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ZUSAMMENFASSUNG

Ziel dieser Arbeit ist die Erforschung spektraler Asymptotiken simplizialer Komplexe ver-
schiedener Geometrie. Der Hauptteil dieser Arbeit beschäftigt sich mit dem kombinatorischen
Laplace-Operator eines gegebenen Simplizialkomplexes und dem Einfluss von iterierten Un-
terteilungen auf dessen Spektrum. Wir betrachten dabei eine Unterklasse der Unterteilungen,
welche eine bestimmte Regularitätsannahme erfüllen, die wir "Einbettungsuniformität" nennen.
Zunächst entwickeln wir einen universellen Grenzwertsatz für Spektren dieser Art; es wird
gezeigt, dass die spektralen Verteilungsfunktionen der Folge der Laplace-Operatoren iterierter
Unterteilungen eines beliebigen Ausgangskomplexes gleichmäßig gegen eine Grenzfunktion
konvergiert welche bloß von der Dimension des Ausgangskomplexes abhängt. Damit ist dieser
Grenzwert universell in dem Sinne, dass es für jede Unterteilungsart div und jede Dimension
d eine Grenzfunktion F

(div)
d ∈ L∞(R) gibt, welche für jeden d-dimensionalen Komplex K im

Grenzwert der Folge divnK angenommen wird.
Die Intuition hinter diesem Ergebnis ist, dass sich der Laplace-Operator als Operator welcher
nur die lokale Umgebung eines Simplex einbezieht nach Anwendung beliebig vieler lokaler
Unterteilungsoperationen einem "lokalen" Spektrum annähert. Um weiter den Weg für
Grenzobjekt-Betrachtungen zu ebnen entwickeln wir eine Graph-basierte Fraktaltheorie, welche
die Konstruktion iteriert unterteilter Simplizialkomplexe dualisiert.

Klassische Beispiele einbettungsuniformer Unterteilungen sind die baryzentrische Unterteilung
in beliebigen Dimensionen oder die sogenannte edgewise-subdivision in Dimension 2. Da die
Berechnung des Grenzspektrums für die baryzentrische Unterteilung außerhalb des Graph-
Falls schwer ist, berechnen wir anschließend das Grenzspektrum für eine einfachere, aber
der baryzentrischen Unterteilung verwandte Unterteilungsart. Hierzu verwenden wir eine
Schreiergraph-Approximation der Folge der dualen Graphen. Dazu beschreiben wir eine
selbst-ähnliche Untergruppe der Automorphismengruppe eines unendliche tiefen Baumes,
welche als ihren Schreier-Graph die Ausgangsfolge bis auf eine asymptotisch kleine Anzahl
von Schleifen auf der n-ten Ebene dieses Baumes induziert. Diese Gruppe wird beschrieben
durch ein gewähltes, symmetrisches Adress-Schema der Simplizes der Unterteilungsfolge.
Ein analoger Ansatz kann für die baryzentrische Unterteilung gewählt werden, führt dort
allerdings nicht zum Erfolg, da die baryzentrische Unterteilung im Gegensatz zu der sim-
plifizierten Unterteilung nicht die Eigenschaft der endlichen Ramifikation hat, welche eine
rekursive Berechnung der Determinante per Schur-Komplement möglich macht. Wir geben
experimentelle Indizien für eine Selbstähnlichkeit des Grenzwerts für die baryzentrische Un-
terteilung an. Selbst im vereinfachten Fall müssen wir, um eine volle Rekursion der Spektren
zu gewährleisten, zusätzlich zu einer komplizierteren, multi-parametrischen Matrix übergehen,
was mit wachsender Komplexität der Unterteilung hochgradig nicht-trivial wird.
Aus diesem Grund präsentieren wir für eine nicht-endlich ramifizierte Unterteilung von hoher
Symmetrie ein weiteres Vorgehen zur Berechnung des Grenzspektrums per Floquet-Theorie.
Die Symmetrie der Unterteilung geht in diesem Fall derart ein, dass sie eine gegebene Tri-
angulierung des Torus in einem selbst-ähnlichen Sinne verfeinert. Zum Abschluss des ersten
Teils präsentieren wir offene Fragen zur Natur des universellen Grenzwerts.
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Im zweiten Teil beschäftigen wir uns mit Differential Laplace-Operatoren auf Simplizialkom-
plexen. Hierzu assoziieren wir zu einem Simplizialkomplex K eine Geometrie, indem jede
maximale Seite einen geometrische Simplex im Rm zugeordnet bekommt. Diese Simplizes
müssen sich nicht geometrisch zu einem zu K isomorphen geometrischen Komplex im euk-
lid’schen Raum zusammensetzen sondern dienen bloß als geometrisches Modell für die jeweilige
Seite. Insbesondere muss die induzierte Geometrie global auch nicht notwendigerweise euk-
lid’sch sein, während sie lokal flach ist. Diese Zuordnung dient als Verallgemeinerung metrischer
Graphen; also Graphen mit festgelegten Kantenlängen, wobei zu einer Länge ` das Intervall
[0, `] als Modell dient. Ähnlich zur Sobolev-Theorie auf metrischen Graphen assoziieren wir
zu unserer Geometrie dann lokale Sobolev-Funktionen und ein schwaches äußeres Differential.
Dieses Differential erlaubt es uns dann analog zur Riemann’schen Geometrie einen Laplace-
Operator dieser Geometrie zu definieren. Es stellt sich heraus, dass der Definitionsbereich
dieses Operators die Menge aller stetigen und lokal (das heißt in jedem Simplex) zweifach dif-
ferenzierbaren Funktionen ist, welche einer höherdimensionalen Kirchhoff-Bedingung längs der
Ränder genügen. In Anlehnung an die Theorie der metrischen Graphen werden wir metrische
Komplexe zusammen mit einem solchen Laplace-Operator dann Quanten-Simplizialkomplexe
nennen.

In diesem Zusammenhang ist eine bereits bekannte spektrale Asymptotik für Riemann’sche
Mannigfaltigkeiten welche "Andickungen" eines metrischen Graphen sind besonders interessant.
Wir werden die Theorie dieser "Andickungen" auf unsere höherdimensionale Konstruktion
verallgemeinern und zeigen Verallgemeinerungen einiger Zwischenresultate welche benötigt
werden um die Asymptotik im Graph-Fall zu zeigen. Diese Mannigfaltigkeiten sind lokal als
direkte Produkte der geometrischen Simplizes mit einer Mannigfaltigkeit dargestellt; diese
zweite Mannigfaltigkeit fassen wir als Faser über dem Simplex auf.
Die verallgemeinerten Zwischenresultate arbeiten darauf hin Operatoren zu definieren welche
zwischen den Funktionsräumen der Mannigfaltigkeit und des Komplexes unter Einhaltung
einer Normabschätzung vermitteln. Wir vermuten, dass diese Zuordnungen wie im Graph-Fall
durch konstante Fortsetzung sowie Mittelung längs der Faser gegeben sind. Man beachte, dass
im höherdimensionalen Fall die Ränder weitere nicht-konstante Differentialterme induzieren,
welche im Graph-Fall nicht auftauchen.
Auch hier geben wir wieder offene Fragen über dieses Objekt an. Natürlich fragen wir uns nach
obiger Betrachtung, ob die spektrale Asymptotik für dünner werdende Mannigfaltigkeiten des
beschriebenen Typs weiterhin gilt; genau wie im Graph-Fall lassen Ergebnisse über die Eigen-
funktionen des Laplace-Operators des gleichseitigen Dreiecks vermuten, dass es für gleichseitige
Komplexe einen Zusammenhang zum Spektrum des kombinatorischen (d− 1)-up Laplacians
gibt. Ebenfalls interessant ist eine Phasentransition im Graph-Fall für Hodge-Laplace-Spektren.
Hier ist bekannt, dass für Differentialformen von Grad größer als 1 die Spektren punktweise
gegen ∞ divergieren. Die naheliegende Frage ist daher, ob für d-dimensionale Komplexe eine
Konvergenz bis Grad d und eine Divergenz für darüberliegende Grade gilt.
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ABSTRACT

The aim of this work is the exploration of spectral asymptotics of certain geometries associated
to simplicial complexes. We will state how combinatorial and differential Laplacians can be
associated to a simplicial complex and describe certain asymptotics linked to their spectra.

First we take under consideration the change of spectrum for the combinatorial Laplacian under
a certain class of subdivision procedures and show a universal limit theorem regarding the
sequence arising from this construction. Universality in this case means that the limit spectrum
carries no spectral information related to the input complex. It is thus only dependent on the
dimension of the complex and the subdivision procedure used. We will carry out the explicit
calculation of such a limit for one particular example of a subdivision related to barycentric
subdivision. Next we point out obstructions to the application of the same procedure to the
full barycentric subdivision. It will turn out that the procedure is not favorable if the given
subdivision procedure is acting non-trivially on lower dimensional faces. Lastly we give an
example of a subdivision procedure of high symmetry, i.e. edgewise subdivision, for which we
can determine the spectrum by a group action argument even though it acts non-trivially on
lower dimensional faces. Furthermore dual relations to fractal theory are examined and the
particular class of fractals arising from subdivision of a complex in the sense of a graph-directed
limit construction is formalized. In the end open question regarding the nature of the limit
are formulated and initiating thoughts are presented.

Secondly we associate to a simplicial complex a geometry (not necessarily embeddable in
euclidean space) and show that there exists a natural differential Laplacian on this geometry.
These complexes can be used to model thin structures around their geometry. As this modelling
procedure is a higher-dimensional generalization of quantum graphs we will call a complex
equipped with this differential structure a quantum complex. Thin structures over such a
complex allow for modelling of systems with a larger number of dimensions not constraint
by a small diameter. We show generalizations of estimates used in the proof of the spectral
asymptotic of these thin structures for the graph case indicating that a general spectral
asymptotic might be possible. We formulate open questions on spectral asymptotics and the
relation of the combinatorial and differential Laplacian associated to the complex.

v



Contents

Introduction 1

Part I Combinatorial Theory 3

1 Introduction 5

2 Preliminaries 9
Basics on simplicial complexes 9
Asymptotic spectral analysis 11
Tools for explicit spectral analysis . . . . . . . . . . . . . . . . . . . . . . . . 12

Iterated subdivisions of simplicial complexes 12
Gluing and inclusion-uniform subdivisions . . . . . . . . . . . . . . . . . . . . 14

3 The Universal Limit Theorem 17
Proof of the Universal Limit Theorem 17
Example: Universal Limits of Cone Subdivision 20
Schreier graph approximation of Γn . . . . . . . . . . . . . . . . . . . . . . . . 22
Some elementary properties of the algebra A . . . . . . . . . . . . . . . . . . 30
Recursion of Dn via renormalization by ΓX . . . . . . . . . . . . . . . . . . . 31
Calculation of detX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Unidimensional Spectral Decimation of detΞn . . . . . . . . . . . . . . . . . . 37

Example: Barycentric Subdivision for d = 2 47
Example: Edgewise Subdivision for d = 2 54

4 Relations to Fractal Theory 61

5 Strong Universal Limit Theorem 69

6 Experiments 73
Regarding Cone Division 73
Regarding Barycentric Subdivision 77
Regarding Edgewise Subdivision 87

7 Open Questions 93

vi



Part II Differential Theory 95

1 Introduction 97

2 Metric simplicial Complexes and their Laplacians 99

3 Thin Manifolds with model Complex 105
Manifolds and their Laplacian 107

4 Some elementary results 109
Spectral Asymptotics 109
Transversal Averaging and useful inequalities 111

5 Open Questions 117

References 119

Wissenschaftlicher Lebenslauf (Scientific CV) 123

vii





Introduction

Simplicial Complexes and the topological spaces associated to them have a long reaching
history in algebraic topology. One outstanding strength of simplicial complexes is that they
are a middle ground between flexibility - in the sense that a wide range of spaces is covered -
and rigidity - in the sense that the fundamental building blocks are very basic convex sets
which can be handled well by computer systems. Simplicial complexes play a central role
in computational topology. In particular in the computational determination of homology,
cf. [DHSW03] and persistent homology of data point clouds, cf. [EH10], [Zom05]. Another
important computational application is the field of finite element method, cf. [BKK20].

Note that in particular the field of finite element exterior calculus, cf. [GHL21], [AFW10],
which parallels exterior calculus on simplicial complexes draws a strong link between objects
known from differential and simplicial geometry. Especially the work of Dodziuk and Patodi
in the 70s can be considered a finite element approach to Riemannian Hodge theory as there
have been established approximation results of the Riemannian Hodge-Laplacian of a manifold
by a combinatorial Hodge-Laplacian of triangulations becoming progressively finer in [Dod74],
[Dod76] and [DP76]. Specifically relevant in the context of this work is a spectral asymptotic
shown in [DP76], where a point-wise convergence of the eigenvalues of certain combinatorial
Hodge-Laplacians of a sequence of progressively refining triangulations towards the eigenvalues
of the Riemannian Hodge-Laplacian was established. This result demonstrates a case where
under the correct choice of operator (and inner product) we can win back significant knowledge
about the input geometry.

The central objects of this work have already been mentioned above - sequences of iterated
subdivisions, i.e. triangulations which are getting progressively finer, and Riemannian manifolds
associated to simplicial complexes. Note however the following differences in the approach;
the combinatorial Laplacians we analyze are always defined with respect to the standard inner
product on chain complexes as no underlying Riemannian geometry is considered in Part I -
we thus only study properties intrinsic to the complex at first. In this context we will show
that the spectrum of the Laplacian we assign to the intrinsic geometry is universal in the
sense that no matter the complex we start with its spectrum will converge (in the appropriate
sense) to a universal spectral distribution only depending on the dimension of the complex
and the way we refine it.

Furthermore our setting with regards to Riemannian manifolds will be different as we
will not start with a triangulation of a manifold but rather with a manifold shrinking onto
a simplicial complex. This shrinking procedure will be formalized in Part II. In order to
define these thin structures around simplicial complexes we first introduce a generalization
of quantum graphs to higher dimensions and assign to it a spectral theory via a differential
Laplacian. We then present some results indicating that a generalization of the spectral
asymptotic of [EP05] might be possible, though we were not able to fully show it. We present
open questions together with first steps in an attempt to answer them.
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Introduction

The spectra of k-Laplacians of d-dimensional simplicial complexes, k ≤ d, encode a variety of
combinatorial and topological properties of the respective complex; cf. [HJ13] for an overview
of Laplacian operators on simplicial complexes. The case of interest for us is when k = d, i.e.
the top-dimensional Laplacian of a d-dimensional simplicial complex K which is defined as

L (K) := Ld(K) := ∂td∂d

for the simplicial boundary operator ∂d in dimension d. We are interested in how the spectrum
of L (K) behaves (in the limit) under iterated subdivisions of K. We restrict ourselves to a
certain intuitive subclass of geometric subdivisions in the sense of Stanley, [Sta92], which are
additionally required to subdivide each face in the same way and independent of orientation.
We will call them inclusion-uniform. The explicit definition of this class will be given in Section
2. A lot of prominent examples of geometric subdivisions are inclusion-uniform; including
the edgewise subdivision of a 2-dimensional complex and barycentric subdivision in arbitrary
dimension. For an overview of current research on subdivisions and their algebraic aspects we
refer the reader to [Ath16] and the references therein.

We consider the spectrum of a positive-semidefinite self-adjoint operator L : RN → RN as
the non-decreasing right-continuous bounded (and thus L1) stair-case function on [0, 1] given
as

Λ(L) :=

N∑
j=1

λj(L)1[(j−1)/N,j/N),

where 0 ≤ λ1(L) ≤ ... ≤ λN (L) are the ordered eigenvalues of L listed with multiplicities and
1A denotes the indicator function of the set A. This function can be considered as a shift of
the quantile function of the normalized eigenvalue counting function1.

Theorem I.1 (Universal Limit Theorem for inclusion-uniform subdivisions). Let d ≥ 1 be an
integer and let div be a inclusion-uniform subdivision acting non-trivially on d-dimensional
complexes.

Then there exists a function Λ
(div)
d ∈ L1([0, 1]) such that for every d-dimensional complex

K it holds
Λ(L (divnK))

n→∞−−−→L1 Λ
(div)
d .

We can associate to a complex K a multitude of Laplacians. For i ∈ N we might define
the i-up Laplacian L up

i (K) := ∂i∂
t
i and the i-down Laplacian L down

i (K) := ∂ti∂i. The
i-dimensional Laplacian then is the sum of the i-up and i-down Laplacians

L (K) := L up
i (K) + L down

i (K).

1This is sometimes called the integrated density of states or the spectral CDF.
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Note that in case i = 0 or i = dimK only one of the operators is non-zero.
The existence of such universal limiting functions for 0-up Laplacians of simplicial complexes

has been studied in [Kni15] for the particular case of div being barycentric subdivision. Our
main object is the d-down Laplacian which in general - i.e. for d > 1 - has no spectral
relationship to the 0-up Laplacian. However the i-up Laplacian has a strong spectral correlation
with the (i+1)-down Laplacian where their spectra are identical including multiplicities except
for the eigenvalue λ = 0. Thus in determining the spectral distribution of top-dimensional
Laplacians we have a degree of freedom of whether to choose the (d−1)-up or d-down Laplacian
to perform spectral analysis on; the choice of the d-down Laplacian will, however, prove to be
more suitable as we won’t have to compensate for changes in matrix size introduced by gluing
(see Section 3 for more details).

The sole dependence on dimK complements a result by Brenti and Welker, [BW08],
showing that the roots of f -polynomials of the sequence of iterated barycentric subdivisions of
a complex converge to a universal set of roots only depending on the dimension of K. Effects
of this kind can be attributed to the dominance of local features introduced by the repeated
subdivision.

Having established the existence of a universal limiting function a natural question to ask
is whether we can determine this function for given d and a inclusion-uniform subdivision
div. This question can be reduced to one on (signed) graph spectra when considering the
d-Laplacian as the graph Laplacian of the d-dual graph of K (as a signed graph). The
subdivision operation then induces an operation on the dual graphs by replacing every vertex
by a copy of a "fundamental graph" and joining them appropriately by edges. These joining
operations in turn depend on the edges of the given graph. We thus seek to analyze the effect
a graph operation induced by subdivision has on the spectrum. A variety of such spectral
effects of common graph operations is summarized in [BKPS18, Cve75], with one particular
example of a unary graph operation being the (barycentric) subdivision of a graph (regarded
as a 1-dimensional simplicial complex).

We say that a graph operation S : G 7→ S(G) admits "spectral decimation" if there is a
rational function fS such that the spectrum of S(G) consists of the solutions µ ∈ R of the
equations

λ = f(µ)

for λ in the spectrum of G (with eventual adjustment of multiplicities and up to some "small"
exceptional set E ). Thus S(G) only carries spectral information stemming from either G or S
(up to E ). The notion of spectral decimation originates from fractal analysis, e.g. [Jor10]. In
Section 4 we will describe how iterated subdivisions fit the framework of spectra of self-similar
graph sequences. Graph subdivision is one case for which a spectral decimation holds as long
as the input graph is regular, [BKPS18].

In order for spectral decimation to be applicable iteratively we need to assume the initial
graph G to be 2-regular. Then S(G) will again be 2-regular. For r-regular graphs G, r ≥ 3
S(G) is not regular anymore. However as the limiting distribution does not depend on G (as
we will see in Theorem I.1) we can pick the initial setting G at will - in particular we might
choose it to be 2-regular.

Note that the Laplacian of a 2-regular graph can be written as
L(G) = 2 · I −A(G)

where A(G) denotes the adjacency matrix of G and I is the identity matrix of proper size. Since
2-regularity is preserved under subdivision so is the relation between Laplacian and adjacency

6



K cdK cd2K

Figure 1.1: The first 3 complexes of the sequence of iterated application of cd for d = 2 for
the initial complex K = ∆(2) - the standard-2-simplex.

matrix. As a consequence of this the sequences of spectra of Laplacians and adjacency matrices
are related over an affine-linear transformation. In this particular case we obtain that the
eigenvalues of the adjacency matrix of S(G) are given by the roots of the polynomial equation

fA(ζ) = ζ2 − 2 = λ

for λ running over the set of eigenvalues of the adjacency matrix associated to the initial graph
G, as shown in [BKPS18] for example. In case such a decimation holds we call fA the spectral
decimation map. Analogously the spectral decimation map for the Laplacian spectrum in the
2-regular graph case is given by

fL(ζ) = ζ(4− ζ)

which can be seen through substituting by the affine-linear transformation of spectra discussed
above.

There are many subdivision procedures div which coincide with S on 1-dimensional
simplicial complexes. One natural question to ask is which of those generalizes S in a spectral
sense. In Section 3 we will find a higher-dimensional analogue of the above decimation for the
subdivision operation cd shown in Figure 1.1. For a complex K of dimension d cdK is obtained
from the (d−1)-skeleton K(d−1) by adding the barycenter vσ of every facet σ ∈ Fd(K) together
with the faces vσ ∪ τ for τ < σ. As we will see from this concrete example the determination
of an exact spectral decimation is much more involved in this case.

This work is structured as follows: Section 2 gives an introduction to the main objects
and frameworks used in the course of this paper. The Universal Limit Theorem, Theorem I.1,
is proven in Section 3. The universal limit of the subdivision cd is determined by Theorem
I.16 in Section 3. Lastly in Section 4 we point out the strong relation the spectral theory
for iterated subdivision has to fractal theory by giving a construction procedure of fractals
dualizing subdivision of a complex.

7
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Preliminaries

Basics on simplicial complexes

The following objects are defined in [HJ13] (even though the notation might vary). A thorough
introduction to simplicial topology and geometry can be found in [Mun18].

A simplicial complex K on a finite vertex set V is a collection of subsets of V downwards-
closed under ⊂, i.e. if A ⊂ B ∈ K then also A ∈ K. We denote by Fi(K) the collection of
sets of K of size i+ 1 and call those elements i-dimensional faces of K. The dimension of K
is the maximum dimension of a face in K.

We call a simplicial complex K oriented if for every face τ ∈ K we fix a linear ordering
of the vertices of τ . Two orientations of K are said to be equivalent if for every τ ∈ K
the orderings fixed for the vertices of τ are obtained from each other by applying an even
permutation, thus partitioning orientations of τ in two equivalence classes. If the orientation
fixed for τ is relevant we emphasize this by writing [τ ] instead of τ . The orientation opposite
to [τ ] is denoted by −[τ ]. We denote by Ci(K) the R-vector space over the basis elements
{e[τ ] | τ ∈ Fi(K)} and call Ci(K) the chain groups of K with coefficients in R. The opposite
orientations of elements of Fi(K) are interpreted as elements of Ci(K) by

e−[τ ] = −e[τ ].

C•(K) becomes a chain complex with the usual simplicial boundary operator,

∂i[v0, ..., vi] :=

i∑
j=0

(−1)je[v0,...,v̂j ,...,vi].

Further we equip Ci(K) with the standard inner product and denote by ∂∗i the operator
adjoint to ∂i with respect to the chosen inner products.

Now we are ready to define the Laplacian operators in different dimensions.

Definition I.2. Let K be an oriented simplicial complex and i ∈ N then we define

• the i-up Laplacian to be
L up

i (K) := ∂i+1∂
∗
i+1,

• the i-down Laplacian to be
L down

i (K) := ∂∗i ∂i

and

• the i-Laplacian to be
Li(K) := L down

i (K) + L up
i (K).

9



Note that by definition for a d-dimensional complex K it holds L up
d (K) = 0 and thus

Ld(K) = L down
d (K).

We will describe to combinatorics decoded by L down
d (K) in the following.

In order to model higher-dimensional adjacencies in K we will say τ, τ ′ ∈ Fi+1(K) are
(i+ 1)-down neighbors if they share a common i-face, i.e. τ ∩ τ ′ ∈ Fi(K). The i-dual graph
Γ(i)(K) of a complex K for us then is the graph on vertex set Fi(K) with edge set E modelling
the i-down adjacency, i.e. {τ, τ ′} ∈ E iff τ ∩ τ ′ ∈ Fi−1(K).

A signed graph G = (V,E, σ) is an undirected graph G with a function σ : E → {±1}
signing each edge. The degree of a vertex in a signed graph is the degree of a vertex in the
underlying undirected graph G = (V,E). Order the vertices of G arbitrarily and denote by
D(G) the diagonal matrix of degrees of vertices of G, D(G)ii = deg(vi), and A(G) the signed
adjacency matrix of G,

A(G)ij =

{
0 , {i, j} /∈ E

σ({i, j}) , {i, j} ∈ E
.

Note that the Laplacian of a simplicial complex then is a natural generalization of the graph
Laplacian

L (G) := D(G) +A(G)1

in the following sense:
By Proposition 3.3.3 of [Gol02] we have that for K an oriented simplicial complex it holds

that
L down

i (K) = L (Γ(i)(K), σ)

where the sign map σ : E → {±1} is given by
σ({τ, τ ′}) := δτ (τ ∩ τ ′) · δτ ′(τ ∩ τ ′)

for δτ : Fi−1(τ) → {±1} given as
δτ (ν) := 〈∂ie[τ ], e[ν]〉,

i.e. the coefficient of e[ν] in ∂ie[τ ]. This definition measures if the induced orientation of [τ ]
over ∂i coincides with the orientation [ν] fixed for ν. Thus if the induced orientations of [τ ]
and [τ ′] on τ ∩ τ ′ are the same we obtain

A(Γ(i)(K), σ)τ,τ ′ = 1

and if they differ
A(Γ(i)(K), σ)τ,τ ′ = −1.

In case τ and τ ′ are not even i-down neighbors the adjacency operator is zero in this entry.
A special case where this point of view is particularly interesting is the case of orientable

complexes. We say a pure d-dimensional simplicial complex K is orientable if there is an
orientation of K such that every pair of d-down neighboring faces {τ, τ ′} induces opposing
orientations on τ ∩ τ ′, i.e. in the above notation

σ({τ, τ ′}) = −1.

Thus σ ≡ −1 and the d-dual graph is just an undirected graph with Ld(K) being its ordinary
graph Laplacian. As mentioned above in what follows we will consider the case i = d = dimK
and will denote the top-dimensional Laplacian by L (K) := Ld(K).

1We obtain the common Laplacian operator for the sign σ ≡ −1 in this definition.
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Asymptotic spectral analysis

Definition I.3. Let L be a Hermitian N ×N matrix. We call the L1-function

Λ(L) =

N−1∑
j=1

λj(L)1[ j−1
N

, j
N
)

the shifted spectral quantile function of L.

Note that this notion originates from the fact that Λ(L) is a shift of the quantile function
of the spectral CDF

FL(x) =
1

N
#{i ∈ [N ] | λi(L) ≤ x}.

The quantile function of FL is given as

QL(p) =

N−1∑
j=1

λj(L)1[j/N,(j+1)/N) + λN (L)1{1}

and thus Λ(L) is the shift

Λ(L)(p) = QL(min(p+ 1/N, 1)).

For the rest of this work we will denote by || · ||norm
1 the normalized L1-norm of matrices,

i.e. for A ∈ CN×N

||A||norm
1 :=

||A||1
N

,

for the common L1 matrix-norm.
The following proposition is [LM99, inequality (1.2)]; we refer the reader to the sources

mentioned in the introduction therein.

Proposition I.4 (1-Wielandt-Hoffman inequality, [LM99]). Let L,E ∈MN (C) be Hermitian
matrices. It holds that

N∑
j=1

|λj(L+ E)− λj(L)| ≤
k∑

j=1

σj(E) = ||E||S1 ,

where σj(E) denotes the j-th singular value of E and || · ||S1 is the Schatten-1-norm.

Together with the fact that || · ||S1 ≤ || · ||12 we obtain the following useful corollary.

Corollary I.5. Let L,E ∈MN (C) be Hermitian matrices. It holds that

||Λ(L+ E)− Λ(L)||L1 ≤ ||E||norm
1 ,

where || · ||L1 denotes the L1([0, 1])-norm.

We will use this inequality in the proof of Theorem I.1 in a similar manner to how related
statements are used for the use of approximating class of sequences in GLT matrix theory, cf.
[GSC17].

2Which can easily be seen from the fact that the Schatten-1-norm is the nuclear norm for 2-tensors as
mentioned in [FL18] and the references therein.
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Tools for explicit spectral analysis

In order to exactly compute certain determinants or inverses under low-rank perturbations in
Section 3 we will use the following two convenient results.

Lemma I.6 (Sherman-Morrison-Woodbury formula, [SM50, Hag89]). Let A ∈ Rn×n, U ∈
Rn×m, V ∈ Rm×n. Assume A and Im − V A−1U are invertible. Then the inverse of A− UV
is given as

(A− UV )−1 = A−1 +A−1U(Im − V A−1U)−1V A−1.

In particular for m = 1, U = u ∈ Rn, V = v ∈ Rn we obtain the original Sherman-Morrison
formula

(A− uvt)−1 = A−1 +
A−1uvtA−1

1− vtA−1u
.

Lemma I.7 (Matrix Determinant Lemma, Theorem 18.1.1 of [Har97]). Let A ∈ Rn×n,
B ∈ Rm×m, U ∈ Rn×m, V ∈ Rm×n. It holds that

det(A+ UBV ) = detAdetB det(B−1 + V A−1U).

In the particular case of m = 1, B = 1 and vectors U = u ∈ Rm, V = v ∈ Rm we obtain

det(A+ uvt) = (1 + vtA−1u) detA.

The following result will help us resolve block matrix determinants.

Lemma I.8 (Schur-Renormalization, Theorem 13.3.8. of [Har97]). Let A ∈ Rn×n, B ∈ Rn×m,
C ∈ Rm×n, D ∈ Rm×m. Then it holds that

det

(
A B
C D

)
= det

(
D C
B A

)
= detAdet(D − CA−1B).

Iterated subdivisions of simplicial complexes

We will be using the notion of geometric subdivisions, cf. [Sta92], [Mun18, p. 83]. To
this end we assume every simplicial complex to be a geometric simplicial complex, i.e. be
embedded in some euclidean space for the rest of this subsection. This is no obstruction on
the simplicial complex as every abstract simplicial complex has a geometric realization, cf.
[Mun18, Theorem 3.1]. We will thus use the notions of geometric and abstract complexes
interchangably - assuming to have fixed some geometric realization of the initial complexes.
We assume the standard-d-simplex to be realized as conv(e1, ..., ed+1) ⊂ Rd+1 for the standard
basis {e1, ..., ed+1}.

Furthermore let d be a fixed dimension.

Definition I.9. A procedure div associating to a d-dimensional geometric complex K a
geometric complex divK is called a subdivision procedure if the following conditions hold:

(i) Every simplex of divK is contained in some simplex of K.

(ii) Every simplex of K is the union of finitely many simplices of divK.
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It is well-known that every subdivision divK induces a map s : divK → K associating to
a face σ ∈ divK the smallest face τ ∈ K such that σ is contained in τ . The subcomplexes
divK(τ) := s−1(2τ ) ≤ divK are called restrictions of divK to τ for τ ∈ Fi(K). divKτ
corresponds to the subdivision of τ as a face in K.

Definition I.10. A subdivision procedure div is said to be inclusion-uniform if for every
d-dimensional complex K and face τ ∈ K of dimension i, i ∈ {0, ..., d}, every possible
identification of τ with ∆i extends to an isomorphism between divKτ and div∆i, i.e. let
τ = conv(v0, ..., vi) and given a bijection f : {v0, ..., vi} → {e1, ..., ei+1} = F0(∆i) there exists
a unique simplicial isomorphism f̃ : divKτ → div∆i such that f̃|{v0,...,vi} = f .

An immediate consequence of the definition is that for two complexes K and L and
dedicated faces τ ∈ Fi(K), σ ∈ Fi(L) with a bijective vertex map π : F0(τ) → F0(σ) there is
a unique simplicial isomorphism

π̃ : divKτ → divLσ

such that π̃(v) = π(v) for v ∈ F0(τ).
Note that the barycentric subdivision - sd defined as the complex of increasing sequences

of faces (so called flags) in K is itself inclusion-uniform. inclusion-uniform subdivisions are
uniquely determined by a sequence of subdivisions div∆i of ∆i, i ∈ N, such that the restriction
of div∆i to σ is isomorphic to div∆i−1 for every σ ∈ Fi−1(∆i). Such a sequence is called a
subdivision scheme in the following. As the face number of the subdivided i-simplex is intrinsic
to div in what follows we will write

fi(div) := fi(div∆i),

i.e. fi(div) counts the number of facets the standard i-simplex gets subdivided in.
In particular inclusion-uniform subdivisions are a special case of repeatable subdivisions,

i.e. subdivisions which can be applied arbitrarily often to any initial complex K. This can be
seen by describing the procedure of subdividing according to div in an iterative manner. Let
K be a given d-dimensional complex, then the isomorphism type of divK can be obtained
from K and a subdivision scheme {div∆i}i=0,...,d by the following inductive construction: Set
K0 = F0(K).
Now let Ki be constructed for some 0 ≤ i < d. For every τ ∈ Fi+1(K) let τ = conv(v0, ..., vi+1).
Identify {v0, ..., vi+1} with {e1, ..., ei+2} arbitarily and let f̃ denote the isomorphism of divKτ
and div∆i+1 induced by this identification. Add to Ki the pre-image of f̃ and proceed with
the next (i+ 1)-face of K. This way we obtain Ki+1.

Note that since div is inclusion-uniform the construction does not depend on the chosen
identifications and thus Kd is isomorphic to divK. It is apparent by this procedure that div is
repeatable.

Furthermore in what follows we will call div finitely ramified or of finite ramification if

fd−1(div) = 1,

i.e. if div only acts non-trivially on d-faces. This notion is inspired by the fractal concept
underlying the spectral theory we are discussing in the upcoming section, see Section 4 for
this connection.

In order to prove the main theorem of this paper we will need another operation on
simplicial complexes.
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K
div K

Figure 2.1: Subdivision procedure which is not inclusion-uniform. See how there are edges
subdivided by one or two vertices or not even subdivided at all. Obviously those are not
isomorphic as simplicial complexes. Note also that the subdivision of the 2-face is not rotational
invariant which would be necessary for div to be inclusion-uniform.

Gluing and inclusion-uniform subdivisions

We now consider two formally disjoint d-dimensional complexes K and L. Let G be a relation
on the set F0(K)× F0(L). We write vGw for G (v, w).

Definition I.11. We say that G defines a gluing of K and L if the following holds:

• For every vertex v ∈ F0(K) there is at most one vertex w ∈ F0(L) such that vGw and
vice versa, i.e. let

G0(K) := {v ∈ F0(K) | ∃w∈F0(L) : vGw}

and G0(L) analogously, then there is a bijection ϕ : G0(K) → G0(L) such that vGw iff
w = ϕ(v).

• ϕ induces a well-defined simplicial isomorphism between K|G0(K)
and L|G0(L)

.

In the following we denote by G(K) and G(L) the vertex-induced subcomplexes K|G0(K)

and L|G0(L)
.

Note that since ϕ induces a well-defined simplicial isomorphism ϕ̃ between G(K) and G(L)
the glued complex

KG∗L := K t L/
∼G

is well-defined for ∼G being the relation on K × L generated by the relations σ ∼G ϕ̃(σ) for
σ ∈ G(K). Denote for a gluing G by ri(G ) the number of non-trivial relations

τ ∼G σ

for τ ∈ Fi(K), σ ∈ Fi(L).
Note that gluing procedures of more than two complexes can be defined inductively. In

this case we write
G∗(K1, ...,K`)

for the glued complex.
In the following let sK , sL, s denote the subdivision maps of K,L and KG∗L, respectively.

Given two complexes K and L let ιK : divK → div(KG∗L) and ιL : divL→ div(KG∗L) be the
natural geometrical inclusions induced by the inclusions ι′K : K → KG∗L and ι′L : L→ KG∗L
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over the isomorphism derived from Definition I.10, i.e. for every face τ = {v0, ..., vi} ∈ K we
define

ιK |divKτ
:= (̃ι′K)|τ .

This definition is compatible along boundaries and thus assembles to a well-defined injective
function (since s−1

K (τ) are disjoint sets for distinct τ ’s).
Obviously two faces in divK and divL can only be mapped onto the same face by ιK and

ιL in div(KG∗L) if they lie in some face in G(K) or G(L), respectively. Furthermore the union
of images imιK ∪ imιL exhausts div(KG∗L) and so div(KG ∗ L) can be obtained as a gluing
from divK and divL by identifying faces which are mapped the same face in div(KG∗L).

This gluing procedure is precisely given by the relation G ′ generated by

vG ′w

for v ∈ F0(divK) and w ∈ F0(divL) if ιK(v) = ιL(w). Thus

G0(divK) = F0(s
−1(G(K))), G0(divL) = F0(s

−1(G(L)))

and the bijection ϕ′ : G0(divK) → G0(divL) satisfying the two conditions of a gluing is given
by

ϕ′(v) := (̃ι′L)|σ
−1

◦ (̃ι′K)|τ (v) (2.1)
for τ := s−1

K (v) and σ := ι′−1
L ◦ ι′K(τ). By definition the simplicial map defined by ϕ′ is

compatible along boundaries and yields an isomorphism of the respective vertex-induced
subcomplexes.

By all the above we have

div(KG∗L) ∼= (divK)G ′
∗(divL).

Note that assuming rd(G ) = 0, i.e. G does not identify facets of K and L with each other,
the newly defined gluing G ′ satisfies

rd−1(G
′) = fd−1(div) · rd−1(G ).

We summarize this procedure in the following proposition for later use.
Proposition I.12 (Subdivision gluing). Let div denote a inclusion-uniform subdivision. Given
a gluing G of K and L satisfying rd(G ) = 0 there exists a gluing G ′ of divK and divL so that
div(KG∗L) = (divK)G ′

∗(divL) and

rd−1(G
′) = fd−1(div) · rd−1(G ).

The d-Laplacian operator of the glued complex has the form

∆(KG∗L) =

(
∆(K) +DK G

Gt ∆(L) +DL

)
,

where G maps a d-face τ of K to a sum of d-faces τ ′ of L (with some signs given by orientations)
if there are σ ∈ Fd−1(τ) and σ′ ∈ Fd−1(τ

′) such that σ ∼G σ′ and DK , DL are diagonal matrices
counting the (d−1)-faces for every d-face which are involved in gluing for K and L, respectively.
Thus if we denote by D the maximal down-degree of KG∗L we have

||DK ||L1 , ||DL||L1 ≤ D ·max(fd(K), fd(L))

and
||G||L1 ≤ rd−1(G ).
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The Universal Limit Theorem

Proof of the Universal Limit Theorem

Now that we have all relevant notions from the introductory section at hand we can prove the
main result of this paper, Theorem I.1.

The proof works in two steps which we will state in two propositions. The theorem then
follows from the combination of Propositions I.13 and I.14.

For the rest of the chapter let d and div as in Theorem I.1 be fixed. Note that the
non-triviality of div can be equivalently states as fd(div) > 1. Further let K be an arbitrary
initial d-dimensional complex. (Kn)n∈N denotes the sequence of complexes generated by
iterated application of div to the initial complex K, i.e. Kn := divnK = divKn−1, K0 = K.
Furthermore by Ln and Λn we denote the corresponding sequence of Laplacians and their
shifted spectral quantile functions Λ(Ln) ∈ L1([0, 1]), respectively. The claim is thus that Λn

converges towards a universal distribution of eigenvalues depending only on d.

Proposition I.13 (Dominance of local spectra). Let ∆d denote the standard-d-simplex. Then
in the setting of Theorem I.1 it holds that

||Λn − Λ(L (divn∆d))||L1
n→∞−−−→ 0,

i.e. the spectral quantile function of Kn is asymptotically L1-equivalent to the spectral quantile
function of the sequence obtained by subdividing ∆d.

What this means is that global features of the spectrum eventually become dominated by
the local features introduced by subdivision of a single simplex.

Proof. The proof esentially uses Corollary I.5 with a counting of non-zero entries which have
to be removed in order to transform Ln in a suitable block-diagonal form. This counting is
mainly performed by Proposition I.12.

As K is d-dimensional the only faces relevant for Ln are the faces in Fd(Kn) and their
down-adjacencies (with respect to an arbitrary orientation of K). Thus we can without loss of
generality assume K to be pure and consequently Kn to be pure aswell.

Let N := fd(K). Note that K can be written as a gluing of N standard-d-simplices by
purity;

K = G∗(∆d, ...,∆d),

where G is defined by the lower-adjecencies of the facets of K und some arbitrary identification
with the N copies of ∆d. In particular rd(G ) = 0.

Since div is inclusion-uniform the process of subdividing K corresponds to subdividing the
copies of ∆d according to its subdivision scheme {div∆i}i∈N under induced identification of
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their faces so that by iterated application of Proposition I.12 we can write Kn as

Kn = G (n)(divn∆d, ..., divn∆d).

Where the number of identifications of (d− 1)-faces is

rd−1(G
(n)) = (fd−1(div))nrd−1(G ).

Let Ln denote the sequence of Laplacians of divn∆d. Then the d-Laplacian of Kn is of the
form

Ln =



Ln +D1 G12 G13 ... G1N

Gt
12 Ln +D2 G23 ... G2N
... . . . . . . . . . ...
... . . . . . . G(N−1)N

Gt
1N ... Gt

(N−2)N Gt
(N−1)N Ln +DN

 ,

where Dk corrects the degrees on the diagonal of Ln along the boundary of the k-th copy of
divn∆d. This correction consists of addition by one for every (d− 1)-face of a d-face involved
in the gluing process defined by G (n). Let D be the maximal down-degree of the facets of K,
then

||Di||1 ≤ D · (fd−1(div))n.

Further Gij are the matrices containing the down-adjecencies added by gluing the copies
divn∆d according to G (n). Note that only rd−1(G ) of those Gij are non-zero matrices and the
non-zero Gij ’s have

||Gij ||1 ≤ (fd−1(div))n

so that in total by Corollary I.5 we have

||Λ(L (K̃n))−Λ(L (Kn))||L1 ≤ (ND + 2 · rd−1(G ))(fd−1(div))n
N · (fd(div))n ≤ (D+2·rd−1(G ))

(fd−1(div)
fd(div)

)n
.

where

K̃n =
N⊔
j=1

divn∆d

with Laplacian matrix
L (K̃n) = diag(Ln, ..., Ln).

Note that by this equation it holds that

Λ(K̃n) = Λ(divn∆d).

Thus the claim holds iff
fd−1(div) < fd(div).

This will be shown in Lemma I.15.

The above proposition immediately shows universality of a limiting function if it exists.
The following proposition shows its existence.
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Proposition I.14 (Convergence of local spectra). Let K = ∆d in the setting of Theorem I.1.
Then the sequence (Λn)n∈N converges in L1.

Proof. To this end we show that (Λn)n∈N is a Cauchy sequence - showing existence of a limit
by completeness of L1.

The sequence Kn in this case can be obtained as K0 = ∆d and

Kn = divn−1(div∆d).

Note that
div∆d = G (∆d, ...,∆d)

where G glues fd(div)-many d-faces along at most d+1
2 fd(div) (d− 1)-faces (note that div∆d

has to be a pseudo-manifold as a triangulation of the d-disk), i.e.

rd−1(G ) ≤ d+ 1

2
fd(div)

and
rd(G ) = 0.

Thus as in the above proposition we have

||Λn − Λ(

fd(div)⊔
i=1

Kn−1)︸ ︷︷ ︸
=Λn−1

||L1 ≤
(d+ 1 + d+1

2 fd(div))
fd(div)︸ ︷︷ ︸

=:c

(fd−1(div)
fd(div)

)n
.

We denote by

qd(div) := fd−1(div)
fd(div)

and will obtain from Lemma I.15
qd(div) < 1.

Denote by nm = fd(Km)/fd(Kn) = fd(div)m−n. Applying the above inequality m− n times,
m > n, we obtain by triangle inequality that

||Λm − Λ(

nm⊔
i=1

Kn)︸ ︷︷ ︸
=Λn

||L1 ≤ c

∞∑
i=n+1

qd(div)i n→∞−−−→ 0

where the right-hand side is a cut-off of a convergent geometric series. Thus (Λn)n∈N is a
Cauchy sequence. By the completeness of L1([0, 1]) we obtain the claim.

Lemma I.15. Let div be a non-trivial inclusion-uniform subdivision and qd(div) := fd−1(div)
fd(div) .

Then it holds that
qd(div) < 1.
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Proof. Assume that Fd(div∆d) has less or equal the amount of elements of Fd−1(div∆d−1).
Recall that div∆d is a subdivision of ∆d the standard d-simplex with boundary Fd−1(∆d) =
{σ0, ..., σd}. By definition every restriction div∆d

(σi) of div∆d onto σi results in a complex
isomorphic to div∆d−1. But by definition every τ ∈ Fd−1(div∆d

σi) is contained in σi and thus
must be contained in the boundary of some d-face of div∆d as this complex is homeomorphic
to a d-ball. In particular every facet τ of div∆d

σi is contained in a unique facet στ ∈ div∆d.
Obviously the strict inequality is thus false and equality would need to hold. Assume thus
that fd(div∆d) = fd−1(div∆d−1). Note that it is impossible for σ ∈ Fd(div∆d) to contain two
(d− 1)-faces in the same σi. This is immediate as by definition a inclusion-uniform subdivision
has to be geometric and thus every face σ ∈ Fd(div∆d) has to be spanned by (d+ 1) affinely
independent points. In case two codimension-1-faces of σ are contained in the same σi all
vertices of σ would be contained in (d− 1)-dimensional convex hull. A contradiction.

Thus it immediately follows from the above that

# {στ | i ∈ {0, ..., d}, τ ∈ Fd−1(div∆d
σi)}︸ ︷︷ ︸

=:M⊆Fd(div∆d)

= fd−1(div∆d−1)

because if we had a single unmatched simplex σ ∈ Fd(div∆d) \M we had

fd−1(div∆d−1) ≤ #M < fd(div∆d)

which contradicts the equality we assumed. Further since it is impossible for σ ∈ Fd(div∆d)
to contain two (d− 1)-faces in the same σi every σ ∈ Fd(div∆d) needs to be matched by faces
τi ∈ Fd−1(div∆d

σi), i = 0, ..., d. However, the only d-simplex σ ⊂ ∆d sufficing ∂σ ∩ ∆̊d = ∅ is
the full simplex itself. Thus div∆d

∼= ∆d and the subdivision is trivial. A contradiction to
non-triviality of div.

Example: Universal Limits of Cone Subdivision
The following section is devoted to the calculation of an explicit universal limit of an example
of finite ramification, i.e. a inclusion-uniform subdivision div such that fd−1(div) = 1. This
property will prove to be convenient in the application of the following method since self-
similarity will appear only in one block of our target matrix.

Let d be a given dimension. In the following we calculate the renormalization map for the
Cone subdivision which is a special case of finitely ramified subdivisions.

Let K be a simplicial complex and for every σ ∈ Fd(K) let vσ denote its barycenter. The
cone subdivision cdK of K is given by adding to K(d−1) the cone vσ ∗ ∂σ for every σ ∈ Fd(K).
Here K(d−1) denotes the (d− 1)-skeleton of K.
Theorem I.16. Let d > 1 and Pi and Qi be the sequences recursively obtained as

Pi := f−i(d+ 1), Qi := f−i(d+ 3)

for the polynomial
f(ζ) = ζ(d+ 3− ζ).

Then {Pi,Qi | i ∈ N} are mutually disjoint and the universal limit Λ
(cd)
d is the unique

increasing step function on [0, 1] attaining values in
∞⋃
i=0

Pi ∪
∞⋃
j=0

Qj
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such that x ∈ Pi ∪ Qi is attained on an interval of length
d− 1

2(d+ 1)i+1
.

(a) One dimensional limiting
distribution. Note that as
cd coincides with the barycen-
tric subdivision sd for graphs,
i.e. d = 1, and the
top-dimensional Laplacian is
the 1-down Laplacian in this
case the limiting distribution
Λ

(cd)
1 (x) = 4 sin2(πx/2) as

shown in [Kni15].

(b) For the two-dimensional
limiting distribution note that
the continuity of the one-
dimensional case does not hold
anymore as Λ(cd)

2 is a step func-
tion (Theorem I.16).

(c) For d = 3 and higher values
of d the steps of early eigenval-
ues tend to become larger while
the decrease in step length of
later eigenvalues enhances (cf.
the step lengths of eigenvalues
d + 1 and d − 1, i.e. P0 and
Q0).

(d) f(ζ) = ζ(4− ζ). (e) f(ζ) = ζ(5− ζ). (f) f(ζ) = ζ(6− ζ).

Figure 3.1: Limiting distributions Λ
(cd)
d for d = 1, 2, 3. Beneath each limit there is a plot of

the polynomial f generating the self-similarity of the distributions. The red rectangle shows
the range of the feasible values of elements in Pi and Qi.

Note that this theorem encodes information about spectral gaps of the limiting distributions
(i.e. ranges in which the total number of eigenvalues vanishes compared to the total number
of eigenvalues under cd). We can deduce such gaps from the polynomials f(ζ) = ζ(d+ 3− ζ)
as plotted in Figure 3.1. Note that values in the range f−1([0, d + 3]c) are never obtained
as a preimage of a value in Pi or Qi under f since Pi ∪ Qi ⊂ [0, d + 3]. Thus whenever
f leaves the range [0, d + 3] inside the interval [0, d + 3] those values can’t be obtained in
recursion anymore. Same holds true for the complete backwards orbit of this range under f
thus inducing gaps in Λ

(cd)
d for precisely these ranges.

We show Theorem I.16 by representing Ln (up to the degrees on the diagonal) as the
adjacency operator on the d-dual graph of cdn∆d in the following denoted by

Γn := Γ(d)(cdn∆d).

Subsequently we approximate Γn by a more convenient graph sequence to work with in terms
of asymptotics.
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Schreier graph approximation of Γn

Let Γn denote the d-dual graph of cdn∆d as above. In this section we will show in Proposition
I.18 that it is isomorphic to a Schreier graph on the n-th level of an action of a particular self-
similar group with a slight error. This error is introduced by the Schreier graph approximation;
this is due to the fact that Schreier graphs are regular while Γn has boundary nodes of degree
d though the other (interior) nodes have degree d+ 1. Thus in order to approximate Γn by a
sequence of Schreier graphs we introduce loops on the boundary to artificially make the graph
(d+ 1)-regular. Before we state and prove Proposition I.18 we will need a few definitions and
constructions.

To this end we quickly introduce notions of self-similar groups as in [GNŠ15] and [DGL20].
Our aim is to reformulate the setting by a group G acting on a k-ary tree T so that the
Schreier graph of G on the n-th level of the tree is isomorphic to Γn. This will prove to be
useful since it allows for a recursive block-description of the adjacency operator of Γn in terms
of a representation of the generators of G.

Since every d-facet of K gets replaced by (d+1) copies of a d-simplex under cd the natural
choice is k = d+ 1 and T is the tree with vertex set X∗, the words of finite length over the
alphabet X = [d+ 1], with root ∅ (the empty word) and adjacencies given by right-adjunction
of a single symbol, i.e. the word w has children of the form wx for x ∈ X. We will further use
the notation X∗ of the vertex set of T for T itself. Note that by this definition the n-th level
of X∗ is the set Xn of words of length n over X.

Now in order to obtain a self-similar Schreier graph sequence from Xn we define what
a self-similar group is by action on X∗. To this end consider the group Aut(X∗) of all
automorphisms of the (d + 1)-ary tree X∗. Its elements are bijections of the set X∗ onto
itself which fix the root ∅ and preserve adjacency relations. Note that for a vertex v ∈ Xn on
level n the subtree Tv is isomorphic to T itself by the n-fold left-shift w1...wk 7→ wn+1...wk.
Thus every automorphism ϕ ∈ Aut(X∗) is given by a permutation σ ∈ SX of the first level
X1 = X and a tuple of (d+ 1) elements describing how ϕ acts on the subtrees Tv ∼= X∗ for
each v ∈ X1, i.e.

(ϕ1, ..., ϕd+1) ∈ Aut(X∗)d+1.

We now say that a subgroup G ≤ Aut(X∗) is self-similar if for every ϕ ∈ G the elements
ϕ1, ..., ϕd+1 are themselves elements of G.

Having a self-similar group G and a finite set of generators S the sequence of Schreier
graphs defined by G (with respect to S) is given by Gn := (Xn, En) where En is defined over
S by

En := {(w, s · w) | w ∈ Xn, s ∈ S}.

Note that in case {s−1 | s ∈ S} = S we obtain an undirected graph. Also observe that if S
acts such that for every w ∈ Xn and s1, s2 ∈ S from s1 · w = s2 · w it follows that s1 = s2 the
adjacency matrix of Gn is given by

A(Gn) =
∑
s∈S

ρ(s)

for the representation ρ : G → GL|Xn|(C) defined by the action of G on Xn under some
identification of Xn with [|Xn|], i.e. let ι : Xn → [|Xn|] be a bijection, then for ϕ ∈ G let
ρ(ϕ) · eι(w) = eι(ϕ·w). In particular every ρ(ϕ) is a permutation matrix.
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Since the graph Γn to be approximated does not contain loops we introduce the notion of
the reduced Schreier graph G̃n defined by G (with respect to S) as the graph Gn with loops
removed. We say that Gn approximates a graph sequence Γn if G̃n is isomorphic to Γn and
for `(Gn) the number of loops of Gn it holds that

`(Gn) � v(Gn),

i.e. Gn is obtained (up to isomorphism) from Γn by adding an asymptotically small number of
loops. Note that the motivation for this notion of approximating sequences is due to Corollary
I.5 since the addition of loops to Γn corresponds to the addition or subtraction of `(Gn)-many
ones along the diagonal of A(Γn) or L (Γn), respectively. Thus

||ΛL (Γn) − ΛL (Gn)||L1 ≤ `(Gn)

v(Gn)

n→∞−−−→ 0

so that if we want to describe Λ
(cd)
d from Theorem I.1 a spectral decimation of Gn suffices

which will be more convenient to work with in this manner.
We will now show that the sequence of graphs Γn is approximated by the Schreier graph

sequence Gn generated by the action of the following group G ≤ Aut(X∗): First consider the
cyclic permutation

α = ((d+ 1) d (d− 1) ... 2 1) ∈ SX

and the automorphism a applying α to the last letter of the given word, i.e.

a(wx) = wα(x)

for w ∈ Xn−1, x ∈ X. Note that a is of order d+ 1 and consider the cyclic group A generated
by a. Its n-th level Schreier graph with respect to S = {a, a2, ..., ad} is the graph consisting of
(d+ 1)n−1 disjoint copies of Kd+1, one for each set of the form

{wx | x ∈ X}

with w ∈ Xn−1 fixed. The copies of Kd+1 here correspond to copies of the dual graph of cd∆d.
In order to model the adjacencies between these copies we need to introduce another group
generator b.

Let b be given by the following self-similar description

b(wx) =

{
ad+1−x(w) · (d+ 1− x) , x 6= d+ 1

b(w) · x , x = d+ 1

and initial condition b(i) = i for i ∈ X. Here · denotes the concatenation of a word with a
letter. Note that the initial condition includes loops in the Schreier graph Gn.

Let G be the group generated by a and b. In order to show that Gn approximates Γn we
analyze the elementary cell of our subdivision sequence (cf. Figure 3.2 for the case d = 2 and
n = 3).

Lemma I.17. Γ1 = Γ(d)(cd∆d) is isomorphic to the complete graph Kd+1 where the vertices
of Kd+1 are in bijection with the boundary faces Fd−1(∆d) over the map σ 7→ v ∗ σ for v being
the barycenter of ∆d.
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Figure 3.2: Schreier graphs generated by the choices {a}, {a2}, {b} and {a, a2, b} of generators
S and the group G generated by S.

Proof. To this end note first that by definition every d-face of cd∆d shares a common (d− 1)-
face with every other d-face. This follows from the fact that cd∆d is defined as the cone over
the boundary of the standard-d-simplex,

cd∆d = v ∗ ∂∆d

with v its barycenter. Note that every facet σ ∈ Fd−1(∂∆d) thus corresponds to the unique
facet v ∪ σ ∈ Fd(cd∆d) by definition of the cone complex. This correspondence is bijective.
Furthermore two facets v ∪ σ1, v ∪ σ2 ∈ Fd(cd∆d) share a common (d − 1)-face iff σ1 and
σ2 share a common (d − 2)-face. But now every two (d − 1)-faces of ∂∆d share a common
(d− 2)-face. This is due to the fact that every facet σ ∈ Fd−1(∂∆d) has exactly one opposing
vertex wσ. Every other facet τ of ∂∆d can then be obtained as

wσ ∪ (σ \ {wτ}).

Note that the common (d− 2)-face of τ and σ then is

σ \ {wτ}.

We will now define a bijection Fd(cdn∆d) ∼= Xn which will turn out to be a graph
isomorphism of Γn and G̃n. This bijection can be thought of as an addressing scheme or a
labeling of the facets of cdn∆d.

Obviously the only facet of ∆d = cd0∆d gets mapped to the empty word ∅. Next choose
an arbitrary labeling of Fd(cd∆d) ∼= X. Let the labeling ϕn−1 for cdn−1∆d be defined; let
s : Fd(cdn∆d) → Fd(cdn−1∆d) be the subdivision map restricted to d-faces. Note that under
cd every ν ∈ Fd(cdn−1∆d) gets replaced by d+ 1 new d-facets of the form

vν ∗ σ

for σ ∈ Fd−1(ν). Further let p denote the parental map on level n in X∗, i.e.

p : Xn → Xn−1; wx 7→ w.

Given τ ∈ Fd(cdn∆d) we will define ϕn : Fd(cdn∆d) → Xn such that

p ◦ ϕn = ϕn−1 ◦ s, (3.1)

i.e. the d + 1 children of ϕn−1(ν) in X∗ are identified with the d + 1 facets added for
ν ∈ Fd(cdn−1∆d). Thus in order to define ϕn it suffices to give a bijective map iν : s−1(ν) → X.
Consider vν ∗ σ ∈ s−1(ν), i.e. σ ∈ Fd−1(ν), then we define iν depending on a variety of cases
for σ:

24



• In case σ is boundary, i.e. σ has no cofaces besides ν, we set iν(vν ∗ σ) = d+ 1.

• Otherwise σ has another unique coface ν ′ ∈ Fd(cdn−1∆d), ν ′ 6= ν. Then we have another
two cases;

– Either p◦ϕn−1(ν
′) = p◦ϕn−1(ν) then by equation (3.1) there exists τ ∈ Fd(cdn−2∆d)

such that
s(ν) = s(ν ′) = τ.

Let ` ∈ {1, ..., d} such that

iτ (ν
′) ≡ iτ (ν) + ` (mod d+ 1)

then set
iν(vν ∗ σ) = `.

– or p ◦ ϕn−1(ν
′) 6= p ◦ ϕn−1(ν) then let iν(vν ∗ σ) = d+ 1.

Note that this definition of iν is a well-defined bijection because there is always only one
outwards pointing face of every facet, i.e. a face which is either boundary or has another
coface which is not a child node of a common facet in cdn−2∆d. Furthermore when assuming
ν fixed every facet ν ′ which shares a (d− 1)-face with ν which is not outwards pointing (i.e.
s(ν) = s(ν ′)) defines a unique value of ` since iτ is a bijection.

Proposition I.18. ϕn defines an isomorphism of the graphs Γn and G̃n. Furthermore Gn

has d+ 1 loops, i.e. Gn approximates Γn.

Proof. We already know that the map ϕn : Fd(cd∆d) → Xn is a bijection. Note that the
respective sets are the vertex sets of Γn and Gn, respectively.

Thus in order to obtain an isomorphism we have the show that the edges are in bijection
over ϕn aswell.

We proceed by induction. For n = 1 the claim is obviously true: {a, ..., ad} introduces the
complete Kd+1

∼= Γ1 in G1 and b acts trivially on X - thus introducing a loop on every vertex
in G1. In particular ϕ1 introduces an isomorphism between G̃1 and Γ1.

Now we will show that every edge in Γn corresponds to the application of b or a power of
a on the right-hand side under ϕn (up to loops resulting from application of b). Note that the
edges of Gn are precisely the edges of this form. Let τ ∈ Fd(cdn∆d) be given and let

ν := s(τ)

aswell as
τ = vν ∗ σ

for some σ ∈ Fd−1(ν). Note that by this as mentioned above τ shares a common (d− 1)-face
with every other face τ ′ ∈ s−1(τ) of the form

τ ′ = vν ∗ σ′

for σ′ ∈ Fd−1(ν). Let iν(τ) and iν(τ
′) be as above so that

ϕn(τ) = ϕn−1(ν) · iν(τ)
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G0

G2

G3

G1

...
Figure 3.3: The Schreier graph approximation Gn for n ∈ {0, 1, 2} for d = 2. Note the
structure of the ternary tree indicated by the positions of the triangles K3 under every node
of one layer above.

26



and
ϕn(τ

′) = ϕn−1(ν) · iν(τ ′).

Further let ` be such that
iν(τ

′) ≡ iν(τ) + ` (mod d+ 1)

then by definition of a it is immediate that

a`(ϕn(τ)) = ϕn−1(ν) · α`(iν(τ)) = ϕn−1(ν) · iν(τ ′) = ϕn(τ
′).

Thus the edge
(ϕn(τ), ϕn(τ

′))

is contained in Gn for every τ ′. Note also that since for fixed τ every value of ` ∈ {1, ..., d}
occurs for τ ′ and thus all edges introduced by action of a in Gn are of this form.

Thus the only other edge incident to ϕn(τ) in Gn is the edge

(ϕn(τ), b(ϕn(τ))).

The only other (d− 1)-face of τ which has a coface that is not interior to ν is σ ≤ τ . Note
that σ is itself a (d− 1)-face of ν by definition. This (d− 1)-face is either boundary in which
case by definition

ϕn(τ) = i(d+ 1)...(d+ 1)

for arbitrary i ∈ X and thus b acts on ϕn(τ) as

b(ϕn(τ)) = b(i)(d+ 1)...(d+ 1)

with b(i) = i. Thus b(ϕn(τ)) = ϕn(τ) and the corresponding edge in Gn is the loop

(ϕn(τ), ϕn(τ))

on the boundary face. Note that there are d+ 1-many words of this form i(d+ 1)...(d+ 1).
Thus d + 1 loops are included on the boundary faces; those loops are added to Γn by the
transition to Γ̃n.

In case that there is another coface τ ′ of σ in cdn∆d we apply b to ϕn(τ) and need to
differentiate between cases in the definition of b:

In case iν(τ) = (d+ 1) we have

b(ϕn(τ)) = b(ϕn−1(ν))(d+ 1)

Note by definition of ϕn this case corresponds to the case where ν and ν ′ = s(τ ′) are not
interior to a common d-facet in cdn−2∆d. Obviously by symmetry of the fact that τ ′ = vν′ ∗ σ
and σ being a face of ν ′ and ν not being interior to a common d-facet in cdn−2∆d we obtain
that iν′(τ ′) = d+ 1 and thus

ϕn(τ
′) = ϕn−1(ν

′)(d+ 1).

But now since ν and ν ′ are not interior to a common d-facet of cdn−2∆d by the induction
hypothesis we have

ϕn−1(ν
′) = b(ϕn−1(ν)

and in particular

b(ϕn(τ)) = b(ϕn−1(ν)) · (d+ 1) = ϕn−1(ν
′) · (d+ 1) = ϕn(τ

′).
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In particular the edge
(ϕn(τ), ϕn(τ

′))

is in Gn and obviously the corresponding edge (τ, τ ′) is in Γn as τ and τ ′ are d-down neighbors.
The last case is when iν(τ) 6= d + 1. Again let ν ′ = s(τ ′). By definition of ϕn we then

have a d-facet µ ∈ cdn−2∆d such that ν and ν ′ are in the interior of µ. In particular iν(τ) = `
where ` is the unique integer in {1, ..., d} such that

iµ(ν
′) ≡ iµ(ν) + ` (mod d+ 1).

By symmetry of this equation we have

iν′(τ
′) = d+ 1− `

in particular. Application of b gives us

b(ϕn(τ)) = ad+1−`(ϕn−1(ν))(d+ 1− `)

it thus suffices that ad+1−`(ϕn−1(ν)) = ϕn−1(ν
′) in order to establish the claim. This is

obvious now; ad+1−` acts on Xn−1 by leaving the first n− 2 letters fixed and sending the last
letter x to the unique representative in {1, ..., d} of

(x+ `) + (d+ 1)Z;

in particular it sends iµ(ν) onto iµ(ν ′) and thus

ad+1−`(ϕn−1(ν)) = ϕn−2(µ) · iµ(ν ′) = ϕn−1(ν
′).

Thus
b(ϕn(τ)) = ϕn(τ

′)

and the edge
(ϕn(τ), ϕn(τ

′))

is contained in Gn as
(ϕn(τ), b(ϕn(τ)).

Now we have described the sequence Γn (up to loops) as a Schreier graph of a self-similar
group acting on a (d+1)-ary tree in the sense of [GS06]. This viewpoint will be convenient since
it gives immediate self-similar descriptions of the Laplacian operator in terms of representations
of group elements in a matrix algebra of increasing order.

By all the above it follows that the adjacency matrix of Gn has the form

Ξn := A(Gn) =


1 1 ... 1

1
. . . ...

... . . . 1
1 . . . 1 1


︸ ︷︷ ︸

=:Jn

+


an−1

...
adn−1

bn−1


︸ ︷︷ ︸

=:bn

−1(d+1)n
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where an ∈M(d+1)n(C) is given as

an = a0 ⊗ 1(d+1)n−1

and

a0 :=



0 1 0 . . . 0
... . . . . . . ...
... . . . . . . ...
0

. . . 1
1 0 . . . . . . 0


; b0 := 0 ∈Md+1(C);

though the initial condition b0 of b is irrelevant for the asymptotic distribution and thus we
might also include loops by setting b0 equal to the identity - obtaining the Schreier graph
sequence for the hanoi tower group on 3 pegs in case d = 2.

Note that an and bn are the representations of the generators a and b in GL(d+1)n(C) as
described above. The block structure results from reverse lexicographic ordering, i.e. the i-th
column and i-th row correspond to the words of the form ∗... ∗ i.

Further we let
Ξn(µ, λ) = λJn + bn − (λ+ µ)1(d+1)n

and
Dn(µ, λ) = detΞn(µ, λ).

In particular the map µ 7→ Dn(µ, 1) is the characteristic polynomial of the adjacency matrix
Ξn.

Note that in order to apply Schur-Renormalization we need to determine the determinant
of the d× d upper-left block of Ξn which we will denote by X in the following (we drop the
subscript n in order to maintain readability).

Note that we have

Dn(µ, λ) = detX · det(b− µ1(d+1)n−1 − λ2ΓX(µ, λ)),

where ΓX(µ, λ) denotes the block-coronal of X in this case, i.e.

ΓX(µ, λ) = 1td ·X−11d,

where
1d = (1(d+1)n−1 , ..., 1(d+1)n−1︸ ︷︷ ︸

d−times

)t.

n will always be inferrable from context.
In order to determine ΓX we will consider X as a matrix over the algebra An ≤M(d+1)n(C)

generated by an - which in fact as the group algebra of C6 is a commutative algebra. How
this will help us becomes clear in the following sections.

The procedure applied here was developed by Grigorchuk et al. in order to calculate
spectra of Schreier graphs associated to groups acting on k-ary trees, e.g. in [GS06, BG99].
We will use the same approach but from a different viewpoint as our starting point is not the
group but rather the graph sequence in a self-similar sense. It is important though that the
sequence is representable as a Schreier graph sequence of some group action on the complete
k-ary tree in order to determine the adjacency matrix in a simple manner.
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Some elementary properties of the algebra A

First note that the algebras An are all isomorphic to A0 via tensoring by 1(d+1)n−1 . Thus we
will denote by A the generic group algebra of C6 commonly realized by A0. The following
results thus also hold in an analogous version over An.

Proposition I.19. Let µ, λ be given so that

x := µ1d+1 + λ
d∑

i=1

ai ∈ A

is non-singular, then

x−1 =
1

(µ− λ)(µ+ dλ)

(
(µ+ (d− 1)λ)1d+1 − λ

d∑
i=1

ai
)
.

Proof. We decompose x as

x = (µ− λ)1d+1 + λ1d+1 · 1td+1

and apply the Sherman-Morrison formula, Lemma I.6, to yield

x−1 =
1

µ− λ
1d+1 −

1

(µ− λ)2
λ1d+1 · 1td+1

1 + λ
µ−λ1

t
d+11d+1

=
1

µ− λ
1d+1 −

λ

(µ− λ)(µ+ dλ)
1d+1 · 1td+1.

In particular we have

x−1 =
1

(µ− λ)(µ+ dλ)

(
(µ+ (d− 1)λ)1d+1 − λ

d∑
i=1

ai
)
.

In order to compute determinants of block matrices with blocks in A we might use the
following result relating the usual determinant with the determinant defined in the same way
over A , i.e. for A ∈ A k×k let

detAA :=
∑
σ∈Sk

sgnσA1σ(1)...Akσ(k) ∈ A ,

where Aij ∈ A is the block at index (i, j) as usual.

Proposition I.20 ([Sil00]). The usual determinant det factorizes over detA , i.e. for any
k × k block matrix A ∈ A k×k with blocks in the commutative matrix algebra A it holds that

detA = det detAA.

In particular we also can compute the determinant of X from the beginning of the section
as

detdetAX,

where detA X in this case is a circulant matrix - of which the determinant is readily calculable
by general formulae. A formula of this type needed in the subsequent section will be given by
the following lemma.
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Lemma I.21.

det(µ · 1d+1 + λ

d∑
i=1

ai) = (µ+ dλ)(µ− λ)d.

Proof. This determinant is easily calculated by the Matrix Determinant Lemma, Lemma I.7,
after a trivial reparameterization as before;

µ · 1d+1 + λ
d∑

i=1

ai = (µ− λ)1d+1 + λ1d+11
t
d+1

so that

det(µ·1d+1+λ

d∑
i=1

ai) =
(
1+

(d+ 1)λ

µ− λ

)
det((µ−λ)1d+1) =

µ+ dλ

µ− λ
(µ−λ)d+1 = (µ+dλ)(µ−λ)d.

Recursion of Dn via renormalization by ΓX

In order to determine the renormalization maps we need to calculate the matrix coronal of X
- which will be given by the following lemma.

Lemma I.22. The block-linear system

X · v = 1d

is solved by

v = x−1 � (ai + µ+ λ)di=1
1

iff x = (µ+ λ)(λ(d− 1)− µ) + 1 + λ
∑d

i=1 a
i is non-singular.

Proof. We just check that

X · ṽ = x1d

for

ṽ = (ai + µ+ λ)di=1.

In case d+ 1 is even we need to handle the case j = d+1
2 for the following seperately. For all

1Here � denotes the scalar-multiplication over A ; the notation is derived from the common notation ◦ for
the Hadamard product in combination with · for the scalar multiplication
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other cases we have

(X · ṽ)j = −µ(aj + µ+ λ) + (λ+ aj)(ad+1−j + µ+ λ) +
d∑

i=1
i/∈{j,d+1−j}

λ(ai + µ+ λ)

= −µaj − µ(µ+ λ) + λ(ad+1−j + µ+ λ) + ad+1 + aj(µ+ λ) + λ
d∑

i=1
i/∈{j,d+1−j}

(ai + µ+ λ)

= −µ(µ+ λ) + ad+1 + λaj + λ

d∑
i=1
i 6=j

(ai + µ+ λ)

= −µ(µ+ λ) + 1 + λ
d∑

i=1

ai + λ(d− 1)(µ+ λ)

= (λ(d− 1)− µ)(µ+ λ) + λ

d∑
i=1

ai + 1 = x.

In case d+ 1 is even and j = d+1
2 we have

(X · ṽ)j = (aj − µ)(aj + µ+ λ) +
∑
i=1
i 6=j

λ(ai + µ+ λ)

= a2j + aj(µ+ λ)− µ(aj + µ+ λ) + λ
d∑

i=1
i 6=j

(ai + µ+ λ)

= 1 + λaj − µ(µ+ λ) + λ

d∑
i=1
i 6=j

(ai + µ+ λ)

= −µ(µ+ λ) + λ

d∑
i=1

ai + λ(d− 1)(µ+ λ)

= (λ(d− 1)− µ)(µ+ λ) + λ

d∑
i=1

ai + 1 = x.

Thus in every case we obtain the matrix x and so we have

Xṽ = x� 1d.

In what follows for x, y ∈ A we will simply write x
y for x−1y which is a well-defined fraction

since A is a commutative algebra.

Corollary I.23. We have

ΓX(µ, λ) = x−1(

d∑
i=1

ai + d(µ+ λ)) =

∑d
i=1 a

i + d(µ+ λ)

λ
∑d

i=1 a
i + 1 + (λ(d− 1)− µ)(µ+ λ)

.
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The renormalization is now determined by ΓX over the coefficients of x−1.

Proposition I.24. Let α := (µ+ λ)(λ(d− 1)− µ) + 1− λ, then we have

x−1 =
1

α(α+ (d+ 1)λ)

(
(α+ dλ) · 1(d+1)n−1 − λ ·

d∑
i=1

ai
)
.

In particular the matrix coronal of X is given as

ΓX(µ, λ) =
1

α(α+ (d+ 1)λ)

((
(α+ dλ)d(µ+ λ)− dλ

)
1(d+1)n−1 +

(
α+ λ− dλ(µ+ λ)

) d∑
i=1

ai
)
.

Proof. The formula of x−1 can easily be inferred from Proposition I.19.
Furthermore note that

ΓX(µ, λ) =
1

α(α+ (d+ 1)λ)
((α+ dλ)1(d+1)n−1 − λ

d∑
i=1

ai)(
d∑

i=1

ai + d(µ+ λ))

=
1

α(α+ (d+ 1)λ)
(α+ dλ− λd(µ+ λ))

d∑
i=1

ai + (α+ dλ)d(µ+ λ)1(d+1)n−1 − λ(

d∑
i=1

ai)2

and

(
d∑

i=1

ai)2 = d1(d+1)n−1 + (d− 1)
d∑

i=1

ai

obtaining the wanted representation of ΓX(µ, λ).

Now let
µ′ = µ+

λ2

α(α+ (d+ 1)λ)

(
(α+ dλ)d(µ+ λ)− dλ

)
and

λ′ = − λ2

α(α+ (d+ 1)λ)

(
α+ λ− dλ(µ+ λ)

)
.

Corollary I.25. We have

Dn(µ, λ) = detX ·Dn−1(µ
′, λ′).

Proof. By Schur Renormalization, Lemma I.8, we have

Dn(µ, λ) = detX det(b− µ · 1(d+1)n−1 − λ2ΓX(µ, λ))

= detX det
(
b− λ2

α(α+ (d+ 1)λ)

(
α+ λ− dλ(µ+ λ)

)
︸ ︷︷ ︸

=λ′

d∑
i=1

ai

−
(
µ+

λ2

α(α+ (d+ 1)λ)

(
(α+ dλ)d(µ+ λ)− dλ

))
︸ ︷︷ ︸

=µ′

1(d+1)n−1

)

and thus the formula follows from above proposition.
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In order to facilitate computation in what follows we give a factorization of the terms in
µ′ and λ′ from ΓX(µ, λ).

Lemma I.26. We have

µ′ = µ+
dλ2((d− 1)λ2 + (d− 2)λµ− µ2 + µ)

((d− 1)λ− µ+ 1)((d− 1)λ2 + (d− 2)λµ− λ− µ2 + 1)

and
λ′ =

λ2(λ+ µ− 1)

((d− 1)λ− µ+ 1)((d− 1)λ2 + (d− 2)λµ− λ− µ2 + 1)

Proof. First expand α as

α = (d− 1)λ2 + (d− 2)λµ− λ− µ2 + 1.

Observe that in our given factorization this is the final form of this term. The degree one term
in the denominator stems from α+ (d+ 1)λ which expands as

α+ (d+ 1)λ = (d− 1)λ2 + (d− 2)λµ+ dλ− µ2 + 1 = (λ+ µ+ 1)((d− 1)λ− µ+ 1).

We will show that both numerators are divisible by (λ+ µ+ 1) - resulting in this term being
cancelled.

Let s0 and s1 denote the numerators of the quotients in µ′ and λ′ ignoring λ2 respectively,
i.e.

s0 := (α+ dλ)d(µ+ λ)− dλ

and
s1 := α+ λ− dλ(µ+ λ)

with respective expansions

s0 = d
(
(d− 1)λ3 + (2d− 3)λ2µ+ (d− 1)λ2 + (d− 3)λµ2 + (d− 1)λµ− µ3 + µ

)
s1 = −λ2 − 2λµ− µ2 + 1.

From here the claimed factorization

s0 = d(λ+ µ+ 1)((d− 1)λ2 + (d− 2)λµ− µ2 + µ)

s1 = −(λ+ µ− 1)(λ+ µ+ 1)

is easily verified.

Calculation of detX

In this subsection we will drop the subscript from a0 and will simply denote it by a as every
calculation is performed over A = A0.

We decompose X0 as
X0 = λ1d1

t
d +A− (µ+ λ)1d︸ ︷︷ ︸

=:Y

for

A =

 a
...

ad

 .
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Proposition I.27. We have

detAX0 = (1 + λΓY (µ, λ))
(
(µ+ λ− 1)(µ+ λ+ 1)

)bd/2c ·{1 , d even
−µ− λ+ a

d+1
2 , d odd

.

Proof. First we apply the matrix determinant lemma to obtain

detAX0 = detA (Y + λ1d1
t
d) = detA Y · detA (1 + λ1tdY

−11d).

Note now that the right-most matrix is a 1× 1 block matrix and as such has determinant

detA (1 + λ1tdY
−11d) = 1 + λΓY (µ, λ)

over A .
We now compute detA Y by bringing Y into upper-triangular form. For d even one

upper-triangular form is 

−µ− λ a
. . . ...

−µ− λ ad/2

0 β
... . . .

0 β


by elementary transformations, where β = −µ− λ+ ad+1

µ+λ = −µ− λ+ 1
µ+λ

For d odd a similar upper-triangular form looks like

−µ− λ a
. . . ...

−µ− λ a
d−1
2

−µ− λ+ a
d+1
2

0 β
... . . .

0 β


.

Thus

detA Y =

{
(−µ− λ)d/2βd/2 , d even
(−µ− λ)(d−1)/2β(d−1)/2(−µ− λ+ a

d+1
2 ) , d odd

By β = 1−(µ+λ)2

µ+λ we obtain

(−µ− λ)β = (µ+ λ)2 − 1 = (µ+ λ− 1)(µ+ λ+ 1)

and consequently

detA Y =
(
(µ+ λ− 1)(µ+ λ+ 1)

)bd/2c{1 , d even
−µ− λ+ a

d+1
2 , d odd

.
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Lemma I.28. The block-linear system

Y · v = 1d

is solved by
v =

1

1− (λ+ µ)2
(ai + µ+ λ)di=1.

In particular it holds that

ΓY (µ) =

∑d
i=1 a

i + d(µ+ λ)

1− (µ+ λ)2
.

Proof. This fact is again easily checked by calculations. Let ṽ := (ai + µ + λ)di=1; for every
i 6= (d+ 1)/2 it holds that

(Y ·ṽ)i = −(µ+λ)(ai+µ+λ)+ai(ad−i+1+µ+λ) = 1−(µ+λ)ai−(µ+λ)2+ai(µ+λ) = 1−(µ+λ)2.

In case d is odd and i = (d+ 1)/2 we have

(Y · ṽ)i = (a(d+1)/2 − (µ+ λ))(a(d+1)/2 + µ+ λ) = 1− (µ+ λ)2

thus showing the claim.

In order to obtain the determinant of X0 we need to calculate the determinant of −(µ+

λ) + a
d+1
2 for d odd now.

Lemma I.29. Assume d is odd. Then

det(−(µ+ λ) + a
d+1
2 ) = (µ+ λ+ 1)

d+1
2 (µ+ λ− 1)

d+1
2 .

Proof. Similar to the upper-triangular form of Y we might bring this matrix into the upper-
triangular form 

−(µ+ λ) 1
. . . . . .

−(µ+ λ) 1
0 β

. . . . . .
0 β


for β = −µ− λ+ 1

µ+λ = 1−(µ+λ)2

µ+λ . Consequently

det(−(µ+ λ) + a
d+1
2 ) =

(
− (µ+ λ) · β

) d+1
2 =

(
(µ+ λ− 1)(µ+ λ+ 1)

) d+1
2

showing the claim.

Thus we are ready to calculate the determinant of X0.

Proposition I.30. Let φ(µ, λ) := µ2 − (d− 1)λ2 − (d− 2)λµ− 1, then

detX0 = (µ− (d− 1)λ− 1)(µ+ λ+ 1)(φ(µ, λ) + λ)d((µ+ λ)2 − 1)(
d+1
2
)−(d+1).
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Proof. Combining the last two lemmata with Proposition I.27 we first obtain for d odd

det detAX0 = det(1 + λΓY (µ, λ))
(
(µ+ λ− 1)(µ+ λ+ 1)

)(d+1)·(d−1)/2 ·
(
(µ+ λ− 1)(µ+ λ+ 1)

)(d+1)/2

= det(1 + λΓY (µ, λ))
(
(µ+ λ− 1)(µ+ λ+ 1)

)(d+1
2
)

= det(1 + λΓY (µ, λ))
(
(µ+ λ)2 − 1

)(d+1
2
)
,

while for d even we can directly infer this equality from the proposition.
Now note that by Lemma I.28 the left-most term becomes

det(1 + λΓY (µ, λ)) =
1

(1− (µ+ λ)2)d+1
det(1− (µ+ λ)2 + dλ(µ+ λ) + λ

d∑
i=1

ai).

Note that

1− (µ+ λ)2 + dλ(µ+ λ) = 1− µ2 + (d− 2)λµ+ (d− 1)λ2 = −φ(µ, λ).

This determinant has been determined in Lemma I.21 - yielding

det(φ(µ, λ) + λ

d∑
i=1

ai) = (−φ(µ, λ) + dλ)(−φ(µ, λ)− λ)d.

In total we obtain

det detAX0 = (−1)d+1(−φ(µ, λ) + dλ)(−φ(µ, λ)− λ)d((µ+ λ)2 − 1)(
d+1
2
)−(d+1)

and thus the postulated form follows from the easy to verify factorization

φ(µ, λ)− dλ = (µ− (d− 1)λ− 1)(µ+ λ+ 1).

Unidimensional Spectral Decimation of detΞn

In the preceding section we have deduced a spectral connection between subsequent subdivision
steps, i.e. from the recursion presented in Corollary I.25 we are able to compute a factorization
of the complete auxiliary spectrum - which is the set of roots of Dn(µ, λ) in R2.

This spectral set can be decomposed into hyperbolae as we will see which provides us with
a way to also deduce the unidimensional spectral decimation stated in Theorem I.16. So what
we will show now is that the same procedure as in [GS06] is applicable to the case of arbitrary
d, i.e. the coefficient changes and the term (d− 2)λµ which will appears in µ′ for d > 2 does
not form an obstruction to spectral decimation.

The main tool for the deduction of unidimensional spectral decimation for d = 2 in [GS06]
is semi-conjugacy of the renormalization F to f : R → R; ζ 7→ ζ2 − ζ − 3. Semi-conjugacy
means that there is a suitable way to map R2 to R so that this parameter mapping Ψ identifies
F with f .

This semi-conjugacy will in fact stay intact for d > 2, though for the unidimensional map

f(ζ) = ζ2 − (d− 1)ζ − (d+ 1)
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and the parameter mapping

Ψ(µ, λ) :=
µ2 − 1− (d− 1)λµ− dλ2

λ
=:

Φ(µ, λ)

λ

as will be shown in the following lemma.

Lemma I.31. F is semi-conjugate to f over Ψ, i.e.

Ψ ◦ F = f ◦Ψ.

Proof. This claim can be verified by high-school algebra.

Now in order to obtain spectral decimation we only need to analyze the behaviour of the
factors of detX0 under renormalization F . To this end we will use the semi-conjugacy of F to
the 1-dimensional map f .

Analogously to [GS06] let

Φθ(µ, λ) := Φ(µ, λ)− θλ = λ(Ψ(µ, λ)− θ) = µ2 − 1− (d− 1)λµ− dλ2 − θλ

L(µ, λ) = µ− (d− 1)λ− 1

K(µ, λ) = φ(µ, λ) + λ = µ2 − (d− 1)λ2 − (d− 2)λµ+ λ− 1

A1(µ, λ) = λ+ µ− 1

so that
λ′ =

λ2A1(µ, λ)

L(µ, λ)K(µ, λ)
.

Then the semi-conjugacy gives us the following lemma as in [GS06].

Lemma I.32. Let θ ∈ [−2, d+ 1] and θ0, θ1 be the two distinct real roots of f(x)− θ. Then
we have

A1

LK
Φθ0Φθ1 = Φθ ◦ F.

Proof. It holds that

Φθ ◦ F = λ′(Ψ ◦ F − θ) = λ′(f ◦Ψ− θ) =
λ2A1

LK
(Ψ− θ0)(Ψ− θ1) =

A1

LK
Φθ0Φθ1 .

One last thing that remains to calculate is the initial polynomial D1(µ, λ). Note that

Ξ1(µ, λ) = (−µ+ 1)1d+1 + λ
d∑

i=1

ai

so that
D1(µ, λ) = −(µ− 1− dλ)(−µ+ 1− λ)d = (−1)d+1(µ− 1− dλ)︸ ︷︷ ︸

=:D0(µ,λ)

Ad
1.

Now let

An(µ, λ) =

{
µ+ λ− 1 , n = 1∏

θ∈f−(n−2)(0)Φθ , n > 1
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Bn(µ, λ) =

{
µ+ λ+ 1 , n = 2∏

θ∈f−(n−3)(−2)Φθ , n > 2

so that by Proposition I.30 it holds true that

detX0 = LB2K
d(A1B2)

(d+1
2
)−(d+1).

Note here that the quadratic maps Φθ are defining the hyperbolae in which the bidimensional
auxiliary spectrum can be decomposed, i.e. in which Dn is factorizable (see Proposition I.34).
Now in order to factorize Dn into Ai’s and Bi’s we need to state the behaviour of the factors
of detX0 under composition with F .

Lemma I.33. The following relations with respect to F hold:

D0 ◦ F =
D0

L
A1

A1 ◦ F =
A1

K
A2

For n ≥ 2:
An ◦ F =

( A1

LK

)2n−2

An+1

B2 ◦ F =
B2

K
B3

For n ≥ 3:
Bn ◦ F =

( A1

LK

)2n−3

Bn+1

Proof. The above lemma allows us to show the claims involving n directly as

An ◦ F =
∏

θ∈f−(n−2)(0)

Φθ ◦ F =
( A1

LK

)2n−2 ∏
θ∈f−(n−1)(0)

Φθ =
( A1

LK

)2n−2

An+1.

The respective claim for B can be shown in a similar fashion. The claims not involving n can
again be verified by high-school algebra. It should be noted that A2 = Φ, B3 = Φ+ 2λ

Proposition I.34. The determinant Dn(µ, λ) factorizes as

D1 = D0A
d
1

Dn = D0A
αn
1 ...Aα1

n Bβn
2 ...Bβ2

n

for n ≥ 2, where the sequences (αn)n≥1, (βn)n≥2 are given by

αn = βn + d, βn =
d− 1

2
((d+ 1)n−1 − 1)

for n ≥ 2 and α1 = d.
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Proof. For n = 1 we have shown the factorization of D1 above.
We now proceed by induction. In order to ease notation we denote for a function g(µ, λ)

the renormalized function g ◦ F by g′.
Let n ≥ 2 and assume the factorization holds for n− 1. By the above we have

Dn =
(
LB2K

d(A1B2)
(d+1

2
)−(d+1)

)(d+1)n−2

D′
n−1

=
(
LB2K

d(A1B2)
(d+1

2
)−(d+1)

)(d+1)n−2

D′
0 · (A′

1)
αn−1 · ... · (A′

n−1)
α1 · (B′

2)
βn−1 · ... · (B′

n−1)
β2

=
(
LB2K

d(A1B2)
(d+1

2
)−(d+1)

)(d+1)n−2D0A1

L

(A1A2

K

)αn−1
( A1

LK

)σn

A
αn−2

3 ...Aα1
n

(B2B3

K

)βn−1

B
βn−2

4 ...Bβ2
n

where

σn = (αn−2 + 2αn−3 + ...+ 2n−3α1) + (βn−2 + 2βn−3 + ...+ 2n−4β2) (3.2)

for n > 2 and σ2 = 0. Furthermore for ease of notation let cd :=
(
d+1
2

)
− (d+ 1).

The above equation for Dn implies that the following equations are necessary for the
induction to hold:

αn = cd(d+ 1)n−2 + σn + αn−1 + 1 (3.3)

βn = (cd + 1)(d+ 1)n−2 + βn−1 (3.4)

The values of α, β and σ are determined in by the subsequent Lemma I.35 to be:

βn =
cd + 1

d
((d+ 1)n−1 − 1)

αn = βn + d

σn = (d+ 1)n−2 − 1

for n > 2. Further note that cd+1
d = d−1

2 .
Now having the sequences α, β, σ at hand we can verify that these are also sufficient for

the induction; this is done by showing that all copies of L and K cancel out. So for the K’s it
must hold true that

d(d+ 1)n−2 = αn−1 + σn + βn−1 =
(
2
cd + 1

d
+ 1

)
(d+ 1)n−2 −

(
2
cd + 1

d
+ 1

)
+ d.

Taking into consideration that
2
cd + 1

d
+ 1 = d

we obtain the validity of the claim.
For the L’s we have to check

(d+ 1)n−2 = 1 + σn

which already has been verified before.
Thus after the proper reordering and canceling of the terms we obtain

Dn = D0A
αn
1 ...Aα1

n Bβn
2 ...Bβ2

n

which is the claimed factorization.
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Lemma I.35. Equations (3.2), (3.3) and (3.4) together with the initial values

α1 = d, β1 = 0

imply that
σn = (d+ 1)n−2 − 1,

βn =
cd + 1

d
((d+ 1)n−1 − 1),

αn = βn + d.

Proof. Using geometric series it follows that

βn = (cd + 1)
n−2∑
i=0

(d+ 1)i =
cd + 1

d
((d+ 1)n−1 − 1).

In order to determine α and σ we need to perform an intertwined induction on both. We
claim that

σn = (d+ 1)n−2 − 1

for n ≥ 3,
σ1 = σ2 = 0

and
αn = βn + d

for n ≥ 1 and β1 = 0.
Obviously those claims are easily verified for n ≤ 2. We will show the claim for n > 2 by

induction. Assume the claims hold for n− 1. By (3.2) for n we have

σn = αn−2 + βn−2 + 2σn−1 = (d+ 1)n−3
(
2
cd + 1

d
+ 2

)
+ d−

(
2
cd + 1

d
+ 2

)
.

Note now by definition of cd we have

2
cd + 1

d
+ 2 = 2

cd + d+ 1

d
= d+ 1

whence
σn = (d+ 1)n−2 − 1.

Further by (3.3) we obtain

αn = cd(d+ 1)n−2 + (d+ 1)n−2 + αn−1

which is solved under the initial condition α1 = d just as (3.4) by

αn = βn + d.

The following proposition is the analogon of Theorem I.16 for the adjacency spectrum.
Theorem I.16 will then follow immediately.

41



Proposition I.36. Let d > 1 and Ai and Bi be the sequences recursively obtained as

Ai := g−i(0), Bi := g−i(−2)

for the polynomial
g(ζ) = ζ2 − (d− 1)ζ − (d+ 1).

Then {Ai,Bi | i ∈ N} are mutually disjoint and the sequence of shifted spectral quantile
functions

Λ(A(Gn)) = Λ(Ξn)

converges to the unique increasing step function Λ on [0, 1] attaining values in

∞⋃
i=0

Ai ∪
∞⋃
j=0

Bj

such that for x ∈ Ai ∪ Bi the value (d+ 1)− x is attained on an interval of length

d− 1

2(d+ 1)i+1

in L1([0, 1]).

Proof. The claims follow immediately from the factorization provided for Dn(µ, λ) in Propo-
sition I.34 - note that the eigenvalues of Ξn are given by the roots of Dn(µ, 1). Under the
assumption λ = 1 we obtain the following relations

D0(µ, 1) = µ− (d+ 1),

A1(µ, 1) = µ,

B1(µ, 1) = µ+ 2,

Φ(µ, 1) = g(µ),

Φθ(µ, 1) = g(µ)− θ.

Giving us the full description of the spectral distribution. The multiplicities are given by the
exponents with which the factors appear.

Thus by Ai = g−i(0) and Bi = g−i(−2) the spectrum of Ξn as a set decomposes as

n−1⋃
i=0

Ai ∪
n−2⋃
i=0

Bi.

We will show that this is in fact a partition (i.e. {Ai,Bi | i ∈ N} are mutually disjoint).
Furthermore by the above equations the eigenvalues in Ai and Bi are precisely the roots of
the factors Ai+1 and Bi+2 which occur with exponent αn−i and βn−i in Dn, respectively.

In what follows we will also see that the factors Ai and Bi do not have multiple roots so
that the multiplicities of eigenvalues of Ξn in Ai and Bi are αn−i and βn−i, respectively.
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The mutual disjointness of Ai with any Bj can be seen in the following way: First note
that g(c · (d+ 1)) > c · (d+ 1) for every c > 1;

g(c · (d+ 1)) = c2(d+ 1)2 − c(d− 1)(d+ 1)− (d+ 1)

= (d+ 1)(c2(d+ 1)− c(d− 1)− 1)

> (d+ 1)(c(d+ 1)− c(d− 1)− 1)

= (d+ 1)(2c− 1)

> c(d+ 1)

Thus if for given x the sequence gn(x) surpasses the value (d+1) it must be strictly increasing.
Assume now that there is x ∈ Ai such that there is j ∈ Bj with x ∈ Bj . In this case we

have
gi(x) = 0

and
gj(x) = −2.

Thus in case i < j we have found that

gj−i(0) = −2

and in case i > j we obtain
gi−j(−2) = 0.

We will exclude both cases by observing the first few elements of the sequence before it is
forced to be strictly increasing by the above observation. Note that

g(0) = −(d+ 1) 6= −2

since d > 1. Furthermore

g2(0) = f(−(d+ 1)) = (d+ 1)(d+ 1 + d− 1− 1) = (d+ 1) (2d− 1)︸ ︷︷ ︸
>1

thus not attaining the value −2.
For the sequence with x = −2 we have

g(−2) = 4 + 2(d− 1)− (d+ 1) = d+ 1

and
g(d+ 1) = (d+ 1)(d+ 1− (d− 1)− 1) = (d+ 1)

thus stabilizing at d+ 1 not attaining 0.
This way we have seen that Ai and Bj must be disjoint. To see the mutual disjointness

of the A ’s assume there is x such that x ∈ Ai ∩ Aj and assume further that i < j. Then
obviously we have

gj−i(0) = 0

which we have shown to be false.
For the B’s assume analogously that there is x ∈ Bi ∩ Bj such that i < j. Then again

gj−i(−2) = −2.
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But this is false since the sequence stabilizes at d+1 immediately. Thus the mutual disjointness
of {Ai,Bi | i ∈ N} follows.

That Ai and Bi do not have multiple roots can be obtained as follows: Obviously A1 and
B2 do not have multiple roots. The roots of Ai+1 and Bi+1 are obtained from the roots of
Ai and Bi, respectively, by taking g−1, i.e. if λ is a root of Ai it induces two roots of Ai+1,
namely {

d− 1

2
±

√(d− 1

2

)2
+ (d+ 1) + λ

}
.

In particular Ai+1 does split in two sets

Ai+1 = A +
i+1 ∪ A −

i+1

each in bijection to Ai over the maps d−1
2 + r, d−1

2 − r for

r(x) =

√(d− 1

2

)2
+ (d+ 1) + x.

Note that r is non-negative and r(x) = 0 iff x = −(1 + ((d+ 1)/2)2) < −2 since d > 1. Thus
the sets A +

i and A −
i have to be disjoint and thus no roots of Ai can be multiple. Analogously

we obtain the same for Bi.
Now we will show the convergence of the spectral cdf of Gn towards the function Λ claimed

to be the limit.
The convergence of Λn = Λ(A(Gn)) = Λ(Ξn) towards the increasing step function Λ with

step values in
⋃∞

i=0 Ai ∪
⋃∞

i=1 Bi and step length
d− 1

2(d+ 1)i+1

for values in Ai∪Bi follows from the fact that the step length of eigenvalues λ ∈ Ai or λ ∈ Bi

in Λn is given by
αn−i

(d+ 1)n
=
d− 1

2

(d+ 1)n−i−1

(d+ 1)n
+

d+ 1

2(d+ 1)n
n→∞−−−→ d− 1

2(d+ 1)i+1

or
βn−i

(d+ 1)n
=
d− 1

2

(d+ 1)n−i−1

(d+ 1)n
− d− 1

2(d+ 1)n
n→∞−−−→ d− 1

2(d+ 1)i+1
,

respectively.
Thus the step lengths of the steps in Λn converge uniformly towards their respective step

length in Λ and the values not attained by Λn are
∞⋃
i=n

Ai ∪
∞⋃

i=n−1

Bi.

They are attained by Λ on a joint volume of
∞∑
i=n

2i
d− 1

2(d+ 1)i+1
+

∞∑
i=n−1

2i
d− 1

2(d+ 1)i+1
= 2n−1 d− 1

2(d+ 1)n
+

∞∑
i=n

2i
d− 1

(d+ 1)i+1

d6=1
= 2n−2 d− 1

(d+ 1)n
+

2n

(d+ 1)n

=
2n−2(d+ 3)

(d+ 1)n
.
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Obviously since d+ 1 > 2 this volume vanishes asymptotically.
Thus for ε > 0 there exists n0 ∈ N such that for every n ≥ n0 it holds that

2n−2(d+ 3)

(d+ 1)n
< ε

so that also
δ :=

d+ 1

2(d+ 1)n
<

d+ 1

2n−1(d+ 3)
ε.

Let such an n be fixed for now; then by the above considerations we might modify Λ by
setting all steps with values in

∞⋃
i=n

Ai ∪
∞⋃

i=n−1

Bi

to zero, i.e.
Λ̃(x) := Λ(x) · 1Λ(x)∈F

for

F =

n−1⋃
i=0

Ai ∪
n−2⋃
i=0

Bi.

Obviously since the absolute values of elements in
⋃∞

i=0 Ai ∪
⋃∞

i=0 Bi are bounded by d+ 1
from the above we obtain

||Λ− Λ̃||L1([0,1]) < ε · (d+ 1).

Note that Λ− Λ̃ is supported on a set of measure less than ε.
Subsequently we do the same modification for Λn, i.e. Λ̃n(x) := Λn(x) · 1Λ(x)∈F so that

both Λ̃ and Λ̃n are zero on Λ−1(F c). We obviously have by the same reasoning as for Λ that

||Λ̃n − Λn||L1([0,1]) < ε(d+ 1).

Thus on Λ−1(F c) Λ̃ aswell as Λ̃n are zero so that we might consider both functions to
be step function on [0, 1− ε) (this can be done because we modified Λ only on a countable
union of intervals from [0, 1]). We will denote those step functions by Λ̃ and Λ̃n aswell as their
L1-distance stay the same under this transition.

Now order the eigenvalues in F as

λ1 < ... < λk

and note that

k =

n−1∑
i=0

2i +

n−2∑
i=0

2i = 2n + 2n−1 − 2.

Furthermore denote by `i and `′i the length of the step with value λi in Λ̃ and Λ̃n, respectively.
Note that `′i might be 0 if the entire step of λi in Λn was contained in Λ−1(F c).

As both Λ̃ and Λ̃n have the same finite image set F we can bound the L1 distance in terms
of their jumps. Note that the discrepancy δi := |`i − `′i| induces a shift in the subsequent steps
by δi where the shift is accounted for in L1-distance by the integration of every subsequent
jump over an interval of length δi. We decompose δi in two parts;

δi ≤ δ + fi,
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where δ is the discrepancy introduced by the differing length of steps coming from Λ and Λn

themselves while fi is introduced by deleting parts of the steps in the process of going over to
Λ̃n from Λn. Since the range on which we delete is of measure ε we obtain

k∑
i=1

fi = ε.

Thus letting the jump height of the i-th jump be hi = λi+1 − λi we obtain

||Λ̃− Λ̃n||L1([0,1−ε)) ≤
k∑

i=1

δi

k−1∑
j=i

hj

≤
k∑

i=1

δ

k−1∑
j=i

hj +

k∑
i=1

fi

k−1∑
j=i

hj .

Obviously
∑k−1

j=i hj ≤ d+ 3 since F ⊂ [−2, d+ 1]. Thus using
∑k

i=1 fi = ε

||Λ̃− Λ̃n||L1([0,1−ε)) ≤ (d+ 3)(kδ + ε).

This can be bounded using the equations for δ and k by

kδ < (2n + 2n−1 − 2)
d+ 1

2n−1(d+ 3)
ε < 3

d+ 1

d+ 3
ε.

Thus
||Λ̃− Λ̃n||L1([0,1−ε)) < (3(d+ 1) + d+ 3)ε = (4d+ 6)ε;

showing the claim.

Proof of Theorem I.16. Theorem I.16 immediately follows from Proposition I.36 by the obser-
vation

∆n = ∆(cdn∆d) = (d+ 1) · I −A(Gn) = (d+ 1) · I − Ξn.

Thus the spectral cdfs satisfy the following condition:

Λ(∆n)(x) = (d+ 1)− Λ(Ξn)(1− x).

So that by definition both limits are equal if for the shifting function σ(x) := (d+ 1)− x
we have

Pi = σ(Ai)

Qi = σ(Bi)

for every i.
For i = 0 this is obviously true since σ(0) = d+ 1 and σ(−2) = d+ 3 and for i > 0 we can

see this by the following inductive consideration:
Let λ ∈ Ai then g−1(λ) ⊆ Ai+1. Let λ′ ∈ Ai+1 be given so that

g(λ′) = λ.

For µ = σ(λ) ∈ Pi we obtain µ′ = σ(λ′) from µ over f as follows:
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d+ 1− µ = λ = g(λ′)

= (d+ 1− µ′)2 − (d− 1)(d+ 1− µ′)− (d+ 1)

= d+ 1− (d+ 3)µ′ + (µ′)2

= d+ 1− f(µ′).

Thus µ = f(µ′). The same calculation gives us the equality of Pi and σ(Ai). Thus the
induction holds.

Analogously we can see Qi = σ(Bi) and so the limit of Λ(∆n) is the claimed step
function.

Example: Barycentric Subdivision for d = 2

Barycentric subdivision is an inclusion-uniform subdivision (in all dimensions) as one readily
checks. As mentioned in the introduction for d = 1 the universal limit is determined (see
Section 3 on the cone division as the two procedures coincide for d = 1).

Unfortunately already for d = 2 the determination of the universal limit was not accessible
by the framework presented here; the reason being that as soon as the input dimension dimK
is greater than or equal 2 the associated fractal is not finitely ramified anymore (see Section 4).
Note that the spectral analysis of non-finitely ramified fractals is generally considered a hard
task in fractal analysis. For some fractals symmetry arguments can augment the computation
and make a universal limit accessible (see Section 3).

The role finite ramification plays in the calculation of e.g. the universal limit of the cone
division will become clear from the Schreier graph approximation of the dual graph associated
to barycentric subdivision. We proceed similar to the Schreier graph approximation of the
previous example.

Assume the input complex K has dimension d = 2. As every facet of K gets subdivided
into 6 triangles we will construct the dual graph Γn := Γ(2)(sdn∆d) as the Schreier graph of a
subgroup G acting on a rooted senary (i.e. 6-ary) tree of infinite depth. Again let T denote
this tree and let X be a set of 6 elements so that the vertex set of T can be associated to X∗,
e.g. X = [6]. We will further denote T itself by X∗.

Note again that given a self-similar subgroup G ≤ Aut(X∗) and a set of generators S ⊆ G
we denote the n-th level Schreier graph (with respect to S) by

Gn := (Xn, En),

where
En := {(w, s · w) | w ∈ Xn, s ∈ S}.

In order to obtain an undirected graph we assume {s−1 | s ∈ S} = S. Furthermore we want
S to act on Xn so that for every w ∈ Xn and s1, s2 ∈ S from s1 · w = s2 · w it follows that
s1 = s2. This way the adjacency matrix of Gn can be expressed in terms of representations of
the elements s as

A(Gn) =
∑
s∈S

ρ(s),

where ρ(s) is the permutation matrix representation of the action of s on the elements of Xn.
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We will now determine a set of three elements generating the subgroup G of Aut(X∗) which
induces as a Schreier graph sequence the sequence of dual graphs of barycentric subdivisions
of ∆2.

The first two elements generate the dual graph in the interior of every subdivided triangle,
i.e. a hexagon for each elementary cell. We will order the facets of sdσ of every σ ∈ F2(sdn−1∆2)
cyclically as shown in 3.4.

1

2

3 4

5

6

Figure 3.4: Internal numbering scheme of the faces of sdσ.

Let τ∗ and t∗ denote the involutions

τ∗(wx) := wτ(x),

t∗(wx) := wt(x)

for the permutations τ, t ∈ S6 given by

τ = (12)(34)(56)

t = (16)(23)(45).

Similar to the group generated by a in last section t and τ will generate a fixed graph in every
elementary cell, i.e. wX := {wx | x ∈ X}, and so the n-th level Schreier graph of C with
respect to S = {τ, t} is a graph of hexagons - one for each cell wX := {wi | i ∈ X}. See τ
and t in Figure 3.5 to see how they generate the hexagons in each cell.

Now we define b and then show that this indeed models the adjacencies of barycentric
subdivision. Let

b(wx) :=


τ∗(w)x , x ∈ {1, 2}
t∗(w)x , x ∈ {3, 4}
b(w)x , x ∈ {5, 6}

.

and b(x) = x for x ∈ [6].
Remark 1. Note that the last condition is what prevents us from applying the same procedure
as in the previous section; while we can handle the appearance of multiple copies of "fixed"
matrices like t∗ and τ∗ in A(Gn) it is not convenient to apply Schur renormalization when a
recurrent matrix like b appears in multiple blocks. This is due to the fact that in this case we
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Figure 3.5: Decomposition of the dual graph of sd2∆2 in Schreier graphs of the generator
elements τ, t, b. The dual graph of sd2∆2 is illustrated via dotted lines.

need to invert sums αt∗ + βτ∗ + γb+ η · 1 for reals α, β, γ, η which (in this case) introduces
terms of the form t∗b, τ∗b and so in order to obtain a full recursion we would need to introduce
another auxiliary parameter (such as λ in the previous section); this has the effect that it
fills the matrix with λ-scaled copies of b in even more blocks so that computation is not
feasible. Thus we see that finite ramification is indeed an important feature as finitely ramified
subdivisions only have one recurrent block in the matrix representation.

Theorem I.37. Gn as defined above approximates Γ(2)(sdn∆2).

Proof. We will show this result by introducing an addressing scheme of the facets of sdn∆2.
We will define this scheme inductively. Let nσ(ν) for σ ∈ sdn−1∆2 and ν ∈ sdσ ⊆ F2(sdn∆2)

denote the number of ν in σ then ν has an address n(ν) ∈ Xn given by

n(ν) = n∆2(σ1)nσ1(σ2)...nσn−1(ν),

where σi ∈ F2(sdi∆2) is a sequence such that σi+1 ∈ F2(sdσi) and ν ∈ F2(σn−1). In case
n = 1 we set n(ν) = n∆2(ν).

Note that in case nσ(ν) 6= nσ(ν
′) for ν 6= ν ′ this addressing scheme is a bijection between

the vertex set of the n-th layer of X∗, i.e. Xn, and F2(sdn∆2).
Now we will define this addressing scheme in a way that it has further favorable properties.

First for every edge e ∈ F1(sdn−1∆2) and every coface e ≤ σ ∈ F2(sdn−1∆2) we introduce a
number ισ(e) ∈ [3]. If n = 1 we will enumerate the three edges arbitrarily so that each edge
has a unique number. For n > 1 there are three cases which we will differentiate. The first case
is that e is "outwards pointing" from σ, which means that there is a facet σ′ ∈ F2(sdn−2∆2)
such that σ ∈ sdσ′ and e is contained in the boundary of σ′. In this case we set ισ(e) = 3.

If e is an internal edge, i.e. there is a face σ′ ∈ F2(sdn−2∆2) such that σ ∈ sdσ′ and e is
not contained in the boundary of σ′, we differentiate the case if e contains a vertex of ν nor
not. If so ισ(e) = 2 and if not ισ(e) = 1. See Figure 3.6 for the ordering of the edges.

Note that indeed the number ισ(e) is indepednent of σ. However we will keep this notation
as a different ordering might be chosen leading to different group generators inducing this as a
Schreier graph.

Now that every facet σ ∈ F2(sdn−1∆2) has an edge ordering we can order its vertices dual
to it, i.e. if τ1, τ2, τ3 are the edges of σ so that ισ(τi) = i we can order the vertices as

σ = (σ \ τ1, σ \ τ2, σ \ τ3).
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Figure 3.6: Edge numbering scheme ισ(e).

It is immediate to see (e.g. by a symmetry argument) that the orientations induced by
e < σ, σ′ on an edge e ∈ F1(sdn−1∆2) agree.

Furthermore this edge ordering induces a canonical ordering of the facets ν of sdσ. For
every edge e ∈ F1(σ) let e1, e2 denote the edges into which e gets subdivided. We choose the
numbering e1, e2 to be consistent with the orientation of e induced by the orientation of σ,
i.e. if e = (v, w) for vertices v, w ∈ F0(σ) we let e1 be the edge incident to v and e2 the edge
incident to w. Then let

nσ(ei ∗ vσ) := 2(ισ(e)− 1) + i.

Since neighboring simplices σ, σ′ ∈ F2(sdn−1∆2) induce the same orientation on e = σ ∩ σ′
and ισ(e) = ισ′(e) we have that for every ν ∈ F1(sdσ)

nσ(ν ∗ vσ) = nσ′(ν ∗ vσ′).

Note that for every ν ∗ vσ in Γ(2)(sdn∆2) there are two edges for adjacencies internal to σ
and possibly one outwards pointing edge. By definition of nσ if nσ(ν ∗ vσ) = i the internal
adjacencies are with i − 1 (or 6 in case i = 1) and i + 1 (or 1 in case i = 6). Note that if
i is odd then τ(i) = i + 1 so that the adjacency to the above is given by τ∗ on Xn, while
t(i) = i− 1 for i 6= 1 and t(1) = 6 so that the adjacency to the lower vertices is given by t∗.
One can argue analogously for i even.

In case ν is a boundary edge we do not have another edge in Γ(2)(sdn∆2) but note that in
this case the address has to consist purely of the numbers 5 and 6 by definition (since every
edge containing ν in the sequence has to have number 3) so that b(n(ν ∗ vσ)) = n(ν ∗ vσ) and
in Gn we have a loop instead. If ν ∗ vσ is incident to another face ν ∗ vσ′ σ and σ′ have to be
adjacent to each other. Note that by nσ(ν ∗ vσ) = nσ′(ν ∗ vσ′) and by definition of b we thus
only need to check that

pn(b(n(ν ∗ vσ))) = pn(b(n(ν ∗ vσ′))),

where pn : Xn → Xn−1 is the map neglecting the last number, i.e. pn(wx) = w. In
case σ, σ′ ∈ sdσ′′ for σ′′ ∈ F2(sdn−2∆2) then by the above we have τ∗(n(σ)) = n(σ′) or
t(n(σ)) = n(σ′) (in the respective cases); by definition of nσ′′ it is readily checked that these
cases are consistent with the definition of b.
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If σ and σ′ are not contained in a facet σ′′ ∈ F2(sdn−2∆2) then there are γ, γ′ ∈
F2(sdn−2∆2), γ 6= γ′, σ ∈ sdγ and σ′ ∈ sdγ′ such that the adjacency of σ and σ′ is out-
wards pointing and so nγ(σ) = nγ′(σ′). Note that in this case b(n(σ)) = b(n(γ))nγ(σ) and
b(n(σ′)) = b(n(γ′))nγ′(σ′). It thus is to check that b(n(γ)) = b(n(γ′)), where γ, γ′ now take
the role of σ and σ′ and σ, σ′ take the role of ν ∗ vσ, ν ∗ vσ′ . The claim thus can be shown
inductively. Note also that this induction ends in an internal adjacency since boundary edges
only have one coface so that ν can’t be boundary.

In conclusion we obtain b(n(ν ∗ vσ)) = b(n(ν ∗ vσ′)).
The only thing left to show is thus that the number of loops of Gn, `(Gn), suffices

`(Gn) � v(Gn), where v(Gn) is the number of vertices. To this end note that a boundary face
induces precisely two boundary faces in the subdivision while every facet induces 6 facets in
the subdivision, i.e.

`(Gn) = 3 · 2n � 6n = v(Gn).

Corollary I.38. Λ
(sd)
2 is point symmetric about 3.

Proof. It is immediate to see that G̃n (i.e. Gn with loops removed) is bipartite by the
bipartition defined inductively by the following function: Let ϕ1(x) = x mod 2 which is easily
seen to define a bipartition of the hexagon G1.

The function ϕn : V (Gn) → {0, 1} is then inductively defined as

ϕn(wx) = |ϕ1(x)− ϕn−1(w)|,

i.e. if w is assigned 1 we invert the bipartition of the cell wX.
This is a bipartition on each cell because on every cell wX ϕn−1(w) is constant and ϕ1

defines a bipartition. On the other hand since by definition adjacent vertices in different cells
have to be of the form wx, w′x for w 6= w′ adjacent in Gn−1 (since b leaves the last letter
invariant), we have that ϕ1(x) is the same and ϕn−1(w) 6= ϕn−1(w

′) because ϕn−1 defines a
bipartition on Gn−1.

The claim then follows by [Big74, Proposition 8.2].

Corollary I.39. The spectrum of Γ(2)(sdn∆2) can be determined by the following matrix
recursion (up to an asymptotically negligible L1-error):

Let ∆0 := t0+τ0, W0 = diag(1, 1, 0, 0, 0, 0), V0 = diag(0, 0, 1, 1, 0, 0), K = diag(0, 0, 0, 0, 1, 1)
and set

∆n :=



∆n−1 Wn−1 0 0 0 Vn−1

Wn−1 ∆n−1 Vn−1 0 0 0
0 Vn−1 ∆n−1 Wn−1 0 0
0 0 Wn−1 ∆n−1 Vn−1 0
0 0 0 Vn−1 ∆n−1 Wn−1

Vn−1 0 0 0 Wn−1 ∆n−1


for n > 0 and Wn =Wn−1 ⊗K, Vn = Vn−1 ⊗K.
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Proof. First observe by the above that we have the following representation of the adjacency
matrix of Γ(2)(sdn∆2) (up to loops);

A(Gn) = tn + τn + bn =



τn−1 1 0 0 0 1
1 τn−1 1 0 0 0
0 1 tn−1 1 0 0
0 0 1 tn−1 1 0
0 0 0 1 bn−1 1
1 0 0 0 1 bn−1

 ,

where τn−1 = τ0 ⊗ 16n−2 and tn−1 = t0 ⊗ 16n−2 with τ0 and t0 being the permutation matrix
representations of τ and t. Furthermore bn−1 is given by the block diagonal matrix

bn−1 = diag(τn−2, τn−2, tn−2, tn−2, bn−2, bn−2)

with b0 = 16.
Note that since when writing A(Gn) as a block matrix of 6× 6 blocks the number of b0

blocks vanishes compared to the total matrix (see proof of Theorem I.37 for example) the
choice of the initial condition b0 does not matter for the asymptotic spectrum in L1 (see proof
of universal limit theorem). We denote the matrix sequence obtained in the same way as
A(Gn) but with b0 = 0 by An and note that the spectral limit of these sequences agree.

In terms of the Kronecker product this matrix sequence can be written as

An =W0 ⊗ τn−1 + V0 ⊗ tn−1 +K ⊗ bn−1 + τ0 ⊗ 16n−1 + t0 ⊗ 16n−1 .

Note that bn−1 can be written as

bn−1 =W0 ⊗ τn−2 + V0 ⊗ tn−2 +K ⊗ bn−2 =W0 ⊗ τ0 ⊗ 16n−3 + V0 ⊗ t0 ⊗ 16n−3 +K ⊗ bn−2

and thus by an argument over induction (with b0 = 0) we obtain

bn−1 =
n−3∑
i=0

K⊗i ⊗ (W0 ⊗ τ0 + V0 ⊗ t0)⊗ 16n−i−3 .

For An this means

An =
n−2∑
i=0

K⊗i ⊗ (W0 ⊗ τ0 + V0 ⊗ t0)⊗ 16n−i−2 + τ0 ⊗ 16n−1 + t0 ⊗ 16n−1 .

In particular if Tn denotes the map exchanging the first n− 1 scales of tensor products with
the last scale, i.e.

Tn(v1 ⊗ ...⊗ vn) = vn ⊗ v1 ⊗ ...⊗ vn−1,

we have

TnAnT
−1
n = 16 ⊗

(
τ0 ⊗ 16n−2 + t0 ⊗ 16n−2 +

n−3∑
i=0

K⊗i ⊗ (W0 ⊗ τ0 + V0 ⊗ t0)⊗ 16n−i−3

)
+τ0 ⊗K⊗i ⊗W0 + t0 ⊗K⊗i ⊗ V0

= 16 ⊗An−1 + τ0 ⊗K⊗i ⊗W0 + t0 ⊗K⊗i ⊗ V0.
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Applying the same transforms Tn−1, ..., T2 now on the last n − 1, ..., 2 scales and letting Sn
denote this operator we obtain for the sequence of matrices ∆n := SnAnS

−1
n :

∆n = 16 ⊗∆n−1 + τ0 ⊗W0 ⊗K⊗i + t0 ⊗ V0 ⊗K⊗i

which is precisely the claimed matrix sequence. That their spectra agree is immediate from
the similarity of the matrices via S.

Remark 2. We can argue the same way for an ordering ισ(e) in the proof of Theorem I.37
which induces opposite orientations on each edge. In this case the group is generated by a
cyclic group element a of order 6 generating the hexagon with set of generators {a, at}, i.e.
a(wx) := w(x+ 1) for x < 6 and a(w6) = w1 and the element b defined as

b(wx) =



a(w)4 , x = 1

a(w)3 , x = 2

at(w)2 , x = 3

at(w)1 , x = 4

b(w)6 , x = 5

b(w)5 , x = 6

.

This group will give another matrix recursion in Corollary I.39 of the form

∆n−1 Wn−1 0 0 0 W t
n−1

W t
n−1 ∆n−1 Wn−1 0 0 0
0 W t

n−1 ∆n−1 Wn−1 0 0
0 0 W t

n−1 ∆n−1 Wn−1 0
0 0 0 W t

n−1 ∆n−1 Wn−1

Wn−1 0 0 0 W t
n−1 ∆n−1


for Wn−1 =Wn−1 ⊗K with

K =



0 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 .

Remark 3. The Schreier graph approximation for higher dimensional barycentric subdivision
should be feasible in a similar way; the intuition of why the approximation via the group
generated by τ and t is the more natural choice rather than the group generated by a and b
is that τ is the group element which generates the "internal" edges of the subdivision of the
boundary edge to which the two facets e1 ∗ vσ and e2 ∗ vσ are incident. In a similar way by
how barycentric subdivision is constructed inductively for higher dimensional input complexes
we subdivide the boundary ∂σ of σ and take the cone over it. The internal incidences are thus
just given by the incidences of d+ 1 subdivided (d− 1)-simplices joined together pairwise via
the outwards pointing group element b of one dimension lower. The incidence of σ and σ′ is
then given by "bridging" these copies of the dual graphs of subdivided (d− 1)-simplices (which
is what b does in d = 2).
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Example: Edgewise Subdivision for d = 2

We have now introduced one finitely ramified example where the determination of limiting
distribution is cumbersome but still possible and have demonstrated a non-finitely ramified
example where the process fails. However there are highly symmetrical non-finitely ramified
subdivisions of which we still can determine the limiting distribution. The edgewise subdivision
is one such case. The method we use in this section to calculate the universal limit of 2-
dimensional edgewise subdivision is parallel to the method of determining the integrated
density of states of archimedean tilings of R2 in [PT21]. We can apply this procedure to our
needs since the honeycomb tiling (63) (see [PT21]) is the dual of a tiling of R2 by triangles
which is invariant under edgewise subdivision in the sense that subdividing corresponds to a
scaling of the tiling (see Experiments section for an illustration).

Note however that we have to adjust the procedure since we only work on finite complexes
and so this invariant tiling is not feasible as it is an infinite simplicial complex. Note also that
it is not immediate that the spectrum of a sequence of complexes growing towards an infinite
complex converges to the integrated density of states of the infinite complex. We will show
however that in this particular constellation it does.

We will now construct a triangulation T1 of the torus T 2 which has a Cr × Cr action on it
and so that Tn := esdn−1

r T1 has a Crn × Crn action on it. The following is the Floquet theory
of Section 2 in [PT21] in our (finite) setting.

Assume we have a finite graph G = (V,E) and Cd
k acts simply transitive on it. Let F be a

fundamental domain of the action. We will always denote by Ck its additive representative
and by Ξk we denote the set of k-th roots of unity. Denote for η ∈ Ξd

k

`2(V )η := {f : V → C | ∀v∈V : f(γv) =
d∏

i=1

ηγii f(v)}

with inner product
〈f, g〉η :=

∑
v∈F

f(v)g(v).

For convenience we will denote

ηγ :=
d∏

i=1

ηγii .

We further define on `2(V )η the Laplacian ∆η the same way as on G but with domain restricted
to `2(V )η.

Since f ∈ `2(V )η only has #F degrees of freedom this operator can be viewed as a
#F ×#F -matrix. Note now that by the conditions on the action we can decompose

`2(V ) =
⊕
v∈F

`2(Cd
k)

where the tuple (fv)v∈F corresponds to the function f(γv) := fv(γ) (note that γ is unique by
the action being free and transitive).

Note in particular that this map is an isometry (since the inner product in `2(V ) simply
sums over the inner products of each component). We now apply the fourier transform to
each component to obtain for f = (fv)v∈F a function

f̂ ∈
⊕
v∈F

`2(Ξd
k),
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with f̂ = (f̂v)v∈F and
f̂v(η) :=

∑
γ∈Cd

k

η−γfv(γ).

Note that the irreducible complex representations of the cyclic group are the roots of unity.
In praticular f 7→ f̂ is an isometry with norms

||f ||`2(V ) =
∑
v∈V

|f(v)|2 =
∑
v∈F

∑
γ∈Cd

k

|f(γv)|2

and
||f̂ ||⊕

v∈F `2(Ξd
k)

:=
∑
v∈F

||f̂v||2`2(Ξd
k)

for
||g||`2(Ξd

k)
=

1

kd

∑
η∈Ξd

k

|g(η)|2.

We switch parameters and thus write

f̃η(v) := f̂v(η)

and extend this function to a function in `2(V )η via

f̃η(γv) = ηγ f̃η(v)

for v ∈ F . Thus we have
`2(V ) ∼=

⊕
η∈Ξd

k

`2(V )η.

Now observe that for v = γv0, v0 ∈ F , we have

f̃η(v) = f̃η(γv0)

= ηγ f̃η(v0)

= ηγ f̂v0(η)

=
∑
α∈Cd

k

ηγ−αf(αv0)

=
∑
α∈Cd

k

η−(α−γ)f((α− γ)γv0)

=
∑
β∈Cd

k

ηβf(βv).

Remember that the Laplacian operator ∆ of G is defined as

∆f(v) =
∑
w∼v

(f(v)− f(w)).
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Thus it holds that ∆f = g if and only if

g̃η(v) =
∑
γ∈Cd

k

ηγg(γv)

=
∑
γ∈Cd

k

ηγ
(
deg(γv)f(γv)−

∑
w∼γv

f(w)
)

= deg vf̃η(v)−
∑
γ∈Cd

k

ηγ
∑
w∼v

f(γw)

= deg vf̃η(v)−
∑
w∼v

f̃η(w)

= ∆ηf̃η(v),

so that
∆ =

⊕
η∈Ξd

r

∆η

under the identification `2(V ) ∼=
⊕

η∈Ξd
k
`2(V )η. In particular for the normalized eigenvalue

counting function
F∆(x) =

1

v(G)
#{i ∈ [v(G)] | λi(∆) ≤ x}

it thus holds that
F∆(x) =

1

v(G)

∑
η∈Ξd

k

#{i ∈ [v(F )] | λi(∆η) ≤ x}.

By v(G) = #Ξd
k · v(F ) we have concluded the following theorem which is a discrete version of

[PT21, Theorem 2.1].

Theorem I.40.
F∆(x) =

1

kd

∑
η∈Ξd

k

F∆η(x).

Now that we have Theorem I.40 at hand we can determine the universal limit of the
edgewise subdivision for d = 2. Let r > 1 be fixed and let T1(r) denote the triangulation of
the torus T 2 as in Figure 3.7. Note that it is not really a triangulation of the torus in the
simplicial sense when r = 2. In this case we just set r to be 4 which gives us the same limit so
that we can assume without loss of generality that r > 2.

It is immediate that C2
r acts simply transitively on this subdivision by rotating rows and

columns. In particular since after subdivision

T2(r) := esdrT1(r) = T1(r
2)

we have a C2
r2 action on T2(r). Inductively we obtain a sequence of triangulations of the torus

Tn+1(r) := esdn
rT1(r) = T1(r

n)

each with a C2
rn action. Note that this action induces a simply transitive action on the dual

graph Gn = (Vn, En). Furthermore by definition of the action its fundamental domain looks
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r

r

1

Figure 3.7: The triangulation T1(r) of T 2.

a

b

−φ a

ρ a

φ b

−ρ b

Figure 3.8: Fundamental domain of Gn. The adjacent vertices are indicated with their
respective transitive group element.

like Figure 3.8. Let ρn and φn denote generators of Crn such that the neighborhoods of a and
b in F are {b, φb, ρb} and {a, ρa, φa}.

We determine the spectrum of ∆η(Gn) now. Let f ∈ `2(Vn)η, i.e. f is defined by the
choices f(a) = α, f(b) = β via

f(γa) = ηγα

and
f(γb) = ηγβ

for γ ∈ C2
rn . In particular ∆η has a matrix representation of the following form:

∆η =

(
3 −(1 + η1 + η2)

−(1 + η1 + η2) 3

)
.

Which (unsurprisingly) coincides with the matrix representation of ∆θ for the (63)-tiling of
[PT21] for η1 = e−iθ1 and η2 = eiθ2 (after scaling by 1/3, i.e. normalizing the Laplacian).
We will denote this pair by η(θ) for now. Note also that the eigenvalues of this matrix
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are determined in [PT21]; since they are continuous functions in the parameter θ ∈ T 2 the
functions F∆η(θ)(x) are Riemann integrable in θ for fixed x.

Note that the points η ∈ Ξ2
rn form a mesh on T 2 = S1 × S1, where f : θ 7→ (e−iθ1 , eiθ2) is

a parameterization of T 2 on [0, 2π)× [0, 2π). We have

X2
rn := f−1(Ξ2

rn) = {0, 2π/rn, ..., 2π(rn − 1)/rn}2 ⊆ R2
/
(2πZ)2

so that Theorem I.40 can be written as

F∆(x) =
1

(2π)2
(2π)2

r2n

∑
θ∈X2

rn

F∆f(θ)(x)

which obviously as a Riemann sum over a Riemann integrable function

R2
/
(2πZ) 3 θ 7→ F∆f(θ)(x)

converges point-wise to
1

(2π)2

∫
R2/

(2πZ)2
F∆f(θ)(x) dθ.

Which (after a a parameter scaling) is determined in [PT21] as

F∆(x) → F (x) :=



0 , if E < 0∫ 1
1− 1

2
E g(t) dt , if 0 ≤ E < 2

1
2 −

∫ 1− 3
2
E

−2+ 3
2
E
g(t) dt , if 2 ≤ E < 3

1
2 +

∫ −2+ 3
2
E

1− 3
2
E

g(t) dt , if 3 ≤ E < 4

1−
∫ 1
1− 3

2
E g(t) dt , if 4 ≤ E < 6

1 , if 6 ≤ E

for g(t) = 1
π2

arccos
(

(3−E)2−1
4t

−t
)

√
1−t2

.
Note also that this function is strictly increasing so that its quantile function Q∆ is

continuous. In particular the point-wise convergence F∆(x) → F (x) thus implies the point-
wise convergence Q∆(u) → Q(u), where Q is the quantile function of F . We have thus
shown:

Theorem I.41. The universal limit of edgewise subdivision for d = 2 is Q, i.e. the quantile
function of F .

Compare e.g. [PT21, Figure 5] and Figure 3.9. Note further that the universal limit does
not depend on the subdivision parameter r.
Remark 4. Note that the same procedure can be applied to a (Crn)

d action on the triangulation
T d(rn) of the d-dimensional torus T d given by a r × ... × r grid of copies of triangulations
of the cube Qd = [0, 1]d with faces of the [0, r]d-cube identified according the identification
rule of T d. The triangulation of the cube Qd can be chosen so that esdrT

d(rn) = T d(rn+1)
and a limit can thus be calculated by an integral of the eigenvalue counting functions of the
triangulations of this base cube (so that the universal limit is solely calculable by the spectrum
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Figure 3.9: Λ(esd5∆2)

of Qd and the action of T d on T d as above). In particular the limiting distribution again is
independent of r.

Note however that the higher-dimensional edgewise subdivision does not really fit our
framework as it is not inclusion-uniform; for every σ ∈ K its subdivision depends on a
vertex ordering of σ. Thus esdr(K) is really only well-defined for vertex-ordered complexes,
esdr(K,≤). Note however that esdr(K,≤) can be ordered in such a way that

esdsesdr(K,≤) = esds+r(K,≤)

and so a well-defined limiting distribution of the sequence

esdn
r (K,≤) = esdrn(K,≤)

exist by the argument as used to prove Theorem I.1.
This limit however is not (necessarily) the same for different orderings ≤, ≤′ of F0(K) so

that no universal limit exists in this case (in the sense that for every two complexes the limit
only depends on the dimension). Note that for d ≤ 2 we have that esdr does not depend on
an ordering ≤ of the vertices and so for these cases universality holds.
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Relations to Fractal Theory

Given a inclusion-uniform subdivision div we associate to it the sequence (Γn)n∈N = (Γ(d)(divn∆d))n∈N
of simple graphs. This sequence can be considered self-similar when relaxing known construc-
tions of graph-directed self-similar sets. This relaxation has to be made to common definitions
since fractals associated to inclusion-uniform subdivisions are not finitely-ramified in general
and thus the orientation matters when joining graphs. In the following construction we will
compensate for the ambiguity introduced by dependence on orientation. Note however that
all considered examples can be oriented in a more convenient way - thus also giving rise to a
Schreier graph approximation of the sequence.

The construction which dualizes iterated subdivision by a inclusion-uniform operation as a
graph-sequence approximation of a self-similar set approximation is the following:

The data: Let d, n,N ∈ N. We start with an initial graph Γ0 on vertex set {1, ..., N}
with degrees bounded by d+ 1 and a dedicated Sd+1-action on it. We will formally let Sd+1

act on {0, ..., d} for the purpose of this construction and denote action of σ ∈ Sd+1 on i ∈
V (Γ0) = {1, ..., N} by σi opposed to the evaluation σ(i) at i ∈ {0, ..., d}. σ∗ : E(Γ0) → E(Γ0)
denotes the push forward action on the edge set, i.e.

σ∗{v, w} := {σv, σw} ∈ E(Γ0)

for {v, w} ∈ E(Γ0).
Further let ∂iΓ0, i = 0, ..., d, denote (d+ 1)-many dedicated n-element boundary sets of

Γ0 such that ∂Γ0 :=
⋃d

i=0 ∂iΓ0 is the set of vertices with degree < d+ 1 in Γ0. Furthermore
for every vertex v ∈ ∂Γ0 we require that

degv +#{i ∈ {0, ..., d} | v ∈ ∂iΓ0}︸ ︷︷ ︸
=:bv

= d+ 1.

We further want the above sets ∂iΓ0 to be compatible with the group action in the sense that

∂iΓ0 = τij∂jΓ0 (∗)

for the transposition τij = (i j) and the set ∂iΓ0 has to be invariant under Si
d = {σ ∈

Sd+1 | σ(i) = i}, i = 0, ..., d.
In order to make Γ0 (d + 1)-regular we add bv many loops to the vertices v ∈ ∂Γ0 and

denote the loop added to v ∈ ∂iΓ0 for the i-th boundary by `v(i). The action of Sd+1 extends
to this graph in a natural way by

σ∗`v(i) := `σv(σ(i)).

We will thus denote the graph obtained by this addition as Γ0 from now on.
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For every loop e = `v(i) ∈ E(Γ0) let κv(e) := i and for every edge e = {v, w} ∈ E(Γ0)
choose κv(e), κw(e) ∈ {0, ..., d} such that

{κv(e) | v ∈ e ∈ E(Γ0)} = {0, ..., d}.

Further let ρij : {0, ..., d} → {0, ..., d} be a bijection such that

ρij(κi(e)) = κj(e)

and ρji := ρ−1
ij aswell as the compatibility with the Sd+1-action as ρσi σj = νσ,jρijν

−1
σ,i , where

νσ ∈ Sd+1 is given as
νσ,i(κi(e)) := κσi(σ∗e)

The construction: Having this information fixed we construct a self-similar sequence
(Γk)k∈N. Assume Γk−1 and ∂iΓk−1 with a Sd+1-action sufficing the same conditions as the
action on Γ0 are constructed. Then we construct Γk as a graph on vertex set V (Γk) =
V (Γ0)×V (Γk−1) = [N ]k+1 and denote a vertex by a pair (i, v) for i ∈ V (Γ0) and v ∈ V (Γk−1).
We include the edge {(i, v), (j, w)} ∈ E(Γk) if one of the following two conditions is met:

• Either i = j and {v, w} ∈ E(Γk−1) or

• i 6= j, e = {i, j} ∈ E(Γ0), v ∈ ∂κi(e)Γk−1, w ∈ ∂κj(e)Γk−1 and

ρijv = w.

Furthermore we include the loops at vertices (i, v) for every loop at v in Γk−1.
We will now show that Γk again admits an Sd+1-action and construct sets ∂iΓk. The sets

∂iΓk are given by
∂iΓk := ∂iΓk−1 × ∂iΓ0 = (∂iΓ0)

k+1.

The graph Γk can be assigned an Sd+1-action as follows:

σ · (i, v) := (σi, νσ,iv),

where νσ,i as above is the permutation in Sd+1 given by νσ,i : κi(e) 7→ κσi(σ∗e) for all e ∈ E(Γ0)
with i ∈ e. We will now show that this action is compatible with the multiplication of Sd+1.
To this end note that νid,i(κi(e)) = κi(e) and thus νid,i = id. Let σ, τ ∈ Sd+1 then

νστ,i(κi(e)) = κ(στ)i((στ)∗e) = κσ(τi)(σ∗(τ∗e)) = νσ,τi(κτi(τ∗e)) = νσ,τi(ντ,i(κi(e)))

such that νστ,i = νσ,τiντ,i.
In particular we have

(στ)(i, v) = ((στ)i, νστ,iv) = (σ(τi), νσ,τi(ντ,iv)) = σ(τi, ντ,iv) = σ(τ(i, v)).

Thus we obtain a well-defined action of Sd+1 on V (Γk). We will show that it preserves edge
relations, which is immediate for edges of the first type.

Assume we have an edge of the second type, i.e. e = {(i, v), (j, w)} and i 6= j, e′ = {i, j} ∈
E(Γ0), v ∈ ∂κi(e′)Γk−1, w ∈ ∂κj(e′)Γk−1 and

ρijv = w.
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Let σ ∈ Sd+1 be given. Obviously σi 6= σj and σ∗e′ ∈ E(Γ0). Since for `, `′ ∈ {0, ..., d} ∂`Γk−1

are invariant under S`
d and ∂`Γk−1 = τ``′∂

′
`Γk−1 we have

σ∂`Γk−1 = ((` σ(`)) ◦ τ)∂`Γk−1 = ∂σ(`)Γk−1

for τ ∈ S`
d given as τ(p) = σ(p) if p /∈ {`, σ−1(`)} and τ(`) = `, τ(σ−1(`)) = σ(`). Denote

now ` = κi(e
′), `′ = κj(e

′) so that νσ,iv ∈ ∂νσ,i(`)Γk−1 and νσ,jw ∈ ∂νσ,j(`′)Γk−1. Thus the last
condition to show is that

ρσi σj(νσ,i(v)) = νσ,j(w).

This is by definition equivalent to

(ν−1
σ,jρσi σjνσ,i)v = w = ρijv.

But by the condition on ρij we have

ρσi σj = νσ,jρijν
−1
σ,i

showing the claim.
So that all conditions for Γk are met in order to iteratively define the next graph in the

sequence.
Duality to iterated subdivision: Let div be a inclusion-uniform subdivision acting on

d-dimensional complexes. We apply the above construction with the given d, n = fd−1(div)
and N = fd(div). We can equip the d-dual graph of the subdivision of ∆d,

Γ0 := Γ(d)(div∆d),

with an Sd+1-action by the condition of being inclusion-uniform; let σ ∈ Sd+1 and K = ∆d in
Definition I.10; then σ canonically defines a bijective vertex-identification

σ : F0(∆d) → F0(∆d)

and thus extends to a (geometric) simplicial isomorphism of

σ̃ : div∆d → div∆d

sufficing σ̃({i}) = {σ(i)}. Note that σ̃ defines an action on Γ0 by

στ := σ̃(τ)

for τ ∈ V (Γ0) = Fd(div∆d). Obviously this action preserves the edge-relation since σ̃ is a
simplicial isomorphism.

We enumerate the facets Fd(div∆d) = {τ1, ..., τN} and assume τi corresponds to the vertex
i ∈ V (Γ0).

In order to define the boundary sets let σi = (0, ..., î, ..., d) ∈ Fd−1(∆d) and let

Σi := Fd−1(div∆d
σi),

where s : div∆d → ∆d denotes the subdivision map. Then let

∂iΓ0 := {τ ∈ Fd(div∆d) | Fd−1(τ) ∩ Σi 6= ∅}.
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Obviously since the isomorphism is geometric it has to restrict to an isomorphism on the
boundaries; thus τ̃ij is mapping Σi to Σj and so it maps the respective unique facets of the
(d− 1)-faces in Σi to their counterparts in Σj , i.e.

∂iΓ0 = τij∂jΓ0.

Furthermore assuming σ ∈ Si
d we have that it leaves σi invariant as a set of vertices so

that σΣi = Σi and analogously
σ∂iΓ0 = ∂iΓ0.

The labels κi(e), i ∈ [N ], can be chosen at will respecting the condition that κi(`i(j)) = j
if i ∈ ∂jΓ0.

We now identify an edge {i, j} ∈ E(Γ0) with the face τi ∩ τj ∈ Fd−1(div∆d) for their
respective facets τi, τj ∈ Fd(div∆d). The bijections ρij , {i, j} ∈ E(Γ0), are then given by the
maps

ρij(κi(ν)) := κj(ν
′)

for ν ∈ Fd−1(τi) fixed and ν ′ the unique face in Fd−1(τj) such that ν ∩ ν ′ ∈ Fd−2(τi ∩ τj).
The equation for ρij making it compatible with the Sd+1-action can be seen as follows;

assume {i, j} ∈ E(Γ0) and let ν ∈ Fd−1(τi) be given and ν ′ ∈ Fd−1(τj) be the unique face such
that ν ∩ ν ′ ∈ Fd−2(τi ∩ τj). By definition of the action σ ∈ Sd+1 acts on Γ0 as the isomorphism
σ̃ acts on the facets. Since σ̃ is a simplicial isomorphism we have that

σ̃(ν) ∩ σ̃(ν ′) ∈ Fd−2(σ̃(τi) ∩ σ̃(τj)).

Furthermore we know that if the edges e, e′ ∈ E(Γ0) correspond to ν, ν ′, respectively, then the
edges corresponding to σ̃(ν) and σ̃(ν ′) are given by σ∗e and σ∗e

′ by definition, respectively.
Thus

ρσi σj(νσ,i(κi(e))) = ρσi σj(κσi(σ∗e)) = κσj(σ∗e
′) = νσ,j(κj(e

′)) = νσ,j(ρij(κi(e))),

showing the compatibility with the Sd+1-action.

Theorem I.42. In the above setting it holds that Γ̃k
∼= Γ(d)(divk+1∆d) for all k ≥ 0, where

Γ̃k results from Γk by removing loops.
In case div acts non-trivial on d-faces the graph Γk contains (d+ 1)fd−1(div)k+1 loops. In

particular Γk approximates Γ(d)(divk+1∆d).

Proof. The claim is trivially true for k = 0. Thus let k > 0 and assume the claim is satisfied
for k − 1.

Let i ∈ [N ] be fixed for now. Note that the choice of κi(e) for e ∈ E(Γ0), i ∈ e, corresponds
to an ordering of the vertices of τi as follows:

For e ∈ E(Γ0) with i ∈ e let νe ∈ Fd−1(τi) denote the face generating e in Γ0, i.e. if
e = {i, j} for j ∈ [N ] then νe = τi ∩ τj and if e = `i(j) for some j ∈ {0, ..., d} we let νe denote
the unique face in Σj ∩ Fd−1(τi). Now we order the vertices of τi in a way compatible with
how we ordered the boundary sets - i.e. we let v ∈ F0(τi) be at position

κi(e)

where e ∈ E(Γ0), i ∈ e, is the unique edge such that νe = τi \ {v}. This vertex will be denoted
viκi(e)

from now on such that
τi = (vi0, ..., v

i
d)
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is now an ordered simplex.
Now note that

divk+1∆d = divkdiv∆d.

Furthermore note that the subdivision procedure divk is itself inclusion-uniform and thus for
every face τi = {v0, ..., vd} ∈ div∆d and bijection

f : {v0, ..., vd} → {0, ..., d}

there exists a unique isomorphism

f (k) : divk
div∆d

τi → divk∆d,

such that f (k)(vj) = f(vj), j = 0, ..., d. In particular the dual graph of divk
div∆d

τi is isomorphic
to Γk−1 by induction hypothesis. Note that the dual graph of divk

div∆d
τi is the restriction of

Γ(d)(divk+1∆d) to the set of facets added in the interior of τi.
Thus we take N copies of Γk−1 - one for each facet τi. In order to obtain an isomorphism

Γ̃k
∼= Γ(d)(divk+1∆d) we only need to show that the edges of second kind in the construction

are indeed the edges obtained by gluing the copies of divk∆d along their boundaries.
To this end assume two faces τi, τj ∈ Fd(div∆d) are given such that e = {i, j} ∈ E(Γ0).

By definition they meet in the common face

τi \ {viκi(e)
} = τj \ {vjκj(e)

}.

Note that the action of ρij induced on τi maps viκi(e)
to vjκj(e)

. ρij delivers even more; by
definition the action of ρij on the vertices maps viκi(e′)

to vjκj(e′′)
whenever the vertices opposed

to e′ and e′′ in i and j, respectively, are geometrically identical (i.e. when they are identified
in the gluing process). This can be seen by the (d− 2)-adjacency of the edges e′ and e′′ (or
rather their generating faces) in the boundary of τi ∩ τj . In particular if we consider div∆d

to be obtained by a gluing G∗(σ1, ..., σN ) for N copies of the standard simplex ∆d with σi
corresponding to τi in the glued complex G∗(σ1, ..., σN ) ∼= div∆d. We will identify σi with τi
by the ordering fixed above; i.e. the canonical inclusion of the i-th standard simplex is given
by

ιi : ` 7→ vi`.

Under this identification the restriction of ρij to {κi(e′) | e′ ∈ E(Γ0), i ∈ e′} \ {κi(e)} is thus
precisely the map

ι−1
j ◦ ιi

and so by definition of the Sd+1-action acts as its extended isomorphism

˜ι−1
j ◦ ιi

which by equation (2.1) from Section 2 gives exactly the vertex bijection of the relation G ′ for
obtaining the subdivision as the glued complex

G ′
∗(divkσ1, ..., divkσN )

which is isomorphic to the graph Γ̃k by how ρij identifies the boundaries.
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Note that this fractal process can be applied not only to Γ0 being the dual graph of div∆d.
Having constructed this sequence of fractals for Γ0 = Γ(d)(div∆d). We can also define fractal
sequences on any given pseudo-manifold K in the same fashion by fixing the same maps κi and
ρij (which amounts to chosing an ordering for every simplex in K) and perform gluing along
the boundary by utilizing the Sd+1-action on the already constructed sequence of subdivided
standard simplices. The fractal sequence arising from this is the sequence of dual graphs of
the iterated subdivisions of K.

In Figure 4.1 we have illustrated the input data for Γ0, κ and ρ in order to generate the
barycentric or edgewise subdivision (with parameter 3) of a 2-simplex respectively.
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(a) Barycentric subdivision div = sd and d = 2.
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(b) Edgewise subdivision for parameter r = 3
and d = 2.

Figure 4.1: Two subdivision procedure of infinite ramification and their respective Γ0 with
added loops. The dashed arrow indicates the map ρij for a particular edge {i, j}. The numbers
along the edge indicate the values of κi associated to the vertex of the edge closer to the label.

In case of finite ramification: The generic case of finite ramification is the case where
n = 1. This is due to the fact that we call a self-similar set construction of the above type
finitely ramified if every copy of Γk−1 in Γk can be isolated by the removal of a bounded
number of edges (independent of k). However the boundaries to be joined have nk+1 elements
which is only bounded by a constant if n = 1.

In this case the above construction reduces to a construction related to a graph sequence
approximating a self-similar set in the sense of Sabot, [Sab03]. We assume Γ0 to be equipped
with the enumeration κi of edges at every vertex i ∈ V (Γ0) = [N ] and view Γ0 as generated
by a relation R on the set [d+ 1]× [N ], i.e. R is generated by the set of relations

(κi({i, j}), i)R(κj({i, j}), j)

for every {i, j} ∈ E(Γ0).
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Since n = 1 we can identify ∂iΓk−1 with ∂iΓ0 and thus push the equivalence relation R
from Γ0 to the k-th level. Let Γi

k−1 denote the i-th copy of Γk−1 in Γk. We then join the
vertex in ∂rΓ

i
k−1 with the vertex in ∂`Γ

j
k−1 iff

(r, i)R(`, j),

i.e. iff r = κi({i, j}), ` = κj({i, j}) and {i, j} ∈ E(Γ0). Note that ρij does not play a role here
since the restriction of the isomorphism induced by ρij over the Sd+1-action on ∂κi({i,j})Γk−1

then just maps this singleton onto the singleton ∂κj({i,j})Γk−1.
The above construction can then be transferred to the setting of Sabot by taking the line

graph and adjusting the elementary cell Γ0 accordingly. By [BKPS18] the spectral effects of
taking the line graph is known in case the graph is regular.

(a) Γ(2)(sd∆2) (b) Γ(2)(sd2∆2)

(c) Γ(2)(sd3∆2) (d) Γ(2)(sd4∆2)

Figure 4.2: Sequence of dual graphs of the 2-dimensional barycentric subdivision. The tree
hierarchy of the fractal is indicated by the previous graphs grayed out behind the current one.
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Strong Universal Limit Theorem

We can prove an even stronger version of the Theorem as in Chapter 3 by a result from [Ele08a].
We can apply Proposition 3.2 in [Ele08a] to fractals generated in the sense of last chapter
directly in order to find that their spectral distribution functions F∆(Gn) uniformly converge.
This is due to the fact that it is immediate for our fractal construction that the sequences
resulting from it are strongly converging. We will thus apply one result from [Ele08b] in order
to show the following result.

Theorem I.43 (Strong Universal Limit Theorem). Let d ≥ 1 be an integer and let div be an
inclusion-uniform subdivision acting non-trivially on d-dimensional complexes.

Then there exists a function F
(div)
d ∈ L∞(R) such that for every d-dimensional complex K

it holds
F (L (divnK))

n→∞−−−→L∞ F
(div)
d ,

i.e. essentially uniformly.

Note that every result from the above can be shown for this strong version by taking
the probabilistic inverse. In particular for the edgewise subdivision we don’t need to do the
unnatural inversion we had to perform to get to Λ

(div)
d .

We will now reproduce the core concepts used for the proof of this result from [Ele08b].
Let G and H be graphs on the same finite vertex set V (G) = V (H) = V . We define a distance

δ(G,H) := µV (x ∈ V | Stx(G) 6= Stx(H))

for Stx(G) being the star of G at x ∈ V , i.e. the vertex-induced subgraph of G on {x}∪NG(x),
where NG(x) = {y ∈ V | {x, y} ∈ E(G)}. µV denotes the uniform measure on the vertex set.
In particular δ(G,H) = 0 iff G = H.

Note that δ defines a metric on the set of graphs on vertex set V (which can be identified
with 2(

V
2
)). In order to δ into a metric on isomorphism classes we will allow a symmetric

reordering of H, i.e.
δS(G,H) := inf

σ∈SV

δ(G,Hσ),

where Hσ is the graph on V with edge set

E(Hσ) := {{σx, σy} | {x, y} ∈ E(H)}.

This defines a metric on isomorphism classes of graphs on vertex set V . In particular δS is
defined for isomorphism classes of graphs on sets other than V with only the same cardinality.

Given two graphs G and H on finite vertex sets which not need to be equal we can define
the geometric distance of G and H via

δρ(G,H) := inf
{q,r | qv(G)=rv(H)}

δS(qG, rH),
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where qG denotes the disjoint union of q copies of G.
Note that by [Ele08b, Proposition 2.1] δρ defines a metric on isomorphism classes of graphs

on finite vertex sets.

Definition I.44. A sequence (Gn)n∈N of finite graphs is said to be strongly convergent if
(Gn)n∈N is a Cauchy-sequence with respect to the δρ metric.

Now we can formulate [Ele08b, Lemma 3.5].

Lemma I.45 ([Ele08b]). Let C : Rn → Rn, D : Rn → Rn denote self-adjoint linear transfor-
mations such that

rk(C −D) ≤ εn.

Then it holds
||FC − FD||∞ ≤ ε.

Which will take the place of Corollary I.5 in this stronger version of Theorem I.1.

Proposition I.46 ([Ele08b]). Let (Gn)n∈N be strongly convergent of bounded vertex degree d.
Then the sequence (F∆(Gn))n∈N converges uniformly.

Lemma I.47. Let (Gn)n∈N be a sequence of graphs as defined in Section 4 such that G0 is
not contained in one ∂iG0. Then (Gn)n∈N is strongly convergent and has vertex degree bound
d+ 1.

Proof. We show that the corresponding sequence is Cauchy. Let the data be given by
d, n,N ∈ N and some initial graph G0 on vertex set [N ] with degrees bounded by d+ 1 and a
dedicated Sd+1-action on it. Let ∂iG0 denote the dedicated boundary sets, i.e. a partition of
the set of vertices of degree < d+ 1 compatible with the Sd+1-action.

Now let the sequence (Gn)n∈N be generated according to this input. Note that the boundary
∂iGn = (∂iG0)

n+1 so that the boundary ∂Gn has

(d+ 1)(#∂0G0)
n+1

elements. Let the number of boundary elements in one group of the boundary be denoted by
b, then we have

(d+ 1)bn+1

boundary elements in Gn.
Now let n ≤ m be given. We will calculate an upper bound of δρ(Gn, Gm) by calculating

δ(qGn, (rGm)σ) in the particular case of σ = idV (Gm) and q = Nm−n, r = 1.
To this end note that by our construction Gm is made up of Nm−n copies of Gn where

we add edges between some boundary vertices of these copies. In particular the number of
vertices for which the neighborhood is altered is bound from above by

Nm−n(d+ 1)bn+1.

In particular for all other vertices (i.e. in the interior of the copies of Gn) the stars agree. We
obtain

µV (Gm)(x ∈ V (Gm) | Stx(qGn) 6= Stx(Gm)) =
Nm−n(d+ 1)bn+1

Nm+1
= (d+ 1)

( b

N

)n+1
.
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We further note the fact that
b

N
< 1

by the assumption on the fractal data.
In particular this sequence is Cauchy.

Corollary I.48. Let div be an inclusion-uniform subdivision procedure acting non-trivially on
complexes of dimension d ≥ 1. Then the sequence

(
Γ(d)(divn∆d)

)
n∈N strongly converges.

Proof. This is immediate by Theorem I.42 and the consideration that

b = fd−1(div∆d−1) < fd(div∆d) = N

in the notation of the previous Lemma I.47.

Proposition I.49 (Convergence of local spectra). Let div be an inclusion-uniform subdivision
procedure acting non-trivially on complexes of dimension d ≥ 1. Then there is a function
F

(div)
d ∈ L∞(R) such that

FL (divn∆d)
n→∞−−−→L∞ F

(div)
d .

Proof. Follows from Corollary I.48 and Proposition I.46 aswell as the fact that F∞ is complete.

The universality can be shown the same way as in Section 3; we only have to show that
the perturbation matrix is of rank o(n).

Proposition I.50 (Dominance of local spectra). Let div denote an inclusion-uniform subdivi-
sion procedure acting non-trivially on d-dimensional complexes and K denote an arbitrary
(finite) simplicial complex of dimension d. It holds that

||FL (divnK) − FL (divn∆d)||∞
n→∞−−−→ 0.

In particular the sequence L (divnK) has a uniformly converging sequence of spactral cdf’s
and the uniform limit is the same as for L (divn∆d).

Proof. Analogously to Section 3 let K = G (∆d, ...,∆d) and so

divnK = G (n)(divn∆d, ..., divn∆d).

Again let rd−1(G
(n)) = (fd−1(div))nrd−1(G ) denote the number of gluing operations needed

in the n-th step. As we have already seen the difference matrix

E := L (divnK)−
⊕

σ∈Fd(K)

L (divn∆d)

then is of the form

Ln =



D1 G12 G13 ... G1N

Gt
12 D2 G23 ... G2N
... . . . . . . . . . ...
... . . . . . . G(N−1)N

Gt
1N ... Gt

(N−2)N Gt
(N−1)N DN

 ,
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where Dk corrects the degrees on the diagonal along the boundary of the k-th copy of divn∆d,
i.e. every Dk has at most Dfd−1(div∆d−1)

n+1 non-zero entries, where D denotes the maximal
down-degree of a facet of K.

Furthermore only rd−1(G )-many of the Gij ’s are non-zero and the non-zero Gij ’s have at
most (fd−1(div))n non-zero entries so that from the G-matrices we obtain another

rd−1(G )(fd−1(div))n

non-zero entries.
We obtain a total number of

(fd(K)D + 2rd−1(G ))fd−1(div)n

non-zero entries. In particular this is an upper bound on the rank of the perturbation E, thus

rk(E) = cnn,

where
cn =

(fd(K)D + 2rd−1(G ))fd−1(div)n
fd(K)fd(div)n ,

which we have already shown in Section 3 to asymptotically vanish. In particular for every
ε > 0 there exists n0 ∈ N such that for n ≥ n0 the rank of the perturbation E is

rk(E) ≤ cnn ≤ εn

and so by Lemma I.45 the result follows.

72



Experiments

In this section we will present python code in order to give empirical evidence for the validity
of Proposition I.18 and Theorem I.16 in the cone division case and Theorem I.37 for the
barycentric subdivision.

Regarding Cone Division

In this section we will present python code in the context of Theorem I.16. The codes will
generate the spectrum by explicitly calculating it from subdivision and plot it against the
spectrum calculated in the way of Theorem I.16.

Code Block 6.1: Python code to calculate and plot the spectrum described by polynomial
recursion in Theorem I.16 and the actual Laplacian matrix. The euclidean distance of the
spectra is printed.

1 import numpy as np
2 from matplotlib import pyplot as plot
3 from sympy.solvers import solve
4 import sympy
5

6 def plot_spec(spec, label='step'):
7 spec = np.insert(spec, 0, spec[0])
8 plot.step(np.linspace(0, 1, spec.shape[0]), spec, label=label)
9

10 # introduce variable for getting roots of the recursion polynomial via sympy
11 x = sympy.Symbol('x')
12 d = 3 # dimension of input complex
13 pol = x * (d + 3 - x) # polynomial of Theorem I.16
14

15 # function to determine f−1(e) for a set e
16 def recurse(e):
17 new_e = np.array([])
18 for r in e:
19 f = pol - r
20 new_e = np.concatenate((new_e, solve(f, x))).astype(float)
21 return np.unique(new_e)
22

23 # start with A_1, A_2 and B_2, i.e. the spectrum of sd2∆d
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24 e_0 = [np.array([d+1])]
25 e_2 = [np.array([d+3])]
26 e_0 = e_0 + [recurse(e_0[0])]
27

28 # functions returning multiplicities
29 def beta(n):
30 return int((d-1) / 2 * ((d+1)**(n-1) - 1))
31 def alpha(n):
32 return beta(n) + d
33

34 # calculate the spectrum by polynomial recursion as in Theorem I.16
35 e_pol = np.array([])
36 for j in range(len(e_0)):
37 e_pol = np.concatenate((e_pol, np.tile(e_0[j], alpha(2-j))))
38 for j in range(len(e_2)):
39 e_pol = np.concatenate((e_pol, np.tile(e_2[j], beta(2-j))))
40 e_pol = np.sort(e_pol)
41 e_pol = np.insert(e_pol, 0, 0)
42 plot_spec(e_pol)
43 plot.show()
44

45 # calculate spectrum numerically from adjacency matrix of
46 # Schreier graph sequence by Proposition I.18
47 # n = 1
48 pattern_a = np.zeros((d+1,d+1))
49 for i in range(d+1):
50 pattern_a[i, (i+1) % (d+1)] = 1
51 J = np.ones((d+1,d+1)) - np.identity(d+1)
52 b = np.identity(d+1)
53

54 # Adjacency matrix of sd2∆d

55 i = 2
56

57 M = np.zeros((d+1,d+1))
58 M[d,d] = 1
59 b = np.kron(M, b)
60 for j in range(1,d+1):
61 M = np.zeros((d+1,d+1))
62 M[j-1,d-j] = 1
63 b = b + np.kron(M,
64 np.kron(
65 np.linalg.matrix_power(pattern_a, j),
66 np.identity((d+1)**(i-2))
67 )
68 )
69

70 delta = (d+1) * np.identity((d+1)**i) - (np.kron(J, np.identity((d+1)**(i-1))) + b)
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71 e_exact, v = np.linalg.eigh(delta)
72 plot_spec(e_exact)
73 plot.show()
74

75 # Print euclidean distance of the spectra
76 print(np.linalg.norm(e_pol - e_exact))
77

78 # iterate for sd3∆d, sd4∆d, sd5∆d

79 for i in range(3, 6):
80 e_0 = e_0 + [recurse(e_0[-1])]
81 e_2 = e_2 + [recurse(e_2[-1])]
82

83 e_pol = np.array([])
84 for j in range(len(e_0)):
85 e_pol = np.concatenate((e_pol, np.tile(e_0[j], alpha(i-j))))
86 for j in range(len(e_2)):
87 e_pol = np.concatenate((e_pol, np.tile(e_2[j], beta(i-j))))
88 e_pol = np.sort(e_pol)
89 e_pol = np.insert(e_pol, 0, 0)
90 plot_spec(e_pol)
91 plot.show()
92

93 M = np.zeros((d+1,d+1))
94 M[d,d] = 1
95 b = np.kron(M, b)
96 for j in range(1,d+1):
97 M = np.zeros((d+1,d+1))
98 M[j-1,d-j] = 1
99 b = b + np.kron(M,

100 np.kron(
101 np.linalg.matrix_power(pattern_a, j),
102 np.identity((d+1)**(i-2))
103 )
104 )
105

106 delta = (d+1) * np.identity((d+1)**i) - (np.kron(J, np.identity((d+1)**(i-1))) + b)
107 e_exact, v = np.linalg.eigh(delta)
108 plot_spec(e_exact)
109 plot.show()
110

111 print(np.linalg.norm(e_pol - e_exact))
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Code Block 6.2: Output of Code Block 6.2, i.e. euclidean distance of the spectra which are
shown to be equal by Theorem I.16

1 7.840360590302494e-15
2 2.0515268049222782e-14
3 5.0682272876712425e-14
4 1.1265875013606188e-13

Figure 6.1: Output of Code Block 6.2. Left are the spectra calculated by polynomial recursion
and the actual spectra are on the right.
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Regarding Barycentric Subdivision

This section is devoted to experiments on the 2-dimensional barycentric subdivision. We will
present two python codes; Code Block 6.3 and 6.4. Both will calculate a perturbed version of
the adjacency spectrum Λ(A(Γ(2)(sdn∆2))) for n = 1, ..., 4. The perturbation is induced by
adding loops to the boundary as described in Chapter 4. Note that as described in Section
3 the perturbed spectra deviate from the actual spectrum of A(Γ(2)(sdn∆2)) by a L1-error
which converges to 0 as n becomes large.

The first Code Block, 6.3, uses the C++ library ANUBiS, [Mä], in order to calculate
barycentric subdivisions of the standard 2 simplex ∆2 calculates the perturbed adjacency
matrix from the Laplacian generated by the library. Thus this code shows the spectrum
calculated in the "naive" way and serves us a base case. Code Block 6.4 calculates the
same spectrum via the matrix recurrence obtained from Schreier graph approximations as in
Theorem I.37. As seen by their outputs displayed in Figures 6.2 and 6.3 the spectra are the
same which follows from Theorem I.37.

The matrices returned by ANUBiS are, unlike the matrices generated by Code Block
6.4, not given with respect to the lexicographic ordering of the vertex set. This ordering
exhibits a nice structure of the adjacency matrix, i.e. the adjacency matrix can be decomposed
in a sum of a symmetric (block) circulant matrix tn + τn = t0 ⊗ I6n−1 + τ0 ⊗ I6n−1 and a
block-diagonal matrix bn = diag(τn−1, τn−1, tn−1, tn−1, bn−1, bn−1). However since bn contains
two blocks equal to the matrix bn−1 we can’t apply Schur complement as in Section 3 in order
to deduce a closed recursive formula.

Note that there are useful results for determinants of such matrices, e.g. [Mol08], but at one
point in the calculation we always have to invert a matrix of the form αtn−1 + βτn−1 + γbn−1

for α, β, γ ∈ R which itself involves factors of the kind tn−1τn−1 or tn−1bn−1 (similar to how
we had to add powers of a to the adjacency matrix of the cone division). In order to obtain a
closed iteration we thus would need to adjust the determinant by a summand of this kind
which iteratively fills in the nice structure of the adjacency matrix making it more dense (and
thus the results on block tridiagonal matrices not applicable anymore).

Notably however as indicated by the experiments (see Figure 6.2) there is a large spectral
gap around a prescribed (wave-like) function (in the limit) of eigenvalues between −1 and 1,
while the eigenvalues not in this range - which we will call the "boundary part" of the spectrum
- seem to exhibit a self-similar nature; see Code Block 6.5 and Figure 6.4. It is immediate
to see that the large spectral gaps seem to reproduce in the "boundary part" (again with a
prescribed function in the range which corresponded to [−1, 1] before transformation). But
even more notably is the fact that when comparing the "boundary part" of the spectrum in the
n-th step with the (complete) previous spectrum (after appropriate rescaling) the "boundary
part" seems to be a distorted version of the previous spectrum; see Figure 6.4. Note how
prominent features of the spectral CDFs (like gaps and dips) are paralleled exactly from one
CDF to the other. This prompts the conjecture that also barycentric subdivision obeys a
(possibly more complicated) spectral decimation rule on the "boundary part" with a fixed
spectrum introduced between −1 and 1.

In order to plot higher-dimensional spectra of barycentric subdivisions the code from Code
Block 6.3 is not feasible anymore since matrix sizes grow exponentially with the number
of subdivisions and the base is (d + 1)! for d being the input dimension. ANUBiS offers a
functionality to determine all eigenvalues of a matrix - not preserving multiplicities though.
The outputs of this algorithm up to dimension 4 are shown in Figure 6.7. Note already
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that there is distortion of the two-dimensional spectrum compared to Figure 6.2 because
multiplicities are not preserved.
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Code Block 6.3: Python code for calculating spectra of iterated barycentric subdivision of
2-dimensional simplex by explicitly subdividing the complex using ANUBiS. Note that this
code calculates adjacency spectrum of Γ2(2)(sdi∆2) (up to loops on the boundary) in order to
maintain comparability to the output of Code Block 6.4.

1 import anubis
2 from matplotlib import pyplot as plt
3 import numpy as np
4

5 # function to plot the spectral CDF
6 def plot_spec(spec):
7 # this insertion only has rendering purposes
8 spec = np.insert(spec, 0, spec[0])
9 plt.step(np.linspace(0, 1, spec.shape[0]), spec)

10

11 # load a standard 2 simplex ∆2 into S_TREE memory format of anubis
12 # standard_2d contains "Delta2 := [[0,1,2]]"
13 c = anubis.complex.from_file(anubis.S_TREE, "../standard_2d")
14

15 for i in range(1,5):
16 # c_next = sd(c)
17 c_next = c.barycentric()
18 # free C++ memory occupied by the old complex c
19 del c
20 # c = sdi∆2

21 c = c_next
22

23 # get top-Laplacian L (c)
24 delta = np.matrix(c.laplacian_down(2), dtype=np.float64)
25 # determine its spectrum using numpy
26 e, v = np.linalg.eigh(delta)
27

28 # plot Λ(3− L (c))
29 plot_spec(np.sort(3 - e))
30 plt.show()
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(a) Λ(A(G1)) (b) Λ(A(G2))

(c) Λ(A(G3)) (d) Λ(A(G4))

Figure 6.2: Output of Code Block 6.3; i.e. the spectral CDFs for Gn the sequence of graphs
Γ2(2)(sdi∆2) with loops added to the boundary. This sequence is equal to Λ(A(Γ(2)(sdi∆2)))
up to asymptotically negligible L1-error introduced by loops on the boundary.
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Code Block 6.4: Python code for calculating spectra of iterated barycentric subdivision of
2-dimensional simplex by matrix recursion from Theorem I.37.

1 import numpy as np
2 from matplotlib import pyplot as plot
3

4 def plot_spec(spec, label='step'):
5 spec = np.insert(spec, 0, spec[0])
6 plot.step(np.linspace(0, 1, spec.shape[0]), spec, label=label)
7

8 # initializing patterns of taking the Kronecker product in recursion
9 pattern_tau = np.matrix([ [0,1,0,0,0,0],

10 [1,0,0,0,0,0],
11 [0,0,0,1,0,0],
12 [0,0,1,0,0,0],
13 [0,0,0,0,0,1],
14 [0,0,0,0,1,0] ])
15 pattern_t = np.matrix([ [0,0,0,0,0,1],
16 [0,0,1,0,0,0],
17 [0,1,0,0,0,0],
18 [0,0,0,0,1,0],
19 [0,0,0,1,0,0],
20 [1,0,0,0,0,0] ])
21

22 pattern_btau = np.matrix([ [1,0,0,0,0,0],
23 [0,1,0,0,0,0],
24 [0,0,0,0,0,0],
25 [0,0,0,0,0,0],
26 [0,0,0,0,0,0],
27 [0,0,0,0,0,0] ])
28 pattern_bt = np.matrix([ [0,0,0,0,0,0],
29 [0,0,0,0,0,0],
30 [0,0,1,0,0,0],
31 [0,0,0,1,0,0],
32 [0,0,0,0,0,0],
33 [0,0,0,0,0,0] ])
34 pattern_bb = np.matrix([ [0,0,0,0,0,0],
35 [0,0,0,0,0,0],
36 [0,0,0,0,0,0],
37 [0,0,0,0,0,0],
38 [0,0,0,0,1,0],
39 [0,0,0,0,0,1] ])
40

41 # initialize the matrix representations on layer 1
42 tau = pattern_tau.copy()
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43 t = pattern_t.copy()
44 b = np.identity(6)
45

46 # L (sd∆2) is the adjacency matrix of the hexagon
47 delta = tau + t + b
48 plot.spy(delta, markersize=2) # spy used to plot sparse matrices
49 plot.show()
50

51 # calculate and plot spectrum of L (∆2)
52 e, v = np.linalg.eigh(delta)
53 plot_spec(e)
54 plot.show()
55

56 for i in range(2, 5):
57 # representation of b on the next layer is a recurrent Kronecker product of t, τ and b
58 # representations of the previous layer (self-similarity of group generators)
59 b = np.kron(pattern_btau, tau) + np.kron(pattern_bt, t) + np.kron(pattern_bb, b)
60 # τ and t only act non-trivial on the last letter of each word so that their
61 # representations are obtained as Kronecker products with identity
62 tau = np.kron(tau, np.identity(6))
63 t = np.kron(t, np.identity(6))
64 # L (sdi∆2) is the sum of the representations of generators
65 delta = tau + t + b
66 plot.spy(delta, markersize=0.5) # plot sparse matrix
67 plot.show()
68 # calculate spectrum of L (sdi∆2)
69 e, v = np.linalg.eigh(delta)
70 # plot Λ(L (sdi∆2))
71 plot_spec(e)
72 plot.show()
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(a) A(G1) (b) Λ(A(G1))

(c) A(G2) (d) Λ(A(G2))

(e) A(G3) (f) Λ(A(G3))

(g) A(G4) (h) Λ(A(G4))

Figure 6.3: Output of Code Block 6.4
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Code Block 6.5: Python code plotting the left boundary part of the spectrum against the
previous complete spectrum.

1 # /**
2 # insert the initialization, i.e. lines 1-55 from Code Block 6.4
3 # **/
4

5 # save the previous spectrum in the e_old field
6 e_old = e
7

8 for i in range(2, 5):
9 b = np.kron(pattern_btau, tau) + np.kron(pattern_bt, t) + np.kron(pattern_bb, b)

10 tau = np.kron(tau, np.identity(6))
11 t = np.kron(t, np.identity(6))
12 delta = tau + t + b
13 plot.spy(delta, markersize=0.5) # plot sparse matrix
14 plot.show()
15 e, v = np.linalg.eigh(delta)
16

17 # plot e_old next to the first len(e_old)-many eigenvalues in e (after rescaling)
18 plot_spec(e_old)
19 plot_spec(6 * (e[:len(e_old)] + 3) - 3)
20 plot.show()
21

22 e_old = e
23

(a) Boundary part of sd2∆2

against spectrum of sd∆2.
(b) Boundary part of sd3∆2

against spectrum of sd2∆2.
(c) Boundary part of sd4∆2

against spectrum of sd3∆2

Figure 6.4: Output of Code Block 6.5. The orange curve is the boundary part of the current
spectrum and the blue curve is the previous spectrum.
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Code Block 6.6: Python code plotting the left boundary part of the spectrum against the
previous complete spectrum.

1 import anubis
2 from matplotlib import pyplot as plt
3 import numpy as np
4

5 def plot_spec(spec):
6 spec = np.insert(spec, 0, spec[0])
7 plt.step(np.linspace(0, 1, spec.shape[0]), spec)
8

9 d = # put dimension here
10

11 c = anubis.complex.from_file(anubis.S_TREE, "../standard_{d}d".format(d=d))
12

13 for i in range(1,3):
14 c_next = c.barycentric()
15 del c
16 c = c_next
17

18 e = np.array(c.laplacian_spectrum(d-1))
19 plot_spec(np.sort(e))
20 plt.show()
21
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(a) sd9∆1 (b) sd5∆2

(c) sd3∆3 (d) sd2∆4

Figure 6.5: Output of Code Block 6.6. Eigenvalues of higher dimensions. Note that multiplici-
ties are not correct.
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Regarding Edgewise Subdivision

In this section we will present some python code in order to plot the actual spectra of edgewise
subdivision. Note that we calculated the universal limit of edgewise subdivision using the
same method as in [PT21]; however in our setting we are interested in the quantile function of
the distribution which is why we only calculated Λ

(esd)
2 implicitly. Compare the plots produced

by the following code to Figure 5 of [PT21] to see that it actually is the quantile function (up
to a scaling of the parameter by 3).

Code Block 6.7: Python code plotting the first iterations of spectral quantile functions and
dual graphs of edgewise subdivision.

1 import networkx as nx
2 import numpy as np
3 import itertools
4 from matplotlib import pyplot as plt
5

6 def plot(spec):
7 np.insert(spec, 0, spec[0])
8 plt.step(np.linspace(0,1,len(spec)), spec, where="pre")
9 plt.show()

10

11 d = 2 # dimension
12 r = d # subdiv param
13

14 def partitionfunc(n,k,l=0):
15 '''n is the integer to partition, k is the length of partitions,
16 l is the min partition element size'''
17 if k < 1:
18 raise StopIteration
19 if k == 1:
20 if n >= l:
21 yield (n,)
22 return
23 for i in range(l,n+1):
24 for result in partitionfunc(n-i,k-1,i):
25 yield (i,)+result
26

27 def iota(t):
28 '''Discrete integration, i.e. r[j] = t[j] + ... + t[0] for all j.'''
29 r = [0] * (d+1)
30 r[0] = t[0]
31 for j in range(1, d+1):
32 r[j] = t[j] + r[j-1]
33 return r
34
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35 def shift_v(vert, n, facet):
36 '''For array "vert" and a mask "facet" of the same size only containing integers < n
37 return an array of size n which has vert[j] at the facet[j]-th place.'''
38 l_vert = [0] * n
39 j = 0
40 for i in facet:
41 l_vert[i] = vert[j]
42 j = j + 1
43 return tuple(l_vert)
44

45 def dual(G):
46 '''Returns graph dual to G.'''
47 H = nx.Graph()
48 cliques = nx.enumerate_all_cliques(G)
49 facets = set()
50 for c in cliques:
51 if len(c) == d+1:
52 facets.add(tuple(c))
53 for facet in facets:
54 H.add_node(facet)
55 for pair in itertools.product(facets, repeat=2):
56 if len(set(pair[0]).intersection(set(pair[1]))) == d:
57 H.add_edge(pair[0], pair[1])
58

59 return H
60

61 def edgewise(G):
62 '''Given the graph of a clique-2-complex generate its edgewise subdivision.'''
63 cliques = nx.enumerate_all_cliques(G)
64 facets = set()
65 for c in cliques:
66 if (len(c) == d+1):
67 facets.add(tuple(c))
68

69 n = G.number_of_nodes()
70

71 verts = []
72 edges = set()
73 for facet in facets:
74 parts = partitionfunc(r, d+1)
75 v = set()
76

77 for t in parts:
78 v.update(list(itertools.permutations(t)))
79

80 v = list(v)
81 indices = [-1] * len(v)
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82 for i in range(len(v)):
83 el = shift_v(v[i], n, facet)
84 try:
85 indices[i] = verts.index(el)
86 except ValueError:
87 indices[i] = len(verts)
88 verts.append(el)
89

90 for pair in itertools.product(range(len(v)), repeat=2):
91 x = iota(v[pair[0]])
92 y = iota(v[pair[1]])
93 diff = [x[i] - y[i] for i in range(d+1)]
94 pos = True
95 neg = True
96 for i in range(d+1):
97 if (diff[i] not in [0,1]):
98 pos = False;
99 if (diff[i] not in [0,-1]):

100 neg = False;
101 if (pos or neg):
102 edges.add((indices[pair[0]], indices[pair[1]]))
103 verts = list(verts)
104 H = nx.Graph()
105 for i in range(len(verts)):
106 H.add_node(i)
107 for e in edges:
108 H.add_edge(e[0], e[1])
109

110 return H, verts
111

112 G = nx.complete_graph(d+1) # start with standard simplex
113

114 it = 6
115

116 for i in range(it):
117 G, v = edgewise(G) # get edgewise subdivision
118

119 H = dual(G) # get dual graph
120 nx.draw(H, nx.spring_layout(H, iterations=5000), node_size = 0.5) # plot dual graphs
121 plt.show()
122 plot(nx.linalg.laplacian_spectrum(H)) # plot spectrum
123 plt.show()
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(a) Λ(esd1
2∆2) (b) Λ(esd2

2∆2)

(c) Λ(esd3
2∆2) (d) Λ(esd4

2∆2)

(e) Λ(esd5
2∆2) (f) Λ(esd6

2∆2)

Figure 6.6: Spectral output of Code Block 6.7.
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(a) Γ(2)(esd1
2∆2) (b) Γ(2)(esd2

2∆2)

(c) Γ(2)(esd3
2∆2) (d) Γ(2)(esd4

2∆2)

(e) Γ(2)(esd5
2∆2) (f) Γ(2)(esd6

2∆2)

Figure 6.7: Graph output of Code Block 6.7. Generated by networkx, [HSS08].
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Open Questions

The following questions were considered but not solved in the course of this work.

The most interesting open question on the above is the one for limiting objects of the
fractal procedure described in Section 4. One object of particular interest is the case of the
barycentric subdivision as it is the most natural example for which finite ramification does
not hold.

As seen in Section 5 the sequence of barycentric subdivisions are "strongly convergent"
in the sense of [Ele08b]. However this only means that the sequence of graphs is a Cauchy
sequence with respect to the geometric distance (see Section 5 or [Ele08b] for its definition)
and this metric space need not be complete. Note that the strong convergence in this case also
implies Benjamini-Schramm convergence; let Gn denote the dual graph of the n-th barycentric
subdivision of ∆(2) and let µ be the uniform probability measure on the set of words [6]∞ of
infinite length, i.e. the measure generated by µ(w ∈ [6]∞ | wn = `) = 1/6 for n ∈ N, ` ∈ [6].
Note that the vertex set of Gn is [6]n and thus the vertex set of disjoint union

Gn :=
⊔

w∈[6]∞
Gn

also is [6]∞ by the identification (w, x1...xn) 7→ xn...x1w. Note that by the section on the
barycentric subdivision of dimension 2 we can describe Gn as a Schreier graph via three
group generators τ, t and b which act right-to-left in the word sequence x1...xn. Let τ∗, t∗ and
b∗ denote the corresponding operators acting from left-to-right on the flipped word xn...x1.
Intuitively the corresponding limit of the graph whose edge relations are induced by left-to-right
application of τ∗, t∗, b∗ would be the graph G∞ on vertex set [6]∞ with edge relations given
by application of τ∗, t∗, b∗ on the infinite sequence. Note hereby that either the calculation
ends after finitely many steps (i.e. at the first 5 or 6) or the word consists of only 5’s and 6’s
and so b doesn’t act on the element at all. G∞ can be thought of as a hexagon from which
can be zoomed out in the sense of the sequence (Gn)n∈N infinitely wide.

Now note that the stars of the graphs G∞ and Gn agree on all vertices except for those
on the boundary of Gn. These elements are precisely of the form xn...x1w for x1...xn on the
boundary of Gn. Thus the event

{w ∈ [6]∞ | Stw(Gn) 6= Stw(G∞)} ⊆ ∂Gn × [6]∞

completely defined by the first n letters. In particular since #∂Gn = 6 · 2n−1 we obtain in
measure that

µ(w ∈ [6]∞ | Stw(Gn) 6= Stw(G∞)) =
1

3n−1
.

In particular under some modifications (which make the geometric distance only into
a pseudo-metric) this meant convergence of Gn to G∞ in the strong sense (see Section 5
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or [Ele08b]). This implies Benjamini-Schramm convergence in particular; let (H, o) be an
arbitrary rooted graph of radius k ∈ N. First of all note again, that the probability

µ(w ∈ [6]∞ | (H, o) ↪→ (Gn, w)) = µn(x ∈ [6]n | (H, o) ↪→ (Gn, x)),

where µn denotes the (finite) uniform distribution on V (Gn) = [6]n. Since all stars of Gn and
G∞ coincide in the interior of Gn for every word w ∈ [6]∞ the embeddability of a k-radius
rooted graph into (Gn, w) and (G∞, w) coincides as long as w has distance ≥ k from ∂Gn.
Let DH,n denote the set of vertices w ∈ [6]∞ such that (H, o) embeds in (Gn, w) but not in
(G∞, w) or vice versa. Thus by the above we have H ⊆ ∂Gn. Now since Gn has degrees ≤ 3
for every boundary vertex x ∈ ∂Gn the k-ball contains at most 2k+1 − 1 vertices. Thus the
number of vertices of distance ≤ k from ∂Gn is

6 · 2n−1(2k+1 − 1) ≤ 6 · 2n+k.

In particular the measure of such points in Gn is

µ(DH,n) ≤
2k+1

3n−1
.

By definition it holds∣∣µ(w ∈ [6]∞ | (H, o) ↪→ (Gn, w))− µ(w ∈ [6]∞ | (H, o) ↪→ (G∞, w))
∣∣ ≤ µ(DH,n) → 0.

for every given (H, o).
By all the above the graph G∞ seems to be a reasonable choice. Note however that this

graph G∞ behaves weirdly as it is not connected for example. One could modify the strong
convergence to obtain as a limit one of the countable connected components of the above,
which as a vertex-induced subgraph has Gn on the set Σn · 0, where 0 is the constant 0-word
of infinite length.

Question 1. Is there a reasonable limiting object of the barycentric subdivision fractal process
preserving spectral convergence? In particular; does there exist an object from which the
universal limit gets induced in a natural way?

Furthermore more generally we could ask ourselves the following:

Question 2. Under what conditions does such a limiting object exist for a general fractal
sequence coming from a subdivision procedure as described in Section 4.
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Introduction

Wave propagation in graph-like media is a topic of increasing interest in the last decades due
to its applications in chemistry, mesoscopic physics and photonic crystals. We refer the reader
to [Kuc02] and [BCFK06] and the references therein for an overview of systems modelled by
thin structures associated to graphs.

Certain aspects a system of graph-like nature exhibits are approximated by the graph-
model. As shown in [EP05] one such aspect is the spectral dynamics of a thin medium, i.e.
for sufficiently thin systems the spectra of their Laplacians are approximated by those of
the quantum graph which models the system. Note that the transition to a quantum graph
can simplify the complexity drastically as quantum graphs are combinatorial graphs with
(curvi-)linear differential geometry assigned to each edge.

In this work we will generalize the notion of a quantum graph to quantum simplicial
complexes so that the modelling of systems with an arbitrarily large number of dimensions
not confined by a small diameter is permissible. The notion of quantum simplicial complexes
is introduced in Section 2. The concept of thin systems modelled by such a complex will
be made precise in Section 3. Section 4 presents some inequalities generalizing the ones
used in the proof of the main theorem of [EP05]. Our main contribution is the deduction
of a higher-dimensional Kirchhoff condition allowing for the definition of a Laplacian on a
quantum simplicial complex which has discrete spectrum. Thus associating to a geometry
on a complex a spectral theory. We present conjectures on the spectral behaviour of this
operator; in particular we conjecture that for an equilateral 2-dimensional quantum complex
the spectrum is completely determined by the spectrum of the combinatorial 1-up Laplacian
of the complex (as is the case for quantum graphs and their graph Laplacians). Furthermore
we conjecture that the Riemannian Laplacian of thin structures modelled around a quantum
complex converges to the spectrum of the quantum complex itself. More speculatively we also
ask whether or not a phase transition law holds for spectral convergence with respect to the
dimension of the modelling complex (as is the case for graphs).
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Metric simplicial Complexes and their
Laplacians

We firstly fix some conventions. All simplicial complexes considered in this work are finite
abstract simplicial complexes, i.e. a finite collection of finite non-empty sets such that for
τ ∈ K and non-empty τ ′ ⊂ τ it holds that τ ′ ∈ K. The sets contained in K are called faces of
K and by Fi(K) we denote the collection of i-faces of K, i.e. the collection of sets of cardinality
i+ 1 in K. For sets τ ∈ Fi(K) we set their dimension to dim τ = i. The dimension of K is
the maximal dimension of one of its elements. We denote the inclusion of sets in K by ≤ and
call the maximal elements of K with respect to ≤ its facets. Let τ ≤ τ ′ ∈ K; we say τ is a face
of τ ′ and τ ′ is a coface of τ , depending on the frame of reference. We say dim τ ′ − dim τ is the
codimension of the pair τ ′, τ . Furthermore all complexes we work with will be pure which
means that all facets have the same dimension. For an in-depth introduction to simplicial
topology we refer the reader to [Mun18].

We will distinguish faces with certain properties by notation in order to facilitate readability.
σ will be reserved for a facet, τ and ν are lower-dimensional faces where ν has dimension less
than τ . Most of the times ν will be a codimension-1-face of τ , i.e. ν ≤ τ and dim τ−dim ν = 1.

In order to assign to every facet of K a geometry we need the notion of a geometric simplex.
We say d points v0, ..., vd ∈ Rn are affinely independent if they are not contained in an affine
subspace of Rn of dimension < d. In this case we say the convex hull

Σ = conv(v0, ..., vd)

is a d-dimensional geometric simplex. We remark that

Σ =
{ d∑

i=0

λivi |
d∑

i=0

λi = 1, λi ≥ 0
}
.

Note that every selection {i0, ..., ik} ⊆ {0, ..., d} gives a unique k-simplex conv(vi0 , ..., vik)
contained in the boundary of Σ. Those k-simplices are called the k-faces of Σ and the set of
all k-faces of Σ is denoted by Fk(Σ). In particular we have F0(Σ) = {v0, ..., vd}. Assuming for
Σ,Σ′ two d-simplices we have a bijective map f : F0(Σ) → F0(Σ

′) we immediately obtain a
geometric extension of f , denoted f̃ , which is actually a bijective map

f̃ : Σ → Σ′;

d∑
i=0

λivi 7→
d∑

i=0

λif(vi).

The following definition is similar to the one in [BH99] or the definition of a affine realization
in [Chr07].
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Definition II.1. A metric simplicial complex is a pair (K,Σ) of a finite pure d-dimensional
abstract simplicial complex K and Σ assigns to every σ ∈ Fd(K) a d-dimensional geometric
simplex Σσ ⊂ Rd together with a bijective map

ϕσ : σ → F0(Σσ)

such that for τ ≤ σ, σ′ ∈ Fd(K) the map

˜ψσ′ ◦ ψ−1
σ

is a geometric isometry for ψσ = ϕσ|τ and ψσ′ = ϕσ′|τ . We further fix one isometric copy of
the span of ϕσ(τ) in Rdim τ and denote it by Στ ⊂ Rdimτ .

By a slight abuse of notation we will denote the face Σσ|τ spanned by ϕσ(τ) by Στ aswell
even though they are technically only isometric to each other. However for our analysis this
won’t make any difference as their L2-spaces are isometric aswell via transformation rule.

Note that every geometric simplicial complex is a metric simplicial complex; having an
embedding in some RN fixed we fix isometric copies of every facet in Rd and the faces obviously
obey the condition we imposed on the maps ϕ. However not every metric simplicial complex
has an embedding in some euclidean space.

We will now introduce a Hamiltonian operator on a metric simplicial complex which is a
reasonable candidate to parallel Riemannian geometry. First we need to introduce function
spaces associated to a metric simplicial complex M = (K,Σ). We will employ the following
function spaces defined for a compact domain Σ ⊂ Rd: L2(Σ) = L2(Σ, dx1 ∧ ...∧ dxd) denotes
the common L2-space with the inner product given as

〈u, v〉Σ =

∫
Σ
uv dx1 ∧ ... ∧ dxd

and the corresponding norm denoted || · ||Σ; C(Σ) denotes the space of continuous functions
and Hk(Σ) the Sobolev space of degree k, i.e. the space of functions on Σ k-times weakly
differentiable in L2(Σ). Hk(Σ) will be seen mainly as a subspace of L2(Σ) for the purposes of
this work, however we will make usage of the Sobolev norm which is denoted as

||u||2k,Σ :=
∑

α∈Nd: |α|≤k

||∂|α|u/∂xα||2Σ,

where |α| = α1 + ...+ αd and ∂|α|u/∂xα :=
(
∂x1

)α1

...
(
∂xd

)αd

u.

Using these function spaces we can finally define the corresponding ones for the metric
simplicial complex M . Let

L2(M) :=
⊕

σ∈Fd(K)

L2(Σσ,dx1 ∧ ... ∧ dxd)

be the space of L2-integrable functions,

C(M) := {u ∈
⊕

σ∈Fd(K)

C(Σσ) | ∀σ,σ′>τ∈K : (uσ)∣∣Σσ|τ
≡ (uσ′)∣∣Σσ′|τ

} ⊆ L2(M)
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be the space of continuous functions and

Hk(M) :=
⊕

σ∈Fd(K)

Hk(Σσ) ⊂ L2(K)

be the space of k-times weakly differentiable functions on M , where x1, ..., xd are the cartesian
coordinates of Rd. L2(M) becomes a Hilbert space via the inner product

〈u, v〉M :=
∑

σ∈Fd(K)

〈u, v〉Σσ

and the induced norm is thus
||u||2M :=

∑
σ∈Fd(K)

||u||2Σσ
.

We now denote the quadratic form

qM (u) := ||∇u||2M

for u ∈ H1(M) ∩ C(M), where ∇u denotes the weak gradient of u, i.e.

(∇u)σ :=
(∂uσ
∂x1

, ...,
∂uσ
∂xd

)
,

for σ ∈ Fd(K).
We have two distinct norms with respect to which we can view Hk(M) - namely the

common L2-norm (and thus Hk as subspace of L2) or the Sobolev norm denoted

||u||2k,M :=
∑

α∈Nd,|α|≤k

||∂αu/∂xα||2M ,

as above.
We now associate to M a cotangential bundle T ∗M as

T ∗M :=
⊕

σ∈Fd(M)

T ∗Σσ

and on it the L2-space
L2(T ∗M) :=

⊕
L2(T ∗Σσ)

for
L2(T ∗Σσ) :=

{
α ∈ T ∗Σσ | α = α1 dx1 + ...+ αd dxd, α1, ..., αd ∈ L2(Σσ)

}
with the L2-norm 〈 d∑

i=1

αi dxi,

d∑
i=1

βi dxi

〉
Σσ

:=

d∑
i=1

〈αi, βi〉Σσ .

The cotangential bundle on M then gets assigned a function space in the same fashion as M
itself, i.e.

L2(T ∗M) :=
⊕

σ∈Fd(K)

L2(T ∗Σσ)
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with the product inner norm

〈α, β〉M :=
∑

σ∈Fd(K)

d∑
i=1

〈ασ
i , β

σ
i 〉Σσ ,

where ασ
i and βσi are the coefficient functions for dxi in ασ and βσ, respectively. Analogously

we can define Hk(T ∗M) and C(T ∗M) as subspaces of L2(T ∗M) by imposing the condition
suggested by notation on every coefficient function.

In order to obtain a correspondence to the Laplacian of classical Riemannian geometry
we will now define the exterior derivative d = dM as an operator from H1(M) ∩ C(M) into
L2(T ∗M).

The exterior derivative is then given as

d : H1(M) ∩ C(M) → L2(Λ1(M))

via
(du)σ =

∂uσ
∂x1

dx1 + ...+
∂uσ
∂xd

dxd.

In order to define our Hamiltonian we now need the following lemma.

Lemma II.2. The operator d : H1(M) ∩ C(M) → L2(T ∗M) has the formal adjoint operator
d∗ : domd∗ → L2(M) given by

(d∗α)σ := −
(∂ασ

1

∂x1
+ ...+

∂ασ
d

∂xd

)
on domain

dom d∗ = {α ∈ H1(T ∗M) | ∀τ∈Fd−1(K), x∈Στ
:

∑
σ>τ

ασ(νσ)|x = 0}

Proof. Let α ∈ domd∗ and f ∈ dom d be an arbitrary test-function. The necessary condition
for d∗ being adjoint to d is

〈df, α〉M = 〈f, d∗α〉M
which we will use as defining equation for d∗. Integration by parts gives:

〈df, α〉M =
∑

σ∈Fd(K)

∫
Σσ

〈dfσ, ασ〉Σσ dΣσ

=
∑

σ∈Fd(K)

∫
Σσ

(∂fσ
∂x1

ασ
1 + ...+

∂fσ
∂xd

ασ
d

)
dΣσ

=
∑

σ∈Fd(K)

∫
Σσ

∇fσ • ασ dΣσ

=
∑

σ∈Fd(K)

(∫
∂Σσ

fσ · ασ • νσ d∂Σσ −
∫
Σσ

fσ∇ • ασ dΣσ

)
=

∑
σ∈Fd(K)

( ∑
τ<1σ

∫
Στ

fσ · ασ • νσ dΣτ −
∫
Σσ

fσ∇ • ασ dΣσ

)
=

∑
τ∈Fd−1(K)

∫
Στ

fτ ·
∑
σ>τ

ασ • νσ︸ ︷︷ ︸
=ασ(νσ)

dΣτ − 〈f, d∗α〉M .
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Since f is an arbitrary test function from domd the (almost everywhere) vanishing of the
function

Στ → R; x 7→
∑
σ>τ

ασ(νσ)|x

is sufficient for the claim to hold.

This lemma immediately gives rise to a well-defined Laplacian operator

∆ := d∗ d

densely defined on the domain

{u ∈ domd | du ∈ domd∗}

which when regarding all the above can be written as

H2
K(M) := {u ∈ H2(M) ∩ C(M) | ∀τ∈Fd−1(K), x∈Στ

:
∑
σ>τ

∂νσuσ(x) = 0} ⊂ L2(M),

where the subscript K should imply that for the functions u ∈ H2
K(M) the Kirchhoff boundary

condition for higher-dimensional domains holds.

Definition II.3. A quantum simplicial complex is a triple M = (K,Σ,∆) for a metric
simplicial complex (K,Σ) with its Laplacian operator

∆ := d∗ d.

We also write ∆(M) := ∆.
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Thin Manifolds with model Complex

Now that we have defined the concept of a quantum simplicial complex M = (K,Σ,∆) we
can define what a thin manifold with model complex M should be.
Definition II.4. Let M0 = (K,Σ,∆) be a quantum simplicial complex. A Riemannian
manifold (M, g) is said to have model complex M0 if M has a decomposition

M =
⋃
τ∈K

Xτ

into closed sets Xτ sufficing the following properties:
• {X̊τ}τ∈K are mutually disjoint.

• Xτ ∩Xτ ′ = ∅ if neither τ ≤ τ ′ nor τ ′ ≤ τ .

• For τ ∈ Fk(K) there exists a connected, compact Riemannian manifold (Yτ , hτ ) such
that Xτ is as a Riemannian manifold with the metric induced from g isomorphic to

(Στ × Yτ , gτ ).

• For τ ≤ τ ′ it holds that
Xτ ∩X ′

τ
∼= Στ × Yτ ′ .

Besides the case when dimK ≤ 1 we can only illustrate cases when dimYσ = 1 and
dimK = 2. So for example consider Yσ = [−1/2, 1/2] for dimK = 2. The fibers along edges
e ∈ F1(K) with more than one coface need to be junctions of thickened simplices as in Figure
3.1a. Finally open edges, i.e. edges with only one coface, are capped off as in Figure 3.1b.
The vertices fill in and smooth out the remaining voids.

Yτ

Yσ

(a) Example of a three-junction. The lower simplex
is not drawn to maintain clarity.

Ye

Yσ

(b) A capped edge.

Figure 3.1: Examples of the decomposition M =
⋃

τ∈K Xτ for dimK = 2 and Yσ = [−1/2, 1/2].
The linear directions are indicated by thickened lines and hatched areas.
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In order to define when a sequence of such manifolds behaves similar to the standard
product metric on every Xτ we will introduce the notion of asymptotic equivalence of a
metric to the product metric. Let (Mε)0<ε≤1 be a family of Riemannian manifolds with model
complex M0 such that Mε = (M, gε) (i.e. Mε are all defined on the same differential structure
with varying Riemannian manifolds). We say that gε is asymptotically equivalent to the
product metric on Xτ if

(Gε)τ −
(
1 0
0 (Hε)τ

)
=

(
o(1) 0
0 o(ε2)

)
,

where (Gε)τ denotes the matrix of the metric (gε)τ and (Hε)τ denotes the metric of (hε)τ (i.e.
the metric on Yτ in Mε) in some chart of Στ × Yτ (where we take the standard chart in the
linear direction Στ ). Here o(an) denotes a sequence of matrices where every entry is o(an).

Let dim τ = i, we then write

(gε)τ ∼ dx21 + ...+ dx2i + (hε)τ .

The idea behind this ease of condition on the metric is that we allow a wider range of manifolds
smoothing out between the different parts Xτ of the manifold.

The object we define next formalizes the process of interpolating between a modelled
manifold and its underlying complex via scaling the fiber by a ε-homothety.

Definition II.5. Let M0 = (K,Σ,∆) be a quantum simplicial complex. A one-parameter
family (Mε)0<ε≤1 is called a thin manifold with model complex M0 if for every 0 < ε ≤ 1 Mε

is a Riemannian manifold
Mε = (M, gε),

where the differential structure is a fixed manifold M , M1 has model complex M0 and gε
is asymptotically equivalent to the product metric of the standard metric on Στ and the
ε-homothety of hτ on every Xτ , i.e.

(gε)τ ∼ dx21 + ...+ dx2i + ε2hτ

for i = dim τ . Here hτ denotes some fixed Riemannian metric of Yτ .
We denote for a thin manifold Mε by

ess dimMε = dimK

the essential dimension of {Mε}0<ε≤1. Note that we will say Mε is a thin manifold though
this notion really only makes sense for an entire family of manifolds.

First note that in the beginning we fixed K to be a finite complex and by definition every
fiber manifold Yτ is compact. Thus for our purposes Mε is always a compact manifold.

It is immediate that this is a generalization of compact graph-like thin manifolds in case
ess dimMε = 1. In what follows we will denote by θτ = dimYτ the fiber dimension over Στ

and by θ = θσ for some σ ∈ Fd(K) the principal transversal dimension.
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Manifolds and their Laplacian

We assign to Mε a Laplacian ∆(Mε) now. Assume (M, g) is a compact Riemannian manifold
with piecewise smooth boundary and denote by L2(M) = L2(M, dM) the space of square
integrable functions on M with respect to the volume form dM . We denote the norm of this
space by || · ||M . For a function u ∈ C∞(M) we set

qM (u) := ||du||2M :=

∫
M

|du|2 dM,

where | du|2 is the norm on 1-forms defined via Hodge-∗-operator as

|du|2 dM = du ∧ ∗ du,

i.e. in a chart it holds that
|du|2 = ∂uG−1(∂u)t,

where G is the matrix representing g in the chart and ∂u is the tangent vector of partial
derivatives of u with respect to that chart (in order to distinguish it from the gradient ∇u).
qM is defined on the domain H1(M) := {u ∈ L2(M) | du ∈ L2(T ∗M)}, i.e. the L2 function
with weak outer derivative in L2. The Laplacian of M , ∆(M), is then given as the unique
self-adjoint and non-negative operator associated with the form qM .
Remark 5. It is well known by the theory of elliptic partial differential equations that ∆(M)
has purely discrete spectrum if M is compact. The same is true for the common Neumann
Laplacian on open bounded subsets of Rd with piecewise smooth boundary. The same line of
reasoning as for the Neumann Laplacian can be applied in order to see that for M a quantum
complex the operator ∆(M) also must have discrete spectrum. Thus henceforth for a manifold
or quantum complex M we will denote by λk(M) the eigenvalues listed in ascending order
with multiplicities.

107



108



Some elementary results

In this section we deduce partial results similar to those used in the proof of the main result
of [EP05].

Lemma II.6 (Poincaré-type estimate, [EP05]). Let X be a connected, compact manifold with
smooth boundary ∂X. For u ∈ H1(X) we let u0 denote its average

u0 :=
1

volX

∫
X
u(x) dx.

The following estimates hold:
||u0||2X ≤ ||u||2X

||u− u0||2X ≤ 1

λN2 (X)
||du||2X

||u||2X − ||u0||2X ≤ 1

δλN2 (X)
||du||X + δ||u||2X

for any δ > 0. Here λN2 (X) denotes the first non-zero eigenvalue of the Neumann-Laplacian
of X.

We will also make use of the following two variations of the trace theorem.

Lemma II.7 (Trace Theorem for manifolds, Proposition 4.5 in [Tay10]). Let X be a smooth,
compact manifold with smooth boundary ∂X. There exists a constant c > 0 such that for
u ∈ H1(X) it holds that

||γu||2∂X ≤ c(||u||2X + ||du||2X),

where γ : H1(X) → L2(∂X) denotes the trace operator.

Lemma II.8. [Trace Theorem for Lipschitz domains, [Din96]] Let Ω be a Lipschitz domain.
Then it exists a constant C > 0 such that

||γu||L2(∂Ω) ≤ C||u||1,Ω = C(||u||L2(Ω) + ||∇u||L2(Ω)).

for all u ∈ H1(Ω), where γ : H1(Ω) → L2(∂Ω) denotes the trace operator.

Spectral Asymptotics

We will show a relaxation of the key lemma in [EP05]. This would allow for us to only work
on C∞ functions on the manifold and complex (which replaces some assumptions that can be
made for the graph case, e.g. Sobolev functions being continuous). It is a consequence of the
min-max principle for eigenvalues of operators with purely discrete spectrum.
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We thus assume Q and Q′ are densely defined, self-adjoint, non-negative operators on
seperable Hilbert spaces (H , || · ||) and (H ′, || · ||′) associated to the quadratic forms q and q′
defined on D ⊂ H and D ′ ⊂ H ′ with purely discrete spectra (λi)i∈N and (λ′i)i∈N. Further
for a multi-index n ∈ Nk we define a norm by

||u||2Q,n := ||u||2 + ||Qn1/2u||2 + ...+ ||Qnk/2u||2.

The version of the min-max principle we use can be found in [Sch12, Section 12.1] and it
allows us to compute the k-th eigenvalue of Q in the above setting as

λk(Q) = inf
Lk

sup
u∈Lk\{0}

||q(u)||2

||u||2
,

where Lk runs over all k-dimensional subspaces of D , the domain of definition of the form q
associated to Q.

Then the key lemma of [EP05] can be generalized to the following result.

Lemma II.9. Let φ : D → D ′ be a linear map between the domains of definition of q and
q′. Assume that all eigenvectors of Q are contained in the subspace E ≤ H . If there exist
multi-indices n ∈ Ni,m ∈ N` and δ1, δ2 ≥ 0 such that

E ⊆ dom(Qmax(maxn,maxm)/2)

and
||u||2 ≤ ||φu||′2 + δ1||u||2Q,n

q(u) ≥ q′(φu)− δ2||u||2Q,m

for all u ∈ E , then for every k there exists a positive function ηk(λk, δ1, δ2) → 0 for δ1, δ2 → 0
such that

λk ≥ λ′k − ηk.

Proof. As in [EP05] let φ1, ..., φk be an orthonormal system of eigenvectors corresponding to
the eigenvalues λ1, ..., λk of Q. For u ∈ Ek the linear span of φ1, ..., φk we obviously have
u ∈ E . Furthermore for n ∈ Ni it holds that

||u||2Q,n = ||u||2 + ||Qn1/2u||2 + ...+ ||Qni/2u||2

≤ ||u||2 + λn1
k ||u||2 + ...+ λni

k ||u||2

= (1 + λn1
k + ...+ λni

k )︸ ︷︷ ︸
=:Λk,n

||u||2.

By the presumed inequalities on E we obtain

q(φu)

||φu||′2
− q(u)

||u||2
≤ 1

||φu||′2
(
q(u) + δ2||u||2Q,m − q(u)

||u||2
(||u||2 − δ1||u||2Q,n)

)
=

1

||φu||′2
(
δ1||u||2Q,n

q(u)

||u||2
+ δ2||u||2Q,m

)
≤ ||u||2

||φu||′2
(
δ1λkΛk,n + δ2Λk,m

)
.
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We rearrange the first of the presumed inequalities on E to obtain

||φu||′2 ≥ ||u||2 − δ1||u||2Q,n ≥ (1− δ1Λk,n)||u||2. (4.1)

Thus combining the above we obtain

q(φu)

||φu||′2
− q(u)

||u||2
≤
δ1λkΛk,n + δ2Λk,m

1− δ1Λk,n
=: ηk(λk, δ1, δ2) =: ηk

for δ1 < 1/Λk,n. Further for such values of δ1 equation (4.1) implies the injectivity of φ so
that φ(Ek) is k-dimensional. Thus applying the min-max principle to q′ we obtain

λ′k = inf
Lk

sup
u∈Lk\{0}

q′(u)

||u||′2
≤ sup

u∈φ(Ek)\{0}

q′(u)

||u||′2

= sup
u∈Ek\{0}

q′(φu)

||φu||′2

≤ sup
u∈Ek\{0}

q(u)

||u||2
+ ηk

= λk + ηk.

Transversal Averaging and useful inequalities

For the rest of the section let (Mε)0<ε≤1 denote a thin manifold with model complex M0.
We will show that we can immediately work with the simplified assumption that

(gε)τ = dx21 + ...+ dx2i + ε2hτ

as the error terms introduced in all quantities handled by the following results only changes
by a (1 + o(1)) coefficient (in the linear direction) or a o(ε) coefficient in the fiber direction.

Lemma II.10 ([EP05]). Let (gε)τ be the Riemannian metric of (Mε)0<ε≤1 and let (g̃ε)τ =
dx21 + ...+dx2i + ε2hτ denote the product metric ε-homothetic to hτ in the fiber. The following
asympototics hold:

(det(Gε)τ )
1/2 = (1 + o(1))(det(G̃ε)τ )

1/2

((Gε)τ )
−1 = 1 + o(1)

|dΣτu|2 ≤ (1 + o(1))| du|2(gε)τ
|dYτu|2hτ

= o(ε)|du|2gε .

Proof. The first equation follows as in [EP05] from

det((Gε)τ (G̃ε)
−1
τ ) = det

(
1 + o(1) 0

0 1 + o(1)

)
= 1 + o(1)

by the continuity of the determinant.
The second equation follows from the continuity of Inversion around 1.

111



The third inequality can be shown the same way as in [EP05] via(
1 0
0 0

)
≤ (1 + o(1))(Gε)

−1
τ

in the sense of quadratic forms which follows if we have(
1 0
0 δ

)
≤ (1 + o(1))(Gε)

−1
τ

or equivalently

(Gε)τ ≤ (1 + o(1))

(
1 0
0 δ−1

)
.

Note by definition that

(Gε)τ =

(
1 + o(1) 0

0 O(ε2)

)
≤ (1 + o(1))

(
1 0
0 c

)
as O(ε) is o(1). So that the inequality involving δ holds whenever δ < c−1. The fourth
inequality is proven similarly.

The previous Lemma allows us to work only with (g̃ε)τ from now on; we thus assume
that the family (Mε)0<ε≤1 is locally the product Riemannian manifold on every Xτ without
mentioning that we can transition to this case because of Lemma II.10. The reason that the
coefficients introduced by transitioning to the product metric are negligable lays in Lemma
II.9 and the following estimates; note that the coefficients are always compatible with the
coefficients we’ll obtain. All o(1) and o(ε) coefficients could be collected in δ1, δ2 in Lemma
II.9 if the required estimate holds for the product metric.

First we analyze the behaviour of the function norm with respect to the homothetic
parameter ε.

Lemma II.11. The following L2-relations hold:

• Let f ∈ L2(Mε), then
||f ||Xτ,ε = εθτ/2||f ||Xτ .

• Let f ∈ H1(Yτ ), then
||dYτ f ||Yτ,ε = εθτ/2−1||dYτ f ||Yτ .

Proof. Note that the Riemannian metric of Mε is locally (on Xτ ) given by the matrix(
Iddim τ 0

0 ε2Hτ

)
,

where Hτ is the matrix corresponding to the Riemannian metric fixed for Yτ .
In particular ∫

Xτ,ε

|f(ζ)|2 dζ =

∫
Στ

∫
Yτ,ε

|f(x, y)|2 dy dx.
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Since the integral over Yτ is given as a sum of localized integrals it suffices to carry on the
analysis on a local chart ϕ : U → V for open subsets U ⊆ Rθτ , V ⊆ Yτ . The localized integral
then has the form∫

Στ

∫
U
|f(x, ϕ(y))|2

√
det(ε2Hτ ) dy dx = εθτ

∫
Στ

∫
U
|f(x, ϕ(y))|2

√
detHτ dy dx,

where the integral on the right-hand side is the integral of |f |2 over Xτ,1 localized on the chart
(ϕ,U). Thus

||f ||2Xτ,ε
= εθτ ||f ||2Xτ

.

For the second part observe that

||dYτ f ||2Yτ,ε
=

∫
Yτ,ε

| df |2ε2h,

where
| df |2ε2h = (∇Y f)

t(ε2H−1)(∇Y f),

where H is the local matrix representation of the Riemannian metric h.
Thus

||dYτ f ||2Yτ,ε
=

1

ε2

∫
Yτ,ε

|df |2h

and with the same argument as in the first part we obtain

||dYτ f ||2Yτ,ε
= εθτ−2||dYτ f ||2Yτ

.

Let u ∈ H2(Mε) for a thin manifold Mε. Then we denote for τ ∈M0 by uτ the transversal
averaging function

uτ : Στ → R; x 7→ 1

volYτ

∫
Yτ

u(x, y)dy

where u(x, y) is the function u on Xτ
∼= Στ × Yτ under the obvious identifications. This

operation will be useful in order to pull back H2-functions from Mε to M0. The following
result motivates the construction of the L2-space of a quantum simplicial complex M0 as the
one integrating only the top-dimensional simplices.

Lemma II.12. Let Mε be a thin manifold and let u ∈ L2(Mε) such that u is constant in
transversal direction, i.e.

u|Xτ
(x, y) = uτ (x)

for uτ ∈ L2(Στ ). Then
||u||2Xτ,ε

= O(εθτ )||uτ ||2Στ
.

In particular it holds that

||u||2Mε
= O(εθ)

d∑
i=0

∑
τ∈Fi(K)

εd−i||uτ ||Στ .
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Proof. The second part is immediate if the first part holds.
For the first part observe that by Lemma II.11

||u||2Xτ,ε
=

∫
Yτ,ε

∫
Στ

|u(x, y)|2 dx dy

=

∫
Yτ,ε

∫
Στ

|uτ (x)|2 dy dx

= εθτ vol(Yτ )
∫
Στ

|uτ (x)|2 dx

= O(εθτ )||uτ ||2Στ
.

Lemma II.13. Let u ∈ L2(Mε) and τ ∈ K. Then it holds that

||uτ ||2Xτ,ε
≤ ||u||2Xτ,ε

.

Proof. In view of Lemma II.12 and the Cauchy-Schwarz inequality it holds that

||uτ ||2Xτ,ε
= vol(Yτ )εθτ

∫
Στ

∣∣∣ 1

volYτ

∫
Yτ

u(x, y) dy
∣∣∣2 dx

≤ εθτ
∫
Στ

∫
Yτ

|u(x, y)|2 dy dx

= ||u||2Xτ,ε
.

Next we show a Poincaré-type theorem for thin manifolds.

Lemma II.14. Let u ∈ H1(Mε) and ν ∈M0. Then it holds that

||u− uν ||Xν,ε ≤ ε||du||Xν,ε

and
||u||2Xν,ε

− ||uν ||2Xν,ε
≤ O(ε1/2)(||u||2Xν,ε

+ ||du||2Xν,ε
).

Proof. By using Lemma II.11 we obtain

||u− uν ||2Xν,ε
≤ εθν ||u− uν ||2Xν

and can apply the Poincaré-type estimate, Lemma II.6, now to obtain

||u−uν ||2Xν
=

∫
Σν

||u(x, ·)−u0(x)||2Yν
dx ≤ 1

λN2 (Yν)

∫
Σν

||dYνu(x, ·)||2Yν
dx = C

∫
Σν

ε2−θν ||dYνu(x, ·)||2Yν,ε
dx,

where we applied the second part of Lemma II.11 in the last equality. The claim then follows
by the obvious inequality

||dYνu||Xν,ε ≤ || dYνu||Xν .

For the second inequality we again use Lemma II.6 to obtain

||u(x, ·)||2Yν
− |uν(x)|2 ≤

1

δλN2 (Yν)
||dY u(x, ·)||2Yν

+ δ||u(x, ·)||2Yν
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Lemma II.15. Let u ∈ H1(Mε) and ν ∈M0 be a non-facet, i.e. dim ν < d, aswell as τ > ν
be a codimension-1-coface. It holds that

||uν − uτ |Xν
||Xν,ε ≤ O(ε)||du||Xν,ε .

Proof.

||uν − uτ |Xν
||2Xν,ε

= εθνvolYν
∫
Σν

|uν − uτ |Xν
|2

= Cεθν
∫
Σν

∣∣∣ 1

volYτ

∫
Yτ

uν(x) dy −
1

volYτ

∫
Yτ

u(x, y) dy
∣∣∣2 dx

=
Cεθν

(volYτ )2
∫
Σν

∣∣∣ ∫
Yτ

(uν(x)− u(x, y)) dy
∣∣∣2 dx

≤ Cεθν

volYτ

∫
Σν

∫
Yτ

|u(x, y)− uν(x)|2 dy dx.

We now analyze the interior integral using Lemma II.7; to this end observe that∫
Yτ

|u(x, y)−uν(x)|2 dy ≤
∫
∂Yν

|u(x, y)−uν(x)|2 dy ≤ c(||u(x, ·)−uν(x)||2Yν
+ ||dYνu(x, ·)||2Yν

).

By Lemma II.11 this can be bound above by

cε−θν (||u(x, ·)− uν ||2Yν,ε
+ ε2||dYνu(x, ·)||2Yν,ε

).

In summary we obtain

||uτ − uν |Xν
||2Xν,ε

≤ O(1)(||u− uν ||2Xν,ε
+ ε2||du||2Xν,ε

)

and thus by the previous Lemma II.14

||uτ − uν |Xν
||2Xν,ε

≤ O(ε2)||du||2Xν,ε
.

Lemma II.16. Let u ∈ H1(Mε) and ν ∈M0 be a non-facet, i.e. dim ν < d, aswell as τ > ν
be a codimension-1-coface. It holds that

||uτ |Xν
||2Xν,ε

≤ O(ε)(||u||2Xτ,ε
+ ||du||2Xτ,ε

).

Proof. Obviously we have

||uτ |Xν
||2Xν,ε

= εθν ||uτ |Xν
||2Σν

= εθν
∫
Σν

∣∣∣ ∫
Yτ

u(x, y) dy
∣∣∣2 dx

≤ volYτεθν
∫
Σν

∫
Yτ

|u(x, y)|2 dy dx

≤ volYτεθν
∫
∂Στ

∫
Yτ

|u(x, y)|2 dy dx

= O(εθν )

∫
Yτ

||u|∂Στ
(·, y)||2∂Στ

dy.
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We will now employ Lemma II.8 in order to estimate

||u|∂Στ
(·, y)||2∂Στ

≤ O(1)(||u(·, y)||2Στ
+ ||dτu(·, y)||2Στ

).

Thus together with the above we yield

||uτ |Xν
||2Xν,ε

≤ O(εθν )(||u||2Xτ
+ ||dτu||2Xτ

)

= O(εθν−θτ )(||u||2Xτ,ε
+ ||dτu||2Xτ,ε

)

≤ O(ε)(||u||2Xτ,ε
+ ||du||2Xτ,ε

).

The following lemma will be crucial in our analysis since it allows us to estimate the
parts of the L2-norm induced by domains in the manifold corresponding to lower-dimensional
simplices in M0.
Lemma II.17. Let u ∈ H1(Mε) and ν ∈ M0 be a non-facet, i.e. dim ν < d. Then for any
given codimension-1-coface τ > ν it holds that

||u||2Xν,ε
≤ O(ε)(||u||2Xν,ε∪Xτ,ε

+ ||du||2Xν,ε∪Xτ,ε
).

Proof. We have

||u||Xν,ε ≤ ||u− uν ||Xν,ε + ||uν − uτ |Xν
||Xν,ε + ||uτ |Xν

||Xν,ε .

The first norm can be estimated by Lemma II.14, the second one by Lemma II.15 and the
third by Lemma II.16. Note that need to apply the square root to the third estimate first.
Thus we obtain the upper bound

||u||Xν,ε ≤ O(ε1/2)
√
||u||2Xν,ε∪Xτ,ε

+ ||du||2Xν,ε∪Xτ,ε
.

Corollary II.18. Let u ∈ H1(Mε). Then it holds that

||u||2Mε
≤

∑
σ∈Fd(M0)

||u||Xσ,ε +O(ε)(||u||Mε + ||du||Mε).

Proof. This result immediately follows from the previous lemma.

||u||2Mε
=

d∑
i=0

∑
τ∈Fi(M0)

||u||2Xτ,ε
.

Now in order to bound the summands for i < d for every ν ∈ Fi(M0) we choose an arbitrary
codimension-1-coface τ and thus obtain

||u||2Xν,ε
≤ O(ε)(||u||Xν,ε + ||du||Xν,ε + ||u||Xτ,ε + ||du||Xτ,ε).

In particular summing over the norms for ν we obtain an upper bound of O(ε)(||u||Mε +
||du||Mε), while for the τ -terms every τ can have a maximum number of d+ 1 faces so that
we obtain an upper bound of

(d+ 1)O(ε)(||u||Xτ,ε + ||du||Xτ,ε).

This shows the claim.
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Open Questions

The following questions were considered but not solved in the course of this work.

As we generalized the results from [EP05] it is reasonable to ask whether they can be used
to generalize the main theorem therein.

Question 3. Let (Mε)0<ε≤1 be a thin manifold with model complex M0 = (K,Σ,∆). Does
the spectral asymptotic

λk(Mε) → λk(M0); ε→ 0

hold?

We can similarly define p-forms on M and give a Kirchhoff condition for the formal
adjointness of d and d∗ (i.e. an analogue of Lemma II.2) in this higher-order case. This
has been done for graphs in [EP17]; in the same paper it was also shown that there holds
a phase transition property for convergence of eigenvalues of the Hodge-p-Laplacian in case
all transversal manifolds Xe have trivial (p − 1)-th cohomology. We thus ask if this phase
transition property holds in higher dimensions aswell.

However we won’t introduce this operator particularly; it acts as the Hodge-p-Laplacian
on every Σσ and along the boundaries a Kirchhoff condition must hold for forms in its domain.
We denote by λ

(p)
k (M) its k-th largest eigenvalue. Analogously for a Riemannian manifold

(N, g) we denote by λ(p)k (N) the k-th largest eigenvalue of its Riemannian Hodge-p-Laplacian.

Question 4. Let (Mε)0<ε≤1 be a thin manifold with model complex M0 = (K,Σ,∆) of
dimension d. Does for p < d hold that

λ
(p)
k (Mε) → λ

(p)
k (M0); ε→ 0?

Is there a condition for the transversal manifolds Xτ , τ ∈ K, under which all eigenvalues for
d+ 1 ≤ p ≤ n− 1 diverge; i.e.

λ
(p)
1 (Mε) → ∞?

I.e. does a phase transition law in the asymptotic behavior of spectra hold at ess dimM0?

By [Cat97] it is known that in case a quantum graph is equilateral, i.e. every edge has
the same length ` ∈ (0,∞) associated to it, the spectrum of the continuous Laplacian can
completely be determined by the (finite) spectrum of the graphs combinatorial Laplacian. The
main ingredient of the proof is the exact form of a solution to the Dirichlet boundary value
problem {

∆u(t) = λu(t) , t ∈ [0, `]

u(0) = a, u(`) = b
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on every edge (i.e. [0, `]) with given values a, b ∈ R. Note that for the containment of the
spectrum of the continuous Laplacian in the right-hand side (which is completely defined
by the combinatorial Laplacian) it is enough to use the Kirchhoff condition given at every
vertex together with a form of the normal derivative of u at the boundary 0 and ` in every
edge (depending only on a, b and λ) deduced from the exact description of the Laplacian
eigenfunctions on the edge. The normal derivative of u solving this problem is called the
Neumann data of the problem; thus we seek to describe the Neumann data by the Dirichlet
data on every edge in order to show the first containment.

Now; in case we look at a quantum simplicial complex M = (K,Σ,∆) of dimension d = 2, a
reasonable generalization of equilaterality of the graph is the condition of every facet σ ∈ F2(K)
to be embedded in euclidean space by an equilateral triangle Σσ = Σ0 of edge length `, where
` is the same for every σ. By [DF05] we can then obtain the Neumann data on every facet
solely by λ and the Dirichlet data on this face; the Dirichlet data in this case is the value of u
on the (d− 1)-faces. After then substituting this Neumann data into the Kirchhoff condition
of ∆(M) we might rearrange the equation to obtain a similar result to [Cat97]. By the form
of the Neumann data we immediately see that this obtained equation only depends on the
values of u on (d − 1)-faces. Thus under suitable assignment of a function f ∈ Rfd−1(K) to
every function u ∈ H2(M) we might obtain after rearranging an equation of the form

L up
1 (K)f = p2(λ)f

for a suitable function p1. The author did not find any work on Dirichlet-to-Neumann data
transfer for the regular tetrahedron or the standard-d-simplex in general. However, it seems
reasonable that the data transfer only depends on the boundary values of u and this boundary
behavior can be split up via restriction to each (d− 1)-face. So that naturally the following
question arises.

Question 5. Let M = (K,Σ,∆) be a quantum simplicial complex of dimension d. Is there a
function pd such that for every eigenvalue λ of ∆(M) pd(λ) is an eigenvalue of L up

d−1? If not,
for what values of d does this hold?
More speculatively; if pd(λ) is an eigenvalue of L up

d−1 is λ and eigenvalue of ∆(M)?
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