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ABBREVIATIONS 

 

AD  Axial diffusivity 

BD  Bipolar disorder 

CFA Confirmatory Factor Analysis 

DSM Diagnostic and Statistical Manual of Mental Disorders 

DTI  Diffusion Tensor Imaging 

FA  Fractional anisotropy 

IFOF Inferior fronto-occipital fasciculus 

ICD  International Classification of Diseases 

MDD Major Depressive Disorder 

MSS Multidimensional Schizotypy Scale 

O-LIFE Oxford-Liverpool Inventory of Feelings and Experiences 

PCA Principal Component Analysis 

PQ  Prodromal Questionnaire 

RDoC Research Domain Criteria 

ROI Region of Interest 

SEM Structural Equation Model  

SSDs Schizophrenia-spectrum disorders 

SPQ Schizotypal Personality Questionnaire 

SZ  Schizophrenia 

SZA Schizoaffective disorder 

UF  Fasciculus uncinatus 
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1. INTRODUCTION 

1.1. Defining phenotypes in psychiatric epidemiology 

 

“Phenotype - The observable structural and functional characteristics of an 

organism determined by its genotype and modulated by its environment.“1 

 

Over the past decades, the phenotype discussion became exceedingly 

relevant, especially for psychiatric epidemiology (Schulze & McMahon, 2004). 

In recent years, common approaches to define phenotypes in psychiatry are 

revisited. Rating the presence or absence of symptoms as defined by clinical 

diagnostic manuals like the Diagnostic and Statistical Manual of Mental 

Disorders (DSM) (American Psychiatric Association, 1987) or the International 

Classification of Diseases (ICD) (Organization, 1993) is not sufficient to define 

a valid and reliable phenotype in psychiatry. The lifetime trajectory of the 

patients biological and environmental conditions has to be considered 

(Goldberg, 2015): Psychiatric disorders are not one-factorial, static entities but 

rather multi-factorial, dynamic constructs continuously influenced by space and 

time.  

This is not new knowledge, but has been taught for decades in psychology, 

by a conceptual framework named the biopsychosocial model (Engel, 1977, 

1981). The biopsychosocial model states that determination of health and illness 

is always an inextricably interplay of biological, psychological and social factors. 

All three factors by themselves are anchored on their very own continuum. But 

to explain the suprasystem of health and illness the continua must be merged. 

One attempt to transfer this conceptual framework into practical implications for 

psychiatric research represent the Research Domain Criteria (RDoC) (Cuthbert, 

2015; Insel et al., 2010; Kozak & Cuthbert, 2016). The RDoC comprehend 

mental disorders as spectral dimension encompassing a biological, 

psychological and phenomenological facet rather than distinct entities.  

Elucidating complemental and interpretable biological markers of 

psychiatric disorders can contribute to this by following the RDoC’s proposed 

deep phenotyping in psychiatry (Gratton et al., 2022). For this, various 

neuroimaging methods offer a huge promise. However, the underlying 

                                            
1 http://www.genomicglossaries.com/content/genomics_glossary.asp 
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neurobiological mechanisms in psychopathology are still barely tapped (Jollans 

& Whelan, 2018; Schmaal et al., 2020; Sui et al., 2020). Reproducibility and 

generalizability of neuroimaging studies or Brain Wide Association Studies 

(BWAS) of psychiatric disorders is still lacking. Hence, BWAS alone cannot 

sufficiently contribute to optimize mental health phenotype definitions. 

Fortunately, latest research in the field is more and more dedicated to 

explore reasons for this problem. Multiple studies have already provided 

potential key starting points for the advancement of evidence of psychiatric 

neuroimaging studies. Those include, amongst others: Very large sample sizes 

(Marek et al., 2022; Schmaal et al., 2020); using multivariate rather than 

univariate statistical approaches (Jollans & Whelan, 2018; Sui et al., 2020); 

combining data from multiple imaging modalities (Linden, 2012; Zhang et al., 

2020); establishing new innovative behavioral measures and scan paradigms 

(Anderson et al., 2019; Rosenberg & Finn, 2022); validate models (Rosenberg 

& Finn, 2022); go for samples that actually show substantial variation in brain 

and behavior (Gratton et al., 2022); longitudinal studies (Jollans & Whelan, 

2018).  

The shared aim of these proposed and elaborated advances in psychiatric 

research is to overcome previous common approaches in the field and to 

provide reliable biomarkers for biologically based predictive models. This is 

needed as the high rates of comorbidity between mental disorders and the high 

heterogeneity of symptoms within single disorders limit the predictive power of 

symptom ratings only (Jollans & Whelan, 2018; Linden, 2012). 

 

1.2. Common approaches in psychiatric neuroimaging research  

Univariate statistical analyses: Mapping brain-behavior relationships with 

univariate statistical models is still one of the most common approaches in 

psychiatric neuroimaging research (Sui et al., 2020). The main characteristic of 

univariate approaches is the statistical manipulation of the brain in multiple 

separate entities (Mechelli et al., 2005). For the case of single-voxel-based 

analyses this means that an independent statistical test is run for each voxel 

(i.e., mass-univariate). This results in two major limitations of univariate 

statistical analyses:  
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First, depending on the image resolution, about 1,000,000 voxels are 

identified which equals 1,000,000 statistical tests, leading to 50,000 false 

positives at a significance level of p<.05 (Mechelli et al., 2005). Correction for 

multiple comparisons is therefore a necessity. However, it implies further 

considerations about the choice of a correction method as there are multiple 

options but no single standard convention (Whitwell, 2009; Zhuang et al., 2020).  

Secondly, statistically separating the brain in form of univariate voxel-

based analyses limits the results to only focally interpretable outputs. Inter-

regional dependencies are not captured but a crucial hallmark of the brain 

network organization (Alexander-Bloch et al., 2013). Additionally, the issue of 

correlated noise is overlooked as well (Zhuang et al., 2020). 

Categorical (group comparison) analyses: For a long time, group 

comparison analyses were considered the gold standard of mapping altered 

brain structure as well as function. These analyses assume that one categorical 

state of behavior is reflected by an altered state of brain structure or function. 

For example, the state of brain structure and function in a group of patients 

compared to the state of brain structure and function in healthy controls. Those 

case-control studies are important to broadly identify brain regions associated 

with an illness state and use them as potential key nods (or regions of interest, 

ROI) for more narrow-framed hypotheses or find the most common effects 

independent of their meaning (Bandettini et al., 2022; Jollans & Whelan, 2018). 

However, conclusions drawn from these approaches can only be used to infer 

further hypotheses about group states but for neither the state of an individual 

nor for individual prediction (Arbabshirani et al., 2017; Zhuo et al., 2019).  

Continuous (correlational) analyses: Correlational analyses, as in form of 

multiple regression, aim to find a relationship between behavioral 

measurements and brain structure or functions. Typical correlational 

investigations in psychiatric neuroimaging research hypothesize a linear 

relationship between the amount of brain alterations and the amount of variation 

in the behavioral measurement score (Gratton et al., 2022). One advantage of 

this dimensional approach compared to the categorical approach is its 

applicability within one set of subjects. It therefore shows more sensitivity toward 

the spectrum of the investigated phenomenon. However, the complexity of the 

human brain as well as human behavior limits the explanatory power and 
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reliability of individual brain-behavior relationships (Gratton et al., 2022; Marek 

et al., 2022).  

 

1.3. Sources of heterogeneity in psychiatric neuroimaging research  

The above-mentioned limitations of common approaches in psychiatric 

neuroimaging research can be directly transferred into the sources of 

heterogeneity of evidence in psychiatric phenotype research (Satterthwaite et 

al., 2020). Due to the limited extend of this thesis, only three sources of 

heterogeneity will be outlined. 

First, psychiatric disorders are highly heterogeneous disorders per se. In 

the case of Major Depressive Disorder (MDD), the DSM lists 9 possible 

symptoms of which 5 have to be present to fulfill the categorical diagnosis of 

MDD. Some of the symptoms, however, can be present in opposite directions in 

different patients (Goldberg, 2011). Hence, two patients showing a different 

composition of symptom representations both fall into the same DSM-diagnostic 

category. Subsequently, they will be treated as one group in neuroscientific 

group-comparison analyses. The same is true for the present state of 

manifestation: Patients with a concurrent diagnosis of a mental disorder are 

often placed within the same group as patients in full remission. Forming a 

heterogeneous phenotype group but assuming an underlying homogeneity 

when doing group-comparison analyses therefore produces a source of 

heterogeneity in biological results (Feczko & Fair, 2020; Voineskos et al., 2020).  

Thereupon, focusing on comparisons of a single diagnostic group with 

healthy controls rather than looking at a dimensional system of psychopathology 

tends to neglect the apparent shared elements in psychopathology between 

different diagnostic categories (Bornovalova et al., 2020; Feczko & Fair, 2020). 

As previously mentioned, mental disorders are multidimensional constructs. 

Approaching psychiatric neuroimaging research only in a top-down manner by 

using beforehand descriptive categories possibly leads to unreproducible 

associations if the underlying biological grouping does not represent the 

diagnostic grouping in the first place (Ivleva et al., 2020). 

Furthermore, different studies investigating neural correlates of the same 

psychological construct often use different measurements to assess this very 

construct. For example, for assessing the personality trait schizotypy, which is 
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an important construct for the comprehension of schizophrenia-spectrum 

disorders (Kwapil & Barrantes-Vidal, 2015), there are at least three commonly 

used scales for assessment today (Fonseca-Pedrero et al., 2021). Those 

measurements were developed in different manners and serve different 

purposes. However, neuroimaging studies tend to compare or generalize results 

emerging from correlations of the brain with one schizotypy measurement with 

studies using another schizotypy measurement. This leads to heterogeneity in 

the neural correlates found as, again, an assumption of homogeneity is made 

but the measurements used are heterogeneous.  

 

1.4. Objectives and hypotheses 

The studies in this thesis take a new look at commonly used approaches 

in psychiatric neuroimaging research in order to contribute to not only improving 

validity and reliability of psychometric acquisition but also to informing both 

hypothesis and data-driven imaging and phenotyping in psychiatry. In particular, 

focuses were on overcoming case-control approaches, application of 

multivariate statistical analyses on both a neuroimaging level as well as on a 

psychometric level to resolve inconsistency.  

The first study’s objective was a hypothesis driven approach applying 

Structural Equation Modeling (SEM) to integrate clinical variables and a brain 

structural measurement into one comprehensive multivariate statistical model. 

Based on a previous published SEM integrating key clinical variables of MDD 

(anhedonia, neuroticism, anxiety, and cognitive control (Liao et al., 2019)), the 

first aim of the first study was to successfully replicate this SEM in a new 

population of patients with MDD (H1). Secondly, based on previous white 

matter/diffusion tensor imaging (DTI) studies, we hypothesized anhedonia and 

neuroticism to be associated with white matter integrity in MDD (H2). Lastly, 

integrating the white matter associations into the SEM will show a good overall 

fit (H3). 

The second study’s objective used a data-driven approach applying 

cluster analysis to gyrification data across a large transdiagnostic patient cohort, 

in order to find homogeneous groups based on their gyrification pattern without 

prior imposed clinical grouping. We hypothesized that it is possible to identify 

patient subgroups among different psychiatric disorders by their pattern of 
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gyrification using cluster analysis (H4). Furthermore, identified groups can be 

subsequently characterized clinically (H5). Based on the multitude of previous 

studies using a group comparison design to successfully identify differences in 

gyrification between diagnostic groups, we expected to also find an apparent 

distinction of cluster groups in diagnoses (H6).  

The third study’s aim was to address phenotypic heterogeneity by 

reassessing a commonly used transdiagnostically relevant phenotype, i.e., 

schizotypy. It aims to demonstrate how refining phenotypic assessment might 

improve neuroimaging studies in psychiatry. Based on previous studies we 

assumed, that schizotypy is a three-factorial construct but that the different 

schizotypy (sub)scales tap into different facets of schizotypy (H7). Hereupon, we 

proposed a newly composition of factors (H8). 
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2. AGGREGATION OF STUDY RESULTS 

 

2.1. STUDY I: Brain structural connectivity, anhedonia, and phenotypes of 

major depressive disorder: A structural equation model approach 

 
Reference: Pfarr, J. K., Brosch, K., Meller, T., Ringwald, K. G., Schmitt, S., 

Stein, F., Meinert, S., Grotegerd, D., Thiel, K., Lemke, H., Winter, A., Waltemate, 
L., Hahn, T., Opel, N., Repple, J., Bauer, J., Jansen, A., Dannlowski, U., Krug, 
A., Kircher, T. & Nenadić, I. (2021). Brain structural connectivity, anhedonia, and 
phenotypes of major depressive disorder: A structural equation model 
approach. Human Brain Mapping, 42(15), 5063-5074. 
https://doi.org/10.1002/hbm.25600 

 

 

DTI studies have already gained important insights in the white matter 

integrity and brain structural connectivity in MDD. Case-control studies 

comparing the white matter microstructure of large cohorts of patients with MDD 

and healthy controls identified wide spread white matter alterations in MDD 

patients (Schmaal et al., 2017; van Velzen et al., 2020). Studies using 

correlational designs within patient cohorts found more specific associations of 

white matter alterations with single symptoms of MDD: Yang et al. (2017) and 

Coloigner et al. (2019) identified significant associations of fractional anisotropy 

(FA) with anhedonia, a core symptom of MDD, in fronto-limbic circuits as well as 

the cingulum and corpus callosum. Furthermore, neuroticism, an established 

risk factor for MDD, was found to be associated with white matter alterations in 

fronto-limbic circuits and the cingulum bundle as well (Madsen et al., 2009; 

Mincic, 2015). Thus, brain structural associations of both, anhedonia as well as 

neuroticism could potentially overlap in patients with MDD.  

We investigated this potential brain structural overlap of anhedonia and 

neuroticism in MDD and further inter-relationships to other main symptom 

features of MDD. For this, a previous published SEM of clinical variables related 

to MDD was used as a basis for the final statistical design. The SEM by Liao et 

al. (2019) included inter-relationships of anhedonia, neuroticism as well as the 

important comorbid symptom of anxiety, and the cognitive parameter of 

cognitive control.  Our study expanded the already existing model by including 

white matter associations of anhedonia and neuroticism into the SEM. 

https://doi.org/10.1002/hbm.25600
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First, the original SEM by Liao et al. (2019) was replicated using a large 

cohort of MDD patients (N=595). In a second step, DTI analyses were performed 

to find significant associations of brain structural connectivity with anhedonia as 

well as neuroticism. In a last step, those brain structural associations were 

successfully implemented in the model. With this study, for the first time, a 

multivariate statistical design was used to acknowledge the interaction of 

multiple variables and multiple measures in MDD.  

STUDY I was able to show, that different clinical variables (i.e., 

anhedonia, neuroticism) are associated with different DTI parameters as well as 

different white matter tracts in MDD. Anhedonia was correlated with FA in the 

right anterior thalamic radiation whereas neuroticism was correlated with axial 

diffusivity (AD) in the left inferior fronto-occipital fasciculus (IFOF) and fasciculus 

uncinatus (UF). This reflects and highlights the importance of respecting the 

heterogeneity of MDD on a biological level. Furthermore, the multivariate SEM 

clarified the interplay of neuroticism and cognitive control in MDD by elucidating 

the shared brain structural network as proposed in previous studies (Servaas et 

al., 2015). Results also have the potential to build a basis for future more 

differentiated “risk models” or models investigating transdiagnostic hypotheses.  

 

 

 

 

 

 

 

 

 

Manuscript contribution: 70%. JKP and IN conceptualized the study design. JKP 

conducted a literature review, developed the statistical design and performed the 

statistical analyses. JKP wrote the original draft of the manuscript and visualized study 

results. The other authors contributed to subject and data acquisition, data 

management, and review of the manuscript (KB, TM, KGR, SS, FS, SM, DG, KT, HL, 

AW, LW, TH, NO, JR, JB) as well as study supervision (AJ, UD, AK, TK). 
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2.2. STUDY II: Data-driven multivariate identification of transdiagnostic 

gyrification patterns: A cluster analysis approach  

 

Reference: Pfarr, J. K., Meller, T., Brosch, K., Stein, F., Thomas-Odenthal, F., 
Evermann, U., Wroblewski, A., Ringwald, K. G., Hahn, T., Meinert, S., Winter, 
A., Thiel, K., Flinkenflügel, K., Jansen, A., Krug, A., Dannlowski, U., Kircher, T., 
Gaser, C.*, & Nenadić, I.* Data-driven multivariate identification of gyrification 
patterns in a transdiagnostic patient cohort: A cluster analysis approach. 
NeuroImage, 281, 120349. https://doi.org/10.1016/j.neuroimage.2023.120349 

 

 

Grey matter based parameters have the potential to serve as cortical 

phenotypes by exploring healthy as well as altered cortical development 

(Whitwell, 2009). Gyrification, in particular, indicates processes in early brain 

development which are connected to the evolution of higher cognitive functions 

(Lui et al., 2011). Multiple studies already investigated associations of regional 

gyrification among psychiatric disorders (Nenadic et al., 2015; Palaniyappan et 

al., 2011; Sasabayashi et al., 2021; Spalthoff et al., 2018) as well as related to 

specific psychopathological symptoms (Kubera et al., 2018; McIntosh et al., 

2009; Sasabayashi et al., 2017; Schmitgen et al., 2019). Based on previous 

findings, gyrification has shown to be associated with vulnerability factors for 

psychopathology rather than manifested, current psychiatric symptomatology 

(Al-Haddad et al., 2019; Evermann et al., 2020; Pham et al., 2021; Sanfelici et 

al., 2022). However, previous studies lack a multivariate approach to investigate 

gyrification in psychopathology, which is important to elucidate potential 

heterogeneity of cortical folding within one disorder as well as transdiagnostic 

profiles (Sasabayashi et al., 2021).  

Goal of STUDY II was to address this open question, namely whether 

gyrification patterns are associated with transdiagnostic vulnerability factors or 

risk, rather than separate diagnostic categories based on clinical interviews. 

Here, cluster analysis as a data-driven multivariate approach, was used to 

investigate this question: Cluster analysis is a useful tool to explore brain 

measurements without a given a priori hypothesis connected to clinical data. 

and can (sub)group high-dimensional biological data to identify neurobiological 

patterns (Lynch et al., 2020; Meng et al., 2021; Sanfelici et al., 2022).  
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In a large and clinically heterogeneous transdiagnostic cohort of patients 

(N=1028; MDD: n=783, bipolar disorder (BD): n=129, schizoaffective disorder 

(SZA): n=44, schizophrenia (SZ): n=72) cluster analysis was applied to 

gyrification data to identify biological patterns of this cortical phenotype. 

Subsequently, identified patient subgroups were associated with transdiagnostic 

factors of risk for psychopathology (i.e., early environmental risk factors and 

cognitive performance). To further explore the clustering solution in comparison 

to the classic clinical diagnostic grouping of patients, gyrification patterns of 

diagnostic groups were drawn as well.  

Clustering results showed global gyrification patterns to be discriminative 

for three subgroups but not discriminative for clinical diagnostic groups. Newly 

formed subgroups showed significant differences in both gyrification as well as 

in cognitive performance and early environmental risk. Taken together with a 

lack of significance of diagnostic group analyses, our results underline 

transdiagnostic similarities rather than factors of gyrification being directly 

related to diagnostic categories. Furthermore, additional post-clustering 

analyses revealed that brain regions in association cortices had the highest 

impact on the formation of clusters. Also, the main differences in gyrification 

between the groups were mostly located in association cortices as well, hinting 

towards a higher variability and discriminative power of association cortices than 

other cortices.  

Results of STUDY II identified important neurobiological underpinnings of 

gyrification and its relationship to global factors of psychopathology. The 

approach can serve as basis for further cluster analyses in (sub-)clinical as well 

as healthy or risk cohorts to investigate the potential of gyrification as a 

neurobiological marker for psychopathology proneness.  

 

 

Manuscript contribution: 65%. JKP, IN and CG conceptualized the study design. JKP 

conducted a literature review and performed the statistical analyses. JKP wrote the 

original draft of the manuscript and was responsible for visualization of the results. The 

other authors contributed to subject and data acquisition, data management, imaging 

preprocessing, and review of the manuscript (TM, KB, FS, FTO, UE, AW, KGR, TH, 

SM, AW, KT, KF) as well as study supervision (AJ, AK, UD, TK). 
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2.3. STUDY III: Trait schizotypy and the psychosis prodrome: Current 

standard assessment of extended psychosis spectrum phenotypes 

 

Reference: Pfarr, J. K., Meller, T., Evermann, U., Sahakyan, L., Kwapil, T. R., 
& Nenadić, I. (2023). Trait schizotypy and the psychosis prodrome: Current 
standard assessment of extended psychosis spectrum 
phenotypes. Schizophrenia research, 254, 208–217. 
https://doi.org/10.1016/j.schres.2023.03.004 
 

 

Schizotypy is a multidimensional construct capturing schizophrenia-like 

behavioral traits and cognition. This phenotype reflects the vulnerability for 

multiple psychiatric disorders but especially for schizophrenia-spectrum 

disorders (SSDs) and thus represents an important concept for schizophrenia 

research (Barrantes-Vidal et al., 2015; Mason, 2015; Nelson et al., 2013). Alike 

schizophrenia, most research in schizotypy uses a three-factorial composition 

of schizotypy covering a positive, negative, and disorganized facet (Fonseca-

Pedrero et al., 2021; Kwapil & Barrantes-Vidal, 2015). Beyond association with 

clinical features, schizotypy has already been successfully associated with 

genetic risk for SSDs (Kemp et al., 2021; Meller et al., 2019; Nenadić et al., 

2022) as well as neurobiological correlates (Meller, Ettinger, et al., 2020; Meller, 

Schmitt, et al., 2020; Pfarr & Nenadić, 2020; Sahakyan et al., 2020). However, 

different conceptualizations of different schizotypy measurements make it 

difficult to directly compare results of biological correlates of schizotypy. This is, 

because it is not clear to what extend different schizotypy measurements 

actually capture one and the same construct. Also, it still remains unclear if 

measurements for prodromal and psychotic syndromes (i.e., the Prodromal 

Questionnaire (PQ) (Ising et al., 2012; Loewy et al., 2005)) are distinguishable 

in their scale-conceptualization from schizotypy measurements.  

Hence, STUDY III aimed to scale the overlap and divergence of three 

commonly used schizotypy measurements (Multidimensional Schizotypy Scale 

(MSS) (Kwapil et al., 2018), Schizotypal Personality Questionnaire (SPQ) 

(Raine, 1991), Oxford-Liverpool Inventory of Feelings and Experiences (O-LIFE) 

(Mason et al., 1995) and the short-form of the low-level screener for psychotic-

like experiences of the PQ (PQ-16) (Ising et al., 2012). For this, schizotypy 

measurements as well as the PQ-16 were conducted from a young sample of 
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383 psychiatrically healthy participants. Subscale based descriptive analyses as 

well as correlations between all subscales were conducted. Multiple Principal 

Component analyses (PCAs) including all subscales of the schizotypy 

measurements as well as the PQ-16 were performed to extract both the best 

fitting factor structure as well as refined facets of schizotypy. Subsequently, the 

fit of these refined facets was tested using Confirmatory Factor Analysis (CFA).  

Results of STUDY III show, that 1) included measurements do not 

discriminate well between a range of schizotypal experiences in a sample of 

highly educated, healthy subjects, 2) a three-factor model of schizotypy 

comprising a positive, negative, and disorganized factor is supported, and 3) 

when modelling new facets based on the subscale level of all measurements, a 

four-factor model including a separate neuroticism factor shows the best fit.  

Conclusions for STUDY III therefore point toward a heterogeneity in 

operationalization of schizotypy which do not only affect comparability of studies 

but also affect the conceptualization of the construct of schizotypy per se. It is 

proposed, that a refined assessment of schizotypy, namely integrating the items 

of different schizotypy measurements and including a separate factor measuring 

will lead to better comparability between studies and moreover to a more 

distinguished operationalization of schizotypy.  

 

 

 

 

 

 

 

 

 

 

Manuscript contribution: 65%. JKP, IN and TRK conceptualized the study design. TRK 

performed statistical analyses. JKP conducted a literature review, wrote the original 

draft of the manuscript and was responsible for visualization of results. The other 

authors contributed to subject and data acquisition as well as data management and 

basic preprocessing (TM, UE, LS).   
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3. GENERAL DISCUSSION  

A key challenge in psychiatric neuroimaging is the search for optimized 

phenotypes and relating those to imaging marker. Research in the field has 

tended to focus on case-control studies on a univariate statistical level. This 

thesis provides a new look at approaches in psychiatric neuroimaging research 

on a biological as well as a phenotypic level: studies addressed the overarching 

issue of low reproducibility in the field by 1) calling into question the assessment 

of an important transdiagnostic phenotype (STUDY III), 2) applying multivariate 

statistical (as opposed to univariate) approaches as well as multivariate 

integration for phenotypic as well as neuroimaging analyses (STUDY I, II, & III), 

and 3) using hypothesis- (STUDY I & II) as well as data-driven approaches 

(STUDY III).  

A current discussion is the lack of reproducibility and generalizability of 

neuroimaging studies paired with low effect sizes, which ultimately limits the 

studies’ impact for extending psychiatric phenotyping (Gratton et al., 2022; 

Marek et al., 2022; Satterthwaite et al., 2020). Within the scope of reproducibility 

and generalizability, the studies in this thesis are dedicated to addressing the 

short-comings of BWAS. While BWAS are good at observing the most common 

effects over a large study cohort, the approach lacks determinants for 

elucidating the meaningfulness of these common effects (Bandettini et al., 2022; 

Gratton et al., 2022).  

One of the challenges for finding optimized phenotypes is the 

heterogeneity within single disorders. Bandettini et al. (2022) describes this 

challenge in his paper by referring to the Anna Karenina effect (Finn et al., 2020) 

which stems from the first sentence of the correspondent novel by Tolstoy: 

“Happy families are all alike; every unhappy family is unhappy in its own way.” 

(Tolstoj, 1877, book opening). It makes sense that there is no single neural 

correlate of depression when there is no single biological depression entity. 

Deriving potentially interesting brain areas from healthy populations and then 

comparing those in case-control studies to depression populations undermines 

the variability within this disorder (Bandettini et al., 2022; Ivleva et al., 2020; 

Lynch et al., 2020). Modelling this variability is an important step towards 

application of individualized psychiatric neuroimaging diagnostics and 

therapeutics (Finn et al., 2020). The multivariate SEM in STUDY I evolved from 
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hypotheses on intercorrelations of trait and states in MDD as well as 

associations with a popular brain measurement (DTI). It shows that by including 

different features of MDD in one comprehensive model enhances our 

understanding of the covariances between these features.  

STUDY II focused on the challenge of population sorting and stratification 

and is directly related to the precedent mentioned challenge of heterogeneity 

within a single disorder. By sorting mental disorders in BWAS based on clinical 

diagnosis categorization the multidimensional nature of phenotypes is 

overlooked as the diagnostic categorization does not equally map on a biological 

level (Bandettini et al., 2022). The often a priori diagnosis-related grouping of 

brain morphometric measurements therefore restricts the power of these 

methods: assuming that there has to be a clear relationship of brain structure or 

function with a particular disease group overlooks the possibility that there are 

biological correlates which do not correlate with the disease manifestation itself 

(which is necessary for the clinical diagnosis) but appear meaningful for the 

disease trajectory for multiple mental disorders, i.e. shared risk factors. As 

neuroimaging studies of risk factors in healthy populations have their own 

challenges, multivariate data-driven approaches in clinical populations can find 

the neural underpinnings related to a particular brain measurement in a more 

distinctive way. 

Basis of both of the above-mentioned challenges is the reliable 

assessment of the behavioral phenotypes. Without an agreement on 

operationalization of a behavioral measurement neuroimaging studies will 

always have at least one source that limits their reproducibility and 

generalizability (Gratton et al., 2022). Different measurements for one construct 

all have their right to exist as of course development of measurements follow 

the development of conceptualizations. This, however, needs to be addressed 

at a certain point to ensure reliability of studies exploring neuroimaging or 

genetic correlates of the constructs. In STUDY III, the personality trait schizotypy 

was investigated regarding its factor-structure and heterogeneous 

operationalization across measurements using the multivariate method of PCA. 

Results show indeed that schizotypy is conceptualized differently across the 

different measurement, which shows the need for a refinement of the 

multidimensional phenotype. This is not only necessary to assure 
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generalizability across studies but also leads to higher reliability as with a 

refinement of the measurement the multidimensional nature of the construct is 

captured more veridical.   

 

3.1. Impact of multivariate statistical approaches in psychiatric 

neuroimaging research for phenotyping 

The three studies in this dissertation all used multivariate statistical 

approaches (McIntosh & Mišić, 2013) to address three different sources of 

heterogeneity in psychiatric neuroimaging phenotyping: clinical heterogeneity 

within one disorder (STUDY I), imposed heterogeneity of brain measurements 

across clinical diagnoses (STUDY II), and heterogeneous assessment of a 

phenotype (STUDY III).  

Hypothesis- driven, multivariate models like our SEM are important to 

explore practical implications of the RDoC for neuroimaging research (Sanislow 

et al., 2020): Following the RDoC framework, our SEM comprehends two 

different units of analyses (behavioral and neurobiological) to describe the 

relationship of MDD features while considering two major functional domains 

(cognitive systems-cognitive control; negative valence systems-anhedonia) 

(https://www.nimh.nih.gov/research/research-funded-by-nimh/rdoc/about-rdoc; 

last visited on 04/11/23). Integrating multiple aspects of the RDoC in one 

comprehensive model follows RDoC’s goal to advance basic science of brain 

and behavior (Pacheco et al., 2022). Through the illustration of specific 

directions of relationships in one comprehensive model, it is possible to 

disentangle neural underpinnings of symptom clusters. This is an important step 

to define more sophisticated phenotypes of psychiatric disorders. Our model 

thus can be used to transfer it to risk-phenotype as well as transdiagnostic 

phenotype models, which is a crucial starting point for understanding the 

mechanisms and trajectories of psychiatric disorders (Feczko & Fair, 2020; 

Hawco et al., 2021; Lynch et al., 2020; Meehan et al., 2022; Voineskos et al., 

2020). Ultimately, this is hoped to lead to improvement of preventive and 

therapeutic interventions.   

Data driven models like cluster analysis are part of the multivariate, 

exploratory techniques. Their utility in brain imaging research lies in the 

extraction of patterns of covariation across all possible brain regions (McIntosh 

https://www.nimh.nih.gov/research/research-funded-by-nimh/rdoc/about-rdoc
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& Mišić, 2013). Following the interpretation of heterogeneity in psychiatric 

neuroimaging results by Ivleva et al. (2020), neuroimaging studies in psychiatry 

show such highly heterogeneous brain alterations within syndromes which yet 

leads to high biological similarity across syndromes. Hence, the 

phenomenological division in diagnostic categories does not hold up with 

biological division derived by brain imaging methods. The authors propose to 

establish approaches to define “(…) biologically homogenous and specific 

‘disease units’ (and corresponding subgroups of patients) based on brain 

alterations detectible with imaging, despite phenomenological similarities across 

the subgroups (…).” (Ivleva et al., 2020, p.1). STUDY II in this thesis was able 

to show exactly that, namely transdiagnostic similarities in brain patterns as well 

as environmental and neuropsychological conditions while not finding evidence 

of homogeneous biological grouping of diagnostic categories. Using data driven 

models also in transdiagnostic populations are hence of great importance to find 

biologically homogenous phenotypes beyond diagnostic categories (Clementz 

et al., 2016; Lynch et al., 2020; Tamminga et al., 2017).  

In any case, looking at early environmental conditions such as prenatal 

stress in various ways has proven its potential as a reliable predictor for mental 

illnesses (Alabaf et al., 2022; Kappelmann et al., 2022; Newman et al., 2016; 

Zajkowska et al., 2021). Connecting prenatal stress impacts to brain 

measurements and finding those impacts still present in adult life independent 

of diagnostic categories, as shown in this thesis, offers great potential for 

advancement in diagnostics (Goodkind et al., 2015; Hermens et al., 2019; 

Stefanik et al., 2018).  

A PCA approach serves to derive a set of components from the original 

variables while maintaining the variance-covariance structure of the original 

variable set (McIntosh & Mišić, 2013). With this, heterogeneously 

operationalized constructs can be explored regarding their underlying statistical 

and phenomenological homogeneity. Considering the rather low effect sizes of 

(especially morphometric) neuroimaging studies in psychiatry (compared to 

other fields like e.g., neurodegenerative diseases (Bandettini et al., 2022)) it is 

exceedingly crucial to have a unifying ontology and further assessment 

framework of psychological constructs (Gratton et al., 2022). Results of STUDY 

III show, that to this day the construct of schizotypy is conceptualized differently 
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in different assessments. However, neuroimaging studies of schizotypy using 

different assessments are interpreted and compared as if the underlying 

construct was unified which leads to a tremendous source of heterogeneity in 

neuroimaging results. This limits not only the comparability of studies but more 

importantly, it limits the explanatory power of the construct: schizotypy no longer 

serves as a phenotype for one mental disorder, namely schizophrenia, but 

indeed shows transdiagnostic impact (Premkumar et al., 2020; Sun et al., 2022; 

Webster et al., 2022). However, if the construct itself is assessed 

heterogeneously already, interpreting its impact against the background of 

heterogeneous disease courses is even harder (Krueger & DeYoung, 2020). 

Future studies therefore must focus on fitting the phenotype of schizotypy into 

one strong theoretical framework to make it applicable for transdiagnostic 

interpretations.  

 

3.2. Looking forward: Implications for future phenotype research in 

psychiatry 

Multivariate statistical approaches in psychiatric neuroimaging research 

are a first step to define more elaborated phenotypes in psychiatry. As 

mentioned in the introduction, movements for reliable and replicable results in 

psychiatric neuroimaging need to go toward a more comprehensive approach in 

neuroimaging (Ressler & Williams, 2021). Beyond multivariate approaches, 

developments in computational psychiatry might incumbent a big responsibility 

for future phenotype research in psychiatry: With computational modeling it is 

possible to provide computational phenotypes that link translational 

neuroscience and clinical practice (Huys et al., 2016; Patzelt et al., 2018). For 

single-patient predictions, pathological behavior associated with brain 

alterations can be modeled by certain parameters which represent individual 

units in the process of illness (Becht & Mills, 2020). However, these parameters 

heavily rely on the theory behind mental health and illness (Hitchcock et al., 

2022).  This means, as long as existing theories about phenotypes are not 

backed up by valid and reliable evidence, computational modeling methods are 

restricted in their practical power. Hitchcock et al. (2022) recaps that 

computational psychiatry still lacks appropriate theoretical frameworks for 
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mental health as the heterogeneity in mental disorders are not well 

acknowledged in the models yet.  

Already Kendler et al. (2011) emphasized that mental disorders are too 

complex systems to be traced back to a “single, well-defined etiological agent” 

(Kendler et al., 2011, p. 1144). This is where multivariate statistical approaches 

can offer up by overcoming this hypothesis of singularity. With these, variance 

resulting from heterogeneity, dimensionality, and transdiagnostic features of 

mental illnesses can be better stratified than with univariate approaches. Results 

of the studies in this dissertation show the feasibility of multivariate approaches: 

The extensive model in STUDY I gives a more comprehensive insight in 

the interrelationship of brain connectivity networks in MDD with dimensional 

clinical variables. The data driven approach in STUDY II elucidated the 

underlying biological grouping of a large transdiagnostic patient cohort. SUTDY 

III disentangled heterogeneity in the assessment of a personality trait to take a 

step closer toward a unifying framework for this construct.  

Taken together, research in psychiatric phenotyping has to overcome 

univariate correlation or regression approaches to produce valid and reliable 

results of relationships between brain and behavior in order to serve 

computational psychiatry approaches. (Patzelt et al., 2018) 

 

3.3. Limitations 

Studies in this dissertation show some limitations which should be 

outlined. While this dissertation applied multivariate statistical approaches for 

advanced psychiatric phenotyping, all analyses are restricted to cross-sectional 

data. Based on methodological implications of SEM, equivalent models with 

even better fits to the model in STUDY I are likely to exist (Kline, 2015). 

Furthermore, path coefficients of our brain-behavior relationships are relatively 

small when embedded in recommendations for psychometric research 

(MacCallum & Austin, 2000). Furthermore, directions of effect in an SEM follow 

linear relations, which is why the model in STUDY I cannot represent non-linear 

relationships between the variables. The investigated sample of MDD patients 

was not stratified regarding clinical aspects like remission state, hospitalizations 

or medication, which leaves out the possibility of explaining potential interaction 

effects.  
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The transdiagnostic sample in STUDY II was composed of significantly 

more patients with an MDD diagnosis than other psychiatric diagnosis. 

Furthermore, as cluster analysis is an explorative approach, results are highly 

dependent on components like sample sizes and clustering algorithm. Results 

of STUDY II therefore cannot be easily compared to other studies using this 

approach. Because subgroups were clustered by brain data only and 

association of the subgroups with clinical data is of correlational nature, clusters 

cannot be interpreted as holistic defined subgroups. 

Study sample in STUDY III consisted of only young, highly educated and 

overly healthy subjects. Hence, variance in the data used for analyses was low 

which limits the generalizability of results. Furthermore, composition of 

components included in the CFA differed from the composition used for PCA, 

which limits the comparability between the two analyses.  

 

3.4. Conclusion  

Mental illnesses are complex multi-factorial, dynamic constructs which 

cannot be explained by distinct univariate analyses. This dissertation showed 

the feasibility of multivariate statistical approaches when investigating both 

neuroimaging as well as psychometric data. To transfer results of neuroimaging 

research in psychiatry to phenotyping which has actual practical implications for 

the clinic, reproducibility and generalizability of results is a necessity. 

Multivariate approaches help to disentangle interrelationships on multiple levels 

and improve psychiatric phenotyping. Besides advanced statistical approaches, 

Open Science practices like sharing data and code to work collaboratively 

should be fostered heavily in psychiatric research. Joined data and expertise 

enables validation of results on a large-scale. This is needed to eventually be 

able to offer improved, individual therapeutic interventions and care for mental 

health.  
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SUMMARY 

The biopsychosocial model offers a conceptual theoretical framework to 

explain mental health and illness. It states, that the continua of biological, 

psychological, and social factors must be seen in interaction in order to 

determine an individual’s risk for mental illness. By defining psychiatric 

phenotypes this model is transferred into practical application.  

Advances in neuroimaging techniques hold big promises to contribute to 

psychiatric phenotyping. Being able to unravel associations between behavior 

and the brain, enables the detection of further biomarkers for psychiatric 

disorders besides genetics. However, considering the complexity of both the 

brain as well as mental disorders, mapping reliable brain-behavior relationships 

is challenging. So far, mostly univariate statistical approaches are applied in 

psychiatric neuroimaging research which do not fully live up to this complexity.  

This dissertation applied multivariate statistical approaches to both brain 

as well as behavioral data to investigate the feasibility of those approaches in 

neuroimaging research for psychiatric phenotyping. The aim was to go one step 

further toward disentangling the heterogeneity of phenotypes in psychiatric 

neuroimaging.  

In STUDY I we used the multivariate approach of Structural Equation 

Modeling (SEM) to build a comprehensive model of brain as well as clinical data 

in a large sample of patients with major depressive disorder (MDD). A previous 

published clinical SEM, which included risk, symptom, and cognitive variables 

was first replicated and then extended by a brain structural connectivity 

measurement. Findings of this study reflect on our understanding of white matter 

integrity in MDD and bring new insights into the relationship between an 

established risk factor as well as a core symptom of MDD with brain structural 

connectivity.  

The data driven approach in STUDY II in form of cluster analysis aimed 

to explore the underlying biological grouping in a large transdiagnostic cohort. 

Results show that data driven subgroups based on a brain morphometric 

parameter do not align with the clinical diagnostic grouping. Results of 

subsequent correlational analyses with early environmental risk factors as well 

as neuropsychological variables hint toward a transdiagnostic involvement of 
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this brain morphometric parameter in psychopathology rather than being bound 

to clinical diagnostic categories.  

In STUDY III, results of Principal Component Analyses showed that 

conceptualizations as well as assessment of the personality trait schizotypy 

differ across studies which leads to a source of heterogeneity when this 

phenotype is used in neuroimaging studies. Confirmatory Factor Analyses 

provided a newly approach for the assessment of schizotypy.  

In conclusion, this dissertation provided novel insights into the feasibility 

of multivariate statistical approaches in both psychiatric neuroimaging as well as 

psychometric research. Results of the studies highlight the importance of going 

beyond simple diagnostic borders to define reliable phenotypes in psychiatry. 

Future research in this field needs to shift toward more comprehensive 

approaches to capture the complexity of mental disorders. By this, a reliable 

foundation for computational models is built to enable the practical application 

of individual predictions about mental health and illness.  
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ZUSAMMENFASSUNG 

Das Biopsychosoziale Modell bietet einen konzeptuell theoretischen 

Rahmen, um mentale Gesundheit und Krankheit zu erklären. Das Modell 

beschreibt, dass die Kontinua von biologischen, psychologischen und sozialen 

Faktoren in Interaktion miteinander betrachtet werden müssen, damit man das 

individuelle Risiko für psychische Erkrankungen bestimmen kann. Dieses 

theoretische Modell findet praktische Anwendung durch die Bestimmung 

psychiatrischer Phänotypen.  

Weiterentwicklungen in neurowissenschaftlichen Methoden gelten als 

vielversprechend, um wichtige Beiträge zur Phänotypisierung psychiatrischer 

Erkrankungen zu liefern. Diese Methoden können den Zusammenhang 

zwischen Verhalten und Gehirn erforschen und somit neben Genetik weitere 

biologische Marker für psychiatrische Erkrankungen liefern. Jedoch erschweren 

sowohl die Komplexität von psychiatrischen Erkrankungen als auch die 

Komplexität des Gehirns klare und zuverlässige Zusammenhänge zu finden. 

Bisherige Forschung in diesem Bereich hat sich überwiegend auf univariate 

statistische Tests gestützt, welche aber diese Komplexität nicht vollends 

erfassen können.  

In dieser Dissertation wurden daher multivariate statistische Ansätze 

herangezogen, um deren Anwendbarkeit im Rahmen neurowissenschaftlicher 

Forschung zu psychiatrischen Phänotypen zu untersuchen. Hierfür wurden die 

multivariaten Ansätze sowohl auf Hirn- als auch auf psychometrische Daten 

angewendet. Das übergeordnete Ziel dieser Dissertation war die Heterogenität 

bisheriger Phänotypen in diesem Feld zu entzerren.  

In STUDIE I verwendeten wir den multivariaten Ansatz des 

Strukturgleichungsmodells, um ein umfassendes Modell mit sowohl Hirn- als 

auch klinischen Daten zu entwickeln. Die verwendeten Daten stammen von 

einer großen Stichprobe an Patienten mit depressiver Störung. Hierfür wurde 

ein zuvor publiziertes klinisches Strukturgleichungsmodell herangezogen und 

zunächst in unserer Stichprobe repliziert. Dieses Modell enthielt sowohl einen 

etablierten Risikofaktor für Depression als auch Symptome und einen kognitiven 

Parameter der Depression. Anschließend integrierten wir in dieses 

Strukturgleichungsmodell einen Parameter für hirnstrukturelle Konnektivität. Die 

Ergebnisse der Studie erweitern bisheriges Wissen zur Integrität der weißen 
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Substanz in Depression und bringen neue Erkenntnisse zum Zusammenhang 

zwischen einem Risikofaktor, einem Hauptsymptom der Depression und 

hirnstruktureller Konnektivität in Depression.  

Die Anwendung eines datengetriebenen Ansatzes auf einen 

hirnmorphometrischen Parameter in Form der Clusteranalyse in STUDIE II 

zielte darauf ab, unabhängig von klinischen Diagnosen die reine biologische 

Gruppierung einer transdiagnostischen Patientenkohorte zu explorieren. Die 

Ergebnisse der STUDIE II zeigen, dass die durch die Clusteranalyse gebildeten 

Subgruppen nicht mit den diagnostischen Gruppen einhergehen. Weitere 

Korrelationsanalysen der Subgruppen mit frühen Umweltrisikofaktoren und 

neuropsychologischen Variablen geben einen Hinweis darauf, dass der 

untersuchte hirnmorphometrische Parameter eher eine transdiagnostische 

Rolle in Psychopathologie spielt als dass dieser differentiell für klinisch 

diagnostische Gruppen dient. 

Durch die Anwendung einer Hauptkomponentenanalyse in STUDIE III 

konnten wir zeigen, dass sich sowohl die Konzeptualisierungen als auch die 

psychometrische Erfassung des Persönlichkeitskonstrukts Schizotypie über 

Studien hinweg unterscheidet. Der Einsatz dieser unterschiedlichen Skalen 

führt wiederum zu heterogenen Ergebnissen in neurowissenschaftlichen 

Studien. Einen Vorschlag zur homogeneren Erfassung des Konstruktes haben 

wir durch die Anwendung von Konfirmatorischer Faktorenanalyse erörtert.  

Abschließend lässt sich sagen, dass die vorliegende Dissertation neue 

Einblicke in die Anwendbarkeit und Nützlichkeit multivariater statistischer 

Ansätze eröffnet hat. Die Ergebnisse der Studien heben hervor, dass es wichtig 

ist über die klinisch diagnostischen Grenzen hinaus zu gehen, um verlässliche 

Phänotypen bestimmen zu können. Es ist von Notwendigkeit, dass zukünftige 

Forschung in diesem Bereich mehr in Richtung umfassender statistischer 

Anwendung rückt, um die Komplexität psychischer Erkrankungen ausreichend 

erfassen zu können. Dadurch kann die Grundlage für rechenbetonte 

Modellierung psychischer Erkrankungen gelegt werden, um diese dann für 

individuelle Vorhersagen über mentale Gesundheit und Krankheit anwenden zu 

können.  
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Abstract

Aberrant brain structural connectivity in major depressive disorder (MDD) has been

repeatedly reported, yet many previous studies lack integration of different features

of MDD with structural connectivity in multivariate modeling approaches. In n = 595

MDD patients, we used structural equation modeling (SEM) to test the intercorrela-

tions between anhedonia, anxiety, neuroticism, and cognitive control in one compre-

hensive model. We then separately analyzed diffusion tensor imaging (DTI)

connectivity measures in association with those clinical variables, and finally inte-

grated brain connectivity associations, clinical/ cognitive variables into a multivariate

SEM. We first confirmed our clinical/ cognitive SEM. DTI analyses (FWE-corrected)

showed a positive correlation of anhedonia with fractional anisotropy (FA) in the

right anterior thalamic radiation (ATR) and forceps minor/ corpus callosum, while neu-

roticism was negatively correlated with axial diffusivity (AD) in the left uncinate fas-

ciculus (UF) and inferior fronto-occipital fasciculus (IFOF). An extended SEM

confirmed the associations of ATR FA with anhedonia and UF/ IFOF AD with neuroti-

cism impacting on cognitive control. Our findings provide evidence for a differential

impact of state and trait variables of MDD on brain connectivity and cognition. The

multivariate approach shows feasibility of explaining heterogeneity within MDD and

tracks this to specific brain circuits, thus adding to better understanding of heteroge-

neity on the biological level.
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anhedonia, connectivity, diffusion tensor imaging, major depressive disorder (MDD),

neuroticism, structural equation modeling
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