choices are almost eliminated as options. Ultimately, these new mechanisms
and policies result in robust stream indexing.

6.2 Outlook

New bulk loading techniques, continuous merging, and improvements to a stream-
ing database system can all increase the robustness of stream indexing. In the
following, we briefly summarize potential future research directions based on the
foundation laid in this thesis.

6.2.1 Waves of misery in main-memory index structures

Waves of activity or potential spikes during index re-organization occur not only
for B-trees but also in main-memory-based index structures. A classic exam-
ple is a dynamic hash table [Lar88], which de-amortizes linear hashing expan-
sion. Consequently, there also exists an opportunity to flatten other waves of
misery on a smaller scale, for example, to improve cache efficiency when retrieving
nodes of main-memory-based tree structures. Furthermore, bulk loading tech-
niques for B-tress could be adapted such that alternative split strategies for B-
trees with better overall storage utilization also benefit from reducing waves of
misery.

228

6 Summary, conclusion and outlook

An alternative to changing the bulk loading process is pre-emptive splits of nodes
residing in a main memory buffer. This was shown to improve write-throughput
in the case of concurrent writes [AL21]. However, the same or similar tech-
niques could be expanded and examined with data streams and robustness in
mind.

6.2.2 Merging

We have shown how continuous merging can adapt to the workload’s peaks and
valleys of incoming data rate. However, we did not analyze frequent changes in
key distribution. If key distribution changes occur occasionally, continuous merg-
ing will automatically adapt where new partitions are added, slowly shifting the
initialized quantiles over time. However, during this shift, the load on the sys-
tem may vary, challenging the external robustness of the indexing approach. A
more challenging use case would be rapidly changing key distributions, in which
continuous merging might be put into fluctuating states. A possible solution is
that lower levels keep track of changing key distribution. A policy to trigger
a re-initialization in upper levels might offset some fluctuations in these longer-
running merges on higher levels. Endure [Huy+22] optimizes LSM parameters such
as buffer sizes and compaction policy choices to be robust to workload changes.
Introducing continuous merging as an additional choice or leveraging the devel-
oped models for tuning continuous merging would be an interesting research di-
rection.

An entirely contrasting approach is to consider query-driven merging. While con-
tinuous merging was designed for continuous input, continuous data stream sub-
scribers also mean many continuous queries. Based on the query workload, some
attributes, and key ranges might need prioritization in terms of index maintenance
over others. Database cracking [IKM07] and similar work [Hol+19; HM21] build
and update indexes based on incoming queries. Adaptive merging [GK10b] is a
merge sort procedure that works for a memory hierarchy. However, to the best
of our knowledge, research on incremental indexing/sorting for external storage
is more limited than research on main memory structures. A recent LSM-based
work that considers adaptive, bi-directional LSM [Zha+22] keeps track of fre-
quently accessed query ranges and moves them back to smaller levels. Lee et
al. [LLE21] extend PebblesDB to delay merging key ranges that are not read
often.

We can use the idea of incremental indexing by attaching a budget to each query.
Then, the budget can be used to trigger some steps in either continuous merging
or our out-of-order merging strategies in ChronicleDB. This would eliminate the

229

6 Summary, conclusion and outlook

need for a separate index maintenance component entirely and provide external
robustness w.r.t. query load, but come at the cost of potential spikes before the
query load changes and adapt. Ideally, these two ideas would be combined, i.e.,
have a limited continuous indexing component and an additional query-driven
budget-based approach for further refinement.

6.2.3 Storage- and index structures

For our continuous merging design, we assumed and leveraged that each partition
is a B-tree. In contrast, most LSM systems use SSTables. A different approach
would be to consider partitioned B-trees [Gra11b, p. 375 ff.] such that levels and
partitions in levels are indexes in a single B-tree structure. This would reduce
the number of indexes and simplify the overall storage design while enabling more
fine-granular free-space management.

Lightweight index structures offer much potential to boost query performance with
little index maintenance requirements. Indexed data need to be correlated to pro-
vide pruning power. We discussed some heuristics and decision-making criteria
for choosing lightweight indexes. These can be formalized into an automatic,
input-driven storage design component. For example, while we leveraged tempo-
ral correlation in the primary index, there might be other correlations in secondary
indexes. E.g., if temperature and humidity correlate, we can store temperature into
an LSM-based secondary index and keep humidity as a lightweight index informa-
tion. The type of lightweight index can be chosen based on our introduced criteria.
Furthermore, we focused on lightweight indexes that allow for range queries. How-
ever, structures such as Bloom filters [Blo70] and Cuckoo filters [Fan+14] as well
as strategies when to choose them [Lan+19] should also be considered in a more
input-driven storage design.

Additionally, while we considered Bloom filters orthogonal to our research in con-
tinuous merging, they can be re-integrated into our design. For example, we could
keep Bloom filters per index node as in ChronicleDB or keep Bloom filters for key
ranges in a run. A new Bloom filter range might be started whenever a partition
exits or joins the merge.

While we focused on temporal indexing, many use cases involve spatial informa-
tion. It remains an open question if continuous merging can be used for spatial
data, for example, by having R-trees instead of B-trees or leveraging space-filling
curves.

230

6 Summary, conclusion and outlook

In our continuous merging implementation, we use asynchronous I/O techniques
for reading and writing. Multiple levels share the storage device. We have de-
veloped policies for overload scenarios to prioritize certain merge levels based on
I/O requests. Modern storage APIs [Did+22] such as io uring could potentially
improve the overall throughput of the system as they offer better support for
asynchronous I/O in the Linux kernel.

6.2.4 Query optimization

Merge sort is a subroutine in many queries. As continuous merging is a perpetual
merge sort for multiple levels, its integration into query processing remains an
open question. For example, a windowed join [KNV03] continuously evaluates
two or more data streams. Previously, early result production for joins [Dit+02]
was considered similar to how continuous merging produces results more early
than competitors. Combining these two ideas for join processing remains an open
question.

For event processing queries on databases, there were recent approaches that lever-
age lightweight index structures for both aggregation [Sei+19] and pattern match-
ing queries [Sei+19; KGS21]. However, they did not consider alternative index
structures. Furthermore, they assumed a static index model with pre-existing in-
dex structures. Since data and indexes constantly change in a streaming data
model, the developed cost models can be updated to consider this. Because con-
tinuous merging provides expected constant costs, this simplifies its introduction
into the model. In addition, lightweight index types such as PSMAs [Lan+16]
or secondary indexes with lightweight index information can be used to improve
query strategies. Developed sub-routines presented in this thesis, such as eval-
uating delta predicates in pattern matching, should be considered in the overall
process. Finally, the proposed multi-query optimization component can combine
all this information to improve query performance.

231

Appendices

232

References

[Aba+05] Daniel J. Abadi et al. “The Design of the Borealis Stream Processing
Engine”. In: Second Biennial Conference on Innovative Data Systems
Research, CIDR 2005, Asilomar, CA, USA, January 4-7, 2005, On-
line Proceedings. www.cidrdb.org, 2005, pp. 277–289.

[AS13] Daniar Achakeev and Bernhard Seeger. “Efficient Bulk Updates on
Multiversion B-trees”. In: Proc. VLDB Endow. 6.14 (2013), pp. 1834–
1845.

[ASW12] Daniar Achakeev, Bernhard Seeger, and Peter Widmayer. “Sort-based
query-adaptive loading of R-trees”. In: CIKM’12. 2012, pp. 2080–
2084.

[Agi+21] Ankur Agiwal et al. “Napa: Powering Scalable Data Warehousing with
Robust Query Performance at Google”. In: Proc. VLDB Endow. 14.12
(2021), pp. 2986–2998.

[Agr+08] Nitin Agrawal et al. “Design Tradeoffs for SSD Performance”. In: 2008
USENIX Annual Technical Conference, Boston, MA, USA, June 22-
27, 2008. Proceedings. Ed. by Rebecca Isaacs and Yuanyuan Zhou.
USENIX Association, 2008, pp. 57–70.

[Aka22] Selim Tunahan Aka. “Index Support for Delta Predicates in Pattern
Matching Queries over Event Streams”. Unpublished. MA thesis. Uni-
versity of Marburg, 2022.

[AL21] Adnan Alhomssi and Viktor Leis. “Contention and Space Manage-
ment in B-Trees”. In: 11th Conference on Innovative Data Systems
Research, CIDR 2021, Virtual Event, January 11-15, 2021, Online
Proceedings. www.cidrdb.org, 2021.

[Als+14] Sattam Alsubaiee et al. “Storage Management in AsterixDB”. In:
Proc. VLDB Endow. 7.10 (2014), pp. 841–852.

[Ama] Amazon. Amazon Kinesis Data Streams FAQs. url: https : / /
web.archive.org/web/20210911042853/https://aws.
amazon . com / kinesis / data - streams / faqs/ (visited on
11/08/2021).

[Ana+10] Avishek Anand et al. “Efficient temporal keyword search over ver-
sioned text”. In: Proceedings of the 19th ACM Conference on Infor-
mation and Knowledge Management, CIKM 2010, Toronto, Ontario,
Canada, October 26-30, 2010. Ed. by Jimmy Huang et al. ACM, 2010,
pp. 699–708.

233

https://web.archive.org/web/20210911042853/https://aws.amazon.com/kinesis/data-streams/faqs/
https://web.archive.org/web/20210911042853/https://aws.amazon.com/kinesis/data-streams/faqs/
https://web.archive.org/web/20210911042853/https://aws.amazon.com/kinesis/data-streams/faqs/

References

[And+17] Mihnea Andrei et al. “SAP HANA Adoption of Non-Volatile Mem-
ory”. In: Proc. VLDB Endow. 10.12 (2017), pp. 1754–1765.

[App21] Apple.Monitor your heart rate with Apple Watch. 2021. url: https:
//support.apple.com/en-us/HT204666 (visited on 11/08/2021).

[Arg95] Lars Arge. “The Buffer Tree: A New Technique for Optimal I/O-
Algorithms (Extended Abstract)”. In: Algorithms and Data Struc-
tures, 4th International Workshop, WADS ’95, Kingston, Ontario,
Canada, August 16-18, 1995, Proceedings. Ed. by Selim G. Akl et al.
Vol. 955. Lecture Notes in Computer Science. Springer, 1995, pp. 334–
345.

[APM19] Joy Arulraj, Andy Pavlo, and Krishna Teja Malladi. “Multi-Tier Buffer
Management and Storage System Design for Non-Volatile Memory”.
In: CoRR abs/1901.10938 (2019).

[Ass21] GSM Association. The Mobile Economy 2021. 2021. url: https:
//www.gsma.com/mobileeconomy/wp-content/uploads/
2021/07/GSMA_MobileEconomy2021_3.pdf (visited on 11/08/2021).

[BC05] Brian Babcock and Surajit Chaudhuri. “Towards a Robust Query Op-
timizer: A Principled and Practical Approach”. In: Proceedings of the
ACM SIGMOD International Conference on Management of Data,
Baltimore, Maryland, USA, June 14-16, 2005. Ed. by Fatma Özcan.
ACM, 2005, pp. 119–130.

[BBD05] Shivnath Babu, Pedro Bizarro, and David J. DeWitt. “Proactive Re-
optimization”. In: Proceedings of the ACM SIGMOD International
Conference on Management of Data, Baltimore, Maryland, USA, June
14-16, 2005. Ed. by Fatma Özcan. ACM, 2005, pp. 107–118.

[BSW04] Shivnath Babu, Utkarsh Srivastava, and Jennifer Widom. “Exploiting
k -constraints to reduce memory overhead in continuous queries over
data streams”. In: ACM Trans. Database Syst. 29.3 (2004), pp. 545–
580.

[BL89] Ricardo A. Baeza-Yates and Per-Åke Larson. “Performance of B+-
Trees with Partial Expansions”. In: IEEE Trans. on Knowledge and
Data Engineering 1.2 (1989), pp. 248–257.

[Bal+19] Oana Balmau et al. “SILK: Preventing Latency Spikes in Log-Structured
Merge Key-Value Stores”. In: 2019 USENIX Annual Technical Con-
ference, USENIX ATC 2019. 2019, pp. 753–766.

234

https://support.apple.com/en-us/HT204666
https://support.apple.com/en-us/HT204666
https://www.gsma.com/mobileeconomy/wp-content/uploads/2021/07/GSMA_MobileEconomy2021_3.pdf
https://www.gsma.com/mobileeconomy/wp-content/uploads/2021/07/GSMA_MobileEconomy2021_3.pdf
https://www.gsma.com/mobileeconomy/wp-content/uploads/2021/07/GSMA_MobileEconomy2021_3.pdf

References

[Bay97] Rudolf Bayer. “The Universal B-Tree for Multidimensional Indexing:
general Concepts”. In: Worldwide Computing and Its Applications,
International Conference, WWCA ’97, Tsukuba, Japan, March 10-
11, 1997, Proceedings. Ed. by Takashi Masuda, Yoshifumi Masunaga,
and Michiharu Tsukamoto. Vol. 1274. Lecture Notes in Computer
Science. Springer, 1997, pp. 198–209.

[BM72] Rudolf Bayer and Edward M. McCreight. “Organization and Main-
tenance of Large Ordered Indices”. In: Acta Informatica 1 (1972),
pp. 173–189.

[BU77] Rudolf Bayer and Karl Unterauer. “Prefix B-Trees”. In: ACM Trans.
on Database Systems (TODS) 2.1 (1977), pp. 11–26.

[Bec+90] Norbert Beckmann et al. “The R*-Tree: An Efficient and Robust Ac-
cess Method for Points and Rectangles”. In: Proceedings of the 1990
ACM SIGMOD International Conference on Management of Data,
Atlantic City, NJ, USA, May 23-25, 1990. Ed. by Hector Garcia-
Molina and H. V. Jagadish. ACM Press, 1990, pp. 322–331.

[Bei+19a] Christian Beilschmidt et al. “Pretty Fly for a VAT GUI: Visualizing
Event Patterns for Flight Data”. In: Proceedings of the 13th ACM
International Conference on Distributed and Event-based Systems,
DEBS 2019, Darmstadt, Germany, June 24-28, 2019. ACM, 2019,
pp. 224–227.

[Bei+19b] Christian Beilschmidt et al. “VAT to the Future: Extrapolating Vi-
sual Complex Event Processing”. In: Proceedings of the 7th Open-
Sky Workshop 2019, Zurich, Switzerland, November 21-22, 2019. Ed.
by Christina Pöpper and Martin Strohmeier. Vol. 67. EPiC Series in
Computing. EasyChair, 2019, pp. 25–36.

[Ben+07] Michael A. Bender et al. “Cache-Oblivious Streaming B-trees”. In:
SPAA 2007: Proceedings of the 19th Annual ACM Symposium on Par-
allelism in Algorithms and Architectures, San Diego, California, USA,
June 9-11, 2007. 2007, pp. 81–92.

[Ben+20] Michael A. Bender et al. “Flushing Without Cascades”. In: Proceed-
ings of the 2020 ACM-SIAM Symposium on Discrete Algorithms,
SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020. Ed. by
Shuchi Chawla. SIAM, 2020, pp. 650–669.

[Ber+95] Hal Berenson et al. “A Critique of ANSI SQL Isolation Levels”. In:
Proceedings of the 1995 ACM SIGMOD International Conference on
Management of Data, San Jose, California, USA, May 22-25, 1995.

235

References

Ed. by Michael J. Carey and Donovan A. Schneider. ACM Press, 1995,
pp. 1–10.

[BKS99] Björn Blohsfeld, Dieter Korus, and Bernhard Seeger. “A Comparison
of Selectivity Estimators for Range Queries on Metric Attributes”. In:
SIGMOD 1999, Proceedings ACM SIGMOD International Conference
on Management of Data, June 1-3, 1999, Philadelphia, Pennsylvania,
USA. Ed. by Alex Delis, Christos Faloutsos, and Shahram Ghande-
harizadeh. ACM Press, 1999, pp. 239–250.

[Blo70] Burton H. Bloom. “Space/Time Trade-offs in Hash Coding with Al-
lowable Errors”. In: Commun. ACM 13.7 (1970), pp. 422–426.

[Bor16] Renata Borovica-Gajic. Toward timely, predictable and cost-effective
data analytics. Tech. rep. EPFL, 2016.

[BGL17] Renata Borovica-Gajic, Goetz Graefe, and Allison W. Lee. “Robust
Performance in Database Query Processing (Dagstuhl Seminar 17222)”.
In: Dagstuhl Reports 7.5 (2017), pp. 169–180.

[Bor+18a] Renata Borovica-Gajic et al. “Smooth Scan: robust access path se-
lection without cardinality estimation”. In: VLDB J. 27.4 (2018),
pp. 521–545.

[Bor+18b] Edward Bortnikov et al. “Accordion: Better Memory Organization
for LSM Key-Value Stores”. In: Proc. VLDB Endow. 11.12 (2018),
pp. 1863–1875.

[Bos21] Bosch. Smart Motion Detector. 2021. url: https://www.bosch-
smarthome.com/uk/en/products/devices/motion-detector/
(visited on 12/01/2021).

[Böt+20] Jan Böttcher et al. “Scalable and robust latches for database systems”.
In: 16th International Workshop on Data Management on New Hard-
ware, DaMoN 2020, Portland, Oregon, USA, June 15, 2020. Ed. by
Danica Porobic and Thomas Neumann. ACM, 2020, 2:1–2:8.

[Bra22] Dominik Brandenstein. “Accelerating Event Pattern Matching with
Compressed Time-Series Representations”. Unpublished. MA thesis.
University of Marburg, 2022.

[Bre18] John Brennan. What Happens to Relative Humidity as Air Temper-
ature Rises? 2018. url: https://sciencing.com/happens-
relative- humidity- air- temperature- rises- 22563.
html (visited on 12/01/2021).

236

https://www.bosch-smarthome.com/uk/en/products/devices/motion-detector/
https://www.bosch-smarthome.com/uk/en/products/devices/motion-detector/
https://sciencing.com/happens-relative-humidity-air-temperature-rises-22563.html
https://sciencing.com/happens-relative-humidity-air-temperature-rises-22563.html
https://sciencing.com/happens-relative-humidity-air-temperature-rises-22563.html

References

[BF03] Gerth Stølting Brodal and Rolf Fagerberg. “Lower bounds for ex-
ternal memory dictionaries”. In: Proceedings of the Fourteenth An-
nual ACM-SIAM Symposium on Discrete Algorithms, January 12-14,
2003, Baltimore, Maryland, USA. ACM/SIAM, 2003, pp. 546–554.

[Car+02] Donald Carney et al. “Monitoring Streams - A New Class of Data
Management Applications”. In: Proceedings of 28th International Con-
ference on Very Large Data Bases, VLDB 2002, Hong Kong, August
20-23, 2002. Morgan Kaufmann, 2002, pp. 215–226.

[Cas] Apache Cassandra. Dynamo. url: https://web.archive.org/
web/20230611211659/https://cassandra.apache.org/
doc/latest/cassandra/architecture/dynamo.html (vis-
ited on 06/11/2023).

[Cha+16] Samy Chambi et al. “Better bitmap performance with Roaring bitmaps”.
In: Softw. Pract. Exp. 46.5 (2016), pp. 709–719.

[CG86] Bernard Chazelle and Leonidas J. Guibas. “Fractional Cascading: I.
A Data Structuring Technique”. In: Algorithmica 1.2 (1986), pp. 133–
162.

[CJ15] Shimin Chen and Qin Jin. “Persistent B+-Trees in Non-Volatile Main
Memory”. In: Proc. VLDB Endow. 8.7 (2015), pp. 786–797.

[Com79] Douglas Comer. “The Ubiquitous B-Tree”. In: ACM Comput. Surv.
11.2 (1979), pp. 121–137.

[Cor19] Jonathan Corbet. Ringing in a new asynchronous I/O API. Dec.
2019. url: https://lwn.net/Articles/776703/ (visited
on 12/22/2019).

[CL10] Tyler Cossentine and Ramon Lawrence. “Fast sorting on flash memory
sensor nodes”. In: Fourteenth International Database Engineering and
Applications Symposium (IDEAS 2010), August 16-18, 2010, Mon-
treal, Quebec, Canada. Ed. by Bipin C. Desai and Jorge Bernardino.
ACM International Conference Proceeding Series. ACM, 2010, pp. 105–
113.

[CE97] Michael Cox and David Ellsworth. “Application-controlled demand
paging for out-of-core visualization”. In: 8th IEEE Visualization Con-
ference, IEEE Vis 1997, Phoenix, AZ, USA, October 19-24, 1997,
Proceedings. IEEE Computer Society and ACM, 1997, pp. 235–244.

237

https://web.archive.org/web/20230611211659/https://cassandra.apache.org/doc/latest/cassandra/architecture/dynamo.html
https://web.archive.org/web/20230611211659/https://cassandra.apache.org/doc/latest/cassandra/architecture/dynamo.html
https://web.archive.org/web/20230611211659/https://cassandra.apache.org/doc/latest/cassandra/architecture/dynamo.html
https://lwn.net/Articles/776703/

References

[CP90] Douglas R. Cutting and Jan O. Pedersen. “Optimizations for Dy-
namic Inverted Index Maintenance”. In: SIGIR’90, 13th International
Conference on Research and Development in Information Retrieval,
Brussels, Belgium, 5-7 September 1990, Proceedings. Ed. by Jean-Luc
Vidick. ACM, 1990, pp. 405–411.

[Das23] Das Fluglärm Portal. Lärmmessung - Die Grundlage für wirksamen
Lärmschutz. 2023. url: https://www.xn--fluglrm-portal-
9hb.de/fluglaerm- debatte/laermmessung/ (visited on
02/27/2023).

[DAI17] Niv Dayan, Manos Athanassoulis, and Stratos Idreos. “Monkey: Op-
timal Navigable Key-Value Store”. In: Proceedings of the 2017 ACM
International Conference on Management of Data, SIGMOD Confer-
ence 2017. ACM, 2017, pp. 79–94.

[DAI18] Niv Dayan, Manos Athanassoulis, and Stratos Idreos. “Optimal Bloom
Filters and Adaptive Merging for LSM-Trees”. In: ACM Trans. Database
Syst. 43.4 (2018), 16:1–16:48.

[DI18] Niv Dayan and Stratos Idreos. “Dostoevsky: Better Space-Time Trade-
Offs for LSM-Tree Based Key-Value Stores via Adaptive Removal of
Superfluous Merging”. In: Proceedings of the 2018 International Con-
ference on Management of Data, SIGMOD Conference 2018. ACM,
2018, pp. 505–520.

[Day+22] Niv Dayan et al. “Spooky: Granulating LSM-Tree Compactions Cor-
rectly”. In: Proc. VLDB Endow. 15.11 (2022), pp. 3071–3084.

[DEB13] DEBS. DEBS Grand Challenge 2013. 2013. url: https://debs.
org/grand-challenges/2013/ (visited on 06/14/2023).

[Dem+07] Alan J. Demers et al. “Cayuga: A General Purpose Event Monitoring
System”. In: Third Biennial Conference on Innovative Data Systems
Research, CIDR 2007, Asilomar, CA, USA, January 7-10, 2007, On-
line Proceedings. www.cidrdb.org, 2007, pp. 412–422.

[Dep86] Uwe Deppisch. “S-Tree: A Dynamic Balanced Signature Index for
Office Retrieval”. In: SIGIR’86, Proceedings of the 9th Annual In-
ternational ACM SIGIR Conference on Research and Development
in Information Retrieval, Pisa, Italy, September 8-10, 1986. Ed. by
Luigi Rossi Bernardi and Fausto Rabitti. ACM, 1986, pp. 77–87.

[DMF12] Luca Deri, Simone Mainardi, and Francesco Fusco. “tsdb: A Com-
pressed Database for Time Series”. In: Traffic Monitoring and Analy-
sis - 4th International Workshop, TMA 2012, Vienna, Austria, March
12, 2012. Proceedings. 2012, pp. 143–156.

238

https://www.xn--fluglrm-portal-9hb.de/fluglaerm-debatte/laermmessung/
https://www.xn--fluglrm-portal-9hb.de/fluglaerm-debatte/laermmessung/
https://debs.org/grand-challenges/2013/
https://debs.org/grand-challenges/2013/

References

[DIG07] Yanlei Diao, Neil Immerman, and Daniel Gyllstrom. “Sase+: An agile
language for kleene closure over event streams”. In: UMass Technical
Report (2007).

[Did+22] Diego Didona et al. “Understanding modern storage APIs: a system-
atic study of libaio, SPDK, and io uring”. In: SYSTOR ’22: The 15th
ACM International Systems and Storage Conference, Haifa, Israel,
June 13 - 15, 2022. Ed. by Michal Malka et al. ACM, 2022, pp. 120–
127.

[Dit+02] Jens-Peter Dittrich et al. “Progressive Merge Join: A Generic and
Non-blocking Sort-based Join Algorithm”. In: Proceedings of 28th In-
ternational Conference on Very Large Data Bases, VLDB 2002, Hong
Kong, August 20-23, 2002. Morgan Kaufmann, 2002, pp. 299–310.

[DG20] Thanh Do and Goetz Graefe. “Sort-based grouping and aggregation”.
In: CoRR abs/2010.00152 (2020).

[Don16] Siying Dong. Option of Compaction Priority. 2016. url: https:
//rocksdb.org/blog/2016/01/29/compaction_pri.html
(visited on 06/13/2023).

[Don21] Siying Dong. Make Universal Compaction More Incremental. 2021.
url: http://rocksdb.org/blog/2021/04/12/universal-
improvements.html (visited on 09/10/2021).

[Don+17] Siying Dong et al. “Optimizing Space Amplification in RocksDB.” In:
CIDR 2017. Vol. 3. 2017, p. 3.

[Eis+82] Bernhard Eisenbarth et al. “The Theory of Fringe Analysis and Its
Application to 2-3 Trees and B-Trees”. In: Information and Control
55.1-3 (1982), pp. 125–174.

[Eis+18] Assaf Eisenman et al. “Reducing DRAM Footprint with NVM in Face-
book”. In: Proceedings of the Thirteenth EuroSys Conference, EuroSys
2018, Porto, Portugal, April 23-26, 2018. 2018, 42:1–42:13.

[Ele18] Rilind Elezaj. How technology has changed the world of medicine.
2018. url: https://www.geospatialworld.net/blogs/
how-technology-has-changed-the-world-of-medicine/
(visited on 11/08/2021).

[El-19] Abdelsalam El-Shaikh. “Lightweight Indexing on Data Streams”. Un-
published. MA thesis. University of Marburg, 2019.

[Eva11] Dave Evans. “The internet of things: How the next evolution of the in-
ternet is changing everything”. In: CISCO white paper 1.2011 (2011),
pp. 1–11.

239

https://rocksdb.org/blog/2016/01/29/compaction_pri.html
https://rocksdb.org/blog/2016/01/29/compaction_pri.html
http://rocksdb.org/blog/2021/04/12/universal-improvements.html
http://rocksdb.org/blog/2021/04/12/universal-improvements.html
https://www.geospatialworld.net/blogs/how-technology-has-changed-the-world-of-medicine/
https://www.geospatialworld.net/blogs/how-technology-has-changed-the-world-of-medicine/

References

[Fal85] Christos Faloutsos. “Access Methods for Text”. In: ACM Comput.
Surv. 17.1 (1985), pp. 49–74.

[Fan+14] Bin Fan et al. “Cuckoo Filter: Practically Better Than Bloom”. In:
Proceedings of the 10th ACM International on Conference on emerg-
ing Networking Experiments and Technologies, CoNEXT 2014, Syd-
ney, Australia, December 2-5, 2014. Ed. by Aruna Seneviratne et al.
ACM, 2014, pp. 75–88.

[Fra+04] Enrico Franconi et al. “The coDB Robust Peer-to-Peer Database Sys-
tem”. In: Proceedings of the Twelfth Italian Symposium on Advanced
Database Systems, SEBD 2004, S. Margherita di Pula, Cagliari, Italy,
June 21-23, 2004. Ed. by Maristella Agosti, Nicoletta Dessi, and Fabio
Alberto Schreiber. 2004, pp. 382–393.

[GBI22] GBIF.org. GBIF Occurrence Download. Sept. 2022. url: https:
//doi.org/10.15468/dl.htt8qb (visited on 02/26/2023).

[GA08] Kareem El Gebaly and Ashraf Aboulnaga. “Robustness in automatic
physical database design”. In: EDBT 2008, 11th International Con-
ference on Extending Database Technology, Nantes, France, March
25-29, 2008, Proceedings. Ed. by Alfons Kemper et al. Vol. 261. ACM
International Conference Proceeding Series. ACM, 2008, pp. 145–156.

[GMZ77] Rob Gerritsen, Howard L. Morgan, and Michael D. Zisman. “On Some
Metrics for Databases or What is a Very Large Database?” In: SIG-
MOD Rec. 9.1 (1977), pp. 50–74.

[GD11] Sanjay Ghemawat and Jeff Dean. LevelDB. 2011. url: https://
github.com/google/leveldb (visited on 12/16/2020).

[GSG19] Nikolaus Glombiewski, Bernhard Seeger, and Goetz Graefe. “Waves
of Misery After Index Creation”. In: Datenbanksysteme für Business,
Technologie und Web (BTW 2019), 18. Fachtagung des GI-Fachbereichs
,,Datenbanken und Informationssysteme” (DBIS), 4.-8. März 2019,
Rostock, Germany, Proceedings. Vol. P-289. LNI. Gesellschaft für In-
formatik, Bonn, 2019, pp. 77–96.

[Glo+20] Nikolaus Glombiewski et al. “Designing an Event Store for a Modern
Three-layer Storage Hierarchy”. In: Datenbank-Spektrum 20.3 (2020),
pp. 211–222.

[Goo] Google. Protocol Buffers Documentation - Encoding. url: https:
//protobuf.dev/programming-guides/encoding/ (visited
on 06/14/2023).

240

https://doi.org/10.15468/dl.htt8qb
https://doi.org/10.15468/dl.htt8qb
https://github.com/google/leveldb
https://github.com/google/leveldb
https://protobuf.dev/programming-guides/encoding/
https://protobuf.dev/programming-guides/encoding/

References

[GBS18] Philipp Götze, Stephan Baumann, and Kai-Uwe Sattler. “An NVM-
Aware Storage Layout for Analytical Workloads”. In: 34th IEEE In-
ternational Conference on Data Engineering Workshops, ICDE Work-
shops 2018, Paris, France, April 16-20, 2018. 2018, pp. 110–115.

[Gra04] Goetz Graefe. “Write-Optimized B-Trees”. In: (e)Proceedings of the
Thirtieth International Conference on Very Large Data Bases, VLDB
2004. Morgan Kaufmann, 2004, pp. 672–683.

[Gra06a] Goetz Graefe. “B-tree indexes for high update rates”. In: SIGMOD
Rec. 35.1 (2006), pp. 39–44.

[Gra06b] Goetz Graefe. “Implementing sorting in database systems”. In: ACM
Comput. Surv. 38.3 (2006), p. 10.

[Gra09] Goetz Graefe. “Fast Loads and Fast Queries”. In: Data Warehous-
ing and Knowledge Discovery, 11th International Conference, DaWaK
2009, Linz, Austria, August 31 - September 2, 2009, Proceedings. Ed.
by Torben Bach Pedersen, Mukesh K. Mohania, and A Min Tjoa.
Vol. 5691. Lecture Notes in Computer Science. Springer, 2009, pp. 111–
124.

[Gra11a] Goetz Graefe. “A Generalized Join Algorithm”. In: Datenbanksysteme
für Business, Technologie und Web (BTW), 14. Fachtagung des GI-
Fachbereichs ”Datenbanken und Informationssysteme” (DBIS), 2.-4.3.2011
in Kaiserslautern, Germany. Ed. by Theo Härder et al. Vol. P-180.
LNI. GI, 2011, pp. 267–286.

[Gra11b] Goetz Graefe. “Modern B-Tree Techniques”. In: Foundations and Trends
in Databases 3.4 (2011), pp. 203–402.

[GKW09] Goetz Graefe, Harumi Kuno, and Janet Wiener. “Visualizing the
robustness of query execution”. In: arXiv preprint arXiv:0909.1772
(2009).

[GK10a] Goetz Graefe and Harumi A. Kuno. “Fast Loads and Queries”. In:
Trans. Large Scale Data Knowl. Centered Syst. 2 (2010), pp. 31–72.

[GK10b] Goetz Graefe and Harumi A. Kuno. “Self-selecting, self-tuning, in-
crementally optimized indexes”. In: EDBT 2010, 13th International
Conference on Extending Database Technology, Lausanne, Switzer-
land, March 22-26, 2010, Proceedings. Ed. by Ioana Manolescu et
al. Vol. 426. ACM International Conference Proceeding Series. ACM,
2010, pp. 371–381.

[Gra+10] Goetz Graefe et al., eds. Robust Query Processing, 19.09. - 24.09.2010.
Vol. 10381. Dagstuhl Seminar Proceedings. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, Germany, 2010.

241

References

[Gra+12] Goetz Graefe et al. “Robust Query Processing (Dagstuhl Seminar
12321)”. In: Dagstuhl Reports 2.8 (2012), pp. 1–15.

[Gut84] Antonin Guttman. “R-Trees: A Dynamic Index Structure for Spatial
Searching”. In: SIGMOD’84, Proceedings of Annual Meeting, Boston,
Massachusetts, USA, June 18-21, 1984. Ed. by Beatrice Yormark.
ACM Press, 1984, pp. 47–57.

[HHL20] Gabriel Haas, Michael Haubenschild, and Viktor Leis. “Exploiting
Directly-Attached NVMe Arrays in DBMS”. In: 10th Conference on
Innovative Data Systems Research, CIDR 2020, Amsterdam, The Nether-
lands, January 12-15, 2020, Online Proceedings. www.cidrdb.org, 2020.

[Har21] Philip Harris. “Scientific Applications of FPGAs at the LHC”. In:
FPGA ’21: The 2021 ACM/SIGDA International Symposium on Field
Programmable Gate Arrays, Virtual Event, USA, February 28 - March
2, 2021. Ed. by Lesley Shannon and Michael Adler. ACM, 2021, p. 68.

[HKI18] Brian Hentschel, Michael S. Kester, and Stratos Idreos. “Column
Sketches: A Scan Accelerator for Rapid and Robust Predicate Evalu-
ation”. In: Proceedings of the 2018 International Conference on Man-
agement of Data, SIGMOD Conference 2018, Houston, TX, USA,
June 10-15, 2018. Ed. by Gautam Das, Christopher M. Jermaine,
and Philip A. Bernstein. ACM, 2018, pp. 857–872.

[HTT09] Tony Hey, Stewart Tansley, and Kristin M. Tolle, eds. The Fourth
Paradigm: Data-Intensive Scientific Discovery. Microsoft Research,
2009.

[HM21] Pedro Holanda and Stefan Manegold. “Progressive Mergesort: Merg-
ing Batches of Appends into Progressive Indexes”. In: Proceedings of
the 24th International Conference on Extending Database Technology,
EDBT 2021, Nicosia, Cyprus, March 23 - 26, 2021. Ed. by Yannis
Velegrakis et al. OpenProceedings.org, 2021, pp. 481–486.

[Hol+19] Pedro Holanda et al. “Progressive Indexes: Indexing for Interactive
Data Analysis”. In: Proc. VLDB Endow. 12.13 (2019), pp. 2366–2378.

[Hoß+13] Bastian Hoßbach et al. “JEPC: The Java Event Processing Connec-
tivity”. In: Datenbank-Spektrum 13.3 (2013), pp. 167–178.

[Huy+22] Andy Huynh et al. “Endure: A Robust Tuning Paradigm for LSM
Trees Under Workload Uncertainty”. In: Proc. VLDB Endow. 15.8
(2022), pp. 1605–1618.

242

References

[IKM07] Stratos Idreos, Martin L. Kersten, and Stefan Manegold. “Database
Cracking”. In: Third Biennial Conference on Innovative Data Systems
Research, CIDR 2007, Asilomar, CA, USA, January 7-10, 2007, On-
line Proceedings. www.cidrdb.org, 2007, pp. 68–78.

[Idr+18] Stratos Idreos et al. “The Periodic Table of Data Structures”. In:
IEEE Data Eng. Bull. 41.3 (2018), pp. 64–75.

[Inf] InfluxData. The InfluxDB Storage Engine and the Time-Structured
Merge Tree (TSM). url: https://docs.influxdata.com/
influxdb/v1.3/concepts/storage_engine/ (visited on
06/11/2023).

[Inf20] InfluxData Inc. InfluxDB: Purpose-Built Open Source Time Series
Database. 2020. url: https://www.influxdata.com/ (visited
on 06/02/2020).

[Int19] Intel Corporation. Intel® 64 and IA-32 Architectures Optimization
Reference Manual. Chapter 11 - Intel® Optane™ DC Persistent Mem-
ory. 2019. url: https : / / software . intel . com / sites /
default/files/managed/9e/bc/64-ia-32-architectures-
optimization-manual.pdf (visited on 05/20/2020).

[Jag+97] H. V. Jagadish et al. “Incremental Organization for Data Recording
and Warehousing”. In: VLDB’97. 1997, pp. 16–25.

[Jah+10] Marco Jahn et al. “The energy aware smart home”. In: 2010 5th in-
ternational conference on future information technology. IEEE. 2010,
pp. 1–8.

[JCY22] Xuzhen Jiang, Miao Cai, and Baoliu Ye. “Improving Write Perfor-
mance for LSM-tree-based Key-Value Stores with NV-Cache”. In:
IEEE Intl Conf on Parallel & Distributed Processing with Applica-
tions, Big Data & Cloud Computing, Sustainable Computing & Com-
munications, Social Computing & Networking, ISPA/BDCloud/So-
cialCom/SustainCom 2022, Melbourne, Australia, December 17-19,
2022. IEEE, 2022, pp. 394–401.

[Jib+20] M. A. Jibril et al. “Selective Caching: A Persistent Memory Approach
for Multi-Dimensional Index Structures”. In: 2020 IEEE 36th Interna-
tional Conference on Data Engineering Workshops (ICDEW). 2020,
pp. 115–120.

[JS15] Theodore Johnson and Vladislav Shkapenyuk. “Data Stream Ware-
housing In Tidalrace”. In: CIDR 2015, Seventh Biennial Conference
on Innovative Data Systems Research, Asilomar, CA, USA, January
4-7, 2015, Online Proceedings. 2015.

243

https://docs.influxdata.com/influxdb/v1.3/concepts/storage_engine/
https://docs.influxdata.com/influxdb/v1.3/concepts/storage_engine/
https://www.influxdata.com/
https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-architectures-optimization-manual.pdf
https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-architectures-optimization-manual.pdf
https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-architectures-optimization-manual.pdf

References

[Kak+19] Aarati Kakaraparthy et al. “Optimizing Databases by Learning Hid-
den Parameters of Solid State Drives”. In: Proc. VLDB Endow. 13.4
(2019), pp. 519–532.

[KNV03] Jaewoo Kang, Jeffrey F. Naughton, and Stratis Viglas. “Evaluat-
ing Window Joins over Unbounded Streams”. In: Proceedings of the
19th International Conference on Data Engineering, March 5-8, 2003,
Bangalore, India. Ed. by Umeshwar Dayal, Krithi Ramamritham, and
T. M. Vijayaraman. IEEE Computer Society, 2003, pp. 341–352.

[Kan+18] Sudarsun Kannan et al. “Redesigning LSMs for Nonvolatile Mem-
ory with NoveLSM”. In: 2018 USENIX Annual Technical Confer-
ence, USENIX ATC 2018, Boston, MA, USA, July 11-13, 2018. 2018,
pp. 993–1005.

[KR87] Richard M. Karp and Michael O. Rabin. “Efficient Randomized Pattern-
Matching Algorithms”. In: IBM J. Res. Dev. 31.2 (1987), pp. 249–260.

[KE09] Alfons Kemper and André Eickler. Datenbanksysteme - Eine Einführung,
7. Auflage. Oldenbourg, 2009, pp. 71–108.

[Kim15] Hideaki Kimura. “FOEDUS: OLTP Engine for a Thousand Cores and
NVRAM”. In: Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, Melbourne, Victoria, Australia,
May 31 - June 4, 2015. 2015, pp. 691–706.

[Kin16] Gary King. “Preface: Big Data is Not About the Data!” In: Compu-
tational Social Science: Discovery and Prediction. Cambridge: Cam-
bridge University Press, 2016.

[Knu98] Donald E. Knuth. “The Art of Computer Programming, Volume 3:
(2nd Ed.) Sorting and Searching”. In: USA: Addison Wesley Longman
Publishing Co., Inc., 1998, pp. 255–256.

[KJP77] Donald E. Knuth, James H. Morris Jr., and Vaughan R. Pratt. “Fast
Pattern Matching in Strings”. In: SIAM J. Comput. 6.2 (1977), pp. 323–
350.

[Kör22] Michael Körber. “Accelerating Event Stream Processing in On- and
Offline Systems”. PhD thesis. University of Marburg, Germany, 2022.

[KGS18] Michael Körber, Nikolaus Glombiewski, and Bernhard Seeger. “TP-
Stream: Low-Latency Temporal Pattern Matching on Event Streams”.
In: Proceedings of the 21st International Conference on Extending
Database Technology, EDBT 2018, Vienna, Austria, March 26-29,
2018. Ed. by Michael H. Böhlen et al. OpenProceedings.org, 2018,
pp. 313–324.

244

References

[KGS21] Michael Körber, Nikolaus Glombiewski, and Bernhard Seeger. “Index-
Accelerated Pattern Matching in Event Stores”. In: SIGMOD ’21:
International Conference on Management of Data, Virtual Event,
China, June 20-25, 2021. Ed. by Guoliang Li et al. ACM, 2021,
pp. 1023–1036.

[Kör+21] Michael Körber et al. “TPStream: low-latency and high-throughput
temporal pattern matching on event streams”. In: Distributed Parallel
Databases 39.2 (2021), pp. 361–412.

[KS09] Jürgen Krämer and Bernhard Seeger. “Semantics and implementation
of continuous sliding window queries over data streams”. In: ACM
Trans. Database Syst. 34.1 (2009), 4:1–4:49.

[Lan+01] Doug Laney et al. “3D data management: Controlling data volume,
velocity and variety”. In: META group research note 6.70 (2001), p. 1.

[Lan+16] Harald Lang et al. “Data Blocks: Hybrid OLTP and OLAP on Com-
pressed Storage using both Vectorization and Compilation”. In: Pro-
ceedings of the 2016 International Conference on Management of Data,
SIGMOD Conference 2016, San Francisco, CA, USA, June 26 - July
01, 2016. Ed. by Fatma Özcan, Georgia Koutrika, and Sam Madden.
ACM, 2016, pp. 311–326.

[Lan+19] Harald Lang et al. “Performance-Optimal Filtering: Bloom overtakes
Cuckoo at High-Throughput”. In: Proc. VLDB Endow. 12.5 (2019),
pp. 502–515.

[Lar88] Per-Åke Larson. “Dynamic Hash Tables”. In: Commun. ACM 31.4
(1988), pp. 446–457.

[LLE21] Hoyoung Lee, Minho Lee, and Young Ik Eom. “Partial Tiering: A
Hybrid Merge Policy for Log Structured Key-Value Stores”. In: IEEE
International Conference on Big Data and Smart Computing, Big-
Comp 2021, Jeju Island, South Korea, January 17-20, 2021. Ed. by
Herwig Unger et al. IEEE, 2021, pp. 20–23.

[LY81] Philip L. Lehman and S. Bing Yao. “Efficient Locking for Concurrent
Operations on B-Trees”. In: ACM Trans. Database Syst. 6.4 (1981),
pp. 650–670.

[Lei+15] Viktor Leis et al. “How Good Are Query Optimizers, Really?” In:
Proc. VLDB Endow. 9.3 (2015), pp. 204–215.

245

References

[LLO19] Lucas Lersch, Wolfgang Lehner, and Ismail Oukid. “Persistent Buffer
Management with Optimistic Consistency”. In: Proceedings of the
15th International Workshop on Data Management on New Hardware,
DaMoN 2019, Amsterdam, The Netherlands, 1 July 2019. 2019, 14:1–
14:3.

[Ler+19] Lucas Lersch et al. “Evaluating Persistent Memory Range Indexes”.
In: Proc. VLDB Endow. 13.4 (2019), pp. 574–587.

[Ler+20] Lucas Lersch et al. “Enabling Low Tail Latency on Multicore Key-
Value Stores”. In: Proc. VLDB Endow. 13.7 (2020), pp. 1091–1104.

[Lew11] Moshe Lewenstein. “Indexing with Gaps”. In: String Processing and
Information Retrieval, 18th International Symposium, SPIRE 2011,
Pisa, Italy, October 17-21, 2011. Proceedings. Ed. by Roberto Grossi,
Fabrizio Sebastiani, and Fabrizio Silvestri. Vol. 7024. Lecture Notes
in Computer Science. Springer, 2011, pp. 135–143.

[LPD17] Jianhong Li, Andy Pavlo, and Siying Dong. NVMRocks: RocksDB on
Non-Volatile Memory Systems. 2017. url: https://web.archive.
org/web/20180205140749/http://istc-bigdata.org/
index.php/nvmrocks-rocksdb-on-non-volatile-memory-
systems/ (visited on 02/05/2018).

[Li+20] Linwei Li et al. “BinDex: A Two-Layered Index for Fast and Ro-
bust Scans”. In: Proceedings of the 2020 International Conference on
Management of Data, SIGMOD Conference 2020, online conference
[Portland, OR, USA], June 14-19, 2020. Ed. by David Maier et al.
ACM, 2020, pp. 909–923.

[Li+10] Yinan Li et al. “Tree Indexing on Solid State Drives”. In: Proc. VLDB
Endow. 3.1 (2010), pp. 1195–1206.

[LCW20] Jihang Liu, Shimin Chen, and Lujun Wang. “LB+-Trees: Optimizing
Persistent Index Performance on 3DXPoint Memory”. In: Proc. VLDB
Endow. 13.7 (2020), pp. 1078–1090.

[Liu+09] Mo Liu et al. “Sequence pattern query processing over out-of-order
event streams”. In: ICDE’09. IEEE. 2009, pp. 784–795.

[LSN10] Charles Loboz, Slawek Smyl, and Suman Nath. “DataGarage: Ware-
housing Massive Performance Data on Commodity Servers”. In: Proc.
VLDB Endow. 3.2 (2010), pp. 1447–1458.

[Lu+10] Jiakang Lu et al. “The smart thermostat: using occupancy sensors to
save energy in homes”. In: Proceedings of the 8th ACM conference on
embedded networked sensor systems. 2010, pp. 211–224.

246

https://web.archive.org/web/20180205140749/http://istc-bigdata.org/index.php/nvmrocks-rocksdb-on-non-volatile-memory-systems/
https://web.archive.org/web/20180205140749/http://istc-bigdata.org/index.php/nvmrocks-rocksdb-on-non-volatile-memory-systems/
https://web.archive.org/web/20180205140749/http://istc-bigdata.org/index.php/nvmrocks-rocksdb-on-non-volatile-memory-systems/
https://web.archive.org/web/20180205140749/http://istc-bigdata.org/index.php/nvmrocks-rocksdb-on-non-volatile-memory-systems/

References

[LC20a] Chen Luo and Michael J Carey. “Breaking down memory walls: adap-
tive memory management in LSM-based storage systems”. In: Pro-
ceedings of the VLDB Endowment 14.3 (2020), pp. 241–254.

[LC20b] Chen Luo and Michael J Carey. “LSM-based storage techniques: a
survey”. In: The VLDB Journal 29.1 (2020), pp. 393–418.

[LC19a] Chen Luo and Michael J. Carey. “On Performance Stability in LSM-
based Storage Systems”. In: Proc. VLDB Endow. 13.4 (2019), pp. 449–
462.

[LC19b] Chen Luo and Michael J. Carey. “On Performance Stability in LSM-
based Storage Systems”. In: CoRR abs/1906.09667 (2019).

[MM93] Udi Manber and Eugene W. Myers. “Suffix Arrays: A New Method for
On-Line String Searches”. In: SIAM J. Comput. 22.5 (1993), pp. 935–
948.

[Mao+21] Qizhong Mao et al. “Comparison and evaluation of state-of-the-art
LSM merge policies”. In: VLDB J. 30.3 (2021), pp. 361–378.

[Mar79] G.N.N. Martin. Spiral storage: Incrementally augmentable hash ad-
dressed storage, Theory of Computation. Tech. rep. University of War-
wick, 1979.

[MDL20] Yoshinori Matsunobu, Siying Dong, and Herman Lee. “MyRocks:
LSM-Tree Database Storage Engine Serving Facebook’s Social Graph”.
In: Proc. VLDB Endow. 13.12 (2020), pp. 3059–3071.

[Mei+18] Fei Mei et al. “SifrDB: A Unified Solution for Write-Optimized Key-
Value Stores in Large Datacenter”. In: Proceedings of the ACM Sym-
posium on Cloud Computing, SoCC 2018. ACM, 2018, pp. 477–489.

[MR14] Rob van der Meulen and Janessa Rivera. Gartner Says Annual Smart-
phone Sales Surpassed Sales of Feature Phones for the First Time in
2013. 2014. url: https://www.gartner.com/en/newsroom/
press-releases/2014-02-13-gartner-says-annual-
smartphone-sales-surpassed-sales-of-feature-phones-
for-the-first-time-in-2013 (visited on 11/08/2021).

[Mic+18] Jan-Eike Michels et al. “The New and Improved SQL: 2016 Standard”.
In: SIGMOD Rec. 47.2 (2018), pp. 51–60.

[Moe98] Guido Moerkotte. “Small Materialized Aggregates: A Light Weight
Index Structure for Data Warehousing”. In: VLDB’98, Proceedings
of 24rd International Conference on Very Large Data Bases, August
24-27, 1998, New York City, New York, USA. 1998, pp. 476–487.

247

https://www.gartner.com/en/newsroom/press-releases/2014-02-13-gartner-says-annual-smartphone-sales-surpassed-sales-of-feature-phones-for-the-first-time-in-2013
https://www.gartner.com/en/newsroom/press-releases/2014-02-13-gartner-says-annual-smartphone-sales-surpassed-sales-of-feature-phones-for-the-first-time-in-2013
https://www.gartner.com/en/newsroom/press-releases/2014-02-13-gartner-says-annual-smartphone-sales-surpassed-sales-of-feature-phones-for-the-first-time-in-2013
https://www.gartner.com/en/newsroom/press-releases/2014-02-13-gartner-says-annual-smartphone-sales-surpassed-sales-of-feature-phones-for-the-first-time-in-2013

References

[MT03] Robert J. T. Morris and Brian J. Truskowski. “The evolution of stor-
age systems”. In: IBM Syst. J. 42.2 (2003), pp. 205–217.

[MGY15] Barzan Mozafari, Eugene Zhen Ye Goh, and Dong Young Yoon. “Clif-
fGuard: A Principled Framework for Finding Robust Database De-
signs”. In: Proceedings of the 2015 ACM SIGMOD International Con-
ference on Management of Data, Melbourne, Victoria, Australia, May
31 - June 4, 2015. Ed. by Timos K. Sellis, Susan B. Davidson, and
Zachary G. Ives. ACM, 2015, pp. 1167–1182.

[Mül+15] Ingo Müller et al. “Cache-Efficient Aggregation: Hashing Is Sorting”.
In: Proceedings of the 2015 ACM SIGMOD International Conference
on Management of Data, Melbourne, Victoria, Australia, May 31 -
June 4, 2015. Ed. by Timos K. Sellis, Susan B. Davidson, and Zachary
G. Ives. ACM, 2015, pp. 1123–1136.

[Nav14] Gonzalo Navarro. “Wavelet trees for all”. In: J. Discrete Algorithms
25 (2014), pp. 2–20.

[Net21a] The OpenSky Network. OpenSky Network - Coverage and Facts. 2021.
url: https://opensky-network.org/network/facts (vis-
ited on 12/01/2021).

[Net21b] The OpenSky Network. OpenSky Network - Home. 2021. url: https:
//opensky-network.org/ (visited on 12/01/2021).

[ONe+96] Patrick E. O’Neil et al. “The Log-Structured Merge-Tree (LSM-Tree)”.
In: Acta Informatica 33.4 (1996), pp. 351–385.

[Ora] Oracle. Oracle Database - Data Warehousing Guide - Using Zone
Maps. url: https://docs.oracle.com/en/database/
oracle/oracle-database/19/dwhsg/using-zone-maps.
html (visited on 06/14/2023).

[OM84] Jack A. Orenstein and T. H. Merrett. “A Class of Data Structures for
Associative Searching”. In: Proceedings of the Third ACM SIGACT-
SIGMOD Symposium on Principles of Database Systems, April 2-4,
1984, Waterloo, Ontario, Canada. Ed. by Daniel J. Rosenkrantz and
Ronald Fagin. ACM, 1984, pp. 181–190.

[Ou+14] Yi Ou et al. “Wear-Aware Algorithms for PCM-Based Database Buffer
Pools”. In: Web-Age Information Management - WAIM 2014 Inter-
national Workshops: BigEM, HardBD, DaNoS, HRSUNE, BIDASYS,
Macau, China, June 16-18, 2014 Revised Selected Papers. 2014, pp. 165–
176.

248

https://opensky-network.org/network/facts
https://opensky-network.org/
https://opensky-network.org/
https://docs.oracle.com/en/database/oracle/oracle-database/19/dwhsg/using-zone-maps.html
https://docs.oracle.com/en/database/oracle/oracle-database/19/dwhsg/using-zone-maps.html
https://docs.oracle.com/en/database/oracle/oracle-database/19/dwhsg/using-zone-maps.html

References

[Ouk+14] Ismail Oukid et al. “SOFORT: A Hybrid SCM-DRAM Storage Engine
for Fast Data Recovery”. In: Tenth International Workshop on Data
Management on New Hardware, DaMoN 2014, Snowbird, UT, USA,
June 23, 2014. 2014, 8:1–8:7.

[Ouk+16] Ismail Oukid et al. “FPTree: A Hybrid SCM-DRAM Persistent and
Concurrent B-Tree for Storage Class Memory”. In: Proceedings of the
2016 International Conference on Management of Data, SIGMOD
Conference 2016, San Francisco, CA, USA, June 26 - July 01, 2016.
2016, pp. 371–386.

[Pel+15] Tuomas Pelkonen et al. “Gorilla: A Fast, Scalable, In-Memory Time
Series Database”. In: Proc. VLDB Endow. 8.12 (2015), pp. 1816–1827.

[Pel+13] Steven Pelley et al. “Storage Management in the NVRAM Era”. In:
Proc. VLDB Endow. 7.2 (2013), pp. 121–132.

[Raj+17] Pandian Raju et al. “PebblesDB: Building Key-Value Stores using
Fragmented Log-Structured Merge Trees”. In: Proceedings of the 26th
Symposium on Operating Systems Principles. ACM, 2017, pp. 497–
514.

[Ram+00] Frank Ramsak et al. “Integrating the UB-Tree into a Database System
Kernel”. In: VLDB 2000. 2000, pp. 263–272.

[RLR16] Medhabi Ray, Chuan Lei, and Elke A. Rundensteiner. “Scalable Pat-
tern Sharing on Event Streams”. In: Proceedings of the 2016 Inter-
national Conference on Management of Data, SIGMOD Conference
2016, San Francisco, CA, USA, June 26 - July 01, 2016. Ed. by Fatma
Özcan, Georgia Koutrika, and Sam Madden. ACM, 2016, pp. 495–510.

[RGR18] David Reinsel, John Gantz, and John Rydning. The Digitization of the
World From Edge to Core. 2018. url: https://www.seagate.
com/files/www- content/our- story/trends/files/
idc-seagate-dataage-whitepaper.pdf (visited on 11/08/2021).

[Ren+18] Alexander van Renen et al. “Managing Non-Volatile Memory in Database
Systems”. In: Proceedings of the 2018 International Conference on
Management of Data, SIGMOD Conference 2018, Houston, TX, USA,
June 10-15, 2018. 2018, pp. 1541–1555.

[RM06] John Risson and Tim Moors. “Survey of research towards robust
peer-to-peer networks: Search methods”. In: Comput. Networks 50.17
(2006), pp. 3485–3521.

[Rob03] Fred Robins. “The marketing of 3G”. In: Marketing Intelligence &
Planning (2003).

249

https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf

References

[Row07] Jennifer E. Rowley. “The wisdom hierarchy: representations of the
DIKW hierarchy”. In: J. Inf. Sci. 33.2 (2007), pp. 163–180.

[SSH11] Gunter Saake, Kai-Uwe Sattler, and Andreas Heuer. Datenbanken -
Implementierungstechniken, 3. Auflage. MITP, 2011.

[ST99] Betty Salzberg and Vassilis J. Tsotras. “Comparison of Access Meth-
ods for Time-Evolving Data”. In: ACM Comput. Surv. 31.2 (1999),
pp. 158–221.

[SA22] Subhadeep Sarkar and Manos Athanassoulis. “Dissecting, Designing,
and Optimizing LSM-based Data Stores”. In: SIGMOD ’22: Interna-
tional Conference on Management of Data, Philadelphia, PA, USA,
June 12 - 17, 2022. Ed. by Zachary G. Ives, Angela Bonifati, and
Amr El Abbadi. ACM, 2022, pp. 2489–2497.

[Sar+21] Subhadeep Sarkar et al. “Constructing and Analyzing the LSM Com-
paction Design Space”. In: Proc. VLDB Endow. 14.11 (2021), pp. 2216–
2229.

[SR12] Russell Sears and Raghu Ramakrishnan. “bLSM: a general purpose
log structured merge tree”. In: Proceedings of the ACM SIGMOD
International Conference on Management of Data, SIGMOD 2012.
ACM, 2012, pp. 217–228.

[See01] Bernhard Seeger. eXtensible and fleXible Library (XXL) for Java.
2001. url: https://github.com/umr-dbs/xxl (visited on
09/30/2018).

[SS17] Marc Seidemann and Bernhard Seeger. “ChronicleDB: A High-Performance
Event Store”. In: Proceedings of the 20th International Conference on
Extending Database Technology, EDBT 2017, Venice, Italy, March
21-24, 2017. OpenProceedings.org, 2017, pp. 144–155.

[Sei+19] Marc Seidemann et al. “ChronicleDB: A High-Performance Event
Store”. In: ACM Trans. Database Syst. 44.4 (2019), 13:1–13:45.

[SMK15] Thibault Sellam, Emmanuel Müller, and Martin L. Kersten. “Semi-
Automated Exploration of Data Warehouses”. In: Proceedings of the
24th ACM International Conference on Information and Knowledge
Management, CIKM 2015, Melbourne, VIC, Australia, October 19 -
23, 2015. Ed. by James Bailey et al. ACM, 2015, pp. 1321–1330.

[sen21] sensebox. sensebox:home. 2021. url: https://sensebox.de/de/
products-home.html (visited on 12/01/2021).

250

https://github.com/umr-dbs/xxl
https://sensebox.de/de/products-home.html
https://sensebox.de/de/products-home.html

References

[Shi+21] Michael Shirer et al. Spend on Emerging Device Categories – including
Wearables, AR/VR Headsets, and Smart Home – Will See Contin-
ued Robust Growth, According to IDC. 2021. url: https://web.
archive.org/web/20211108150708/https://www.idc.
com/getdoc.jsp?containerId=prUS48284221 (visited on
11/08/2021).

[SK13] Lefteris Sidirourgos and Martin L. Kersten. “Column imprints: a sec-
ondary index structure”. In: Proceedings of the ACM SIGMOD Inter-
national Conference on Management of Data, SIGMOD 2013, New
York, NY, USA, June 22-27, 2013. Ed. by Kenneth A. Ross, Divesh
Srivastava, and Dimitris Papadias. ACM, 2013, pp. 893–904.

[Sif] SifrDB. SifrDB. url: https://github.com/bettersky/sifrdb
(visited on 05/28/2023).

[Sno+94] Richard T. Snodgrass et al. “TSQL2 Language Specification”. In:
SIGMOD Rec. 23.1 (1994), pp. 65–86.

[Sto11] Michael Stonebraker. “Stonebraker on Data Warehouses”. In: Com-
mun. ACM 54.5 (May 2011), pp. 10–11.

[Str+10] Hartmut Strese et al. “Smart home in deutschland”. In: Institut für
Innovation und Technik (iit) 46 (2010).

[Stu19] Priceonomics Data Studio. Companies Collect a Lot of Data, But How
Much Do They Actually Use? 2019. url: https://web.archive.
org/web/20210820223022/https://priceonomics.com/
companies-collect-a-lot-of-data-but-how-much-do/
(visited on 11/08/2021).

[Tan+15] Kanat Tangwongsan et al. “General Incremental Sliding-Window Ag-
gregation”. In: Proc. VLDB Endow. 8.7 (Feb. 2015), pp. 702–713.

[Tec20] Seagate Technology. Rethink Data. 2020. url: https : / / www .
seagate.com/files/www-content/our-story/rethink-
data/files/Rethink_Data_Report_2020.pdf (visited on
11/08/2021).

[TH81] Hermann Tropf and Helmut Herzog. “Multimensional Range Search
in Dynamically Balanced Trees”. In: Angewandte Informatik 23.2
(1981), pp. 71–77.

[Tuc+03] Peter A. Tucker et al. “Exploiting punctuation semantics in contin-
uous data streams”. In: IEEE Transactions on Knowledge and Data
Engineering 15.3 (2003), pp. 555–568.

251

https://web.archive.org/web/20211108150708/https://www.idc.com/getdoc.jsp?containerId=prUS48284221
https://web.archive.org/web/20211108150708/https://www.idc.com/getdoc.jsp?containerId=prUS48284221
https://web.archive.org/web/20211108150708/https://www.idc.com/getdoc.jsp?containerId=prUS48284221
https://github.com/bettersky/sifrdb
https://web.archive.org/web/20210820223022/https://priceonomics.com/companies-collect-a-lot-of-data-but-how-much-do/
https://web.archive.org/web/20210820223022/https://priceonomics.com/companies-collect-a-lot-of-data-but-how-much-do/
https://web.archive.org/web/20210820223022/https://priceonomics.com/companies-collect-a-lot-of-data-but-how-much-do/
https://www.seagate.com/files/www-content/our-story/rethink-data/files/Rethink_Data_Report_2020.pdf
https://www.seagate.com/files/www-content/our-story/rethink-data/files/Rethink_Data_Report_2020.pdf
https://www.seagate.com/files/www-content/our-story/rethink-data/files/Rethink_Data_Report_2020.pdf

References

[VL22] Hisko de Vries and Martine Lemmens. Observation.org, Nature data
from around the World. Observation.org. Occurrence dataset. 2022.
url: https://doi.org/10.15468/5nilie (visited on 02/26/2023).

[Wei73] Peter Weiner. “Linear Pattern Matching Algorithms”. In: 14th An-
nual Symposium on Switching and Automata Theory, Iowa City, Iowa,
USA, October 15-17, 1973. IEEE Computer Society, 1973, pp. 1–11.

[WOS06] Kesheng Wu, Ekow J. Otoo, and Arie Shoshani. “Optimizing bitmap
indices with efficient compression”. In: ACM Trans. Database Syst.
31.1 (2006), pp. 1–38.

[Wu+15] Xingbo Wu et al. “LSM-trie: An LSM-tree-based ultra-large key-value
store for small data items”. In: 2015 USENIX Annual Technical Con-
ference (USENIX ATC 15). 2015, pp. 71–82.

[Wu+21] Yu Jian Wu et al. “BPF for storage: an exokernel-inspired approach”.
In: CoRR abs/2102.12922 (2021).

[Xia+17] Fei Xia et al. “HiKV: A Hybrid Index Key-Value Store for DRAM-
NVMMemory Systems”. In: 2017 USENIX Annual Technical Confer-
ence, USENIX ATC 2017, Santa Clara, CA, USA, July 12-14, 2017.
2017, pp. 349–362.

[Xie+19] Dong Xie et al. “FishStore: Faster Ingestion with Subset Hashing”.
In: Proceedings of the 2019 International Conference on Management
of Data, SIGMOD Conference 2019, Amsterdam, The Netherlands,
June 30 - July 5, 2019. Ed. by Peter A. Boncz et al. ACM, 2019,
pp. 1711–1728.

[Yan+20] Jian Yang et al. “An Empirical Guide to the Behavior and Use of Scal-
able Persistent Memory”. In: 18th USENIX Conference on File and
Storage Technologies, FAST 2020, Santa Clara, CA, USA, February
24-27, 2020. 2020, pp. 169–182.

[YW03] Jun Yang and Jennifer Widom. “Incremental computation and main-
tenance of temporal aggregates”. In: VLDB J. 12.3 (2003), pp. 262–
283.

[Yao78] Andrew Chi-Chih Yao. “On Random 2-3 Trees”. In: Acta Informatica
9.2 (1978), pp. 159–170.

[YHM15] Shaoyi Yin, Abdelkader Hameurlain, and Franck Morvan. “Robust
Query Optimization Methods With Respect to Estimation Errors: A
Survey”. In: SIGMOD Rec. 44.3 (2015), pp. 25–36.

252

https://doi.org/10.15468/5nilie

References

[Zeu+19] Steffen Zeuch et al. “Analyzing efficient stream processing on mod-
ern hardware”. In: Proceedings of the VLDB Endowment 12.5 (2019),
pp. 516–530.

[Zha+22] Xin Zhang et al. “Bi-directional Log-Structured Merge Tree”. In: SS-
DBM 2022: 34th International Conference on Scientific and Statistical
Database Management, Copenhagen, Denmark, July 6 - 8, 2022. Ed.
by Elaheh Pourabbas et al. ACM, 2022, 19:1–19:4.

[ZHW20] Bo Zhao, Nguyen Quoc Viet Hung, and Matthias Weidlich. “Load
Shedding for Complex Event Processing: Input-based and State-based
Techniques”. In: 36th IEEE International Conference on Data En-
gineering, ICDE 2020, Dallas, TX, USA, April 20-24, 2020. IEEE,
2020, pp. 1093–1104.

[Zha+23] Fuheng Zhao et al. “Autumn: A Scalable Read Optimized LSM-tree
based Key-Value Stores with Fast Point and Range Read Speed”. In:
CoRR abs/2305.05074 (2023).

[Zho+16] Bin Zhou et al. “Smart home energy management systems: Concept,
configurations, and scheduling strategies”. In: Renewable and Sustain-
able Energy Reviews 61 (2016), pp. 30–40.

[ZHC23] Erkang Zhu, Silu Huang, and Surajit Chaudhuri. “High-Performance
Row Pattern Recognition Using Joins”. In: Proc. VLDB Endow. 16.5
(2023), pp. 1181–1194.

253

List of Figures

1.1 Example for data streams arriving from various sources. 2
1.2 Simulated time series data representing heart rate measurements in

varying situations. 5
1.3 Robust query processing in databases (figure from [GKW09]). . . . 8
1.4 Robust query processing in stream databases. 10

2.1 Example for one stream in system time and application time order. 20
2.2 Example for a temporal window of size 3 and slide 2. 24
2.3 Example for a sum aggregation on a time window of size 3 and slide

2. 25
2.4 Primary index in a database (adapted from [SSH11, p. 135]). 27
2.5 Secondary index in a database (adapted from [SSH11, p. 136]). . . . 28
2.6 Partitions in a log-structured merge tree. 33
2.7 Stepped-merge algorithm example of a level 1 to level 2 merge. . . . 36
2.8 TAB+-tree layout. 46
2.9 Out-of-order handling in ChronicleDB. 47

3.1 Query performance for querying 2 million results in a ChronicleDB
TAB+-tree secondary index over time. 53

3.2 Waves of misery after creating a new B-tree index. 55
3.3 Development of leaf splits for varying key distributions. 59
3.4 Development of leaf splits for varying initial page utilization. 60
3.5 Development of leaf splits for varying initial dataset sizes. 61
3.6 Overview and example of the Strict Linear strategy. 66
3.7 Overview and example of the Alternating Linear strategy. . . 67
3.8 Overview and example of the Random strategy. 68
3.9 Overview and example of the Suffix Truncation strategy. . . . 69
3.10 Overview of a hybrid strategy using the Linear and Random

strategies. 70
3.11 The distribution of free space generated by an algorithm following

the ideal theoretical solution with the theoretical optimum. 71
3.12 Leaf splits over time for constant free space in a node and an algo-

rithm based on the ideal theoretical solution (both 69% page uti-
lization). 72

3.13 Leaf splits over time for various initial space utilization in the Strict
Linear strategy. 73

254

List of Figures

3.14 Leaf splits over time for expected 80% initial space utilization for
Random strategies with varying ranges. 74

3.15 Comparing the ideal initial page distribution with Strict Linear
and Random strategies. 74

3.16 Comparing the ideal initial page distribution with the Hybrid
strategy. 74

3.17 Leaf splits over time for the Hybrid and Random strategies at 69%
page utilization. 75

3.18 Leaf splits over time for the Hybrid and Random strategies at 80%
page utilization. 75

3.19 Comparing buffer pool utilization over time for 69% page utilization
for the ideal solution and constant free space in nodes. 76

3.20 Comparing buffer pool utilization over time for 80% page utilization
for Random strategies and constant free space in nodes. 76

3.21 Buffer evictions (writes) over time for varying buffer sizes comparing
the Random strategy with constant free space in nodes. 77

3.22 B-tree range queries (range 100k) with varying starting points that
cover the whole tree range. 78

4.1 Flush operations in PebblesDB with three experimental configura-
tions. C1: 4MiB main memory component, values 48 Byte; C2: 4
MiB main memory component, values 240 Byte; C3: 64 MiB main
memory component, values 240 Byte. 83

4.2 Default compaction in PebblesDB (40 Million uniformly distributed
values, memory component size 8MiB, batch size 512, Fan-In 8). . . 85

4.3 First 40 seconds of adjusted compaction in PebblesDB (160 Million
uniformly distributed values, memory component size 8MiB, batch
size 512, Fan-In 8). 86

4.4 Adjusted compaction in PebblesDB (160 Million uniformly distributed
values, memory component size 8MiB, batch size 512, Fan-In 8). . . 86

4.5 Logical partitions of SifrDB (40 Million uniformly distributed val-
ues, memory component size 8MiB, Fan-In 8). 87

4.6 Level-0 partition count for a stepped-merge forest. 89
4.7 Initialization phase of continuous merging. 97
4.8 Example for creating the first two output partitions in continuous

merging. 98
4.9 Structural partition information in continuous merging algorithms. . 100
4.10 Continuous merging output on level 1 measured in units (one unit

equals one level 0 quantile). 111
4.11 Continuous merging output on level 2 measured in units (one unit

equals one level 0 quantile). 112

255

List of Figures

4.12 Continuous merging - overview of notations for a level l with a fan-in
of 3. 113

4.13 Active merge progress with staggered key ranges. 121
4.14 Principal components of continuous merging. 124
4.15 Implementation of partition generation. 125
4.16 Implementation of merging. 126
4.17 Initialization phase of early merging. 130
4.18 I/O layer for merging policies. 138
4.19 Average data rate for a maximum of 8M records/sec for different

merging strategies. 142
4.20 Merge progress for 8M records/sec (normal key distribution). 143
4.21 Standard deviation from final partition sizes per merge level. 144
4.22 Merge progress for 5M records/sec (uniform key distribution). . . . 144
4.23 Waiting records per merge level (5.5M records/sec (uniform key

distribution)). 145
4.24 Range query results for merging strategies with a fan-in F=10 with

various result sizes. 146
4.25 Comparisons to produce range query results for an expected number

of 100M keys (F=10). 147
4.26 Range query results for merging strategies with 1M expected results

and a varying fan-in. 148
4.27 Real time distance for a limited I/O budget query (maximum 10

partitions). 149
4.28 Time to completely merge level 0 partitions for continuous merging

(base cm) and early merging (early) for fan-ins 10 and 4. 151
4.29 Adapting to a low ingestion rate of 4M records/sec, fan-in between

2 and 80 for FIFO and Level policies. 153
4.30 Adapting to a low ingestion rate of 4M records/sec, fan-in between

2 and 80 for Partition and Waiting Records policies. 154
4.31 Adapting to a high ingestion rate of 6.5M records/sec, fan-in be-

tween 6 and 80. 155
4.32 Adapting to a high ingestion rate of 5M records/sec, fan-in between

6 and 80. 157
4.33 Adapting to a steady ingestion rate of 4.7M records/sec with rising

and falling patterns, fan-in between 6 and 16. 158

5.1 Ingestion performance in ChronicleDB with exponential and uni-
form patterns for late arriving events for various various out-of-order
degrees. 162

5.2 Query performance for filtering spatio-temporal data in ChronicleDB
for various indexing strategies. 163

256

List of Figures

5.3 Estimated costs (2020) of using PMem in ChronicleDB in different
configurations. 164

5.4 Access to a DRAM and SSD storage architecture. 165
5.5 Access to a PMem storage architecture. 165
5.6 Overview of out-of-order queue implementations in ChronicleDB. . 170
5.7 Possible insert scenarios after a tree split in ChronicleDB. 176
5.8 Possible query scenarios after a tree split in ChronicleDB. 177
5.9 Comparison of insert, recovery, and query performance of various

out-of-order queue approaches. 179
5.10 Inserting 100M events with occasional out-of-order occurrences, and

merges of out-of-order events into the primary index. 179
5.11 Ingestion performance for various tree split intervals. 181
5.12 Ingestion performance of system time mode. 181
5.13 Ingestion performance with adaptive load scheduling with an in-

crease in out-of-order data at 40% of inserted events and a switch
of configuration at 60% of inserted events. 181

5.14 Bit vector structure covering a range within [min,max] with equi-
distant bucket ranges. 191

5.15 Hierarchical bit vector structure for a [min,max] range with first
encodings for empty (00) and full (11) ranges and a second level
with additional bit vector structures for partially full ranges. 192

5.16 Example for a PSMA representation and computing the position
within the look-up table. 194

5.17 Comparison of insert and query performance for TAB+-tree aggre-
gates/index nodes managed on flash storage and persistent memory. 195

5.18 Lightweight index pruning power when querying the LineFloat
dataset with s=1.0. 197

5.19 Lightweight index pruning power when querying the LineFloat
dataset with s=0.1. 197

5.20 Lightweight index pruning power when querying the LineFloat
dataset with s=0.01 with a 5% outlier chance in either the bottom
or top 10% of the overall key range. 199

5.21 Lightweight index pruning power when querying the LineInteger
dataset with s=1.0 and m= 200M. 200

5.22 Lightweight index pruning power when querying the LineInteger
dataset with s=1.0 and m= 100k. 200

5.23 Lightweight index pruning power when querying the Zipfian dataset
with m=200M. 201

5.24 PSMA and default bit vector index pruning power when querying
the LineInteger with s=1.0 and m=256. 202

257

List of Figures

5.25 PSMA and default bit vector index pruning power for the Zipfian
with m=216. 202

5.26 Lightweight index-based processing for estimating delays. 208
5.27 Application time range queries on TAB+-tree with 10% exponen-

tially distributed out-of-order data. Runtime of queries is shown on
the left. Capacity savings by optimizing for outliers is shown on the
right. 210

5.28 Application time range queries on TAB+-tree with 90% exponen-
tially distributed out-of-order data. Runtime of queries is shown on
the left. Capacity savings by optimizing for outliers is shown on the
right. 211

5.29 Application time range queries on TAB+-tree with 10% exponen-
tially distributed out-of-order data with a 0.01% chance for large
outliers. Runtime of queries is shown on the left. Capacity savings
by optimizing for outliers is shown on the right. 212

5.30 System architecture for combing ChronicleDB with the VAT system. 214
5.31 Pattern query results for identifying tracks of starting (green) and

landing (red) aircraft. 214
5.32 Overview of multi-query optimization process. 216
5.33 SMA-based evaluation for delta predicates. 219
5.34 Bit vector index for evaluating delta predicates. 220
5.35 Evaluating delta predicates evaluation run time with an offset of

10k events on the SINE10000 dataset. 222
5.36 Evaluating delta predicate evaluation run time with an offset of 100

events on the SINE100 dataset. 223
5.37 Evaluating accuracy of secondary index structures (i.e. % of cor-

rectly accessed leaves in the primary index) when evaluating delta
predicates with an offset of 100 events on the SINE100 dataset. . . . 223

258

List of Tables

4.1 Compaction strategies in state-of-the-art log-structured index sys-
tems (excerpt from [Sar+21]). 93

5.1 Measured performance of memory/storage technologies within the
server used for experiments. 166

5.2 Setup for PMem experiments. 178
5.3 Decomposition of aggregations into functions init, merge and eval

including definitions for IN,AGG,OUT [Tan+15]. 183

259

List of Algorithms

3.1 Bulk loading of B-tree leaf pages 65
4.1 Continuous merging - create merge variables 100
4.2 Continuous merging - conditional heap add 102
4.3 Continuous merging - initialization phase 103
4.4 Continuous merging - steady-state phase 105

260

Curriculum Vitae

This page contains personal data. It is therefore not part of the online publica-
tion.

261

	Abstract
	Zusammenfassung
	Erklärung
	Acknowledgments
	Attribution
	Introduction
	Data stream applications
	Robustness of performance
	Research questions
	Contributions
	Publications
	Thesis structure

	Fundamentals
	Data stream processing
	Data stream model
	Data stream queries

	Stream indexing
	Indexing fundamentals
	B-tree techniques for write-efficiency
	Log-structured indexes

	Robustness
	Requirements for robust stream indexing
	External and internal robustness
	Write operations
	Query processing

	ChronicleDB
	Basic primary index
	Secondary indexes
	Load scheduler
	Query processing

	Summary of fundamentals

	Waves of misery after index creation
	Introduction
	Case study: ChronicleDB
	Motivation
	Structure

	Related prior work
	Node splits and bulk loading
	Uneven page utilization and fringe analysis
	Summary of related prior work

	Problem assessment
	Sound remedies
	Practical remedies
	Global strategies
	Local strategies
	Hybrid strategies

	Evaluation
	Sound remedies
	Practical remedies

	Summary

	Continuous merging
	Introduction
	Case study: Log-structured indexes for ChronicleDB
	Motivation for continuous merging

	Related prior work
	Continuous merging with staggered key ranges
	Merge strategies
	Search strategies
	Section summary

	Theoretical analysis
	Merge progress
	Queries
	Summary of theoretical analysis

	Implementation
	Overview
	Partition generation
	Merging
	Query, cleanup and runtime metrics

	Extensions
	Early merging
	Merging policies

	Experimental evaluation
	Hypotheses
	Environment and implementation
	Measurements and tests
	Merging performance
	Query performance
	Extensions
	Summary of the performance evaluation

	Conclusions

	ChronicleDB extensions
	Introduction
	Motivation
	Structure

	Persistent memory
	Overview
	Related prior work

	Out-of-order data
	Problem statement
	Out-of-order data on persistent memory
	System time mode
	Experiments

	Custom lightweight indexing
	Problem statement
	Primary index extension
	Lightweight indexing on persistent memory
	Alternative lightweight index structures
	Experiments
	Discussion

	Use cases
	Maximum delay estimation
	Visual analytics
	Delta predicates

	Summary

	Summary, conclusion and outlook
	Summary and conclusion
	Outlook
	Waves of misery in main-memory index structures
	Merging
	Storage- and index structures
	Query optimization

	Appendices
	References
	List of Figures
	List of Tables
	List of Algorithms
	Curriculum Vitae

