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1. INTRODUCTION
1.1. Defining phenotypes in psychiatric epidemiology

“Phenotype - The observable structural and functional characteristics of an

organism determined by its genotype and modulated by its environment.*

Over the past decades, the phenotype discussion became exceedingly
relevant, especially for psychiatric epidemiology (Schulze & McMahon, 2004).
In recent years, common approaches to define phenotypes in psychiatry are
revisited. Rating the presence or absence of symptoms as defined by clinical
diagnostic manuals like the Diagnostic and Statistical Manual of Mental
Disorders (DSM) (American Psychiatric Association, 1987) or the International
Classification of Diseases (ICD) (Organization, 1993) is not sufficient to define
a valid and reliable phenotype in psychiatry. The lifetime trajectory of the
patients biological and environmental conditions has to be considered
(Goldberg, 2015): Psychiatric disorders are not one-factorial, static entities but
rather multi-factorial, dynamic constructs continuously influenced by space and
time.

This is not new knowledge, but has been taught for decades in psychology,
by a conceptual framework named the biopsychosocial model (Engel, 1977,
1981). The biopsychosocial model states that determination of health and iliness
is always an inextricably interplay of biological, psychological and social factors.
All three factors by themselves are anchored on their very own continuum. But
to explain the suprasystem of health and illness the continua must be merged.
One attempt to transfer this conceptual framework into practical implications for
psychiatric research represent the Research Domain Criteria (RDoC) (Cuthbert,
2015; Insel et al., 2010; Kozak & Cuthbert, 2016). The RDoC comprehend
mental disorders as spectral dimension encompassing a biological,
psychological and phenomenological facet rather than distinct entities.

Elucidating complemental and interpretable biological markers of
psychiatric disorders can contribute to this by following the RDoC’s proposed
deep phenotyping in psychiatry (Gratton et al., 2022). For this, various

neuroimaging methods offer a huge promise. However, the underlying

1 http://www.genomicglossaries.com/content/genomics_glossary.asp



neurobiological mechanisms in psychopathology are still barely tapped (Jollans
& Whelan, 2018; Schmaal et al., 2020; Sui et al., 2020). Reproducibility and
generalizability of neuroimaging studies or Brain Wide Association Studies
(BWAS) of psychiatric disorders is still lacking. Hence, BWAS alone cannot
sufficiently contribute to optimize mental health phenotype definitions.

Fortunately, latest research in the field is more and more dedicated to
explore reasons for this problem. Multiple studies have already provided
potential key starting points for the advancement of evidence of psychiatric
neuroimaging studies. Those include, amongst others: Very large sample sizes
(Marek et al.,, 2022; Schmaal et al., 2020); using multivariate rather than
univariate statistical approaches (Jollans & Whelan, 2018; Sui et al., 2020);
combining data from multiple imaging modalities (Linden, 2012; Zhang et al.,
2020); establishing new innovative behavioral measures and scan paradigms
(Anderson et al., 2019; Rosenberg & Finn, 2022); validate models (Rosenberg
& Finn, 2022); go for samples that actually show substantial variation in brain
and behavior (Gratton et al., 2022); longitudinal studies (Jollans & Whelan,
2018).

The shared aim of these proposed and elaborated advances in psychiatric
research is to overcome previous common approaches in the field and to
provide reliable biomarkers for biologically based predictive models. This is
needed as the high rates of comorbidity between mental disorders and the high
heterogeneity of symptoms within single disorders limit the predictive power of

symptom ratings only (Jollans & Whelan, 2018; Linden, 2012).

1.2. Common approaches in psychiatric neuroimaging research
Univariate statistical analyses: Mapping brain-behavior relationships with
univariate statistical models is still one of the most common approaches in
psychiatric neuroimaging research (Sui et al., 2020). The main characteristic of
univariate approaches is the statistical manipulation of the brain in multiple
separate entities (Mechelli et al., 2005). For the case of single-voxel-based
analyses this means that an independent statistical test is run for each voxel
(i.e., mass-univariate). This results in two major limitations of univariate

statistical analyses:



First, depending on the image resolution, about 1,000,000 voxels are
identified which equals 1,000,000 statistical tests, leading to 50,000 false
positives at a significance level of p<.05 (Mechelli et al., 2005). Correction for
multiple comparisons is therefore a necessity. However, it implies further
considerations about the choice of a correction method as there are multiple
options but no single standard convention (Whitwell, 2009; Zhuang et al., 2020).

Secondly, statistically separating the brain in form of univariate voxel-
based analyses limits the results to only focally interpretable outputs. Inter-
regional dependencies are not captured but a crucial hallmark of the brain
network organization (Alexander-Bloch et al., 2013). Additionally, the issue of
correlated noise is overlooked as well (Zhuang et al., 2020).

Categorical (group comparison) analyses: For a long time, group
comparison analyses were considered the gold standard of mapping altered
brain structure as well as function. These analyses assume that one categorical
state of behavior is reflected by an altered state of brain structure or function.
For example, the state of brain structure and function in a group of patients
compared to the state of brain structure and function in healthy controls. Those
case-control studies are important to broadly identify brain regions associated
with an illness state and use them as potential key nods (or regions of interest,
ROI) for more narrow-framed hypotheses or find the most common effects
independent of their meaning (Bandettini et al., 2022; Jollans & Whelan, 2018).
However, conclusions drawn from these approaches can only be used to infer
further hypotheses about group states but for neither the state of an individual
nor for individual prediction (Arbabshirani et al., 2017; Zhuo et al., 2019).

Continuous (correlational) analyses: Correlational analyses, as in form of
multiple regression, aim to find a relationship between behavioral
measurements and brain structure or functions. Typical correlational
investigations in psychiatric neuroimaging research hypothesize a linear
relationship between the amount of brain alterations and the amount of variation
in the behavioral measurement score (Gratton et al., 2022). One advantage of
this dimensional approach compared to the categorical approach is its
applicability within one set of subjects. It therefore shows more sensitivity toward
the spectrum of the investigated phenomenon. However, the complexity of the

human brain as well as human behavior limits the explanatory power and



reliability of individual brain-behavior relationships (Gratton et al., 2022; Marek
et al., 2022).

1.3. Sources of heterogeneity in psychiatric neuroimaging research

The above-mentioned limitations of common approaches in psychiatric
neuroimaging research can be directly transferred into the sources of
heterogeneity of evidence in psychiatric phenotype research (Satterthwaite et
al., 2020). Due to the limited extend of this thesis, only three sources of
heterogeneity will be outlined.

First, psychiatric disorders are highly heterogeneous disorders per se. In
the case of Major Depressive Disorder (MDD), the DSM lists 9 possible
symptoms of which 5 have to be present to fulfill the categorical diagnosis of
MDD. Some of the symptoms, however, can be present in opposite directions in
different patients (Goldberg, 2011). Hence, two patients showing a different
composition of symptom representations both fall into the same DSM-diagnostic
category. Subsequently, they will be treated as one group in neuroscientific
group-comparison analyses. The same is true for the present state of
manifestation: Patients with a concurrent diagnosis of a mental disorder are
often placed within the same group as patients in full remission. Forming a
heterogeneous phenotype group but assuming an underlying homogeneity
when doing group-comparison analyses therefore produces a source of
heterogeneity in biological results (Feczko & Fair, 2020; Voineskos et al., 2020).

Thereupon, focusing on comparisons of a single diagnostic group with
healthy controls rather than looking at a dimensional system of psychopathology
tends to neglect the apparent shared elements in psychopathology between
different diagnostic categories (Bornovalova et al., 2020; Feczko & Fair, 2020).
As previously mentioned, mental disorders are multidimensional constructs.
Approaching psychiatric neuroimaging research only in a top-down manner by
using beforehand descriptive categories possibly leads to unreproducible
associations if the underlying biological grouping does not represent the
diagnostic grouping in the first place (lvleva et al., 2020).

Furthermore, different studies investigating neural correlates of the same
psychological construct often use different measurements to assess this very

construct. For example, for assessing the personality trait schizotypy, which is



an important construct for the comprehension of schizophrenia-spectrum
disorders (Kwapil & Barrantes-Vidal, 2015), there are at least three commonly
used scales for assessment today (Fonseca-Pedrero et al., 2021). Those
measurements were developed in different manners and serve different
purposes. However, neuroimaging studies tend to compare or generalize results
emerging from correlations of the brain with one schizotypy measurement with
studies using another schizotypy measurement. This leads to heterogeneity in
the neural correlates found as, again, an assumption of homogeneity is made

but the measurements used are heterogeneous.

1.4. Objectives and hypotheses

The studies in this thesis take a new look at commonly used approaches
in psychiatric neuroimaging research in order to contribute to not only improving
validity and reliability of psychometric acquisition but also to informing both
hypothesis and data-driven imaging and phenotyping in psychiatry. In particular,
focuses were on overcoming case-control approaches, application of
multivariate statistical analyses on both a neuroimaging level as well as on a
psychometric level to resolve inconsistency.

The first study’s objective was a hypothesis driven approach applying
Structural Equation Modeling (SEM) to integrate clinical variables and a brain
structural measurement into one comprehensive multivariate statistical model.
Based on a previous published SEM integrating key clinical variables of MDD
(anhedonia, neuroticism, anxiety, and cognitive control (Liao et al., 2019)), the
first aim of the first study was to successfully replicate this SEM in a new
population of patients with MDD (H;). Secondly, based on previous white
matter/diffusion tensor imaging (DTI) studies, we hypothesized anhedonia and
neuroticism to be associated with white matter integrity in MDD (H). Lastly,
integrating the white matter associations into the SEM will show a good overall
fit (H3).

The second study’s objective used a data-driven approach applying
cluster analysis to gyrification data across a large transdiagnostic patient cohort,
in order to find homogeneous groups based on their gyrification pattern without
prior imposed clinical grouping. We hypothesized that it is possible to identify

patient subgroups among different psychiatric disorders by their pattern of



gyrification using cluster analysis (H.). Furthermore, identified groups can be
subsequently characterized clinically (Hs). Based on the multitude of previous
studies using a group comparison design to successfully identify differences in
gyrification between diagnostic groups, we expected to also find an apparent
distinction of cluster groups in diagnoses (Hs).

The third study’s aim was to address phenotypic heterogeneity by
reassessing a commonly used transdiagnostically relevant phenotype, i.e.,
schizotypy. It aims to demonstrate how refining phenotypic assessment might
improve neuroimaging studies in psychiatry. Based on previous studies we
assumed, that schizotypy is a three-factorial construct but that the different
schizotypy (sub)scales tap into different facets of schizotypy (H7). Hereupon, we
proposed a newly composition of factors (Hsg).



2. AGGREGATION OF STUDY RESULTS

2.1. STUDY I: Brain structural connectivity, anhedonia, and phenotypes of
major depressive disorder: A structural equation model approach

Reference: Pfarr, J. K., Brosch, K., Meller, T., Ringwald, K. G., Schmitt, S.,
Stein, F., Meinert, S., Grotegerd, D., Thiel, K., Lemke, H., Winter, A., Waltemate,
L., Hahn, T., Opel, N., Repple, J., Bauer, J., Jansen, A., Dannlowski, U., Krug,
A., Kircher, T. & Nenadic, I. (2021). Brain structural connectivity, anhedonia, and
phenotypes of major depressive disorder: A structural equation model
approach. Human Brain Mapping, 42(15), 5063-5074.
https://doi.org/10.1002/hbm.25600

DTI studies have already gained important insights in the white matter
integrity and brain structural connectivity in MDD. Case-control studies
comparing the white matter microstructure of large cohorts of patients with MDD
and healthy controls identified wide spread white matter alterations in MDD
patients (Schmaal et al., 2017; van Velzen et al., 2020). Studies using
correlational designs within patient cohorts found more specific associations of
white matter alterations with single symptoms of MDD: Yang et al. (2017) and
Coloigner et al. (2019) identified significant associations of fractional anisotropy
(FA) with anhedonia, a core symptom of MDD, in fronto-limbic circuits as well as
the cingulum and corpus callosum. Furthermore, neuroticism, an established
risk factor for MDD, was found to be associated with white matter alterations in
fronto-limbic circuits and the cingulum bundle as well (Madsen et al., 2009;
Mincic, 2015). Thus, brain structural associations of both, anhedonia as well as
neuroticism could potentially overlap in patients with MDD.

We investigated this potential brain structural overlap of anhedonia and
neuroticism in MDD and further inter-relationships to other main symptom
features of MDD. For this, a previous published SEM of clinical variables related
to MDD was used as a basis for the final statistical design. The SEM by Liao et
al. (2019) included inter-relationships of anhedonia, neuroticism as well as the
important comorbid symptom of anxiety, and the cognitive parameter of
cognitive control. Our study expanded the already existing model by including

white matter associations of anhedonia and neuroticism into the SEM.


https://doi.org/10.1002/hbm.25600

First, the original SEM by Liao et al. (2019) was replicated using a large
cohort of MDD patients (N=595). In a second step, DTl analyses were performed
to find significant associations of brain structural connectivity with anhedonia as
well as neuroticism. In a last step, those brain structural associations were
successfully implemented in the model. With this study, for the first time, a
multivariate statistical design was used to acknowledge the interaction of
multiple variables and multiple measures in MDD.

STUDY | was able to show, that different clinical variables (i.e.,
anhedonia, neuroticism) are associated with different DTI parameters as well as
different white matter tracts in MDD. Anhedonia was correlated with FA in the
right anterior thalamic radiation whereas neuroticism was correlated with axial
diffusivity (AD) in the left inferior fronto-occipital fasciculus (IFOF) and fasciculus
uncinatus (UF). This reflects and highlights the importance of respecting the
heterogeneity of MDD on a biological level. Furthermore, the multivariate SEM
clarified the interplay of neuroticism and cognitive control in MDD by elucidating
the shared brain structural network as proposed in previous studies (Servaas et
al., 2015). Results also have the potential to build a basis for future more

differentiated “risk models” or models investigating transdiagnostic hypotheses.

Manuscript _contribution: 70%. JKP and IN conceptualized the study design. JKP

conducted a literature review, developed the statistical design and performed the
statistical analyses. JKP wrote the original draft of the manuscript and visualized study
results. The other authors contributed to subject and data acquisition, data
management, and review of the manuscript (KB, TM, KGR, SS, FS, SM, DG, KT, HL,
AW, LW, TH, NO, JR, JB) as well as study supervision (AJ, UD, AK, TK).



2.2. STUDY II: Data-driven multivariate identification of transdiagnostic
gyrification patterns: A cluster analysis approach

Reference: Pfarr, J. K., Meller, T., Brosch, K., Stein, F., Thomas-Odenthal, F.,
Evermann, U., Wroblewski, A., Ringwald, K. G., Hahn, T., Meinert, S., Winter,
A., Thiel, K., Flinkenfligel, K., Jansen, A., Krug, A., Dannlowski, U., Kircher, T.,
Gaser, C.*, & Nenadi¢, |.* Data-driven multivariate identification of gyrification
patterns in a transdiagnostic patient cohort: A cluster analysis approach.
Neurolmage, 281, 120349. https://doi.org/10.1016/j.neuroimage.2023.120349

Grey matter based parameters have the potential to serve as cortical
phenotypes by exploring healthy as well as altered cortical development
(Whitwell, 2009). Gyrification, in particular, indicates processes in early brain
development which are connected to the evolution of higher cognitive functions
(Lui et al., 2011). Multiple studies already investigated associations of regional
gyrification among psychiatric disorders (Nenadic et al., 2015; Palaniyappan et
al., 2011; Sasabayashi et al., 2021; Spalthoff et al., 2018) as well as related to
specific psychopathological symptoms (Kubera et al., 2018; MclIntosh et al.,
2009; Sasabayashi et al., 2017; Schmitgen et al., 2019). Based on previous
findings, gyrification has shown to be associated with vulnerability factors for
psychopathology rather than manifested, current psychiatric symptomatology
(Al-Haddad et al., 2019; Evermann et al., 2020; Pham et al., 2021; Sanfelici et
al., 2022). However, previous studies lack a multivariate approach to investigate
gyrification in psychopathology, which is important to elucidate potential
heterogeneity of cortical folding within one disorder as well as transdiagnostic
profiles (Sasabayashi et al., 2021).

Goal of STUDY Il was to address this open question, namely whether
gyrification patterns are associated with transdiagnostic vulnerability factors or
risk, rather than separate diagnostic categories based on clinical interviews.
Here, cluster analysis as a data-driven multivariate approach, was used to
investigate this question: Cluster analysis is a useful tool to explore brain
measurements without a given a priori hypothesis connected to clinical data.
and can (sub)group high-dimensional biological data to identify neurobiological
patterns (Lynch et al., 2020; Meng et al., 2021; Sanfelici et al., 2022).

10



In a large and clinically heterogeneous transdiagnostic cohort of patients
(N=1028; MDD: n=783, bipolar disorder (BD): n=129, schizoaffective disorder
(SZA): n=44, schizophrenia (SZ): n=72) cluster analysis was applied to
gyrification data to identify biological patterns of this cortical phenotype.
Subsequently, identified patient subgroups were associated with transdiagnostic
factors of risk for psychopathology (i.e., early environmental risk factors and
cognitive performance). To further explore the clustering solution in comparison
to the classic clinical diagnostic grouping of patients, gyrification patterns of
diagnostic groups were drawn as well.

Clustering results showed global gyrification patterns to be discriminative
for three subgroups but not discriminative for clinical diagnostic groups. Newly
formed subgroups showed significant differences in both gyrification as well as
in cognitive performance and early environmental risk. Taken together with a
lack of significance of diagnostic group analyses, our results underline
transdiagnostic similarities rather than factors of gyrification being directly
related to diagnostic categories. Furthermore, additional post-clustering
analyses revealed that brain regions in association cortices had the highest
impact on the formation of clusters. Also, the main differences in gyrification
between the groups were mostly located in association cortices as well, hinting
towards a higher variability and discriminative power of association cortices than
other cortices.

Results of STUDY Il identified important neurobiological underpinnings of
gyrification and its relationship to global factors of psychopathology. The
approach can serve as basis for further cluster analyses in (sub-)clinical as well
as healthy or risk cohorts to investigate the potential of gyrification as a

neurobiological marker for psychopathology proneness.

Manuscript contribution: 65%. JKP, IN and CG conceptualized the study design. JKP

conducted a literature review and performed the statistical analyses. JKP wrote the
original draft of the manuscript and was responsible for visualization of the results. The
other authors contributed to subject and data acquisition, data management, imaging
preprocessing, and review of the manuscript (TM, KB, FS, FTO, UE, AW, KGR, TH,
SM, AW, KT, KF) as well as study supervision (AJ, AK, UD, TK).
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2.3. STUDY IlI: Trait schizotypy and the psychosis prodrome: Current
standard assessment of extended psychosis spectrum phenotypes

Reference: Pfarr, J. K., Meller, T., Evermann, U., Sahakyan, L., Kwapil, T. R.,
& Nenadic, I. (2023). Trait schizotypy and the psychosis prodrome: Current
standard assessment of extended psychosis spectrum
phenotypes. Schizophrenia research, 254, 208-217.
https://doi.org/10.1016/j.schres.2023.03.004

Schizotypy is a multidimensional construct capturing schizophrenia-like
behavioral traits and cognition. This phenotype reflects the vulnerability for
multiple psychiatric disorders but especially for schizophrenia-spectrum
disorders (SSDs) and thus represents an important concept for schizophrenia
research (Barrantes-Vidal et al., 2015; Mason, 2015; Nelson et al., 2013). Alike
schizophrenia, most research in schizotypy uses a three-factorial composition
of schizotypy covering a positive, negative, and disorganized facet (Fonseca-
Pedrero et al., 2021; Kwapil & Barrantes-Vidal, 2015). Beyond association with
clinical features, schizotypy has already been successfully associated with
genetic risk for SSDs (Kemp et al., 2021; Meller et al., 2019; Nenadi¢ et al.,
2022) as well as neurobiological correlates (Meller, Ettinger, et al., 2020; Meller,
Schmitt, et al., 2020; Pfarr & Nenadi¢, 2020; Sahakyan et al., 2020). However,
different conceptualizations of different schizotypy measurements make it
difficult to directly compare results of biological correlates of schizotypy. Thisis,
because it is not clear to what extend different schizotypy measurements
actually capture one and the same construct. Also, it still remains unclear if
measurements for prodromal and psychotic syndromes (i.e., the Prodromal
Questionnaire (PQ) (Ising et al., 2012; Loewy et al., 2005)) are distinguishable
in their scale-conceptualization from schizotypy measurements.

Hence, STUDY Il aimed to scale the overlap and divergence of three
commonly used schizotypy measurements (Multidimensional Schizotypy Scale
(MSS) (Kwapil et al., 2018), Schizotypal Personality Questionnaire (SPQ)
(Raine, 1991), Oxford-Liverpool Inventory of Feelings and Experiences (O-LIFE)
(Mason et al., 1995) and the short-form of the low-level screener for psychotic-
like experiences of the PQ (PQ-16) (Ising et al., 2012). For this, schizotypy

measurements as well as the PQ-16 were conducted from a young sample of
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383 psychiatrically healthy participants. Subscale based descriptive analyses as
well as correlations between all subscales were conducted. Multiple Principal
Component analyses (PCAs) including all subscales of the schizotypy
measurements as well as the PQ-16 were performed to extract both the best
fitting factor structure as well as refined facets of schizotypy. Subsequently, the
fit of these refined facets was tested using Confirmatory Factor Analysis (CFA).
Results of STUDY Il show, that 1) included measurements do not
discriminate well between a range of schizotypal experiences in a sample of
highly educated, healthy subjects, 2) a three-factor model of schizotypy
comprising a positive, negative, and disorganized factor is supported, and 3)
when modelling new facets based on the subscale level of all measurements, a
four-factor model including a separate neuroticism factor shows the best fit.
Conclusions for STUDY Il therefore point toward a heterogeneity in
operationalization of schizotypy which do not only affect comparability of studies
but also affect the conceptualization of the construct of schizotypy per se. Itis
proposed, that a refined assessment of schizotypy, namely integrating the items
of different schizotypy measurements and including a separate factor measuring
will lead to better comparability between studies and moreover to a more

distinguished operationalization of schizotypy.

Manuscript contribution: 65%. JKP, IN and TRK conceptualized the study design. TRK

performed statistical analyses. JKP conducted a literature review, wrote the original
draft of the manuscript and was responsible for visualization of results. The other
authors contributed to subject and data acquisition as well as data management and

basic preprocessing (TM, UE, LS).
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3. GENERAL DISCUSSION

A key challenge in psychiatric neuroimaging is the search for optimized
phenotypes and relating those to imaging marker. Research in the field has
tended to focus on case-control studies on a univariate statistical level. This
thesis provides a new look at approaches in psychiatric neuroimaging research
on a biological as well as a phenotypic level: studies addressed the overarching
issue of low reproducibility in the field by 1) calling into question the assessment
of an important transdiagnostic phenotype (STUDY lll), 2) applying multivariate
statistical (as opposed to univariate) approaches as well as multivariate
integration for phenotypic as well as neuroimaging analyses (STUDY I, II, & 1),
and 3) using hypothesis- (STUDY | & IlI) as well as data-driven approaches
(STUDY III).

A current discussion is the lack of reproducibility and generalizability of
neuroimaging studies paired with low effect sizes, which ultimately limits the
studies’ impact for extending psychiatric phenotyping (Gratton et al., 2022;
Marek et al., 2022; Satterthwaite et al., 2020). Within the scope of reproducibility
and generalizability, the studies in this thesis are dedicated to addressing the
short-comings of BWAS. While BWAS are good at observing the most common
effects over a large study cohort, the approach lacks determinants for
elucidating the meaningfulness of these common effects (Bandettini et al., 2022;
Gratton et al., 2022).

One of the challenges for finding optimized phenotypes is the
heterogeneity within single disorders. Bandettini et al. (2022) describes this
challenge in his paper by referring to the Anna Karenina effect (Finn et al., 2020)
which stems from the first sentence of the correspondent novel by Tolstoy:
“‘Happy families are all alike; every unhappy family is unhappy in its own way.”
(Tolstoj, 1877, book opening). It makes sense that there is no single neural
correlate of depression when there is no single biological depression entity.
Deriving potentially interesting brain areas from healthy populations and then
comparing those in case-control studies to depression populations undermines
the variability within this disorder (Bandettini et al., 2022; Ivleva et al., 2020;
Lynch et al., 2020). Modelling this variability is an important step towards
application of individualized psychiatric neuroimaging diagnostics and
therapeutics (Finn et al., 2020). The multivariate SEM in STUDY | evolved from

14



hypotheses on intercorrelations of trait and states in MDD as well as
associations with a popular brain measurement (DTI). It shows that by including
different features of MDD in one comprehensive model enhances our
understanding of the covariances between these features.

STUDY Il focused on the challenge of population sorting and stratification
and is directly related to the precedent mentioned challenge of heterogeneity
within a single disorder. By sorting mental disorders in BWAS based on clinical
diagnosis categorization the multidimensional nature of phenotypes is
overlooked as the diagnostic categorization does not equally map on a biological
level (Bandettini et al., 2022). The often a priori diagnosis-related grouping of
brain morphometric measurements therefore restricts the power of these
methods: assuming that there has to be a clear relationship of brain structure or
function with a particular disease group overlooks the possibility that there are
biological correlates which do not correlate with the disease manifestation itself
(which is necessary for the clinical diagnosis) but appear meaningful for the
disease trajectory for multiple mental disorders, i.e. shared risk factors. As
neuroimaging studies of risk factors in healthy populations have their own
challenges, multivariate data-driven approaches in clinical populations can find
the neural underpinnings related to a particular brain measurement in a more
distinctive way.

Basis of both of the above-mentioned challenges is the reliable
assessment of the behavioral phenotypes. Without an agreement on
operationalization of a behavioral measurement neuroimaging studies will
always have at least one source that limits their reproducibility and
generalizability (Gratton et al., 2022). Different measurements for one construct
all have their right to exist as of course development of measurements follow
the development of conceptualizations. This, however, needs to be addressed
at a certain point to ensure reliability of studies exploring neuroimaging or
genetic correlates of the constructs. In STUDY lll, the personality trait schizotypy
was investigated regarding its factor-structure and heterogeneous
operationalization across measurements using the multivariate method of PCA.
Results show indeed that schizotypy is conceptualized differently across the
different measurement, which shows the need for a refinement of the

multidimensional phenotype. This is not only necessary to assure
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generalizability across studies but also leads to higher reliability as with a
refinement of the measurement the multidimensional nature of the construct is

captured more veridical.

3.1. Impact of multivariate statistical approaches in psychiatric
neuroimaging research for phenotyping

The three studies in this dissertation all used multivariate statistical
approaches (McIntosh & Misi¢, 2013) to address three different sources of
heterogeneity in psychiatric neuroimaging phenotyping: clinical heterogeneity
within one disorder (STUDY 1), imposed heterogeneity of brain measurements
across clinical diagnoses (STUDY II), and heterogeneous assessment of a
phenotype (STUDY llI).

Hypothesis- driven, multivariate models like our SEM are important to
explore practical implications of the RDoC for neuroimaging research (Sanislow
et al.,, 2020): Following the RDoC framework, our SEM comprehends two
different units of analyses (behavioral and neurobiological) to describe the
relationship of MDD features while considering two major functional domains
(cognitive systems-cognitive control; negative valence systems-anhedonia)

(https://www.nimh.nih.gov/research/research-funded-by-nimh/rdoc/about-rdoc;

last visited on 04/11/23). Integrating multiple aspects of the RDoC in one
comprehensive model follows RDoC’s goal to advance basic science of brain
and behavior (Pacheco et al., 2022). Through the illustration of specific
directions of relationships in one comprehensive model, it is possible to
disentangle neural underpinnings of symptom clusters. This is an important step
to define more sophisticated phenotypes of psychiatric disorders. Our model
thus can be used to transfer it to risk-phenotype as well as transdiagnostic
phenotype models, which is a crucial starting point for understanding the
mechanisms and trajectories of psychiatric disorders (Feczko & Fair, 2020;
Hawco et al., 2021; Lynch et al., 2020; Meehan et al., 2022; Voineskos et al.,
2020). Ultimately, this is hoped to lead to improvement of preventive and
therapeutic interventions.

Data driven models like cluster analysis are part of the multivariate,
exploratory techniques. Their utility in brain imaging research lies in the

extraction of patterns of covariation across all possible brain regions (Mclntosh
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& Misi¢, 2013). Following the interpretation of heterogeneity in psychiatric
neuroimaging results by Ivleva et al. (2020), neuroimaging studies in psychiatry
show such highly heterogeneous brain alterations within syndromes which yet
leads to high biological similarity across syndromes. Hence, the
phenomenological division in diagnostic categories does not hold up with
biological division derived by brain imaging methods. The authors propose to
establish approaches to define “(...) biologically homogenous and specific
‘disease units’ (and corresponding subgroups of patients) based on brain
alterations detectible with imaging, despite phenomenological similarities across
the subgroups (...).” (Ivleva et al., 2020, p.1). STUDY Il in this thesis was able
to show exactly that, namely transdiagnostic similarities in brain patterns as well
as environmental and neuropsychological conditions while not finding evidence
of homogeneous biological grouping of diagnostic categories. Using data driven
models also in transdiagnostic populations are hence of great importance to find
biologically homogenous phenotypes beyond diagnostic categories (Clementz
et al., 2016; Lynch et al., 2020; Tamminga et al., 2017).

In any case, looking at early environmental conditions such as prenatal
stress in various ways has proven its potential as a reliable predictor for mental
illnesses (Alabaf et al., 2022; Kappelmann et al., 2022; Newman et al., 2016;
Zajkowska et al., 2021). Connecting prenatal stress impacts to brain
measurements and finding those impacts still present in adult life independent
of diagnostic categories, as shown in this thesis, offers great potential for
advancement in diagnostics (Goodkind et al., 2015; Hermens et al., 2019;
Stefanik et al., 2018).

A PCA approach serves to derive a set of components from the original
variables while maintaining the variance-covariance structure of the original
variable set (Mclntosh & Misi¢, 2013). With this, heterogeneously
operationalized constructs can be explored regarding their underlying statistical
and phenomenological homogeneity. Considering the rather low effect sizes of
(especially morphometric) neuroimaging studies in psychiatry (compared to
other fields like e.g., neurodegenerative diseases (Bandettini et al., 2022)) it is
exceedingly crucial to have a unifying ontology and further assessment
framework of psychological constructs (Gratton et al., 2022). Results of STUDY

[Il show, that to this day the construct of schizotypy is conceptualized differently
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in different assessments. However, neuroimaging studies of schizotypy using
different assessments are interpreted and compared as if the underlying
construct was unified which leads to a tremendous source of heterogeneity in
neuroimaging results. This limits not only the comparability of studies but more
importantly, it limits the explanatory power of the construct: schizotypy no longer
serves as a phenotype for one mental disorder, namely schizophrenia, but
indeed shows transdiagnostic impact (Premkumar et al., 2020; Sun et al., 2022;
Webster et al.,, 2022). However, if the construct itself is assessed
heterogeneously already, interpreting its impact against the background of
heterogeneous disease courses is even harder (Krueger & DeYoung, 2020).
Future studies therefore must focus on fitting the phenotype of schizotypy into
one strong theoretical framework to make it applicable for transdiagnostic

interpretations.

3.2. Looking forward: Implications for future phenotype research in
psychiatry

Multivariate statistical approaches in psychiatric neuroimaging research
are a first step to define more elaborated phenotypes in psychiatry. As
mentioned in the introduction, movements for reliable and replicable results in
psychiatric neuroimaging need to go toward a more comprehensive approach in
neuroimaging (Ressler & Williams, 2021). Beyond multivariate approaches,
developments in computational psychiatry might incumbent a big responsibility
for future phenotype research in psychiatry: With computational modeling it is
possible to provide computational phenotypes that Ilink translational
neuroscience and clinical practice (Huys et al., 2016; Patzelt et al., 2018). For
single-patient predictions, pathological behavior associated with brain
alterations can be modeled by certain parameters which represent individual
units in the process of illness (Becht & Mills, 2020). However, these parameters
heavily rely on the theory behind mental health and illness (Hitchcock et al.,
2022). This means, as long as existing theories about phenotypes are not
backed up by valid and reliable evidence, computational modeling methods are
restricted in their practical power. Hitchcock et al. (2022) recaps that

computational psychiatry still lacks appropriate theoretical frameworks for
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mental health as the heterogeneity in mental disorders are not well
acknowledged in the models yet.

Already Kendler et al. (2011) emphasized that mental disorders are too
complex systems to be traced back to a “single, well-defined etiological agent”
(Kendler et al., 2011, p. 1144). This is where multivariate statistical approaches
can offer up by overcoming this hypothesis of singularity. With these, variance
resulting from heterogeneity, dimensionality, and transdiagnostic features of
mental illnesses can be better stratified than with univariate approaches. Results
of the studies in this dissertation show the feasibility of multivariate approaches:

The extensive model in STUDY | gives a more comprehensive insight in
the interrelationship of brain connectivity networks in MDD with dimensional
clinical variables. The data driven approach in STUDY Il elucidated the
underlying biological grouping of a large transdiagnostic patient cohort. SUTDY
[l disentangled heterogeneity in the assessment of a personality trait to take a
step closer toward a unifying framework for this construct.

Taken together, research in psychiatric phenotyping has to overcome
univariate correlation or regression approaches to produce valid and reliable
results of relationships between brain and behavior in order to serve

computational psychiatry approaches. (Patzelt et al., 2018)

3.3. Limitations

Studies in this dissertation show some limitations which should be
outlined. While this dissertation applied multivariate statistical approaches for
advanced psychiatric phenotyping, all analyses are restricted to cross-sectional
data. Based on methodological implications of SEM, equivalent models with
even better fits to the model in STUDY | are likely to exist (Kline, 2015).
Furthermore, path coefficients of our brain-behavior relationships are relatively
small when embedded in recommendations for psychometric research
(MacCallum & Austin, 2000). Furthermore, directions of effect in an SEM follow
linear relations, which is why the model in STUDY | cannot represent non-linear
relationships between the variables. The investigated sample of MDD patients
was not stratified regarding clinical aspects like remission state, hospitalizations
or medication, which leaves out the possibility of explaining potential interaction

effects.
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The transdiagnostic sample in STUDY Il was composed of significantly
more patients with an MDD diagnosis than other psychiatric diagnosis.
Furthermore, as cluster analysis is an explorative approach, results are highly
dependent on components like sample sizes and clustering algorithm. Results
of STUDY Il therefore cannot be easily compared to other studies using this
approach. Because subgroups were clustered by brain data only and
association of the subgroups with clinical data is of correlational nature, clusters
cannot be interpreted as holistic defined subgroups.

Study sample in STUDY Il consisted of only young, highly educated and
overly healthy subjects. Hence, variance in the data used for analyses was low
which limits the generalizability of results. Furthermore, composition of
components included in the CFA differed from the composition used for PCA,
which limits the comparability between the two analyses.

3.4. Conclusion

Mental illnesses are complex multi-factorial, dynamic constructs which
cannot be explained by distinct univariate analyses. This dissertation showed
the feasibility of multivariate statistical approaches when investigating both
neuroimaging as well as psychometric data. To transfer results of neuroimaging
research in psychiatry to phenotyping which has actual practical implications for
the clinic, reproducibility and generalizability of results is a necessity.
Multivariate approaches help to disentangle interrelationships on multiple levels
and improve psychiatric phenotyping. Besides advanced statistical approaches,
Open Science practices like sharing data and code to work collaboratively
should be fostered heavily in psychiatric research. Joined data and expertise
enables validation of results on a large-scale. This is needed to eventually be
able to offer improved, individual therapeutic interventions and care for mental
health.
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SUMMARY

The biopsychosocial model offers a conceptual theoretical framework to
explain mental health and illness. It states, that the continua of biological,
psychological, and social factors must be seen in interaction in order to
determine an individual’'s risk for mental illness. By defining psychiatric
phenotypes this model is transferred into practical application.

Advances in neuroimaging techniques hold big promises to contribute to
psychiatric phenotyping. Being able to unravel associations between behavior
and the brain, enables the detection of further biomarkers for psychiatric
disorders besides genetics. However, considering the complexity of both the
brain as well as mental disorders, mapping reliable brain-behavior relationships
is challenging. So far, mostly univariate statistical approaches are applied in
psychiatric neuroimaging research which do not fully live up to this complexity.

This dissertation applied multivariate statistical approaches to both brain
as well as behavioral data to investigate the feasibility of those approaches in
neuroimaging research for psychiatric phenotyping. The aim was to go one step
further toward disentangling the heterogeneity of phenotypes in psychiatric
neuroimaging.

In STUDY | we used the multivariate approach of Structural Equation
Modeling (SEM) to build a comprehensive model of brain as well as clinical data
in a large sample of patients with major depressive disorder (MDD). A previous
published clinical SEM, which included risk, symptom, and cognitive variables
was first replicated and then extended by a brain structural connectivity
measurement. Findings of this study reflect on our understanding of white matter
integrity in MDD and bring new insights into the relationship between an
established risk factor as well as a core symptom of MDD with brain structural
connectivity.

The data driven approach in STUDY Il in form of cluster analysis aimed
to explore the underlying biological grouping in a large transdiagnostic cohort.
Results show that data driven subgroups based on a brain morphometric
parameter do not align with the clinical diagnostic grouping. Results of
subsequent correlational analyses with early environmental risk factors as well

as neuropsychological variables hint toward a transdiagnostic involvement of
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this brain morphometric parameter in psychopathology rather than being bound
to clinical diagnostic categories.

In STUDY IlI, results of Principal Component Analyses showed that
conceptualizations as well as assessment of the personality trait schizotypy
differ across studies which leads to a source of heterogeneity when this
phenotype is used in neuroimaging studies. Confirmatory Factor Analyses
provided a newly approach for the assessment of schizotypy.

In conclusion, this dissertation provided novel insights into the feasibility
of multivariate statistical approaches in both psychiatric neuroimaging as well as
psychometric research. Results of the studies highlight the importance of going
beyond simple diagnostic borders to define reliable phenotypes in psychiatry.
Future research in this field needs to shift toward more comprehensive
approaches to capture the complexity of mental disorders. By this, a reliable
foundation for computational models is built to enable the practical application

of individual predictions about mental health and illness.
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ZUSAMMENFASSUNG

Das Biopsychosoziale Modell bietet einen konzeptuell theoretischen
Rahmen, um mentale Gesundheit und Krankheit zu erklaren. Das Modell
beschreibt, dass die Kontinua von biologischen, psychologischen und sozialen
Faktoren in Interaktion miteinander betrachtet werden mussen, damit man das
individuelle Risiko fur psychische Erkrankungen bestimmen kann. Dieses
theoretische Modell findet praktische Anwendung durch die Bestimmung
psychiatrischer Ph&notypen.

Weiterentwicklungen in neurowissenschaftlichen Methoden gelten als
vielversprechend, um wichtige Beitrage zur Phanotypisierung psychiatrischer
Erkrankungen zu liefern. Diese Methoden konnen den Zusammenhang
zwischen Verhalten und Gehirn erforschen und somit neben Genetik weitere
biologische Marker fiir psychiatrische Erkrankungen liefern. Jedoch erschweren
sowohl die Komplexitdt von psychiatrischen Erkrankungen als auch die
Komplexitat des Gehirns klare und zuverlassige Zusammenhénge zu finden.
Bisherige Forschung in diesem Bereich hat sich Gberwiegend auf univariate
statistische Tests gestitzt, welche aber diese Komplexitat nicht vollends
erfassen kénnen.

In dieser Dissertation wurden daher multivariate statistische Ansétze
herangezogen, um deren Anwendbarkeit im Rahmen neurowissenschaftlicher
Forschung zu psychiatrischen Phénotypen zu untersuchen. Hierfur wurden die
multivariaten Ansatze sowohl auf Hirn- als auch auf psychometrische Daten
angewendet. Das Ubergeordnete Ziel dieser Dissertation war die Heterogenitat
bisheriger Phanotypen in diesem Feld zu entzerren.

In STUDIE | verwendeten wir den multivariaten Ansatz des
Strukturgleichungsmodells, um ein umfassendes Modell mit sowohl Hirn- als
auch klinischen Daten zu entwickeln. Die verwendeten Daten stammen von
einer grofRen Stichprobe an Patienten mit depressiver Stérung. Hierfir wurde
ein zuvor publiziertes klinisches Strukturgleichungsmodell herangezogen und
zunachst in unserer Stichprobe repliziert. Dieses Modell enthielt sowohl einen
etablierten Risikofaktor fiir Depression als auch Symptome und einen kognitiven
Parameter der Depression. AnschlieRend integrierten wir in dieses
Strukturgleichungsmodell einen Parameter fur hirnstrukturelle Konnektivitét. Die

Ergebnisse der Studie erweitern bisheriges Wissen zur Integritat der weil3en
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Substanz in Depression und bringen neue Erkenntnisse zum Zusammenhang
zwischen einem Risikofaktor, einem Hauptsymptom der Depression und
hirnstruktureller Konnektivitat in Depression.

Die Anwendung eines datengetriebenen Ansatzes auf einen
hirnmorphometrischen Parameter in Form der Clusteranalyse in STUDIE I
zielte darauf ab, unabhangig von klinischen Diagnosen die reine biologische
Gruppierung einer transdiagnostischen Patientenkohorte zu explorieren. Die
Ergebnisse der STUDIE Il zeigen, dass die durch die Clusteranalyse gebildeten
Subgruppen nicht mit den diagnostischen Gruppen einhergehen. Weitere
Korrelationsanalysen der Subgruppen mit frihen Umweltrisikofaktoren und
neuropsychologischen Variablen geben einen Hinweis darauf, dass der
untersuchte hirnmorphometrische Parameter eher eine transdiagnostische
Rolle in Psychopathologie spielt als dass dieser differentiell fir klinisch
diagnostische Gruppen dient.

Durch die Anwendung einer Hauptkomponentenanalyse in STUDIE IlI
konnten wir zeigen, dass sich sowohl die Konzeptualisierungen als auch die
psychometrische Erfassung des Personlichkeitskonstrukts Schizotypie tber
Studien hinweg unterscheidet. Der Einsatz dieser unterschiedlichen Skalen
fuhrt wiederum zu heterogenen Ergebnissen in neurowissenschaftlichen
Studien. Einen Vorschlag zur homogeneren Erfassung des Konstruktes haben
wir durch die Anwendung von Konfirmatorischer Faktorenanalyse erortert.

AbschlieRend lasst sich sagen, dass die vorliegende Dissertation neue
Einblicke in die Anwendbarkeit und Nutzlichkeit multivariater statistischer
Ansatze ertffnet hat. Die Ergebnisse der Studien heben hervor, dass es wichtig
ist Uber die klinisch diagnostischen Grenzen hinaus zu gehen, um verlassliche
Phanotypen bestimmen zu kénnen. Es ist von Notwendigkeit, dass zukiinftige
Forschung in diesem Bereich mehr in Richtung umfassender statistischer
Anwendung ruckt, um die Komplexitat psychischer Erkrankungen ausreichend
erfassen zu konnen. Dadurch kann die Grundlage fir rechenbetonte
Modellierung psychischer Erkrankungen gelegt werden, um diese dann fir
individuelle Vorhersagen Gber mentale Gesundheit und Krankheit anwenden zu

kdnnen.
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1 | INTRODUCTION

Major depressive disorder (MDD) has one of the highest lifetime prev-
alence among psychiatric disorders (Kessler & Bromet, 2013) resulting
in significant individual and social burden (Lépine & Briley, 2011).
Symptom representations, course of illness, and treatment response
are, however, highly heterogeneous, prompting the need for markers
for group stratification or links to single facets to brain mechanisms
(Goldstein & Klein, 2014).

Anhedonia is a core symptom of depression and predominantly
manifests emotionally as a lack of feeling pleasure, as well as reduced
motivation and drive on the behavioral level (Watson, Harvey,
McCabe, & Reynolds, 2020). Indeed, the diagnostic criteria of depres-
sion in the Diagnostic and Statistical Manual of Mental Disorders (fifth
ed.; American Psychiatric Association, 2013) consider anhedonia as one
of the two main symptoms (besides depressed mood) necessary for a
clinical MDD diagnosis. Previous studies have already shown the
importance of anhedonia impacting on severity of illness course, shap-
ing the disease course, as well as effectiveness of drug treatment and
psychotherapy for MDD (Auerbach, Pagliaccio, & Pizzagalli, 2019;
Craske, Treanor, Dour, Meuret, & Ritz, 2019; McMakin et al., 2012;
Snaith, 1993; Trgstheim et al., 2020; Watson et al., 2020). Also, there is
a strong relationship between expression of anhedonia and suicidal
behavior, even independently of an MDD diagnosis (Auerbach
et al, 2019; Auerbach, Millner, Stewart, & Esposito, 2015; Ducasse
et al, 2018; Winer et al., 2014). Anhedonia is also associated with
endophenotypes of depression, including psychosocial functioning and
neuroticism (Gong et al., 2018; Langvik, Hjemdal, & Nordahl, 2016; Liao
et al, 2019; Vinckier, Gourion, & Mouchabac, 2017). Genetic risk
scores of depression phenotypes were found to be correlated with
anhedonia-related phenotypes (Guffanti et al., 2019). In addition, cogni-
tive impairments, such as attention, were related to anhedonia more
strongly than depression per se (Grillo, 2016).

Recent brain imaging studies suggest associations of anhedonia
with white matter microstructure of particular fiber tracts. In contrast
to large case-control imaging showing wide-spread gray and white
matter alterations in MDD (Schmaal et al., 2017; van Velzen
et al., 2020), structural connectivity analyses focusing specifically on
anhedonia found significant associations of fractional anisotropy
(FA) in the left cingulum and forceps minor/anterior corpus callosum
as well as radial diffusivity (RD) in the anterior thalamic radiation
(ATR), corticospinal tract, superior longitudinal fasciculus (SLF), and
uncinate fasciculus (UF; Yang et al., 2017). Similarly, a more recent
study identified white matter abnormalities in patients with MDD
related to anhedonia in the fronto-limbic circuits (Coloigner
et al., 2019), which differed from associations with anxiety, which was
associated with lower FA in the corpus callosum as well as anterior
corona radiata and posterior thalamic radiation. Both, the cingulum
bundle and the UF have also been found to be associated with neu-
roticism (Madsen et al., 2009; Mincic, 2015), a less specific risk factor
for MDD, suggesting a structural overlap of brain structural correlates
of anhedonia and neuroticism, although findings are not entirely con-
sistent (Avinun, Israel, Knodt, & Hariri, 2020; Servaas et al., 2013). In

addition, functional imaging studies focusing on anhedonia show a
network of subcortical structures including the nucleus accumbens,
ventral pallidum, and amygdala to underlie processing of pleasure
(Berridge, Kringelbach, Arbor, & Hospital, 2016). In patients with
MDD, these reward circuits are functionally impaired and functional
hypoconnectivity of the fronto-striatal network contributes to the
behavioral manifestations of anhedonia (Héflich, Michenthaler,
Kasper, & Lanzenberger, 2018; Li et al., 2018).

Although there is now a better understanding of specific neural
networks related to anhedonia in MDD, previous studies have often
been limited to singular associations between a clinical symptom and
brain markers, often in smaller samples. Larger multicenter studies,
however, mostly lack analyses for specific symptom clusters or poten-
tial subgroups in depression (Schmaal et al, 2017; van Velzen
et al., 2020).

MDD, however, manifests as a combination of different symp-
tom phenotypes, for example, anxiety, somatic symptoms, cognitive
restraints. Respecting the dimensionality of those markers (e.g., neu-
rophysiological, biochemical, neuroanatomical, cognitive data) rather
than their categories, contributes to disentangle the full range of
psychiatric disorders (Gottesman & McGue, 2014; Kozak &
Cuthbert, 2016).

Despite some advances, there is a paucity of multivariate
approaches integrating brain, cognitive, and clinical data, which so far
have been mostly analyzed in separate studies. Multivariate modeling
might improve our understanding of how these biological parameters
interact with risk factors and clinical symptom dimensions like
anhedonia—and might thus relate to the multidimensional nature of
MDD. Multivariate models additionally offer the advantage to test
both multiple direct and indirect effects within an overall model
(Stein, Morris, Hall, & Nock, 2017).

Structural equation modeling (SEM) is a multivariate approach,
which has already been used to integrate clinical and risk factors of
MDD (Rezaei, Ghazanfari, & Rezaee, 2016; Tse, Rochelle, &
Cheung, 2011). A recent clinical study described—on the phenotype/clin-
ical level—a model of how anhedonia as well as anxiety interact with the
depression-related phenotypes of neuroticism and cognitive control
(Liao et al., 2019). With the proposed SEM, the authors acknowledge the
impact of anhedonia and anxiety on MDD state and course, as well as
their high intercorrelation. Besides symptom representations, risk factors
like personality traits and cognitive aspects should be considered for a
more integrated view on MDD or psychiatric disorders per se, respec-
tively. Liao et al. (2019) considered a relationship between the men-
tioned symptoms and neuroticism as well as cognitive control, as they
are established risk endophenotypes for MDD (Goldstein & Klein, 2014).

These models provide a basis for integrating structural connectiv-
ity mapping with differentiated SEM models to address and dissect
multiple facets of MDD phenotypes. However, to this date, there is
no such application drawing on large MDD samples in the field. This
approach builds on the recent clinical/cognitive model by Liao
et al. (2019) described above; we expand on this by integrating struc-
tural connectivity parameters, expected to differentially correlate to
these clinical variables in a large sample of MDD patients.
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We test the hypothesis that white matter tract integrity is associ-
ated with anhedonia, as well as anxiety, neuroticism, and cognitive
control in different regional tracts. For this purpose, we first test a
SEM integrating anhedonia, neuroticism, anxiety, and cognitive con-
trol, based on an extension of a previous study by Liao et al. (2019).
We then analyzed white matter connectivity associations with clinical
variables and finally integrated those into a testable multivariate
model using SEM. More precisely, based on several studies on brain
imaging and anhedonia described above, we expected anhedonia to
be associated with brain structural aberrations mainly in tracts
involved in emotion regulation, for example, ATR, UF (Coloigner
et al., 2019; Yang et al., 2017). As previous studies on DTl and nega-
tive related emotions showed an involvement of the UF, we expected
to find an association in this tract with neuroticism as well as with
anxiety (Mincic, 2015).

We modeled cognitive control as executive function or inhibition
ability, respectively, based on former studies finding those to not just
be impaired in MDD but also to be related to particular risk factors for
MDD (Crow, 2019; Pan et al., 2019).

2 | METHODS

21 | Study cohort

We analyzed n =595 subjects with a lifetime diagnosis of MDD
(365 female, 230 male; mean age 36.14 years, SD = 13.09) from the
FOR 2107 consortium (Kircher et al., 2019), applying criteria of
the DSM-IV based on face-to-face interviews using the German version
of the SCID-I interview (Strukturiertes Klinisches Interview fir DSM-IV
Achse | Storungen; First & Gibbon, 2004; Wittchen, Wunderlich,
Grushwitz, & Zaudig, 1997). We included patients within an age range

TABLE 1

of 18-65 years with at least one current or past MDD episode. We
excluded patients with a history of traumatic brain injury or central ner-
vous system neurological disorders, physical disorders that could have
an impact on brain morphology (e.g., autoimmune diseases, cancer, and
infections), substance dependence, as well as general contraindications
to MRI scanning. Further exclusion criteria were intellectual impair-
ment/learning disability, defined as verbal intelligence quotient lower
than 80 (estimated with the German MWT-B test; Mehrfach-
Wortschatz-Intelligenztest B; Lehrl, Triebig, & Fischer, 1995).

Participants were recruited within the Departments of Psychiatry
at the University of Marburg and University of Minster, local psychi-
atric hospitals, outpatient departments and healthcare centers, as well
as through local advertisements and flyers.

Clinical diagnostic assessment by trained interviewers as well as
MRI scanning took place at the Departments of Psychiatry and Psy-
chotherapy Marburg or Minster Universities, Germany, respectively.
All subjects gave written informed consent before participation to a
study protocol approved by the local Ethics Committee of the school
of medicine, University of Marburg and University of Minster,
according to the current version of the Declaration of Helsinki (World
Medical Association, 2013). Subjects were financially compensated
for participation. Following previous multivariate modeling studies, we
focused on a clinical sample only, given that healthy control samples
typically show little or no expressions of anhedonia, and a lack of sig-
nificant associations between their low to moderate levels of neuroti-
cism and brain structure (Avinun et al, 2020). The study cohort
consisted of patients with one or more MDD episode(s) in an acute or
(partially) remitted state (derived from SCID-I interviews and based on
DSM-IV criteria), with or without psychiatric comorbidity as well as
with a medicated/unmedicated state and/or receiving psychotherapy/
no psychotherapy.

Clinical sample characteristics are presented in Table 1.

Clinical characteristics of our N = 595 major depressive disorder (MDD) patients

M (SD) or n (%)

Marburg n = 283 Miinster n = 312 Total N = 595

Age of onset first depressive episode (in years) 26.25 (13.3) 25.02 (11.82) 25.60 (12.55)
Lifetime characterization depressive episodes

Single episode 86 (30.4%) 129 (41.3%) 215 (36.1%)

Recurrent 197 (69.6%) 183 (57.7%) 380 (63.9%)
Remission status

Current MDD episode 144 (50.9%) 111 (35.6%) 255 (42.9%)

Partially remitted 78 (27.6%) 75 (24%) 153 (25.7%)

Fully remitted 61 (21.6%) 126 (40.4%) 187 (31.4%)
Number of depressive episodes 5.09 (7.45) 2.89 (2.86) 3.88 (5.55)
Duration in depressive status (in months) 53.75(81.17) 39.55 (63.54) 45.29 (71.46)
Number of psychiatric hospitalizations 1.59 (2.08) 1.33(1.76) 1.46 (1.92)
Duration of lifetime psychiatric hospitalization (in 10.18(13.83) 11.69 (19.43) 10.98 (17.03)

weeks)
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2.2 | Phenotyping

221 | Anhedonia

We assessed concurrent anhedonia using the German version of the
Snaith-Hamilton Pleasure Scale (SHAPS-D; Franz et al., 1998; Snaith
et al.,, 1995), a 14-item self-rating scale used in several previous stud-
ies (e.g., Franken, Rassin, & Muris, 2007; Trgstheim et al., 2020).
SHAPS measures hedonic attributes or the amount of ability to expe-
rience pleasure, respectively, by subjects giving their accordance to
statements like “I would enjoy being with family or close friends” in
the last 14 days on a 4-point Likert scale (“Strongly Agree,” “Agree,”
“Disagree,” “Strongly Disagree”). Higher SHAPS total scores within a
range of 0-14 indicate higher levels of anhedonia.

222 | Anxiety

We used the STAI-S of the State-Trait Anxiety Inventory (STAI;
Laux, Glanzmann, Schaffner, & Spielberger, 1981; Spielberger, 1983)
to assess state anxiety given the high correlation between depres-
sion and the construct of anxiety (Watson, 2009), but state anxiety
is more likely to represent an emotional state or present feelings of
tension (hence symptom representation), respectively (Spielberger &
Reheiser, 2009), rather than anxiety as a trait. Statements are pres-
ented with a 4-point Likert scale in a manner of agreement (“not at

I

all,” “somewhat,” “moderately,” “very much so”). Total score range is

20-80 and higher scores indicate greater anxiety.

2.2.3 | Neuroticism

Trait neuroticism was measured using the German version of the
Revised NEO (NEO-FFI; Costa &
McCrae, 1989). The neuroticism subscale contains 12 items on a

Personality  Inventory
5-point Likert response format. Subjects indicate the degree to which
they agree or disagree with each of the statements (0 = strongly dis-
agree, 4 = strongly agree). Individual Neuroticism subscale scores
were calculated as cumulative values of the 12 items, and can thus
vary between 0 and 48 points.

2.3 | Neurocognitive assessment

Using a neuropsychological variable to reflect executive function/
inhibition performance, we chose the Trail Making Test Version B
(TMT-B; Allen & Haderlie, 2010; Army, 1944) which is part of the
FOR2107 neuropsychological test battery (Kircher et al., 2019). It
shares aspects of monitoring executive function and inhibition ability
with the Flanker Task used in Liao et al. (2019). Besides, the TMT-B
is well suited to model cognitive control as this concept is seen not
just as the ability to show top-down processing by goal-directed but
also flexible behavior (Badre & Nee, 2018; Miller & Cohen, 2001).

PFARR ET AL.

TABLE 2 Descriptive statistics and correlations for all
measurements used in this study

Measurement 1 2 3 4 Mean SD

1. SHAPS - .57 39 .02 3.5 3.5

2. STAI-S - - 66* .09 50.5 12.99

3. NEOFFI- - - - 11 2833  8.92

neuroticism
4. TMT-B = = = = 55.9 22.54

Abbreviations: NEOFFI-neuroticism, NEO-FFI-Neuroticism Scale; SHAPS,
Snaith-Hamilton Pleasure Scale; STAI-S: State-Trait Anxiety Inventory-
State Anxiety; TMT-B, Trail-Making Test-Version B (measured in RT).

*p <.01.

Descriptive statistics and correlations for all measurements used

in this study are shown in Table 2.

2.4 | Diffusion tensor imaging acquisition and pre-
processing

We obtained diffusion-weighted images on 3T MRI scanners
(Munster: Prisma, Siemens, Erlangen, Germany; Marburg: Tim Trio,
Siemens, Erlangen, Germany) using a 20 channel head matrix Rx-coil
in Minster and a 12 channel head matrix Rx-coil in Marburg. At both
sites, PAT mode was GRAPPA with an acceleration factor of
2 (TR 7300 ms, TE 90 ms, 56 slices with a 3 mm slice thickness, iso-
tropic voxel resolution of 2.5 x 2.5 x 2.5 mm?®). We acquired a total
of 2x30 diffusion-weighted images with a b-value of 1000 s/mm? and
four nondiffusion-weighted images (b = 0 s/mm?).

Quality assurance methods included several aspects: First, we
used an ongoing quality assurance protocol covering all MRI scans
obtained in the FOR2107 study (Vogelbacher et al., 2018); Second,
we visually inspected all scans for major artifacts and anatomical
abnormalities ahead of preprocessing; Third, the TBSS approach in
the FSL software (version 6.0; the Oxford Centre Functional Magnetic
Imaging Software Library; Oxford, UK; Jenkinson, Beckmann, Behrens,
Woolrich, & Smith, 2012; Smith et al., 2006) was used for DTI
preprocessing and analysis. DTI data were corrected for Eddy-Cur-
(Andersson &
Sotiropoulos, 2016). We displayed each subject image and selected an

rent-artifacts as well as motion artifacts
optimal fractional intensity threshold (FIT) for brain masking to
remove nonbrain structures.

Maps of the four DTl parameters (FA, RD, axial diffusivity AD,
and mean diffusivity MD) were generated for whole brain analyses
and nine major association tracts (derived from previous DTI studies
of major depression): inferior fronto-occipital fasciculus (IFOF), infe-
rior longitudinal fasciculus (ILF), cingulum bundle, cingulum hippocam-
pus, SLF, SLF temporal part, forceps minor and major (i.e., anterior and
posterior parts of the corpus callosum), and UF, as well as for two pro-
jection tracts: the corticospinal tract (CST) and the ATR (Warrington
et al., 2020). Following to the automated nonlinear registration tool
FNIRT implemented in FSL (Andersson, Jenkinson, & Smith, 2007;
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Andersson, Jenkinson, & Smith, 2010) all subjects data were aligned
to a standard space. A mean FA skeleton was created and used for
projection of FA, RD, AD, and MD data with a threshold <0.2 to coun-

teract for alignment errors.

2.5 | Statistical analyses
First, SEM analysis was run in R using the R package lavaan
(Rosseel, 2012) to replicate and extend the clinical-cognitive model by
Liao et al. (2019). Error-adjusted latent variables were created by the
standard measurement sum scores of the variables of interest and
applying the factor loading to 1.0 for each observed variable. We
adopted the reported relationships of the final model by Liao
et al. (2019) to our sample: SHAPS and STAI-S as endogenous vari-
ables, NEOFFI-neuroticism and TMT-B as exogenous variables, lead-
ing to the proposed relationships as shown in Figure 1a.

SEM was estimated by maximum likelihood estimation and good-

ness of fit was assessed by the model fit indices y2, y2/df,

Neuroticism Anhedonia

Cognitive
Control

Anhedonia

Cognitive
Control

NEOFFI-
Neuroticism

FIGURE 1 (a) Proposed relationships of the clinical-cognitive
model. Rectangles represent the observed variables, ovals represent
the error-adjusted latent variables. (+) and (—) indicate the
hypothesized direction of the relationships to reach significance at
p < .05. One-headed arrows stand for regressions, double-headed
arrows stand for correlations. (b) Estimated clinical-cognitive model.
Numbers show the standardized path coefficients with ** = p < .001
and *p < .05. (ns) indicates a nonsignificant relationship

Comparative Fit Index (CFl), Tucker-Lewis Index (TLI), Root mean
square error of approximation (RMSEA; Ullman & Bentler, 2003),
based on recommendations of a study evaluating SEM fit indices
regarding their robustness when analyzing large sample sizes and mul-
tivariate normality (Cangur & Ercan, 2015). Both direction and power
of effects are specified by path coefficients.

Correlation analyses shown in Table 2 indicate the absence of
multicollinearity.

Second, we computed multiple regression analyses applying the
GLM approach implemented in FSL. We set up separate models for each
variable of interest described above (SHAPS, STAI-S, NEOFFI-neuroti-
cism, and TMT-B), including age, sex, site and TIV as nuisance variables.
Exchange of the body-coil in Marburg during scanning period was
accounted for by including it as an additional nuisance variable (pre
body-coil change: yes/no; post body-coil change: yes/no). We used
threshold-free-cluster-enhancement (TFCE) running voxel-wise analyses
using the FSL program randomise. Contrasts were generated with 5,000
permutations (Winkler, Ridgway, Webster, Smith, & Nichols, 2014) and
tested with FA, RD, AD, and MD. We applied the JHU DTI 81 white-
matter labels atlas (Mori, Van Zijl, & Tamminga, 2007) for anatomical
labeling. Clusters were considered significant at a statistical threshold
p < .05 after correcting for family-wise error (FWE).

Third, we established a multivariate model based on those two
proceeding analyses to include the clinical and brain structural data.

3 | RESULTS

3.1 | Clinical-cognitive model/ SEM

Our first SEM analysis of clinical-cognitive data based on Liao
et al. (2019) showed good fit (2 =0.36, p = .55, y?/df =0.36,
CFl = 1.000, TLI = 1.007, RMSEA < 0.001) and we, therefore, repli-
cated all proposed significant relationships except for the negative
association of cognitive control and anxiety (unstandardized
coefficient = 0.021, standardized coefficient = 0.036, p = .13; see
Figure 1b). Path coefficients show that greater neuroticism is associ-
ated with increased anhedonia (unstandardized coefficient = 0.154,
standardized coefficient = 0.392, p < .001), as well as increased anxi-
ety (unstandardized coefficient = 0.948, standardized coeffi-
cient = 0.651, p <.001). There was a positive correlation between
neuroticism and cognitive control (r = .11, p < .001), as well as a posi-
tive correlation of anhedonia and anxiety (r = .46, p < .001).

3.2 | DTI-phenotype association analyses
We identified the following main correlations between white matter
structure and phenotype variables (all p-values FWE corrected;
k denotes number of voxels):

SHAPS correlated positively with FA and RD in the right ATR and
the forceps minor (p = .03, k = 49; p = .04, k = 18; see Figure 2a).
Furthermore, analyses showed a positive correlation with MD in the
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FIGURE 2

(a) Significant (p < .05 after FWE-correction) association of SHAPS with FA in the right ATR and forceps minor (coordinates

maximum intensity voxel = 69/172/87). (b) Significant (p < .05 after FWE-correction) association of NEOFFI-neuroticism with AD in the left
IFOF/UF (coordinates maximum intensity voxel = 114/162/74). Maximum intensity voxels coordinates were used for cutting plane placement.
lllustrations were prepared using MRIcroGL (version v2.1.52-0; https://www.nitrc.org; © Copyright 2007, NITRC). ATR, anterior thalamic
radiation; AD, axial diffusivity; FA, fractional anisotropy; FWE, family-wise error; IFOF, inferior fronto-occipital fasciculus; UF, uncinate fasciculus

left UF (p = .04, k = 18), as well as a negative correlation in the
left cingulum hippocampus (p =.02, k =11) and the CST
(p=.04,k=22).

NEOFFI-neuroticism was negatively correlated with AD in the left
UF, left ATR and left IFOF (p = .03, k = 74; see Figure 2b). Negative
correlation with AD also showed one significant cluster mainly located
in the left ATR (p = .02, k = 192) and two clusters in right ATR and
right IFOF (p = .04, k = 49 and p = .04, k = 28). There were no signif-
icant clusters associated with NEOFFI-neuroticism with either FA,
MD, or RD.

For the STAI-S, only one positive association with AD in the left
UF reached significance (p = .03, k = 149), with no further associa-
tions to FA, MD, or RD. Analyses of the TMT-B also yielded signifi-
cant correlations with AD only. There was one positive cluster in the
left CST (p = .02, k = 351) and two negative clusters in the right cin-
gulum hippocampus (p = .009, k = 71) and in the right IFOF (p = .04,
k = 88), respectively.

3.3 | Multivariate SEM models

Based on the above findings, we tested an integrated multivariate
SEM including the variables from the replicated basic clinical-cognitive
SEM and ATR-FA (which was correlated with anhedonia) and IFOF/
UF-AD correlated with neuroticism. In defining this model, we
considered to only include the most robust brain associations to
avoid inflated fit estimates while providing a parsimonious model
(Kline, 2015).

Based on previous brain structural findings (Coloigner et al.,
2019; Madsen et al., 2009; Mincic, 2015; Yang et al., 2017), we
focused on the positive correlation of SHAPS with FA in the right
ATR/forceps minor, and the negative correlation of NEOFFI-
neuroticism with AD in the left IFOF/UF and the left ATR.

Hypothesized relationships between brain structural correlates
and clinical-cognitive variables are shown in Figure 3. We considered
a putative relationship between the ATR-FA cluster associated with
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Neuroticism Anhedonia
Cognitive
control
FIGURE 3 Proposed relationships of the multivariate model. Rectangles represent the observed variables, ovals represent the error-adjusted

latent variables. (+) and (—) indicate the hypothesized direction of the relationships to reach significance at p < .05. One-headed arrows stand for
regressions, double-headed arrows stand for correlations. Proposed relationships to brain imaging data: Neuroticism—IFOF/UF-AD cluster—
anxiety; Anhedonia—ATR-FA cluster—cognitive control. ATR, anterior thalamic radiation; AD, axial diffusivity; FA, fractional anisotropy; FWE,
family-wise error; IFOF, inferior fronto-occipital fasciculus; UF, uncinate fasciculus

anhedonia and cognitive control, as well as a relationship between
the IFOF/UF-AD cluster associated with neuroticism and anxiety,
based on previous literature showing those associations on a behav-
joral level (Grahek, Shenhav, Musslick, Krebs, & Koster, 2019;
Mclintyre et al., 2016; Servaas et al., 2015). Although the path
between cognitive control and anxiety did not reach significance, we
modeled this path in our multivariate SEM again, as nonsignificant
paths also can explain meaningful variance in the overall model
(Steinmetz, 2015).

We extracted eigenvalues of the significant brain structural clus-
ters of interest and further z-transformed them. Clusters were inte-
grated in the clinical-cognitive SEM as described above with a factor
loading of 1.0. Analyses were re-run in in R using the R package lavaan
(Rosseel, 2012).

Results showed a moderate fit of the model (2 = 13.39, p = .02,
Zz/df = 2.68, CFI = 0.985, TLI = 0.955, RMSEA = 0.055).

Path coefficients indicated a decrease of cognitive control with
the ATR-FA cluster associated with anhedonia (unstandardized coeffi-
cient = —2.064, standardized coefficient = —0.092, p = .029). The
proposed relationship between anxiety and the IFOF/UF-AD cluster
associated with neuroticism did not reach significance (unstand-
ardized coefficient = 0.242, standardized coefficient = 0.019,
p =.53) and in line with the clinical-cognitive SEM, there was no sig-
nificant relationship between anxiety and cognitive control
(unstandardized coefficient = 0.020, standardized coefficient = 0.035,
p = .15). We, therefore, excluded those two paths from re-estimation
of our model. Modification indices indicated a significant improve-
ment of model fit by considering a path between the cluster associ-
ated with neuroticism and cognitive control (mi = 10.34), wherefore
we included this path in the re-estimation of the model.

The modified model showed a good fit (y? = 4.05, p = .40, y*/
df =1.01, CFl = 1.000, TLI = 1.000, RMSEA = 0.005). The path
between cognitive control and the IFOF/UF-AD cluster associated with
neuroticism reached significance (unstandardized coefficient = —2.929,

standardized coefficient = —0.130, p =.004). The estimated final
model is shown in Figure 4.

4 | DISCUSSION

This study integrates, in a multivariate model, brain structural connec-
tivity variability with clinical, risk phenotype variables, and cognition
in MDD. Focusing on anhedonia as a core symptom, we demonstrate
new insights into brain structural connectivity networks in a large
sample of MDD patients. This study reveals two important aspects:
(a) Bivariate association analyses demonstrates correlation between
anhedonia and FA in the right ATR as well as a correlation
between AD and neuroticism in the left IFOF/UF in MDD. (b) Our
multivariate model collaborates and expands a previous model con-
ceptualizing the relation between clinical/cognitive and brain connec-
tivity measures by acknowledging the fact of interactions of multiple
variables and measures in MDD.

DTI results showed among others an association of SHAPS and
FA in the right ATR and forceps minor and an association of NEOFFI
neuroticism and AD in the left IFOF/UF. In our multivariate SEM, find-
ings revealed an impact of differential associations between the ATR-
FA cluster as well as the IFOF/UF-AD cluster on cognitive control.
Results bring several implications:

DTI results of anhedonia and neuroticism yielded associations
with different DTI parameters (i.e., anhedonia-FA, neuroticism-AD).
FA measures the overall expanse of the directionality of water diffu-
sion along the fibers, AD displays the amount of water diffusion paral-
lel to white matter tracts (Winklewski et al, 2018). Although
interpretation of DTI parameters is still inconclusive, FA is interpreted
as a combined measure of axon density and myelin content (Friedrich
et al., 2020), while AD tends to indicate mostly the axonal conditions
and/or orientation of axons (De Erausquin & Alba-Ferrara, 2013). The
differential effects on FA versus AD might in part reflect effects on
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FIGURE 4

fiber orientation versus myelination as influenced by both anatomical
variation and dynamic expressions of myelination across the lifespan.
In particular, given the rather low scores of anhedonia in our sample,
the positive correlation of FA and anhedonia in the ATR might reflect
early stages (e.g., compensation mechanisms) of alterations impacting
the brains pleasure system. The negative correlation of AD and neu-
roticism in the left IFOF/UF, however, can be interpreted as a result
of stress reactivity to constant experience of negative emotions.

Anhedonia and neuroticism indeed can be linked to distinct white
matter tracts and different DTI parameters while concurrently either
showing an impact on cognitive functioning, hence giving new insights
on intercorrelations on a biomarker level. DTl results in our large
MDD sample clarify frontal-limbic circuit abnormalities found in previ-
ous smaller structural/functional neuroimaging studies of anhedonia
(Coloigner et al., 2019; Gong et al., 2018; He et al., 2020; Henderson
et al, 2013; Mincic, 2015; Rizvi, Lambert, & Kennedy, 2018; Yang
et al., 2017). Findings elucidate a brain structural overlap between
anhedonia and cognitive control, expanding previous studies stating a
relationship between brain structures like the PFC (including ACC)
and cognitive control in MDD (Joormann, Yoon, & Zetsche, 2007).
With a substantial multivariate approach, our model thus underpins
previous hypotheses about a neural overlap between anhedonia and
cognitive mechanisms (Barrett, Mesquita, Ochsner, & Gross, 2007;
Berridge et al., 2016; Phelps, 2006).

Moreover, our model suggests a more comprehensive in-
volvement of the ATR in cognitive control mechanisms in addition to
the already demonstrated role of ATR in memory-guided attention
(Leszczynski & Staudigl, 2016). This link between FA in the ATR and

Estimated final model after modification. Numbers show the standardized path coefficients with ** = p < .001 and *p < .05

cognitive control is also consistent with the finding, that decreased FA
in frontal and temporal lobes is linked to poorer executive function
(Grieve, Williams, Paul, Clark, & Gordon, 2007).

Although the ATR connects the (dorsolateral) prefrontal cortex
with thalamic nuclei, it may also play a crucial role in the salience net-
work. Regarding the Research Domain Criteria, anhedonia is yet asso-
ciated with the negative valence domain whereas cognitive control
represents (among others) the cognitive systems domain (Kozak &
Cuthbert, 2016). Our finding of a brain structural overlap of anhedo-
nia and cognitive control taken together with the already proposed
major cortical nodes of the salience network (i.e., dorsolateral anterior
cingulate cortex, anterior insula, mediodorsal thalamus; Peters, Dun-
lop, & Downar, 2016) puts a stronger focus on emotional regulation
within the salience network and might help brain stimulation
improvement.

In this large MDD sample, we replicated and extended a recent
clinical-cognitive model of anhedonia (Liao et al., 2019) and demon-
strate a relation of anhedonia to neuroticism and anxiety as well as
cognitive functioning/cognitive control.

Refining the role of anhedonia in MDD, the indirect effect of
anhedonia on cognitive control mediated by connectivity alterations
illustrates an important impact of anhedonic features on a biomarker
level beyond the overall effect of MDD. Anhedonia is an important
treatment target in affective disorders (Hoflich et al., 2018) and there
is clearly a strong connection between anhedonia and cognitive con-
trol in individuals with MDD on a behavioral (Grahek et al., 2019;
Mclintyre et al., 2016) and brain structural level. Future studies might
further examine the underlying common neural correlates of
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anhedonia and cognitive control to use it in cognitive-behavioral ther-
apy for affective disorders.

This multivariate approach also includes an established risk phe-
notype, that is, neuroticism, serving as a trait component to be com-
pared with clinical variables. Findings elucidate the white matter
tracts involved in a proposed shared network of neuroticism and cog-
nitive control (Servaas et al., 2015) as well as a specific direction of
the effect. Furthermore, our results indicate a stronger relation
of neuroticism to cognitive control than supposed so far (Servaas
et al., 2015), which points toward the need to consider both emo-
tional and cognitive subnetworks when investigating the impacts of
high neuroticism. Our model can thus be used to test these intercorre-
lations in cohorts of high-risk individuals, leading to findings important
for early intervention. Moreover, a multivariate model of these two
MDD phenotypes together with genetic and environmental factors of
neuroticism could result in a differentiated “risk model.”

SEM makes it possible to illustrate specific directions of relation-
ships which allow to better describe the actual impacts of the vari-
ables on one another. Our results show, that distinct phenotypes of
MDD are represented by overlapping brain structural correlates and
also demonstrate the feasibility to use DTl in deconstructing the more
complex MDD phenotype into single facets and associations with
symptoms or symptom clusters. These points toward the potential of
multivariate models when unraveling illness heterogeneity of MDD.

Moreover, for future transdiagnostic research, the approach of
multivariate modeling is of particular importance. Multivariate models
like ours can help to further unravel the dimensionality of psychiatric
disorders and eventually to better predict individual disease course.
Therefore, future research on psychiatric disorders should focus more
on multivariate stratification.

We are aware that our approach has some limitations. Effects of
the brain imaging data are not large considering the fact that path
coefficients should ideally show an effect of 20.2/—0.2 to indicate a
meaningful relationship, as considered by some standards (Chin,
1998); however, these recommendations mostly arose from psycho-
metric research in social science (MacCallum & Austin, 2000) and
therefore do not completely serve interpretation of multivariate
models integrating brain imaging data. Furthermore, although the final
model showed a good fit to our data, the method of SEM implicates
the existence of equivalent models (Kline, 2015). In case of an
extremely heterogeneous illness like MDD, it is obvious that our
model cannot capture every possible effect or relationship, also espe-
cially due to the limitations of the SEM method (Kline, 2015). Our
SEM approach also has some limitations in fitting nonlinear relations,
which might, for example, lead to different directions of correlations
depending on the range of phenotype expression (see for example,
Besteher, Gaser, & Nenadi¢, 2020). We also did not examine effects
of remission state, duration of hospitalization or medication
effects due to our novel model approach. Constructive future studies
using this kind of approach can take those variables into account to
unravel possible unknown interaction effects. In our study, we
focused on DTI data and some clinical-cognitive variables. To further
examine the potential of SEM as a method to model intercorrelations

of psychometric and brain imaging data, more studies of this kind with
varying variables of interest (e.g., environmental factors, functional
brain imaging data and so forth) are needed.

5 | CONCLUSION

Our findings advance the current understanding of white matter
microstructure of MDD by specifying shared connectivity networks of
phenotype variables of MDD. Brain structural correlates found in our
DTI analyses showed two autonomous connectivity paths, one rep-
resenting the impact of a personality trait on brain structure and one
representing the impact of a main symptom representation on brain
structure in an MDD sample. Both, however, had an effect on cogni-
tive control independently of each other. This indicates a more reliant
“disconnection syndrome” in MDD than initially proposed by previous
MDD
(Li et al., 2018). Our study thus adds meaningful insights into interrela-

studies investigating brain connectivity networks in
tions of features of MDD on a brain structural level compared to pre-
vious brain connectivity studies of MDD (Jiang et al., 2019; Nugent
et al., 2019; Repple et al, 2017, 2020). Also, findings provide a
connectome approach to disentangling symptom clusters neural
underpinnings, which can ultimately serve personalized treatment
planning, as demonstrated in recent neurostimulation studies (Siddiqi

et al., 2020).
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ARTICLE INFO ABSTRACT

Keywords: Background: Multivariate data-driven statistical approaches offer the opportunity to study multi-dimensional
Clus't'er '{“alym interdependences between a large set of biological parameters, such as high-dimensional brain imaging data.
Gyrification For gyrification, a putative marker of early neurodevelopment, direct comparisons of patterns among multiple

Data-driven approach
Multivariate statistics
Transdiagnostic

psychiatric disorders and investigations of potential heterogeneity of gyrification within one disorder and a
transdiagnostic characterization of neuroanatomical features are lacking.

Methods: In this study we used a data-driven, multivariate statistical approach to analyze cortical gyrification in a
large cohort of N = 1028 patients with major psychiatric disorders (Major depressive disorder: n = 783, bipolar
disorder: n = 129, schizoaffective disorder: n = 44, schizophrenia: n = 72) to identify cluster patterns of gyr-
ification beyond diagnostic categories.

Results: Cluster analysis applied on gyrification data of 68 brain regions (DK-40 atlas) identified three clusters
showing difference in overall (global) gyrification and minor regional variation (regions). Newly, data-driven
subgroups are further discriminative in cognition and transdiagnostic disease risk factors.

Conclusions: Results indicate that gyrification is associated with transdiagnostic risk factors rather than diagnostic
categories and further imply a more global role of gyrification related to mental health than a disorder specific
one. Our findings support previous studies highlighting the importance of association cortices involved in psy-
chopathology. Explorative, data-driven approaches like ours can help to elucidate if the brain imaging data on
hand and its a priori applied grouping actually has the potential to find meaningful effects or if previous hy-
potheses about the phenotype as well as its grouping have to be revisited.

1. Introduction investigate multi-dimensional interdependences between a large set of
objects. This is particularly relevant to brain imaging data, where
Multivariate statistical approaches offer the opportunity to spatially distributed patterns are more powerful approaches to
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characterizing the healthy and diseased brain (Etkin, 2019). Yet, many
statistical approaches focus on univariate group-level comparisons in
which brain regions are tested independently from another. In addition,
data-driven approaches aimed at identifying patterns based on multi-
variate statistics have gained significant importance, as they allow (sub)
grouping based on biological (rather than clinical) parameters (e.g.,
(Lynch et al., 2020; Meng et al., 2021; Sanfelici et al., 2022). These are
particularly important in identifying associations of neural signatures
spanning beyond prototypical disease categories, including trans-
diagnostic phenotypes or risks factors (Yeung et al., 2021), as well as
subgroups within diagnostic categories (Lalousis et al., 2021; Wang
et al., 2021).

Several structural brain imaging meta-analyses, for example, show
large overlaps of gray matter loss across affective and psychotic disor-
ders, including the anterior cingulate cortex or insula (Goodkind et al.,
2015). At the same time, the case-control design of many original studies
does not allow identification of subgroups (either within each diagnostic
category or across these) that might be linked to more specific brain
structural signatures due to their a priori defined subgrouping. This il-
lustrates the need for novel approaches to analyzing MRI data (Feczko
and Fair, 2020; Stein et al., 2021; Voineskos et al., 2020). Identifying
stable patterns beyond clinical categories, however, requires not only
deep phenotyping of clinical cohorts at multiple levels (e.g., (Bycroft
et al., 2018; Kircher et al., 2019)) but also a stable brain structural
parameter. As the awareness of the replication crisis in brain imaging
research has risen (Marek et al., 2022), it becomes more and more
important to go back to “pure data” and revisit commonly used cortical
phenotypes (Bandettini et al., 2022; Ivleva et al., 2020).

1.1. Gyrification and its relationship to psychopathology

Cortical gyrification/folding might be particularly suitable as it is
expressed early in life, are considered an indicator of early brain
development, and yet remains rather stable (compared to other brain
morphologic parameters like gray matter volume; (Hogstrom et al.,
2013)) throughout most of the life-span (White et al., 2010). This
cortical phenotype appears only in mammals, is considered to relate to
the development of higher cognitive functions (Lui et al., 2011) and is
predominantly formed prenatal: Patterns which emerge up to gesta-
tional week 32 seem to be relatively even between individuals (Abe
et al., 2003). Folding after gestational week 36 and up to 2 years of age
happens predominantly in association cortices (Matsuda and Ohi, 2018)
and these patterns are more individualistic and also prone to effects of e.
g., gender and early childhood circumstances (Kelly et al., 2013; Luders
et al., 2008; Raznahan et al., 2011; White et al., 2010).

Compared to healthy controls, regional gyrification is shown to be
altered across psychiatric disorders (Nenadic et al., 2015; Palaniyappan
et al., 2011; Sasabayashi et al., 2021; Spalthoff et al., 2018) as well as in
relation to disorder specific psychopathology (Kubera et al., 2018;
McIntosh et al., 2009; Sasabayashi et al., 2017; Schmitgen et al., 2019).
However, considering the high impact of genetic and biological factors
on early cortical development and relative stability of global gyrification
patterns over lifetime, transdiagnostic evaluation of gyrification and its
relationship to early risk-factors could be more meaningful (Sanfelici
et al., 2022). This is also supported by studies that show that aberrant
gyrification in (sub-)clinical populations is associated with
lifetime-manifestations (such as vulnerability factors for psychopathol-
ogy per se) rather than current/transient disorder specific symptom-
atology (Al-Haddad et al., 2019; Birnbaum and Weinberger, 2017;
Evermann et al., 2020; Mareckova et al., 2020; Papini et al., 2020; Pham
et al., 2021; Sanfelici et al., 2022).

So far, results of univariate associations of psychiatric disorders and
regional gyrification are still inconclusive as there is evidence for both
increased and decreased gyrification in relation to different mental ill-
nesses (Depping et al., 2018; Matsuda and Ohi, 2018; Nanda et al., 2014;
Palaniyappan et al., 2011). Although there are studies comparing
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gyrification between different psychiatric disorders (e.g., (Cao et al.,
2017; Madeira et al., 2020)), investigations of potential heterogeneity of
gyrification within one disorder and a transdiagnostic characterization
of neuroanatomical features are lacking (Sasabayashi et al., 2021).

1.2. Cluster analyses of biological and phenotypic data

Cluster analysis is a multivariate approach to find similarities be-
tween given objects (or data points) and to cluster those objects based on
their amount of similarity into smaller, homogeneous chunks of data.
The goal is to identify groups which are homogenous within but as a
whole separate to the other groups (Hennig et al., 2015). Compared to
other statistical methods, cluster analysis operates without a priori
defined characteristics, hence unsupervised and solely exploratively
(Landau and Chis Ster, 2010). This also means that an adjustment of the
data by covariates for the initial cluster analysis is not in the nature of
the method. In contrast to case-control studies, which are typically tied
to (current) clinical conceptualisations of disease categories with little
or no basis in biological data, clustering therefore has the potential to
identify and establish subgroups across large cohorts sharing particular
brain structural or functional features (Hawco et al., 2021; Wang et al.,
2021; Yeung et al., 2021).

This approach has been applied to genetic (Pelin et al., 2021),
inflammation (Lempriere, 2020), cognitive (Van Rheenen et al., 2017),
imaging combined with phenotypic/inflammation data (Lizano et al.,
2021; Talpalaru et al., 2019; Van Dam et al., 2017), and also to neuro-
imaging data on its own (Hawco et al., 2021, 2019). Thus, clustering
indeed provides a useful data-driven approach to identify patterns of
neurobiological parameters independent of clinical data.

1.3. Goal of the present study

We argue that by sorting mental disorders based on clinical diagnosis
categorization the multidimensional nature of phenotypes is partly
overlooked as the diagnostic categorization does not necessarily uni-
formly map on a biological level (Bandettini et al., 2022). The often a
priori diagnosis-related grouping of brain morphometric measurements
therefore might miss the possibility that there are biological correlates
which do not correlate with the disease manifestation itself but appear
more impactful for the disease trajectory for multiple mental disorders,
i.e., shared risk factors. As the morphometric measurements of cortical
thickness and gray matter volume are heavier impacted by factors such
as age (Fjell et al., 2009; Lee et al., 2018; Madan and Kensinger, 2018)
compared to gyrification and multiple previous studies confirmed a
relationship of gyrification with vulnerability for psychopathology (see
Section 1.1), gyrification as one morphometric phenotype has the po-
tential to be investigated with an exploratory method.

Consequently, the goal of this study is to elucidate the question
whether gyrification offers the potential to delineate subgroups beyond
diagnoses from the Diagnostic and Statistical Manual of Mental Disor-
ders (DSM). This addresses the currently open question whether gyr-
ification patterns might be associated with transdiagnostic markers of
psychopathology or risk, rather than distinct clinical diagnostic cate-
gories (Sasabayashi et al., 2021). Besides a primary methodological goal
of this study, results might also have implications in the process of early
detection of psychopathology.

For this purpose, our study used data-driven multivariate cluster
analysis of a large and clinically heterogeneous transdiagnostic patient
cohort (N = 1028 including patients with Major depressive disorder
(MDD), bipolar disorder (BD), schizoaffective disorder (SZA), and
schizophrenia (SZ)) to identify biological patterns of cortical gyr-
ification and further to relate these to transdiagnostic and sub-group
related factors of risk for psychopathology. With this approach we are
able to identify a structure based on gyrification that is already present
in the data, thus biologically defined subgroups that are similar in their
gyrification pattern, independent of a priori imposed structuring. To
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further validate the behavioral relevance of the newly formed sub-
groups, we considered variables for associations which are not
confounded by state effects or clinical parameters associated with pa-
tient age (e.g., disease duration, number of hospitalizations etc.) rather
than early neurodevelopmental impacts. Hence, cognitive performance
as well as early environmental risk factors are used for post-clustering
association analyses with clusters. To acknowledge the possibility of
important clinical parameters affecting the clustering results of our
heterogeneous patient cohort, we calculated the differences in hospi-
talization, age of onset, and Medication-Index (Benkert and Hippius,
2021; Reynolds, 2008) for both, the DSM groups as well as the cluster
groups. Furthermore, we used DSM-IV-diagnoses labelled groups to
examine if diagnostic labeling is able to discriminate gyrification pat-
terns unique to diagnostic groups.

We did not include healthy controls in our cluster analysis as our
objectives of this study are specifically drawn toward the distribution of
gyrification within the psychiatric disease spectra and therefore healthy
controls would only bring an increase in variance but not contributing
qualitatively to the aim of our analyses.

2. Methods
2.1. Participants

We analysed data from 1028 patients drawn from the ongoing,
multicentric FOR2107 study (http://for2107.de; (Kircher et al., 2019)).
Participants were recruited via university wide emails, local advertise-
ments as well as local in- and out-patient departments in Marburg and
Miinster, Germany. We included individuals with at least one major
psychiatric disorder (MDD: n = 783, BD: n = 129, SZA: n = 44, SZ: n =
72) as diagnosed by the Structured Clinical Interview (SCID-I; (Wittchen
et al., 1997)) based on the DSM-IV-TR administered by trained raters.
Our transdiagnostic approach included patients from the affective and
psychotic disorder spectrum, incl. MDD, BD, SZA, and SZ; hence, we
focus on patients with severe mental disorders. We included individuals
with available brain imaging data and excluded participants with an
1Q<80, history of head trauma, current benzodiazepine intake, and
neurological illness.

The study protocol was approved by the Ethic Committees of the
Philipps-University of Marburg, School of Medicine, and the University
of Miinster according to the latest Declaration of Helsinki. All subjects
gave written informed consent to our study protocol and received
financial compensation after participation. Descriptive characteristics of
our sample are shown in Table 1.

2.2. Neuroimaging

2.2.1. MRI acquisition

MR-scanning took place at two sites, Marburg and Miinster, using a
3-Tesla MRI (Miinster: Prisma, Siemens, Erlangen, Germany, 20-channel
head matrix Rx-coil; Marburg: Tim Trio, Siemens, Erlangen, Germany,
12-channel head matrix Rx-coil). Acquisition and pooling of MRI data
was performed according to an extensive and already published quality
assurance protocol (Vogelbacher et al., 2019, 2018).

Table 1
Descriptives of our N = 1028 sample, total and divided for DSM-labelled groups.
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A 3D MP-RAGE sequence was used to obtain T1-weighted images
(slice thickness=1.0 mm, voxel size=1.0 x 1.0 x 1.0 mm, FOV=256
mm) with the following parameters in Marburg: TR=1.9 s, TE=2.26 ms,
TI=900 ms, flip angle=7°; and in Miinster: TR=2.13 s, TE=2.28 ms,
TI=900 ms, flip angle=8°

2.2.2. Preprocessing and ROI extraction

T1-weighted scans were preprocessed using the pipeline of the
CAT12 toolbox (r1184, Structural Brain Mapping Group, Jena Univer-
sity Hospital, Jena, Germany, http://www.neuro.uni-jena.de/cat/)
implemented in SPM12 (Statistical Parametric Mapping, Institute of
Neurology, London, UK) running under MATLAB (version R2017a, The
MathWorks, USA) with default parameter settings. Cortical surfaces
were extracted using a projection-based approach (Dahnke et al., 2013),
applying topological correction (Yotter et al., 2011) and surfaces were
spherically registered with an adopted diffeomorphic DARTEL algo-
rithm (Ashburner, 2007). We then estimated cortical gyrification by
local absolute mean curvature (Luders et al., 2006) and extracted
ROI-based measures from the Desikan-Killiany-40 (DK-40; (Desikan
et al., 2006)) atlas. DK-40 atlas by Luders et al. (Luders et al., 2006)
combines the two existing gyrification index definitions, i.e.,
perimeter-based method and curvature-based method by defining a
local gyrification index and smoothing the magnitude of the mean cur-
vature, which brings useful information about the surface bending.

2.3. Neuropsychological and risk-factor assessment

Neuropsychological data was chosen from the extensive neuropsy-
chological test battery in the FOR2107. As we only used neuropsycho-
logical data for secondary analyses and some of the assessed tests
measure the same cognitive domain, we chose one test that best repre-
sented each of the four subdomains of cognition: 1. Digit Symbol Sub-
stitution  Test  (DSST; (Wechsler, 1958)) for  executive
functioning/associative ability, 2. the d2 Test of Attention (d2; (Brick-
enkamp, 1962)) for sustained attention, 3. the Corsi block-tapping test
(CBTT total score; (Berch et al., 1998)) for visuospatial working memory
performance, and 4. the verbal fluency test (VF; (Aschenbrenner et al.,
2000)) for semantic processing (for an overview of the complete neu-
ropsychological test battery in FOR2107 see (Kircher et al., 2019)).

Based on self-reported data of the participants we calculated a pre-
natal risk-score as well as a birth-complication risk score, as prenatal and
early postnatal development potentially most impact gyrification (Abe
et al., 2003). For the prenatal risk-score participants were asked if at
least one of the following prenatal influences were given: maternal
infection, maternal alcohol- or drug-abuse, maternal malnutrition,
maternal or paternal smoking. For birth-complication risk score partic-
ipants were asked if at least one of the following birth complications
were given: ventouse birth, forceps delivery, casarean delivery or others.
For both risk scores, scoring was in a yes-/no-manner (no risk=0, at least
one risk=1).

The Medication-Index was calculated based on conversion and cut-
off recommendations by Reynolds (2008) and Benkert and Hippius
(2021). Patients are assigned a score of 0, 1, or 2 according to their daily
psychiatric medication doses. Psychiatric medications include

Sample Group n Mean Age Sex Mean Age of Onset Mean Hospitalization Duration in Weeks Mean Medication-Index
Total 1028 37.41 390 m, 638 25.34 17.68 1.66

MDD 783 36.74 270 m, 513 f 26.01 12.05 1.38

BD 129 41.24 58 m, 71 f 24.12 32.41 2.52

SZA 44 38.39 20m, 24 f 20.95 49.25 3.18

SZ 72 37.25 42m, 30 f 22.74 37.73 2.32

P Welch-ANOVA/)(2 .003* <0.001** <0.001** <0.001** <0.001**

" p<.05.

" p<.001.
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antipsychotics, antidepressants, lithium, mood-stabilizer, benzodiaze-
pines, as well as Z-drugs.

2.4. Statistical analyses

2.4.1. Pre-clustering analyses

Descriptive analyses and Welch-ANOVA for the above-mentioned
clinical parameters were run. Additionally, ahead of the cluster anal-
ysis, several statistical analyses were run on the original gyrification
data matrix to assure plausibility for the choice of applying a clustering
procedure and further regarding clustering method, dissimilarity-matrix
computation as well as clustering algorithm (for an overview for rec-
ommended steps applying cluster analysis see (Landau and Chis Ster,
2010)):

We ran correlation analyses between all 68 brain areas included as
well as between subjects. Furthermore, to better understand how gyr-
ification across regions is distributed in our sample, we applied the
PHATE visualization method (Moon et al., 2019) to our data using the R
package phateR. PHATE brings high dimensional biological data into
lower-dimensional embeddings (2 dimensions) while capturing both
local and global nonlinear structure. Fig. 1 shows gyrification data of the
68 DK-40 regions embedded in 2 dimensions as well as color labelled for
diagnostic groups as classified by DSM-IV-TR. Based on the results of the
computed pre-clustering analyses (see Section 3.1), data appeared to be
suited for applying hierarchical agglomerative cluster analysis using
ward-algorithm on a computed dissimilarity-matrix using Euclidean
distance. Briefly, hierarchical clustering was chosen as no previous in-
formation on number of clusters was apparent from other studies. On the
same incentive, agglomerative clustering was chosen to cluster the data
in a bottom-up manner. The ward-algorithm was chosen due to showing
the highest computed agglomerative coefficient (AC=0.9) compared to
other algorithms. See Supplement S1. for description of argumentation
for procedure selection.

2.4.2. Cluster analysis

Cluster analysis was run on the dissimilarity matrix (computed with
the function daisy implemented in R) with the package cluster in R using
the agnes-function for hierarchical clustering. Dissimilarity matrix was
computed using Euclidean distance and non-standardized gyrification

Dimension2

Dimension1
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data. Clusters were fused by ward-algorithm. We did not apply a stan-
dardization on gyrification data, as we only included data with the same
metric for the cluster analysis. To validate the choice of number of
clusters, Jaccard-bootstrapping with 100 permutations was run (func-
tion clusterboot implemented in R) for all possible cluster solutions of k
= 2 to k = 10. Clusterboot resamples the data and computes Jaccard
similarities of the original clusters to the resampled data. It then uses the
mean over these similarities for stability of clusters (Hennig, 2007). For
further validation of choice of cluster solution, cluster analysis and some
of the post-clustering analyses were run again on 80% of the initial data.

2.4.3. Post-clustering analyses

To evaluate which brain regions had the highest impact (importance)
on forming the cluster solution, effect sizes were calculated for each
brain region. To evaluate the association with basic cognition, we ran an
ANOVA for the neuropsychological tests reported above as well as for
the clinical parameters hospitalization, age of onset, and Medication-
Index. Furthermore, we applied a y*test for association between our
prenatal risk-score as well as the birth-complication risk-score and
clusters. Likewise, we ran binomial tests for comorbidity vs. no comor-
bidity to evaluate if our cluster solution also maps on an overall index of
comorbidity. We also ran subsequent binomial tests to see if diagnostic
groups are equally distributed over clusters and no diagnostic group is
over- or underrepresented in a cluster.

Secondary goal of this study was to see if diagnostic groups show
significant different gyrification patterns to exclude the possibility of
diagnostic groups being the best solution to explain gyrification
variability.

Even though scanning protocols between the two sites were
harmonized (Vogelbacher et al., 2018) and a quality assurance protocol
was followed (Vogelbacher et al., 2019) we ran a t-test for the gyr-
ification data to consider possible effects of the different scanning sites.
Results did not yield any significant differences in gyrification between
the two sites (p<.0007 after correction for multiple comparisons; see
complete output table here: https://github.com/julia-pfarr/cluster supp
lements/tree/main/supp_analyses).

Furthermore, although we did not include a healthy control group in
the primary analysis of this paper (=cluster analysis), as the goal was a
transdiagnostic one, we plotted the distribution of gyrification in a

DSMGroup
MDD
BD

. ’ M * SZA

e sz

Fig. 1. Scatterplot of gyrification data as distributed in our N = 1028 sample, coloured by DSM-groups. Figure shows a diffuse distribution of DSM-IV-TR diagnostic

groups embedded in the two gyrification dimensions.

Note: Axes of the figure are the two PHATE dimensions after applying the PHATE (=Potential of Heat diffusion for Affinity-based Transition Embedding) algorithm
for dimensionality reduction to our data matrix. Values of the axes represent the normalized affinities after embedding distances and affinities of the data matrix

using Multidimensional Scaling method (Carroll and Arabie, 1998).
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healthy control group (n = 901; mean age 34,91; m = 332, w = 569)
together with the gyrification distribution of our newly formed cluster
groups as an additional reference for comparison or interpretation of the
clusters.

3. Results
3.1. Pre-clustering results

Table 1 shows descriptive statistics and results of the Welch-ANOVA
for clinical parameters of DSM-labelled groups. Descriptive analyses of
the gyrification data showed to be normally distributed over subjects
and identified expected variability in range and mean of individual areas
(see Supplement S2.-Table 1 for descriptive table). Correlation of gyr-
ification data between brain areas yielded overall low to moderate
correlation with highest correlation coefficient being r = 0.66 (p<.001)
between the right and left superiorfrontal cortex (see Supplement S3.-
figure 1 for complete correlation matrix). Furthermore, correlation of
gyrification data between subjects showed overall high correlation co-
efficients (see Supplement S4.-figure 2 for correlation matrix), indi-
cating a rather globally underlying relationship between subjects based
on their gyrification than a local one.

Fig. 1 shows a diffuse distribution of DSM-labelled groups in the
reduced 2-dimensional scatterplot of gyrification data, hence indicating
that clinical diagnoses do not cluster patients in homogeneous gyr-
ification groups.

3.2. Clustering results

Decision on number of clusters was made using the elbow method on
a screeplot, which was based on the total-within-distances of 10 clusters
(for screeplot and dendrogram see Supplement S5.-figure 3a and b).
Screeplot indicated the optimal number of clusters to be 3. Boot-
strapping showed cluster 1 to be highly stable and cluster 2 and cluster 3
to be quite stable (cluster stabilities: cluster 1 = 0.79, cluster 2 = 0.75,
cluster 3 = 0.72; (Mount and Zumel, 2019); cluster stabilities for further
cluster solutions are listed in Supplement S6). Results of the cluster
analysis on 80% of the initial data yielded similar results (with some
expected variation) and can be found in Supplement S7.

3.3. Post-clustering results

Descriptive statistics and Welch-ANOVA results of the clusters are
shown in Table 2. Subsequent binomial tests showed that diagnostic
groups are equally distributed over clusters and no diagnostic group is
over- or underrepresented in a cluster (see Supplement S8.-Table 2).
Additionally, in Fig. 2 mean gyrification (sorted frontal-parietal-

Table 2
Descriptives for our k = 3 cluster solution.
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temporal-occipital) for clusters was plotted. Results show, that 1) clus-
ter analysis identified a global, rather than local pattern of gyrification
and 2) cluster 2 globally shows highest, cluster 1 moderate and cluster 3
lowest gyrification. Further, some local variations in gyrification can be
found mainly in cluster 1: different to its global pattern (mid-high gyr-
ification), cluster 1 shows highest gyrification in the left pars oper-
cularis, pars orbitalis, pars triangularis, and the right transverse
temporal cortex. In the left caudal anterior cingulate, the left and right
parahippocampal gyrus as well as the left and right entorhinal cortex,
cluster 1 shows lowest gyrification (see Supplement S9.-Table 3 for
ANOVA post-hoc tests for gyrification between data-driven groups).
Fig. 3 shows brain regions with 1%>0.14 (see Supplement S13.-Table 5
for all effect sizes).

Cluster 3 shows overall lowest performance (see Fig. 4) and ANOVA
yielded significant differences (p<.05, Bonferroni-correction for multi-
ple comparisons) for VF, DSST and CBBT. Prenatal-risk score showed
significant association with our cluster solution (){2(4):11.035,
p=.026). Largest contribution to the Xz statistic comes from cluster 2
which shows more subjects without and less subjects with prenatal risk
than statistically expected. Cluster 3 shows significantly less subjects
without prenatal risk and trends toward more subjects with prenatal risk
than statistically expected (see Table 3). Birth-complication score was
not significantly associated with our cluster solution. Binomial tests for
comorbidity (comorbidity vs. no comorbidity; test proportion 0.42/
0.58) did not yield significant results (cluster 1: p=.208, cluster 2:
p=.368, cluster 3: p=.362).

Results of the ANOVA between diagnostic groups yielded significant
difference of gyrification in only seven of the 68 brain areas included
(p<.05; see Supplement S10.-Table 4 and Supplement S11.-figure 4 for
results).

The plot of gyrification data in a healthy control group together with
the distribution of gyrification in our cluster groups shows that the
gyrification distribution of the healthy control group is the most similar
to the gyrification distribution in cluster group 1 (see Supplement S12.-
figure 5).

4. Discussion

In this study we investigated gyrification as a cortical phenotype and
its relationship to basic psychopathology rather than DSM-IV-TR di-
agnoses using a data-driven multivariate approach. Cluster analysis
identified three clusters which did not delineate along diagnostic groups
but rather point towards transdiagnostic, global gyrification patterns
underlying a considerable portion of variation in the data. These clusters
are characterized by both differences in gyrification as well as differ-
ences in cognitive performance and early environmental risk. Main
differences in gyrification between clusters and regions important for

Cluster n Frequency DSM-groups within Sex

cluster

Mean age

Mean Medication-
Index

Mean Age of
Onset

Mean Hospitalization Duration in
Weeks

1 256  MDD=193, 75.4%
BD=36, 14.1%
SZA=12, 4.7%
S7=15, 5.9%
MDD=292, 77.2%
BD=48, 12.7%
SZA=11, 2.9%
$7=27, 7.1%
MDD=298, 75.6%
BD=45, 11.4%
SZA=21, 5.3%
$7=30, 7.6%

40.04
34.24
38.74
<0.001%*

p Welch-ANOVA/ <0.001%*
2

X

91 m, 165 f

118 m, 260 f

181m, 213 f

26.92 16.71 1.53

23.05 16.48 1.62

26.51 19.49 1.79

<0.001** .238 149

" p<.001.

57



J.-K. Pfarr et al.

NeuroImage 281 (2023) 120349

325
300 ¥ r~\
M . 7
J > . g cluster
g | V — ¥ T 7
E] / V \ — Cluster 1
Q275 (8 y, 1 Cluster 2
N v
y P \ Cluster 3
\ J 3 '
250 -
’ v
2 5 5 2 2 5 8 ¢ 5 5 2 3 $ 5 3 3 3 2 5 3 8 % % 3 %5 3% 8 3 % 35 %
28 3 g 2 & 2 5§ & 3 8 3 § s g £ £ £ 8 € £ 5§ 5§ 8 5 5 8 s € 3 £ 3
5 = = 3 3 : & 3 2 2 =2 B 5 2 8 8 8 § 8 8  ® g3 ©® ©® 5 5 3 5 § £
€ 5 % o ¢ > 8 g 2 ? 3 B g 9 ¢ ¥ 3 g 8 8 8 ® s E T BT S 2 © 3
S 3 T 2 £ s T § 5§ § & £ ¢t 5 £ 2 @ ¥ & £ § £ 8 5§ £ 8 8 @& £ a
© 3 £ & y» 58 3 3 £ o 3 3z 38 8 § E 5 % § £ & 5§ § 8 3 £ E £ 8§ 8
g = § ¢ £ ¢ 5 § & B § @8 £ £ 3 & 2 g8 § § 8§ E 2 § s - % 8
g s g e s 5 L o2 & T 8 5 & § 2 & 5 i 3 8 5 2 = 3 g <
g £ = & E T & & 4 2 & o s 9 % 3 8 =2 2 B 3 ¢ s g
° ° L g 3 % 38 L =8 a8 © H ¢ £ & 3 : 2 k|
g 9 @ 2 & 3 3 =
[SRNSY g o
S 0o = 2
]
H
3
Left Hemisphere - Order:Frontal, Parietal, Temporal, Occipital
325 %
30.0
. N\ v . 7
¥ “ | e 3 * cluster
. F ¢
o T .
] y /| ! f Cluster 1
S 275 _— — Cluster 2
AN \\. f— ‘ Cluster 3
. Y, - ¥ ¥
250 v v
e 5§ & £ ¢ & 5§ & g £ 8 ¢ 8 8 35 5 85 8 8 2 3 3 8 % % 8 35 5 8 5 3 3 2
& 2 2 £ & 3 3 3z § 8 2 2 5§ 5§ 5§ 2 5§ 5 5§ &8 5 § 5§ 5§ ¢S 5 5 5 5 5 2 5 @2
s =2 £ 3 3 = £ z B 3 % ¢ 5 3 5 £ 8 8 8§ 3z 8 &8 B 88 3 & & B 5 8 5 § E
€ ®© % 6 ¢ % ©® % {m 5 S ® § ® ¥ T T 2 3 § 3 ® 8 ® w E 8 ® 8 o O 3
§ s 8 ¢ & 5 5 ® © & = 5 £ & & £ g 3 2 g £ £ ¢ &5 & 5 5 5 3 £ £
g £ § § £ & &8 £ 5 & § &8 £ 5 & 5 2 g g 2 g2 £ g5 E 8 5 £ 88 8 g % -3
g 2 & » &8 &8 % £ » z 3 & & 8 § E 5 5 ® 5§ § g E g 3 e E 5 8 8
g = 7 8 £ £ € 5 £ 8 gz g g8 3 E £ 8 & & & 2 §B g8 5 §F 2 s 8 ~ g g
d o 2 58 £ 2 4 58 5 b &8 &g & 2 £ T & B OB i 5 & 5 % 2 5 £ s
2 5 % 6 E E &£ & o B ¢ 53 5 B g £ £ 8 2 3 & 5
© £ 3 3 = 4 & = o @ s = ¢ 5§ 8 2 $ 2 ki
& & @ g2 o a3 32
3 8 g 2
5
§
a

Right Hemisphere - Order:Frontal, Parietal, Temporal, Occipital

(b)

Fig. 2. a&b Plot of mean gyrification index per cluster for every region, ordered frontal-parietal-temporal-occipital. a) Left hemisphere, b) right hemisphere.

forming the cluster solution are mostly located in association cortices
(superior frontal gyrus, middle frontal gyrus, cingulate cortex, superior
temporal cortex, superior and inferior lateral parietal cortex, para-
central, postcentral, and precentral gyrus as well as precuneus; see
Fig. 3) which further underlines transdiagnostic similarities in gyr-
ification. The lack of significance of DSM-group analyses points toward
super-ordinate factors that are only indirectly related to diagnostic
categories. These findings have important implications for our under-
standing of data-driven classification based on biological parameters in
general, as well as the usefulness of gyrification/cortical folding as a
marker of risk for psychiatric disorders or life-time psychopathology:
First, our findings of the cluster analysis showed global vs. regional
variations of gyrification and transdiagnostic effects in specific regions.
The identified clusters are characterized by an overall global pattern,
namely a separation by the degree of gyrification over all brain regions,
as well as an even distribution of diagnostic groups over clusters. This

was also confirmed by an additional cluster analysis including only 80%
of the data. Cluster 1 however shows some variation apart from its
global gyrification pattern, mainly in fronto-temporal regions. This can
be embedded in results of previous studies of gyrification showing
involvement of fronto-temporal regions in (early) risk for psychopa-
thology (Evermann et al., 2020; Pham et al., 2021; Rosa et al., 2021), as
cluster 1 also showed to be highly stable after bootstrapping. It
furthermore speaks for the argument, that a transdiagnostic evaluation
of global gyrification patterns is well suited to evaluate the relationship
of gyrification and basic risk factors for psychopathology. This is sup-
ported by the fact that these local shifts in fronto-temporal regions only
appear present in our newly formed, transdiagnostic cluster but not in
the DSM-defined group comparison (see Supplement S11.-figure 4).
Yet, our cluster solution is associated with cognitive and prenatal
markers of psychopathology, which cross diagnostic boundaries, and
rather reflect transdiagnostic risk for life-time psychopathology: cluster
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Fig. 4. Boxplots for neuropsychological test scores (z-standardized), grouped by clusters. Cluster 3 shows significantly poorest performance across all tests.
Note: CBTT=Corsi block-tapping test; d2=d2 Test of Attention; DSST=Digit Symbol Substitution Test; VF=Verbal fluency.

3 shows overall lowest gyrification and overall lowest performance in
cognitive tasks. Furthermore, cluster 3 contains more individuals with a
prenatal risk and less individuals without prenatal risk than statistically
expected. Although not significantly, cluster 3 also has the highest mean
in hospitalization duration as well as the Medication-Index. Being able
to relate overall low gyrification, low performance in cognitive tasks,
and higher prenatal risks further supports the hypothesis of a high
impact of early developmental influences to manifest in gyrification
(Al-Haddad et al., 2019; Birnbaum and Weinberger, 2017; Pham et al.,
2021). Although there are no significant differences between cluster 1
and 2 in prenatal risk, birth complications, cognitive tasks or clinical
variables, plotting the gyrification distribution of our newly formed
clusters together with the gyrification distribution of a healthy control
group (Supplement S12.-figure 5) points toward cluster 1 showing the
distribution most similar to gyrification in individuals without psychi-
atric disorders. Cluster 1 also does not show significant results of pre-
natal risk (other than cluster 2; Table 3) which also speaks for this cluster
being the most “normative”. Future studies could therefore apply a
cluster analysis on gyrification data of subclinical populations for
identification of similar gyrification patterns of individuals without
clinical psychopathology but high prenatal risk. This could break down
the actual potential of gyrification as a neurobiological marker for

mental illness proneness.

Our cluster groups do show different gyrification patterns, but dif-
ferences are partly restricted to particular brain regions. Cluster 3, in
comparison to Cluster 1 and 2, shows significant lower gyrification in
almost every brain region. Significant differences in local gyrification
between these two clusters can primarily be found in the association
cortices. This is in line with the fact, that diverse or transdiagnostic
symptom representations are consistently found to be rather associated
with alterations in association cortices than regions of lower hierarchy
(Sydnor et al., 2021). In addition, brain regions important for discrim-
inating groups of individuals and hence forming our cluster solution
(regions with effect-sizes of n2>0.14; Fig. 3) can be characterized as
brain regions of association cortices (Sydnor et al., 2021). Our cluster
solution therefore might reflect that variability in association cortices is
higher and that group differences based on gyrification should rather be
investigated in those areas, as these tend to have the power to
discriminate between groups. Together with evidence showing that late
prenatal and postnatal cortical folding primarily happens in association
cortices (Matsuda and Ohi, 2018), our cluster solution can serve as a
basis for further narrowing brain regions included for association with
particular prenatal and postnatal variables.

Given the significant difference in mean age between the cluster
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Table 3

Results of the y>-test of prenatal risk * cluster groups. Adjusted residuals >1.96
or >—1.96 indicate a significantly different number of expected counts (positive
value = more counts than expected; negative value = less counts than expected).
Largest contribution to the y? statistic (y*(4)=11.035, p=.026) comes from
cluster 2 which shows more subjects without and less subjects with prenatal risk
than statistically expected. Cluster 3 shows significantly less subjects without
prenatal risk than statistically expected.

Missing 0 =no 1 =atleastone  Total
values prenatal risk  prenatal risk
Cluster Count 14 108 134 256
1
Expected 12.2 117 126.8
Count
Adjusted .6 -1.3 1
Residual
Cluster Count 14 198 166 378
2
Expected 18 172.8 187.2
Count
Adjusted -1.2 3.3 -2.7
Residual
Cluster Count 21 164 209 394
3
Expected 18.8 180.1 195.1
Count
Adjusted 7 -2.1 1.8
Residual
Note:.

Count = Observed number of subjects within the respective cluster in our data.
Expected Count = Statistically expected number of subjects within the respec-
tive cluster in our data.

Adjusted Residual = raw residuals (or the difference between the observed
counts and expected counts) divided by an estimate of the standard error.

groups, discussion of this result is needed. Even though gyrification
shows relative stability over lifetime in comparison to other morpho-
metric measurements, significant age effects on gyrification have been
shown in previous studies (e.g., (Hogstrom et al., 2013)). With the data
included without prior control for age, we cannot exclude an effect of
age on our cluster solution but there are multiple arguments which let us
conclude that age did not play a significant role: 1) Age only showed a
small effect size of ;12:0.036 for our cluster solution. 2) Brain areas
identified by Hogstrom et al. (2013) with linear age effects for gyr-
ification are indeed brain areas that contributed strongly to our cluster
solution (4? between 0.129 to 0.241) but so did frontal lobe areas
(amongst others) as well which Hogstrom et al. (2013) found to be
non-linear and not significantly correlated with age. Furthermore,
additional regression analyses showed that age is a significant predictor
for gyrification in some of the brain areas but not systematic for the
brain areas that contributed most to our cluster solution (see Supple-
ment S13.-Table 5). 3) The healthy control group with its mean age of
34,91 showed the most similar pattern with cluster 1. The healthy
control group is significantly younger than cluster 1 but still the most
similar in gyrification. 4) Cluster 1 and 3 are not significantly different in
age (p=.610) but in gyrification. Future studies could build upon this
result by e.g., comparing cluster solutions between samples with and
without age regressed out prior to clustering.

Sex also showed a significant difference between the cluster groups
(X2(2):18.586, p<.001, Cramer’s V = 0.27). Sex composition in cluster
1 was not significant, cluster 2 contains significantly more female and
less male individuals than expected. Cluster 3 contains significantly
more male and less female individuals than expected (see output table
here: https://github.com/julia-pfarr/cluster_supplements/tree/main/s
upp_analyses). Previous studies identified significant sex differences in
gyrification which are restricted to certain brain areas (e.g., (Forde et al.,
2017; Mutlu et al., 2013; Papini et al., 2020). We therefore need to
acknowledge that our cluster solution might partly be due to the effect of
sex which should be addressed in future studies.

NeuroImage 281 (2023) 120349

Using DSM-IV-TR diagnoses for definition of subgroups within the
cohort had little, if any, power in discriminating global gyrification
patterns (see Supplement S10.-Table 4 and Supplement S11.-figure 4).
Mean comparison of gyrification between diagnostic groups yielded
significant differences in only seven of the 68 brain regions included in
our analysis. As shown in Fig. 1 this is not a surprising result, as distri-
bution of groups within gyrification dimensions is diffuse and do not
tend to form separate data-clouds. This does not mean that DSM-labelled
grouping is not an appropriate approach for investigating local differ-
ences is gyrification specific to diagnoses, as small, locally based effects
cannot be captured with a simple mean comparison. However, it could
imply that meaningful impacts of altered gyrification on psychopa-
thology in general are missed due to the categorical clinical grouping.

This study contributed to approaching the challenge of population
sorting in psychiatric neuroimaging studies. A priori defined groups
based on clinical diagnoses limits the power of brain structural and
functional analyses by oversimplifiying the neural correlates associated
with mental disorders (Bandettini et al., 2022). Classic Brian Wide As-
sociation Studies (BWAS) are helpful and necessary for identifying the
most common effects over a large study cohort, but the most common
effects do not necessarily equal the most meaningful effects for a
particular disorder (Gratton et al., 2022). With data-driven approaches
like ours, biological underpinnings of a disease can be detected which
would have been left unknown with a classic BWAS approach.

There are some limitations to our study that need to be addressed.
Individuals with a diagnosis of MDD were overrepresented in our sample
(see output of a cluster analysis with MDD patients only of our sample
here: https://github.com/julia-pfarr/cluster_supplements/tree/mai
n/supp_analyses/MDDonly). For a more comprehensive trans-
diagnostic evaluation the sample would need a more even ratio of
diagnostic groups. To be able to have more certainty on parameters
regarding the cluster analysis (which was the main analysis) we did not
go with a smaller, matched sample but went with the higher sample size.
Cluster analysis is an explorative approach. It is expected that changes,
e.g., in sample size yield a different cluster solution than ours. Results of
cluster analyses are also highly dependent on the clustering algorithm
used which is based on external characteristics unique to the data
included, making comaprisons between studies with different clustering
algorithms difficult. Furthermore, as we only included brain data but no
other phenotypic data in our initial cluster analysis, the identified
clusters can only be certainly characterized by their gyrification data
and pattern but not as holistic defined subgroups. As well, we only
included rather broad brain regions (DK40 atlas). Using another, more
specific brain atlas might capture more complex patterns in the data.

5. Conclusion

Our study is the first to identify gyrification patterns based solely on
themselves. Explorative, data-driven approaches like ours can help to
elucidate if the brain imaging data on hand actually has the potential to
find meaningful associations in relation to diagnostic categories (as
commonly described by univariate approaches) or if the underlying
biological structure implies another embeddedness of psychopathology.

Our findings implicate transdiagnostic risk factors for life-time psy-
chopathology to be associated with global (and some regional) variation
in gyrification rather than associations with narrowed diagnostic cate-
gories. Results of this study might thus have implications in the process
of early detection of psychopathology as identified gyrification patterns
are not bound to specific diagnostic categories but offer a broader
perspective on psychopathology risk and therefore on risk evaluation.
Group-analyses based on DSM categories thus might not be the best way
to actually detect meaningful associations. Therefore, finding trans-
diagnostic similarities regarding gyrification and underlying factors
responsible for its variation might be more promising for elucidating the
global relationship of gyrification and psychopathology.
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ARTICLE INFO ABSTRACT

Keywords: Schizotypy has become an increasingly important construct for elaborating psychotic disorders that vary along
Schizotypy the schizophrenic spectrum. However, different schizotypy inventories vary in conceptual approach and mea-
Prodrome surement. In addition, commonly used schizotypy scales have been seen as qualitatively different from screening
Is’zgl;(;p:;:ema instruments for prodromal schizophrenia like the Prodromal Questionnaire-16 (PQ-16).

Our study investigated the psychometric properties of three schizotypy questionnaires (the Schizotypal Per-
sonality Questionnaire-Brief, Oxford-Liverpool Inventory of Feelings and Experiences, and the Multidimensional
Schizotypy Scale) as well as the PQ-16 in a cohort of 383 non-clinical subjects. We initially evaluated their factor
structure using Principal Component Analysis (PCA) and used Confirmatory Factor Analysis (CFA) to test a newly
proposed composition of factors.

PCA results support a three-factor structure of schizotypy that accounts for 71 % of the total variance, but also
shows cross-loadings of some schizotypy subscales. CFA of the newly composed schizotypy factors (together with
an added neuroticism factor) shows good fit. Analyses including the PQ-16 indicate considerable overlap with
measures of trait schizotypy, suggesting that the PQ-16 might not be quantitatively or qualitatively different from
schizotypy measurements.

Taken together, results indicate that there is good support for a three-factor structure of schizotypy but also
that different schizotypy measurements grasp facets of schizotypy differently. This points towards the need for an
integrative approach for assessing the construct of schizotypy.

Factor analysis

1. Introduction

Schizotypy describes a phenotype capturing a broad set of
schizophrenia-like trait representations and thereby illustrating
vulnerability for schizophrenia-spectrum disorders, which makes the
schizotypy construct increasingly important for schizophrenia research
(Barrantes-Vidal et al., 2015; Mason, 2015; Nelson et al., 2013). Similar
to schizophrenia, schizotypy is often conceptualized using a three-factor
construct (Fonseca-Pedrero et al., 2021; Kwapil and Barrantes-Vidal,
2015; Polner et al., 2021), comprising positive, negative, and disorga-
nized facets: Positive schizotypy includes psychotic-like experiences
such as perceptual biases and odd beliefs, negative schizotypy is

characterized by deficits in functioning such as flattened affect, dimin-
ished motivation, and social disinterest, and disorganized schizotypy is
characterized by disruptions in the organization and expression of
thought, speech, behavior, and emotions.

The construct of schizotypy is well suited to further elucidate
schizophrenia-spectrum disorders (SSD) by associating schizotypy not
only with clinical features of SSD but also in studies exploring genetic
risk (Ettinger et al., 2014; Kemp et al., 2021; Meller et al., 2019b;
Nenadic et al., 2022; Walter et al., 2016), as well as neurobiological
(Ettinger et al., 2015; Kirschner et al., 2022; Meller et al., 2019a, 2020;
Pfarr and Nenadi¢, 2020; Sahakyan et al., 2020; Tonini et al., 2021) and
cognitive correlates (Carrigan and Barkus, 2017; Ettinger et al., 2015;
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Karamaouna et al., 2020; Sahakyan and Kwapil, 2016; Steffens et al.,
2018).

While there is some consensus that schizotypy, like schizophrenia,
should be seen as a multidimensional construct varying along a con-
tinuum of health and illness, terminology and assessment of schizotypy
is still used heterogeneously (Oezgen and Grant, 2018), prompting the
need for further evaluation and definition of the construct (Rivera Tapia,
2022; Grant et al., 2018; Kwapil and Barrantes-Vidal, 2015).

1.1. Delineating schizotypy

Although schizotypy is not (always) necessarily seen as a psycho-
pathological construct itself, it is an important part of the psychosis
continuum (van Os et al., 2009), which spans from non-clinical mani-
festations of schizotypal traits to those associated with schizophrenia
spectrum pathology. This continuity is indeed described elaborately in
the literature (e.g., Claridge and Beech, 1995; Grant et al., 2018; Kwapil
and Barrantes-Vidal, 2015). However, within the psychosis continuum,
conceptual ambiguity about the construct of schizotypy makes it diffi-
cult to define what is part of this continuum and what these parts of the
continuum actually mean with regards to content (Grant et al., 2018). A
unifying conceptualization of the construct of schizotypy therefore re-
mains open.

Previous work has studied associations of schizotypy with other
psychopathological dimensions separately, which is important to gain
more conceptual clarity. Lewandowski et al. (2006) elaborated on as-
sociations of schizotypy with symptoms of mood and anxiety disorders,
finding anxious and depressive symptoms to be highly correlated with
positive psychometric schizotypy in a non-clinical sample. More
recently, Kemp et al. (2018) included disorganized schizotypy and found
that clinical and non-clinical manifestations of negative emotions were
better accounted for by disorganized schizotypy. In another study, af-
fective and anhedonic features were found to be correlated with nega-
tive schizotypy (Kwapil et al., 2020). Diminished affect and anxiety
often result in decreased social behavior (de Lijster et al., 2018; Kup-
ferberg et al., 2016), raising the question to which extent affective or
anhedonic features as well as anxiety are part of schizotypy conceptually
(or only result in similar behavioural markers) and how they should be
considered when measuring psychometric schizotypy. As another
example, non-mood psychotic disorders vs. SSDs show qualitatively
different symptoms and can be clearly separated from each other on a
categorical level but overlap on a dimensional level. As a part of the
psychosis continuum, it is obvious that schizotypy should also represent
these diverse facets. However, it is still unclear whether and to which
amount related mood and anxiety symptoms and/or varying symptom
representations within the spectrum of schizophrenic disorders should
also be considered when measuring the construct of schizotypy. Recent
findings (e.g., Kemp et al., 2018; Kwapil et al., 2020) suggested that
mood and anxiety symptoms are most strongly associated with the
disorganized schizotypy dimension, which appears to involve dysregu-
lation of the experience of emotion, as well as disorganized thought,
communication, and behavior.

Schizotypy has also been linked to other non-clinical personality
concepts, e.g., the Big-Five personality traits or the PID-5 factors (Per-
sonality Inventory for DSM-5) (Cicero et al., 2019; Kemp et al., 2022).
However, these associations need to be interpreted with caution: for
example, distress-based wording for assessing neuroticism can indeed
tap into schizotypy dimensions when those items are phrased distress-
based, too (Asai et al., 2011; Oezgen and Grant, 2018). If this overlap
should be considered by using items that reflect neuroticism or not, is
still in debate. Note, however, that Kemp et al. (2022) found that as-
sociations of the schizotypy facets (using the Multidimensional Schizo-
typy Scale) with the PID-5 domains did not appear to be due to
redundant items in the two measurements.

Moreover, there is some inconsistency about whether capturing
psychosis proneness with certain measurements should be qualitatively
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considered the same as measuring schizotypy (Bang et al., 2019). Ar-
guments have been offered that measurements aiming to screen for
prodromal and psychotic syndromes are distinguishable from schizo-
typy measurements (e.g., Prodromal Questionnaire, PQ) (Ising et al.,
2012; Loewy et al., 2005). More precisely, the PQ-16 represents a low-
level screener of mostly positive psychotic-like experiences (PLE)
(McDonald et al., 2019) to capture prodromal symptom representations.
However, the PQ-16 does not consider the important aspect of time for
determining a prodromal stage. Previous work on the relationship of
schizotypy measurement and the PQ-16 found substantial correlation as
well as a moderating effect of schizotypy for number of experienced
PLEs (Kline et al., 2012), raising the question if the PQ-16 actually
qualitatively differs from common schizotypy measurements.

In a study by Fonseca-Pedrero et al. (2016) the approach of latent
profile analysis (LPA) was applied to schizotypy as well as prodromal
measurements to identify different psychometric profiles of individuals
with regard to schizotypy and clinical high-risk symptoms. Although the
authors indeed found moderately high correlations between the PQ-16
and the positive and disorganized subscales of the included schizotypy
measurements, the PQ-16 appeared to be useful to distinguish between
the two classes of “high positive schizotypy” and “psychosis high risk”.

1.2. Conceptualisations of schizotypy measurements

In a comparative study Oezgen and Grant (2018) investigated and
compared the outcome of three commonly used schizotypy question-
naires in one sample and showed that results indeed depend on the
particular schizotypy measurement used. The variability across schizo-
typy measurements lies not only in range and length but also in content
and factor-structure (Cohen et al., 2015; Mason, 2015). This can be
mostly attributed to the fact that current schizotypy measurements were
derived from different conceptualizations of the schizotypy construct
and different scale development methods, which are shortly outlined in
the following:

Early schizotypy measurements like the Wisconsin Schizotypy Scales
(WSS) can be described as distress-based, aimed at capturing different
schizophrenia-like symptom features (i.e., physical anhedonia, percep-
tual aberration, magical ideation, social anhedonia) on separate scales
(Chapman et al., 1995). For scale development, the authors of the WSS
closely followed the checklist of schizotypic experiences proposed by
Meehl (1964), hence items in the WSS were chosen based on detailed
trait specification using rationale scale development methods. Subse-
quent analysis showed that the underlying dimensional structure of the
WSS is a two-factor (positive and negative) one, lacking a disorganized
dimension (Gross et al., 2014; Kwapil et al., 2008). In order to not
obfuscate, it should be noted that the WSS sometimes are referred to as
the Chapman Psychosis Proneness Scales (Smith et al., 2016).

The Schizotypal Personality Questionnaire (SPQ) by Raine (1991) is
another distress-based questionnaire that shows considerable overlap in
latent factors with the WSS (Wuthrich and Bates, 2006). However, the
SPQ is technically not a measure of schizotypy: The SPQ was developed
to assess schizotypal personality disorder traits based on the nine diag-
nostic criteria of schizotypal personality disorder defined in the Diag-
nostic and Statistical Manual of Mental Disorders (DSM-III-R) (American
Psychiatric Association, 1987). While Raine et al. (1994) argue for a
three-factor solution of the SPQ, confirmatory factor analyses in other
studies are still inconclusive regarding the actual underlying factor
structure (Gross et al., 2014; Moussa-Tooks et al., 2021; Zhang and
Brenner, 2017).

The Oxford-Liverpool Inventory of Feelings and Experiences (O-
LIFE) (Mason et al., 1995) initially identified a four-factor structure for
schizotypy based on exploratory factor analysis of a large set of schiz-
otypy and personality items. Mason and Claridge (2006) subsequently
suggested that schizotypy is limited to the first three factors, whereas
Oezgen and Grant (2018) suggested a four-factorial solution when
comparing the O-LIFE to the SPQ and the WSS. The authors of the O-LIFE
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developed the scale in an atheoretical manner based on a wide range of
scales, i.e., the Chapman's anhedonia scales (Chapman et al., 1976),
Eysenck's Personality Questionnaire (EPQ) which includes neuroticism
(Eysenck and Eysenck, 1975), or Claridge's Schizotypal Trait Question-
naire (STQ) which also taps on Borderline personality (Claridge and
Broks, 1984). As a result, the O-LIFE also comprises several “atypical”
schizotypy features.

The most recently developed schizotypy questionnaire for assessing
schizotypy within the general population, the Multidimensional Schiz-
otypy Scale (MSS) (Kwapil et al., 2018b), follows the three-factorial
model of schizotypy and its subscales are designated as positive, nega-
tive and disorganized dimensions of schizotypy. The authors' assump-
tions were trait-based and items were then phrased to map on those,
considering the multidimensional structure of schizotypy and non-
distress based as well as culturally unbiased wording (Kemp et al.,
2020; Kwapil et al., 2018b). Using confirmatory factor analyses, Kwapil
et al. (2018a) reported that, as hypothesized, a three-factor structure
provided the best fit for the items. However, Christensen et al. (2019)
suggested that the negative schizotypy factor comprised two facets (af-
fective and social anhedonia).

For a brief overview of the development of the different schizotypy
scales regarding conceptualization, content, as well as their relationship
to each other see Fig. 1.

1.3. Goals of the present study

Taken together, it is unlikely that the current commonly used
schizotypy questionnaires actually share an identical latent structure
and that the subscales of the different questionnaires can be used
interchangeably. Understanding the scales' overlap and divergence as
well as finding a unifying approach to assess schizotypy and its multi-
dimensional structure are important for dealing with heterogeneity
within the construct itself and further to use it as a useful framework for
exploring schizophrenia-spectrum psychopathology. Detailed psycho-
metric evaluation of the schizotypy measurements as well as the use of
techniques to investigate and confirm overall dimensionality and factor
structure of the construct are needed to gain further insights.

In the present study, we analyzed different schizotypy scales
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obtained in a young population sample of psychiatrically healthy sub-
jects to address the questions of overlap (vs. differences) between
conceptualization and psychometric features across the instruments
introduced above, as well as their relation to the PQ-16 inventory, a
commonly used questionnaire developed for assessing of prodromal
signs within the schizotypy continuum. We hypothesize, that schizotypy
measurements show psychometric results congruent to their method of
development but differences among each other in psychometric prop-
erties as well as with regards to content. Given that the psychosis pro-
drome is conceptualized to be an expression of the schizotypy
continuum and the fact that the PQ-16 is largely comprised of items
assessing experiences found in positive schizotypy, we expect that the
scale will exhibit substantial associations with the schizotypy ques-
tionnaires, especially measures of positive schizotypy.

2. Methods
2.1. Study cohort

We included 383 psychiatrically healthy participants (mean age =
23.97 years, SD = 4.18; 250 females, 133 males) recruited from the local
community by circular emails, local and online advertisements. The
study cohort overlaps with a recently analyzed cohort published in
Nenadic et al. (2021). Prior to participation, individuals were screened
using the screening instrument of the Structured Clinical Interview for
DSM-IV (Wittchen et al., 1997) to ensure the absence of any current or
former clinical psychiatric condition(s). Further exclusion criteria were:
non-native German speaker and/or not of central European descent,
psychotropic medication, general intellectual impairment/learning
disability, defined as intelligence quotient (IQ) lower than 80 (estimated
with the German Mehrfach-Wortschatz-Intelligenztest-B) (Lehrl et al.,
1995) and exceedance of the PQ-16 cut-off as defined by Chen et al.
(2016) (see Section 2.2.4 for further description). We did not specifically
exclude participants with a first-degree relative suffering from a psy-
chotic disorder.

Individuals gave written informed consent prior to participation and
received financial compensation afterwards. Our study protocol was
approved by the local Ethics Committee of the School of Medicine,

Distress Conceptualization:
SPQ Theory
based
Cognitive Perceptual
Interpersonal -
Disorganization PQ Clinical
> Psychotic-like
experiences Factor
WSS analytic
Physical Anhedonia
Perceptual Aberration
Magical Ideation
Social Anhedonia OLIFE
- Unusual Experiences
Cognitive Disorganization MSS
Introvertive Anhedonia e
Impulsive Nonconformity Positive
Negative
Disorganized
! I ;
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Fig. 1. Overview of different schizotypy scales.

Year of development

Abbreviations: WSS=Wisconsin Schizotypy Scales, SPQ = Schizotypal Personality Questionnaire, OLIFE = Oxford-Liverpool Inventory of Feelings and Experiences,

PQ = Prodromal Questionnaire, MSS = Multidimensional Schizotypy Scale.

210

67



J.-K. Pfarr et al.

Philipps-University Marburg (protocols no. 61/18 and 79/18), accord-
ing to the latest version of the Declaration of Helsinki (World Medical
Association, 2013).

2.2. Psychometric schizotypy self-report measurements

Participants received a personalized link to an online-survey plat-
form (https://www.soscisurvey.de/; Leiner, 2019) to complete the
schizotypy questionnaires within a larger test battery. All participants
included in analyses had fully completed questionnaires.

Following the original validation studies (Compton et al., 2007;
Kwapil et al., 2018b; Mason et al., 1995; Mason and Claridge, 2006), we
calculated the subscores and sumscores of all questionnaires used,
leading to a total of 13 (sub)scales for analyses. Given that our emphasis
was on the dimensional structure of schizotypy, we focused our analyses
on the dimensional subscales rather than total schizotypy scores. All
questionnaires were administered in their German versions which were
already used in previous studies (SPQ—B: (Klein et al., 1997), O-LIFE:
(Grant et al., 2013), MSS: (Pfarr and Nenadi¢, 2020; Nenadi¢ et al.,
2021), PQ-16: (Evermann et al., 2021), BDI: (Kammer, 1983)).

2.2.1. Schizotypal Personality Questionnaire-Brief (SPQ—B)

Based on 22 yes/no-items the SPQ-B measures schizotypy on three
subscales, namely the 8-item Cognitive-Perceptual (SPQB-CP) subscale,
which taps positive schizotypy, 8-item Interpersonal (SPQB-IP) subscale
that taps aspects of negative schizotypy, along with social anxiety and
disocomfort, and the 6-item Disorganized (SPQB-DO) subscale that taps
eccentricity (Raine, 2001). Items responded to with “yes” score 1,
whereas items responded to with “no” score 0 (possible total range
0-22). Higher scores indicate higher levels of psychometric schizotypy.

2.2.2. Oxford-Liverpool Inventory of Feelings and Experiences (O-LIFE)
The O-LIFE comprises four subscales with 104 yes/no-items in total:
Unusual Experiences (UnEx), Cognitive Disorganization (CogDis), Intro-
vertive Anhedonia (IntAn), Impulsive Nonconformity (ImpNon) (Grant
et al., 2013; Mason and Claridge, 2006). UnEx aims to tap the positive
schizotypy dimension with 30 items, CogDis refers to the disorganized
dimension of schizotypy although the subscale contains 24 items that
assess a mix of experiences including difficulty in thinking, anxiety, and
moodiness. IntAn represents the negative schizotypy dimension
distributed over 27 items largely assessing physical and social anhe-
donia, and ImpNon captures an anti-social and eccentric form of
behavior with 23 items. Items affirmatively endorsed score 1 and scoring
of inversed phrased items was reversed for calculations (possible total
range 0-104). Higher scores indicate higher levels of psychometric

schizotypy.

2.2.3. Multidimensional Schizotypy Scale (MSS)

The MSS uses 77 true/false-items to measure schizotypy on three
subscales, named according to which schizotypy dimension they cap-
ture: MSS-Negative with 26 items, MSS-Positive with 26 items as well as
MSS-Disorganized with 25 items (Kwapil et al., 2018b). Positively
endorsed items scoring 1 and negatively endorsed items scoring O.
Scoring of inversed phrased items was reversed for calculations (possible
total range 0-77). Higher scores indicate higher levels of psychometric

schizotypy.

2.2.4. Prodromal Questionnaire (PQ-16)

The short version of the Prodromal Questionnaire (Loewy et al.,
2005) measures psychotic-like experiences (PLEs) with 16 true/false-
items on a single scale (Ising et al., 2012), with positively endorsed
items scoring 1 and negatively endorsed items scoring O (possible total
range 0-16). Answers are then summed up to a PLE total score as well as
a PLE distress score which indicates current distress severity by PLEs
(“none” = 0 to “severe” = 3).

Chen et al. (2016) used this short version of the PQ-16 in a
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comparable sample to ours and concluded that individuals exceeding
cut-off scores indicate the necessity of further psychopathological
evaluation. We used these cut-offs in our sample and did not include
individuals exceeding these thresholds in our analyses. Thus, no in-
dividuals in our sample were help-seeking and/or at elevated risk.

2.2.5. Beck Depression-Inventory (BDI)

Negative symptoms of schizotypy share some phenomenological
similarities with depressive symptomatology, but can be different in
both quantity as well as quality (Lewandowski et al., 2006). Hence, the
two constructs should be administered separately but compared. To
ensure an elaborated evaluation of the actual schizotypal characteristics
of our sample, subjects completed the BDI (Beck et al., 1987) additional
to the schizotypy measurements. With 21 items the depressive state of
the past week is assessed. Scoring is based on declaration of current
presence of symptoms (0 = symptom was not experienced during the
past week; 3 = symptom was experienced predominantly during the past
week). Higher scores indicate a higher level of current depressive state.

2.3. Analyses

We first computed descriptive statistics on the subscales as well as
the correlation matrix. As the OLIFE ImpNon subscale conceptually
captures anti-social and impulsive/eccentric behavior rather than
schizotypy (Cochrane et al., 2010) and showed very little correlation
with all other scales in our analyses, this subscale was excluded from
further analyses.

Second, we performed multiple Principal Component Analyses
(PCAs) including the subscales of the schizotypy measurements as well
as the PQ-16 in two of the PCAs, to extract the most important inde-
pendent factors. PCA reduces dimensionality of a dataset by deriving a
smaller number of variables (principal components) from a higher
number of original variables while maintaining most of their variability
(Jolliffe, 2005).We conducted three PCAs in total with the following
specifications: 1. PCA: all subscales included, free factor solution; 2.
PCA: all subscales included, forced three-factor solution; 3. PCA: PQ-16
excluded, forced three-factor solution.

Lastly, Confirmatory Factor Analyses (CFAs) were run to test our
hypotheses regarding factor-structure of newly composed schizotypy
factors. Specifically, we compared 1, 2, and 3-factor models of the
schizotypy dimensions, as well as a 4-factor model with a separate
neuroticism factor. The CFA analyses were differentiated from the PCA
analyses by testing specific hypotheses and the use of item parcels. In
order to produce robust estimates and following Kwapil et al. (2008), we
computed item parcels out of the subscales which resulted in multiple
parcels for positive, negative, and disorganized schizotypy, as well as
neuroticism (see Little et al., 2002). Each parcel was constructed to have
a comparable proportion of items from the beginning, middle, and end
of the relevant subscale. Items that did not fit for content or had no
variance were dropped. Discussion of our CFA approach can be found in
the supplements S1 and the exact composition of the parcels as well as
the dropped-out items are shown in supplementary Table S2. We hy-
pothesized that the 3-factor model would have the best fit for the CFA
analyses that only included the schizotypy parcels, and that the 4-factor
model would have the best fit for the CFA analyses that included the
neuroticism parcels.

3. Results

Table 1 shows the descriptive statistics and Cronbach's a of all (sub)
scales used in this study, Table 2 shows their correlation coefficients.
Besides SPQ subscales (Cronbach's a = 0.36/0.68) and the PQ16
(Cronbach's o = 0.62) all other measurements show good reliability
(Cronbach's o = >0.74).

The first PCA with a free-factor solution across the MSS (with its
three subscales), the SPQB (with its three subscales), the OLIFE (with
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Table 1
Descriptive statistics and Cronbach's a of all scales used in this study in N = 383 subjects.
Scale Mean SD Range Possible Coefficient Alpha Kurtosis Std. Err. Skew Std. Err.
Range

Beck Depression Inventory 3.67 3.98 0-26 0-63 0.79 1.65 0.12 3.82 0.25

Multidimensional Schizotypy Scale 4.20 4.25 0-28 0-77 0.82 1.94 0.12 4.93 0.25
Positive Schizotypy 0.58 1.38 0-10 0-26 0.74 3.83 0.12 17.35 0.25
Negative Schizotypy 2.58 2.70 0-18 0-26 0.77 2.04 0.12 5.58 0.25
Disorganized Schizotypy 1.04 212 0-14 0-25 0.82 3.23 0.12 12.49 0.25

Schizotypal Personality Questionnaire 2.57 2.67 0-13 0-22 0.74 1.37 0.12 1.83 0.25
Cognitive-Perceptual 0.48 0.80 0-5 0-8 0.36 1.99 0.12 4.67 0.25
Interpersonal 1.49 1.65 0-7 0-8 0.68 1.09 0.12 0.39 0.25
Disorganized 0.60 1.11 0-6 0-6 0.68 2.33 0.12 5.77 0.25

Oxford-Liverpool Inventory of Feelings & Experiences 17.39 8.83 3-54 0-104 0.85 0.91 0.12 0.89 0.25
Unusual Experiences 1.91 2.51 0-16 0-30 0.75 2.27 0.12 6.70 0.25
Introvertive Anhedonia 4.09 3.50 0-19 0-27 0.77 1.54 0.12 2.83 0.25
Cognitive Disorganization 5.30 4.40 0-21 0-24 0.84 0.95 0.12 0.52 0.25
Impulsive Nonconformity 6.09 2.88 0-15 0-23 0.58 0.44 0.12 0.13 0.25

Prodromal Questionnaire Total 1.09 1.51 0-9 0-16 0.62 1.95 0.12 4.71 0.25
Prodromal Questionnaire Distress 1.18 1.90 0-15 0-48 0.60 2.64 0.12 10.21 0.25

three of its four subscales) and the PQ-16 total score yielded a two-factor
solution (cumulative total variance explained: 60.89 %; see Table 3)
with an unclear factor structure: MSS_Pos, SPQB_CP, OLIFE_UnEx and
PQ16_Total load highly on factor 1 and are unrelated to factor 2.
MSS_Neg, SPQB_IP, and OLIFE_ IntAn load highly on factor 2 and are
unrelated to factor 1. MSS_Dis, SPQB_DO, and OLIFE_CogDis cross-load
on both factors with higher loadings on factor 1. Components correlate
with r = 0.32. The second PCA with the subscales described above and a
forced three-factor solution (cumulative total variance explained: 69.89
%; see Table 4) showed a more coherent factor structure: MSS_Pos,
SPQB_CP, OLIFE_UnEx, and PQ16_Total load highly on factor 1 and are
unrelated to factor 2 and 3, except PQ16_Total with cross-loadings on
factor 2. MSS_Dis and OLIFE_CogDis load highly on factor two. MSS_Neg
and OLIFE_IntAn load highly on factor 3. SPQ_DO splits across the three
factors, SPQB_IP cross-loads on factor 2 and 3. Correlations of the fac-
tors: r = 0.54 for factor 1 and 2, r = 0.16 for factor 1 and 3, and r = 0.39
for factor 2 and 3. The third PCA (excluding PQ16_Total) with a forced
three-factor solution showed the most coherent factor structure (cu-
mulative total variance explained: 70.97 %; see Table 5): MSS_Pos,
SPQB_CP, and OLIFE_UnEx load highly on factor 1 and are unrelated to
factor 2 and 3. MSS_Neg and OLIFE_IntAn load highly on factor 2.
MSS_Dis and OLIFE_CogDis load highly on factor 3 whereas SPQB_IP
cross-loads on factor 2 and 3 and SPQB_DO cross-loads on factor 3 and 1.
Thus, forced three-factor solutions accounted for more variance than the
two-factor solution. However, unlike the MSS and OLIFE subscales, the
SPQB_IP and SPQ_DO subscales do not show good fidelity with the
negative and disorganized dimensions, respectively, as they have mod-
erate cross-loadings across multiple factors.

CFAs including the positive, negative, and disorganized parcels (see
supplementary Table S2 for exact composition of all parcels) yielded the
best fit for the three-factor model, with good fit indices and the parcels
loading on their respective factor (CFI = 0.92, TFI = 0.91, RMSEA =
0.052, SRMR = 0.063; see Table 6 for further fit-indices as well as factor
loadings and correlations of the three-factor model). CFAs including the
positive, negative, disorganized, and neuroticism parcels showed the
best fit for the four-factor solution with factors being a positive, nega-
tive, and disorganized schizotypy factor as well as an additional
neuroticism factor (CFI = 0.90, TFI = 0.88, RMSEA = 0.059, SRMR =
0.069; see Table 7 for further fit-indices as well as correlations of the
three and four-factor model).

4. Discussion
The present study aimed to analyze schizotypy phenotypes derived

from commonly used inventories. Besides providing a detailed descrip-
tion at the subscale level, we used a PCA approach to provide refined
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phenotype facets of schizotypy as well as CFAs to test the fit of these
refined facets in an overall model.

Results show support for a three-factor model of schizotypy with
positive, negative, and disorganized schizotypy factors, as well as for a
four-factor model with a separate neuroticism factor in addition to the
traditional schizotypy factors. Our results add several implications to a
refined assessment of an extended psychosis spectrum phenotype:

First, while intercorrelation indices among items are moderate to
high we found single items with low endorsement rates even with some
items not being endorsed at all. Even though low endorsement rates are
expected for a sample comprising mainly individuals of high educational
level and selected for lack of history for mental disorders/ treatment, the
measurements should ideally be able to discriminate between a range of
schizotypal experiences within the general population. The results
therefore indicate that this might not be the case but that those mea-
surements (or certain items within these) actually tap only one specific
stage within the psychosis continuum but fail to map a wider range at
the lower end of the continuum. Alternatively, it may reflect items that
did not work well in translation from their original English. Including
qualitatively similar items that range in their quantity of certain
symptom representations could lead to better item-discrimination as
well as item-difficulty which would make the questionnaires more
suitable for detecting subtle differences in schizotypal behavior. Addi-
tionally, different response formats beyond the common dichotomous
yes/no answers could help elucidate fine discriminations. On the other
hand, such formats can invite participants to normalize the items and
over-report schizotypal experiences, which are presumed to be rela-
tively rare in the general population.

Second, our comparison of schizotypy scales with the PQ-16 allows
us to compare these commonly used schizotypy scales with a commonly
used prodrome screening questionnaire for psychosis risk. Measuring
the schizophrenia prodrome and identifying individuals at risk for
developing schizophrenia has become an important and legitimate step
for early intervention research as well as early intervention application
(Fusar-Poli et al., 2013). Our analyses of the PQ-16 showed fairly high
correlations with the schizotypy scales, especially with items of the
positive schizotypy subscales. A review of the PQ-16 items indicates that
they are closely comparable in wording and content to items from
positive schizotypy; for example the PQ-16 item, “I have had the sense
that some person or force is around me, even though I could not see anyone”,
and the SPQ-B item, “Have you ever had the sense that some person or force
is around you, even though you cannot see anyone?”, or the PQ-16 item,
“My thoughts are sometimes so strong that I can almost hear them”, and the
O-LIFE item, “Are your thoughts sometimes so strong that you can almost
hear them?”. However, so far, the PQ-16 has been seen as qualitatively
different from schizotypy measurements (Hinterbuchinger and
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383.

Correlation matrix for all measurements used in this study, N

15

14

13

12

11

10

1 BDI

0.43"**

2 MSS_Sum

o
]
S

0.21%*

0.04

0_39,,-‘
0.57°%
0.234++
0.57+"
0.52+%+
0.07

0.14"* 0.50"* 0.28%"*

0.66°

0.33**

0.16%* 0.507+* 0.28%+ 0.90""*

0.62%*

0.327*

0.68"**
0.46" "
0.48"**

©
i)
S

©
i}
S

0.53"*
0.35%%*
0.22%%*

0.72++
0.19
0.10

5
Q
S
~ S © 0 ®
8RR g2 q
SRS Ssd
DI ORNTONOY
YT RIARERS
2
P
efzy
ngmED_ om‘D'E'U
mlzlo‘cﬂu&DEEEE
nrunuooooS S S g
Eggmmmmoooo
DBADNDD o 4o
M TN ONDODRN e~

=3
N
o

0.22

14 OLIFE ImpNon
15 PQ16_Total

g
ot}
S

0.167**

0.53""

0.42

0.48""

®
b
5

0.20%%*

0.53%"

0.44+%*

16 PQ16_Distress

Abbreviations: BDI—Becks Depression Inventory. MSS_Sum—total score of the Multidimensional Schizotypy Scale (MSS). MSS_Pos—Positive schizotypy subscale of the MSS. MSS_Neg—Negative schizotypy subscale of the

ganized schizotypy subscale of the MSS. SPQB_Sum-total score of the Schizotypal Personality Questionnaire-Brief (SPQ—B). SPQB_CP-Cognitive Perceptual subscale of the SPQ—B.

SPQB_IP-Interpersonal subscale of the SPQ—B. SPQB_DO-Disorganized subscale of the SPQ-B. OLIFE_Sum—total score of the Oxford and Liverpool Inventory of Feelings and Experiences (OLIFE). OLIFE_UnEx—Unusual

MSS. MSS_Dis—Disor:

experiences subscale of the OLIFE. OLIFE_CogDis—Cognitive disorganization subscale of the OLIFE. OLIFE_IntAn—Introvertive anhedonia subscale of the OLIFE. OLIFE_ImpNon—Impulsive nonconformity subscale of the

OLIFE. PQ16_Total—total score of the Prodromal Questionnaire-16 (PQ16). PQ16_Distress—Distress subscore of the PQ16.

Medium effect sizes in bold, large effect sizes in bold & italics.
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Table 3

First Principal Component Analysis (PCA): free factor solution with Promax
rotation of the following scales: MSS_Pos, MSS_Neg, MSS Dis, SPQB_CP,
SPQB_IP, SPQB_DO, OLIFE_UnEx, OLIFE_CogDis, OLIFE_IntAn, and PQ-16_Total,
N = 383. Table shows correlation coefficients for variables loaded on the three
PCs extracted as well as the totals of the Eigenvalues, and the sums of variability
and cumulative squared loadings in percent.

PC1 PC2
MSS_Pos 0.829 —0.190
MSS_Neg —0.142 0.866
MSS_Dis 0.534 0.276
SPQB_CP 0.707 —-0.109
SPQB_IP 0.180 0.735
SPQB_DO 0.531 0.279
OLIFE_UnEx 0.890 —0.144
OLIFE_CogDis —0.149 0.926
OLIFE _IntAn 0.535 0.348
PQ16_Total 0.814 0.023
Eigenvalues 4.143 1.925
Variability (%) 41.432 19.253
Cumulative (%) 41.432 60.685

Table 4

Second PCA: Forced three-factor solution with Promax rotation of the following
scales: MSS_Pos, MSS_Neg, MSS_Dis, SPQB_CP, SPQB_IP, SPQB_DO, OLIFE_UnEx,
OLIFE_CogDis, OLIFE_IntAn, and PQ16_Total, N = 383.

PC1 PC2 PC3
MSS_Pos 0.912 —-0.107 —-0.013
MSS_Neg 0.060 —0.162 0.943
MSS_Dis -,122 0.961 -0.111
SPQB_CP 0.807 —-0.123 0.059
SPQB_IP —-0.027 0.395 0.583
SPQB_DO 0.244 0.456 0.142
OLIFE_UnEx 0.843 0.082 —0.049
OLIFE_CogDis —0.031 0.849 0.018
OLIFE_IntAn —0.031 0.849 0.018
PQ16_Total 0.532 0.423 0.060
Eigenvalues 4.143 1.925 0.920
Variability (%) 41.432 19.253 9.202
Cumulative (%) 41.432 60.685 69.887

Table 5

Third PCA: Forced three-factor solution with Promax rotation of the following
scales: MSS_Pos, MSS_Neg, MSS_Dis, SPQB_CP, SPQB_IP, SPQB_DO, OLIFE_UnEx,
OLIFE_CogDis, and OLIFE IntAn, N = 383.

PC1 PC2 PC3
MSS_Pos 0.894 —-0.021 —0.061
MSS_Neg 0.042 0.954 —0.168
MSS_Dis —0.084 —-0.129 0.949
SPQB_CP 0.799 0.032 —0.057
SPQB_IP —-0.013 0.571 0.398
SPQB_DO 0.261 0.120 0.478
OLIFE_UnEx 0.824 —0.052 0.112
OLIFE_CogDis 0.002 0.000 0.845
OLIFE_IntAn —0.063 0.924 —0.002
Eigenvalues 3.628 1.841 0.918
Variability (%) 40.307 20.456 10.202
Cumulative (%) 40.307 60.763 70.965

Mossaheb, 2021), even though development of the original 92 item PQ
originates in schizotypy as most items were adopted from the SPQ
(Loewy et al., 2005). This is mainly due to its purpose to screen for the
psychosis prodrome rather than measuring the trait schizotypy (Bran-
dizzi et al., 2014; Savill et al., 2018). However, given the conceptual
background of the scale (namely the close adaption from the SPQ)
together with our results, the PQ-16 might actually not quantitatively or
qualitatively differ from common schizotypy measurements, but the
only difference being that it largely only measures one schizotypy
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Table 6
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Fit-indices for all models run in the first CFA as well as correlations for the three-factor model.

Fit-indices.

Model CFI TFI RMSEA SRMR AIC BIC AdjBIC
1 Factor 0.47 0.41 0.133 0.151 21,150 21,398 21,198
2 Factor 0.78 0.75 0.086 0.091 20,213 20,466 20,262
3 Factor 0.92 0.91 0.052 0.063 19,776 20,036 19,827
Note: Indicators of good fit: CFI, TFI > 0.90; RMSEA <0.08; SRMR <0.08; AIC, BIC, AdjBIC — lower values indicate better fit.
Pearson correlations coefficients.
Positive Schizotypy factor Negative Schizotypy factor Disorganized Schizotypy factor

Positive Schizotypy factor 1 0.14 0.53

Negative Schizotypy factor 0.14 1 0.33
Disorganized Schizotypy factor 0.53 0.33 1

Table 7
Fit-indices for all models run in the second CFA as well as correlations for the four-factor model.
Fit-indices.
Model CFI TFI RMSEA SRMR AIC BIC AdjBIC
3 Factor 0.87 0.85 0.066 0.072 21,686 21,970 21,742
4 Factor 0.90 0.88 0.059 0.069 21,573 21,869 21,631
Note: Indicators of good fit: CFI, TFI > 0.90; RMSEA <0.08; SRMR <0.08; AIC, BIC, AdjBIC - lower values indicate better fit.
Pearson correlations coefficients.
Positive Schizotypy Negative Schizotypy Disorganized Schizotypy Neuroticism factor
factor factor factor
Positive Schizotypy factor 1 0.14 0.53 0.44
Negative Schizotypy factor 0.14 1 0.33 0.38
Disorganized Schizotypy 0.53 0.33 1 0.66
factor
Neuroticism factor 0.44 0.38 0.66 1

dimension, namely positive schizotypy. Furthermore, the prodrome can
simply be understood as an expression of the schizotypy continuum.
Looking back at early but still valid definitions of a prodrome in a
clinical context, the main common feature refers to the aspect of time:
prodrome is the temporal correlation of certain behaviors with illness
onset (Beiser et al., 1993; Keith and Matthews, 1991; Loebel et al.,
1992). Thus, to evaluate if a person is in a prodromal stage, an instru-
ment measuring psychosis prodrome should also consider the aspect of
time, i.e., for how long a person has already been experiencing sub-
clinical psychotic symptoms (Hinterbuchinger and Mossaheb, 2021;
Schultze-Lutter et al., 2015). Research on the psychosis prodrome and
schizotypy has indeed shown, that schizotypy represents a (weak, but
significant) predictor of psychosis (Barrantes-Vidal et al., 2013; Debbané
et al., 2015) and could thus be useful as a screening for psychosis-
proneness within the general population. Taken together, when using
a questionnaire specifically as a screening instrument for the psychosis
prodrome rather than measuring the trait schizotypy, it should also
consider the time aspect (e.g., by item wording) to sharpen its
specificity.

The present results indicate that the three schizotypy scales investi-
gated in this paper tend to measure the factors of schizotypy well. PCA
analyses show that the subscales aiming to measure positive schizotypy
build a coherent factor. The correlations among the schizotypy factors
from the CFAs are generally consistent with findings for individual
scales (e.g., Kwapil et al. (2018b)).

Note that the PCA and CFA analyses used different measured indi-
cator variables (in part because it would be redundant to run PCA and
CFA on the same indicators from the same sample). The PCA used scores
computed from the full scales/subscales, whereas the CFA used parcels
computed from most of the items comprising these measures (items were
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dropped because they did not measure specific schizotypy dimensions or
due to lack of variance). The PCA was a largely exploratory approach to
examine the latent structure underlying the original format of these
measures, whereas the CFA compares competing models of the factor
structure of schizotypy not constrained by the specific measures. This
approach provided both conceptual information about schizotypy and
potential problematic items in these extant measures.

The correlations of the neuroticism factor with positive and disor-
ganized schizotypy likewise is consistent with previous studies (e.g.,
Kwapil et al. (2018a)). The unexpected correlation of negative schizo-
typy with neuroticism likely reflects the inclusion of the SPQ-IP subscale
items that were not specifically designed to tap negative schizotypy and
tend to be saturated with neuroticism and social anxiety. The subscales
that aim to measure negative or disorganized schizotypy load indeed on
their predominantly factor in the PCAs, but show fairly sufficient load-
ings with the other factor as well. The SPQ_IP subscale, which is usually
taken as the negative schizotypy facet of the SPQ, contains some items
that rather tend to measure social anxiety/neuroticism (e.g., “I feel very
uncomfortable in social situations involving unfamiliar people.”), which
makes those items relate more to the OLIFE_CD subscale than to the
negative schizotypy factor per se. It is important to point out that Raine
(1991) constructed the SPQ_IP subscale to tap ‘interpersonal discomfort’
rather than creating an exclusively negative schizotypy subscale. Hence,
items that prompt social anxiety/neuroticism are expected for the
SPQ_IP subscale but add something new to the construct of schizotypy as
those symptoms are rather unspecific for schizotypy per se. This is also
the case for some items of the OLIFE_CD that tap neuroticism (e.g., “Do
you often worry about things you should not have done or said?”, “Are you a
person whose mood goes up and down easily?”) more so than the schizo-
typy factor of disorganized thoughts or behavior. This is confirmed by
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our CFA analyses which showed a good fit for a three-factor schizotypy
model when items of SPQ_IP and OLIFE_CD that measure neuroticism/
social anxiety are excluded but also showed a good fit for a four-factor
model when those items were included by a separate neuroticism-
factor. Hence, some items do not seem to fit into the typical schizo-
typy dimensions which is important to consider when using schizotypy
as a unifying construct to assess an underlying vulnerability for
schizophrenia-spectrum disorders. From a clinical perspective, evalu-
ating neurotic and anxious tendencies when assessing risk-states for
SSDs is plausible (Brown et al., 2008; Kemp et al., 2018; Lewandowski
et al., 2006), however, when speaking of the construct of schizotypy
from a psychometric standpoint, those facets should be examined
independently.

Lastly, correlations with the BDI are considerably high. This can be
seen as further reassurance that schizotypy is closely related to affective
anomalies, especially social anhedonia (Cohen et al., 2015), as some
items in the here investigated schizotypy scales are intended to measure
exactly this. Consistent with Kemp et al. (2018), BDI scores appear to
have their strongest associations with the disorganized dimension of
schizotypy. This is also consistent with Kemp et al.'s (2021) finding that
disorganized, but not positive or negative schizotypy predicted
interview-assessed major depressive disorder. Interestingly, Kemp et al.
(2018) further found that modest associations of negative schizotypy
with the BDI were driven by items tapping diminished positive affect but
not heightened negative affect.

This study has some limitations that need to be addressed. First, our
study sample consisted mostly of young, psychiatrically healthy college
students. While we expect that meaningful information regarding
schizophrenia-spectrum psychopathology can be identified in non-
clinically ascertained samples, inclusion of a larger sample that was
enriched for participants with elevated levels of schizotypy would likely
enhance our power to detect meaningful relationships. We did not assess
random responding, which limits the reliability of the scores adminis-
tered. Furthermore, Cronbach's a for the PQ-16 as well as the SPQB_CP
subscale were low. This limitation warrants investigation in further
studies.

5. Conclusion

Almost every current model of schizophrenia and psychosis recog-
nizes that there is a broad continuum of clinical and subclinical
expression of symptoms and impairment. Schizotypy offers a useful and
unifying framework for capturing this continuum. Furthermore, schiz-
otypy, like schizophrenia, is best conceptualized as a multidimensional
construct. However, the utility of schizotypy, especially in early-detec-
tion/—intervention research, requires clear operationalization and
measurement (Rivera Tapia, 2022).

With this study we contributed to this discussion by applying two
different comprehensive multivariate statistical approaches to a set of
well-validated schizotypy measurements (including the MSS as a rela-
tively new scale) as well as a prodromal questionnaire. We conclude that
the construct of schizotypy is psychometrically defined differently
across measurements and are proposing a newly composition for revised
phenotype facets.
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