Applications of Comparative Genomics:

Dissemination and Phylogeny of Coding and Non-Coding Gene Families

DISSERTATION
zur
Erlangung des Doktorgrades
der Naturwissenschaften
(Dr. rer. nat.)

Dem Fachbereich Pharmazie
der Philipps-Universitdt Marburg
vorgelegt von

M. Sc. Paul Moritz Johannes Klemm
aus Berlin

Marburg an der Lahn im August 2023






Die Untersuchungen zur vorliegenden Arbeit wurden von Mai 2018 bis Juli 2023 unter der
Betreuung von Prof. Dr. Roland Hartmann und Dr. Marcus Lechner in Marburg im Institut
fiir Pharmazeutische Chemie und im Zentrum fiir Synthetische Mikrobiologie
(SYNMIKRO) durchgefiihrt.

Erstgutachter/in: Prof. Dr. Roland Hartmann

Zweitgutachter/in: Dr. Marcus Lechner

Eingereicht am 8.8.2023
Tag der miindlichen Priifung am 19.9.2023
Hochschulkennziffer: 1180



Erkldarung

Ich versichere, dass ich meine Dissertation

“Applications of Comparative Genomics: Dissemination and Phylogeny of Coding and
Non-Coding Gene Families”

selbstdndig ohne unerlaubte Hilfe angefertigt und mich dabei keiner anderen als der von
mir ausdriicklich bezeichneten Quellen bedient habe. Alle vollstdndig oder sinngemal3

iibernommenen Zitate sind als solche gekennzeichnet.

Die Dissertation wurde in der jetzigen oder einer dhnlichen Form noch bei keiner anderen

Hochschule eingereicht und hat noch keinen sonstigen Priifungszwecken gedient.

Marburg, den ........ccocceeveeveeneeneenienen.

(Paul Klemm)






Abstract

Comparative genomics is an interdisciplinary field of study comparing the genetic makeup
across multiple species. It aims to understand the similarities and differences in the
genomes of various organisms to gain insights into their evolutionary relationships, functional
characteristics, and adaptations. Some of the key applications of comparative genomics
include phylogenetic reconstruction, where researchers construct evolutionary trees to
visualize the evolutionary history of species or genes, and orthology predictions, where
homologous genes with shared ancestry and similar functions are identified across different
organisms. The highlighted work includes two biologically motivated projects that leverage
bioinformatic tools from comparative genomics. Furthermore, advancements in sequencing
technologies have revolutionized genomics by generating vast amounts of genomic data. On
the one side, this data flood provides unprecedented opportunities for comparative genomics,
allowing researchers to explore genomic diversity on a large scale. However, the sheer volume
of data also poses significant challenges on the other side in terms of data processing and
storage. The third project addresses this challenge of coping with the ever-increasing flood of

genomic data by revising a critical tool of the field.

In the first project was focused on investigating the Kiwellin protein family in plants, which
plays a critical role in plant-pathogen interactions. The research aimed to understand the
structural features of this protein family and distinguish it from closely related Barwin-like
proteins. The outcomes of this project were published in the article titled “Evolutionary
reconstruction, nomenclature and functional meta-analysis of the Kiwellin protein family”,
introducing a systematic nomenclature that revealed three distinct sub-classes within the
Kiwellin family. Additionally, a meta-analysis of publicly available transcriptome data revealed
specific responses of Kiwellins in different plant tissues and cultivars, as well as their responses
to biotic and abiotic stresses. This hints at the fact that this protein family may act as a general
communication molecule in plants. This research provides a valuable foundation for further

investigations into plant-microbe interactions.

The second project centered around the small non-coding RNA known as 6S RNA, which
is associated with stress-coping mechanisms in bacteria. Among the bacteria, the diverse
group of lactic acid bacteria (LAB) plays a significant role in the food industry, serving as
starter cultures for industrial fermentation processes or as probiotics among others. However,
some LAB can also act as pathogens, posing a potential threat. The primary objective was to
identify this non-coding RNA and characterize its features in LAB. The outcomes of this project
were presented in the publication “Insights into 6S RNA in lactic acid bacteria (LAB)". The
research involved various methodologies, including secondary structure-guided alignments,

synteny classifications, phylogenetic reconstruction, and a guide for identifying 6S RNAs.



The findings from this work offer valuable insights for optimizing fermentation processes,

developing growth stage markers, or designing putative antibiotic supplements.

The third project revolved around the orthology prediction tool, Proteinortho, which holds
significant importance in comparative genomics, particularly in relation to the two previous
projects. Orthologs are homologous genes that evolved from a speciation event and are believed
to have retained similar functions across different species. The inference of orthologs is a
critical step in multiple applications, such as genome annotation, phylogenetic analysis, and
supertree analysis. Due to the rapid increase in genomic data already mentioned above, it is
necessary to constantly optimize the tools for data processing. In this project, we performed
an algorithmic update of Proteinortho, with a specific emphasis on enhancing its primary
stages: sequence comparison and clustering. The results of this project can be found in
the article “ Proteinortho6: Accelerating graph-based detection of (co-)orthologs in large-scale
analyses”. Our improvements significantly enhanced the overall performance and scalability
of the tool for current datasets and available computational resources. Additionally, the update
increased the tool’s availability, interoperability, and usability, making it more accessible for

researchers in the field of comparative genomics.

In summary, the presented projects help to paint a clearer picture of two important biological
entities with direct industrial applications and highlight improvements to an established tool

that is essential to the field of comparative genomics.



Zusammenfassung

Die vergleichende Genomik ist ein interdisziplindres Forschungsgebiet, in dem die
genetische Zusammensetzung mehrerer Arten verglichen wird. Sie zielt darauf ab, die
Ahnlichkeiten und Unterschiede in den Genomen verschiedener Organismen zu verstehen,
um Erkenntnisse iiber ihre evolutiondren Beziehungen, funktionellen Merkmale und
Anpassungen zu gewinnen. Zu den wichtigsten Anwendungen der vergleichenden Genomik
gehoren die phylogenetische Rekonstruktion, bei der Wissenschaftler Evolutionsbdume
konstruieren, um die Evolutionsgeschichte von Arten oder Genen zu veranschaulichen, und
Orthologiebestimmungen, bei denen homologe Gene mit gemeinsamer Abstammung und
dhnlichen Funktionen in verschiedenen Organismen identifiziert werden. In dieser Arbeit
werden zwei biologisch motivierte Projekte hervorgehoben, bei denen bioinformatische
Werkzeuge aus der vergleichenden Genomik zum Einsatz kommen. Aullerdem fiihren
Fortschritte in der Sequenzierungstechnologie dazu, dass enorme Mengen an genomischen
Daten erzeugt werden. Einerseits bietet diese Datenflut Wissenschaftlern in der vergleichenden
Genomik beispiellose Moglichkeiten, um die genomische Vielfalt in grolem Malstab zu
erforschen. Auf der anderen Seite stellt die immense Menge an Daten jedoch auch eine grof3e

Herausforderung fiir die Datenverarbeitung und -speicherung dar.

Das erste Projekt dieser Arbeit konzentrierte sich auf die Untersuchung der Kiwellin-
Proteinfamilie in Pflanzen, die eine entscheidende Rolle bei der Interaktion zwischen Pflanzen
und Krankheitserregern spielt. Ziel des Projektes war es, die strukturellen Merkmale dieser
Proteinfamilie zu verstehen und sie von den eng verwandten Barwin-like Proteinen zu
unterscheiden. Die Ergebnisse wurden in der Publikation “Evolutionary reconstruction,
nomenclature and functional meta-analysis of the Kiwellin protein family” veroffentlicht,
in der eine systematische Nomenklatur entwickelt wurde, die drei verschiedene Unterklassen
innerhalb der Kiwellin-Familie aufzeigen konnte. Dariiber hinaus ergab eine Meta-
Analyse dffentlich zugidnglicher Transkriptomdaten spezifische Reaktionen von Kiwellinen
in verschiedenen Pflanzengeweben und -sorten sowie ihre Reaktionen auf biotische und
abiotische Stressfaktoren. Dies deutet darauf hin, dass diese Proteinfamilie méglicherweise als
ein allgemeines Kommunikationsmolekiil in Pflanzen fungiert. Diese Forschung bietet eine
wertvolle Grundlage fiir weitere Untersuchungen der Interaktionen zwischen Pflanzen und
Mikroben.

Das zweite Projekt befasste sich mit der kleinen nicht-kodierenden RNS, der so genannten
6S RNS, die mit Stressbewdltigungsmechanismen in Bakterien in Verbindung gebracht
wird. Innerhalb der Bakterien spielt die vielfdltige Gruppe der Milchsidurebakterien (LAB)
eine wichtige Rolle in der Lebensmittelindustrie, in der sie u.a. als Starterkulturen fiir
Fermentationsprozesse oder als Probiotika fungieren. Einige LAB konnen jedoch auch als
Krankheitserreger wirken und stellen somit eine potenzielle Bedrohung dar. Das Hauptziel
dieses Projekts bestand darin, die 6S RNS zu identifizieren und ihre Eigenschaften in LAB

zu charakterisieren. Die Ergebnisse wurden in der Verdffentlichung “Insights into 6S RNA



in lactic acid bacteria (LAB)” publiziert. Die Forschung umfasste verschiedene Methoden,
darunter sekundérstrukturgeleitete Alignments, Synteny-Klassifizierungen, phylogenetische
Rekonstruktion und einen Leitfaden zur Identifizierung der 6S RNS. Die Erkenntnisse aus
dieser Arbeit bieten wertvolle Einsichten fiir die Optimierung von Fermentationsprozessen,
die Entwicklung von Markern fiir das Wachstumsstadium oder die Entwicklung méglicher

Antibiotikazusétze.

Das dritte Projekt drehte sich um das Tool zur Vorhersage von Orthologien, Proteinortho,
das in der vergleichenden Genomik von groller Bedeutung ist, insbesondere in Bezug
auf die beiden o.a. Projekte. Orthologe sind homologe Gene, die sich aus einem
Speziationsereignis entwickelt haben und von denen man annimmt, dass sie dhnliche
Funktionen arteniibergreifend beibehalten haben. Die Bestimmung von Orthologen ist
ein entscheidender Schritt bei zahlreichen Anwendungen, wie z.B. der Genomannotation,
der phylogenetischen Analyse und der Supertree-Analyse. Aufgrund der bereits oben
angesprochenen raschen Zunahme genomischer Daten ist es erforderlich, die Tools der
Datenverabeitung stetig zu optimieren. In diesem Projekt haben wir eine algorithmische
Aktualisierung von Proteinortho durchgefiihrt, mit besonderem Schwerpunkt auf der
Verbesserung seiner primédren Phasen: dem Sequenzvergleich und dem Clustering. Die
Ergebnisse dieses Projekts sind in dem Artikel “Proteinortho6: Accelerating graph-based
detection of (co-)orthologs in large-scale analyses” zu finden. Unsere Verbesserungen haben
die Gesamtleistung und Skalierbarkeit des Tools fiir aktuelle Datensédtze und verfiigbare
Rechenressourcen erheblich verbessert. Dariiber hinaus wurden durch diese Aktualisierung
die Verfiigbarkeit, Interoperabilitidt und Benutzerfreundlichkeit des Tools verbessert, wodurch

es fiir Wissenschaftler im Bereich der vergleichenden Genomik leichter handhabbar wird.

Zusammenfassend ldsst sich sagen, dass die vorgestellten Projekte dazu beitragen, ein klareres
Bild der 6S RNS und der Kiwellinfamilie im Hinblick auf potentielle industrielle Anwendungen
zu zeichnen und Verbesserungen an einem etablierten Tool aus dem Forschungsbereich der

vergleichenden Genomik hervorzuheben.
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Introduction

Comparative genomics is a relatively young field that involves comparing genomes or
proteomes of different species to identify similarities in their genetic makeup. In 1977,
Sanger and Coulson pioneered a sequencing technique called the chain-termination
method, which revolutionized the field of genetics by enabling the deciphering of genetic
material (Sanger, 1977). Since then, sequencing techniques have advanced significantly,
not only in terms of efficiency but also in cost reduction (Sboner, 2011; Stephens, 2015).

These advancements have led to an
first generation

exponential growth of sequencing data, second generation
. . . third gen.
as demonstrated in Fig. 1 with the NCBI (2023, 1.9-1012)
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of a non-coding RNA (6S) and a protein over the years (Benson, 2012) with selected
family (Kiwellin) and show computational milestones' (Stephens, 2015).

improvements to orthology prediction. A
comprehensive understanding of the field’s intricacies and illumination of potential solutions

are aimed to be provided from a biological and especially a computational point of view.

This chapter provides a comprehensive overview of the central biological systems, with a
specific focus on the 6S RNA and the Kiwellin protein family. Additionally, key bioinformatic
concepts such as homology, orthology, including the tool Proteinortho, and phylogenetics

will be introduced to the reader in detail. Lastly, a short overview of the mathematical

11995-1997: B. subtilis Genome Project (Kunst, 1997), 1990-2001: Human Genome Project (first generation) (I.
Consortium, 2001), 2008: [llumina human genome (second generation) (Bentley, 2008), 2008-2015: 1000 Genome
Project (1. G. P. Consortium, 2015), 2015: PacBio human genome (third generation) (Chaisson, 2015), 2013-2018:
100.000 Genome Project (Turnbull, 2018),



foundation is given, explaining the concept of spectral clustering. Each section will
summarize the theoretical underpinnings of the concepts, offering a concise explanation
of their fundamental principles. Furthermore, selected implementations and state-of-the-
art approaches will be highlighted to showcase the practical applications of these concepts.
This chapter establishes a basis for the readers and provides the motivation for the research

questions of the different projects presented in the next chapter.

Moving on to the second chapter, the three research articles are presented, each addressing the
research questions introduced in the first chapter. The results and discussions of the articles
lay the foundation for the following chapter, which includes overarching and topic-specific
conclusions and outlooks. The formulated hypotheses in this chapter can potentially serve as

starting points for future researchers interested in delving further into these intriguing topics.

The Appendix of this dissertation comprises additional results and discussions obtained from
the three articles, delving deeper into the research investigations. For further details on the
results, including programs and datasets utilized, as well as the figures produced during this
study, readers can refer to the accompanying supplementary repository”. Furthermore, the
supplementary files of the three articles are also available in the same repository, providing
a comprehensive set of materials to support and validate the findings presented in this

dissertation.

*https://gitlab.uni-marburg.de/synmikro/ag-lechner/paul-klemm-dissertation-supplement
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1.1.1 The 6S RNA -~

Small non-coding RNAs (sRNAs) are increasingly becoming the focus of scientific research®.
One prominent member is the 6S RNA (also known as SsrS RNA), that was first discovered by
Hindley in 1967 in E. coli (Hindley, 1967).

The function of 6S RNA was initially elusive, as knock-out or over-expression mutants of the
6S RNA did not produce significant phenotypes (Wassarman, 2000). Nowadays, it is known as
an important regulatory unit of the transcriptional apparatus in the context of environmental
stresses such as oxidative stress or nutrient deficiency (Wehner, 2014; Burenina, 2022) and

being sporulation associated (Cavanagh, 2013).

Similar to proteins, the structure of non-coding RNAs is crucial to their function. 6S RNA
is between 160 and 200 nucleotides long and canonically takes the shape of a rod with an
enlarged inner loop called central bulge flanked by two helical arms on both sides as shown
in Fig. 2 (Wehner, 2014). This unique structure mimics B-form DNA and resembles an open
promoter complex (Chen, 2017). This enables the 6S RNA to bind with the bacterial DNA-
dependant RNA polymerase (RNAP) holoenzyme, which is saturated with the housekeeping
sigma factor’ (Wassarman, 2000; Barrick, 2005).

In E. coli and B. subtilis, the 6S RNA accumulates in the exponential phase and peaks in
the stationary phase where nutrients become limited (Beckmann, 2011; Wassarman, 2000).
The RNAP uses the 6S RNA as a template for the transcription and produces short abortive
product RNAs called pRNAs (Wassarman, 2000). Therefore, under stresses like this nutritional
deprivation in the stationary phase, the 6S RNA competes with regular DNA promoters
of the housekeeping sigma factor as it reduces the availability of this holoenzyme. This
interaction suppresses housekeeping-associated gene expression and aids the formation of

other holoenzymes with different alternative sigma factors (Wehner, 2014).

As the bacteria transition to a new exponential growth phase, for example, by increasing the
nutrient concentration, the pRNAs increase in lengths (Beckmann, 2011). Once they reach a
length of around 14 nucleotides, a 6S RNA:pRNA hybrid is formed, causing a conformational
change that ultimately leads to the release of the RNAP holoenzyme and the degradation of the
6SRNA (Beckmann, 2012; Steuten, 2014). This release of the RNAP induces housekeeping sigma
factor associated gene expression. Therefore, the 6S RNA directly encodes a self-regulatory

element in the form of the pRNAs in different lengths.

While most of the early studies were focused on E. coli and B. subtilis, a comprehensive
phylogenetic analysis in 2014 revealed the widespread presence of the 6S RNA across bacteria,
including extremophiles like the hyperthermophilic Aquifex aeolicus that was found, for

example, in hot springs in the Yellowstone National Park (Willkomm, 2005). A single 6S RNA

3PubMed results for “small RNA”: 1991: 24, 2010: 447, 2021: 974 p.a.
’e.g. oo for E. coli and o 4 for B. subtilis
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Figure 2: RNAfold structure predictions of the 6S RNA of Escherichia coli strain K-12 (A) and the 6S-1
RNA of Bacillus subtilis strain 168 (B). More details on the two structure predictions can be found in the
supplementary repository. Schematic model of the function of the 6S RNA (C). Three typical growth
stages (separated by dashed lines) modeled after experimental results (Beckmann, 2011; Beckmann,
2012): The exponential phase (1) with high but depleting nutrition concentration and exponentially
rising numbers of cells. The stationary phase (2) starts when nutrients are sparse, the number of cells
plateaus, and the stress level peaks. A second exponential or outgrowth phase (3) is induced by adding
further nutrients (black arrow, add). The 6S RNA concentration peaks in the late stationary phase. Short
pRNAs accumulate from the early exponential phase to the late stationary phase. Long pRNAs burst in
expression shortly after the induced outgrowth, suppressing the 6S RNA:RNAP complex, which leads to
a degradation of the 6S RNA.
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molecule has been identified in most bacterial taxa, with some exceptions (Wehner, 2014). For
instance, for Bacillus subtilis, two paralogs exists: the 6S-1 RNA®, corresponds to the canonical
6S RNA, and the 6S-2 RNA®, that is specifically involved in the regulation of biofilm formation
in wild-type strains (Thiiring, 2021). It is to be noted that the structural rearrangement-driven

regulatory mechanism of the pRNAs is conserved in bacteria as well (Beckmann, 2012).

The 6S RNA is found in many different types of bacteria, which is also true for the lactic acid
bacteria (LAB), which is of key interest to the food sector. LAB are a diverse group of Gram-
positive, acid-tolerating bacteria of the order of Lactobacillales, which can be subdivided into
the following six families: Aerococcaceae, Carnobacteriaceae, Enterococcaceae, Lactobacillaceae,
Leuconostocaceae, and Streptococcaceae. One common metabolic characteristic among LAB
is their ability to produce lactic acid in carbohydrate fermentation (Leroy, 2004). Because
of the ability to ferment milk and other food products, LAB are of key interest in the food
industry, such as starter cultures. Examples of products include yogurt, cheese, natto, and
kimchi. Furthermore, some LAB strains are used as probiotics probiotics (Leroy, 2004). Many
of the LAB are Generally Recognized as Safe (GRAS) with exceptions of opportunistic pathogens

found mainly in the genera of Streptococcus and Enterococcus (Mattila-Sandholm, 1999).

LAB are exposed to diverse stresses, both within the gastrointestinal tract or in industrial
environments (Smid, 2010), where the regulatory function of the 6S RNA comes into play.
Therefore, identifying and classifying 6S RNA in LAB are crucial for future research and have
direct applications. Preliminary studies showed that 6S RNA knockout strains metabolize
nutrients faster compared to the corresponding wild type strain (Cavanagh, 2012). By exploring
the regulatory mechanisms of 6S RNA in LAB, researchers can potentially optimize LAB
strains for better performance in food fermentation, storage, and other relevant applications.
Furthermore, in this context, it is possible to investigate the potential for increased production

of secondary metabolites, such as surfactants, in 6S RNA knockout strains.

The objective of this work is to explore the 6S RNA in LAB. This includes identifying 6S
RNA, conducting phylogenetic analysis to understand its evolutionary relationships, and

investigating its genomic context.

bsrA, GenelD:8303199
®bsrB, GenelD:8303197
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1.1.2 The Kiwellin Protein Family &

The world population is expected to surpass 10 billion until the year 2050 (Roser, 2013; Hickey,
2019). This constant growth induces an increasing relevance of crop diseases for the global food
security (Van Dijk, 2021; Fenu, 2021). In combination with globalization, climate change adds
to this problem, enabling pathogens to spread to new regions (Bebber, 2013). Furthermore,
the increasing global temperatures induce drought stress, weakening resistance systems of
plants (Bebber, 2013). Together this gives pathogens that evolved over millions of years in
an arms race against plants more and more an advantage (Maor, 2005). Recent results have
highlighted Kiwellins in maize plants as a weapon in the fight against a pathogenic fungus (Han,
2019; Altegoer, 2020).

Corn smut is a disease in maize (Zea mays W) caused by the infection with the biotrophic
fungi Ustilago maydis. The fungus secretes virulence factors called effectors to counteract
the plant defense systems like proteases (Misas Villamil, 2019). Another example of these
effectors is the chorismate mutase Cmul of U. maydis that targets the salicylic acid pathway
of the plant (Djamei, 2011). This is achieved by converting the plant chorismate to prephenate
and thus reducing its availability as a component for the salicylic acid pathway, resulting
in a suppressed plant defence response (Djamei, 2011). The effector mimics the plant’s
own chorismate mutase but lacks the allosteric regulation present in the plant enzyme. Two
Kiwellins of Z. mays were shown to specifically bind to fungi Cmul at the active site and thus
counteracting this mechanism (Han, 2019; Altegoer, 2020). Fig. 3B depicts this interaction
schematically. This discovery represents the first instance where Kiwellins have been found
to have an additional function besides human allergens identified in kiwifruit (Actinidia
spp. @ ) (Tamburrini, 2005; Fine, 1981; Wang, 2019)

Kiwellins are around 20 kDa or 190 amino acids of size and are cysteine-rich, contributing
to plenty of disulfide bridges and exceptional stability. Moreover, a signal peptide in most
Kiwellins suggests that they can be secreted from the cell via the conventional pathway. More
insights were gained from the published crystal structures (Han, 2019; Hamiaux, 2014), that
revealed different domains as shown in Fig. 3A. The primary characteristic features are a short
B-hairpin motif at the N-terminus in combination with a double-psi-3-barrel fold (DPBB)
that is composed of three a-helices and six parallel and antiparallel connected 3-strands. The

DPBB of Kiwellins is shares high similarities to the class of Barwin-like proteins (BL).
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Figure 3: From left to right (A): Barwin-like (BL), Kiwellin, and Kissper-Kiwellin proteins structure
prediction of consensus sequences with different levels of abstractions from top to bottom (3D model,
planar projection, comic abstraction). Green arrow: 3 sheets, blue barrel: « helices, red/black lines:
loop regions, yellow box: the 5-hairpin, red box: the kissper domain, yellow circles: cysteine residues, *:
variable length loop region. Two characteristic features are highlighted: long: an internal loop region
that is predominantly short in BL and long in Kiwellins, short: a short loop in of the §-hairpin in Kissper-
Kiwellins. Adapted from (Klemm, 2022). Schematic model of Cmul mediated pathogenesis in Zea mays
infected by Ustilago maydis (B). Cmul suppresses the salicylic acid mediated plant defense system,
and Kiwellins counteract this mechanism by binding to the Cmul. Green: Maize cell, red: Ustilago
maydis cell. Adapted from (Djamei, 2011; Han, 2017).




8 1.1 Biological Systems

This similarity led to frequent confusion between the Kiwellin and BL protein families (Jaswal,
2021; Han, 2019; Blum, 2021). The BL protein family is widespread, found in bacteria, plants,
and fungi, with various functions like sugar binding, cleavage activity, and pathogenesis-related
activity (Dabravolski, 2021; Scherer, 2010). Another closely related subfamily is the Kissper-
Kiwellins which contain another N-terminus extension called the kissper domain, which has

been reported to exhibit pore-forming activity (Tuppo, 2008).

Driven by the findings in maize, where Kiwellins counteract a specific pathogenic effector,
this work aims to classify and investigate the dissemination of the whole Kiwellin family.
Based on this, a phylogeny can be constructed and investigated, resulting in a nomenclature.
Furthermore, the research seeks to examine whether there are distinct subclasses and
differentiation characteristics and how they are distributed across different taxonomic groups.
A meta-analysis aims to shed light of how Kiwellin proteins are expressed in different
situations. The study aims to foster new understandings of Kiwellins with putative agricultural

implications by addressing these aspects.
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1.2 Bioinformatic Concepts

To simplify terminology, the term “protein” refers in the following to the amino acid
representation and “gene” analogously to the nucleotide representation; in addition, genes

and proteins can be freely interchanged in this context.

1.2.1 Homology, Orthology, and co.

Homology is a concept that generally captures the “sameness” of structures, genes, or proteins,
and its definition has evolved over time (Petsko, 2001; Panchen, 2007; Wake, 2007; Koonin,
2001; Jensen, 2001; Boyden, 1969; Pearson, 2013; Wake, 1994; Fitch, 2000). Charles Darwin
gave homology an evolutionary perspective and associated it with similarity due to common
ancestry (Darwin, 1859). Fitch provided a formal definition, where homology refers to
characters that descend with divergence from a common ancestral state (Fitch, 1970; Fitch,
2000). Characters refer to any feature of sequence (nucleotide, amino acids), structure,
morphology, or behavior. Genes are considered homologs when a significant fraction of
residues show homology in the ancestral species beyond what would be expected by chance
alone (Fitch, 1970).

It is to be noted that the term homology is heavily overloaded and comes in various flavors
in different fields of study, e.g. structural/morphological, functional, behavior, cladistic, and
many more. Furthermore, it has been recycled and used in pre-Darwinian times, with a focus
on similarity rather than evolutionary relationships. In this work, the post-Darwinian point of

view of homology is used in congruence with the definition of Fitch.

Fitch further refined homology into two sub-classes (Fitch, 1970), which are orthologs and
paralogs. Orthologs (ortho = exact) are homologs that originate in a speciation event, where
two species diverge. They correspond to the genes whose evolutionary relationship directly
corresponds with the phylogeny of the species where the genes reside. On the other hand,

paralogs (para = beside) originate from duplication events.

For example, the two 6S RNA genes of B. subtilis’ represent paralogs while the 65 RNA genes
from B. subtilis and E. coli® represent orthologs. Due to the interplay of duplication and
speciation events, the relationship of orthologs can be considered hierarchical and varies in
complexity: one-to-one, one-to-many, or even many-to-many. The aforementioned example
would represent a one-to-many relationship. Groups of orthologs with lineage-specific

duplicates are called co-orthologs.

There are some common a priori assumptions and conjectures that are essential for the

interpretation and inference of homologs and orthologs:

Orthology function conjecture. Homology is often used in a functional context, although the

Fitch definition does not explicitly mention functional relationships. Furthermore, orthologs

"bsrA/GenelD:8303199, bsrB/GenelD:8303197
85s1rS/GenelD:947405
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are conceptually expected to conserve functions, while paralogs are more functionally
diverse (Gabaldon, 2013; Pearson, 2013). The idea is based on the assumption that duplicated
genes are subject to low selective pressure as the original gene already fulfills the necessary
function. Mutations can accumulate without a decrease in fitness which can lead to a loss of
the gene or otherwise result in a new function (neofunctionalization) or specialized function
(subfunctionalization) Ohno (1970). Orthologs, on the other hand, originate in the event of
high evolutionary pressure (speciation event) and should thus be more conserved. It is worth
noting that this conjecture already fails for many co-orthologs where only one lineage-specific
duplicated gene retains the function of the defining speciation event. Furthermore, similar
structures can have different functions in different organisms (Fitch, 2000). Although this
conjecture is controversially discussed (Gerlt, 2000; Nehrt, 2011; Petsko, 2001) in general this
conjecture appears to hold (Gabaldén, 2013).

Orthology is transitive. Transitivity implies that if gene A is orthologous to gene B, and gene
B to gene C, then gene A will be considered orthologous to gene C'. This principle serves
as the foundation for forming orthology groups like { A, B, C'}. It is important to note that,
conceptually, this assumption has been critiqued as inaccurate (Johnson, 2007). From a
practical standpoint, it is often more feasible to aggregate orthologs into groups for analysis
purposes. This approach allows for a more straightforward analysis compared to a list of

individual orthology relationships.

Orthologs are among the most similar sequences. While this hypothesis holds as a statistical
trend, there are cases where it fails due to factors like horizontal gene transfer (Koski, 2001;
Gabaldon, 2013; Altenhoff, 2009; Hulsen, 2006; Wolf, 2012). This conjecture is at the heart of

the reciprocal best alignment heuristic described in the next section.

In summary, the ambiguity surrounding the concept of homology arises from its historical
development, the different definitions used in various fields, and the changing perspectives
on its meaning. Despite these challenges and assumptions, homology remains a fundamental

concept in biology, particularly in comparative genomics.

1.2.2 (Co-)Orthology Detection

Identifying orthologs within a set of sequences from different species is known as orthology
inference, which can be classified into two methodologies: the tree-based and graph-based

approaches.

Graph-based methods rely mainly on similarity measurements as a proxy for the underlying
evolutionary relationship. Typically these methods begin with the reciprocal best alignment
heuristic(RBAH) (Bork, 1998). Using a homology search algorithm like BLAST, lists of homologs
can be inferred between two species, each acting as the database or query. If a gene in one
species is the best match for another gene in the other species and vice versa, it is considered a
reciprocal best hit (RBH) or bidirectional best hit. This procedure is then repeated for any pair

of species, ultimately resulting in a similarity graph, where nodes represent genes and edges
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correspond to putative orthologs, the so-called reciprocal best hit graph or RBH graph. With

the transitive conjecture, the connected components form groups of putative co-orthologs.

It is known that these graphs suffer from the small world phenomenon (Milgram, 1967): with
an increasing number of species or genes, the connected components grow disproportional in
size. Resulting in massive groups covering more and more of the graph and, in turn, becoming
less informative. This is demonstrated with real-world data in section 1.3.1. Subsequently,
clustering algorithms are usually employed to prune the graph to a digestible size and
reduce false positives. Examples are OMA (Altenhoff, 2021), SonicParanoid (Cosentino, 2019),
OrthoMCL (Li, 2003), and Proteinortho (Lechner, 2011).

On the other hand, tree-based methods aim to reconstruct the evolutionary gene tree using
sequence alignments together with the underlying species tree. Orthology predictions
are based on this reconciliation procedure (the alignment of the species and gene tree).
Conceptionally are these methods closer to the evolutionary definition of Fitch. An example
that combines both approaches is OrthoFinder2 (Emms, 2018), which initially employs a
graph-based method to estimate putative orthologs and subsequently refines this prediction
with a phylogenetic analysis. The main drawbacks of the tree-based approach are its higher

computational costs and the challenges in inferring and reconciling the species tree.

Proteinortho

A widely adopted orthology inference tool in the scientific community, with more than 1000
citations and 100k downloads on Bioconda’, isProteinortho (Lechner, 2011). Proteinortho
has been used to address various research questions, including the identification of conserved
proteins for constructing species trees (Klemm, 2022; Peter, 2018) or the discovery of antibiotic
resistance genes between resistant and susceptible strains in the human gut (Bisanz, 2018).
Furthermore, itis utilized in programs such as funannotate, an automatic pipeline for genome

annotation (Palmer, 2022).

Proteinortho follows the graph-based methodology and a schematic workflow is depicted in
Fig. 4. In the first step, databases are generated for all input species. The next step involves
an all-versus-all blast search, where each species is compared against all other species using
a homology search program such as diamond (Buchfink, 2015) or BLAST (Altschul, 1990)'°.
The resulting outputs are then filtered based on a minimum E-value'!, minimum coverage'?
among others. Next, the pairwise results are combined to construct a graph using a modified
version of the RBAH that is relaxed by a factor to allow for sub-optimal hits, the so-called
adaptive RBAH (Lechner, 2011). The parameter controlling false positives in the adaptive
RBAH is the similarity threshold f'°. By setting the cutoff to 100%, only the canonical RBH is

retained, while a value of 0 allows any reciprocal hit to be included in the output graph.

“https://anaconda.org/bioconda/proteinortho
"“parameter: -p, default: diamond

”parzuneler: -e, default: 107°

2parameter: -cov, default: 50%

Bparameter: -sim, default: 95%
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In the final step, spectral clustering is applied to break down the graph into smaller groups.
The number and size of these groups can be controlled by adjusting the algebraic connectivity
cutoff o'*. A higher threshold leads to further partitioning of the graph leading to more but

smaller groups.

In this work, the advancements introduced in the updated version of Proteinortho6 will be
compared to its predecessor and other competing tools in the field. Additionally, the influence
of various parameters that control the quality as well as the resource consumption will be
investigated. Finally, alternative BLAST methods such as diamond will be explored, the spectral
clustering approach will be re-evaluated, and the accuracy of Proteinortho in the QfO (Quest

for Orthologs) benchmarking framework will be assessed (Altenhoff, 2016).

step 1: generate databases step 3: spectral clustering
step 2: adaptive reciprocal best alignment heuristic 3.1 build graph
2.1 all versus all blast 3.2 find connected components,
calculate algebraic connectivity a
Al|lvs| B |, | Alvs| C |, :Ilgl |£1
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Figure 4: Schematic workflow of Proteinortho. Colored boxes: species, black circle: genes or proteins,
black arrow: blast hit, red dotted line: removed edge. Step 1: generating databases. Step 2: adaptive
RBAH using the specified homology search tool and filtering thresholds, Step 3: combine pairwise
results into an undirected graph, identify connected components, calculate the algebraic connectivity,
and remove edges until connectivity is sufficiently high.

1.2.3 Phylogenetic Tree Inference

In 1837, Charles Darwin sketched a simple evolutionary tree of life in his notebook B with
the words “I think” scribbled on top, see Fig. 5 (Darwin, 1837). Since then, evolutionary trees
have become a crucial tool in the field of evolutionary biology. Darwin’s central idea was that
genes evolve through different events and accumulate changes along their way, a concept he
referred to as descent with modification or natural selection (Darwin, 1859). This idea laid the
foundation for representing gene families in the form of undirected trees, called phylogenetic
trees. However, it is important to note that there are cases where this logic fails, such as if

horizontal gene transfer or hybridization occurs, which are inherently directed events. This

' ]parameler: -conn, default: 0.1
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renders trees unable to fully represent the true evolutionary history relationship. Nevertheless,

this concept remains groundbreaking for understanding the complex relationships in nature.

Itk X0 ?

Figure 5: Excerpt of Charles Darwin’s notebook B, the circled one may indicate the origin oflife. (Darwin,
1837)

Today, the field of phylogenetics focuses on reconstructing and assessing past lineages through
evolutionary trees. Reconstructing the evolutionary history of a given set of sequences is a
challenging problem only sequences from extant species can be used as input. There are
two primary methodologies for phylogenetic inference: distance-based and character-based.
Both of these methods are heuristics because the problem of finding the optimal tree is

computationally infeasible.

Distance-based methods simplify the alignment by constructing a distance matrix using
metrics such as the number of non-nonidentical matches or the Levenshtein edit
distance (Levenshtein, 1966). In the second step, a hierarchical clustering of the rows
and columns is used to construct a tree out of this distance matrix. Two general methods
that implement such inference methods are UPGMA (unweighted pair group method with
arithmetic mean) (Michener, 1957) and neighbor-joining (Saitou, 1987). A specialized example
that clusters non-coding RNAs based on their secondary structure is RNAclust (Engelhardt,
2010).

Character-based methods, on the other hand, improve the quality of output at the expense
of being more computationally expensive. Instead of using a simple distance metric,
these methods analyze the full differences between the sequences in question. Different
methodologies of character-based methods employ different mathematical frameworks, such

as maximum parsimony and maximum likelihood.

The main concept of maximum parsimony (MP) is to find the solution that explains the
evidence while minimizing the complexity of the model, favoring the simplest evolutionary

solution. This concept is inspired by the philosophical principle of Occam’s razor: Numquam
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ponenda est pluralitas sine necessitate (plurality must never be posited without necessity).
Despite the idealized simplicity, the stringent assumptions do not always correspond to the
best approximation of the true evolutionary history (Felsenstein, 1978). It was shown that
parsimony approaches are entangled with the molecular clock assumption, which assumes a
constant rate of mutations across all lineages as in the UPGMA algorithm (Felsenstein, 1978;
Kapli, 2020). This assumption is often violated in real-world datasets, leading to incorrect tree

topologies (Felsenstein, 1978).

To address these issues, the maximum likelihood (ML) method increases the model complexity
at the expense of higher computational costs. At its core, ML approaches rate trees by their
likelihood to generate the observed data and thereby seek to maximize this likelihood given
some set of parameters, such as tree topology or branch lengths. When modifying these
parameters, one can compare the resulting likelihood and search for a tree maximizing
this function. Nowadays, ML methods are preferred over MP methods as the parameters
can be arbitrarily complex to fit the needs of the data. Popular implementations of ML are
RAxML (Stamatakis, 2014) and IQ-Tree (Nguyen, 2015). IQ-Tree differs from the approach of
RAxML by shifting the objective from a global optimization problem to a local one. The local
structures are so-called quartets that are trees from four sequences and thus represent only a
tiny fraction of the data. By optimizing a set of quartets and combining the information, the

final phylogenetic tree is constructed (Strimmer, 1996).

The authors of IQ-Tree demonstrated that their tool could produce higher likelihoods than
RAxML (Nguyen, 2015). The newer variation RAXxML-NG (Kozlov, 2019) significantly improved
upon RAxML but shows mixed results in comparison with IQ-Tree. In summary, both IQ-Tree
and RAxML-NG are well-suited tools for phylogenetic inference. However, in this study, IQ-Tree

was chosen as the preferred option due to its superior usability and user-friendly features.

The following sections are aimed to give a basic understanding of common phylogenetic biases

and two analyses that are used throughout this work.

Phylogenetic Errors

In analyzing phylogenetic trees it is crucial to understand the types of errors that can occur
and how to handle them. There are two major types of errors: stochastic errors, which arise
from random noise in the data or method used, and systematic errors, which result from
incorrect model assumptions or the underestimation of data complexity. Systematic errors
often stem from the assumption of homogeneity in the model, whereas real-world data exhibit
higher complexity, leading to incorrect results. While some errors can be easily avoided, for
example, by integrating them into the model, others may be far more challenging to identify
and rectify. Despite this, it remains crucial to consider them in phylogenetic analysis. The
following list some of the most common systematic errors in phylogenetic tree analysis (Kapli,
2020; Felsenstein, 1978; Philippe, 2005):

Horizontal gene transfer (HGT) describes the non-sexual transfer of genetic material between
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organisms, primarily observed in bacteria. Another closely related phenomenon, hybridization,
involves the combination of genomes of different species, which is particularly notable in
plants. Traditional phylogenetic trees struggle to represent these events accurately since they
introduce cycles and directionality, contradicting the descent with modification hypothesis.
As aresult, the presence of these events in the data conflicts with the tree inference. Recent
research has focused on developing (semi-directed) phylogenetic networks instead of trees to

account for these phenomena, like PhyNEST (Kong, 2022).

Heterogeneity of rates across lineages (or branch-length heterogeneity) is caused by unrelated
fast-evolving taxa that are wrongly grouped together as a result. The phenomenon, known as
long branch attraction (LBA), can be mitigated by integrating the branch length into the model
or removing regions of high evolutionary rates. Typically, a combination is applied, starting
with alignment trimming, followed by phylogenetic inference that accounts for branch lengths,
such as with ML approaches. Methods that are especially prone to LBA are UPGMA and MP
methods (Felsenstein, 1978).

Heterogeneity of character compositions describes the problem of incorrectly grouping based
on similar base compositions. This error can be accounted for in the model, the so-called
mixture models (Nguyen, 2015), albeit at an increased computational cost. Other common
methods to handle this error include removing outliers using a composition test, such as
IQ-Tree provides a chi-square homogeneity test on observed character frequency against
the total frequency of the alignment (Nguyen, 2015). Alternatively, character states can be
pooled together to counteract this bias, such as Dayhoffs six categories for amino acids based
on chemical properties (Dayhoff, 1978). It is to be noted that this procedure is criticized for

performing poorly as too much information is lost in the process (Hernandez, 2021).

Rate heterogeneity of sites describes the phenomenon that different parts of a gene evolve at
different rates. To improve accuracy, models that account for this error, such as the free-rate
model or the gamma-mixture model, are used in combination with a substitution model (Yang,
1995). Prominent phylogenetic inference tools like RAxML and IQ-Tree directly implement

these models.

Incomplete lineage sorting or hemiplasy can be observed in gene families with high genetic
diversity and large population size. It is caused by ancestral polymorphism that can lead
to gene-tree-species-tree incongruence, where the inferred gene tree does not match the
associated species tree. This error can be exacerbated in scenarios where multiple speciation
events follow each other in quick succession near the ancestral species, combined with long
branches at the tips. In this case, it is difficult to infer the true topology as the internal edges
exhibit a complexity that is masked by mutations of the long branches while the ancestral
polymorphism confounds the signals. It is worth noting that the result of incomplete lineage
sorting can sometimes be mistakenly interpreted as a horizontal gene transfer event, as the

results can be similar (Kapli, 2020).
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Supermatrix Analysis

Supermatrix or Supertree analysis is a commonly employed approach for inferring species
trees from a given set of species. First, an orthology analysis is conducted using tools like
Proteinortho. Next, the core-groups, which cover all species, are aligned individually and
subsequently concatenated into a so-called supermatrix (Kapli, 2020). The supermatrix is
then used to infer a single phylogenetic tree reflecting the evolutionary history of the species.
This approach is more robust to outliers than using a single gene family like 16S RNA to
infer the species tree and thus enhances the reliability of the resulting phylogeny (Kapli, 2020).
Nevertheless, finding concise groups of orthologs covering all species is challenging. A workflow
can utilize Proteinortho, to generate the set of ortholog core-groups, muscle, to align the

groups, and IQ-Tree, to infer a tree from the supermatrix.

Furthermore, the supermatrix can be combined with an existing topology, such as the Open
Tree of Life: Synthetic Tree (OpenTree, 2021), which is derived from published trees.
The tree inference tool then uses this tree as a fixed topology and infers the branch lengths

from the supermatrix.

Reconciliation Analysis

Reconciliation is a powerful method used to combine the evolutionary scenario of a gene family
with the corresponding species tree, as shown in the example in Fig. 6. The reconciliation
method seeks to rearrange the gene tree to fit the species tree by introducing new events to the
tree and simultaneously minimizing the associated cost of these events (Menet, 2022). For
example, the DTL model incorporates the events of duplication, horizontal gene transfer, and
gene loss, in addition to speciation events (Menet, 2022). Speciation events are represented by
nodes, where the gene tree and species tree align, while duplication events are depicted by
nodes of the gene tree placed on the edges of the species tree. HGT events connect different
branches of the species tree, and loss events are usually marked with an X as shown in Fig. 6.
One tool for reconciliation analysis is GeneRax (Morel, 2020), which implements different
evolutionary models like the DTL. Typically, this type of analysis builds on top of the classical
gene tree inference in combination with a supermatrix analysis that is used to generate a

species tree.

By combining information from the species tree and the gene of interest, a reconciliation
analysis enables the interpretation of the internal nodes in the gene tree regarding the
introduced events like speciation or duplication. These events can be used to refine orthology
groups as it is utilized in OrthoFinder2 (Emms, 2018). Furthermore, the reconciliation can
be used to generate a nomenclature of the genes, as described in the following. The ancient
speciation events hold limited information as they result in disjoint sets of species of the
proteins below. On the other hand, primal duplication events may be associated with functional
divergence, which divides the genes into distinct classes (Ohno, 1970). For example, in Fig. 6,

the two early duplication events define three classes (al and c1), (a2 and b1) and (b2, c2, and



1.2 Bioinformatic Concepts 17

d1), in which the gene d2 is not directly assignable. Consequently, this information can be

used to establish a nomenclature for the protein or gene family under investigation.

d2 al ¢l a2 bl b2 2 dl

al a2 bl b2 cl c2 d1 d2
—_— —_—
A B C D

Figure 6: Schematic representation of a reconciliation. The evolutionary history of the genes
{al,a2,b1,b2,c1,c2,d1,d2} (left) embedded in the species tree (middle) of the corresponding species
{A,B,C,D}. Gene losses are marked with X. Red circle: speciation event, blue square: duplication event,
green triangle: HGT event.
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1.3 Mathematical Framework

1.3.1 Spectral Clustering

The goal of graph clustering is to identify groups of nodes that are densely connected within
the same group while having sparse connections to other groups. While this task may seem
trivial for small graphs from a human perspective, it presents algorithmic challenges when

considered from a computational standpoint.

Graph clustering is a powerful approach

widely used in various applications, 1.00] relative size of largest
connected component
including image processing for object
clustering and graph-based orthology 0.75
inference. As described in chapter 1.2.2, +
the graph-based orthology inference
first builds up a graph of putative 050 .
orthologs using an all-versus-all BLAST
approach. However, as the number 0.25 "
of species increases, the connected
components in the graph tend to grow 0.00 #H++ number of species
rapidly, resulting in massively connected N %OQ \900 '@QQ

components. This is also known as the

small world phenomenon (Milgram,
1967) and is demonstrated with some

real-world examples in Fig. 7. Therefore,

Figure 7: The size of the largest connected
components relative to the total number
of nodes from randomly selected bacterial
proteomes of UniProt. The graphs were built using

Proteinortho with default parameters. More

it becomes essential to prune the details in the supplement of the third article 2.3.

homology graph into smaller groups

representing orthologs groups.

Spectral clustering offers an effective method for addressing this problem. It leverages the
characteristics, or spectrum, of the underlying adjacency matrix and employs techniques from
linear algebra to dissect the graph. The main idea of spectral clustering can be traced back to
Fiedler’s work (Fiedler, 1973). This chapter is aimed to highlight the core concept behind this
approach and provide a simplified motivation based on the works of Fiedler (1973), Shi (2000),
and Miettinen (2017).

Min-Cut Problem

The Minimum-Cut problem provides a formalized way of expressing the graph clustering
objective: Remove as few edges as possible from a graph to obtain two new connected sub-
graphs. Let V' denote a set of nodes of a graph. One way to achieve this is by finding two sets of
nodes, denoted as P and ) with P u ) = V, such that the number of edges between them is
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Figure 8: Example graph with 10 nodes. The most optimal split minimizing the number of edges
removed is indicated in blue and the most balanced split in red (ratio-cut).

minimal. This can be formulated as an optimization objective:

min cut(P,Q) :=min Y. a;;
PQ PQ 1€P,jeQ

Here, a; ; is 1 if there is an edge between nodes ¢ and j, and 0 otherwise.

While the cut objective initially seems suitable for clustering graphs, it is easy to find examples
where the cuts could be more optimal. For instance, in Fig. 8, removing the isolated node is
preferred over the split of the two highly connected components, as it involves removing only
one edge instead of two. To address this, a normalized version of the cut objective is often
used, incorporating a measure of the size of the resulting clusters. For example, the ratio-cut is
defined as:

cut(P, Q) . cut(P,Q)
1P| Q|

Here, |P| denotes the number of nodes in the set P. With this modification, imbalanced

ratio-cut(P, Q) :=

splits are punished and in the example of Fig. 8 the isolated node is not split first. Another

normalization approach is the norm-cut, defined as:

cut(P,Q) . cut(P, Q)
vol(P) vol(Q)

norm-cut(P, Q) :=

where vol( P) represents the sum of the node degrees for all nodes of P. Because solving
the normalized cut problems directly is computationally complex, which is classified as NP-
hard (Shi, 2000), it becomes essential to adopt a relaxed approach to make feasible algorithms

possible.

From Ratio-Cut to Eigenproblem

First, the definition of the normalized cuts will be simplified by omitting ), which is always
implicitly given by the complement of P. For example, the ratio-cut can be reformulated as

follows: _
cut(P,Q) cut(P, P)

Pl 1P|

where P represents all nodes except those in P or simply the nodes of ). Note that the
definition of the normalized-cut involves two terms that require reformulation. To simplify

matters, we will omit the second term. The term cut (P, P) still describes the number of edges
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between P and () and can be reformulated as the number of edges of P with any node of the

graph minus the number of edges within P or
cut(P, P) = cut(P, Q) = cut(P,V) - cut(P, P)

where V' denotes the set of all nodes. Let x be the vector that encodes the split between A
and B, where x; = 1ifi € P and 0 otherwise. The term cut(P, V') can be represented with the

matrix of node degrees D, where D; ; = degree(i) and 0 otherwise.

cut(P,V) = > > a;; =x"Dx (I.1)
ieP jeV

The second term cut( P, P) can be reformulate analogously

cut(P,P)= > Y a;; =x"Ax (1.2)
i€P jeP

Here, A denotes the adjacency matrix. Combining [.2 and 1.1, obtaining:
cut(P,P) =x'Dx-x'Ax =x" (D - A)x

The L2-norm of x, denoted by ||x||, corresponds to the Euclidean norm and therefore |x||?

corresponds the size of P. With this, the ratio-cut(P) can be rewritten:

cut(P,P) x'(D-A)x
1P| |2

In total, the clustering problem can be formulated as

T
D-A
i X (D-A)x

x binary ||X| |2

Relaxation and Solution

The problem remains as difficult as before, as the cut statement is only reformulated. Therefore,
by relaxing the constraint that the clustering vector x hold binary values (indicating which

nodes belong to one side of the split P) the ratio-cut can be rewritten as the following:

x'(D-A)x _ (i
[ ]

>T<D—A>”—§“

This relaxation now allows us to rewrite the problem using a normalized length vector u := ﬁ

and the Laplacian matrix L := D —A, where D is the degree matrix and A is the adjacency matrix:

u'Lu
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Figure 9: Example graph of Fig. 8, where each node is assigned the corresponding value of the Fiedler
vector calculated using Lapack ssyevr (algebraic connectivity: 0.04). The entries with positive and
negative entries define the two clusters.

Note that this would not be possible under the restriction of binary vectors. So, in summary:

min u’Lu (1.3)
u,u’u=1

The constraint comes from the definition of u (normal length).

Following Miettinen (2017), the formulated optimization problem of .3 can be approximated
with the Lagrangian Relaxation, that integrates the constraint directly into the objective with a
penalty multiplier A:

min(u’Lu - A(uu-1))
u

The Lagrangian Relaxation provides a weak solution, meaning that any solution to the original
problem implies a solution of the relaxation but not necessarily vice versa. A strong but
more technical version can be found in the works of Fiedler (1973) or Shi (2000). To find the
optimal solution, a minimum of this relaxed objective function is obtained by taking the partial

derivative with respect to u and setting it to zero:
i(uTLu ~AMuTu-1))=0
ou

Hence, with
Lu=)\u (1.4)

the terms with u vanish and the derivative is zero. The formulation of I.4 is well known as an
eigenproblem of which A is an eigenvalue of L and u is the corresponding eigenvector. By
the properties of the Laplacian L the smallest eigenvalue of a Laplacian is always 0 with a
constant eigenvector, which does not help in the context of graph clustering. Therefore the
second smallest eigenvalue (called algebraic connectivity) is used to approximate the min-cut
problem and ultimately cluster the graph. The positive and negative entries of the associated
eigenvector (called Fiedler vector) then give a bi-partitioning of the graph as shown in Fig. 9.
Furthermore, the algebraic connectivity directly reflects the connectivity of the graph. Higher
algebraic connectivity values indicate better graph connectivity, and in such cases, a cut may
not be as helpful for clustering purposes. On the other hand, when the algebraic connectivity

is low, it suggests the presence of well-separated clusters in the graph. For example, the graph
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Figure 10: The cockroach graph. An optimal split is indicated in red which removes the legs from
the body, while blue shows a suboptimal one. The spectral clustering approach can favor the blue
split (Miettinen, 2017)

with all edges (Kuratowski graph) produces the highest possible algebraic connectivity of 1.

In summary, by finding the eigenvalues and eigenvectors of the Laplacian matrix L, the
relaxed min-cut problem can be solved and the solution approximates the graph clustering
task. It is important to note that the algebraic connectivity and Fiedler vector only provide
approximations to the min-cut problem and may produce non-optimal splits in some instances

as demonstrated with the cockroach graph Fig. 10 (Miettinen, 2017).

Eigenproblem

The eigenproblem, that is, the problem of finding eigenvalues and vectors of a given matrix, is

a well-known and studied topic. There are plenty of different approaches to solving this:

The power iteration is a method for finding the largest eigenvalue of an eigenproblem. This
method is based on the idea of iteratively multiplying a matrix with a vector and normalizing
the resulting vector. By repeating this process, the method converges to the largest eigenvalue.
It's simplicity and low memory requirements make it a popular choice for various applications
in eigenvalue computations, one of which is Proteinortho (version v5), which utilizes the
power iteration method to cluster the RBH graph. It employs a two-step approach, first
transforming the Laplacian matrix to ensure that the algebraic connectivity becomes the
largest eigenvalue and then applying the power iteration method. This approach offers the
advantage of requiring only the edges present in the graph rather than the full adjacency
matrix (Lechner, 2011). Consequently, this method significantly reduces memory footprint,

enabling efficient processing of large matrices.

Another approach that is implemented in Proteinortho to solve the eigenproblem is
utilizing the highly optimized Fortran library Lapack (Anderson, 1999). Lapack is a widely-
used linear algebra library that provides efficient and reliable implementations of various
numerical algorithms. Within Lapack, the ssyevr routine is designed specifically for solving
the symmetric eigenvalue problem based on the Relatively Robust Representation (RRR)
algorithm (Parlett, 2000). This algorithm is known for its ability to compute eigenpairs in
linear time (Bientinesi, 2005), making it highly efficient for large-scale problems. On the flip
side, RRR requires the full Laplacian matrix and thus has a higher memory consumption in

total. A comparison between the two approaches is discussed in the third article.
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Results and Discussion

This chapter provides the three research articles. Additional results that highlight the
connection between the three topics, give further details on the discussed topic or provide
additional information about the phylogenetic performance can be found in appendix A1, A2,

and A3 as well as the supplementary repository'°.

"https://gitlab.uni-marburg.de/synmikro/ag-lechner/paul-klemm-dissertation-supplement


https://gitlab.uni-marburg.de/synmikro/ag-lechner/paul-klemm-dissertation-supplement
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Evolutionary reconstruction,
nomenclature and functional
meta-analysis of the Kiwellin
protein family
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2|nstitute of Microbiology, Heinrich Heine University Dusseldorf, Dusseldorf, Germany, *Department
of Biology, Philipps-University Marburg, Marburg, Germany, “Molecular Physiology of Microbes,
Max-Planck Institute for Terrestrial Microbiology, Marburg, Germany

Crop diseases caused by pathogens critically affect global food security and
plant ecology. Pathogens are well adapted to their host plants and have
developed sophisticated mechanisms allowing successful colonization.
Plants in turn have taken measures to counteract pathogen attacks resulting
in an evolutionary arms race. Recent studies provided mechanistic insights into
how two plant Kiwellin proteins from Zea mays mitigate the activity of the
chorismate mutase Cmul, a virulence factor secreted by the fungal pathogen
Ustilago maydis during maize infection. Formerly identified as human allergens
in kiwifruit, the biological function of Kiwellins is apparently linked to plant
defense. We combined the analysis of proteome data with structural
predictions to obtain a holistic overview of the Kiwellin protein family, that is
subdivided into proteins with and without a N-terminal kissper domain. We
found that Kiwellins are evolutionarily conserved in various plant species. At
median five Kiwellin paralogs are encoded in each plant genome. Structural
predictions revealed that Barwin-like proteins and Kiwellins cannot be
discriminated purely at the sequence level. Our data shows that Kiwellins
emerged in land plants (embryophyta) and are not present in fungi as
suggested earlier. They evolved via three major duplication events that lead
to clearly distinguishable subfamilies. We introduce a systematic Kiwellin
nomenclature based on a detailed evolutionary reconstruction of this protein
family. A meta-analysis of publicly available transcriptome data demonstrated
that Kiwellins can be differentially regulated upon the interaction of plants with
pathogens but also with symbionts. Furthermore, significant differences in
Kiwellin expression levels dependent on tissues and cultivars were observed.
In summary, our study sheds light on the evolution and regulation of a large
protein family and provides a framework for a more detailed understanding of
the molecular functions of Kiwellins.

KEYWORDS

Kiwellins, plants, interaction, pathogen, symbionts, evolution, classification, nomenclature
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Introduction

A better understanding of plant diseases caused by viruses,
bacteria, and fungi as well as by oomycetes is critical to improve
global food security. In many cases, pathogens employ secreted
effector proteins to manipulate the host plant and promote
infection (Stergiopoulos and de Wit, 2009; Rocafort et al.,
2020). Effectors exhibit a wide range of functions, e.g. they can
mask the pathogen, (down)-regulate host defense mechanisms,
or target defense enzymes or toxins to render them harmless
(Lanver et al., 2018). In turn, plants have evolved various defense
mechanisms. Upon pathogen contact, pattern recognition
receptors (PRR) in the plant plasma membrane recognize
conserved molecules on the surface of the microorganisms,
such as flagellin, chitin, or glucans from bacteria, fungi, and
oomycetes respectively (Jones and Dangl, 2006; Cook et al,
2015). These microorganism-associated molecular patterns
(MAMPs) lead to MAMP-triggered immunity (MTI) (Cook
et al,, 2015) triggering response mechanisms to restrict damage
caused by the pathogen. Plants can furthermore recognize
effectors that are secreted or translocated into the plant
cytoplasm, resulting in the activation of a second layer of
defense, the so-called effector-triggered immunity (ETI) (Du
et al,, 2016). Both types of responses are tightly interconnected
and thus referred to as the plant immune system (Jones and
Dangl, 2006; Nguyen et al, 2021). Recently, two studies
suggested a crucial role for maize Kiwellins as proteins
counteracting pathogen attack (Han et al., 2019; Altegoer
et al., 2020).

Two Z. mays Kiwellins specifically bind to the secreted
chorismate mutase Cmul of the smut fungus U. maydis and
inhibit its enzymatic activity (Han et al., 2019; Altegoer et al,,
2020). Cmul was shown previously to down-regulate salicylic
acid synthesis in the host by diverting its substrate chorismate to
the phenylpropanoid pathway, thereby decreasing maize
resistance to U. maydis (Djamei et al., 2011). Kiwellins were
originally identified in kiwifruit (Actinidia spp.) in which they
account for about 30% of the total protein content (Tamburrini
et al., 2005). Kiwifruit can cause allergies in humans (Fine, 1981;
Wang et al, 2019). It was shown that Kiwellin proteins
contribute to the allergic response and are recognized by
immunoglobulin E (Tamburrini et al., 2005; Ciardiello et al,
2009). The crystal structure of a Kiwellin from Actinidia
chinensis revealed that it is a modular protein formed by an
N-terminal 4 kDa kissper domain and a C-terminal core domain
(Hamiaux et al., 2014). Pore-forming activity was reported for

Abbreviations: Kwl, Kiwellin; dpi, days post-infection; hpi, hours post-
infection; LCA, lowest common ancestor; BL, Barwin-like; DPBB, double-
psi f-barrel; FUN, Fungi; BRY, Bryophyta; LYC, Lycopodiopsida; AMB,
Amborellales; LIL, Liliopsida; RAN, Ranunculales; MAG, Magnoliidae; SAX,
Saxifragales; ROS, Rosids; CAR, Caryophyllales; AST, Asterids.
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the kissper domain in synthetic lipid-bilayers while the Kiwellin-
core-domain contains a double-psi 3-barrel fold and a 3 -hairpin
(Tuppo etal,, 2008). Kiwellins have a high structural similarity to
another class of plant defense proteins termed Barwin. Barwin
and Barwin-like proteins are pathogenesis-related (PR) proteins
belonging to the PR4 family. This family is divided into two
classes, Barwin-like proteins with a chitin-binding domain (class
I) and without this domain (class II) (Sinha et al., 2014). These
proteins are mainly found in plants but also occur in bacteria,
algae, and fungi. The functions of the Barwin domain are
manifold. They can bind sugars, cleave RNA and DNA
depending on divalent cations, and show antifungal activity
(Dabravolski and Frenkel, 2021).

Due to the identification of a biological role of Kiwellins as
plant defense molecules and their widespread appearance in the
kingdom of plants (Bange and Altegoer, 2019; Han et al., 2019) it
was tempting to speculate about an evolutionarily conserved role
of Kiwellins as regulators of biotic interactions. Therefore, we set
out for a systematic phylogenetic and structural investigation of
the Kiwellin protein family to provide a framework for further
research on this large yet relatively uncharacterized group of
proteins. We provide a detailed phylogenetic reconstruction of
Kiwellin evolution based on published proteome data and
introduce a nomenclature for these proteins. In addition, we
show that many proteins annotated as Kiwellin-like are actually
Barwin-like proteins and that Kiwellins are probably restricted
to land plants. Finally, we reanalyzed 31 publicly available
transcriptome data obtained from plants exposed to biotic and
abiotic stresses. This uncovered remarkable transcriptional
regulation patterns for Kiwellin encoding transcripts upon
interaction of plants with microorganisms. These data hence
suggest a crucial role of Kiwellin proteins as modulators of plant-
microbe interactions.

Material and methods
Kiwellin annotation

Kiwellins were annotated in all complete reference
proteomes provided by UniProt, v2022_01 (Consortium,
2019). We conducted an iterative procedure that combines an
initial sequence-based model with a structure-based filtering
strategy. Initially, published sequences from Han et al. (2019)
were aligned using muscle v3.8.1551 (Edgar, 2004). A profile
Hidden Markov Model was built from this alignment using
HMMer v3.2.1 (Eddy, 1998) and then used to mine the
proteomes of all kingdoms of life (adaptive e-value cutoff
based on false positives, see Supplementary Data 1 chapter 4).
The resulting proteins were trimmed at the signal peptide
cleavage site which was predicted with SignalP v5.0b (Almagro
Armenteros et al., 2019) if present within the first half. The
region upstream of this site is cleaved in vivo and is thus not

frontiersin.org
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relevant for structural prediction. We employed AlphaFold2
v2.0.0 (Jumper et al, 2021) to accurately assess structural
elements, which were then used to determine the fold type, see
Figure 1. Predicted structures were superimposed with the
Kiwellin crystal structure provided by Han et al. (2019) using
PyMOL (DeLano and Bromberg, 2004) and compared based on
the presence of structural elements, RMSD and overlap (see
Supplemental Data 1 chapter 4 for details). In this way, false-
positive hits, e.g. Barwin-like proteins, could be distinguished
from Kiwellins and Kissper-Kiwellins. The process was iterated
multiple times, further improving the profile Hidden Markov
Model. We trained separate models for Kiwellins and Kissper-
Kiwellins. In parallel, we trained a model for false positives e.g.
Barwin-like proteins that allowed us to filter out members of this
group already at the sequence-based stages.

In total, we identified 915 Kiwellins in 142 land plants
(embryophyta) and one fungal species. No Kiwellins were
detected in bacteria, archaea, or viruses/phages. A detailed
description of the pipeline can be found in Supplementary
Data 1 chapter 4. The implementation of the workflow along
with the models generated at the last iteration is available via our
GitLab repository, see Data Availability Statement.

Evolutionary reconstruction

The evolution of Kiwellins was reconstructed based on a
phylogenetic gene tree that was modeled onto the associated
species tree. Phylogenetic conflicts that arise in this process are
resolved using a maximum likelihood-based approach
concerning speciation, duplication, or loss events within the
gene lineages.

First, all 915 Kiwellins with trimmed signal peptides were
aligned using muscle v3.8.1551 (Edgar, 2004) to reconstruct the
gene tree. The best-fit model for amino acid replacement with
respect to the Bayesian information criterion (BIC) was
determined using IQ-TREE v2.0.3 (Nguyen et al, 2015). The
phylogenetic tree was then reconstructed with 100k bootstrap
iterations based on the reported general amino-acid exchange rate
matrix (WAG) (Whelan and Goldman, 2001) with a FreeRate
model (Yang, 1995) of 8 categories of rate heterogeneity across
sites, WAG+RS.

Second, the species tree was compiled based on the Open Tree
of Life Synthetic Tree v13.4 (OpenTree, 2019a). The relevant
subtree was re-rooted and pruned to the species with annotated
Kiwellins within the reference proteomes provided by UniProt
using ete3 v3.0.0b34 (Huerta-Cepas et al., 2016) based on the open
tree taxonomy v3.3 (OpenTree, 2019b). To reduce the complexity,
cultivars/subspecies were merged into a single species node
representing all strains. As the Synthetic Tree does not encode
distances for any species, these were estimated based on their core
proteome. Orthologous proteins were determined using
Proteinortho v6.1.1 (Lechner et al, 2011) with a fairly high e-
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value of 102°. The 204 orthologous groups that covered all species
were aligned using muscle v3.8.1551 (Edgar, 2004). Alignment
columns with more than 90% gap content were dismissed, to
reduce complexity. The alignments of all orthologous groups were
then concatenated to reconstruct a supertree covering the core
proteome. The best-fit model for amino acid replacement with
respect to BIC was determined using IQ-TREE v2.0.3 (Nguyen
etal, 2015). The reported model was JTT (Jones et al., 1992) with
a FreeRate model (Yang, 1995) of 9 categories of rate
heterogeneity across the site and empirical base frequencies, JTT
+F+R9. It was used to reconstruct the phylogenetic tree,
constrained by the topology of the species tree.

Next, GeneRax v2.0.4 (Morel et al., 2020) was used for a
species-tree-aware Maximum Likelihood-based gene family tree
inference using the UndatedDL reconciliation model (including
speciation, duplication and loss events). 20 iterations were
performed to reconcile the gene and species trees. This
evolutionary reconstruction was then visualized using iTOL v6
(Letunic and Bork, 2021). It forms the foundation of the
Kiwellin nomenclature.

Nomenclature

Based on early duplication events, three major Kiwellin
groups were identified Kwll, Kwl2, and Kwl3. Kwll is closest
to the lowest common ancestor node (LCA) that was predicted
in the analysis and thus represents the primal Kiwellin
subfamily. Kwl3 is the most recent subfamily. Within these
major groups, the following duplication events with a
representative number of species covered were used to further
refine subgroups, e.g. Kwll-1, Kwll-2, and so on. Paralogs
within species are then numbered (ascending by age/distance
to LCA) using letters, e.g. Kwll-1la, Kwll-1b, and so on. A
notable exception is Kwl3-1 which was grouped based on a
speciation rather than a duplication event. However, this
subfamily is specific to Liliopsida and was therefore
threaded separately.

To ease reading and summarize our findings, species were
matched to taxonomic groups according to the NCBI taxonomy
(Sayers et al,, 2021). These groups are referred to by a three-letter
code. The abbreviations used here are as follows: Fungi (FUN),
Bryophyta (BRY), Lycopodiopsida (LYC), Amborellales (AMB),
Liliopsida (LIL), Ranunculales (RAN), Magnoliidae (MAG),
Saxifragales (SAX), Rosids (ROS), Caryophyllales (CAR), and
Asterids (AST).

Consensus
Kiwellin sequences with trimmed signal peptides were

grouped according to their respective major subfamilies (Kwll,
Kwl2, Kwl3, see ‘Nomenclature’ above). As most but not all Kwll
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Kiwellins contain a kissper domain, this subfamily was further
divided in Kissper-Kwll and Kwll (without kissper). To
emphasize the major differences, Barwin-like proteins identified
through the Barwin-Model (see ‘Kiwellin annotation’ above) were
added as an additional group. Note that this set is biased as it was
constructed from false positive Kiwellin annotations to
discriminate Barwin-like proteins from Kiwellins already at the
sequence level. The groups were aligned using muscle v3.8.1551
(Edgar, 2004). Alignment columns with more than 90% gap
content were dismissed, to reduce complexity.

A consensus sequence was calculated for each group and
visualized using jalview v2 (Waterhouse et al, 2009). The
conservation score of the Kiwellin consensus sequences was
calculated following Livingstone and Barton (1993). 1 to 9
indicates property conservation of the alignment column in
ascending order. Full property-related conservation is
indicated by +, perfect amino acid conservation by *. Physico-
chemical properties are highlighted based on the color schema
provided by Larkin et al. (2007) (known e.g. from clustalX). The
full alignments are available via our GitLab repository, see Data
Availability Statement.

Transcriptomics

Publicly available RNA-seq data sets in NCBI SRA (Sayers
et al,, 2021) were identified that were created to study either
pathogenic or symbiotic interactions in at least two biological
replicates. A complete list is compiled in the Supplemental Data.
The amino acid sequences of the respective Kiwellins were
mapped to the respective transcripts either based on the NCBI
transcriptome (Sayers et al., 2021) or, if not available, based on
the cDNA sequences provided by Ensembl Plants (Yates et al,
2022) using Proteinortho in autoblast mode (to match translated
DNA/RNA with amino acid sequences) with a relaxed minimal
sequence coverage of 20% and rather strict minimal percent
identity of 90% and e-value threshold of 107°° see
Supplementary Data 3.

RNA-seq libraries were quality trimmed using trim_glalore
v0.4.4 Krueger et al. (2021) and sequencing adapters were
removed using cutadapt v2.3 (Martin, 2011). For paired-end
sequenced experiments, the mate reads are omitted. Reads were
mapped to the transcriptome of the plant under study and its
pathogenic or symbiotic partner organism if available using bwa
v0.7.17 Li (2013) with default parameters. The average number
of mapped transcripts per data set can be found in
Supplementary Data 3. It was not always possible to assign a
read to a single transcript due to close sequence similarity. In
these cases reads with multiple hits were accounted
proportionate to the targets. However, we conservatively
neglected reads that were mapped to a Kiwellin and a non-
Kiwellin transcript to avoid linking measured expression of two
or more genes between both groups.
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Differential gene expression analysis was performed using
DESeq2 v1.22.2 (Love et al,, 2014). To reduce background noise,
transcripts with less than 20 reads combined for all replicates
and conditions were neglected. Technical replicates were
collapsed using the collapseReplicates routine. For each
dataset, we picked relevant replicates and conditions to
compare control or mock-treated versus infected or treated in
pairwise analyses (Wald test). A detailed listing is provided in
the Supplemental Datas 1, 3. Transcripts with a baseMean (a
proxy for overall expression strength) above 80 were considered
highly expressed. Only significantly regulated Kiwellin
transcripts with a P-value below 5% and an absolute log2-fold-
change of at least 1 were considered for further evaluation.

Results

Structural characteristics of
Kiwellins, Kissper-Kiwellins and
Barwin-like proteins

To get insights into the Kiwellin family of proteins we first
worked out the structural characteristics. Approaches used to
identify Kiwellins so far did not include this parameter to
separate this protein family from Barwin-like proteins.
Figure 1 highlights distinct structural features. Over 90% of
the identified Kiwellins contain a signal peptide and thus can be
secreted from the cell via the conventional pathway. The core of
a Kiwellin protein is about 110 aa long. It consists of three o
helices and six parallel and antiparallel connected S-strands, that
form a so-called double-psi -barrel. This type of fold is also
characteristic for the superfamily of Barwin-like proteins
(Figure 1B). Two disulfide bonds between the two smallest -
strands f35 and f36 provide additional stability. The long flexible
loop connecting o1 and f3 is fixed to the barrel by another
disulfide bridge, which is anchored between f1 and f32.

In contrast to Barwin-like proteins, Kiwellins have an
additional N-terminal extension of about 25 to 45 aa
(Figure 1B). This domain consists of two f-strands connected
by a loop. The loop region between 33’ and 34’ is highly variable.
It is stabilized by disulfide bridges at both ends of the sheets that
allow linkage of the extension with external loops of the f3-barrel.
Another disulfide bridge connects the loop located between the
two [3-strands that form the f-hairpin to the loop between 35
and f36, likely to connect this flexible and long loop to the core of
the protein. We will refer to this N-terminal region as the
Kiwellin-extension (compared to Barwin-like proteins).

The second class of Kiwellins, the so-called Kissper-Kiwellins
(Ciardiello et al., 2008) include one further N-terminal extension
of about 40 aa (Figure 1C). This domain is enriched in disulfide
bridges and short regions of secondary structure elements
(Ciardiello et al., 2008; Hamiaux et al., 2014). Notably, the loop
connecting 33’and 34’ is significantly shorter in Kissper-Kiwellins,
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Structure-models of Barwin-like (A), Kiwellin (B), and Kissper-Kiwellin (C) proteins based on consensus sequences of all proteins identified for
each group (signal peptide removed). Elements visible in the 3D structure on the top are indicated in a planar visualization on the bottom with
identical coloring (green: S-sheets, blue: a-helices, red: loop regions). Highlighted in yellow is the B-hairpin and in red is the kissper domain.
Numbered, yellow circles indicate the respective disulfide-boundforming cysteine residues. A loop region with variable length is indicated by *.

it decreases from 15 aa in Kiwellins to only 2 aa in Kissper-
Kiwellins. This changes the arrangement of disulfide bridges in the
Kiwellin-extension. The shorter loop provokes the absence of
disulfide bridge 5 found in other Kiwellins and influences
anchoring of disulfide bridge 4 in Kiwellins (compare the
disulfide-bound forming cysteine residues 4, 4’, and 5 in
Figures 1B, C). Three disulfide bridges are formed in the
Kiwellin extension to stabilize the small fold (compare cysteine
residues 5, 6, and 7).

The evolution of Kiwellins

We reconstructed the phylogeny of Kiwellins and reconciled
this data in the respective species tree to estimate duplication,
speciation, and loss events along the evolution of this protein
family. A summarized illustration is shown in Figure 2. The
complete phylogenetic reconciliation including an annotation of
duplication, speciation, and loss events can be found in
Supplemental Data 2. The root of the tree was automatically
estimated. It is located between the evolutionary oldest species in
Bryophyta and Lycopodiopsida and the putative fungal
prediction which we show here for the sake of completeness.
We propose that Kiwellins close to the root represent the primal
instances of this protein family.

Our analysis revealed three initial duplication events and we,
thus, distinguish three major Kiwellin groups: Kwll, Kwl2, and
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Kwl3 (see Materials and methods for details). Kwll is the most
ancient group probably representing the original Kiwellin
subfamily. It is present in most taxonomic groups and is
enriched in evolutionary older groups. It is found in younger
groups as well e.g. in rosids and asterids but was frequently lost.
Out of 205 Kwll proteins, 137 contain a kissper domain. This
domain is restricted to the Kwll subfamily. The enrichment of
this additional domain in a specific group of plants was not
observed. Notably, Kissper-containing Kiwellins are completely
missing in LIL. Kiwellins with and without kissper domain are
phylogenetically grouped next to each other. An alternative
phylogenetic analysis based on Kiwellins with truncated
kissper domains resulted in a comparable phylogeny (Figure
S1), indicating that these longer sequences did not alter the
phylogenetic reconstruction significantly.

The Kwll group spans 87 species including the oldest
embryophyta Physcomitrium patens and Selaginella
moellendorffii and five taxonomic groups BRY, LYC, LIL, ROS,
and, AST. The Kwl2 subfamily contains 202 proteins and is
restricted to a limited number of taxons. This subfamily is
probably derived from a specific duplication found only in
LIL, AMB, and MAG. Compared to the other groups LIL
species predominantly contain Kwl2. Kwl3 is the largest group,
comprising 508 Kiwellins in 115 species covering the six
taxonomic groups ROS, AST, RAN, SAX, CAR, and LIL. For
all taxonomic groups except LIL, Kwl3 is the overall youngest
but also the most abundant subfamily.
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Left panel: Cladogram of the relevant taxonomic groups. The number of respective species in our data set is indicated in brackets. Right panel:
Summary of the phylogenetically reconciled Kiwellin tree. The edge color and numbers refer to bootstrap percentages. Evolutionary events are
indicated by a circle (speciation) or a square (duplication). Pie charts visualize the species coverage. Groups that mostly contain Kissper-Kiwellins

are indicated (Kissper).

Sequence and structure conservation of
Kiwellin subfamilies

The evolutionary reconciliation of Kiwellins identified three
major subfamilies, Kwll, Kwl2, and Kwl3. Kwll can be divided
into two subgroups: one with and another without the kissper

kissper domain
ar pr B2

oserss 9D O P O 09

domain. Figure 3 shows a sequence-based alignment based on
consensus sequences. While Kiwellin sequences are highly
conserved, the subfamilies can be discriminated by the length
of the variable loop region between (3’ and 4’ (Figure 4). In
particular, this loop is short in Kissper-Kiwellins (median of only
two amino acids). For Kwll this loop has a median length of 14,
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The consensus structure of the loop connecting B3’ and B4’ in
the B-hairpin. The Kiwellin-groups are highlighted by different
colors: red: Kissper-Kwll, green: Kwll, magenta: Kwl2, yellow:
Kwl3. The bottom right: a schematic overview of (Kissper-)
Kiwellins. Green arrow: B-sheet, blue rectangle: o.-helix, yellow
box: zoomed region

Kwl2 17, and Kwl3 20 amino acids. While cysteines are highly
conserved, the disulfide bridge pattern differs between Kiwellins
with and without the kissper domain since the loop region in the
Kissper-Kiwellins is shortened and thus contains only one
cysteine. For Kiwellins without the kissper domain, the loop is
extended. Hence, a total of six cysteines are found that form
three additional disulfide bridges. Overall, the loop appears to be
a modular region with the lowest overall sequence conservation,
e.g. significantly lower than the barrel-giving f-sheets (one-sided
Wilcoxon rank-sum test, p<0.02). Notably, this region is not
present at all in BLs. Similarly, the loop between 5 and f36 is
usually shorter in BLs. Both features make it possible to
distinguish BL and Kiwellins. While this is sufficient in most
cases, about one-third of the BLs contain a loop similar to
Kiwellins (Figure S2). Notably, neither the length nor the
sequence composition of this region did impact the
structure predictions.

The amino acid sequences in the remaining secondary
structure elements are strongly conserved. In particular, the f3-
sheets and the oi-helices located in the barrel f1-f7 and oI-03
are significantly conserved relative to the adjacent unstructured
regions (one-sided Wilcoxon rank-sum test, p<0.05). Most of the
amino acid positions in the secondary structure elements of the
barrel are entirely conserved (*) especially 32, a1, B5 and 6.
Less conservation was observed for other elements in the barrel.
For example, 03, 3 and 7 have some positions with low
conservation scores compared to the overall consensus, as well as
in the individual subfamilies (e.g. position 1, 2 in &3 or 5 in f37).

Of interest, we identified 61 additional proteins containing a
kiwellin domain as part of a larger protein distributed over 33
species with no clear taxonomic limitation. About half (30) of
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those proteins are considerably larger (three to four times), still,
no further domain could be identified. 26 hits are duplications of
the kiwellin domain (Figures S3A, B). In two cases, triplications
were found (Figure S3C). Similar domain duplications were also
found for Kissper-Kiwellins (Figure S3D). All identified fusion
proteins are listed in Supplementary Data 3.

Dissemination

A species-wise view of Kiwellin subfamilies (Figure 5) shows
that Kwl2 is exclusively found in LIL where it is typically present,
apart from some Oriza cultivars. LIL species on the other hand
do not encode any Kissper-Kiwellins. We observed two major
Kiwellin loss events coinciding with a loss of BLs in the order of
Brassicales (e.g. A. thaliana) as well as the division of
Marchantiophyta. The latter is only represented by two species
in our data set. Thus, a general conclusion cannot be drawn at
this stage. Brassicales are represented by thirteen species.
Kiwellins are present in species sharing a common ancestor
with this group (e.g. E. grandis). Therefore, a loss event is likely
and in line with a reported whole genome triplication in the
group, followed by many loss events in members of Brassicaceae
(Moghe et al., 2014).

The Kiwellin subfamily Kwl2 is lost in the younger
taxonomic groups of ROS and AST, while the evolutionary
older Kwll including the Kissper-Kwll is still present. Thus,
Kwl2 was probably lost in the intermediate group of LIL. A loss
of the otherwise predominant Kiwellin subfamily Kwl3 is found
in the order of Cucurbitales (ROS).

We observed a median of five Kiwellins in the larger
taxonomic groups LIL, ROS, and AST, however, with a
significant difference in numbers at the genus level and,
strikingly, already at the level of breeds and cultivars. This can
be explained by the degree of genome expansion. One measure
for this feature is the unreplicated haploid nuclear genome
amount also known as 1C-value (Soltis et al., 2013). Minor
genome expansion is reported in CAR, SAX, and AST while
large expanded genomes are found in some clades, especially
within LIL which is found to show an exceptionally large range
of 1C-values compared to the other taxonomic groups (Leitch
etal, 1998). The reported 1C ranges of AST and ROS are similar
(AST: 0.3-24.8pg, ROS: 0.1-16.5pg). This coincides with the
number of Kiwellins occurring in these groups (AST: 1-24 and
ROS: 1-17). SAX and CAR are reported to exhibit lower 1C
ranges and as well contain a below-median number of Kiwellins.

The allotetraploid pasta wheat T. turgidum, one of the oldest
domesticated crops, is known for its potential to obtain
resistance to biotic and abiotic stresses. It encodes the second-
highest number of Kiwellins (28). The bread wheat T. aestivum
(LIL) has the highest number of Kiwellins observed in our data
set (52). Most belong to the Kwl2 subfamily. Notably, T.
aestivum is an allohexaploid composed of the three species T.
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FIGURE 5

Species tree cladogram. The inner circle encodes taxonomic groups. The outer circle indicates if a species is found in the Kiwellin group Kwili,
Kwl2 or Kwl3. K*: Kwll contains Kissper-Kiwellins, K: only Kissper-Kwll, *: contains subspecies/cultivars, ©: putative loss event.

urartu, A. tauschii and an unknown close relative to A. speltoides
(not in this analysis) (Feldman and Levy, 2012). T. urartu and A.
tauschii contain Kiwellins above the median and predominantly
of type Kwl2. It is thus reasonable to assume that T. aestivum
kept most of the Kiwellins from the donor species. In contrast, T.
urartu harbors a diploid genome (Liu et al., 2017) and codes for
nine Kiwellins.

Screening and consolidation

A total of 20,630 full proteomes was screened for Kiwellins
(see Materials and methods for details). None of the sequence-
based predictions could be structurally verified in Bacteria,
Archaea, or Viruses/Phages. Except for a single instance, no
Kiwellins were found in the 783 fungal species in our data set.
The single hit detected in Fungi is from Blyttiomyces helicus
(AOA4P9WPM3), a saprophyte, which grows on pollen and
cannot be cultured so far (Ahrendt et al, 2018). Given the
phylogenetic position of this gene in our reconciliation,
horizontal gene transfer from a plant or contamination is
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unlikely. The remaining 915 Kiwellins were identified in 142
land plants (embryophyta) (Figure 6).

The set of ‘Kiwellin-like’ proteins provided by InterPro
(IPR039271) contains 2,362 entries that overlap to a large extent
with our source data set of full proteomes (Blum et al., 2021). While
it covers all Kiwellin entries identified here, it also contains many BL
proteins and several unrelated proteins that we could not verify as
Kiwellins. In total, we estimate only about half of the set to represent
canonical Kiwellins. The published Kiwellin structure from
Actinidia chinensis (PDB: 4PMK/Uniprot: P85261) corresponds
to Kwll-2a according to our nomenclature (Hamiaux et al,
2014). The crystal structures of ZmKWL1la (PDB: 6FPG/Uniprot:
AOAID6GNR3) and ZmKWLIb (PDB: 6TI2/Uniprot: K7U7F7)
from Zea mays correspond to Kwl3-1b and Kwl2-2d (Han et al,
2019; Altegoer et al,, 2020). ZmKWL4 (Uniprot: AOAID6GNR6)
corresponds to Kwl2-2e and ZmKWL6 as well as ZmKWLI2 are
identified as BL proteins. Similarly, a fungal rust effector protein that
suppresses cell death in plants was found to be a BL protein as well
(Jaswal et al,, 2021). The structure from Actinidia deliciosa (PDB:
4X9U/Uniprot: P84527) was not recovered as the species is not part
of the data set (Offermann et al,, 2015). Nevertheless we identified
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this protein as a Kissper-Kwll, orthologous to Kwll-2a from
Actinidia chinensis.

Meta-analysis of Kiwellin expression in
biotic and abiotic interactions of plants

Kiwellins have been identified as relevant defense proteins
, 2019).
Moreover, it has also been suggested that Kiwellins show tissue-

against the pathogenic fungus U. maydis (Han et al.

specific expression patterns (Altegoer et al., 2020). To gain a
broader view of how Kiwellin proteins are expressed in various
situations, we performed a meta-analysis of publicly available
transcriptome datasets from NCBI SRA. We focused on
experiments in which Kiwellin-containing land plants were
exposed to either pathogens or symbionts. Moreover, we only
selected datasets, which were documented by a publication,
comprising at least two biological replicates, contained
unambiguous sample and experimental descriptions, and
produced reliable FastQC scores (further details in
Supplementary Data 1 chapter 5). A total of 31 data sets (out
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of 70 initially selected) met these criteria (Table 1). 14 out of the
31 data sets showed strong expression levels, as well as
significant changes in Kiwellin mRNA levels in response to
interactions with symbiotic or pathogenic species. A detailed
listing of individual findings and full experimental descriptions
as well as the full workflow description is provided in
Supplement Data 1 chapter 5. Overall, our meta-analysis
revealed that strongly expressed Kiwellins are present in each
of the three subfamilies Kwll, Kwl2, and Kwl3. About half of
these Kiwellins show a significant response upon the interaction
of the analyzed plant species with the respective interaction
partner, being either a pathogen or a symbiont (Table 1).
Specifically, we detected strong and significant Kiwellin
responses in 7 out of the 21 data sets analyzing a plant-
pathogen interaction (see Figure S7). For the interaction of a
plant with its symbiont, we have also detected strong expression
levels and regulation of Kiwellin transcripts, however, only in 5
out of 15 experiments (see Figure S7). These findings might
indicate a role of the Kiwellin in the interaction of plants with the
cognate pathogens and symbionts as well. Taken together, our
meta-analysis supports the idea that Kiwellins represent a
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TABLE 1 Overview of strongly expressed and significantly regulated Kiwellin groups among all species with RNA-seq data sets.

Taxonomic Group Species Kwl1¥
Bryophyta (BRY) P. patens P1*
Liliopsida (LIL) M. acuminata -

Z. mays -
T. aestivum -
O. sativa -
asterids (AST) S. lycopersicum -
S. tuberosum (4}
[ | A. chinensis P
Caryophyllales (CAR) C. quinoa -
rosids (ROS) G. max Pt SI* T
C. sativus ST Pt
M. truncatula (%]
C. melo (4}

Kwll Kwl2 Kwl3 #/total
- - - 11
- ST T - 2/3
- Pl* Pl* P1 ST 2(+1%)/ 5
PLSIT PISIT ST T 3/4
1) o [} 12
- - St 1/3
(%] (%] 0/1
- - [4) /1
- - %] 0/1
- - %] 1(+1%)/5
- - - 212
- - ST AT T 212
- - - 0/1

X 14 (+4%)/31

Kwl1*: Kissper-Kwl1, P: pathogenic interaction, S: symbiotic interaction, T: tissue-specific, A: abiotic stress. —: Kiwellin group not present in this species, @: no Kiwellin found with
significant regulation, 1: up-regulated, |: down-regulated, ]: up and down-regulated (compared to the respective control), *: weakly expressed but with significant differences, #: number of

independently collected data sets with significantly regulated and strongly expressed Kiwellins.

regulatory layer in the plant-microbe interactions, although
additional experiments are required to further consolidate this
notion. We would also like to note that we observed a tissue-
specific expression difference in three distinct species M.
truncatula, M. acuminata and T. aestivum in roots compared
to leaves and one in nodules compared to roots. Notably, in
wheat Kwl2 and Kwl3 are enriched in roots, while Kwll seems to
be more prevalent in leaves. These findings are in line with the
previously recognized tissue-specific expression patterns of the
maize Kiwellins (Altegoer et al., 2020). Altogether, our
observations might suggest that the differential expression of
Kiwellins in tissues is a general feature of land plants. Moreover,
we also observed that Kiwellins can be upregulated during water
limitation, which might suggest that also abiotic factors are able
to induce a Kiwellin response (Riahi et al., 2019).

Discussion

Plants have developed numerous strategies to cope with
abiotic and biotic stresses caused by e.g. drought or viral,
bacterial, fungal, or herbivore pathogens (Draffehn et al., 2013;
Quintana-Camargo et al., 2015; Mosquera et al., 2016). Kiwellin
encoding genes have been shown to be regulated upon these
challenges e.g. (Huang et al., 2017; Fiorilli et al., 2018; Lanver
et al,, 2018). Recent studies demonstrated that two Kiwellins
from maize specifically target a secreted effector protein from
Ustilago maydis (Han et al., 2019; Altegoer et al., 2020) making
this protein family an prominent new candidate to better
understand plant-microbe interactions.

Our study introduces a unified nomenclature and Kiwellin
phylogeny to guide future research on Kiwellin proteins.
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Combining structural predictions and sequence-based analysis
we can clearly distinguish between Kiwellins and BL proteins.
Interestingly, Kiwellins appear to be a unique invention of land
plants despite one singular hit found in the fungal kingdom.
Further investigation will be required to understand the
evolution of this putative Kiwellin. Our structural comparison
suggests that Kiwellins are derivatives of BL proteins. Starting
from the BL fold, Kiwellins may have evolved, for example, by
extending the N-terminus, which may serve as a surface
extension of the protein to perform specific functions.

Another feature present in many Kiwellin proteins is the
kissper domain. Out of 915 Kiwellins identified in our study, 143
proteins harbor a kissper domain. It was shown in experiments
that the Actinida deliciosa Kissper-Kiwellin can be cleaved into
two domains kissper and kiwellin by actinidain, a cysteine
protease highly abundant in kiwifruits in vitro (Tuppo et al,
2008). Structural comparisons have shown that the short kissper
peptide has high similarities to cysteine-rich motifs such as the
epidermal-growth-factor-like motif, or toxins from animals
(Ciardiello et al., 2008). This region, which is only 40 amino
acids long, contains 6 cysteines and can form 3 disulfide bridges.
Remarkably, the kissper peptide exhibits pH-dependent and
voltage-gated ion channel-forming activity in synthetic lipid
bilayers (Ciardiello et al., 2008; Meleleo et al., 2012; Ciacci
et al,, 2014). The biological role of the kissper domain has not
been elucidated. Suitable model systems to study the potential
role of Kissper-Kiwellins for the interaction of plants with
pathogenic or symbiotic microbes could be Cucumis sativus
and Glycine max. Both are established model systems.

All three Kiwellin groups show significant responses as well
as strong expression upon the interaction of plants with
microbes. Therefore, we speculate that members of all Kiwellin
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classes may function as modulators of biotic interactions. Hence,
manipulation of Kiwellins or Kiwellin expression might provide
a novel means to develop new disease-resistant plants or plants
with improved symbiotic capabilities e.g. for nitrogen-fixing
bacteria. Suezawa et al. (2017) investigated the performance
(a.0. photosynthetic rate, fruit quality, crop yield) of A. chinensis
under poor drainage grafted on rootstocks of different Actinidia
species. The best results were observed with A. rufa rootstocks,
in which Kiwellins are highly abundant. Furthermore, Kisaki
et al. (2019) showed increased tolerance to bacterial blossom
blight in a hybrid breed of A. chinensis and A. rufa. This
coincides with the difference in Kiwellins abundance between
A. rufa (24 proteins) and A. chinensis (4 proteins).

Conclusion

Kiwellins have distinct structural characteristics that need to be
addressed when annotating new proteins of this family. Otherwise
especially BL proteins are likely to be missannotated as Kiwellins as
shown in examples from literature and a protein database. In
addition, we identified three evolutionary distinct subfamilies that
can be distinguished a.o. based on the length of the Kiwellin loop at
the B-hairpin. We hypothesize that Kiwellins are evolutionarily
derived from BL proteins that belong to the pathogen-related family
4. They may have additional functions in plant immune response
due to the N-terminal extensions. The provided nomenclature and
grouping of Kiwellins along with evidence from transcriptomic data
indicating Kiwellin proteins as mediators of plant-microbe
interactions will aid to guide further research in the fields of
plant-pathogen and -symbiont interactions.
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1 GENE TREE WITH AND WITHOUT TRUNCATED KISSPER-KIWELLINS

Phylogenetic Tree with Phylogenetic Tree with
truncated Kissper-Kiwellins unmodified Kissper-Kiwellins
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Figure S1: Left: phylogenetic tree with truncated Kissper-domains. The text on the collapsed branches
indicates the number of proteins. Right: Kiwellin phylogenetic tree of Fig. 2. The text above the black lines
indicates the number of differences between the connected sub-trees.
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2 WEBLOGO OF CONSENSUS SEQUENCES
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Figure S2: Weblogo of aligned consensus sequences (signal peptide trimmed) with secondary structure
information of the Kiwellin groups Kissper-Kwl1, Kwll (Kiwellins without Kissper domain), Kwl2, and
Kwl3 and a set of 391 BL proteins for reference. Green represents beta-sheets and blue alpha-helices.
Numbered, yellow circles specify the cysteine residues forming disulfide bounds.
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3 EXAMPLES OF KIWELLIN-DOMAIN-DUPLICATIONS AND -TRIPLICATIONS

Oryza glumipatula Oryza punctata
(AOAOEOBC29) (AOAOEOM936)

Arachis hypogaea
(AOA445BW84)

Corchorus capsularis
(AOA1TR31848)

Figure S3: Examples of proteins were found for Kiwellins using the algorithm with relaxed length
parameters. A and B show Kiwellin-domain-duplications, C shows a triplication, and D shows a domain-
duplication of Kissper-Kiwellins.

4 DETAILED DESCRIPTION OF THE KIWELLIN IDENTIFICATION PIPELINE

4.1 Re-identification (round,)

Han et al. (2019) published 620 putative Kiwellin proteins in plants and fungi in a total of 61 species
covering seven taxonomic groups, namely non-seed plants (NSP), gymnosperms (GYM), monocots (MON),
stem eudicots (STE), asterids (AST), rosids (ROS) and fungi (FUN). These sequences were used as queries
for the UniProt reference proteomes set release Reference Proteomes 2022 _01 (Consortium,
2019). To cover all taxonomic groups, incomplete proteomes were added in accordance with the species
covered in Han et al. (2019) (a total of 20.9k proteins were added).

All proteins of (Han et al., 2019) were initially mapped to the respective UniProt proteome using
Proteinortho v6.1.1 (Lechner et al., 2011) with an E-Value threshold of 107", Ultimately 411
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of the initial 620 proteins could be re-identified in the current release of UniProt. Next SignalP
v5.0b (Almagro Armenteros et al., 2019) was used to predict and trim a leading signal peptide. If no signal
peptide was found the leading residues were removed one by one until either a signal peptide was found or
less than 50% of the original protein is left. If no signal peptide was found the protein is left unmodified.
Alphafold v2.0.0 (Jumper et al., 2020) was used to predict the 3D structure using the database
bfd_database bfd_metaclust_clu_complete_id30_c90_final_seq, mgnify_database mgy_clusters_2018_12 and
references pdb70, uniclust30-2018_08 and uniref90. Finally pyMOL v2.5.2 (DeLano and Bromberg, 2004)
was used for manual inspection and visualization.

In the following, we refer to the manually verified set of the 235 Kiwellins, 117 BL, and 59 unrelated

proteins as roundj and e.g. with rounolll(ISSper the set of Kissper-Kiwellins of round 1.

4.2 Advanced search (round,)

In the following, we frequently investigated if a certain descriptor falls into a range defined by round;.
To allow more atypical values, we introduced a tolerance parameter of 25% to soften cutoffs, which is used
throughout this pipeline.

Building on the knowledge from round; we scanned the UniProt database once more with a sophisticated
pipeline named find_kwl. This tool can be subdivided into 3 main steps:

1. Pre-filtering and Pre-processing
2. Collect descriptors
3. hmmsearch and filtering
4.2.1 Pre-filtering and Pre-processing

To reduce the search space and save computation time we filtered proteins first by sequence length.
The signal peptide trimmed Kiwellins identified in round; contain between 150 and 227 amino acids
(Kiwellins with and without Kissper domain) and at least 3 cysteine residues (including the BL proteins).
To account for a possible signal peptide the length limit is extended by 90. Therefore, only proteins of
lengths 150 — 317 4 25% and at least 3 cysteine residues were initially considered. Those sequences were
then trimmed using SignalP as described for the sequences of round;. The trimmed sequences were
filtered again by length: 150 — 227 + 25%.

4.2.2 Collect descriptors

Besides the sequence length and the number of cysteine residues, we wanted to evaluate the 3D structure.
Using AlphaFold 3D structure predictions were generated for all proteins passing the pre-filter. As
AlphaFold predictions do not include secondary structure, the dssp routine of the R package bio3d
v2.4-1.9 (Grant et al., 2006) was used to define the number of continuous region of 3-sheets (b_regions).
E.g. the Kiwellin 3-1b (AOA1D6GNR3):
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primary: FPYRSLLOTCQPSGSIQGRSGNCNTENGSECCKNGRRYTTYGCSPPVTGSTRAVLTL

secondary: ————————————— BBBB-———————— AAA———————— BBBB-—————————— BBBBBEB
primary: NSFAEGGDGGGAAACTGKFYDDSKKVVALSTGWYNGGSRCRKHIMIHAGNGNSVSAL

secondary: ————————————————————————— BBBBBAAAA-———————— BBBBBB———-—BBBBB
primary: VVDECDSTVGCDKDHNFEPPCRNNIVDGSPAVWDALGLNKDDGQAQITWSDE

secondary: BBBBB——————————————————— BBBB-AAAAAAA-——AAA-BBBBBBBB-

removed signal peptide precursor: MATVGGNRALYAVVALPLLATLLHGPMRLSHA

B:[-sheet, A:a-helix, —:unstructured, b_regions : 8

Furthermore, we rated the 3D structure with a special focus on the different domains (barrel, kissper,
clamp) of the putative Kiwellins. Thus, a set of reference structures from different species of round; was
hand curated, i.e. multiple reference structures were used to combat a possible underfitting:

e 4 kissper domains: Kwl1-2b (AOA2R6PEY 1), Kwl0-1a (AOA2K1KL29), Kwll-5b (AOA251NRO03),
Kwll-2a (AOA067F280)

e 5 clamp domains Kwl3-8b (AOA2R6RCR6), Kwll-3c (M1AEAS), Kwl2-2i (TIMCI8), Kwl2-2a
(AOA1Z5RFC7), Kwll-1a (D8S9G1) and

e 4 barrel domains: Kwl3-4d (M0ZG50), Kwl3-4e (M0ZG49), Kwl3-1b (AOA1D6GNR3), Kwl3-6a
(AOAOROKPS2)

e ZmKWL1a (AOA1D6GNR3) crystal structure from Han et al. (2019)

The extracted structures for the kissper and clamp domain were reduced to the first 60 residues and the
one for the barrel domain to the 6 5-sheets 51, ...36.

The structure prediction was superimposed using PyMOL with the set of references to calculate the
RMSD (the lower the better) and the number of matching atoms (M2, the higher the better). The RMSD can
be arbitrarily small even for unrelated proteins with short overlaps (low MA) and a low RMSD does not
necessarily follow from a high number of matching atoms. Therefore we combined both values and define

RMSD

RMSDPMAS = —
MA

The lower RMSDPMAS the better the superimposition as shown in Fig. S4. With that, the smallest
RMSDPMAS was determined for each set of reference domains (later referred to as kissper, clamp, and
barrel RMSDPMAS). To ensure comparability with the kissper and clamp domain only the leading 60
residues of a protein were compared to the reference structures. As shown in Fig. S5 this leads to a reliable
identification of the Kiwellins with and without a kissper domain using the kissper RMSDPMAS and the
clamp RMSDPMAS respectively. Additionally, the barrel and ZmKWL1a RMSDPMAS were used to exclude
the unrelated proteins.
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Figure S4: Superimposition of Kwl3-1b (AOA1D6GNR3, crystal structure of Han et al. (2019)) in red and
blue the proteins A) WI1PCTO, B) Kwi2-2¢ (TINDN2), C) AOA3B6PSY1 and D) AOA7J9C558. A) shows
an alignment with a high RMSD and low MA values resulting in a high RMSDPMAS. In contrast that the very
similar structures of B) result in a low RMSDPMAS. In comparison the non-optimal alignments of C (short
overlap with high similarity) and D (long overlap with low similarity) with similar RMSD or MA values,
respectively both result in a higher RMSDPMAS.
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Figure S5: Min-Max range of the different descriptors used in £ind kwl (A-F) as described in 4.2.2. Dots
indicate the median value. G-I show some raw RMSD used to compute the RMSDPMAS of B-D. ZmKWL1a
refers to the published crystal structure of AOAID6GNR3 (Han et al., 2019).

Although the Kissper-Kiwellins contain a clamp domain the clamp RMSDPMAS is usually orders of
magnitudes worse than the Kiwellins without the kissper domain since the first 60 residues do usually not
contain the clamp.

To summarize, we collect the following descriptors for any protein that passes the pre-filter checks of
4.2.1:

e length of sequence after signalp trimming
e number of cysteine residues
¢ the number of continuous regions of 3-sheets b_regions

e the structure scores RMSDPMAS against the set of reference structures
4.2.3 hmmsearch and filter

For each of the curated sets of round; (Kiwellins, Kissper-Kiwellins, and BLs) first an alignment was
generated using a muscle. Next, those columns were removed that almost only consisted of gaps (> 90%),
and a hidden Markov model (HMM) was assembled using HMMer v3.2.1 (Eddy, 1998). hmmsearch was
used to query the 3 models against all reference proteomes of UniProt. The resulting E-value of a match
(m, p) between a model m and a protein p is denoted by E,,, ,,). To determine a suitable E-value cutoff for
each model the 59 as unrelated identified proteins of round; were used as a negative control set:

5.2-107*2 m = BL
Emupy =14 38" 10754 m = kissper
3.2-107°0 m = kiwelllin

Cm 1= min
up:unrelated protein
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Next, we wanted to assess if a descriptor (e.g. number of cysteine residues) is untypical compared to the
values of round; with a predefined tolerance parameter of ¢t = 25%. For that we will say that a descriptor
is part of round; if the value v lies in the range [mi, ma] of values of round; extended by the tolerance

parameter ¢:
at least

Ve

mi— (ma—mi)-t<v<ma+ (ma—mi)-¢

'

below

On the same note we defined that a descriptor is at least or below round; for only the left or right
inequality respectively.

Furthermore, we defined a set of filtered matches as the subset of all reported matches (hmmsearch)
that fulfill the following set of rules:

o the E-value below the defined model specific cutoff: E(,, ,y < ¢
e the number of cysteine residues at least roundy®
e the sequence length is part of round/"
e for m = Kiwellin (without kissper domain):
e the clamp RMSDPMAS is smaller than the kissper RMSDPMAS up to the tolerance ¢ = 25%
e the clamp, barrel and ZmKWL1a RMSDPMAS is below roundy”
e if the protein length is below the midpoint of the lengths of round/" then b_regions > 2
e for m = kissper (Kiwellin with kissper domain):
o the kissper RMSDPMAS is smaller than the clamp RMSDPMAS up to the tolerance ¢
e the kissper, barrel and ZmKWL1a RMSDPMAS is below roundy®
e for m = BL (Barwin-like):
e the barrel and ZmKWL1a RMSDPMAS is below roundy®

For each protein among the set of filtered hits, we report the model with minimal E-value as the best
match for that protein.

In total 683 new Kiwellins were found, i.e. 59 with and 589 without a kissper domain. The steps 2 — 3 of
the pipeline were repeated with the new extended set of Kiwellins as the input (alignment, HMM model,
descriptor ranges), and 15 further Kiwellins were identified. In a final step, this set of Kiwellins was
checked by hand again and almost all entries (98.2%) could be verified as correctly classified. We removed
only 17 entries. Most of which were faulty Kiwellins (missing /7). A final set of 915 Kiwellins (62 with
and 772 without a kissper domain) were reported and are denoted as rounds in Fig. S5.
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Figure S6: Flow chart of the Kiwellin identification pipeline. More details on the blue-marked processing
steps are described in the respective chapters.
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5 DETAILED RNA-SEQ RESULTS

To get an idea of the functions of Kiwellins we re-analyzed publicly available RNA-seq data sets from the
NCBI SRA. 70 experiments were obtained using the following filter characteristics: RNAseq, RNA, stress
keywords (pathogenic, symbiotic, water, ...), and the scientific name of the plants. The 70 data sets were
checked on quality parameters of the raw data using fastQC (Andrews et al., 2010) and on data integrity
(at least 2 replicates, associated publication, unambiguous sample naming, and experimental descriptions)
resulting in 31 data sets. To determine if a Kiwellin was significantly regulated an FDR threshold of 5%
was used. We consider an entry to be differentially expressed if the absolute log2 transformed fold changes
(L2FC) is above 1 and the P-value is below the above FDR threshold. Furthermore, we define a Kiwellin
group as strongly expressed if the baseMean (baseM) is at least 80 (a proxy for the overall expression
strength; log10(80)~1.9). Finally, we grouped the experiments by experimental parameters (pathogenic,
symbiotic, abiotic, tissue-specific responses).

significant KWL
KWL expression - P

response? level — s g ;riticum aestivum
‘ea mays
yes strong 1 P+S 2 Medicago truncatula
1 P+S+T 2 Cucumis sativus
2 Musa acuminata
1 9 1 S+ALT 1 Solanum lycopersicum
3 1 1 S(+P) 1 Oryza sativa
1 T§+S) 1 Glycine max
o c 1 T(+P)
@0 weak 2 Zea mays
o] [ 5 | 4 P 1 Actinidia chinensis
ol 1S+T 1 Physcomitrium patens
ko 1 Glycine max
Sw Strong m—) P 1 Solanum tuberosum
©) 19 1 P+S 1 Cucumis melo
o . ‘ 1 Oryza sativa
o
o no weak 3 Glycine max
‘S *‘ 4S 2 Solanum lycopersicum
«“ 2 w4 P 1 Triticum aestivum
1 P+S 1 Zea mays
1 Musa acuminata
1 Chenopodium quinoa

Figure S7: Sankey diagramm illustrates from left to right the workflow for re-evaluated RNA-seq data. P:
pathogenic, S: symbiotic, A: abiotic, T: tissue specific responses. QC: Quality check. More information
can be found in the chapter 5. The number of analysed experiments per species are given on the right side.
Brackets indicate non signifiant interactions not significant (e.g. S(+P): significant response only to the
symbiotic and not to pathogenic partner).

In the following chapters, we shortly describe the 31 analyzed case studies and examine the regulation of
the Kiwellins groups. Groups were formed from indistinguishable Kiwellins concerning the associated
transcript(s) as described in the Material and Methods. A Kiwellin group can include multiple proteins
as well as transcripts. For example lets consider the kiwellin group *Kwl2-2t,2v,2s’ of T. aestivum shown
in PRINA743515. This group includes the three almost identical Kiwellin proteins Kwl2-2t, Kwl2-2v,
Kwli2-2, that share 188/197 identical residues. With the help of proteinortho two similar transcripts
(XM_044541154.1, XM _044500936.1) were identified from the respective transcriptome. Since the proteins
as well as the transcripts are almost indistinguishable, we combine the results of this group into one entry.
All identified groups of transcripts are listed in the table "Nomenclature-KWL” and the used transcriptomes

n “transcriptome sources” of Supplementary Data 3 (proteinortho transcripts).

For each experiment, a heatmap is shown to visualize the L2FC on the left panel from blue (down-
regulated) to red (up-regulated). Gray is shown if the comparison does not exhibit significant changes. The
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middle panel specifies the log10 transformed baseM. A * symbol in the name indicates that the Kiwellin
group surpasses the baseMean threshold of 80 and thus is considered to be strongly expressed. More details
can be found in the Material and Methods. The right panel shows average normalized counts as well as
standard deviations between the replicates of all conditions.

The results of the 31 analyzed experiments were divided into sections according to Fig. S7:

5.1 Significant response and strong expression 11
5.1.1 Pathogenic response: P 11
5.1.2 Symbiotic response: S 14
5.1.3 Pathogenic but no symbiotic response: P+S 16
5.1.4 Pathogenic, symbiotic and tissue specific effect: P+S+T 17
5.1.5 Symbiotic and abiotic response and tissue-specific effects: S+A+T 17
5.1.6 Symbiotic but no pathogenic response: S(+P) 18
5.1.7 Tissue specific but no symbiotic response: T(+S) 19
5.1.8 Tissue specific but no pathogenic response: T(+P) 19

5.2 Significant response and weak expression 20
5.2.1 Pathogenic response: P 20
5.2.2 Pathogenic and tissue specific response: S+T 22

5.3 Strong expression but no significant response 22
5.3.1 Pathogenic response: P 22
5.3.2 Pathogenic and symbiotic response: P+S 23

5.4 Weak expression and no significant response 24
5.4.1 Symbiotic response: S 24
5.4.2 Pathogenic response: P 26
5.4.3 Pathogenic and symbiotic response: P+S 28

5.1 Significant response and strong expression
5.1.1 Pathogenic response: P
Triticum aestivum (PRJNA743515)

Bipolaris sorokiniana is a hemibiotrophic fungus responsible for several plant diseases. The study Zhang
et al. (2022) aimed to investigate how genes are regulated when Triticum aestivum 1s infected by pathogenic
fungus (TAB). Uninfected plants (TA) served as control groups. Plants were soil-inoculated and samples of
root and basal stems were harvested 5 and 15 days after infection. RNA was isolated from the samples and
sequenced.

We found 4 strongly expressed groups (*-prefix), three from Kwll and one from Kwl3, and 6 further
weak expressed groups of Kwl2. We found that one group of the weakly expressed Kwl2 to be differentially
regulated 5 dpi (3 L2FC). One group of Kwll showed a slight down-regulation late in the infection stage
(—1.2 L2FC) and remained unchanged at 5 dpi.
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Zea mays (PRJNA407369)

Zea mays was syringe-infected with Ustilago maydis. In Lanver et al. (2018) infected plant material was
harvested at different time points (%. 1,2, 4, 6, 8, 12 dpi) and mRNA was analyzed. Axenic U. maydis
culture and water-inoculated plants (mock) served as controls or comparison groups.

We found 2 Kiwellins of Kwl3 and Kwl2, of which Kwl3-1b is strongly expressed (*-prefix). Furthermore,
Kwi3-1b showed a strong up-regulation (= 5 — 7 L2FC) among all time points compared to the mock-
inoculated control. The weakly expressed Kwl2 protein showed a late response with a slight up-regulation
(~ 1 — 3 L2FC) starting at 6 dpi.

PRI, o)

Oryza sativa (PRJNA325291)

In Huang et al. (2017), rice was inoculated with the fungus Magnaporthe oryzae (with=Guy,
without=Before). It is known that nitrogen fertilization increases the effects of many diseases. The authors
studies whether the external addition or omission of nitrogen led to differentially expressed genes during
infection in both species to explain Nitrogen-Induced Susceptibility (NIS). For this purpose, rice plants
were infected with water or the fungus and 0 dpi or 2 dpi shoot tissue of the plants were harvested. Nitrogen
was omitted from the fertilizer in one series of experiments (ON) and added in the form of ammonium
nitrate in another (1N). Subsequently, mRNA was isolated from the obtained tissue and analyzed.

We found 2 groups of two Kwl1 and one Kwl3 to be highly expressed. The kwl3 group shows no regulation
in response to the infection. One Kwll group was down-regulated (4 L2FC), and in the second group,
a slight up-regulation upon infection under nitrate treatment was found. No ammonium nitrate-specific
response was observed among all groups.
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5.1.2 Symbiotic response: S
Musa acuminata (PRJNA319058)

In Gamez et al. (2019) seedlings of Musa acuminata were inoculated with two species of growth-
promoting rhizobacteria: Bacillus amyloliquefaciens (Ba) and Pseud: S (Pf). 1 hpi, 2 dpi
and 4 dpi whole seedlings were collected, and the mRNAs were isolated. These data sets were compared
with water-inoculated seedlings.

We detected three Kiwellins groups of Kwl2. Kwl2-1b was the only strong expressed group and showed
a weak up-regulation upon infection with Pf after 1 hpi and remains inconspicuous otherwise. The other
two Kiwellins showed no differential response to the infection.
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Triticum aestivum (PRJNA529884)

In Li et al. (2018a) Triticum aestivum was infected with the arbuscular mycorrhizal fungus Rhizophagus
irregularis. After 42 days of infection, shoot tissues of the plants were harvested and mRNA was extracted
and analyzed. This data set was compared with non-infected plants.

Our analysis revealed 4 groups (Kwll, Kwl3, and 2 Kwl2 variants) of highly expressed Kiwellins.
Members of Kwl2 and Kwl3 showed a strong up-regulation upon infection (=~ 3 — 8 L2FC) and Kwll a
down-regulation (=~ 2 L2FC).
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Cucumis sativus (PRJNA285071)

In Burkhardt and Day (2016), a resistant strain (PI197088) and an susceptible strain (Vlaspik) of Cucumis
sativus were infected with the fungus Pseudoperonospora cubensis and water (mock), respectively. Leaves
of the plant were harvested 1, 2, 3, 4, and 6 dpi and mRNA levels were determined in each case.

‘We found a group of Kissper-Kiwellins (Kwl1) to be strongly expressed in the susceptible strain and
moderately in the resistant strain. Furthermore, we found a strong up-regulation upon infection (~ 4 — 6
L2FC) in the susceptible strain throughout infection, while the resistant strain showed a slight dampening
of the differential response (~ 3 — 4 L2FC). Furthermore, the response vanishes at 6 hpi for the resistant
strain.
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Glycine max (PRJNA412201)

It is known that silicon can protect plants from biotrophic and hemibiotrophic pathogens. To better
understand this mechanism, Glycine max was infected with Phytophthora sojae in Rasoolizadeh et al.
(2018). Silicon was added in one case (SiPlus) and omitted (SiMinus) in the other plants. After 21 days of
infection, root samples were collected and mRNA was isolated and sequenced.

‘We found one group of Kissper-Kiwellins (Kwl1) to be highly expressed with a differential response to
the infection (=~ 1 — 3 L2FC). The silicon treatment slightly reduced effect (=~ 1 L2FC less).
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Zea mays (PRJNA506746)

In Shen et al. (2020), the cadmium tolerance of Zea mays roots was investigated, which previously treated
with the endophyte Exophiala pisciphila. Roots of three-day-old maize seedlings were first inoculated with
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the fungus (with=DSE, without=nDSE). 10 days later, plants were fertilized with cadmium for 31 days
(with=Cd, without=nCd). Plants not treated with cadmium and/or the fungus served as the control. Finally,
roots were harvested and mRNA was extracted and analyzed.

We found one group of Kwl3 to be strongly expressed. In the case where the fungi were absent, this
group show a strong down-regulation with cadmium (4 L2FC) but no change upon fungal treatment was
detectable. If cadmium is absent, the infection does not significantly impact expression but if cadmium is
introduced into the system we see an up-regulation (3.5 L2FC) in infected plants.
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5.1.3 Pathogenic but no symbiotic response: P+S
Cucumis sativus (PRJNA445328)

To better understand Trichoderma-induced plant resistance to many plant pathogens, cucumber plants
were infected with Botrytis cinerea in the presence or absence of Trichoderma in Yuan et al. (2019). At
the three-leaf stage, plants were inoculated with Trichoderma and 24 hours later B. cinerea was injected
into the leaves. Samples of the leaves were harvested 96 hours later and examined for differential gene
expression.

We detected 3 groups of kwll Kissper-Kiwellins. One group was highly expressed and showed a
significant up-regulation in response to the symbiont and pathogen (=~ 2.5 L2FC).
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We found one highly expressed group of Kwl3 that shows a strong up-regulation after 4 days of water
withdrawal (2 L2FC).
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5.1.6 Symbiotic but no pathogenic response: S

+P)

Solanum lycopersicum (PRJNA795851)

Biological control agents (BCA) play a major role to combat plant pathogens. Singh et al. (2021) aimed
to investigate the transcriptonal response to treat with the BCA fungus Chaetomium globosum (Cg) on
plants infected with the pathogenic fungi Alternaria solani (As). First, 21-day-old tomato plants were
inoculated with the BCA. Another 24 hours later, the plants were spray-i lated with the patt After
five days of infection, infected leaves were harvested, and RNA was isolated and sequenced. In total, four
data sets resulted from this experiment: plants not infected (CONTROL), plants infected with both fungi
(Cg-As_inoculated), and plants infected with only one fungus each (Cg-inoculated, As_inoculated).

We found one group of Kwl3 to be highly expressed. An up-regulation could be observed in case of
infection with the BCA fungus C. globosum (~ 4 L2FC). Furthermore, a slight down-regulation (below 1
L2FC) was observed upon infection with the pathogen A. solani. In response to combinatorical treatment
with the pathogen, a slight up-regulation (below 1 L2FC) was observed.
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5.1.4 Pathogenic, symbiotic and tissue specific effect: P+S+T
Triticum aestivum (PRJEB21874)

Triticum aestivum was infected with the bacterial pathogenic Xanthomonas translucens in Fiorilli et al.
(2018). It was tested whether the mycorhizal fungus Funneliformis mossae influenced the infection. After
plants were colonized by mycorrhiza for 49 days, plants were inoculated with the pathogenic bacterium.
One day after infection, samples of roots and leaves were isolated and the mRNA levels of the three species
were examined.

‘We found 8 highly expressed Kiwellin groups most of which belong to Kw12 but and to Kwl3. The Kwl3
group showed no significant response and the results for Kwl2 were mixed. In roots, we observed one
group of Kwl2 to be down-regulated (=~ 2 L2FC) and one group to be up-regulated (1 L2FC) in response
to the pathogen and symbiont. Differences between roots and leaves can be observed for Kwll, Kwl2, and
Kwl13. Overall the expression strength in roots was observed to be higher compared to leaves.

shrinki2FC, 0.1, *:0.06, **.0.01, ***:0.001  mean(norm_counts)ssd
_J

4202 4 005 1
PRJEB21874, A(kwllKissper)
an I e 3 cmss | a-zynan
045 015 Ba09 ssus26 1690084700 | oz-202020202m 21282 21200200
00 e 3 3 030 e

o
o IEE e . s o RO

o o PEE oo oo

o - o . .

- m s . ...

o oo e canr masna

) o o .

oa e an. provyg = R
P | o . .

Eg Eg 0 caian E i I 1

5.1.5 Symbiotic and abiotic response and tissue-specific effects: S+A+T
Medicago truncatula (PRJNA524006)

In Saiiko-Sawczenko et al. (2019), the Fabaceae Medicago truncatula was evaluated for their response to
water stress when the roots were inoculated by nitrogen-fixing bacteria Sinorhizobium meliloti. After the
roots were successfully colonized by the bacteria, the plants were subjected to water stress. For this, the
plants were not watered for up to 4 days after colonization. At the end of the four days, root nodules were
harvested from watered and non-watered plants. Uninfected plants served as control, here the roots were
harvested. The mRNA was isolated from the collected samples and analyzed.
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5.1.7 Tissue specific but no symbiotic response: T(+S)
Medicago truncatula (PRJNA79233)

In Boscari et al. (2013), the transcription of developing nodules on Medicago truncatula was investigated.
For this purpose, plants were infected with their symbiont Sinorhizobium meliloti and samples were taken
from different stages of the nodules/roots and the mRNA was isolated and sequenced. Roots of the plant
that were not infected were collected 4 days after infection (developing nodules), and 12 days after infection
(matured nodules) were examined. Furthermore, a nitric oxide scavenger (cPTIO) was added to an infected
plant and the effect on nodules was studied. Thus, a total of four data sets were obtained and compared:
unified roots (MtRoots), infected roots (MtInoc), nodules (MtNod), and infected roots treated with cPTIO
(MtInocCPTIO). All samples except the nodule sample were collected and analyzed 4 days after infection
or mock infection.

We found 2 groups of Kwi3 to be strongly expressed but no difference between infected and non-infected
roots (cPTIO independent) was observed. Remarkably, Kiwellins were almost exclusively found in nodules.
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5.1.8 Tissue specific but no pathogenic response: T(+P)
Musa acuminata (PRJNA417328)

Benzothiadiazole (BTH) is an inducer of plant resitance that stimulates the defense response in bananas
and protects against pathogen infection. In Cheng et al. (2018), via RNA-seq, the effect of BTH was
i d at the gene expression level by spraying young plants with a BTH solution. For this purpose,
plant samples from roots (RT) and leaves (LF) 1 and 3 days post-infection with the fungal pathogen
Fusarium oxysporum were compared with their respective controls (0 dpi). We found one group of highly
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expressed Kwl2 members (in roots but almost absent in leaves). Furthermore, no significant changes were
observed in response to BTH. Kiwellins were almost exclusively found in roots (compared to leaves).
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5.2 Significant response and weak expression
5.2.1 Pathogenic response: P
Actinidia chinensis (PRJNA436459)

Michelotti et al. (2018) investigated the effect of acibenzolar-A-methyl (ASM, a bactericidal component)
on the course of infection of P syringae pv. idiae on its host the kiwifruit plant (Actinidia
chinensis). For this purpose, plants were treated with or without ASM and inoculated with the bacterium
or buffer. 3, 24, and 48 hpi samples were obtained, and the mRNA was isolated from ground tissue and
analyzed.

)

We found 4 groups of Kiwellins of which 2 are Kissper-Kiwellins (Kwll) and two belong to Kwl3.
The groups of kwll are moderately expressed in one group and we see an ASM-specific up-regulation of
~ 1 — 2 L2FC. In all comparisons without ASM, no effects are were observed throughout the infection.
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Physcomitrium patens (PRJNA751102)
Otero-Blanca et al. (2021) investigated the defense mechanisms of Physcomitrium patens against

Colletotrichum gloeosporioides. For this purpose, plants were spray-i 1 with the path Sa
were harvested and analyzed 8 and 24 hours after infection and uninfected plants served as controls.

We found a group of two Kissper-Kiwellins from Kwll (here called kissper-kwlOnsp). Although this
group was not strongly expressed we found a response to the infection at both time points (2 — 3 L2FC).
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5.2.2 Pathogenic and tissue specific response: S+T
Glycine max (PRJNA531615)

Adhikari et al. (2019) investigated the influence of nodulation on the roots of the soybean plant. For this
purpose, Glycine max was infected with the bacterium Bradyrhizobium diazoefficiens. The infected root
tissue on which nodules were formed was harvested at 5 — 7 days after infection (emerging nodules) or
14 — 16 days after infection (mature nodules). Root tissue was collected above and/or below the nodules as
control groups.

We found no strongly expressed Kiwellin group but differences were found e.g. between emerging and
mature nodules as well as between mature nodules and uninfected roots (NA _root).
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5.3 Strong expression but no significant response
5.3.1 Pathogenic response: P
Cucumis melo (PRJEB15551)

Two strains of Cucumis melo were infected with Fusarium oxysporum f. sp. melonis Snyd. & Hans race
1.2 (FOM1.2) in Silvia Sebastiani et al. (2017). One of the melon lines is the NAD strain, which is capable
of early recognition of pathogens and developing resistances. The second melon genotype Charentais
(CHT) is susceptible to the fungus. Plantlets of the two strains were infected with the fungus and 1 and 2
days. Stems of the small plants were harvested and mRNA levels were determined and compared.

In our reanalysis, we found one highly expressed group of Kwll (Kissper-Kiwellin). None of the groups
are significantly differentially expressed.
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Zea mays (PRJNA529541)

Garcia-Ceron et al. (2021) infected Zea mays with Fusarium graminearum and examined the change
in gene expression. For this purpose, the leaves of the plants were injured and disk-infected with the
fungus. Leaf tissue was collected after 3, 5, and, 7 days respectively, and the mRNA was examined. The
Comparison was made with uninfected plants and fungi grown in axenic culture. No Kiwellin was found to
be highly expressed but a down-regulation for a group of Kwl2 and a group of Kwl3 was observed upon
infection (= 2 — 4 L2FC).
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Zea mays (PRJNA415355)

In Li et al. (2018b), mRNA levels were examined organ-specifically during tumor development of
Ustilago maydis on Zea mays. For this purpose, data sets of bundle sheaths and the mesophyll of fungus-
infected plants were compared with water-inoculated plants (mock). We found no strongly expressed
Kiwellin groups but an up-regulation (= 2 — 4 L2FC) of Kwl3 in infected bundle sheath and mesophyll
tissue.
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Solanum tuberosum (PRJNA755645)

Alternaria solani is a necrotrophic fungus that infects potatoes and other crops. The aim of Brouwer
et al. (2021) was to investigate how the transcriptome of Solanum tuberosum changes during infection with
this fungus. For this purpose, the leaves of six-week-old potato plants were infected with the pathogen.
Samples of infected leaves were collected 1, 6, 12, 24, and 48 hours after infection, and the mRNA was
analyzed and sequenced. Uninfected plants served as the control group (0 hpi).

Our reanalysis was able to identify Kiwellins 3 groups of Kissper-Kwl1. One group can be considered as
strongly expressed but no response to the infection was observed.
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5.3.2 Pathogenic and symbiotic response: P+S
Oryza rufipogon and Oryza sativa (PRJNA476551)

Tian et al. (2019) investigated the differences between wild rice (Oryza rufipogon) and cultivated rice
(Oryza sativa) inoculated with the arbuscular mycorrhizal fungus Rhizoglomus intraradices upon infection
with the pathogen Magnaporthe oryzae. For this purpose, ten-day-old rice plants were first inoculated with
the mycorrhizal fungus, and after another 45 days, the leaves of the plants were spray-inoculated with the
pathogen. After another seven days, the roots of the plants were harvested and the RNA was isolated and
analyzed.

For both Oryza species we found a group of Kwl3 to be highly expressed but no significant differential
changes were observed.
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5.4 Weak expression and no significant response
5.4.1 Symbiotic response: S
Glycine max (PRJDB9752)

Roots of Glycine max strain EN1282 (nfrl-mutant - a strain lacking in a Nod factor receptor) was infected
with the symbiotic bacterium Bradyrhizobium elkanii USDA61 in Ratu et al. (2021). The wild-type strain
of the bacterium was compared with a T3SS (Type 3 Secretion system) deletion strain. The roots of the
seedlings were harvested 30 days after infection and mRNA levels of the bacterium and the plant were
measured.

We found 3 groups of Kiwellins of which 2 belong to Kwl3 and one Kissper-Kiwellins to Kwll. The
Kw13 groups were weakly expressed and Kissper-Kiwellin showed a moderate expression. Furthermore,
all groups in this experiment showed no significant response to the infection.
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In Li et al. (2018a) the influence of the endophyte Pochonia chlamydosporia on the response of Solanum
Iycopersicum was investigated. For this purpose, plants were infected with the fungus, and samples of the
roots were harvested 4, 7, and 21 days after infection. From these tissue samples, nRNA was isolated and
analyzed.

Soceizobam e USDA

lycop (PRINA531604)

No Kiwellin was found to be highly expressed and no differential regulation was observed in response to
the fungi.
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5.4.2 Pathogenic response: P
Musa acuminata (PRJNA287860)

Roots of two-month-old banana seedlings were infected with Fusarium oxysporum Race 4 (FocR4)-C1
HIR in Munusamy and Zaidi (2021). Infected root samples were harvested at 2, 48, and 96 hours. The 2
hpi root sample represents the control with which the other two samples were compared.

Our reanalysis found 3 weakly to moderately expressed Kiwellins belonging to Kwl2. Neither of these
groups shows differential regulation in this experiment.
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Glycine max (PRJNA396797)

To investigate transcriptional changes associated with nodule formation genes in soybean, Glycine max
roots were infected with Bradyrhizobium japonicum in Hayashi et al. (2012). Two strains of the bacterium
were used and compared: a wild-type strain and a NodC strain that cannot synthesize Nod factors. The
infected roots were harvested at 2 dpi, the mRNA was analyzed and compared.

We found a Kwll (Kissper-Kiwellins) and one Kwl3 group. No group was strongly expressed or
differentially regulated in this experimental setup.
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Glycine max (PRJNA579169)

Using the Rj2 allele, soybean plants can exclude poorly nitrogen-fixing or less useful rhizobia such as
B. japoni USDA122 or Rhizobium fredii USDA257 from a symbiotic relationship. Host immunity is
mediated by the secretory rhizobium type-III-protein NopP and the previously described host resistance
protein Rj2. In Shine et al. (2019) transcriptional changes in leaves of Rj2 virus-silenced plants, each
infected with buffer, or one of the two rhizobacteria, will be used to better understand the mechanism of
systemic resistance induced by incompatible rhizobia. For this purpose, infected roots were harvested and
the mRNA was isolated and analyzed.

‘We found 2 groups of weakly expressed Kiwellins (Kissper-Kiwellins of Kwll and Kwl3). But in all
comparisons, no differential regulation was detected.
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Pantoea stewartii is the causal agent of Stewart’s bacterial wilt of corn and is investigated in Doblas-
Ibdfiez et al. (2019). With the help of a mutation in the panl gene, it is possible to create resistant corn plants
to bacterial disease. Consequently, heterozygous and homozygous (related to the panl gene) maize lines
were created by crosses and infected with the bacterium. Subsequently, infected material was harvested
one day post-infection, nRNA was isolated, and differences in transcription levels between the different
maize lines infected or mock-infected were analyzed.

‘We found Kwi3-1a and Kwl2-2e but both were neither strongly expressed nor showed any differential
response.
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Solanum lycopersicum (PRJNA487149)

In Fawke et al. (2019), the influence of glycerol-3-phosphate acyl fi on the resi of Sol
Iycopersicum to its host Phytophthora infestans was investigated. For this purpose, tomato wild-type plants
and plants with a loss-of-function mutation in the gpar6 gene were infected with the fungus. Three days
after infection, the leaves were harvested, the RNA isolated, reverse transcribed and the data analyzed.

‘We found one member of the Kwl3 group that was neither strongly expressed nor showed a differential
response.

ShriNkIZFC, 0.1, 0,05, /0,01, **:0.001  mean(norm_counts)ssd

PRINA487149, AkwilKissper)
.
R

Frontiers 27



2.1 Kiwellins in Embryophyta

Supplementary Data

5.4.3 Pathogenic and symbiotic response: P+S
Chenopodium quinoa (PRJNA720675)

In Rollano-Penaloza et al. (2021), the authors aimed to investigate the influence of Trichoderma on
Chenopodium quinoa. For this purpose, two strains each of the fungi Trichoderma afroharzianum (T22)
and Trichoderma harzianum (BOL-12) and the plant (Chenopodium quinoa Kurmi and Chenopodium
quinoa Real) were co-cultured with each other. Subsequently, RNA was extracted from the roots and
sequenced to determine the differentially regulated genes in the 4 strains.

We found 2 Kiwellin groups of Kwl3 but no group was found to be highly expressed and no differential
regulation was observed.
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Triticum aestivum (PRJEB8798)

In Rudd et al. (2015) wheat was infected with its fungal pathogen Zymoseptoria tritici and mRNAs
were isolated from leaves 1, 4, 9 and 14 dpi (infected=Z.tritici, mock innoculated=M). This data set was
compared with mRNAs from buffer-infected plants and fungus growing in liquid culture.

Generally, we observe high variations among all expression values and neither strong expression nor
differential response was observed.
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Abstract

Background: 6S RNA is a regulator of cellular transcription that tunes the metabolism of cells. This small non-coding
RNA is found in nearly all bacteria and among the most abundant transcripts. Lactic acid bacteria (LAB) constitute a
group of microorganisms with strong biotechnological relevance, often exploited as starter cultures for industrial
products through fermentation. Some strains are used as probiotics while others represent potential pathogens.
Occasional reports of 6S RNA within this group already indicate striking metabolic implications. A conceivable idea is
that LAB with 6S RNA defects may metabolize nutrients faster, as inferred from studies of Echerichia coli. This may
accelerate fermentation processes with the potential to reduce production costs. Similarly, elevated levels of
secondary metabolites might be produced. Evidence for this possibility comes from preliminary findings regarding
the production of surfactin in Bacillus subtilis, which has functions similar to those of bacteriocins. The prerequisite for
its potential biotechnological utility is a general characterization of 6S RNA in LAB.

Results: We provide a genomic annotation of 6S RNA throughout the Lactobacillales order. It laid the foundation for
a bioinformatic characterization of common 65 RNA features. This covers secondary structures, synteny, phylogeny,
and product RNA start sites. The canonical 6S RNA structure is formed by a central bulge flanked by helical arms and a
template site for product RNA synthesis. 6S RNA exhibits strong syntenic conservation. It is usually flanked by the
replication-associated recombination protein A and the universal stress protein A. A catabolite responsive element
was identified in over a third of all 6S RNA genes. It is known to modulate gene expression based on the available
carbon sources. The presence of antisense transcripts could not be verified as a general trait of LAB 6S RNAs.

Conclusions: Despite a large number of species and the heterogeneity of LAB, the stress regulator 6S RNA is
well-conserved both from a structural as well as a syntenic perspective. This is the first approach to describe 6S RNAs
and short 6S RNA-derived transcripts beyond a single species, spanning a large taxonomic group covering multiple
families. It yields universal insights into this regulator and complements the findings derived from other bacterial
model organisms.
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Background

Lactic acid bacteria

Lactic acid bacteria (LAB) constitute a genotypically, phe-
notypically, and phylogenetically diverse group of Gram-
positive bacteria that belongs to the taxonomic order of
the Lactobacillales. Shared metabolic characteristics and
evolutionary relationships have been used as common
markers for the identification, classification, typing, and
phylogenetic analysis of LAB species [1]. During the last
few decades, the analysis of 16S rRNA gene similarity was
combined with the study of the carbohydrate fermenta-
tion profile to classify new bacterial isolates. The ongoing
exploration of the Lactobacillus genus has led to frequent
taxonomic rearrangements [2]. One reason is the pres-
ence of odd similarities and ambiguities in 16S rRNA
gene sequence comparisons, resulting in a biased anno-
tation of strains, species, and even LAB genera at short
and long phylogenetic distances [3]. Currently, LAB are
grouped into six families: Aerococcaceae, Carnobacte-
riaceae, Enterococcaceae, Lactobacillaceae, Leuconosto-
caceae, and Streptococcaceae. These groups share the
ability to catabolize sugars for the efficient production
of lactic acid [4]. LAB constitute the most competitive
and technologically relevant group of microorganisms
Generally Recognized as Safe (GRAS). Their biotechno-
logical relevance is a result of the many beneficial features
that can be exploited, for instance, as starter cultures in
the food industry, mediating the rapid acidification of raw
material [4], or as probiotics, preventing the adherence,
establishment, and replication of several enteric mucosal
pathogens via exerting multiple antimicrobial activities
[5]. Nevertheless, some LAB are opportunistic pathogens
and can cause infections in individuals presenting some
underlying disease or predisposing condition. The most
prominent opportunistic pathogens are members of the
genera Streptococcus (S.) and Enterococcus [6].

LAB are usually exposed to a wide range of harsh
stresses, both in industrial environments and throughout
the gastrointestinal tract. This includes acid, cold, drying,
osmotic, and oxidative stresses [7]. Surviving these unfa-
vorable conditions is a prerequisite to exert their expected
activities [8]. While main stress-resistance systems have
been documented in some LAB species, their regulation
at the molecular level, including the role of non-coding
RNAs (ncRNAs), is still far from being understood [9].

6S RNA

Over the last decades many small non-coding RNAs have
been identified as key regulators in a variety of bacte-
rial stress response pathways and in bacterial virulence
[10-12]. A prominent example among these is 6S RNA
encoded by a gene frequently termed ssrS according to the
original gene designation in Escherichia coli [13, 14]. A 6S
gene is found in nearly all bacterial genomes sequenced
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so far [15, 16]. This includes species with highly con-
densed genomes such as the hyperthermophile Aquifex
aeolicus, species that obtain energy through photosyn-
thesis like Rhodobacter sphaeroides, as well as pathogens
such as Helicobacter pylori [16-19]. The dissemination
of 6S RNA and its usually growth phase-dependent and
condition-specific expression profile are indicators of the
RNA’s regulatory impact. Its mechanistic features have
been more intensely studied for the two model organisms
E. coli and Bacillus subtilis [20, 21]. The latter belongs to
the Bacillales, a sister-order of Lactobacillales. 6S RNA
is about 160-200 nucleotides in length and adopts a rod-
shaped structure with an enlarged internal loop or bulge
flanked by large helical arms on both sides [22, 23].
6S RNA can bind the DNA-dependent RNA polymerase
(RNAP) in complex with the housekeeping sigma fac-
tor (67° in E. coli and o4 in B. subtilis) in competition
with regular DNA promoters. This sequestration of RNAP
alters the housekeeping transcription at a global level that
is seemingly advantageous when facing numerous types
of stress [22, 24, 25]. When RNAP is bound, it can uti-
lize 6S RNA as a template for the transcription of short
product RNAs (pRNAs). Upon relief of stress, the tran-
scribed pRNAs become increasingly long. When reaching
a certain length (~14 nt in B. subtilis), pRNAs can persis-
tently rearrange the structure of 6S RNA to induce RNAP
release, thus restoring regular transcription [21, 26—30].
Studies in E. coli have provided evidence that nutrients
are metabolized faster in 6S RNA knockout strains than in
the parental wild type strain [29, 31]. Furthermore, knock-
out strains might have the so far unexplored potential to
produce elevated levels of secondary metabolites such as
surfactants.

6S RNA in lactic acid bacteria

The importance of 6S RNA in LAB is indicated by studies
that report its abundant expression as well as metabolic
changes upon its knockout. However, specific 65 RNA
analyses in this important group of bacteria are scarce or
the studied ncRNA was not recognized as 6S RNA. It is
annotated only in about half of all LAB species analyzed
in this study (539/1,092 genomes). Here, we identified it in
about 91% of all known LAB species. An example is L. del-
brueckii, an industrial starter for dairy products, where
a highly abundant ncRNA was reported [32]. Though its
function could not be specified further, the authors sus-
pected it to act as an antisense RNA. In our study, we
identified this 210 nt long ncRNA as 6S RNA. In another
study, 6S RNA was identified along with two types of
pRNAs via RNA sequencing of S. pyogenes [33].

For Lactococcus lactis, the expression of 6S RNA has
been linked to the carbon catabolite repression protein
CcpA that binds to DNA at cis-acting sequences. These
sites are called catabolite responsive elements (cre) [34];
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cre sites are degenerate pseudo-palindromes. In Bacilli a
CcpA dimer was shown to bind to dsDNA upon asso-
ciation with the Ser46-phosphorylated form of histidine-
containing phosphocarrier protein (HPr-Ser46-P) [35]. In
L. lactis, 6S RNA levels were found to be increased dur-
ing stationary and exponential phase in the presence of
galactose or cellobiose, but not fructose, as the sole car-
bon source. CcpA repression is known to be relieved by
galactose and cellobiose, but not by fructose. Moreover,
6S RNA was found to be about 3-fold upregulated in a
CcpA-deficient mutant [34] and a cre element was iden-
tified upstream of the -35 region of its promoter. This
indicates a potential interaction between CcpA and the
6S RNA gene that might be relevant for LAB in general.
Notably, B. subtilis 6S-1 and 6S-2 RNA were not identified
as a target for CcpA [36].

For E. faecalis, a major opportunistic human pathogen,
an additional transcript antisense to 6S RNA was detected
[37]. The authors proposed its participation in degrada-
tion or maturation of 6S RNA as both ncRNA products
were present in a processed form. To our knowledge, an
equivalent antisense product is not described for E. coli
[37], B. subtilis or any other species to date (own obser-
vation). However, interdependent expression of genes
around the 6S RNA locus was noticed for other bacteria,
e.g. R. sphaeroides (Proteobacteria), where a salt stress-
induced membrane protein gene on the opposite strand
immediately downstream of the 6S RNA locus is
expressed at elevated levels in a 6S RNA knockout strain
[18].

Apart from these isolated findings, little is known about
the sequence, structure, and physiological role of this reg-
ulatory ncRNA in the large and widely heterogeneous
group of LAB. In this study, we have annotated and ana-
lyzed 6S RNAs systematically to lay a foundation for fur-
ther investigations regarding its role in stress responses,
metabolic processes and interactions with eukaryotic
cells. Moreover, we investigated how wide-spread and uni-
versally relevant the species-specific observations stated
above are for LAB (link to CcpA and the presence of an
antisense transcript). This is also the first comparative
study covering 6S RNAs in a set of taxonomic fami-
lies, thus making it possible to draw more representative
conclusions than in species-wise studies.

Results

Dissemination & phylogeny

We searched 6S RNA sequences in 1,092 genomes cover-
ing strains from all 371 sequenced LAB species publicly
available in the NCBI database at the time of this study
[38]. While two 6S RNA copies were reported for some
Firmicutes including Bacillus subtilis, Bacillus halodu-
rans, Clostridium acetobutylicum, Oceanobacillus iheyen-
sis, and Thermoanaerobacter tengcongensis [15], only one
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copy is present in LAB species. It shows more similarity to
the major and well described Bacillus subtilis 6S-1 RNA
than to its paralog 6S-2 RNA [39].

6S RNA was located in 1001 genomes (> 91%). Addi-
tional File 1 lists all loci. Genomes in which a 65 RNA
gene could not be identified are predominantly partial
genomes with a large number of contigs or scaffolds.
When a 6S RNA gene was found in genomes of closely
related species/strains, we assumed that the ncRNA is
present but not part of the assembly yet. A peculiarity is
the genus Weissella of the Leuconostocaceae family, repre-
sented with 13 species in our dataset. While only a weak
6S RNA locus was predicted in no more than four species
of this genus, a significant amount of transcription could
be shown for the syntenically conserved intergenic region
downstream of rarA in publicly available RNA-Seq data
for W. confusa and W. koreensis [40, 41]. Moreover, this
locus is confined by a transcription terminator in most
Weissella species. See Additional File 8 for details. This
indicates that 6S RNAs in Weissella have a distinct singu-
larity that was hardly picked up by our covariance-based
search strategy. The typical rod-shaped structure with a
central loop or bulge could not be confirmed for these
non-canonical candidates.

Figure 1 shows the phylogeny of canonical 6S RNAs
identified here based on their sequences and struc-
tural properties reconstructed using RNAclust [42] and
mlocarna [43]. An alternative version with a resolu-
tion that reaches the species level is provided in Addi-
tional File 2. The phylogeny well resembles the taxonomic
units at the level of genera. A minor exception is the
Carnobacteriaceae group (blue) that includes Abiotrophia
defectiva (Aerococcaceae) and Bavariicoccus seileri (Ente-
rococcaceae). At the level of taxonomic families, the genus
Vagococcus is significantly different from other Entero-
coccaceae (green). Similarly, Aerococcus is different from
other Aerococcaceae. Lactobacillus is known to be the
most heterogeneous genus within LAB [1]. This is also
reflected phylogenetically since the 6S RNAs of this genus
are divided into eight well distinguishable groups (Lacto-
bacillus 1-7, Pediococcus, brown).

Relation to 16S rRNA phylogeny

The phylogenetic reconstruction of LAB species based on
a sequence alignment of selected 16S rRNA sequences
is shown analogous to the 6S RNA-based reconstruction
in Additional File 3. As expected, the 16S rRNA-based
approach better resembles the current taxonomic annota-
tion [2, 44]. The majority of Lactobacillaceae species share
a common subtree. Notably, a number of species from
the Lactobacillus 6 group (6S RNA-based, see Fig. 1) is
also located in a separate subtree in the 16S rRNA phy-
logeny. Similarly, the Vagococcus group is isolated from
the remaining Enterococcaceae in both phylogenies and
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the same two family-foreign species are found within the
Carnobacteriaceae subtree, namely A. defectiva (Aerococ-
caceae) and B. seileri (Enterococcaceae). In the 16S rRNA
tree, the grouped Aerococcaceae are closely related to
Carnobacteriaceae. The 6S RNA tree, in contrast, splits
this group into two subgroups that are not closely related
to Carnobacteriaceae.

Synteny

To characterize the genomic locus of 6S RNA in LAB,
a synteny analysis was performed. Proteinortho [45]
was used to group the protein-coding genes in the
vicinity of the 6S RNA locus. An overview of the
genomic context of 6S RNA in LAB is shown in
Fig. 2 and in more detail in Additional File 4. The
genomic neighborhood of 6S RNA is conserved at the
family level. Typically, the same genes are encoded

up- and downstream of 6S RNA in the majority
of genera from the same taxonomic family but not
across LAB in general. Exceptions are the replication-
associated recombination protein A gene (rarA), that
is found upstream of the 6S RNA locus in nearly all
species, and the universal stress protein A gene (uspA),
that is found downstream across almost all species
except for Streptococcaceae and a few Aerococcaceae
members.

The upstream rarA gene is part of a highly conserved
family of ATPases found in prokaryotes as well as eukary-
otes. Homologs are known as mgsA in E. coli, mgsl in
yeast (maintenance of genome stability A/1), and WRNIPI
(Werner interacting protein 1) in mammals. The encoded
protein is involved in cellular responses to stalled or col-
lapsed replication forks, likely by modulating replication
restart [46—48].
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The downstream uspA gene belongs to a superfamily
that encompasses an ancient and highly conserved group
of proteins that are widely distributed among bacteria,
archaea, fungi, flies, and plants. It was found to be induced
during metabolic, oxidative, and temperature stress in
Salmonella typhimurium [49] and linked to cell sensitiv-
ity to ultraviolet light in E. coli [50]. uspA is known to
be differentially expressed in response to a large num-
ber of different environmental stresses such as acid and
salt stresses, starvation, exposure to heat, oxidants, met-
als, ethanol, antibiotics, and other stimulants - particularly
within the genera Lactobacillus, Streptococcus, Enterococ-
cus and Lactococcus [51-53].

Structure and sequence conservation

The consensus structure and sequence conservation of
6S RNA in LAB based on a mLocARNA [43] alignment
combined with RNAalifold [54] is illustrated in Fig. 3.
Additional File 5 shows the consensus structures at the
family level. The consensus of 6S RNA in LAB follows the
well-known secondary structure of the canonical 6S RNA
[15, 23], featuring an outer closing stem with smaller
bulges and loops, a large 5’-central bulge and an apical
stem with smaller internal loops capped by the terminal
loop L1. Opposite to the 5’-central bulge a hairpin is pre-
dicted that was also shown to form in B. subtilis 6S-1
RNA [26]. The central bulge harbors the initiation site for
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Fig. 3 Consensus secondary structure of 6S RNA in LAB. The structure is derived from a sequence-structure-based alignment of 172 unique
representative sequences (see Materials and Methods for further details). Colors indicate sequence conservation within LAB. Paired regions P1-P6,
the 5'-central bulge, terminal loops L1/L2, and the putative transcription start site of pRNAs are indicated

product RNA (pRNA) transcription. This consensus and
canonical 6S secondary structure is evident in most of the
6S RNA groups: Aerococcaceae, Aerococcus, Carnobacte-
riaceae, Vagococcus, Enterococcaceae, Pediococcus, Lacto-
bacillus 2, 3, 4, 6, 7, Streptococcus, and Lactococcus, see
Additional File 5.

Product RNAs

Putative pRNA transcription start sites were inferred
from a structural alignment (see Materials and Meth-
ods) of 172 representative 6S RNA sequences from LAB
species and in relation to those of E. coli, R. spheroides
and B. subtilis for which the start sites are experimen-
tally proven. Fig. 4 shows the overall sequence motif.

The first eleven nucleotides of the pRNAs are well con-
served. This conservation diminishes starting at posi-
tion 12. GG at position 5/6 as well as AA at posi-
tion 9/10 are the most conserved in this group. Two
G residues are also conserved in experimentally verified
pRNAs from more distantly related bacteria such as the
Gram-negatives E. coli, A. aeolicus and R. spheroides,
but in these cases at positions 4/5 (Fig. 4). Notably, a
highly conserved adenine immediately upstream of the
pRNA start sites was identified in the 6S RNAs of LAB
species as well as in the reference 6S RNAs included in
Fig. 4.

Based on the pRNA sequence (positions 1-15), LAB
pRNAs are closely related to pRNAs synthesized from

20
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Fig. 4 Consensus sequence motif of 6S RNA-derived pRNAs in LAB. The motif found in LAB is indicated at the top. Positions are numbered from the
pRNA 5"-end. Known pRNA sequences of other organisms are shown below the motif (BSU-1/2: B. subtilis 6S-1 and 65-2 RNA, ECO: E. coli, RSP:

R. spheroides, AAE: A. aeolicus). The conserved GG at position 4/5 or 5/6 is also encoded in 6S RNAs of bacteria outside the LAB group. A
neighbor-joining tree based on the LAB consensus and the pRNA sequences (positions 1-15) is indicated on the right
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B. subtilis 6S-1 RNA as template (Fig. 4). Although the
6S-1 pRNA sequence shows differences to the LAB pRNA
consensus, major hallmarks (upstream adenine, GG din-
ucleotide, AA at position 9/10) are still present. Hence,
despite the considerable phylogenetic distance, similar-
ities to the pRNA sequence found in LAB are clearly
recognizable.

We screened 115 publicly available RNA-Seq datasets
for expression of 6S RNA and the presence of pRNAs.
These small transcripts are usually depleted in sample
preparation for RNA-Seq or neglected in data processing
that typically focuses on longer RNAs such as tRNAs or
mRNAs. Moreover, we found that pRNAs are underrepre-
sented in adapter ligation libraries compared to poly(A)-
tailing libraries [55]. It is thus not surprising that only
small numbers of pRNA reads were identified in most
RNA-Seq libraries. We yet found robust evidence for
pRNAs in Streptococcus pneumoniae and Streptococcus
pyogenes RNA-Seq data (Fig. 5), which also supports the
predicted pRNA start site (Figs. 3 and 4) [56, 57]. Two
pRNA transcripts were previously reported for S. pyo-
genes, but their sequences were not provided [33]. Here
we confirm these findings. We find one alternative tran-
scription start site (PRNA") located around position 136
that starts at the beginning of the L2 loop (see Fig. 3). The
alternative pRNA transcript likely results from 6S RNA
binding RNAP in inverse orientation. Similar observa-
tions have been made for Helicobacter pylori [19]. Notably,
neither the pRNA nor the pRNA" sequences have alter-
native matches in the respective genomes. It is thus
unlikely that these transcripts derive from another locus.
Additional File 6 illustrates further RNA-Seq results.
While pRNAs were also found in libraries from E. fae-
calis, the number of reads is too low to draw safe
conclusions.

CcpA-binding catabolite responsive elements

A functional cre site upstream of the 6S RNA promoter
was reported in L. lactis, suggesting that 6S RNA expres-
sion is regulated depending on the available carbon source
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[34]. An equivalent cre site could be found in about one-
third of all LAB species. Fig. 6 illustrates the location and
sequence conservation of the two cre sites at the 6S RNA
locus. Additional File 2 shows a detailed overview of all
species with cre sites in the 6S RNA region. Additional
File 7 lists the respective motif sequences along with their
positions and p-values. cre sites are most frequently found
in Enterococcaceae but also in several Streptococcaceae
and the Lactobacillus groups 6 and 7 (see Fig. 1). Mainly
in Streptococcaceae and Lactobacillus group 6, potential
cre sites were also identified within the 6S RNA coding
sequence. Notably, L. coryniformis, L. rennini, L. vaginalis,
S. canis, S. didelphis, S. equi, S. pantholopis and S. phocae
do not have a strong, detectable cre site at the 6S RNA
promoter but only within the 6S RNA coding region; both
sites were detected in L. backii, L. bifermentans, S. cas-
toreus, S. gallolyticus, S. halotolerans, S. ictaluri, S. iniae,
S. parauberis and S. uberis.

Expression and antisense transcripts
A total of 115 publicly available RNA-Seq libraries rep-
resenting 24 different LAB genera were screened for the
expression of 6S RNA, pRNAs and long antisense tran-
scripts as described for the Enterococcus faecalis V583
strain [37]. Detailed results for each library are shown in
Additional File 6.

6S RNA transcripts were highly abundant in general
(usually 1-2% of all reads in the RNA-Seq libraries), indi-
cating active transcription in LAB grown under a wide
variety of culture conditions and stresses. In line with pre-
vious findings [37], however, we did not find evidence
for long antisense transcripts of 6S RNA in any RNA-Seq
library including those from other Enterococcus faecalis
strains (OG1RF, 12030, and ATCC 29212), indicating that
such transcripts are not a common trait among LAB.

Discussion

Here we identified the 6S RNA gene at a well-conserved
genomic locus in LAB species that distinguishes this
bacterial group from related bacterial clades. While the

Streptococcus pyogenes (GCF_000743015.1) NZ_CP008926.1: 815,811 .. 816,108

Streptococcus pneumoniae (GCF_000817005.1) NZ_CP007593.1: 1,847,597 .. 1,847,890
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Fig. 5 Publicly available RNA-Seq datasets of Streptococcus pyogenes (left) and Streptococcus pneumoniae (right) mapped to the 6S RNA locus.
6S RNA transcripts are shown in the upper part. pRNA sequences are shown in the lower part in antisense direction. In each case, two short
antisense transcripts can be found (pRNA, pRNA”, arrows indicate start sites)
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consensus secondary structure is typically canonical as
described for B. subtilis 6S-1 RNA, we could not verify
this for candidates of the genus Weissella. Nevertheless,
we identified evidence for significant transcription of the
respective loci in publicly available RNA-Seq libraries for
two strains, see Additional File 8. This confirms a weak
6S RNA candidate in W. koreensis. Although no relevant
match was found for W. confusa, the intergenic region
downstream of the syntenically conserved rarA showed
transcription that matched a 6S RNA transcript even
though its putative secondary structure did not match
a canonical 6S RNA. A TATAAT sequence is present at
the -10 region of all candidates reported for Weissella,
indicating the presence of a promoter. Similarly, a rho-
independent terminator was predicted at the RNA’s pro-
posed 3’-end. Thus, the presence of an actively transcribed
6S RNA-like transcript can be assumed. It will be inter-
esting to investigate the functional consequences of this
structural alteration.

Carbon catabolite control is a major regulatory mecha-
nism for the modulation of metabolic activity of microor-
ganisms to optimize carbon metabolism and energy use.
It involves both carbon catabolite repression and activa-
tion. In most low-GC-content Gram-positive bacteria this
regulation is mediated by the catabolite control protein A
(CcpA) that binds to DNA at cis-acting sequences. These
are called catabolite responsive elements (cre) and are
located either in the promoter region or within the coding
sequence of the regulated gene [36]. CcpA can function as
an activator or may repress transcription depending on its
location within a regulated gene or operon [58]. We found
strong evidence for cre sites upstream of the 6S RNA
promoter in about a third of all LAB species, mainly in

Enterococcaceae but also in Streptococcaceae and some
Lactobacillus subgroups. For Streptococcaceae and Ente-
rococcaceae, the presence and regulatory importance of
these cre sites has been reported and studied previously
[59, 60]. On the basis of previous reports, our findings
suggest that 6S RNA expression is under the negative con-
trol of CcpA in many LAB species. This was shown e.g.
for L. lactis where 6S RNA is 3-fold upregulated upon
deletion of the ccpA gene [34].

For several 6S RNA genes, cre sites were also identified
internally - in some cases in addition to the site at the
6S RNA promoter (see Additional File 2). The presence of
two cre sites regulating the expression of cid and Irg genes
in Streptococcus mutans has already been described, but
in this case both sequences were upstream of the tran-
scription start site of the above-mentioned genes [61]. In
B. subtilis, cre sites upstream of promoters were found
to be primarily activated by CcpA, while cre sites over-
lapping promoters had repressing effects [35]. As the cre
sites in LAB overlap the -35 region of 6S RNA gene pro-
moters (Fig. 6), CcpA-binding is likely inhibitory; cre sites
located further downstream of the transcription start site
may act as roadblocks or repress initiation of transcrip-
tion through interaction with RNAP [62]. Future studies
may address the interplay of the two cre sites at/within the
6S RNA gene. Although speculative at present, it is also
a possibility that CcpA binds to 6S RNA at the internal
cre site, taking into account that 6S RNAs mimic an open
DNA promoter [22].

The identified cre sequences share a high degree of sim-
ilarity to the consensus sequences previously described
for other LAB such as L. lactis, (see Fig. 6) as well as to
other Gram-positive bacteria such as B. subtilis [36, 63].
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Recent studies on the promoter region of the PTS-IIC
gene cluster of L. lactis demonstrated the importance
of nucleotide identity at positions 7 and 12 of the 14-
nt long cre site. Specific mutations within the -35 pro-
moter element resulted in constitutive expression of the
downstream gene in the presence of glucose, while other
mutations enhanced promoter activity in the presence of
cellobiose [63].

The prediction of transcription start sites for pRNAs
was based on the structural alignment to other 6S RNAs
and could be verified by RNA-Seq data in two cases. This
study is the first that deduces pRNAs for a large taxonomic
group covering multiple families. We found a highly con-
served sequence up to around position 11. This may point
to similar kinetics of pRNA synthesis and pRNA-induced
6S RNA refolding [26]. Strikingly, GG at positions 5/6 or
4/5 of the pRNAs appears to be a key feature conserved
beyond LAB.

A general property of the 6S RNA locus in LAB is its
location between the rarA and uspA genes. Gene order
conservation can be used not only to evaluate the orthol-
ogy of genomic regions but might also hint at functional
relationships between genes [64]. RarA is proposed to
act at stalled DNA replication forks upon DNA damage
and UspA alters the expression of a variety of genes that
help to cope with stresses. As 6S RNA was shown to
have a role in cellular stress responses to ensure long-
time cell survival, all three gene products might be part
of an overachrching stress response network. The rarA
gene is in close vicinity to the 6S RNA locus across all
families including the 65-1 RNA locus of the non-LAB
firmicute B. subtilis (see Additional File 4). In the latter,
however, rarA is encoded in the opposite direction and
known to be monocistronic [65]. The RNA-Seq data pre-
sented in Additional Files 6 and 8 and the presence of a
downstream terminator in most species indicates that the
6S RNA gene is monocistronic as well. However, several
Streptococcaceae members encode a tRNA-Lys immedi-
ately downstream of 6S RNA, suggesting that both genes
are part of the same operon. This assumption is supported
by RNA-Seq data for S. pneumoniae (Additional File 6, p.
43) showing that both ncRNAs have the same transcript
level [56]. Thus, both RNAs are likely processing products
of the same primary transcript. Other notable syntenic
bonds are not universally preserved for LAB but within
and also across particular LAB families. Examples are the
acetate kinase, class I SAM-dependent methyltransferase,
16S rRNA methyltransferase, and the 50S ribosomal pro-
tein L11 methyltransferase. While the function of the
other frequently linked genes is unknown so far, this data
suggests a cluster of growth-relevant and stress-related
genes that 6S RNA is part of. Typically, these genes appear
to be transcribed independently (with the exception of
6S RNA and tRNA-Lys in a number of Streptococcaceae).
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Therefore, the possibility of a common functional context
remains vague at present.

Conclusions

Lactic acid bacteria include highly heterogenous species
and the study of the role of non-coding RNA molecules,
particularly 6S RNA, in the regulation of the response
of these bacteria to different stress conditions has many
potential applications, both within industrial and health
contexts. The global transcription regulator 6S RNA is
present in nearly all species and well-conserved through-
out this group. It generally resembles the canonical form
that is well described for B. subtilis 6S-1 RNA. LAB
6S RNAs also share the syntenic proximity to rarA, located
upstream of 6S RNA in nearly all LAB genomes. Many
species additionally encode the UspA protein downstream
of 6S RNA, which makes its identification comparably
easy. The experimental evidence that was processed and
analyzed in this study also demonstrated that 6S RNA
is expressed in a multitude of LAB species across all
taxonomic families and under varying culture condi-
tions. This also highlights the important regulatory role
of this ncRNA in bacterial metabolism, further sup-
ported by the frequent presence of cre sites in its pro-
moter and coding region. The conservation of 65 RNAs
makes it plausible to generally apply our findings to
any LAB species in order to explore its biotechnological
potential.

Methods

Genomes

Several thousand genomes representing 576 species that
cover 48 genera were listed as part of the Lactobacil-
lales order according to the NCBI taxonomy classifica-
tion (date of retrieval 10/09/2018) [38]. In order to work
with a reasonably representative set, we focused on the
genomes with the best respective assembly status for
each species. The species Enterococcus faecium for exam-
ple comprises 1109 genomes/subspecies. Fifty-one out of
these are marked as “Complete Genome” and were thus
considered in the present work. Lactobacillus fuchuen-
sis is represented with three genomes out of which the
most complete assembly is marked as “Chromosome”
that was thus considered, and so on. Additionally, we
added 13 strains that were characterized by our institute
(CERELA-CONICET) even though they did not meet this
criterion. Species with yet unclear specific names (sp.)
were neglected. A total of 1,092 genomes were consid-
ered in this study. An overview of the genera analyzed
here can be found in Table 1. A detailed list of the species
and genome assembly levels is provided in Additional
File 1. The respective genomes and genomic annotations
were downloaded via ftp.ncbi.nlm.nih.gov from the NCBI
database [38].
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6S RNA prediction

Putative 6S RNAs encoded in LAB genomes were iden-
tified in multiple steps. A BLAST-based approach was
performed using available 6S RNA annotations given in
the NCBI RefSeq annotation, from Wehner et al., and
from the Rfam seed sequences for the 6S/SsrS RNA fam-
ily (RF00013, Version 14) to cover the currently known
6S RNAs [16, 66, 67]. An e-value threshold of 10730 was

Table 1 Genomes overview
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applied. Previously not annotated 6S RNAs were iden-
tified with a covariance-based search performed with
INFERNAL (v1.1.1) [68] using the “6S/SsrS RNA” fam-
ily model as query (see above). Initially, no thresholds
were set. Based on the assumption that each genome
should encode at least one 6S RNA gene, the highest-
scoring hit for each genome was assumed as a true hit.
Compared to this, the e-values of the second-best hits

Family Genus Genomes used / Genomes available
Aerococcaceae Abiotrophia 1/2
Aerococcus 8/61
Dolosicoccus 2/3
Eremococcus 1/2
Facklamia 3/9
Globicatella 1/4
Carnobacteriaceae Agitococcus 1/1
Alkalibacterium 1/8
Allofustis 1/1
Atopobacter 1/1
Atopococcus 1/1
Carnobacterium 9/41
Dolosigranulum 10/12
Granulicatella 1/7
Jeotgalibaca 1/4
Lacticigenium 1/1
Marinilactibacillus 1/5
Trichococcus 7/15
Enterococcaceae Bavariicoccus 1/1
Enterococcus 114 /2105
Melissococcus 2/14
Tetragenococcus 5/19
Vagococcus 4/6
Lactobacillaceae Lactobacillus 460/ 1680
Pediococcus 25/61
Sharpea 1/4
Leuconostocaceae Convivina 1/1
Fructobacillus 5/9
Leuconostoc 23/118
Oenococcus 3/208
Weissella 23/43
Streptococcaceae Floricoccus 2/2
Lactococcus 44 /168
Streptococcus 328/12076

Distribution and number of genomes that were retrieved and downloaded from the NCBI database according to the “most complete genome” criterion
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were worse by orders of magnitude. A manual inspec-
tion on a sample basis confirmed that those were not
likely to be valid 6S RNA candidates. Hence, an e-value
threshold of 10~® was applied. In this case, a primary
hit was found in most species while unexpected sec-
ondary hits were rare and could be judged manually in
later stages. Overlapping hits were joined. Hits were found
in 973 out of 1092 genomes. Redundant sequences were
merged to a single representative sequence resulting in
330 unique sequences that were aligned using Clustal
Omega (v1.2.1) [69]. Sequences with an edit distance of
ten or less were merged to their consensus sequence to
further reduce the amount of redundancy. 188 representa-
tive 6S RNA sequences remained. We checked for isolated
sequences in the secondary structure clustering analysis
(see below) and non-canonical secondary structures using
RNAfold (v2.1.9) [54]) as well as suspicious alignments
to further remove non-canonical and doubtful hits. The
following sixteen 6S RNA candidates were discarded man-
ually in the first round: Agitococcus lubricus, Lactococ-
cus fujiensis, Facklamia hominis, Pediococcus damnosus,
Lactobacillus babusae, Pediococcus cellicola, Lactobacil-
lus cacaonum, Lactobacillus mucosae, Lactobacillus coleo-
hominis, Lactobacillus gastricus, Lactobacillus equigen-
erosi, Lactobacillus malefermentans, Lactobacillus oryzae,
Oenococcus oeni, Weissella kandleri, and Weissella koreen-
sis. In total 172 representative 6S RNA sequences covering
947 genomes remained. This set was used for further
analyses.

For each genome without an annotated canonical
6S RNA (including those discarded manually in the first
round), a second search iteration was performed with a
LAB-specialized covariance model that was build based
on all canonical 6S RNAs identified before. The e-value
threshold was reduced to 0.1 and all search heuristics
were turned off (cmsearch -max). In addition, the cor-
rect genomic locus was ensured by only allowing hits
within 2000 nt from upsA and/or rarA homologs. Both are
typically encoded in close vicinity to 6S RNA gene (see
Results section “Synteny”). The homologs were annotated
using BLAST (v2.8.1+) [66] with an e-value of 10~% based
on the sequences found in the synteny analysis. In this
way, additional syntenically supported 6S RNA candidate
genes were identified in 54 genomes. These are marked as
“2nd-iteration” in Additional File 1 that lists all 6S RNAs
annotated for LAB.

Prediction of rho-independent terminators

Terminators were predicted using TransTermHP (v2.09)
[70]. An adaptive threshold was used to ascertain signif-
icant predictions. Each genome was shuffled ten times
while preserving its mono- and di-symbol composition.
We then compared the number of hits above any given
threshold between the shuffled genomes and original
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genome. The threshold was chosen such that the average
number of hits in the shuffled genomes was no more than
5% compared to the hits in the original genome. E.g. if
we find 100 hits above a score of 90 in the genome, the
average number of hits in the shuffled genomes above the
same score cannot exceed 5, otherwise a higher threshold
is chosen. In the absence of significance values provided
by the prediction tool, this method roughly estimates a p-
value threshold of 0.05 for terminator hits. Overlapping
hits were merged. In additon, RNIE (v0.01) was used with
default parameters for a genome-wide prediction [71].
For the relevant regions, the results were a subset of the
former predictions.

Consensus secondary structure

All representative 65 RNA candidates were aligned using
mLOCARNA (v2.0.0RC8), a local structural alignment algo-
rithm for RNA secondary structures [43]. To locate the
putative start sites for pPRNAs in LAB, three well-studied
6S RNA instances were added as references from which
the start sites were then projected to the LAB 6S RNAs.
Namely Escherichia coli K12 (GCF_000005845.2) and
Bacillus subtilis 168 (GCF_000009045.1), which codes for
two paralogs, 6S-1 and 6S-2 RNA (also known as BsrA
and BsrB) [39, 72]. The consensus secondary structure
was then calculated with RNAalifold (v2.4.13) [54] and
visualized using VARNA (v.3.93) [73], excluding the folding
references.

Prediction of pRNAs

The transcription start of 6S RNA-derived pRNAs was
determined based on the structural alignment mentioned
above. Based on previously characterized transcription
start sites in other bacteria [26, 55, 74], we assumed the
equivalent positions within LAB 6S RNAs. The puta-
tive pRNA sequences of 16 nt length were aligned with
Clustal Omega (v1.2.1) [69]. We found a strong con-
sensus sequence motif (see Results) that we used to fur-
ther adjust the pRNA start site by shifting it for up to three
nucleotides in case of suboptimal matches. The motif
composition was calculated using WebLogo (v2.8.2) [75].

Phylogeny with secondary structure clusters

The sequences of the 6S RNA candidates identified in
the first round were clustered hierarchically based on
their structured RNA motifs using RNAclust [42]. This
approach combines the base pair probability matrix of the
secondary structure distributions (via RNAfold (v2.1.9)
[54]) and a sequence-structure alignment based on
LocARNA [43]. Bacillus subtilis 168 (GCF_000009045.1)
6S-1 RNA (BsrB) was added as an outgroup [39]. The
resulting tree can be found in Additional File 2, while
a condensed version is shown in Fig. 1, visualized using
Evolview (v3) [76].
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16S rRNA phylogeny

16S rRNA sequences were identified using BLAST
(v2.8.1+) [66] with an e-value of 10729 based on
the 16S rRNA reference sequences provided by the
NCBI database [38]. Redundant sequences were merged.
Sequences were aligned using muscle (v3.8.1551) [77].
The 5- and 3’-end of the 16S rRNA alignment were
trimmed such that < 25% of all sequences had remain-
ing gaps in these regions. The phylogenetic reconstruc-
tion was performed with RAxXML (v8.1.20) [78] using
the General Time Reversible model (GTR) with opti-
mization of substitution rates and the GAMMA model
of rate heterogeneity and 1000 bootstrap iterations.
The phylogenetic reconstruction was visualized using
Evolview (v3) [76].

Synteny

The amino acid sequences of ten protein-coding genes
5000 nt up- and downstream of the predicted 6S RNA
locus were fetched from the NCBI database. Ortholo-
gous groups were predicted with Proteinortho (v6.13)
[45]. To avoid an overrepresentation bias, equivalent and
similar 6S RNA sequences were represented by a single
reference strain rather than all strains of the respective
species (see “Detection of 6S RNAs”). Genes found in
fewer than 50% of each family were omitted from the
analysis. For each LAB family, one species that best rep-
resented the genomic context of all family members was
chosen.

CcpA-binding catabolite responsive elements

The sequence motif for cre sites was derived from experi-
mental B. subtilis data [36] that also fits previously derived
L. lactis data [79] as shown in Fig. 6. However, we pre-
ferred the former as it yields a higher number of under-
lying sequences, which strengthens the derived p-values
for motif matches and thus avoids false positive predic-
tions. The 6S RNA sequences along with their 100 nt
upstream regions were used to find sequences match-
ing the cre motif using MAST [80]. Typically, this position
overlapped with the 3’-end of the rarA gene. Hence, we did
not expect binding sites further upstream to be relevant
to 6S RNA. We used the dinucleotide distribution of the
respective genomes as background for each e-value cal-
culation. The default e-value threshold of 10 and p-value
threshold of 10~ was applied. The resulting motifs were
separated in two groups: Upstream of the 6S RNA pro-
moter and within the 6S RNA coding region as shown in
Fig. 6.

Expression

Available RNA-Seq datasets for LAB were located in
the NCBI SRA archive and downloaded on 12-11-
2018 [38]. In total 115 RNA-Seq libraries were analyzed
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covering 24 different LAB species. Read sequences
were extracted using the NCBI-provided fastg-dump
(v2.8.2). Adapter removal and read trimming was per-
formed using cutadapt (v1.12) [81] followed by a qual-
ity control with fastgc (v0.11.5) [82]. Processed reads
were mapped to the respective genomes with segemehl
(v0.2.0) [83]. An e-value threshold of 0.0001 was applied.
The mapped data was visualized for each 6S RNA locus
using custom scripts. Additional File 6 shows all results
and data sources in detail.
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Additional File 2 — Full 6S RNA phylogeny

Sequence- and structure-based reconstruction of 6S RNA phylogeny in LAB. Canonical 6S RNAs were clustered
hierarchically using RNAclust and mlocarna. Family membership is indicated by color. 6S-1 RNA from B. subtilis
is used as outgroup. The full number of represented genomes is indicated in blue boxes in the outer ring. Circles
in the outer ring indicate whether and where a potential cre-site were identified at the 65 RNA locus.
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Additional File 3 — 16S rRNA phylogeny

Supplemental Figure 2: Sequence-based reconstruction of 16S rRNA phylogeny in LAB. The phylogenetic recon-
struction was performed with RAXML using the GTR model with an optimization of substitution rates and the
GAMMA model of rate heterogeneity. 1000 bootstrap iterations.
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Additional File 4 — Full genomic context of 6S RNA in LAB
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Additional File 5 — 6S RNA grouped consensus alignment (pdf)

Folded consensus structure of the 68 RNA groups generated with RNAcLust (the names next to the colored square
boxes indicate the family). The secondary structures were with RNAalifold and visualized
using VARNA. The name right above the structure indicates the RNAcLust group name in line with Fig. 1. Colors
indicate sequence conservation within the respective LAB family.
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Additional File 8 — 6S RNA evidence in Weissella

Supplemental Figure 1: Genomic context of rarA in Weissella koreensis and Weissella confusa mapped RNA-
Seq data from bioprojects PRINA306639 and PRINA532838. The number of mapped reads is indicated on the
right. Conditions are overlayed in different colors. As for main Figure 2, putative Rho-independent terminators are
indicated by red hexagons. Genes in close proximity (<20 nt) are indicated by a semicircle connecting them. The
data verifies active transcription of the predicted 65 RNA in W. koreensis. No prediction was found for W. confusa.
However, similar transcriptional activity is observed for the expected locus immediately downstream of rard.
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Supplemental Figure

Genomic context of rard in further Weissella species. For cach specics, one representative
strain is shown. Typically, rard is followed by an intergenic region that is closed by a Rho-independent terminator.
In three species, a low-scoring 65 RNA candidate was predicted in this locus (highlighted in red). We assume that
a similar transcript s produced from the remaining intergenic regions of the other species.
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2.3 Proteinortho

Original Research Article: Klemm, P, Stadler, P. E, & Lechner, M. (2023). Proteinortho6: Pseudo-
reciprocal best alignment heuristic for graph-based detection of (co-)orthologs. Frontiers in

Bioinformatics. In revision.
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ABSTRACT

Proteinortho is a widely used tool to predict (co)-orthologous groups of genes for any set
of species. It finds application in comparative and functional genomics, phylogenomics, and
evolutionary reconstructions. With a rapidly increasing number of available genomes, the de-
mand for large-scale predictions is also growing. In this contribution, we evaluate and implement
major algorithmic improvements that significantly enhance the speed of the analysis without
reducing precision. Graph-based detection of (co-)orthologs is typically based on a reciprocal
best alignment heuristic that requires an all vs. all comparison of proteins from all species under
study. The initial identification of similar proteins is accelerated by introducing an alternative
search tool along with a revised search strategy — the pseudo-reciprocal best alignment heuris-
tic — that reduces the number of required sequence comparisons by one-half. The clustering
algorithm was reworked to efficiently decompose very large clusters and accelerate processing.
Proteinortho6 reduces the overall processing time by an order of magnitude compared to its
predecessor while maintaining its small memory footprint and good predictive quality.

* Keywords: orthology, homology, sequence similarity, spectral clustering, algebraic connectivity

INTRODUCTION

Comparative analyses of nucleic and amino acid sequences have become routine approaches in modern
biology. A problem frequently encountered in comparative and functional genomics as well as in phyloge-
nomics and evolutionary reconstructions is the detection of homologous genes that share an evolutionary
ancestry. These genes are orthologs if they have derived from a common ancestor by means of a speciation
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event. Paralogs, in contrast, have derived from a duplication event and thus represent gene copies (Fitch,
1970). Orthologs are of particular interest as their function is likely conserved due to selective pressure
(ortholog conjecture (Koonin, 2005)). In contrast, paralogs diverge faster, specialize, acquire new functions,
or become dysfunctional (Ohno, 1999; Lynch and Conery, 2000). Gene duplications followed by subse-
quent speciation events create two or more genes in one lineage that are, collectively, orthologous to one or
more genes in another lineage. These sets of genes are termed co-orthologs (Koonin, 2005). Even though
orthology is not a transitive relation (Johnson, 2007), large-scale orthology assessment is often treated as a
clustering problem, resulting in clusters of (co)-orthologous genes (COGs), see e.g. (Setubal and Stadler,
2018) for areview. Proteinortho (Lechner et al., 2011) in its previous version 5 (Proteinorthob)
is a well-established tool for the detection of (co-)orthologs in large-scale analysis that also adheres to
this approach. It has demonstrated its utility in various studies within the field of comparative genomics
including e.g. evolutionary analyses (Peter et al., 2018), genomic signatures (Kapheim et al., 2015),
functional annotation (Pinho et al., 2013), phylogenetic reconstructions (Klemm et al., 2022), and so on.
Proteinortho also found integration into tools and databases, such as Echinobase (Arshinoff et al.,
2022) or Funannotate (Palmer and Stajich, 2023).

Sequence-based orthology inference is based on pairwise sequence comparisons. This stage requires
scoring the similarity of all proteins in order to determine groups with high similarity. To simplify the
terminology, we use the term “protein” to designate the amino acid representation of protein-coding gene
sequences in the following. The well-known reciprocal best alignment heuristic (RBAH) (Bork et al.,
1998), can be used to retrieve at least a good approximation of the correct ortholog set. We refer to Schaller
et al. (2021) for a comprehensive mathematical analysis of the relation between best matches and orthology.
Proteinortho extends the RBAH to an adaptive version, which includes alternative matches to the
set of potential orthologs if they closely resemble the similarity of the best match. For details, refer to
the original implementation (Lechner et al., 2011). Pairwise sequence comparisons are typically the most
time-consuming stage as the computational effort scales quadratically to the number of proteomes analyzed.

When all pairwise sets of reciprocal best hits are known, this information is merged. In this process,
all proteins are represented as nodes in a graph that are connected by edges whenever their similarity
score is within the adaptive RBAH criterion. A set of proteins linked to each other by any path is called a
connected component (CC). Each CC represents a potential co-orthologous group. However, the small
world phenomenon (Milgram, 1967) also applies to empirical orthology graphs: Even though the number
of possible protein sequences is practically limitless, there are relatively few basic folding shapes, of which
some folds and superfamilies are extremely abundant (Koonin et al., 2002). CCs quickly become large and
thereby non-informative. This effect increases with the number of proteins analyzed at once. Therefore,
a clustering step is required. CCs are divided into smaller, more informative CCs by iteratively isolating
well-connected subsets. The results are clusters of mutually similar proteins reported as co-orthologous
groups.

In this contribution, we evaluate major algorithmic improvements for Proteinortho and present
version 6 of the tool (Proteinortho6). All improvements primarily aim towards a significant speedup
of orthology analyses while keeping the quality of its results and the small memory footprint that makes it
applicable on large HPC systems and average off-the-shelf desktop systems.
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1 METHODS
1.1 Alternative sequence search tools

The first stage of Proteinortho analyses is a pairwise sequence comparison. Proteinortho5
relies on BLAST (Camacho et al., 2009) which is still considered the gold standard for any homology
search (Ward and Moreno-Hagelsieb, 2014). BLAST implements a seed-and-extend-paradigm. Meanwhile,
it has inspired numerous alternative algorithms that can be used as direct replacements. Here, we evaluate
these alternatives for use in the context of the adaptive RBAH strategy in order to speed up the sequence
comparisons performed for orthology inference.

Proteinortho6 directly supports the following BLAST alternatives: ucsc BLAT is optimized for
quickly finding very similar sequences of closely related species. It uses an index of non-overlapping
k-mers (Kent, 2002) to speed up the search. UBLAST uses spaced seeds and a reduced alphabet to facilitate
the comparison of distant gene sequences with a low identity (Edgar, 2010). USEARCH instead requires
exact matches and was designed for comparisons of sequences with a high identity (Edgar, 2010). LAST
implements a suffix array for a variable seed length, spaced seeds, and a reduced alphabet. A design
goal was to handle repeat-rich sequences more efficiently than other tools (Kietbasa et al., 2011). The
parameter m (default 10) controls the maximum initial matches per query position comparable to the
max_target_seqs parameter of BLAST. The higher m, the more hits are reported at the cost of increased
running time and memory usage. RAPSearch? is based on a collision-free hash table of sorted 6-mers
and a reduced alphabet for amino acid sequences (Zhao et al., 2012). DIAMOND implements a double
index alignment, spaced seeds, and a reduced database alphabet (Buchfink et al., 2015). It provides several
sensitivity modes depending on the expected sequence identity of reported hits. The default is optimized
for hits > 60% identity and short read alignment. The fast mode aims for highly similar hits with > 90%.
The sensitive mode is recommended for comparisons above > 40% sequence identity, while the
highest sensitivity setting ultra-sensitive is supposed to perform well even below 40% identity,
although with largely increased running time. MMSeqgs?2 uses a memory-efficient inexact k-mer matching
optimized for multi-core systems (Steinegger and So6ding, 2017). Speed and sensitivity can be controlled
with the s parameter. A reasonable range starts from 1, corresponding with fast but coarse results, to
7.5, which is highly sensitive but slow. The default value is 5.7 and thus aims towards sensitivity over
speed. Topaz is the most recent addition of BLAST replacements. It uses an advanced version of the
SANS algorithm (Koskinen and Holm, 2012) that generalizes the symmetric suffix array neighborhood
search to an asymmetric search in combination with scored seeds, a variation of spaced seeds (Medlar and
Holm, 2018). Similarly to the tools above, a fast mode is implemented that decreases running time at the
expense of sensitivity.

The results obtained using BLAST were considered as the point of reference. Based on these, we computed
sensitivity and precision, where sensitivity = TP/ (TP+FN) and precision = TP/ (TP+FP) and TP is the
number of true positive reported edges, that coincide with BLAST, FP is the number of false-positive
reported edges, that do not coincide with BLAST, and FN is the number of false-negatives edges, that are
only reported by BLAST. Computational efficiency was quantified in terms of total running time (wall
time), scalability (running time in relation to the number of species), and maximal memory allocation
(peak memory consumption). The evaluation was performed using the following tool versions: BLAST+
(v2.13.0), ucsc BLAT (v377), UBLAST and USEARCH (v11.0.667), LAST (v1318), RAPSearch?
(v2.24), DIAMOND (v2.0.15), MMSeqgs2 (v14.7¢284), and t opaz (commit 24bdb61).
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Note that the free 32-bit versions of USEARCH and UBLAST were used instead of the 64-bit versions
that are available only commercially. Even though these versions are likely faster, we do not expect that the
sensitivity and precision of the tool are affected by the build architecture.

1.2 Pseudo-reciprocal sequence comparison strategy

Pairwise similarity scores between all proteins in the dataset are the foundation of sequence-based
orthology inference via adaptive RBAH. For reasons of complexity, only scores below a certain expectation
value (E-value) are considered. In Proteinortho, sets of proteins S, S, - - , .S, are presented for
each species of interest. Similarity scores are then calculated using a sequence search tool st, like BLAST.
This is performed reciprocally for all pairs of sets, e.g., st(S1, 52), st(S2, S1), st(S1,53), st(S3,S1), - -
in order to obtain all scores required for RBAH. Notably, the alignments of any two proteins a € S,, and
b € Sy, are calculated twice if their match is below the E-value threshold in the comparisons st(S;,, Sy,)
and st(Sy,, Sp)-

The new feature pseudo (pseudo-reciprocal) in Proteinortho6, calculates only one pair st(Sy,, Sy,)
and approximates the results of the st(S,,, Sy, ). The missing E-values of st(.S,,, Sy,) are calculated based
on the query sequence length [, and the database size |S,| of the respective set of proteins in order to
resemble E-values comparable to a pair-wise search:

o [- ’Sn‘
€= 2bitscore

1.3 Clustering algorithm
Eigenvector decomposition

Proteinortho uses a spectral clustering algorithm. It recursively divides connected components
into two connected subcomponents that are maximally connected with respect to their algebraic connec-
tivity (Fiedler, 1975). Spectral clustering has a long history in multivariate statistics, image processing,
and machine learning, see e.g. Shi and Malik (2000) for detailed descriptions. The implementation is
based on the eigenvector decomposition of subgraphs, which are calculated via the power iteration in
Proteinortho5 (Boutsidis et al., 2015). As large components usually build up due to bridge and hub
clusters, most nodes within a connected component are not connected by an edge which is exploited by
representing the data via a space-efficient edge list rather than a largely unoccupied adjacency matrix. This
data structure is also well utilized by the power iteration. In contrast to alternative implementations based
on adjacency matrices, non-existing edges do not require memory nor do they require consideration during
the calculations. The strategy enables large-scale clustering by minimizing memory requirements and
computational effort (Lechner et al., 2011).

In addition to the power iteration, Proteinortho6 implements ssyevr (single precision, symmetric
eigenvalue problem, RRR algorithm). It is based on the “Relatively Robust Representation” algorithm (Par-
lett and Dhillon, 2000) that can compute an eigenpair in linear time (Bientinesi et al., 2005) which is
provided via the highly optimized Fortran 77 library Lapack (v3.8.0) (Anderson et al., 1999). Although
ssyevr outperforms the power iteration by orders of magnitude in many scenarios, the Lapack routine
cannot be applied for large clusters of protein as it is bound by quadratic memory requirements due to the
reliance on adjacency matrices.
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Flooding heuristic

With a growing number of species that are analyzed at once, connected components in orthology graphs
grow exponentially in size due to the small world phenomenon. The resulting CCs can quickly cover a
large proportion of the whole protein set. An example of this observation is shown in Supplemental Data 1.
Theoretically, these huge CCs are easily broken down into informative subsets by spectral clustering.
However, with an increasing number of species, their size poses a computational problem. The power
iteration algorithm is not able to process them in a reasonable time while the memory requirements for
ssyevr are not feasible. Hence, orthologs in these large CCs cannot be recovered.

To salvage the issue with large CCs, Proteinortho6 employs an iterative approach that removes
batches of outlier edges based on their associated bitscore when spectral clustering is not possible. Therefore
a cutoff threshold is raised until a significant number of outliers is covered with respect to the one-sided
Grubb-Smirnov outlier test. If necessary, this process is repeated until spectral clustering is possible.

Multithreading

Proteinortho6 introduces support for parallel computing at the clustering stage. The main thread
employs a breadth-first search (BFS) approach to identify CCs. The worker threads then calculate the
algebraic connectivity in parallel for each CC. Split components are added back to the processing queue if
necessary. This feature also facilitates distribution across multiple computing nodes by processing batches
of connected components in parallel. An overview can be found in Supplemental Data 1.

Adaptive clustering

The spectral clustering approach follows a bisecting paradigm. Groups are successively divided until a
predefined algebraic connectivity threshold is met. The choice of this threshold directly affects the size
and quality of reported (co-)orthologous groups. A high connectivity threshold will only return sets of
mutually similar proteins but can lead to excessive fragmentation of the orthology graph in numerous
small CCs. Orthologous groups might fall apart into several subsets. A low threshold, on the other hand,
might return non-informative large CCs with multiple putative co-orthologs for each species that actually
represent unions of several orthologous groups. The default threshold applied by Proteinortho was
defined empirically and represents a reasonable trade-off between both extremes.

Different protein families have different overall similarities. Therefore, a connectivity threshold that works
well for one protein family, might be suboptimal for another. To address this, Proteinortho6 offers
an adaptive clustering with the core option. It assumes that members of orthologous groups should be
found in all species. Iterative spectral clustering is applied irrespective of the graph’s connectivity until the
graph would split into two subgraphs of which neither covers all species that were covered by the original
CC. The CC is only clustered further if it appears too big, e.g., comprises many (co-)orthologous genes
per species. This threshold is defined by the parameter coreMaxProts (default 10), which continues
clustering if more than 10 proteins are present per species.

1.4 Evaluation
Datasets

Several real-world datasets were used as a biologically relevant basis for representative comparisons.
These are summarized in Supplemental Data 2. It shows the number of species and proteins for each dataset
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and how this translates into a reciprocal best hit graph (RBH) using Proteinortho6 with BLAST
(E-Value threshold 107).

The dataset QfOg020/04 Was provided by the QfO benchmark service (Altenhoff et al., 2016). It
comprises a curated set of proteomes from 23 Bacteria, 7 Archaea, and 48 Eukaryota sampled from
UniProt (UniProt-Consortium, 2018). Note that QO provides two versions of this dataset, and we used
the newer version with updated UP000008143 sequences.

The Bac dataset comprised all bacterial reference proteomes from UniProt, release 2022/03 (UniProt-
Consortium, 2018). This set was downsampled to incremental subsets of random proteomes. For instance,
Bacig contains 10 randomly selected bacterial proteomes, Bacyy extends this set by 10 additionally
randomly selected proteomes, and so on. A full list is shown in Supplemental Data 2.

The BigCC set comprises connected components of 1, 800 bacteria for which an origin of replication was
identified (related study not published so far). Due to a huge connected component, this dataset represents
a challenge for the clustering algorithm. So far, it was not solvable using regular spectral clustering. A
subset of this is BigCC100 which focuses on larger CCs with at least 100 nodes. To evaluate edge cases
that were not covered by this real-world dataset, such as components with high density and a large number
of nodes, a set of 300 simulated graphs was generated. The set will be referred to as simulated. Its
connected components were generated in three steps: An unweighted path graph was generated with the
given number of nodes n and n — 1 edges connecting each node in a series to ensure connectivity. Edges
were added one by one, randomly assigning unconnected nodes until the given graph density was satisfied.
Bitscores were defined randomly (between 1 to 2000). E-Values were trivially set to 1/bitscore.

Benchmark system

All benchmarks were conducted on the HPC cluster MaRC3 located at the University of Marburg using
AMD EPYC 7702P processors with 64 cores and 256 GB RAM.

Clustering algorithms

The spectral clustering algorithms were applied to the datasets BigCC100 and simulated, represent-
ing particularly large connected components. A total of 8,881 connected components were evaluated in this
way, see Supplemental Data 2. If the relative clustering time differed by less than 5 minutes or one logs
fold, the algorithms were considered to be equally fast. To evaluate the comparability of both clustering
approaches, the adjusted rand index (ARI) was used (Hubert and Arabie, 1985). The higher the ARI value,
the more similar the partitioning.

Precision of orthology predictions

The Q0 benchmark service was used to evaluate the orthology predictions (Altenhoff et al., 2016). The
Nextflow implementation of the benchmark system was used as provided in the corresponding GitHub
repository Altenhoff (2023). All benchmarks were performed using the Q£ 0509/04 (2020.2) dataset. In
this analysis, the precision metrics of the three categories of benchmarks were employed:

1. Phylogeny-based benchmarks GSTD2 (4 tests), the generalized species tree discordance, as well as
the STD (3 tests), the species tree discordance, using the Average Robinson-Foulds (RF) distance
between predicted gene trees based on the set of orthologs and the underlying species tree (the lower
the better). The RF metric is a dissimilarity measure that quantifies the difference between two trees by
counting the number of partitions that can be observed in one phylogenetic tree but not the other and
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vice versa. This metric can be seen as an approximation of the false discovery rate or the inverse of
precision Altenhoff et al. (2016).

2. Function-based benchmarks used EC, the Enzyme Classification Conservation, and GO, the Gene
Ontology Conservation, through the Average Schlicker Similarity as a proxy for precision (the higher,
the better). The Average Schlicker Similarity is a semantic similarity measure used to assess the terms.

3. Reference Orthology-based benchmarks examined the agreement with the SwissTree, VGNC or
TreeFam-A gene phylogeny, measured by the Positive Predictive Value (PPV, the higher, the better).

Full details on the test statistics can be found in (Altenhoff et al., 2016).

To combine the precision metrics of the different benchmarks, we define improvement as the mean
logs fold ratio between all scores. The scores of Proteinortho v5.16b with default settings serve as the
baseline and for example, an improvement of 0.5 correspond to scores that are on average 41% better
than the results of Proteinorthob.

Scalability

The evaluation was performed with the Bac datasets of increasing size (Bacig, Bacag, ---). The
following tools were evaluated in the comparison: OrthoFinder v2.5.4 (Emms and Kelly, 2019) in
the graph-based modus (-og) using MMSeqs?2 v14.7e284, SonicParanoid2 v1.3.8 (Cosentino and
Iwasaki, 2023) using DTAMOND v2.0.15 in sensitive mode, OMA v2.5.0 (Altenhoff et al., 2019) without
an out-group set, Proteinorthob5 v5.16b utilizing BLAST v2.13.0, and Proteinortho6 v6.3.0 with
DIAMOND v2.0.15 in sensitive mode, as well as the pseudo-reciprocal variation. A full list of
all dependencies, versions, and parameters is provided in Supplemental Data 2.

2 RESULTS
2.1 Sequence search tools

Pairwise similarity data is fundamental to graph-based orthology inference. The computation of all vs. all
comparisons using a sequence search tool is also the most costly step. Typically, BLAST was the search tool
of choice. It offers excellent performance compared to directly calculating scores from pairwise alignments
and is considered the gold standard in terms of sensitivity and precision (Ward and Moreno-Hagelsieb,
2014). To our knowledge, more modern search tools are less accurate in general but perform much better
in respect to processing time and memory consumption (see Tab. 1). We systematically compared potential
alternatives to BLAST in the context of Proteinortho’s adaptive reciprocal best-hit heuristic (Lechner
et al., 2011). The evaluation is based on the QfO 2020/04 dataset (Altenhoff et al., 2016), which comprises
a representative mix of eukaryotic, bacterial, and archaeal proteomes.

The original implementation of Proteinorthob relies on BLAST. It required 97 GB of memory and
about three days (78h) of processing time in total. Table 1 shows that both running time as well as memory
consumption improve significantly if alternative search tools are used. In terms of precision, ucsc BLAT
stands out with 94% and is best in total processing time (21 minutes, 7.8 loga fold improvement) as well as
memory footprint (2 GB, 5.5 logs fold improvement over BLAST). However, this tool returns the lowest
number of edges and achieves the by far worst sensitivity of all options (20%). Similarly, RAPSearch?2,
and USEARCH also fall behind in terms of sensitivity (47% and 52%, respectively). The remaining tools
are close regarding precision (around 90%) and sensitivity (usually between 80% and 90%). With respect
to both measures of quality, DIAMOND, LAST, MMSeqgs2, topaz, and UBLAST could serve as suitable
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Table 1. Performance and resource consumption of sequence search tools in the context of
Proteinortho based on the QfO benchmark dataset 2020/04. Alternative search modes are listed
below the tool’s names. The default option is indicated (def.). Sensitivity and precision are given relative
to the BLAST results in line 1. Edges: number of edges in the initial orthology graph; wall time: total
processing time; memory: peak memory usage; 1oFC: logs fold change relative to Proteinorthob
results; *: default option of Proteinortho6. Ranks are indicated: D top 25%, D top 50%.

algorithm edges | sensitivity | precision | wall time memory
% % IbFC h | bFC GB
| Proteinortho5 | 5435k | 100 | 100 | O 778] O 97 |

DIAMOND

default 4701k 77 89 72 05| 4.1 6

sensitive 5366k 88.4 89.5 64 09 4 6

+ pseudo” 5417k 88.7 88.9 75 04| 43 5

ultrasens 5457k 89.7 89.3 46 32| 38 7

fast 3894k 63.8 89 73 05| 44 4
LAST

ml0 (def.) 4853k 79.5 89 66 08| 35 9

m100 5118k 84.2 89.4 51 23 | 23 20

m1000 5239k 86.2 89.5 22 165|119 25
MMSeqgs2

sl 3877k 64 89.7 69 07| 34 9

s5.7 (def.) | 5149k 85.6 90.4 45 35129 13

s7.5 5235k 87.1 90.5 2.7 12 | 29 13
topaz

default 5025k 82.3 89 4 49 | 32 10

fast 5025k 82.3 89 41 45 | 32 11
USEARCH

ublast 5167k 81.1 85.3 55 18] 21 23

usearch 3215k 51.8 87.5 76 04| 55 2
ucsc BLAT 1158k 20 94 78 03| 55 2
RAPSearch?2 2781k 46.6 91.1 22 169 3.1 11

BLAST replacements when applying the right search mode. Factoring in processing time and memory
requirements, DIAMOND with the sensitive option was evaluated to be the most optimal approach.

Using DIAMOND with the sensitive option as the search tool improved the running time by a logs
fold of 6.4 (to 56 minutes instead of 77.8 h) and the memory consumption by 4 logs units (peak memory
usage of 6 GB instead of 97 GB). In addition, we applied the pseudo-reciprocal sequence comparison
strategy, pseudo. Here, protein alignments are calculated only in one direction while the reverse direction
is estimated. See the Methods section for details. This approach additionally speeds up the calculation
by half. Compared to the classic search strategy, the measures of quality are hardly affected. Precision
decreases from 89.5 to 88.9% while sensitivity increases from 88.4 to 88.7%.

Comparable outcomes were noted for a group of closely related species and for randomly selected
bacterial proteomes from the Bac,, dataset. For additional details, please refer to Supplemental Data 1.
The pseudo-reciprocal best alignment heuristic using DIAMOND with the sensitive option, therefore,
became the new default for Proteinorthoé.
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2.2 Clustering algorithm

Once pairwise similarity data was merged into an overarching graph structure, spectral clustering is
applied to reduce it to an orthology graph. Proteinortho recursively divides connected components into
two connected subcomponents that are maximally connected with respect to their algebraic connectivity. For
this process, the space-efficient power iteration is used in Proteinortho5. With Proteinorthob,
the ssyevr algorithm is available as an alternative. It relies on full matrices and is thus less space-efficient.
We conducted a comprehensive evaluation of the running time differences between the power iteration and
ssyevr algorithms using the real-world dataset B1gCC100 was used together with a simulated set
that comprises components with high density and a large number of nodes. See the Methods section for
details.

Lapacks ssyevr has a significantly larger memory footprint for large connected components. The
maximal requirement for processing a CC in the reference datasets was around 18 MB (ssyevr) vs. 0.1
MB (power iteration), see Supplemental Data 2 for details. Given the availability of system memory in
modern computer systems, these additional requirements are largely outweighed by the improvement in
performance. The maximal relative improvement in running time was 9.3 logs folds for a graph with 1,921
nodes (4 seconds using ssyevr vs. 40 minutes the power iteration), and the maximum absolute running
time difference was 1.36 hours for a simulated graph with 7,731 nodes. 217 out of the 8,881 connected
components were processed significantly faster using ssyevr over the power iteration. The improvement
was 5.1 logs folds on average. Our evaluation shows that the ssyevr implementation is consistently faster
for large components and on par with the power iteration for small components. For this reason, the power
iteration was replaced by the ssyevr as the default clustering algorithm in Proteinortho6.

Notably, the chosen algorithm scales quadratically in memory with the number of nodes. The BigCC100
dataset already comprises a connected component with 4 million nodes which exceed feasible computing
capacities. While the power iteration would be able to handle this component from a memory perspective,
the processing time would largely exceed any reasonable value. We stopped the comparative evaluation of
clustering this component after 10 days. The increasing appearance of large connected components with
an increase of species that are analyzed for (co-)orthologous proteins is expected due to the small world
phenomenon (Milgram, 1967). We found a number of additional components in real-world datasets that
are close in size. Hence, a large proportion of the proteins cannot be assigned to any (co-)orthologous
group, if the components are ignored. To avoid a loss of information due to this effect, Proteinortho6
employs a flooding heuristic. Low-scoring edges are iteratively removed from large components until they
are decomposed to sufficiently small subcomponents that are suitable for spectral clustering. See Methods
sections for details.

2.3 Pseudo-reciprocal best alignment heuristic

To assess the validity of the pseudo approach, the reciprocal best hit graph from the QfO 2020/04 data sets
was evaluated using the classic RBAH and the pseudo approach. Here, bitscores calculated by DTAMOND
differ by 1.1% in median and 1.9% on average for any pairs of proteins (Proteinortho6 with default
parameters), see Supplemental Data 2. It is not surprising, given that the same sequences are aligned just
with differing starting points. Although st(S,,, Sy,) # st(Sm, Sp) in general, the reciprocal bitscores for
any two proteins of these sets are highly similar. With that, one can assume st(Sy, Sp) ~ st(Sm, Sn),
hence the calculation of st(S,,,S,) can be omitted by estimating the scores based on st(Sy, Sp,) as
described in the Method section. This reduces the algorithmic effort by a factor of two. E-values calculated

in this way strongly correlate with the reciprocal E-values (Razdj=0.99). This correlation between the
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pseudo and classic approach is stronger compared to any comparison between two homology search
tools using the classic approach. For more details see Supplemental Data 1.

2.4 Adaptive Clustering

Table 2. Key performance indicators of different clustering parameters applied to the QfO benchmark
dataset 2020/04 (78 species). similarity: ARI compared to the Proteinorthob5 clustering with default
parameters, classic: classic adaptive reciprocal best hit algorithm, *: default, «: algebraic connectivity
threshold.

ortho-groups core-groups
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Proteinorthob:

default (BLAST) [ 84k [ 80k [ 3k [ 988 ] 97 | O 0 I
default clustering (DIAMOND) | 79k | 75k | 3k | 984 | 97 | O 0 .816

Proteinortho6 with DIAMOND sensitive:
pseudo | 72k [ 67k [ 3k | 1k | 105
a=0172k | 68k | 3k | 1k | 106
oa=0.05|65k | 61k | 3k | 1k | 147

0 .822
97 821
97 819

a=0.2]79% |75k | 3k | 994 | 60 0 197

a=0.3]83k|79% | 3k | 831 | 40 0 7169
a=0.01 |53k |48k | 3k | 1k | 231 149 706

a=05]90k | 87k | 2k | 484 | 11 0 .692
a=0.75

core | 44k [ 40k | 2k | 1k [ 392 706 352
a=0.005| 48k [ 43k | 3k | 1k [ 262 152 15
a=0.001 | 42k | 37k | 3k | 1k | 319 315 141

a =0.00001 | 36k | 32k | 2k | 1k | 377 3k .0923

0
1
1
0
0
9
0
99k [ 97k | 2k | 186 | 10 | O 0 .606
51
12
30
50

Regular clustering of a CC is performed by bisecting it into two sub-CCs of maximized connectivity until
a predefined algebraic connectivity threshold is met. The default threshold applied by Proteinortho
was defined empirically. Instead of working with a fixed threshold, the adaptive clustering strategy (core)
assumes that members of orthologous groups should be found in all species. Iterative spectral clustering is
applied until the component would split into two subcomponents of which neither covers all species that
the original CC covered. The algorithm is aimed to keep orthologous groups as big as they need to be to
cover all initially present species, even if the connectivity criterion is not met yet. This strategy is meant
to identify the pan-genome as e.g. as the basis for reconstructing phylogenetic supertrees based on the
reconstruction of trees from multiple orthologs.

Table. 2 shows an overview of the number of reported orthologous groups relative to the percentage of
species covered in the dataset. We found a high number of core-groups, i.e., orthology groups that span all
input species, using the adaptive clustering, especially compared to the default connectivity threshold for
the QfO dataset 2020/04. A comparable number of core-groups is found with a very low threshold of 1¢ >
but at the same time increasing the maximal number of proteins per group dramatically. Overall the core
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module shows the best trade-off between the number of core-groups and size. It is worth noting that the
results of the core approach differ drastically from the results from Proteinortho5 (ARI: 0.35).

2.5 Scalability

Proteinortho6 implements a number of upgrades that improve the processing time to a level that
matches recent tools for the identification of orthologs such as SonicParanoid2 (Cosentino and Iwasaki,
2023) without compromising the quality of the predictions. As large-scale orthology assessment relies
on pairwise sequence comparisons, processing time grows quadratically with the number of proteins to
be compared. This number correlates with the number of species in an orthology analysis. To portray
the scalability and thus the processing time relative to the size of analyses, we used a real-world dataset.
It is based on randomly sampled proteomes of the bacteria kingdom provided by UniProt (UniProt-
Consortium, 2018). Details can be found in the 1.4 section.

Fig. 1 shows the processing time and Supplemental Data 1 the memory consumption for an orthol-
ogy analysis as a function of the number of species. OMA and Proteinortho5 exhibited the poorest
scaling in terms of processing time, with a quadratic coefficient of 1.9 - 1073 and 2.9 - 10~ respec-
tively, making an application to large species sets unfavorable. OrthoFinder, SonicParanoid?2 and
Proteinortho6 scale significantly better with the number of species. Proteinortho6 applying the
classic reciprocal best alignment heuristic scales similarly to OrthoFinder in terms of processing
time and outperforms the alternatives in terms of memory consumption. The pseudo reciprocal best
alignment heuristic of Proteinortho6 and SonicParanoid?2 show the best overall scaling results
in regards to both metrics.

25- 1 / 7

- / s

; bé ’ '\sll ‘P

] “ Q\Ql/ 6)?/\)

20 ! FOIAN <

; S °

O 7/
OMA 7 OMA 0.0019

151 Proteinortho5 OrthoFinder

SonicParanoid2

10+ Proteinortho5

5,2

©o
2| pseudo 2.2:107x

2

classic 3.2-10° x°

wall time in hours

Proteinort

0 500 1000 1500

number of bacterial proteomes

Figure 1. Scalability of total orthology prediction, including the all-versus-all sequence comparison
and clustering, relative to dataset size of randomly selected bacterial proteomes of UniProt 2022_03
(Bac10,20,...,1000)- Average processing times are indicated by circles and fitted using a quadratic function

(solid line, R?l dj > 0.99) for extrapolation (dashed lines). Details on parameters and versions can be found
in the Supplemental Data 1 and 2.
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2.6 QfO Sensitivity Bias

An assessment of orthology prediction quality can be performed using Quest for Orthologs (QfO). The
evaluation tool offers various tests to measure the precision and recall of predictions from different perspec-
tives (for more information, refer to the Materials section). As exemplified below, we noticed a bias in the
evaluation tool regarding the recall metric. True orthology relations can only be estimated based on existing
data e.g. via shared GO terms or congruence to curated species trees (Altenhoff and Dessimoz, 2009).
Some QfO tests use the number of predicted orthologs as a proxy for sensitivity or recall, which translates
into the number of edges in the orthology graph. In turn, the metric prefers large graphs. We exemplify
this based on the results of “OrthoMCL” (Hickman, 2021) and “SonicParanoid_sensitive” (Consentino,
2021), which are among the highest recall scores across the different benchmarks. The referenced results of
“SonicParanoid _sensitive” from 78 species include an orthology group that comprises over 5,000 proteins
per species. Similarly, the results of “OrthoMCL” contain a group with around 42 proteins per species.
The biological informativeness of such a large group, in particular in relation to the small number of
input species is questionable at best. In comparison, the largest group Proteinortho reports contain
3.5 proteins per species (with default clustering). In our observations, there appears to be a consistent
trend where an increased count of edges generally results in higher sensitivity or recall scores across most
benchmarks.

To further exemplify this bias we constructed “group reference” with Proteinortho6 with DTAMOND
and default parameters with the exception of a relaxed clustering (o« = 0.00001). To magnify the effect,
we opted to work with groups instead of a list of pairs, where every pair of proteins within a group
was predicted to be orthologous. In total “group reference” contained approximately ten times as many
orthologs as “SonicParanoid”. This approach achieved a Pareto optimal solution with high recall, as shown
in Fig. 2. Similar effects could be observed for almost all benchmark results (see Supplemental Data 1 and
2 for more details). We are questioning this metric used and the strength of the Pareto optimal solution as a
benchmark system as it is tied to this metric. For this reason, we will focus on the precision measurements
of the benchmarks.

2.7 QfO Assessment

We found that using Proteinortho6 classic, which utilizes the classic adaptive best hit algorithm,
with default clustering (ssyevr) mostly achieves precision scores within the top 25% and otherwise
among top 50% for all benchmark tests with the exception of the VGNC benchmark as summarized in
Tab. 3. In general, all Proteinortho parameterizations and variations produce below-average precision
scores in the VGNC benchmark. Proteinortho®, including the pseudo extension, showed similar
precision scores to those obtained with Proteinorthob, with the majority of the benchmarks ranking
within the top 25%. Overall, precision scores are similar to the Proteinorthob results with mean
logs ratios below 0.005. Exchanging BLAST with DIAMOND in Proteinorthob results in similar but
slightly improved scores. Regarding Proteinortho parameterizations, the adaptive clustering (core)
performs slightly worse overall with an improvement of -0.028.

We found that the flooding heuristic performed similarly to the case without any clustering, highlighting
the validity of this approach as a fallback system for the clustering if the size of a CC extends the capabilities
of the spectral clustering algorithm. The conceptually simplified versions pseudo mode exhibited slightly
better precision scores that are very similar to the results of Proteinorthob.
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Figure 2. Assessment of Proteinortho and selected orthology tools provided by the Q£ O benchmark service
using the 2020/04 dataset. The Generalized Species Tree Discordance benchmark Luca (G-STD2-Luca)
with zoomed region. Proteinortho provides high precision at the cost of recall when used with default
settings and slight variations between the different variants (pseudo, version 5 with BLAST, DIAMOND,
core). The blue outlier on the right was generated using Proteinortho6 with DIAMOND and a relaxed
clustering step (o = 0.00001, group reference).

The orthology prediction results of “OMA Pairs”, “SonicParanoid”, and “SonicParanoid-fast” showed
high precision specific to the phylogenetic benchmarks, where at least 6/7 benchmarks are among the top
25%. The largest average differences were found in comparison to “OrthoMCL” (-0.648 improvement),
“Ensembl Compara” (-0.272 improvement) and “SonicParanoid2” (-0.224 improvement). Addition-
ally, “OMA Pairs” produces the overall closest results compared to Proteinortho. A full assessment
of all benchmarks can be found in the Supplemental Data 2.

In the context of sensitivity scores, Proteinortho consistently yields some of the lowest scores, as
demonstrated in detail in Supplemental Data Section 1. For example, the number of ortholog relations in
the function-based Gene Ontology (GO) benchmark, is depicted in Fig. 3. Proteinortho6 generates
approximately 10k orthologs, comparable to that produced by Proteinortho5 and “OMA pairs”. In
contrast, ”SonicParanoid” generates around 20k orthologs, while the highest sensitivity scores are achieved
by "Ensembl Compara” and "OMA GETHOGs,” which produce between 30k and 40k orthologs.

2.8 Usability

Proteinotho6 is now readily available across various operating systems through multiple repositories,
namely Bioconda (Conda), Homebrew (Brew), and the Debian apt repository. Additionally, a containerized
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Table 3. Quantifying Orthology Inference Precision: Assessing Proteinortho and Other Tools Using
precision metrics of QfO benchmark dataset 2020/04. Three categories of benchmarks were employed:
phylogeny-based benchmarks, function-based benchmarks, and reference orthology-based benchmarks,
see the Method section for more details. A full description of all tools and the detailed benchmark results
can be found in Supplemental Data 2. Proteinortho parameters are given in the form X+Y, where
X specifies variation in the reciprocal best hit algorithm and Y the clustering modus. improvement:
average logs improvement relative to Proteinortho5 default+default. classic: classic adap-
tive reciprocal best hit algorithm. *x: new default configuration of Proteinortho6. group reference:
Proteinortho6 with DIAMOND and a relaxed clustering step (o« = 0.00001). V: RBH output of
Proteinortho6 using DIAMOND in sensitive mode. D: top 25%, D: top 50% of published tools.

benchmark type | functional phlyogeny reference
metric scslvi%i(er avg. Robinson-Foulds PPV
= S
= 2l |s =
"E‘: %D g ‘;:.j g A < £
m|IZ|Ql>|5| 2|28 D N o
Alalalalegd|lE|gEleld] 9
ololz 51558l 2 8|68 &
benchmark |[R | O |[O |[O [O|O|wxa|wn v |a|E&|>]| % A
Proteinorthob:
classic+default 10 0
DIAMOND RBHY + default 10 2
Proteinortho6 with DIAMOND sensitive:
default + default 10 T - 1
pseudo + default * 10 3
classic + core 8 | -1128
classic without clustering 9 |-0014
classic+ flooding 9 | -0017
| group reference | | | | | | | | | | | ] | 0 [-1.473]
published tools:
Domainoid+ 0 ]-7782
Ensembl Compara 0 |-0272
Hieranoid 2 9 | -0028
MetaPhOrs v.2.5 2 | -0.135
OMA GETHOGs 4 | -1059
OMA Pairs 7 |- 7
OrthoFinder MSA v2.5.2 1 |-0125
Ortholnspector 3 1 |-0056
OrthoMCL 0 | -648
PANTHER 16 all 0 |-183
phylomedb v5 4 |-0099
RSD 4 | -0107
RBH/BBH 6 | -1052
SonicParanoid 8 [ -1132
SonicParanoid-fast 8 | -0015
SonicParanoid-mostsensitive 2 | -0.059
SonicParanoid-sens 5 | -0.43
SonicParanoid?2 0 |-224
SonicParanoid2-sens 0 |-228

version of Docker can be obtained from quay.io. Proteinotho6 is now actively developed on GitLab
fostering collaborative development and providing a transparent platform for community involvement.
Furthermore, we implemented continuous integration and continuous deployment (CI/CD) routines through
GitLab, ensuring efficient and seamless updates and frequent releases.
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Figure 3. Number of ortholog relations in the function-based GO benchmark. Proteinortho parame-
ters are given in the form X+Y, where X specifies variation in the reciprocal best hit algorithm and Y the
clustering modus. classic: classic adaptive reciprocal best hit algorithm. *: new default configuration
of Proteinorthoé. group reference: Proteinortho6 with DIAMOND and a relaxed clustering step
(o =0.00001). V: RBH output of Proteinortho6 using DIAMOND in sensitive mode.

In order to assist researchers with limited programming experience, a graphical interface has been
developed, which facilitates the generation of command lines and allows for the exploration of the
output related to the orthology groups. Moreover, Proteinotho6 is now accessible in usegalaxy.eu
(tools-iuc), providing a graphical interface and free computing resources for users. For large datasets,
Proteinortho6 now includes a convenient interface to deploy jobs to multiple computing nodes in
an HPC (High-Performance Computing) environment for Slurm systems. Furthermore, the clustering
algorithm of Proteinotho6 is now not limited to Proteinotho output formats and now can be used
on any undirected graph in the widespread ABC format.

Proteinortho6 was implemented with a focus on minimizing dependencies to ensure portability
and avoid conflicts between multiple installed programs (“‘dependency hell”). In the Bioconda repository,
Proteinotho6 has only 10 direct dependencies, while similar programs such as SonicParanoid?2
and OrthoFinder have 15 and 14 dependencies, respectively.
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3 DISCUSSION

Proteinortho was designed to predict (co-)ortholog groups, with a focus on large datasets. Previous
implementations have been unable to keep up with the deluge of newly sequenced genomes that calls
for the analysis of millions of proteins and pairwise best-match graphs with billions of edges. With
Proteinortho6, we present a comprehensive algorithmic update for both, the similarity comparisons,
and the clustering step.

Based on the detailed evaluation, the sensitive variation of DIAMOND replaces BLAST in the
sequence comparison step. This leads to a considerable speedup with an acceptable loss of sensitivity in the
initial reciprocal best-hit graph. Proteinortho6 offers the use of all similarity search tools listed above
as an alternative. An example is ucsc BLAT. It offers an even higher speedup at the cost of sensitivity.
It primarily reports very similar sequences. This might be desirable if the dataset comprises only closely
related species. We further explored an improved search strategy for the reciprocal best hit calculations, the
pseudo approach. Results proved similar to classic strategies while consistently yielding an additional
significant speed up. To optimize the performance, the pseudo option has been selected as the new default
modus operandi. This method has the potential for broader adoption in other tools in the field.

In the clustering procedure of Proteinortho6, a new strategy is implemented to compute the algebraic
connectivity and the associated Fiedler vector using the Fortran library Lapack, which is significantly
faster for connected components of larger sizes. The analysis of real-world connected components in
combination with artificially generated ones shows the superiority of Lapack’s ssyevr approach over the
original power iteration in terms of running time. The precision evaluation showed no major changes. A
downside, however, is the quadratic memory requirement of ssyevr. Very large connected components
are inevitable when analyzing large datasets. Technically these would be workable through the power
iteration. However, at the enormous cost of CPU time. Hence, the flooding heuristic was introduced.
The reworked clustering implementation also makes efficient use of multiple CPU cores and can even be
distributed among multiple computing nodes.

A regular application of orthology tools is the calculation of robust phylogenetic reconstructions via a
supertree analysis based on single-copy orthologs among a given set of species. The new adaptive clustering
facilitates better results in this context as it automatically optimizes the clustering parameters for each
group to cover as many species as possible without overestimating the amount of paralogs. Besides this
specific research question, core falls behind the default clustering approach in terms of precision and thus
is not chosen as the default.

For the comparison with other orthology prediction tools and databases, the standardized QfO benchmark
system was used. Despite the usefulness of the benchmark system, we encountered some shortcomings
that may affect the comparisons. In particular, the recall metric of the system is biased towards large
inputs. Execution parameters and tool versions are typically not documented. Nevertheless, the precision
estimates provided by QfO gave valuable insights regarding changes in the quality of our predictions when
introducing alternative algorithms. Results generated by Proteinortho are consistently among the
highest-performing tools in terms of precision and archived scores are generally close to the results of
OMA. In terms of sensitivity, Proteinortho produces among the lowest scores compared to the other
tools, highlighting a distinct trade-off. Proteinortho6 notably excels in terms of execution time and
provides a considerable speedup over its previous implementation. This substantially increases the size of
datasets that can be processed and makes efficient use of the hardware provided. This is especially notable
in comparison to OMA.

Frontiers 16



464

465
466
467

468
469

470

471
472
473
474
475
476
477

478
479

480
481
482

483
484

485

486
487

488
489

490
491

492

493
494
495

2.3 Proteinortho m 93
Klemm et al.

Author Contributions

ML conceived the study. ML supervised the project and drafted the manuscript. PK carried out the
bioinformatic analyses. PK, and ML evaluated and verified the results. PK, and ML revised the manuscript.
All authors wrote, read, and approved the final manuscript.

FUNDING
ACKNOWLEDGMENTS

We thank Clemens Tholken and Fareha Masood for fruitful discussions. Computationally intensive
calculations were possible thanks to the HPC cluster MaRC3 located at the Philipps-University Marburg.

SUPPLEMENTAL DATA

Supplemental Data 1: Additional figures and results (PDF)

e Cluster Algorithm Overview

e Scalability

e Tab. 1 with alternative datasets

e Sensitivity Assessment

e Small World Phenomenon Example
e QfO Evaluation All Plots

e E-value Comparison

Supplemental Data 2: Listings, including datasets, proteome identifier, execution times, and raw data
(XLSX)

e datasets overview : sizes of all datasets used
e scalability uniprot_n:raw data of Fig. 1
e clustering evaluation :raw data of Tab. 2

e sensitivity, precision of BLAST alternatives : raw data of
Tab. 1

e gfo 2020.04 benchmark results :raw data of Tab. 3

e power iteration vs lapack for 1 thread:raw data of the analysis
in section 2.2

e shuffled Bac.n 2022_03: proteome identifier of the Bac,, dataset
e BigCC dataset : proteome identifier of the BigCC dataset

e OfO_release 202004 with updated UP000008143 dataset : pro-
teome identifier of the Q£0 2020/04 dataset

Data Availability Statement

Project name: Proteinortho6
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Programming language: Perl, C++
License: GNU GPLv3
Any restrictions to use by non-academics: none

Abbreviation

1oFC : logs fold-change, RBH: reciprocal best hit graph, RF: Robinson-Foulds, GSTD: generalized
species tree discordance test, PPV: positive predictive value, h: hours, GB: gigabyte, ARI: adjusted rand
index, k: thousand, QfO: Quest for Orthologs
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1 CLUSTER ALGORITHM OVERVIEW
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Figure S1: Updated multi-threading system for the clustering step. First, all connected components are
identified in the input graph using the branch-first search algorithm (BFS). Suitable small components are
processed in parallel using Lapack ssyevr. The remaining larger components are processed using the
greedy split algorithm. Resulting components with insufficient algebraic connectivity are split according to
the associated Fiedler vector and marked for an additional round of processing.
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2 SCALABILITY
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Figure S2: Scalability of total orthology prediction, including the all-versus-all sequence comparison
and clustering, relative to dataset size of randomly selected bacterial proteomes of UniProt 2022_03
(Bac10,20,...,1000)- Average processing times and peak memory consumption are indicated by circles and

fitted using a quadratic function (solid line, Rg dj > 0.99 for wall time and Rg dj > 0.89 for memory

consumption) for extrapolation (dashed lines). The peak memory consumption was restricted to a dataset
of size > 150. Because of a negative quadratic term, the memory consumption of Proteinortho5 and
OMA was fitted using a linear function instead. Coefficients of the term with the highest degree are indicated
for each tool. Details on parameters and versions can be found in the Supplemental Table

3 TAB. 1 ALTERNATIVE DATASETS

3.1 EFD

EFD is a dataset of 29 food-related and probiotic strains of the Lactobacillus genus Bonacina et al. (2017).
It represents a small set of very similar species: Enterococcus durans IPLA655 RAST, Enterococcus faecalis
19116 RAST, Enterococcus faecalis 2924 RAST, Enterococcus faecalis MB5259 RAST, Enterococcus
faecalis PC1.1 RAST, Enterococcus faecalis str. Symbioflor 1 RAST, Enterococcus faecium CRL1879
RAST, Enterococcus faecium E1604 RAST, Enterococcus faecium E1613 RAST, Enterococcus faecium
L-3 RAST, Enterococcus faecium L-X RAST, Enterococcus faccium NRRLB-2354 RAST, Enterococcus
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faecium T110 RAST, Enterococcus faecium UC10237 RAST, Enterococcus faecium UC7251 RAST,
Enterococcus faecium UC7256 RAST, Enterococcus faecium UC7267 RAST, Enterococcus faecium
UCB668 RAST, Enterococcus faecium UC8733 RAST, Enterococcus hirae INFE1 RAST, Enterococcus
malodoratus ATCC43197 RAST, Enterococcus mundtii ATCC882 RAST, Enterococcus mundtii CRL1656
RAST, Enterococcus mundtii CRL35 RAST, Enterococcus raffinosus cftri2200 RAST, Lactobacillus
johnsonii NCC 533 RAST, Lactococcus garvieae Lg2 RAST, Lactococcus lactis subsp. cremoris MG1363
RAST, Listeria monocytogenes HCC23 RAST.

Table S1. Tab. I with the EFD dataset. Sensitivity and precision are given relative to the BLAST results in line 1. Edges: number of edges in the initial orthology
graph; wall time: total processing time; memory: peak memory usage; 12FC: logz fold change relative o Proteinorthos results; *: default option of

Froteinorthos. Ranks areindicaed: L) top 25%, O top 50%

algorithm edges | sensitivity | precision | wall time | memory
. . 1L,FC 1,FC
% % sec GB
0 0
Proteinortho5.16b 713482 | 100 100 | o6 | 113
ucschblat 485383 | 677 99.51 |;'$7 02 177
diamond 682860 | 94.7 ‘ 98.94 33‘53 g;
23 23
diamond sensitive 708887 | 9836 w2 | o
diamond sensitive pseudo | 708438 | 98.21 ‘ 98.91 532‘29 g;
diamond ultrasens 711673 | 98.72 98.97 ‘ 22'7828 02225
diamond fast 645098 | 89.51 99 2:"‘)3 02'178
lastp 689038 | 9558 9897 22'; o2 242
27 2.1
lastp m100 697589 | 96.85 905 e | 026
lastp m1000 o926 | o708 9008 | SIS | 2
nmseqsp 701887 | 97.5 99.11 ”61 58 ggz
21 03
mmseqsp s1 635394 | 8827 9902 | o | 0or
05 .25
mmseqsp s7.5 706721 | 98.15 99.08 mg,;, 225
rapsearch 649000 | 89.98 9892 | 287 ggz
topaz 695431 | 9642 9892 | 4'727 02 '224
topaz fast 695431 | 9642 9892 | 4]6782 02 '225
ublast 706013 | 97.48 98.51 43548 02'225
usearch 661522 | 91.01 98.16 32';4 02'177

Frontiers 3

‘Table $3. Tab. 1 with the Bacso dataset. topaz did not finish (core dump). Ser
Edges: number of edges in the initial orthology graph; wall time: total processing tin

to the BLAST results in line 1
12FC: logs fold change relative to

Proteinorthos results; »: default option of Proteinorthos. Ranks are indicated: Dlnp 25%,

top 50%.
algorithm edges | sensitivity | precision | wall time | memory

% % | MG | M

Proteinortho5.16b 1076306 100 100 0 9
oteinortho5. 0.67 2.22
5.1 3.8
ucscblat 81270 74 98.08 0.02 0.16

) 5.1 3.1
diamond 814578 69.15 91.37 0.02 0.26

di d iti 1046328 90.11 92.7 23 23
iamond sensitive o . 0.07 0.39
di d iti do 1050090  89.98 92.22 45 o
iamond sensitive pseudo . g 0.03 0.3
di d ult 1078707 92.63 9243 7 >
iamond ultrasens d g 0.21 0.41

‘ 6.1 3.5
diamond fast 567748 47.9 90.82 0.01 0.2

5.1 28

lastp 900483 71.91 93.13 0.02 03

last 100 949104 82.65 93.72 31 23
astp m . . 0.08 0.4

-0.12 24

lastp m1000 966106 84.21 93.82 073 043
942364 824 94.12 IS '

mmsegsp d . 0.24 0.95

3.1 1.3

mmsegsp sl ‘ 511480 ‘ 44.27 93.17 0.08 0.93
-0.33 1.2
mmsegsp s7.5 977547 85.4 94.03 0.84 0.98
2.7 0.33
rapsearch ‘ 481648 ‘ 41.59 92.94 0.1 1.76

4.5 2.6
ublast 962830 80.75 90.26 0.03 037
4.1 3.6
usearch ‘ 722121 ‘ 59.12 88.12 0.04 0.18
Frontiers s
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3.2 Bac,

The Bac dataset comprised all bacterial reference proteomes from UniProt, release 2022/03 (UniProt-
Consortium, 2018). This set was downsampled to incremental subsets of random proteomes. For instance,
Bacjg contains 10 randomly selected bacterial proteomes, Bacay extends this set by 10 additionally
randomly selected proteomes, and so on. A full list is shown in the Supplemental Table.

“Table $2. Tab. 1 with the Baczq dataset. Sensitivity and precision are given relative to the BLAST results in line 1. Edges: number of edges in the initial
orthology graph; wall time: total processing time; memory: peak memory usage; I2FC: logy fold change relative to Prot e inoxthos results; «: default option

of Proteinorthos. Ranks are indicated: L top 25%, L1 top 50%
algorithm edges | sensitivity | precision | wall time | memory
% . 1,FC 1,FC
' : min GB
Prot. tho5.16b 158904 100 100 0 0
roteinortho5. 0.46 12
54 32
ucscblat 9577 59 97.92 023 0.13
. 52 27
diamond 118073 67.7 91.12 026 0.19
diamond sensitiv 154046  89.83 92.67 2 22
© © : ’ 075 027
d d iti do | 154807 89.8 92.18 4 2
iamond sensitive pseudo . A 039 022
. 23 2
diamond ultrasens 159059 92.48 92.39 1.98 031
diamond fast 80123 | 456 | ooas 2 3
- : ) 021 0.15
54 23
lastp 131498 77.1 93.17 022 021
3.6 23
lastp m100 139055  82.07 93.79 0.79 028
0.46 2
lastp m1000 141621 83.66 93.87 69 029
2 0.37
mmseqsp 137330 81.48 94.28 233 0.93
36 0.38
mmsegsp sl 71262 ‘ 41.65 92.87 078 092
0.22 0.31
mmsegsp s7.5 142732 84.65 94.25 81 0.97
32 -0.036
rapsearch 67064 ‘ 39.08 92.61 102 123
26 2
topaz 132274 77.51 93.11 151 029
topaz fast 132274 7751 93.11 27 2
opaz tas : : 146 03
4.6 22
ublast 140835 79.86 90.11 039 0.26
45 3
usearch 108073 ‘ 59.56 87.58 0.43 0.15
4
Supplementary Material
Table $4. Tab. 1 with the Bacz0o dataset. t.opaz did not finish (core dump). Sensitivity and precision are given relative to the BLAST results in line 1.

Edges: number of edges in the initial orthology graph; wall time: total processing time; memory: peak memory usage; I2FC: log, fold change relative to

Proteinorthos results: +: default option of Prot einorthos. Ranks are indicated: Ll op 25%, Ll 1op 0%,

algorithm edges sensitivity | precision | wall time | memory

1,FC 1,FC

o7 o7

% % h GB

Proteinortho5.16b 18786311 100 100 0 0

oteinorthos. 1273 | 478

5.2 45

ucscblat 1379336 7.18 97.9 035 021

. 4.9 3.6

diamond 14109018 68.27 90.9 044 04

. - 33 3

diamond sensitive 18218261 89.79 92.59 128 0.58

di d iti do | 18275224 89.64 92.15 e K

iamond sensitive pseudo i . 0.64 045

. 1.8 29

diamond ultrasens 18798520 | 92.41 92.35 358 0.65

diamond fast 9786172 46.96 90.16 53 4

amond fas : : 029 029

4.8 33

lastp 15595713 77.08 92.85 046 047

3.1 2.8

lastp m100 16473700 82.07 93.59 149 07

-0.029 2.6

lastp m1000 16783613 83.73 93.72 12.99 077

16371000 | s1o1 | o399 | & | 23

nmsedsp : : 426 096

33 23

mmsegsp sl 8835896 43.62 92.74 133 0.94

-0.2 22

mmsegsp s7.5 17009354 85.05 93.94 146 1.03

2.8 1.3

rapsearch 8373338 41.14 92.31 1.84 1.97

4.1 29

ublast 16773637 80.29 89.92 095 0.66

4.2 43

usearch 12648992 58.84 87.39 0.68 0.25
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4 SENSITIVITY ASSESSMENT

Table S5. Quantifying Orthology Inference Sensitivity: Assessing Proteinortho and Other Tools Using sensitivity metrics of QfO benchmark dataset 2020/04.
Three categories of benchmarks were employed: phylogeny-based benchmarks, function-based benchmarks, and reference orthology-based benchmarks, see the
Method section for more details. A full description of all tools and the detailed benchmark results can be found in Supplemental Table. improvement: average
logz improvement relative to Proteinortho5 default+default. Proteinortho parameters are given in the form X+Y, where X specifies variation
in the reciprocal best hit algorithm and Y the clustering modus. classic: classic adaptive reciprocal best hit algorithm. *: new default configuration of
Proteinortho6. group reference: Proteinortho6 with DIAMOND and a relaxed clustering step (o« = 0.00001). V: RBH output of Proteinortho6

using DIAMOND in sensitive mode. TPR: true positive rate. num: number of orthologs. EI: top 25%, EI: top 50% of published tools.

benchmark type | functional phlyogeny reference
metric | num completed tree samples TPR
< <
5] =
g | < % < g JGC:_))
=|15|8|5|5|%|5|g|< g
R R R = - R Q| O
SHEHEHEEPER:
HFlIHFIHFIEHEIAIAIA] Qo 0,
benchmark ELI) 8 8 8 8 8 S 5; S c% E 9 i E
Proteinorthob:
default + default 0 0
DIAMOND RBHY + default 0 | 0.035
Proteinortho6 with DIAMOND sensitive:
default + default 0 | 0.251
classic + core 0 | 0.481
pseudo + default * 0 | 0.246
classic without clustering 0 | 0.495
classic+ flooding 0 |0.482
group reference ‘ | | | | 10 ‘ 2.047 ‘
published tools:
Domainoid+ 5 | 1.013
Ensembl Compara 5 | 1.172
Hieranoid 2 0 |0.724
MetaPhOrs v.2.5 3 10.791
OMA GETHOGs 2 10.618
OMA Pairs 0 | 0415
OrthoFinder MSA v2.5.2 6 | 0.959
Ortholnspector 3 0 | 0.944
OrthoMCL 9 | 1.172
PANTHER 16 all 8 | 1.066
phylomedb v5 0 | 0.446
RSD 0 |0.524
RBH/BBH 1 | 0.634
SonicParanoid 0 | 0.804
SonicParanoid-fast 0 |0.632
SonicParanoid-mostsensitive 0 |0.975
SonicParanoid-sens 0 | 0.938
SonicParanoid2 10 | 1.176
SonicParanoid2-sens 11 | 1.207

Frontiers
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5 SMALL WORLD PHENOMENON

With rising numbers of species, the connected components tend to expand quickly, leading to the formation
of extensive connected components. Proteinortho v6.3.0 with default parameters using diamond
(v2.0.15) but without the clustering step was used to process randomly selected bacterial proteomes Bacy,
until a size of n = 1000 species and the BigCC dataset with 1800 species. From the output, the largest
connected component is determined and put in relation to the total number of nodes in the graph. The
resulting growth is illustrated in Fig. S3.

1.00f relative size of largest
connected component

0.751

0.501

0.25 +

0.001

number of species

Q Q Q
Q \) Q

Figure S3: The size of the largest connected components relative to the total number of nodes from
randomly selected bacterial proteomes of UniProt until a size of 1000 and the BigCC dataset with 1800
species. The graphs were built using Proteinortho with default parameters.

6 QFO EVALUATION

The following plots show all QfO benchmark results of the 20202 dataset (2020.2) using the following
configurations of Proteinortho:

1. default_step2_poS: Proteinortho5 with default settings

2. po5_clustering_using_diamond: Proteinortho5 with default clustering with an input graph that
was generated using Proteinortho6 with diamond with default parameters.

3. omni_binlk_step2_diamond : Proteinortho6 in omni modus using bin=1k (bin size) and diamond
in sensitive modus.

4. pseudo_step2_diamond : Proteinortho6 in pseudo modus using diamond in sensitive modus.

5. conn0.1_diamond : Proteinortho6 in canonical modus (canonical reciprocal best hit algorithm)
using diamond in sensitive modus.

6. core_diamond_coreMaxProts10 : Proteinortho6 in canonical modus (canonical reciprocal best
hit algorithm) using diamond in sensitive modus and the clustering modus core with the parameter
coreMaxProts=10 (maximal number of proteins of groups per species)
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6.1 Phylogeny-Based Definition Benchmarks

6.1.1 Species Tree Discordance Benchmark
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Figure S4: Species Tree Discordance Benchmark 1/2. x: Recall - completed tree samples, y: Avg. Robinson-

Foulds distance
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6.1.2 Generalized Species Tree Discordance Benchmark
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Figure S6: Generalized Species Tree Discordance Benchmark 1/2. x: Recall - completed tree samples, y:

Avg. Robinson-Foulds distance

Frontiers

Supplementary Material

101

QH0STD,_Bactaia

Figure S5: Species Tree Discordance Benchmark 2/2. x: Recall - completed tree samples, y: Avg. Robinson-

Foulds distance
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Figure S7: Generalized Species Tree Discordance Benchmark 2/2. x: Recall - completed tree samples, y:

Avg. Robinson-Foulds distance
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6.2 Reference Orthology Based Benchmarks

QO SwisToos

Q0 TroFam-A

Figure S8: Reference Orthology Based Benchmarks 1/2. x: True Positive Rate (TPR), y: Precision / Positive
Predictive Value (PPV)

Frontiers 13

6.3 Function-Based Benchmarks
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Figure S10: Function-Based Benchmarks. x: Recall - Number of Ortholog Relations, y: Precision - Avg.
Schlicker Similarity

Frontiers 15
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Figure S9: Reference Orthology Based Benchmarks 2/2. x: True Positive Rate (TPR), y: Precision / Positive

Predictive Value (PPV)

14



2.3 Proteinorthow 103

Supplementary Material

7 E-VALUE LINEAR REGRESSION ANALYSIS

Linear regression analysis of between different homology search programs. For two algorithms X and Y,
(for example BLAST and diamond) first a classical reciprocal best hit graph is built for each program
using Proteinortho6 without clustering. The resulting BLAST graphs are then compared using R,
such that for each protein pair that is found in both graphs (called "match” in the plots) all combinations
between the reported E-values are collected and correlated.

16
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Figure S12: Linear regression analysis of log10 transformed E-values of pseudo transformed values and
E-values using the canonical reciprocal best hit algorithm of Proteinortho6. The gray line indicates
the identity function y=x. diamond: diamond in sensitive mode
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Conclusion and Outlook

This work presents case studies that aim to disentangle phylogenetic relationships for a
non-coding and a coding gene. The first study focused on the non-coding 6S RNA, while
the second case study explored the Kiwellins protein family. The last article highlighted
improvements made to the program Proteinortho, which holds significant importance in
the field of comparative genomics and particularly in relation to the aforementioned case

studies.

The phylogenetic analyses incorporated established as well as new approaches. While these
methods can serve as valuable guidelines for future researchers, it is important to note that
they should not be considered direct blueprints as the solutions are intricately tailored to the

specific problems.

Both studies revealed the insufficiency of relying solely on the primary sequence for an accurate
identification process of both molecules, the 6§ RNA and the Kiwellin. For the 6S RNA, it is
known that the primary structure is poorly conserved (Wehner, 2014), while the structure
of the Kiwellins provided valuable insights to differentiate them from closely related protein
families. This highlights the importance of considering additional structural characteristics,

which becomes increasingly possible with the rise of AlphaFold for proteins (Jumper, 2021).

Furthermore, homology, orthology inference, and phylogenetic reconstruction were
cornerstones of both studies. For the Kiwellins, the reconciliation of the inferred gene tree
with the respective species tree led to the discovery of three distinct Kiwellin classes and the
development of a sophisticated and robust nomenclature. Conversely, for the 6S RNA, the
phylogenetic tree allowed us to assess gene-tree-species-tree incongruence and assess the

differences between the taxonomic groups.

Although the overarching goal was similar, the two analyses’ specific methodologies and
research questions diverged. For example, the genomic context (synteny) and binding motifs
were investigated for the 6S RNA to better understand the gene’s characteristics and regulation.
In contrast, for the Kiwellins, a meta-analysis of publicly available transcriptome studies was

conducted to investigate the potential roles of the different Kiwellin classes.

Throughout both studies, Proteinortho played an essential role as a fundamental program in
various aspects of the analyses. In the case of the 6S RNA, Proteinortho served as a vital tool

in identifying the conserved genomic context. As for the Kiwellins, it enabled the construction
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of a supermatrix, a building block in the reconciliation analysis.

Overall, the research showcased the significance of both primary and structural characteristics
while emphasizing the significance of phylogenetic reconstruction in combination with

Proteinortho. The following sections highlight potential future research questions.

3.1 Kiwellins in Embryophyta

This article introduces a nomenclature based on a reconciled phylogeny for the Kiwellin protein
family, highlighting their distinct structural characteristics and evolutionary relationship with
BL proteins. The presented meta-analysis hints at a more general and intricate response to
various biotic and abiotic stresses in symbiotic interactions and cultivar and tissue-specific
differences. Manipulating Kiwellins or their expression could offer a new approach for
developing, for example, disease-resistant plants or enhancing symbiotic capabilities. The
provided classification and understanding of Kiwellins will guide future research in unraveling

their functions.

3.1.1 Kiwellins are Putative Descendants of BL

It can be hypothesized that Kiwellins have evolved out of BL by acquiring new functionality
with the N-terminal extension (/3-hairpin) in combination with a modification of the DPBB
(loop region between (35 and [33). BL is a well-known protein family with diverse functions,
including roles in pathogenic interactions, and is widespread in Eukaryota, including fungi
and plants (Scherer, 2010). In contrast, Kiwellins have a more restricted taxonomic distribution
and are exclusively found in embryophyta (land plants). There is a co-occurrence of Kiwellins
and BL found in the presented study, with at least half of all Kiwellin-containing plants also
harboring BL proteins. However, it is important to note that the presented study was not
intended to identify BL. Using the Interpro dataset 'Barwin domain’ (IPR001153) with lengths
filters'® this number goes up to three quarters. More research must be done to evaluate the

statistical significance of this co-occurrence.

Another piece of evidence supporting this evolutionary hypothesis can be found in the loop
region between (5 and s of the DPBB that is crucial for the function is highly conserved
in Kiwellins, see Fig. 11B. While BL proteins predominantly contain a shortened version of
this loop, approximately one-third of the BL identified in the study exhibit this Kiwellin-like
loop region. Furthermore, seven BL proteins'’ with a kissper domain were found, which
could represent intermediate versions between Kissper-Kiwellins and BL proteins. Further
investigation, such as a reconciliation analysis combining the BL proteins with the Kiwellin

protein family, could give more insights into this hypothesis.

In addition to the BL proteins, there are various other DPBB-containing proteins, for example,
the glycoside hydrolase (family 45, IPR000334), rare lipoprotein A (IPR012997), or the

'*lengths between 100 and 150
'"AOA1USBEI66 (Fig. 11A), AOA1U8BA6K9, AOA1S3YYL2, AOA1S3Z8R5, AOA1U7YB43, AOA5C7IX]5, P43082
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Figure 11: Hint of the evolutionary connection between the BL and the Kiwellin protein families. 3D
structure prediction of a BL with kissper domain missing the 3-hairpin (AOA1U8EI66) (A) with comic
abstraction below. Aligned weblogo of the loop region between S35 and s in the DPBB (B), adapted
from 2.1 (Klemm, 2022). The symbol height correlates with the degree of aminio acid conservation, and
the reduced symbol width (red box) indicates that a substantial fraction of BL proteins lack this loop
region that is a hallmark of Kiwellins. Color code in panel A: green: beta sheet, blue: alpha helix.

pathogenesis-related protein-4 (IPR044301) (Scherer, 2010). Understanding the evolutionary
relationship and dependency of these protein families in relation to Kiwellins and BL proteins

would require further investigation.

3.1.2 Agricultural Applications

Crop diseases pose a severe threat to global food security, drawing attention to crop design
using synthetic biology approaches (Messina, 2020; Bi, 2022; Van Dijk, 2021; Fenu, 2021;
Zaidi, 2020). Kiwellins were shown to be an important defense mechanism of the plant in the
interaction between Z. mays, and U. maydis (Han, 2019; Altegoer, 2020). Besides this single
finding, various other pathogenic interactions with agriculturally important plants were found,
for example, rice (Oryza sativa <*), soybean (Glycine max / ) and wheat (Triticum aestivum = ).
Full details can be found in the supplement of the article. In general, at least one differential
response with respect to pathogenic interaction was found for all three classes of Kiwellins,
including the Kissper-Kiwellins. Furthermore, all classes showed differential responses to
symbiotic interactions with increased concentrations in nodules and some with respect to

abiotic stresses as well.

Although no direct response pattern was observable regarding infection time points or
treatment conditions, overall, these findings suggest that Kiwellins may act as a general plant
communication molecules with different specializations of the three classes. However, more
research must be done to draw precise conclusions about the functions of the different Kiwellin
classes. A limitation of this meta-analysis is the relatively small sample size of the included
studies compared to the number of different plants and interaction partners. At the time,

finding comparable studies with similar setups for many plants was challenging, such as using
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the same tissue type or infection time-point. To gain a clearer understanding, it would be
beneficial to investigate more plants and different cultivars, analyzing their Kiwellin class
composition and expression profiles using standardized protocols. These results could be

correlated with pathogenic susceptibility, symbiotic interaction, or general stress response.

The provided meta-analysis of the article can serve as a starting point for future researchers
interested in this topic. Building upon these findings, breeding or genetically modifying plants
by optimizing their Kiwellin portfolio for specific needs could be a viable strategy to fight crop
loss (Zaidi, 2020).

Plants belonging to the Brassicales order are particularly intriguing in this context, as
the presented phylogenetic analysis has revealed that this order lacks this protein family
entirely. The Brassicales order includes the model organism Arabidopsis thaliana, as well as
agriculturally significant plants like rapeseed (Brassica napus). Investigating the interactions
between these plants and pathogenic fungi could provide valuable insights for this taxonomic
group. Furthermore, it is plausible to hypothesize that the Brassicales order could particularly
benefit from introducing Kiwellins into their systems using genome-editing techniques (Zaidi,

2020). This approach holds the potential to enhance the disease resistance of these plants.

3.2 6SRNA

This study provides valuable insights into the presence and characteristics of 6S RNA in LAB
species. The phylogenetic analysis revealed differences and similarities in the 6S RNA between
the taxonomic groups of LAB. A comprehensive catalog of all identified 6S RNAs and structure
predictions were provided to give future researchers a starting point in this field. Furthermore,
the findings highlight the need for further research to unravel the functional relationships and
regulatory mechanisms of this non-coding RNA with respect to the syntenic conserved rarA'®
and uspA' and other taxonomic specific conserved genes in close proximity. The presence of
catabolite responsive elements (CREs) hints at a potential association between 6S RNA and
metabolic adaptation in LAB. Expanding the knowledge of 6S RNA in LAB may open doors to

its utilization in biotechnological or pharmacological applications.

3.2.1 Biotechnological Applications

In the context of fermentation, LAB species are commonly used as starter cultures in various
industrial products. Manipulating the 6S RNA could accelerate the fermentation process.
One approach involves targeting a cre-binding site that is present in about a third of the LAB
species. It is conceivable that the carbon catabolite repression protein could bind the cre-site
and subsequently inhibits 6S RNA, but further experimental validation is required. Another
approach could involve using 6S RNA knock-out mutants, which would be independent

of the presence of cre-sites. However, potential side effects induced by the knock-out

"replication-associated recombination protein A
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“universal stress protein A, putative Interpro:IPR006015
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need to be investigated, such as increased biofilm production in the 6S-2 knockout in
undomesticated B. subtilis strain (Thiiring, 2021) or early sporulation in the 6S-1 knockout in B.
subtilis (Cavanagh, 2013). Preliminary work demonstrated that a 6S RNA knockout could yield
a faster metabolization of nutrients (Cavanagh, 2013). With this in mind, the fermentation
process could be potentially accelerated upon reduction of 6S RNA levels, which may result in

shorter fermentation periods and thus lower production costs.

3.2.2 Pharmacological Applications

Beyond biotechnological implications, the 6S RNA could also have direct pharmacological
applications. LAB species include pathogenic species primarily found in the Streptococcus
and Enterococcus genera. Manipulating the expression of 6S RNA could directly impact the
survivability of these pathogens. Therefore, the 6S RNA in these species could serve as a
potential target. Previous studies have shown that knock-out mutants in the pathogenic
Staphylococcus aureus have improved antibiotic susceptibility (Esberard, 2022). Using
antisense oligonucleotides (ASO) like peptide nucleic acid (Gupta, 2017), 6S RNAs could
be targeted with mimics of the endogenous long pRNAs to trigger degradation of 6S RNA
by cellular RNases (Beckmann, 2011). It was shown that already a 8-mer Locked Nucleic
Acid (LNA) construct can trigger this rearrangement in B. subtilis (Beckmann, 2012). However,
potential off-target effects on non-pathogenic bacteria like the symbiotic bacteria of the human
gut should be evaluated carefully to ensure specificity. This approach could contribute to the
development of a supplementary drug that complements antibiotic treatments for specific

bacterial infections.

3.3 Proteinortho

The previous versions of Proteinortho were well suited for the datasets at the time.
But nowadays, the ever-increasing flood of data makes it challenging to keep up with
the computational demands. The algorithmic updates of Proteinortho6 in both the
sequence comparison and clustering steps have greatly improved the overall performance
and scalability. Moreover, Proteinortho6 has made significant strides in terms of availability,
interoperability, and usability. It has been integrated into multiple repositories including
GitLab and Bioconda, making it readily accessible to a broader user base. The adoption of
the standardized OrthoXML (Schmitt, 2011) output format facilitates seamless integration
with other bioinformatics tools, promoting interoperability across different platforms. The
usability of Proteinortho6 has been enhanced through several features. It now offers a
user-friendly HTML interface, streamlining the process of setting up and running orthology
analyses. Furthermore, the integration of Proteinortho6 into the galaxy system makes it
even more accessible and convenient for users with limited programming experience. These
improvements ensure that Proteinortho6 remains a powerful and valuable resource for

analyzing protein orthology in the face of the ever-expanding wealth of biological data.
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Adopting the sensitive variant of the diamond program has resulted in a substantial speedup
with only marginal deductions in sensitivity and precision compared to the BLAST approach.
Furthermore, introducing the new pseudo variation for RBH calculation offers additional
speedup without any significant drawbacks. The integration of Lapack for computing algebraic
connectivity and the Fiedler vector has significantly improved the runtime of the clustering.
Additionally, the clustering step now efficiently uses multiple CPU cores and computing nodes,
enhancing further scalability. Furthermore, the new core modus improves workflows in a
supertree analysis, specifically within the Kiwellin project (see A1.2). Overall, Proteinortho6
provides remarkable speedup, maintains the original methodological concept, and delivers

highly accurate results.

3.3.1 Orthology Refinement using Structure Prediction

The protein structure prediction with AlphaFold has the potential to enhance orthology
prediction significantly. Traditionally, orthology predictions are based on sequence similarity.
However, there are instances where more than sequence similarity is required, as demonstrated
by the two case studies presented here and in (Holm, 2023). Although the exhaustive de-
novo prediction of AlphaFold structures for multiple proteomes is infeasible in most cases,
small datasets with appropriate computing power could be a viable option. Additionally,
databases of predicted structures from AlphaFold DB (Varadi, 2022) or crystal structures RCSB

PDB (Berman, 2000) could be used to reduce computational cost.

In another approach, the structural predictions could be incorporated as a refinement step
building on top of the results of Proteinortho. In this scenario, sufficiently large groups
containing a high ratio of proteins to species may comprise multiple groups of similar
sequences (like BL and Kiwellins). Potential metrics to capture the structural similarity or
differences include RMSD, MA or the proposed generalized RMSDPMA,, (more details can be found
in the appendix A1.1). Furthermore, DALI, a structural database search tool, could be explored
in this context (Holm, 2023). The major drawbacks of a DALI based implementation is the
required extensive database of AlphaFold prediction and the relatively high computational
costs compared to the aforementioned metrics. Therefore, exploring protein secondary

structure prediction like PSSpred (Yan, 2013) could also be beneficial.

The integration of structural information can significantly improve the accuracy of the
orthology prediction. However, it is crucial to fine-tune these methods to maintain a feasible

computational footprint.

3.3.2 Interactive Species Workflow

In this section, a new approach is sketched that integrates phylogenetic analysis at the species
level with the results obtained from Proteinortho or other orthology prediction tools. The
resulting interactive report facilitates comprehensive data exploration, for example, to identify

novel antibiotic targets (Bisanz, 2018).
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Figure 12: Concept of interactive species workflow for Proteinortho. Left: NCBI taxonomic tree
of major groups of Terrabacteria group, colors indicate numbers of species, other: less than 1000
species. Right: Proteinortho groups aligned to the species tree, whereby circles encode the number
of proteins contributing to the clade of species. Yellow star: selected edge highlighting the order
Lactobacialles (yellow box). Importance: exemplary measurement of the significance of the orthology
group discriminating the highlighted split (the higher the better).

A conceptual diagram illustrating this approach is presented in Fig. 12, depicting a taxonomic
tree of the Terrabacteria group evolving from the left (root) to the right (species). Adjacent to
the tree, a panel displays ortholog groups column-wise, where circles indicate the contribution
to the corresponding clade of the tree. Each edge along the tree can be selected, inducing a
split between the species below and all others. A score is required to reduce the number of
displayed groups and assess the significance of orthology groups concerning the selection.
One potential method that could be explored is random forest classification. In this method,
the orthology groups serve as variables, represented by binary vectors where 1 indicates the
presence of a protein from a given species and 0 the absence. The dependent variable also
encodes the split induced by the selected edge as a binary vector. By measuring the variable
importance, such as the mean decrease of accuracy or mean decrease of the GINI coefficient,

a ranking of the orthology groups can be archived (Bisanz, 2018).

This integrated approach assists in identifying clade-specific orthogroups, allowing the
exploration of new targets for antibiotics that specifically target certain taxonomic groups
but not others. To ensure interoperability, we suggest the usage of Newick (Olsen, 1990)
format for trees and the OrthoXML (Schmitt, 2011) for orthology groups, which is supported
by most orthology prediction tools and databases. Additionally, this workflow could be directly
integrated into the galaxy system (Afgan, 2022), enhancing accessibility and usability for the

scientific community.
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Appendix

This chapter covers additional challenges that did arise in the work, further details
on the published results, and overarching discussions between the three articles.
All programs, tools, datasets, and figures generated or used throughout this work

20

are available via the supplementary repository~". Additionally the supplementary

files of the three articles are compiled in this repository.

Al Kiwellins in Embryophyta

Al.1 Improving Classification Accuracy of Kiwellins

The start point of the analysis was the published set of Kiwellins (Han, 2019), which were
manually validated and grouped using AlphaFold2 and PyMOL. Next, HMM models were
generated and queried against the UniProt dataset. An adaptive E-value cutoff was applied
based on false positives, which was determined for each model by considering the best result of
unrelated proteins encountered along the way. A naive approach of selecting the best scoring
model that among all significant ones (Kiwellin, Kissper, BL) resulted in plenty of false positive
hits, as demonstrated in Tab. 1A. For Kiwellins a precision of 86.4% was reached, with a notable
number of misclassified BLs. Kissper-Kiwellins suffered from contaminations with fusion
variants and Kiwellins without a kissper domain, resulting in a precision of 80.3%. This shows
that Kiwellins are challenging to classify based solely on sequence level information with a
HMM approach.

An ensemble of descriptors was employed to improve the classification, including primary
and structural information (more details can be found in the supplementary material of the
article 2.1). With this approach, the classification could be improved to approximately 98%

precision.

Tab. 1B summarizes the improvements made to the classification. During the analysis, for one
of the 49 initial Kissper-Kwls a better fitting isoform?! was identified, which lacks an additional
N-terminus extension compared to the initial candidate (see * in Tab. 1). The false positive
BL hit contains a long N-terminal extension with multiple a-helices®’. While it lacked the
B-hairpin, it contained the elongated loop within the DPBB that is characteristic for Kiwellins.
Notably, the filtering process did not achieve perfect precision, but it significantly reduced the

number of false positives, facilitating a more straightforward verification process.

Structural metrics were utilized in our efforts to enhance the classification of the Kiwellin
protein family. The two key figures for structural similarities are RMSD (rooted mean squared
differences of atomic positions in A) and MA (number of matching atoms). While the RMSD is

a common metric of choice, relying solely on it can be misleading. High similarities on low

*’https://gitlab.uni-marburg.de/synmikro/ag-lechner/paul-klemm-dissertation-supplement
*' AOA7I4DT69 — AOA2K1KL29
**B8BHDY
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Table 1: Confusion matrix of Kiwellin prediction. Columns: true class described by defining features
(DPBB, kissper domain, 5-hairpin), rows: predicted class from different HMM models. Naive approach,
choose the best scoring model (Kiwellin, Kissper, BL) (A). Sophisticated model including primary
information (length, signal peptide, cysteine count) and structure information (RMSD, matching atoms,
RMSDPMAS) (B). *: A better isoform was identified for one protein of 49 Kissper-Kwls that replaces the
hit. New: additional hits in the Uniprot database 2022_01.

A)
defining feature
B-hairpin v v X X X X v v X
DPBB v v v v v X X X X
kissper X v X v X X X X X
true class
query HMM | | Kwl Kissper-Kwl BL Kissper-BL BL-fusion BL-lite Kwl-lite Kwl-lite-fusion wunrelated | precision | new
Kwl 184 18 1 2 7 1 86.4 762
Kissper-Kwl 2 49 3 2 1 1 2 1 80.3 145
total number | 186 49 117 2 7 9 10 2 28
sensitivity (%) | 98.9 100
B) true class
query HMM | | Kwl Kissper-Kwl BL Kissper-BL BL-fusion BL-lite Kwl-lite Kwl-lite-fusion unrelated | precision | new
Kwl 186 1 99.5 588
Kissper-Kwl 48+1% 1 98.0 94-1%
total number | 186 49 117 2 7 9 10 2 28
sensitivity (%) | 100 100

matching atoms can produce good RMSD, values as demonstrated in Fig. 13. Similarly, a high

number of matching atoms can be obtained by poor alignment.

To address this issue, the two key figures were combined to create the RUSDPMAS (RMSD per MA
squared):

RMSD
RMSDPMAS := ——-
MA

A lower value of this metric indicates a higher number of matching atoms or a lower RMSD.

Consequently, a low RMSD is penalized by a high MA, and vice versa.
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Figure 13: Superimposition of Kwl3-1b (AOA1D6GNR3, crystal structure (Han, 2019)) in red and blue
the proteins A) W1PCT0, B) Kwl2-2c (TINDN2), C) AOA3B6PSY1 and D) AOA7J9C558. A) shows an
alignment with a high RMSD and low MA values resulting in a high RMSDPMAS. In contrast, the similar
structures of B) result in alow RMSDPMAS. In comparison, the non-optimal alignments of C (short overlap
with high similarity) and D (long overlap with low similarity) with similar RMSD or MA values, respectively,
both result in a higher RMSDPMAS. Adapted from 2.1 (Klemm, 2022)

To evaluate the performance of this metric, the hits of the hidden Markov model were tested
against the reference structure Kwl3-1b. Once again, the manually validated set of Kiwellins
served as the positive set. When sorting the HMM hits in ascending order of RMSD, the top 500 hits
included 144 true Kiwellins. Using RMSDPMAS, this improved to 293 out of 500 hits. Combined
with other criteria, this improvement was sufficient for analyzing the Kiwellin family, as shown
in Tab. 1.

The RMSDPMAS can be generalized as follows:

RMSD
MA™

RMSDPMA,, :=

Using the same testing strategy, further improvements were evaluated by introducing hand-
curated reference structures (/3-hairpin, kissper domain, DPBB, and again the crystal structure
of Kwl3-1b?®). For instance, the reference 3-hairpin structure should identify both Kiwellins
and Kissper-Kiwellins, while the kissper domain structure should identify Kissper-Kiwellins

exclusively.

For each reference structure, the top 3 performing metrics by precision were extracted. In
order from best to worst they are RMSDPMA; (14) and RMSDPMA; (14), MA (12), RMSD (6), RMSDPMA4

ZA0A1D6GNR3
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(5). Suprisingly, MA outperformed RMSD in multiple instances. The overall best-performing
metrics were RMSDPMA,, with n = 1, 2. Although different structures and search spaces may
yield different rankings, these results demonstrate the importance of considering more than
the plain RMSD value in analogous analyses. Further details can be found in the supplementary

repository.

Al1.2 The New core Function of Proteinortho

To establish the Kiwellin nomenclature, it is necessary to have both a gene tree and a
corresponding species tree, along with a reconciliation between the two. The reconciliation
allows us to investigate events near the root, which contain valuable information to build a
phylogenetic nomenclature. Speciation events, which lead to disjoint sets of species in the
underlying proteins, are less suitable for classification. On the other hand, deep duplication
events often accompany neofunctionalization and effectively divide the group into different
classes. Therefore it is key to find a species tree that captures the evolutionary differences
between the species of the analysis. The species tree was generated from published trees,
enriched with a core proteome generated with Proteinortho. This section is aimed to

highlight the improvement of Proteinortho contributing to this type of analysis.

The species tree was based on Open Tree of Life: Synthetic Tree v13.4 (OpenTree,
2021) re-rooted and pruned to the relevant species of the analysis. The major challenge
here is that this tree does not include distances (as it is a taxonomic tree). With the help
of Proteinortho (core modus), a set of conserved proteins occurring in all species was
generated. This set was used to compile a supermatrix, and the distances of the species tree

were estimated using IQ-Tree. Details can be found in the Methods section of the article 2.1.

In versions before version 6 of Proteinortho, users were required to manually test different
clustering parameters to find the clustering that results in the most core-groups, groups that
span all species, while minimizing the number of proteins per group. E.g., the default clustering

threshold of o = 0.1 is too strict for this dataset as it results in no core-group.

The new feature core of Proteinortho improved this analysis. In the core modus, a group is
only split if it would result in at least one subgroup with the same number of species as initially
present. Details can be found in the third article. This results in the most optimal number of

core-groups while minimizing the number of proteins per group, as shown in Fig. 14.
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Figure 14: Number of core-groups in red and average number of proteins per core-group in blue for
different connectivity thresholds (conn) and the core modus of Proteinortho.

Al.3 Unexpected Results

Two unexpected results catch the attention when evaluating the E-value distribution of HMMer

search using a Kiwellin-specific model.

In a single instance, a putative Kiwellin was discovered in the saprophyte fungal species
Blyttiomyces helicus®*, which grows on pollen. The respective other sequence-based metrics
that were used to filter Kiwellins (sequence length, signal peptide, number of cysteine
residues) as well as structure metrics of the candidate are on par with plant Kiwellins. See the

supplementary material of the article for more information.

On the sequence level, 9 out of the 10 best BLAST hits based on E-value belong to the Kwl3 class,
albeit with a maximum percent identity of only 60%. Structurally the candidate also exhibits
similarities to the Kwl3 class, characterized by an extended loop region within the -hairpin
(Fig. 15B). The lowest RMSDPMAS was also observed for the Kwl3 consensus fold compared to
the other classes. Despite this, in the phylogenetic tree, the fungi hit is placed among the
oldest species, such as the taxonomic groups of Bryophyta and Lycopodiopsida, where Kwl1 is
dominant. While it is unlikely that a horizontal gene transfer occurred from a plant in this study,
it should be noted that not all embryophyte plants have been fully sequenced. For instance,
Allium cepa (onion) was missing at the time of research, and especially these taxonomic groups

are studied poorly.

Furthermore, among all 784 fungal species investigated in the analysis, no other hit was
found that bears any resemblance to this case. The dataset (SAMN05443170) from which the
Kiwellin was inferred originated from a pond in the USA (Ahrendt, 2018), which introduces
the possibility of contamination. Moreover, the fungus Blyttiomyces helicus has not been

successfully cultured so far, making direct verification challenging.

24 AOAAP9WPM3
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Figure 15: Boxplot of HMMer search E-values of Kiwellin models (A). Red circle: B. helicus hit. Red box:
fusion proteins. The consensus structure of the loop in the S-hairpin (B). The Kiwellin-groups are
highlighted by different colors: red: fungi candidate, green: Kwll, magenta: Kwl2, yellow: Kwl3. The
bottom right: a schematic overview of Kiwellins. Green arrow: 3-sheet, blue rectangle: a-helix, yellow
box: zoomed region.

The boxed hits with unexpectedly low E-values in Fig. 15A represent proteins that contain
Kiwellins as domains. This includes proteins that harbor two or even three Kiwellins. The
potential role of these fusion proteins can only be speculated, like a precursor form of
the Kiwellins, and further research needs to be done. More details can be found in the

supplementary material of the article.

Al.4 Phylogenetic Biases Evaluation

This section will assess the stability and other phylogenetic biases of the article’s phylogenetic
analysis. The assessment can serve as a template for conducting similar analyses in the
future. The core concept revolves around introducing random noise and making changes to
parameters or programs to test the resilience of the phylogenetic model. By quantifying the
resulting effects using various metrics, we can gain valuable insights into the reliability and
limitations of the analysis. Moreover, this framework allows to explore additional hypotheses,

such as determining the domain that exerts the most influence on the phylogenetic tree.

To quantify the resulting change in the topology, the classical RF-distance for unrooted
unweighted trees (“RF” in the figure) as well as for the model, the log-likelihood (“ML’ in
the figure) values of the tree inference were used. The higher the RF distance, the more
differences there are between the tree topologies, and the higher the likelihood value, the
better the tree fits the model. Three corrupted versions are generated with one, ten, and 100
randomly sampled sequences to give points of reference. Analogously a version with ten
corrupted columns (random positions in each protein sequence) is generated. In general,
topology changes up to 100 corrupted sequences are considered non-significant. Fig. 16 gives

an overview of the impact of various parameters, like different substitution models, alignment
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Figure 16: Impact on the phylogenetic inference for the Kiwellin protein family. Each row specifies a
change of parameters compared to the reference configuration. Reference: IQ-Tree WAG+G4 with 100k
bs frommuscle alignment, RF: Robinson-Foulds distance to the reference, ML: Maximum log-likelihood
value of the prediction, bs: bootstraps

tools or tree inference tools. The tree of the article did serve as the reference using IQ-Tree with

the WAG+G4 substitution model with 100k bootstrap iterations based on a muscle alignment.

Domain Composition

To investigate the impact of the different domains on phylogenetic inference, different
variations of the domain composition were generated. In the first variation, the kissper
domain was removed from the analysis (“kisspercore”), which did not significantly alter the
tree topology (RF: 0.248). The Kissper-Kiwellins were found close to the Kwl1 class, similar to
the reference tree (manual inspection, see supplementary repository). This indicates that the
kissper domain is not the major discriminating factor, and the evolutionary position of the
Kissper-Kiwellins is not due to their increased length. Two further versions, where either the
DPBB is removed (“DPBBcore”) or the inverse case (“DPBBcore inverse”), led to substantial
changes in the tree topology. This highlights the importance of the combination of both
domains for the classification (8-hairpin and DPBB).

Alternative Programs and Substitution Models

The trees produced based on a MAFFT (linsi) or muscle alignment are similar (RF: 0.263) and
result in similar likelihoods. Similarly, RAxML and IQ-Tree produced similar likelihoods and
resulted in differences that are below the 100 corrupted sequences fix-point (RF: 0.283). In
summary, all alignment and tree inference tools produce very similar likelihood values and

agree on the overall topology of the dataset, whereby RAxML produces the most deviation.



Al Kiwellins in Embryophyta 125

The change in substitution model to BLOSUM®62, Dayhoff, WAG, and JTT had only minor
effects on the resulting tree, negatively impacting the likelihood value. The increase in rate
heterogeneity classes (WAG+G20) did not affect the likelihood value. Finally, the change of

bootstrap iterations from 100k to 10k was among the smallest measured effects.

Overall the change in parameters showed only minor effects on the tree, showing that this

phylogenetic tree is robust and the program choice is largely irrelevant.

Character Composition Heterogeneity

The heterogeneity of character compositions was assessed using the x2-squared homogeneity
test provided by IQ-Tree. In total 31+1?° sequences failed the test to an alpha of 5% of which
most are Kwl3 (Kwll: 8, Kwl2: 6, Kwl3: 17), not kissper domain containing (Kissper: 8, Kwl:
23) and of the taxonomic group MON (MON: 19, NSP: 5, ROS: 4, AST: 3). The Fisher’s Exact
test revealed a significant result (p-value: 1.961e-05) for the taxonomic group, indicating an
over-representation of MON than expected by pure chance. Despite this, the tree with and
without those entries (character corrected) was inspected, and no significant difference was

found (RF: 0.228, less than the effect of 10 corrupted sequences).

Al.5 Enlarged Figures

Bthe fungi Kiwellin candidate, AOA4P9WPM3
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Figure 5

Species tree cladogram. The inner circle encodes taxonomic groups. The outer circle indicates if a species is found in the

Kiwellin group Kwll, Kwl2 or Kwl3. K*: Kwll contains Kissper-Kiwellins, X: only Kissper-Kwl1. *: contains subspecies/cultivars.
©: putative loss event
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A2 6SinLAB

A2.1 Sequence versus Secondary Structure

The general experimental procedure employed

in this section closely follows the methodology

outlined in the previous section Al.4. 0.785 | 100 corrupted sequence

The corrupted sequences were generated

analogously and processed identically to the 0651 | 1aTREE

published reference tree using RNAclust.

However, it is essential to note that the

. . 0.64 mlocarna+IQTREE
proportion of corrupted sequences in the

dataset analyzed is relatively higher compared

to the Kiwellins dataset. Specifically, only 175 0.326 | 10 corrupted sequence
sequences were utilized for this particular

analysis, as opposed to more than 900 Kiwellins 0.291 | 1 corrupted sequence
sequences.

RNAclust leverages the alignment tool 0 reference

mlocarna as its underlying method. mlocarna

incorporates primary and secondary sequence I&"
information to generate alignments. It is worth

mentioning that the RNAclust tool does not Figure 17: Impact on the phylogenetic

inference for 6S RNA. Reference: RNAclust
result of the article, RF: Robinson-Foulds

provide a straightforward means to modify

the underlying alignments that contribute
to the creation of the hierarchical cluster
tree. Furthermore, RNAclust is a hierarchical
clustering method and does not represent a

classic phylogenetic inference tool. Thus it

distance to the reference, ML: Maximum
log-likelihood value of the prediction,
IQ-Tree: primary phylogeny based
on muscle alignment and IQ-Tree,
mlocarna+IQ-Tree: mlocarna alignment
in combination with IQ-Tree

does neither implement substitution models

nor bootstrap iterations.

In order to facilitate comparisons, alternative versions of the tree were generated using different
combinations of tools utilizing primary or secondary information. Firstly, a version was
produced of the tree solely based on primary sequence information alone, utilizing the muscle
alignment tool in conjunction with IQ-Tree. A mixed version was also generated based on the
mlocarna alignment and IQ-Tree. These alternative approaches yielded markedly different

results when compared to the RNAclust approach.
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A3 Proteinortho

A3.1 Parameter Exploration

Proteinortho offers a comprehensive set of parameters to control the speed and the precision
of co-ortholog detection. In this section, the impact of a selected set of parameters on similarity
to the default, precision measured by QfO, and performance in terms of execution time and
memory usage will be examined. The results build on top of the results of the manuscript and

are aimed to give the reader insights into the effect of these parameters on the results.

The analysis will be conducted using the 2020_04 dataset of 78 species and performed
on a 64-core AMD_EPYC processor analogously to the attached article. Furthermore, all
results are generated using diamond v2.0.15 (Buchfink, 2015), and if not further specified,
default parameters are used for Proteinortho v6.3.0%5. Technical terms, like ARI or mean
improvement, are defined in the manuscript, and further details like auxiliary scripts or precise

execution times can be found in the supplementary repository.

It's important to note that results may vary when using different datasets or taxonomic
compositions. Additionally, it should be noted that further parameters significantly affect the
output. Furthermore, the combined effects of parameters may not directly correlate with the

isolated findings of single parameters presented here.

The E-value and Similarity Threshold

Two critical parameters in the Proteinortho framework are the similarity threshold (sim) and
the E-value cutoff (e), which control the all-versus-all BLAST step. The parameter e describes
the E-value cutoff for the BLAST results, with a default value of 10~°. sim controls the fraction of
sub-optimal hits gathered below the best reciprocal hit, which is also described as the similarity
threshold f (Lechner, 2011). A value of f = 1 corresponds to the classic reciprocal best hit
algorithm, and the default for Proteinortho is f = 95%. Lowering this value will increase the

number of edges in the RBH graph.

Tab. 2 summarizes the impact of these two parameters on the RBH graph. Unsurprisingly,
neither f nor the E-value cutoff significantly affects the runtime or memory consumption,
as all observed changes are within 0.5 log2 fold changes from the default parameterization.
Parameter f has the most significant effect on the size of the RBH graph, with a value of 0.1
resulting in approximately four times more edges than in default. e did show only minor effects
on the size of the RBH graph.

Using Proteinortho clustering with default parameters, Tab. 3 presents the effects of these
parameters on the clustering step, and Tab. 4 further displays the subsequent performance in
the QfO benchmark. Parameter f did show the most impact on the size of the RBH graph and,

in turn, has the most impact on the runtime of the clustering step (almost a 10-fold increase).

26 . . . P . . . o e
’using diamond with -sensitive and the -normal mode, the classic reciprocal best alignment heuristic
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Moreover, decreasing f results in fewer clusters, but larger cluster sizes are observed (up to
approximately 4-fold maximal cluster size). Despite the increase in information, a significant
drop in precision in the QfO benchmark was observed. The improvement ranged between
-0.05 and -0.97, indicating worse performance than the default setting. Furthermore, none
of the metrics ranked among the top 50% for any f threshold below the default value. These
results rank among the worst scores for any parameterizations besides the negative control

(see manuscript for more details).

The E-value cutoff e did show similar clustering results as the RBH graph was only slightly
affected (ARI > 0.88 for cutoffs between 10 and 107°°). A stricter E-value cutoff lowers
the number of connected components, similarly to a low f value, but without increasing
the maximal cluster sizes. Generally, stricter E-value cutoff increases precision in the QfO
benchmarks but only slightly, with up to 0.07 improvement. On the flip side, the best
performing E-value cutoff of 1075 significantly reduces the number of proteins in the graph

(approximately 20%).

The impact of the two discussed parameters suggests that while they can significantly influence
the results, no clear improvement without significant drawbacks could be achieved. Therefore,
the default configuration®’ of the similarity threshold and the E-value cutoff was evaluated as

sufficient.

Table 2: Sensitivity, precision, and resource consumption of sequence comparisons in the context of
the adaptive reciprocal best hit strategy employed by Proteinortho with different parameters applied
to the QfO benchmark dataset 20204. All results are calculated using the classic reciprocal best hit
algorithm with diamond sensitive. Sensitivity and precision are relative to the first row. Wall time:
total processing time, memory: peak memory usage, 12FC: log2 fold change relative to the first row.

algorithm | edges | sensitivity | precision | wall time memory

% % I2FC  h | 2FC GB

| default | 5366k | 100 [ 100 | 0 93] 0 617 |
f=.1 22615k 100 23.7 31 8] -3 76
f=.25 | 20,886k 100 25.7 31 8| -3 73
f=.5 15264k 100 35.2 3 7] -2 69
f=.38 8,639k 100 62.1 1 9| -1 65

| f=.99 | 4390k | 818 | 100 | . 4 7] -09 66 |
f=1 4,112k 76.6 100 3 .8 | -005 6.2
e=10 5,406k 100 99.2 3 8| -06 64
e=1 5,405k 100 99.3 3 7| -04 63
e=10"% | 5390k 100 99.5 1 9| -05 64

| e=10710 | 5258k | 980 | 100 | . 3 7| -07 65|
e=10"2" | 4,918k 91.7 100 4 7 06 5.9
e=10"% | 3,739k 69.7 100 4 7 4 47

The Algebraic Connectivity Threshold

The algebraic connectivity threshold (conn or «) serves as the primary stopping condition

for the spectral clustering algorithm in Proteinortho. Algebraic connectivity describes the

27 £-0.95, e=107"°
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degree of connectivity within a group. Consequently, adjusting the cutoff directly influences
the size and the number of connected components (CC). Increasing the threshold leads to
more and smaller CCs, as shown by the shift towards smaller sizes in Table 3. By using smaller
values of o, the algorithm requires less effort to satisfy the threshold, resulting in decreased

runtime.

Regarding the evaluation of precision using the QfO benchmark, increasing the « generally
improves overall precision. To provide a reference point, the improvement between no
clustering and the default setting (0.013) was set to one unit of reference. In this notation, the
improvement achieved with o = 0.75 corresponds to almost five reference units. However,
this increase in precision changes the size distribution of the connected components. The
largest bin, covering at least 75% of the species, reduces by approximately 10-fold. Nonetheless,
when aiming to optimize the results, the a cutoff appears to be a preferable parameter choice

compared to the similarity threshold f.

Weights and Floating Point Precision

The RBH graph of Proteinortho is determined with the adaptive reciprocal best alignment
heuristic based on sequence similarity calculations using tools like diamond. The resulting
graph contains pairwise bit-scores as a quality measure that can be used as edge weights in
the graph using, for example, the average of both values. Proteinortho6 optionally extends
the original spectral clustering approach to account for these weights that guide the clustering.
At the same time, floating-point precision can be adjusted as the underlying data structure in
Proteinortho6. In both cases, double precision, as well as for weighted graphs, calculations
offer higher precision at the expense of increased execution time and memory usage. This effect
is particularly noticeable in the Lapack eigenvalue decomposition, as the quadratic nature of
the input files significantly amplifies the memory consumption. By default, Proteinortho6

employs a single-precision unweighted approach.
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Figure 18: Weights can improve the clustering. Exemplary component from the Type IV secretion system
in a real-world dataset of 29 food-related and probiotic Enterococcus strains (Bonacina, 2017). The
connected component is split once using the unweighted algorithm. Two TraC-F enzymes are removed
from a cluster of highly similar proteins while two separable VirB4 proteins remain connected. Weights
(size and color-coded from blue to orange) enable more fine-grained splits which better resemble the
protein annotation.

Fig. 18 illustrates an example between the weighted and unweighted clustering for a connected

component of the dataset of 29 food-related and probiotic Enterococcus strains (Bonacina,
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2017). Additional details can be found in the supplementary repository. The proteins depicted
in the figure belong to the secretion IV system and can be further subdivided into VirB4_CagE,
VirB4 and TraC-F types®®.

When using an unweighted clustering approach, the connected component is split into two
clusters (marked by a red dotted line). In total, the unweighted clustering removes fewer edges

compared to the weighted variation, which removes a smaller sum of weights.

The unweighted clustering does not effectively capture the annotated protein types, while
the weighted clustering produces more plausible results. To quantify the quality of the two
clusterings, we measure clustering purity as the sum of the sizes of the most frequent class in
each cluster divided by the total number of elements. The weighted algorithm increases the

clustering purity by 15.79%, extracting a cleaner TraC-F type cluster.

Besides this specific finding, it is noteworthy that, in general, the clustering results between
weighted and unweighted approaches were highly similar, with ARI values above 0.99. The
distribution of sizes of connected components was similar, as indicated by a non-significant
x2-squared test (p = 0.22) comparing size bins (0-25%, 25-50%, 50-75%, 75-100%) between
the weighted and unweighted cases (float precision). Additionally, there was no observable
difference in clustering results between float and double precision for the unweighted case
(ARI: 1). A minor difference was observed for the weighted variation (ARI: 0.98). Therefore, it is
unsurprising that no combination of the two variations significantly affected the average log2
change in the QfO precision evaluation between the approaches, with differences of less than
0.01 or less than one reference unit. The execution time followed the expected pattern, with
the slowest combination being weighted & double precision and the fastest being unweighted

& single precision, which was nearly five times faster than the former.

In summary, due to the lack of significant differences in results (ARI) and similar precision

scores, the fastest approach (unweighted & single precision) was evaluated as the most optimal

configuration.
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Table 3: Influence of the threshold on the clustering of the QfO benchmark dataset 202004 (78 species):
reciprocal best hit similarity f, algebraic connectivity «, and E-value e. I12FC: log2 fold change relative to
the default, ARIL: Adjusted Rand Index compared to the Proteinortho6 with default parameters, dashed
line: relative position of the default parameter, max(proteins/group): the maximal number of proteins
per group, f: similarity threshold (sim parameter, default: 0.95), e: E-value cutoff (default: 10~°), a:
algebraic connectivity threshold (conn parameter, default: 0.1).

ortho-groups wall time | memory
=
e .
% 2 | 8| 8 |3 e
212 |, | 2] 2| 2 |8 3 p
D RS Q. 15N S T} = c 3
S & 3 | 8 12 T ™ 2 8 2 |lml 2
2 E | Bl | 8 |83 |2l 8| 8|8 |8 %
‘ Proteinortho6 with diamond sensitive:
| default | 523k | 280 | 71k [ 67k | 2921 [1179 [ 106 | 0 [ 125 | 0 [2] 1
f=.11551k | 1208 | 51k | 48k | 2626 | 995 | 131 1005 | 53 | 3 | .543
f=.25|547k | 1119 | 51k | 47k | 2666 | 1018 | 134 | 2.7 | 807 | .54 | 3 | .583
f=.5 554k | 494 | 54k | 50k | 2845 | 1134 | 124 | 2 512 | .35 | 3 | .675
f=.81]557k | 304 |63k |59k | 3054 | 1196 | 114 | 1.5 | 364 | .078 | 2 | .82
| f=.99 [ 510k | 125 | 75k | 70k | 2944 | 1141 | 104 | -15 | 113 | -.54 | 1 | .888 |
f=1]502k | 92 |75k | 71k | 2969 | 1114 | 105 | -.16 | 112 | -.66 | 1 | .874
e=10 [ 516k | 280 [ 71k [ 67k [ 2863 [ 1133 [ 107 | 1.2 [ 287 [ -33 | 2 | .961
e=11|515k | 280 | 71k | 67k | 2861 | 1135 | 106 | 1.4 | 324 | -42 | 1 | .961
e=10"3 | 525k | 280 | 72k | 67k | 2947 | 1167 | 113 | .25 | 149 | -.32 | 2 | .964
| e=10"19 | 515k | 280 | 69k | 65k | 2896 | 1139 | 101 | -.014 | 124 | -55 | 1 | .95 |
e=10"2" | 492k | 280 | 65k | 62k | 2723 | 1056 | 89 | -45 | 91 | -61 | 1 | .93
e=107°0 | 427k | 269 | 57k | 54k | 2093 | 731 | 56 | -1.7 | 38 | -1.7 | 1 | .89
a=10"%[ 569k [ 9626 | 35k | 32k [ 2029 [ 1103 [ 350 [ -1.1 | 60 [ -1.1 [ 1 [.115
a=10"" | 569k | 9626 | 36k | 32k | 2108 | 1183 | 377 | -1.1 | 57 | -.84 | 1 | .179
a=10"3 | 566k | 9626 | 42k | 37k | 2807 | 1476 | 319 | -1.1 | 58 | -32 | 2 | 527
a=.005 | 560k | 9626 | 48k | 43k | 3004 | 1494 | 262 | -29 | 102 | -.22 | 2 | .701
a=.01|549k | 296 | 53k | 48k | 3058 | 1454 | 231 | .5 177 | -15 | 2 | .772
a=.05|537k | 284 | 65k | 61k | 3044 | 1292 | 147 | 33 | 157 | -.19 | 2 | .932
a=.09 | 532k | 280 | 71k | 67k | 2956 | 1200 | 116 | .52 | 179 | -.12 | 2 | .985
| a=.11|530k | 279 | 73k | 69k | 2930 | 1159 | 102 | 29 | 152 | -24 | 2 | .986 |
a=.15|527k | 272 | 76k | 72k | 2884 | 1072 | 84 | 21 | 144 | -12 | 2 | .959
a=.21523k | 267 | 79k | 75k | 2826 | 994 | 60 | .61 | 190 | -15| 2 | .93
a=.3|517k | 257 | 83k | 79k | 2722 | 831 | 40 | .41 | 166 | -.18 | 2 | .884
a=.5|503k | 99 |90k | 87k | 2425 | 484 | 11 | 59 | 188 | -.16 | 2 | .787
a=.751492k | 69 |99k | 97k | 1922 | 186 | 10 | .18 | 142 | -.15| 2 | .703
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Table 4: Quantifying Orthology Inference Precision: Assessing Proteinortho parameters using
precision metrics of QfO benchmark dataset 2020,4. A full description of all reference tools and the
detailed benchmark results can be found in the supplementary table of the third article. Negative
control: grouped upload of o = 10~° (see manuscript for more details), dashed line: relative position
of the default parameter, improvement: average log2 fold change of all benchmark scores relative to
default, [7: top 25%, [ top 50%.

type | functional phlyogeny reference
metric | avg. Schlicker avg. Robinson-Foulds PPV
< ]
S E
E Sle g 3 gk E
K=" N N N [N} < = = = B >
5 =) a) a) a) 2] &) = & & o |8 o
= ° 15 5815/ alala|lgg| 8| Z|a &
S 8| @ |o|lo|o|lo | BB |&|&| &8 |8 5
Proteinortho6 with diamond sensitive:
default | .969 488 222 | 251 | .244 | .231 | .538 | .042 | .297 | .952 | .947 | .981 | 2 0
no clustering | .956 483 226 | .25 | 242 | 234 | .566 | .041 | .304 | .949 | 942 | .98 0 | -0.013
negative control | .673 391 .703 | .619 | .756 | .737 | .796 | .583 | .623 | .647 | .659 | .059 | O | -1.473
f=11] .92 447 537 | 454 | 529 | .657 | .669 | .439 | .478 | .668 | .689 | .402 | 0 | -0.966
f=.25|.923 45 483 | 419 | 465 | .617 | .657 | .376 | 446 | .692 | .714 | 476 | O | -0.862
f=.51.936 457 337 | 312 | 338 | .457 | .607 | .21 | .357 | .755 | .766 | .661 | O | -0.054
f=.81.957 474 .244 | 256 | .262 | .269 | .56 | .064 | .307 | .921 | .894 | 934 | 0 | -0.122
______ f=.99 [ 972 | 495 | 216 | 253 | 23 | 222 | 535 [ .038 | .3 | .942 | .956 | .997 | 8 | 0.003
f=1|.972 | .498 | .217 | .245 | .262 | .216 | .534 | .038 | .301 | .942 | .958 | 1 7 | 0.021
e=10 | .97 488 | 223 | .245 | .251 | .234 | .533 | .041 | .296 | .952 | .948 | .981 | 2 | 0.001
e=1|.969 | .488 .23 | 243 | 252 | .231 | .535 | .044 | .296 | 952 | .948 | .98 | 2 | -0.009
e=1073 | .969 .488 226 | .244 | 249 | .232 | .538 | .042 3 952 | .948 | .98 1 | -0.003
7 e=1010[ 971 | 489 | 231 25 |.232| 232 | 535 | .042 | 298 | .95 | .948 | .98 | 1 [ 0.001
e=10"2 | 972 | .488 .22 | 243 | 226 | .237 | .533 | .042 | .289 | .95 | .947 | .98 | 5 | 0.017
e=10"" | 977 | 485 | .211 | .217 | 211 | 224 | 484 | .039 | 273 | .92 | .947 | 98 | 8 | 0.072
a=107%| .956 483 227 | 252 | .258 | .235 | .567 | .041 | .303 | .949 | 942 | .98 0 | -0.022
a=107° | .956 483 22 | 257 | .25 | .234 | .567 | .042 | .304 | .949 | .941 | .98 0 | -0.002
a=10"3 | 957 484 222 | 245 | 254 | 231 | .564 | .04 | 301 | .95 | .942 | .98 1 | -0.007
a=.005 | .959 484 219 | 252 | .248 | .233 | .562 | .041 | .305 | .95 | .943 | .98 0 | -0.011
a=.011] .96 485 | 215 | .247 | .248 | .227 | 559 | .042 | .303 | 95 | .943 | .98 | 1 | -0.004
a=.05].965 | .486 | .221 | .248 | .238 | .227 | .546 | .044 | .301 | .951 | .945 | .98 | 2 | -0.002
a=.09 | 969 | .488 | .223 | 244 | .239 | .231 | 54 | .043 | .298 | 952 | .948 | .98 | 2 | 0.002
______ a=.11[ .97 | 488 | 22 | 247 | 239 | 231 | .538 | .041 | .296 | .952 | .947 | .98 | 2 | 0.007
a=.15 | 971 .489 226 | .25 | .254 | .227 | .539 | .042 3 95 | 949 | 98 | 2 | -0.005
a=.2.974 49 .216 | .235 | .253 | .226 | .531 | .041 | 289 | .949 | 95 | 98 | 8 | 0.019
a=.3|.978 | 493 | .219 | .242 | .236 | .226 | .525 | .039 | .287 | .948 | .952 | .982 | 11 | 0.003
a=.5.982 | 497 | .212 | .229 | .263 | .218 | .51 | .037 | .281 | .939 | .956 | .995 | 10 | 0.047
a=.75 | .982 .5 .209 | .237 | .292 | .207 | .515 | .029 | .285 | .924 | .959 | .999 | 10 | 0.063







In the realm of genes, a world unknown, §
Comparative genomics, a path were shown.
Across species, the code's secrets untold,
Phylogenetic whispers and stories unfold.

Kiwellin, a protein in plants' embrace,

Against pathogens, it guards with grace.

With nomenclature defined, a systematic space,
Meta-analysis reveals responses in every place.

6S RNA, in LABs we find,

A stress-coping guide, to unwind.
Alignments, structures, a treasure to bind,
Fermentation's art, its secrets aligned.

Proteinortho, with power anew,

Orthology's magic, brought to view.

Updates and advancements, its power takes flight,
Genomic knowledge, ever shining bright.

With comparative genomics, the journey goes on,
A dance of genes, from dusk till down.

In nature's code, a symphony is drawn,

A harmonious ode, forever to spawn.

v P
Poem drafted with ChatGPT (May 24 version) based on the abstract. Image generated with the assistance of DALLE 2
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