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Kurzbeschreibung

Kleiner, flexibler, effizienter! In der Entwicklung elektronischer Bauteile ist dieser Trend

klar erkennbar. Übergangsmetall-Dichalkogenide (TMDCs) werden hierbei als vielver-

sprechende Kandidaten gehandelt, um dieses Ziel auf die Spitze zu treiben. Diese Ma-

terialien gehören zur Klasse der sogenannten van-der-Waals-Materialien. Diese Materi-

alklasse zeichnet aus, dass die Materialien aus einzelnen Lagen aufgebaut sind, die nur

schwach miteinander verbunden sind. Es ist daher möglich einzelne Lagen voneinan-

der zu separieren. Diese Monolagen sind nur wenige Ångström dick, weisen aber eine

starke Kopplung an Lichtfelder auf, wobei aufgrund der reduzierten Symmetrie des Sys-

tems eine polarisationsabhängige selektive Anregung von Elektronen unterschiedlichen

Spins möglich ist. Durch die geringe Dicke sind die optischen Eigenschaften der Mate-

rialien darüber hinaus empfindlich gegenüber äußerer Einwirkungen, was einerseits das

Spektrum potentieller Anwendungen, beispielsweise in der Sensorik, erweitert und an-

dererseits eine gezielte Anpassung an die Anwendungsvoraussetzung erlaubt.

Im Rahmen dieser Dissertation wurden in mehreren Studien ausgewählte Aspekte der

opto-elektronischen Eigenschaften halbleitender TMDC-Monolagen untersucht. Große

Teile dieser Studien sind bereits veröffentlicht worden und werden in dieser Arbeit ein-

geleitet und zusammengefasst.

Die Materialien wurden mithilfe eines hybriden Ansatzes untersucht, der Methoden der

Dichtefunktional-Theorie (DFT) mit Methoden der Dichtematrix-Theorie kombiniert,

um ein effektives und präzises Werkzeug zur parameterfreien Beschreibung der unter-

suchten Systeme zu erhalten. Ergebnisse von DFT-Rechnungen wurden hierbei als Aus-

gangspunkt genommen, um eine modellhafte Beschreibung des nicht-wechselwirkenden

Grundzustands des Systems zu entwickeln, auf dessen Basis die optischen und dynami-

schen Eigenschaften mit Hilfe eines Dirac-/Halbleiter-Bloch-Ansatzes (DBE/SBE) ana-

lysiert werden konnten. Hierbei bildete insbesondere die Modellbildung zur Beschrei-

bung der Coulomb-Wechselwirkung ein fundamentales Bindeglied zwischen den beiden

Ansätzen.

Den Schwerpunkt einer ersten Studie bildete folgerichtig die Erweiterung und Analyse

eines Modells dieser Wechselwirkung, sowie weiterführende Untersuchungen der Modi-

fikation der Wechselwirkung durch angeregte Ladungsträger und die dielektrische Um-

gebung, und schließlich deren Implikation für die elektronischen und optischen Ener-

giespektren. Auf Basis des Coulombpotentials eines Schichtsystems und der aus DFT-
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Rechnungen resultierenden Wellenfunktionen wurde ein isotropes Modell für die Cou-

lombmatrixelemente in der Umgebung der direkten Bandlücken gefunden. Eine direkte

experimentelle Beobachtung der Wechselwirkung ist nicht möglich, doch die gute Über-

einstimmung der Ergebnisse für die ladungsträger- und umgebungsinduzierte Reduktion

der Bandlücke und der Exzitonen-Bindungsenergien mit experimentellen Werten und

etablierten theoretischen Modellen deuten darauf hin, dass das erarbeitete Modell ei-

ne sinnvolle und effiziente Näherung zur Beschreibung der Wechselwirkung darstellt. In

allen nachfolgenden Untersuchungen wurde dieses Modell materialspezifisch angepasst

und für die Wechselwirkungsbeschreibung im Bereich der Haupttäler (K/K ′) und der

Nebentäler (Σ/Λ) verwendet.

In einer zweiten Studie wurde die Magnetfeldabhängigkeit des exzitonischen Spektrums

untersucht. Die diamagnetische Verschiebung der s-artigen Zustände mit einem g-Faktor

von gns ⪆ 2 wurde in Äquivalenz zu experimentellen Studien gesehen. Darüber hinaus

wurde auch die nicht direkt optisch adressierbare – das heißt nicht über Ein-Photon-

Prozesse anregbare – p-artige Exzitonenreihe untersucht, die aufgrund ihrer Drehmo-

mentquantenzahl eine zusätzliche lineare magnetische Abhängigkeit aufweist, welche zu

einer Zeeman-Aufspaltung der Zustände führt. Eine indirekte optische Untersuchung die-

ser p-artigen Zustände ist bei geeigneten Anregungsbedingungen möglich, da Übergänge

zwischen s- und p-artigen Zuständen optisch induziert werden können. Aufgrund der

energetischen Ordnung der Exzitonen ist insbesondere der Fall einer anfänglichen Be-

setzung des 2s-Zustands interessant, da hier der Übergang zu den energetisch niedriger

gelegenen 2p-Zuständen eine Verstärkung des Signals im Terahertz-Bereich (THz) impli-

ziert. Aufgrund der unterschiedlichen Magnetfeldabhängigkeit ist diese Verstärkung, die

teilweise durch Absorption durch 2s-3p-Übergänge abgeschwächt wird, darüber hinaus

durch das magnetische Feld verstimmbar. Weiterhin kann die Lage des Gain-Maximums

durch die Wahl der dielektrischen Umgebung verschoben werden.

Während exzitonische Eigenschaften im Regime niedriger Anregungsdichten die opti-

sche Antwort des Materials dominieren, führt eine starke Anregung zu einer starken

Renormierung der Bandlücke, die die Bandlücke um mehrere 100meV verringert, zu

einem Ausbleichen der exzitonischen Resonanzen, und schließlich zu einer Verstärkung

des optischen Probe-Signals im Bereich unterhalb der niedrigsten Exzitonen-Resonanz.

Unsere Analyse der Ladungsträgerdynamik am Beispiel von MoTe2 hat gezeigt, dass die

Ladungsträger nach einer optischen Anregung, bedingt durch die starke Coulombwech-

selwirkung, bereits auf Zeitskalen von wenigen Femtosekunden in heiße, Fermi-ähnliche

Verteilungen relaxieren. In einer ersten Studie wurde der Fokus auf die Dynamik in der

näheren Umgebung der direkten Bandlücke (Haupttals) gelegt, wobei eine Abschätzung

des Beitrags der Seitentäler zeigte, dass dieser eine Zunahme der optischen Verstärkung

bewirkt. Eine zweite Studie, in der die Analyse auf die gesamte Brillouin Zone (BZ)

ausgedehnt wurde, zeigte, dass Streuzeiten in die Seitenminima (Nebentäler) sensibel
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von den Anregungsbedingungen abhängen. Allerdings konnte hier für keines der unter-

suchten molybdänbasierten Materialien gezeigt werden, dass durch optische Anregung

erzeugte Ladungsträger, die in das Seitental streuen, dazu führen, dass sich das Seitental

energetisch unter das Haupttal schiebt – für alle untersuchten Konstellationen blieb die

Bandlücke der Monolage direkt.

Abschließend wurde untersucht, wie sich die 1s-Exzitonenresonanz im linearen optischen

Spektrum verändert, wenn sich ein Elektron-Loch-Plasma im Material ausgebildet hat.

Es wurde eine lineare Verbreiterung der Resonanz beobachtet, die sich in einem schnelle-

ren Abfall des integrierten Vier-Wellen-Mischsignals, separiert von Beiträgen möglicher

inhomogener Verbreiterungen, messen lässt. Außerdem wurde gezeigt, dass beide Rela-

xierungsprozesse, das heißt sowohl das Abkühlen der Ladungsträgerverteilung, als auch

die Neugruppierung der Ladungsträger in den unterschiedlichen Tälern, zu einer Ver-

schmälerung der Resonanz führen.





v

Abstract

Smaller, more flexible, more efficient! This trend is clearly visible in the development

of electronic devices. Transition metal dichalcogenides (TMDCs) are considered promi-

sing candidates to push this goal to the extreme. These materials belong to the class

of so-called van der Waals materials. This class of materials is characterised by the fact

that the materials are made up of layers that are only weakly connected to each other.

It is therefore possible to separate individual layers from each other. These monolayers

are only a few Ångströms thick, but exhibit strong coupling to light fields, whereby

polarisation-dependent selective excitation of electrons with different spins is possible

due to the reduced symmetry of the system. Due to the small thickness, the optical

properties of the materials are also sensitive to external influences, which on the one

hand expands the spectrum of possible applications, for example in sensor technology,

and on the other hand enables targeted adaptation to the application requirements.

In this dissertation, selected aspects of the opto-electronic properties of semiconducting

TMDC monolayers were investigated in several studies. Large parts of these studies have

already been published and are introduced and summarised in this thesis.

The materials were studied using a hybrid approach that combines density functional

theory (DFT) methods with density matrix theory methods to produce an effective and

accurate tool for a parameter-free description of the investigated systems. Results of

DFT calculations were taken as a starting point to develop a model description of the

non-interacting ground state of the system, on the basis of which the optical and dynami-

cal properties could be analysed using a Dirac/semiconductor Bloch equation approach

(DBE/SBE). Here, in particular, the modelling to describe the Coulomb interaction for-

med a fundamental link between the two approaches.

The focus of a first study was consequently the extension and analysis of a model of this

interaction, as well as further investigations of the modification of the interaction by

excited charge carriers and the dielectric environment, and finally its implication for the

electronic and optical energy spectra. Based on the Coulomb potential of a layer system

and the wave functions resulting from DFT calculations, an isotropic model was found for

the Coulomb matrix elements in the vicinity of the direct band gap. Direct experimen-

tal observation of the interaction is not possible, but the good agreement of the results

for the charge carrier- and environment-induced reduction of the band gap and exciton

binding energies with experimental values and established theoretical models indicates
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that the elaborated model is a reasonable and efficient approximation to describe the in-

teraction. In all subsequent investigations, this model was adapted material-specifically

and used for the interaction description in the area of the main valleys (K/K ′) and the

side valleys (Σ/Λ).

In a second study, the magnetic field dependence of the excitonic spectrum was inves-

tigated. The predicted diamagnetic shift of the s-like states with a g-factor of gns ⪆ 2

was found to be equivalent to experimental studies. In addition, the p-like exciton se-

ries, which is not directly optically addressable – i.e. cannot be excited via one-photon-

processes –, was investigated. Due to its angular momentum quantum number, this series

exhibits an additional linear magnetic dependence, which leads to a Zeeman splitting

of the states. An indirect optical investigation of these p-like states is possible under

suitable excitation conditions, since transitions between s- and p-like excitonic states

can be optically induced. Due to the energetic order of the excitons, the case of an in-

itial occupation of the 2s state is particularly interesting, since here the transition to

the energetically lower 2p states implies an amplification of the signal in the terahertz

(THz) range. Due to the different magnetic field dependence, this amplification, which is

partly superimposed by absorptive features of 2s-3p-transitions, is tunable by a magnetic

field. Furthermore, the position of the gain maximum can be shifted by the choice of the

dielectric environment.

While excitonic properties dominate the optical response of the material in the regime

of low excitation densities, strong excitation leads to a strong renormalisation of the

band gap, reducing the band gap by several 100meV, to a bleaching of the excitonic

resonances, and finally to an amplification of the optical probe-signal in the region be-

low the lowest exciton resonance. Our analysis of the charge carrier dynamics using the

example of MoTe2 has shown that in this material system the charge carriers relax into

hot Fermi-like distributions after optical excitation due to the strong Coulomb interac-

tion already on time scales of a few femtoseconds. In a first study, the focus was placed

on the dynamics in the immediate vicinity of the direct band gap (K/ K ′), whereby an

estimation of the contribution of the side valleys showed that this causes an increase in

optical amplification. A second study, in which the analysis was extended to the entire

Brillouin zone (BZ), showed that scattering times into the side minima (side valleys)

depend sensitively on the excitation conditions. However, for none of the investigated

molybdenum-based materials could be shown that the scattering of optically induced

charge carriers into the side valley the side valley to push energetically under the main

valley – for all constellations studied, the band gap of the monolayer remained direct.

Finally, it was investigated how the 1s exciton resonance in the linear optical spectrum

changes when an electron-hole plasma has formed in the material. A linear broadening

of the resonance was observed, which can be measured in a faster decay of the integra-

ted four-wave mixed signal, separated from contributions of a possible inhomogeneous
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broadening. Furthermore, it was shown that both relaxation processes, i.e. both the coo-

ling of the charge distribution and the regrouping of the charge carriers in the different

valleys, lead to a narrowing of the resonance.
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ximal ein quasi-zweidimensionales Objekt geblieben. Daher möchte mich bei den vielen
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1

1. Introduction

THE BUMBLEBEE CAN’T ACTUALLY FLY.

BUT SHE DOES NOT KNOW THAT AND JUST

FLIES ANYWAY!

Sometimes it pays to try something, even if people are sceptical about what to expect,

or even convinced of its failure. Sometimes only curiosity and trying even at the risk of

failure gets one to see flying frogs or to lay the corner stone for a new branch of science.

In fact, it was curious experimentation that led to the Nobel prize in physics, 2010, for

“groundbreaking experiments regarding the two-dimensional material graphene” [1].

Theoretical studies on the differing physical properties between bulk materials and their

corresponding monolayers1 and the expectation of being able to study astonishing new

physics reaches back to the 1940s. It was already 1947 that P. Wallace published one of

the first studies in this context on ‘graphite monolayers’ – by now, we call them ‘graphe-

ne’ –, where he derived their surprising band structure on the basis of a tight-binding

model. This band structure shows a vanishing band gap and linear dispersion around

this gap, resulting in a resistance equally low or even lower as in copper [2]. Even though

this early work demonstrated promising material features, consecutive experimental stu-

dies are hardly found. Even later on, the focus of most studies was on different graphene

alloys such as fullerenes [3, 4] – balls formed out of different numbers of carbon atoms

– or nanotubes [5]. One of the reasons for this lack of experimental research on planar

monolayer materials was the prediction that these materials are, in contrast to their

curved counterparts, thermodynamically unstable. Unimpressed by this forecast, A. Ge-

im and K. Novoselov tried hard at the preparation of graphene and, finally, proved the

doubters wrong – the bumblebee can fly indeed [6, 7]. Even more surprisingly, they de-

monstrated that the preparation of a monolayer from a van-der-Waals bound material

– a class of materials where the atoms are covalently bound in a plane but interact only

weakly, via van-der-Waals interaction, in the perpendicular direction – is fairly simple.

1In the context of this thesis the term “monolayer” is not only used for monoatomic planar layers but
also for materials that intrinsically consist of few atomic layers.
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It only requires a certain dexterity and adhesive tape to separate single layers from bulk

material. This success of Geim and Novoselov set off an avalanche of new research on

planar, low-dimensional materials – often called two-dimensional even though, as we will

elucidate later on, all materials have a finite extension in all three spatial directions.

Nowadays, the preparation methods are developed further, which is essential for possible

large scale applications and allows to go beyond naturally occurring material and prepa-

re artificial material compositions [8, 9, 10]. The zoo of quasi-two-dimensional materials

is no longer limited to graphene alone but consists of a variety of materials, which only

have their low dimensionality in common [11, 12, 13]. One species of this zoo are tran-

sition metal dichalcogenides (TMDCs), that are, as the name suggests, characterised by

its composition; the materials are composed of transition metal and chalcogen atoms in

a ration 1:2. The optical, magnetic and electronic properties of these materials are diver-

se, ranging from superconducting to isolating. There is one subspecies, where transition

metals of the VIth group are incorporated – therefore they are called group-VI TMDCs

–, that exhibits semiconducting behaviour. The bulk-parents of these group VI-TMDCs

were already in the focus of researchers in the 1960s/70s, but as the reduction of di-

mensionality revealed new promising possibilities for their application, the monolayers

received incomparably much more attention in the past decade [14, 15, 16, 17].

In 2010, a drastic increase of a resonance in the photoluminescence spectrum of MoS2 by

several orders of magnitude was reported when the sample thickness was reduced to a

monolayer [18, 19]. A transition of the material from an indirect to a direct semiconduc-

tor was found responsible for this enhancement of the signal [18]. In the following years,

comparable results were found for further materials. Nowadays, the typical representa-

tives of the semiconducting TMDCs, that are also discussed, with different weighting,

in the studies summarised in this thesis, are Mo{S/Se/Te}2 and W{S/Se}2
2 [22, 23].

Regarding the application in an opto-electronic device, a material with a direct band

gap is advantageous, because the excitation or relaxation of an electron in the material,

which is accompanied by an absorption or emission of light, respectively, can take place

‘directly’ without any momentum transfer. Therefore, no further quasiparticles, i.e. pho-

nons, need to be involved in the process in order to fulfil conservation laws, which makes

the transition more probable.

Interestingly, similar to graphene and unlike to many conventional semiconducting struc-

tures, the band gap in TMDC monolayers is not located at the center of the Brillouin

zone (BZ), but at its corners. To comprehend the importance of this finding, let us take

a step back and look more closely at the material structure as displayed in Fig. 1.1.

Comparing the top view, TMDCs are – at least in their predominant phase – similar to

2There is an ongoing discussion regarding the directness of the band gap in WSe2. Several studies
indicate that the material remains indirect even in the monolayer, but no final conclusions were
drawn other than the insight of a high sensitivity e.g. to strain and doping [20, 21].
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Abbildung 1.1: Lattice structure of the analysed TMDCs. Left: Top-view, right: Side-
view.

graphene. Both structures are reminiscent of a honeycomb from the top, but in graphene

carbon atoms build the honeycombs corners and in TMDCs neighboured corners are al-

ternately occupied by atoms of different kinds. From the side view, the TMDC structure

is three-layered, the metal layer is enclosed by two chalcogen layers. The structure is

classified as trigonal prismatic.

This lattice structure of a monolayer is important for the energetic spectrum as it is

not inversion symmetric. Since in the same way as the lattice structure is not inversi-

on symmetric, the band structure is not inversion symmetric and the energetic states

electrons of opposite spin may occupy are degenerate – at the same energy level – only

at few special points of high symmetry. Especially at the corners of the BZ the lack

of inversion symmetry leads to a splitting of the energetic states occupied by particles

of opposite spin. Neighbouring corners of the BZ are consequently similar but unequal,

therefore they are named K and K ′. Whereas the splitting for the lowest unoccupied

states (=̂ conduction band) is only in the order of a few meV, the splitting is in the

order of several hundred meV for the highest occupied states (=̂ valence band). The

exact energy splitting depends on the material and is approximately twice as large in

tungsten- as in molybdenum-based materials, because of the larger mass of tungsten.

Additionally, the ordering of the spin states differ in tungsten- and molybdenum-based

materials: in tungsten-based materials, the states that are energetically closest have dif-

ferent spin character, in contrast, in molybdenum-based materials, they have the same

spin character. Thus, in tungsten-based materials the energetically lowest transition is

spin-forbidden. This difference between tungsten- and molybdenum-based materials has

implications for the optical properties of these materials, to which we will refer again at

a later point.

Furthermore, the states at the different corners of the BZ couple to differently circular

polarised light. Thus, excitations can be induced separately at the different valleys at the

K/K ′ point. This difference in coupling behaviour, in combination with the large spin-

splitting of the bands, has the potential to use the spin or the valley index as a degree

of freedom, e.g. to store and process information via the spin or the crystal momentum.

These possible areas of application are traded under the terms spin- and valleytronics.
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Moreover, the material thinness in combination with the large coupling to light in the

visible to near-infrared (IR) regime is attractive for many different optical and opto-

electronic applications. From a practical point of view, their thinness promises further

miniaturisation and flexibility of possible devices. Furthermore, the thinness goes along

with strong many-body interactions that are accompanied by a high sensitivity of the

optical properties to internal and external conditions. On the one hand, this sensitivity

yields the possibility to tune the devices in a certain range and tailor them for specific

application purposes. On the other hand, it enables an application in the context of

sensing. Indeed, several studies on the implementation of TMDC monolayers in different

device applications like photovoltaic solar cells [24], LEDs [25], field effect transistors

[26], lasers [27, 28], sensing devices for heavy-metals and biomolecules [29] showed the

variety of application, but also its challenges. Despite this promising spectrum of po-

tential applications and the immeasurable number of studies on TMDC materials, a lot

of these challenges are still to be solved and there are still open questions that require

further research.

In this thesis, selected aspects of the complex interrelationships and interdependencies

of the linear and non-linear optical properties of group VI-TMDCs are investigated on

the basis of a combined approach of density-functional theory (DFT) and a microscopic

density matrix approach based on the massive Dirac fermion (MDF) model. In particu-

lar, we aim to understand the tunability of electronic and optical properties by external

parameters like the dielectric environment or a magnetic field, and we aim for a de-

scription of the dynamics of excited carriers and their influence on the energetic and

optical spectra. Different aspects of this large topic were focused on in different studies

that led to the publications listed above. In the following, the structure of this thesis

and the motivation for and connections between the different subprojects will be further

explained.

Ch. 2 gives an introduction into the general theoretical framework of this thesis. Here,

fundamental theoretical concepts are explained and their application to the material sys-

tem is presented. Some of the concepts introduced in this chapter are further elaborated

and adapted to specific settings in later chapters.

In the first subproject, summarised in Ch. 3, we took a closer look at the modelling

of the Coulomb interaction in TMDC materials. As introduced above, due to the con-

finement of the carriers within the layer, the thinness of the material is accompanied

by large Coulomb effects that manifest themselves in large exciton binding energies in

the range of several hundred meV, fast electronic scattering processes on the femtose-

cond timescale and large renormalisations of the band gap [18, 30, 31]. When describing

the Coulomb interaction theoretically, the finite thickness makes it necessary to consi-

der two aspects in particular: First, even though the electrons are confined within the

layers, the electromagnetic field which mediates their interaction reaches out of the layer.
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Consequently, the material properties are sensitive to the environment, which shows the

necessity to take the dielectric surrounding of the material into account in the theoreti-

cal description. Whereas the inclusion of further layers surrounding the target material

is numerically challenging in standard DFT calculations, different analytical approa-

ches have been formulated to effectively include environmental effects [32, 33, 34, 35].

Second, as mentioned above, even though these monolayer materials are often called

‘two-dimensional materials’, they are part of the three-dimensional world. Due to the

confined but finite extension of the carrier wave functions, the Coulomb potential neit-

her corresponds to the potential of a three-dimensional material nor to the potential of

a strictly two-dimensional material, but is somewhere in between these two limits. We

propose to include these finite thickness effects by introducing an effective form factor

based on an approximation of the Coulomb-matrix elements which are calculated using

the DFT wave functions. The analysis of the Coulomb interaction is rounded off by an

investigation of the complex interplay of finite thickness and environment- and carrier-

induced screening effects. In particular, we analyse their influence on the band gap and

the excitonic resonance energies.

Because of the strong Coulomb interaction, the optical absorption spectrum in the low

excitation regime is dominated by sharp peaks that can be traced back to bound electron-

hole pairs – excitons – with binding energies in the order of several hundred meV. Besides

the excitonic resonances that are seen in the linear optical spectrum there is a broad

spectrum of excitonic states, comparable to the stationary states of a hydrogen atom.

Due to the optical selection rules, only s-type excitonic states couple directly to light, but

these states then couple to p-type excitonic states upon excitation by light in the mid-IR

to terahertz (THz) range. In Ch. 4, we analyse this extended excitonic spectrum and

its observability in the material linear response in the presence of excitonic occupations.

Furthermore, we analyse the changes of the excitonic spectrum when applying a magne-

tic field perpendicular to the sample plane and the resulting tunability of intraexcitonic

transitions. Again, the effects of the interplay of varying external parameters – namely

dielectric surrounding and magnetic field – on the excitonic spectrum is investigated.

In the high-excitation regime, the formation of bound excitons is energetically unfavou-

rable, but the excited charge carriers can be described as an electron-hole plasma. Upon

exposing a TMDC monolayer to a high-intensity laser pulse with a suitable wavelength,

electrons are excited and interact with one another and with phonons. Both processes

lead to a relaxation of the carriers within the bands. To describe these processes of ex-

citation and relaxation in more detail, we analyse the dynamics of carriers upon above

band gap excitation in Ch. 5. In a first part, we focus on the dynamics in proximity

to the direct band gap and analyse the build-up of optical gain. In a second part, we

expand our model to describe the relaxation dynamics in the full BZ.

Finally, even in the low density regime, the presence of excited carriers has an influence
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on the optical spectrum. Before gain becomes measurable, the interaction of carriers

manifests in a broadening of the excitonic resonances in the linear absorption spectrum.

The influence of excited carriers on the linewidth of the lowest excitonic resonance and

its changes upon relaxation of the carriers within the bands is analysed in Ch. 6. The

broadening of the excitonic resonances is a result of different contributions, which expe-

rimentally cannot be separated when analysing the linear absorption spectrum only. But

higher-order non-linearities allow for some separation: the homogeneous broadening can

explicitly be extracted from four-wave mixing (FWM) experiments. Thence, I conclude

our study with a simulation of the impact of electron-hole plasma on the FWM signal.

With these manifold insights into the opto-electronic properties of TMDC monolayers,

I hope to help the mountain of knowledge grow by another one or two monolayers.
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2. Theory

Describing the physical properties of a solid on a microscopic scale is a non-trivial task,

as the complexity increases exponentially with the number of particles that needs to be

treated. Each particle interacts with all other particles, which makes the problem that

complicated that only a system as small as two particles can be solved exactly. But, al-

ready a single molybdenum atom for example contains 42 electrons and protons, and we

strive to gain insights on the material containing not only one but a multitude of these

and further atoms. Thus, in order to investigate the electronic and optical properties of

solid state materials, one is interested in a precise and versatile theoretical model that is

as simple as possible but as complex as necessary in order to capture the main physical

effects. Our approach to the systems complexity is twofold.

First, we employ a density functional theory (DFT) approach, for which in its basic for-

malism only ground state properties are accessible. Here, the interactions of the particles

are treated implicitly by hiding all interaction contributions in an artificial background

landscape that each particle feels individually. In this way, the many-body problem is

transformed into many coupled effective single-particle problems. We employ this ap-

proach in particular to gain insight on fundamental material properties such as the

single-particle dispersion or the materials macroscopic dielectric properties.

Second, our approach is based on an evaluation of the temporal evolution of a micros-

copic density matrix on the footing of a model Hamiltonian employing a Heisenberg

equation of motion (eom) approach. The microscopic density matrix yields insights into

both the underlying fundamental processes taking place and macroscopic observables.

This approach enables us to explicitly study the influence of chosen settings on the ma-

croscopic observables by selectively switching interaction paths in the system on or off.

In the following, the basic concepts of this combined approach are elucidated and notes

on their application on the investigated materials are given. Here, we start with an in-

troduction into the basic concepts of DFT (Ch. 2.1). In the following subsections, the

matrix density approach is explained, where the fundamental model Hamiltonian is sket-

ched (Ch. 2.2), before the deduction of the microscopic dynamics based on this model is

described (Ch. 2.3). Finally, the connection between the microscopic density matrix and

the macroscopically observable optical response is outlined.
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Further analysis and developments of theoretical concepts necessary for the adaptation

to specific experimental settings are also contained in the following chapters.

2.1 Density Functional Theory

As stated above, the analytically oriented approach based on a model Hamiltonian requi-

res some input information on material parameters, including for example the electronic

band structure or the dielectric properties. One way of getting insights into these and

many other basic material properties is given by the so-called density function theory

(DFT). DFT is a so-called ab initio approach meaning that in principal no input para-

meters are required, but calculations can be executed from scratch – at least in theory,

in practice it is common to employ, for example, information on the lattice structure

from experiments.

While several approaches on dealing with the many-body Schrödinger equation have

been made earlier, the cornerstone for modern DFT was laid by Hohenberg, Kohn and

Sham in the 1970s by developing its basic theorems [36, 37]. Here, the fundamental idea

consists of reducing the complexity of the problem by transforming the many-particle

problem into an effective single-particle problem and expressing the most fundamental

formulas in terms of the density – depending on three spatial coordinates – instead of the

wave functions – depending on all particles three spatial coordinates. This basic concept

was developed further in the following years and has become a fundamental and versatile

tool for material scientific, chemistry and physics problems, and it is still today subject

to further development and change.

In the following, only the basic foundations of this concept are elucidated, for in-depth

explanations the reader is referred to more detailed reviews as e.g. [38, 39]. Furthermore,

as most calculations summarised in the context of this thesis were performed using the

Vienna ab-initio simulation package (VASP) [40, 41, 42, 43] the focus is on underlying

concepts implemented in this code.

2.1.1 Hohenberg-Kohn theorems

In general, the ground state of a system containing N interacting electrons in an external

potential V is fully described by its wave function Ψ(r⃗1, r⃗2, ..., r⃗N), where r⃗i are the spatial

coordinates. The wave function, in real space representation, in turn is defined as solution

of the many-body Schrödinger equation

HΨ(r⃗1, r⃗2, ..., r⃗N) = EΨ(r⃗1, r⃗2, ..., r⃗N), (2.1)
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where H denotes the system Hamiltonian and E the total energy of the system. In

particular, the system Hamiltonian is given in terms of

H = T + V + U (2.2)

= −
ℏ
2

2m0

N∑

i

∇2
i +

N∑

i

v(r⃗) +
e2

4πϵ0

N∑

i<j

1

|r⃗i − r⃗j |
. (2.3)

Here, T describes the kinetic energy of the particles, V the external potential and U the

Coulomb interaction between the particles. It is interesting to note that the wave function

intrinsically depends on the spatial coordinates of all particles, as the description of a

single particle in the system is by means of the Coulomb interaction coupled to all other

particles, which makes the problem numerically demanding already for small systems.

Instead of solving the problem for the wave function, Hohenberg and Kohn proved 1964

[36] in two theorems, that the ground state problem can be reformulated in dependence

of the electron density n(r⃗); this way, the complexity of the problem is drastically reduced

as the later only depends on the three spatial coordinates instead of N times three as

the wave function:

First theorem: v(r⃗), being an external potential, is a unique functio-

nal of n(r⃗) apart from a trivial additive constant.

As a consequence, the expectation value of the full many-body Hamiltonian can be

interpreted as a functional of the density, E = ⟨Ψ|H|Ψ⟩ = ⟨Ψ|T + U + V|Ψ⟩ = E[n].

Second theorem: Under the constraint of N [n] =
∫
d3r n(r⃗) = N

for a system of N particles, the correct density n0 minimises the energy

yielding the systems ground state E[n0] = E0

According to the second theorem, the task is to minimise the functional E[n] = ⟨Ψ|H|Ψ⟩.

However, while the external potential is easily rewritten in this way, as

V [n(r⃗)] =

∫
d3r V(r⃗)n(r⃗), (2.4)

this problem is non-trivial neither with respect to the kinetic energy nor the Coulomb

interaction. Nevertheless, with their fundamental work on proving the existence of a

general functional, Hohenberg and Kohn laid the foundation for further development of

DFT.

2.1.2 Kohn-Sham equation

Even though it is practically impossible to reformulate the full Hamiltonian as an exact

functional of the density, we can approach this quest on a formal level by separating the
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parts we know how to rewrite from those which we do not. Let us start with the kinetic

part of the Hamiltonian. This part can be separated into a single-particle (Ts) and a

correlation (Tc) term

T [n(r⃗)] = −
ℏ
2

2m0

N∑

i

∫
d3r ϕ∗i (r⃗)∇

2ϕi(r⃗) + Tc[n], (2.5)

with the single-particle wave functions ϕi(r⃗). In a similar way, the Coulomb interaction

can be split into a Hartree (UH) and an exchange (Ux) term

U [n(r⃗)] =
e2

8πϵ0

∫ ∫
d3r d3r′

n(r⃗)n(r⃗′)

|r⃗ − r⃗′|
+ Ux[n]. (2.6)

This way, the terms that can be expressed explicitly are separated from the unknown

remainder which in summary is called exchange correlation energy Exc = Tc+Ux. Thus,

the expression for the systems total energy

E[n] = TS [n] + UH [n] + V [n] + Exc[n] (2.7)

remains formally exact.

Minimising the energy with respect to the density yields the condition

0 =
δE[n]

δn(r⃗)
=

δTS [n]

δn(r⃗)
+
δUH [n]

δn(r⃗)
+
δV [n]

δn(r⃗)
+
δExc[n]

δn(r⃗)

=
δTS [n]

δn(r⃗)
+ v(r⃗) + uH(r⃗) + vxc(r⃗). (2.8)

If we compare this condition to the minimisation condition for a system of non-interacting

particles in an external potential VS ,

0 =
δE[n]

δn(r⃗)
=

δTS [n]

δn(r⃗)
+ vS(r⃗), (2.9)

it becomes evident that the above expressions are equivalent if we interpret veff =

v(r⃗) + uH(r⃗) + vxc(r⃗) as an effective potential. Consequently, by introducing Lagrange

multipliers ϵi to solve the minimisation problem, the full many-body problem is refor-

mulated in N single-particle problems. Thus, as illustrated in Fig. 2.1, one has to solve

N single-particle Schrödinger equations where all interactions are hidden in an effective

potential veff ,

(
−

ℏ
2

2m0

∇2 + veff

)
ψi (r⃗) = ϵiψi (r⃗) . (2.10)
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Abbildung 2.1: Illustration of the basic idea of DFT: Instead of calculating the full
interactions between particles, one minimises the energy for N particles
in an approximated effective potential to find the ground state.

This equation in turn yields the electron density

n(r⃗) =
∑

i

fi |ψi(r⃗)|
2 , (2.11)

with the wave functions ψi and the occupation of the ith orbital fi. This combination

of equations is known as Kohn-Sham equations and its solutions ϵi are interpreted as

approximation of the systems energy levels [37].

As the Kohn-Sham equations are interdependent, an iterative scheme is applied to solve

them, starting from an initial approximation for ψi(r⃗) that is employed to calculate the

electron density and the Hamiltonian. Subsequently solving the Kohn-Sham equations

yields new wave functions as input for the Hamiltonian. This scheme is aborted after a

pre-set condition for the energy convergence is met.

Computational details

While the Kohn-Sham equations are formally exact, approximations are inevitable as

we simply concealed all unknown parts on a formal level. As a consequence, we can not

give an exact expression for the effective exchange energy term. A lot of effort was put

in searching appropriate formulations that approximate this term and a great variety of

functionals were and are still proposed. Generally, the functionals are classified according

to their degree of complexity and the interplay of physical constraints and experimen-

tal findings they are based on. The lowest order approximation is called local density

approach (LDA) and sets the functional to the known expression of a constant electron

gas where the respective local density is inserted. The next degree of approximation is

called general gradient approximations in which additionally to the local density also its

gradient is taken into account. Here, numerous parametrisations exist. In all publicati-

ons that are included in this thesis, the parametrisation of Perdew-Burke-Erzerhof as

implemented in VASP was applied [44].

Furthermore, different correction terms to include further effects were developed. In our

calculations, we include correction terms for the van-der-Waals interactions as proposed
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by Grimme et al. [45]. It was seen that the lattice constants are underestimated without

this correction terms. As the Kohn-Sham energy dispersion of the TMDC monolayer

structures sensitively depends on the exact lattice constants, these corrections were seen

inevitable for a consistent calculation.

Furthermore, in VASP periodic boundary conditions are applied. This is advantageous

for modelling bulk solid-state systems due to their – approximately infinite – translatio-

nal invariance, but causes difficulties in systems with a finite extension in one or more

directions. We treat the finite extension of monolayer materials by an artificial expansi-

on of the real space unit cell, where we include a large area of vacuum to decouple the

periodically repeated layers. An analysis of the lattice- and band structure-dependence

revealed that an interlayer distances in the order of 15− 20 Å is sufficient for the mate-

rials investigated.

For more explicit details on the exact parameters used in the different calculation we

refer to the respective publications.

2.2 Model Hamiltonian

In the interplay with the DFT calculations, we employ a many-particle density matrix

approach based on a model Hamiltonian. In the remainder of this chapter, the model

Hamiltonian and its connection to the DFT calculations is explained. First, the non-

interacting part of the Hamiltonian is analysed, where it is explained in which way

results from DFT calculations can be exploited to derive a model description of the

ground state energetic structure. Thereafter, the different contributions arising from

intrinsic interactions within the material and from interactions with external sources are

reconsidered. The full model Hamiltonian is obtained as a sum of these contributions. In

our studies not all contributions are included equally, as will be noted in the following,

where appropriate.

2.2.1 Single-particle dispersion – Massive Dirac Fermion model

Our model of the materials energy dispersion is in several ways connected to findings ob-

tained by DFT. Therefore, we start with a description and analysis of DFT calculations,

before its implications on the model are worked out. The DFT results are introduced ex-

emplary for MoS2 and notes regarding deviations in the other materials are given where

appropriate.

In the previous chapter, we introduced DFT as an efficient method to derive a materials

ground state. Even though this method is treated as an ab initio-method, it is common

to exploit experimental knowledge of the material lattice structure. As already expressed

in the introduction, we only discuss the trigonal prismatic phase of the materials in our

studies, where the atoms are covalently bound in the layer via s-p hybridisation.

As the sketch of the lattice structure in Fig. 1.1 shows, the atoms form a hexagonal
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structure from the top view, where neighbouring corners are occupied by different species,

and a three-layered structure from the side view, where two layers of chalcogen atoms

(here: S/Se/Te) surround a layer of metal atoms (here: Mo/W). Based on this lattice

structure, we compute the material band structure.

In the left panel of Fig. 2.2, the band structure along a straight path through the BZ is

shown exemplary for MoS2. Here, the most important features of the band structure are

captured: In the monolayer, we see for all materials investigated direct band gaps at the

K and K ′ points, which are located at the BZ corners.1 The energetic structure at these

two valley is equivalent but due to the lack of an inversion center, they are not equal

but connected via time-reversal symmetry. This implies that the bands are of opposite

spin character at the different valleys. Thus, spin and valley index are coupled. While

the smallest gap is spin-allowed in molybdenum-based materials, it is spin forbidden in

tungsten-based materials, which has noticeable consequences for the physical properties

and in particular for dynamical properties in the different materials. Furthermore, spin-

orbit coupling results in a splitting of both valence and conduction band. The splitting of

the conduction band is relatively small, for molybdenum-based materials it is only in the

range of few meV. But the valence band splitting is considerably larger, for molybdenum-

based the splitting at the K/K ′ valley reaches about 150− 200meV, the larger mass of

tungsten causes an even larger splitting in the order of 400meV in those materials. As is

seen in Fig. 2.2, the conduction band has another local minimum along the |KΓ|-path,

which is often referred to as Λ/Σ valley, where the valleys differ in the ordering of the

spin.2 Due to the hexagonal symmetry, each main valley (K-point) is surrounded by

three side valleys. The energetic offset between side and main valley is often discussed,

as it is not directly measurable for the ground state and theoretical predictions from

DFT calculations are very sensitive e.g. on the exact choice of the lattice constant.

The opto-electronic properties in the regimes of interest in this thesis are dominated by

the contributions of the highest valence and lowest conduction band. Furthermore, while

the full DFT band structure is included when studying the relaxation dynamics through

the whole BZ (Ref. [IV] and Ch. 5), most our studies focus on an analysis of processes

that take place at the different band structure extrema. In the following, we therefore

limit ourselves to a closer look at these specific bands and regions.

Let us start with the main valleys. DFT studies show that the bands at these valleys

are mainly composed of the different transition metals d-orbitals. In Fig. 2.3, the contri-

butions of the different orbitals is presented, where the overlap between wave function

and the specific Mo d-orbitals is shown. Based on these observations, at the K/K ′

point and in their proximity the valence band wave function can be approximated as

1Concerning the material WSe2, it is frequently discussed, whether the material exhibits a direct or
indirect band gap [21, 20]. In our calculations, we only found an indirect band gap if the lattice
constant was predicted to large compared to experimental values.

2There is no unified nomenclature for these valleys, one also finds e.g. the labels P or Q.
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Abbildung 2.2: Left: Kohn-Sham eigenvalues for monolayer MoS2 along a straight path
through the BZ. Right: Valence and conduction band for monolayer
MoS2. The sorted DFT bands are shown together with the analytic fits
of the band structure at the K/K ′- and Σ/Λ-point. The different spin
characters are reflected by color.
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Abbildung 2.3: Atomic orbital weights of the energy band wave functions exemplary
shown for the most relevant molybdenum d-orbitals in MoS2. The marker
size resembles the overlap of wave function and orbital.

|Φτ
vb⟩ = 1√

2

(
|dx2−y2⟩+ iτ |dxy⟩

)
, with the valley index τ , and the conduction band wa-

ve function as |Φcb⟩ = |dz2⟩. These approximated wave functions at the K-point are

eigenfunctions of the rotation operator C3 with Cn
3Φl,m = exp

(
iτm2πn

3

)
Φl,m – with

mv −mc = ∓2, where the exact values mv, mc depend on the rotational center but their

difference remains invariant. As the action of this symmetry operation on the momentum

operators p̂± is C3p̂±C
†
3 = exp (∓i2π

3
)p̂± with momentum operators p̂±, the resulting

Hamilton operator in proximity to the K/K ′-point in first order k · p theory including

spin-orbit coupling effects reads [46, 47, 48]

Ĥ
k·p
0,sτk = γ (τkxσ̂x + kyσ̂y) +

∆

2
σ̂z − λτ

σ̂z − 1

2
ŝz. (2.12)

Here, τ is the valley index, σ̂i are the Pauli matrices and ŝz is the Pauli matrix for the
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spin. ∆ denotes the energy gap and 2λ the spin-orbit coupling-induced valence band

splitting. Furthermore, in analogy to the description of gapped graphene, the parameter

γ can be identified as γ = ℏvF with the Fermi velocity vF , and the model is called

massive Dirac fermion (MDF) model. Summarizing the gap and the spin-splitting in a

spin- and valley-dependent band gap ∆sτ , diagonalisation yields eigenstates with the

relativistic dispersion ϵsτk and the eigenfunctions ψ
c/v
k

ϵsτk =

√(
∆sτ

2

)2

+ (ℏvFk)
2 (2.13)

ψc
k =

(
uk

vk exp(−iτθk)

)
ψv
k =

(
vk exp(iτθk)

−uk

)
, (2.14)

with uk = ϵsτk+∆sτk/2
2ϵsτk

and vk = ϵsτk−∆sτk/2
2ϵsτk

. This dispersion may be generalized to

multilayer structures by additionally including a layer-dependent Fermi energy EF,n in

order to display the correct energy alignment. In the remainder, the bands at K/K ′ are

referred to as A bands if sτ = +1 and B band, otherwise.

Furthermore, we estimate the influence of the side minima on different physical pro-

perties of the materials. Here, we use an effective mass approximation to describe the

dispersion.

Finally, we again combine the model and the DFT calculations. In order to gain the

material specific parameters such as non-interacting band gap, Fermi velocity and ef-

fective mass, we fit the model function for the dispersion to the DFT band structure,

where we assumed a rotational symmetry of the dispersion in proximity to the points

of interest. The DFT band structure and the resulting model dispersion are illustrated

in the right panel of Fig. 2.2. It becomes evident that the approximation is valid in the

close proximity of the extrema but differs further away.

2.2.2 Interactions

So far, we examined how to combine DFT results with group theory considerations

and physical concepts to derive a model for the single-particle energies. But the charge

carriers do not move independently through the materials background potential but

are subject to interactions with one another, with quasiparticles like phonons and are

influenced by external settings. In the following, we strive for formulations to include

these interactions into our model Hamiltonian.

Coulomb interaction

As introduced previously, Coulomb interaction plays a crucial role in monolayer materi-

als. The monolayer structure requires that two particular aspects need to be taken care

of in a model description. Namely, the effect of the material finite thickness and the

influence of the dielectric environment. But, let us start with the most general form of
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Abbildung 2.4: Sketch of the modelled sample geometry: TMDC monolayer embedded
in a dielectric environment with dielectric constants ϵT (top) and ϵB
(bottom).

the two-particle Coulomb interaction, which reads

ĤC =
1

2

∑

k,k′,q

: Ψ†
k−qΨkVqΨ

†
k′+q

Ψ′
k :, (2.15)

where Ψk denote pseudospinors and Vq the Coulomb potential. Expanding the pseudo-

spinors in terms of the eigenstates of H0 and explicitly reducing the expression to the

in-plane crystal momenta ℏk∥, the Coulomb interaction is represented by

ĤC =
1

2

∑

αα′ββ′

∑

k∥k
′
∥
q∥ ̸=0

V αββ′α′

q∥;k
′
∥
;k∥

a†αk∥−q∥
a†
βk′

∥
+q∥

aβ′k′
∥
aαk∥

(2.16)

with the Coulomb-matrix element V αββ′α′

q∥;k
′
∥
;k∥

= Vq∥
⟨αk∥ − q∥|α′k∥⟩ ⟨βk′

∥ + q∥|β′k′
∥⟩ and

α(′), β(′) ∈ {c, v}. In order to include finite thickness as well as groundstate and environ-

mental screening effects, a closer look at the potential Vq∥
is required.

Dielectric environment and stacking

In contrast to a bulk material, where the interaction between charges is screened by the

material itself and the induced polarisation, in the monolayer the interaction becomes less

weakened by the material itself and instead the interchangeable dielectric environment

becomes more important. To obtain an expression for the Coulomb potential for a TMDC

layer embedded in an environment characterized by the dielectric constants ϵT (top)

and ϵB (bottom), as depicted in Fig. 2.4, we strive for a solution of the first Maxwell’s

equation ∇ · D = 4π ρext for this anisotropic system. To account for the anisotropy,

following the derivation in Ref. [49], we explicitly split the dielectric displacement field

into contributions perpendicular and parallel to the field:

D = ϵ∥E∥ + ϵ⊥Ez êz + 4πP. (2.17)
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While P contains the non-local, time- and frequency-dependent resonant contributions,

the non-resonant contributions are contained in the explicitly z-dependent background

dielectric constants. Assuming a lateral homogeneity as well as a constant dielectric value

within the layer, we approximate the dielectric structure as

ϵ∥(z) =











ϵT∥ z < −L/2,

ϵ∥ |z| < L/2,

ϵB∥ L/2 < z

ϵ⊥(z) =











ϵT⊥ z < −L/2,

ϵ⊥ |z| < L/2,

ϵB⊥ L/2 < z.

, (2.18)

and assume the thickness of the layer, L, to equal the interlayer distance in a correspon-

ding bulk structure. In the following, we express the electric field in terms of vector and

scalar potentials,A and ϕ and apply the generalized Coulomb gauge ϵ∥∇∥ ·A+ϵ⊥∂zAz =

0. Exploiting the in-plane homogeneity, which allows for a Fourier transformation accor-

ding to the in-plane components and consequently to express the potential in terms of

the in-plane q∥-vector, the Poisson equation determining the anisotropic scalar potential

reads

(

−ϵ⊥∂
2
z + ϵ∥q

2
∥

)

ϕ(q∥, z, ω) = 4π
(

ρext(q, z, ω)− iq ·PL
∥ (q, z, ω)− ∂zPz

)

. (2.19)

Let us first analyse the non-resonant part of this equation and neglect the resonant

contributions (PL
∥ (q, z, ω) and Pz). For a charge localized at the center of the layer

ρext = δ(z), solving Eq. 2.19 under the constraint of the boundary conditions at z =

±L/2 yields for the potential within the layer

ϕq(z, z
′) =

2π

κq

[

e−q̃|z−z′|

+ c+−e−q̃(L+z+z′) + c−+e−q̃(L−z−z′)

+ c−−
(

e−q̃(2L−z+z′) + e−q̃(2L+z−z′)
)]

(2.20)

with q̃ =
√

ϵ∥
ϵ⊥
q,

cηη
′
=

(κ+ ηκT )(κ+ η′κB)

(κ+ κT )(κ+ κB)− (κ− κT )(κ− κB)e−2q̃L
(2.21)

and κi =
√
ϵ∥,iϵ⊥,i. While the first line in Eq. 2.20 can be understood as direct interaction

between charges located at z and z′ and is referred to as Φ2D
q in the following, the next li-

nes describe interactions via image charges, ∆Φq. This lengthy expression is often simpli-

fied in the limiting case of small momenta or in the two-dimensional case, q d → 0, to the

so-called Rytova-Keldysh potential V RK
q = 2π

q((κT+κB)/2+d(2κ2−κ2
T−κ2

B)/4ϵ⊥)
[50, 51, 52].

Similar, but in details differing, approaches are derived in [35, 52].

The material parameters for the dielectric constants ϵ∥ and ϵ⊥ were taken from DFT
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calculations. In DFT, the determination of the dielectric properties includes averaging

over the whole unit cell. In numerical codes that are based on the assumption of periodic

boundary conditions, where monolayer properties are calculated by artificially including

large areas of vacuum, this implies an averaging over those. Consequently, the dielectric

properties of monolayer structures are not directly accessible by these DFT codes. Ne-

vertheless, they can be inferred from calculations of the corresponding bulk structures.

While ϵ⊥ can be set equal to the bulk value, a comparison of the two-dimensional and

three-dimensional solution of the Poisson equation suggests the identification

ϵ∥ = ϵB∥ − lim
q∥→0

4πe2χL(q∥, ω)/d, (2.22)

with the linear susceptibility χL(q∥, ω) [49].

In the next step, the influence of resonant contributions is to be considered. As the studies

summarised in this thesis are only concerned with in-plane interactions, we neglect the

out-of-plane contributions Pz, which are studied in detail for example in [53]. The parallel

resonant contributions can be treated approximately in linear response theory, thus,

again assuming a charge localized at the layers center, we rewrite it as

PL
∥ = −ie2q∥χL(q∥, ω)ϕ(q∥, z0, ω)δ(z − z0) (2.23)

with the longitudinal susceptibility χL(q∥, ω). This approximation is easily generalized

to a multilayer structure by considering charges at the individual layer centres and

summing on the right hand side over the layer-dependent susceptibility and potential.

Solving equation 2.19 in this linear approximation yields for the non-locally screened

Coulomb potential in the layer

ϕ0(q∥, z, z
′, ω) =

ϕ0(q∥, z, z
′)

1 + e2q2
∥χL(q∥, ω)ϕ0(q∥, z, z′)

. (2.24)

Thus, the resonant contributions induced by point charges result in a screening of the

Coulomb potential with ϵres(q∥, z, z
′, ω) = 1 + e2q2

∥χL(q∥, ω)ϕ0(q∥, z, z
′). In our cal-

culations, we include the ground state polarisation function Π(q∥, ω) = e2q2
∥χL(q∥, ω)

in the long wavelength and static limit. It was derived in [54] that in this limit in

random phase approximation, the ground state polarisation function is calculated as

Π(q∥, 0) = − 1
6π

q2

∆sτ
for the different spin and valley combinations. The full systems

polarisation is gained by summing over all spin- and valley-indices.

Form factor

Besides the intrinsic and environmental screening effects, it is necessary to include effects

due to the material finite thickness. The intrinsic three-layer structure and the finite

extension of the carrier wave functions perpendicular to the plane causes that neither
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the exact two-dimensional nor the exact three-dimensional Coulomb potential yields a

proper description of the potential. To model this anisotropic structure, we start out

with the real-space representation of the Coulomb Hamiltonian in second quantization

ĤC =
1

2

∫

V

∫

V
d3r d3r′Ψ̂†(r)Ψ̂†(r′)V (r, r′) Ψ̂(r′)Ψ̂(r), (2.25)

with the normalization volume V. To achieve a description of this quasi-two-dimensional

structure, we employ the in-plane periodicity and expand the field operators in the

resulting Bloch states

Ψ̂(r) =
1

A
∑

α,k∥

eik∥·ruα,k∥
cα,k∥

(2.26)

that depend on the in-plane crystal momenta k∥, but 3D spatial coordinates. Here, A
is the normalization area, α the band index and uα,k∥

a lattice periodic function. Fou-

rier transforming the Coulomb potential according to the in-plane components, taking

advantage of the periodicity again by rewriting the integration into a sum of integrals

over a unit cell only,
∫

d3r →
∑

i

∫

uc d
3r, and making use of the completeness relation

1
N

∑

i e
i(k∥−k′

∥
)Ri = δk∥,k

′
∥
, the Coulomb potential can be rewritten as

ĤC =
1

2

∑

α,α′,β,β′

∑

k∥,k
′
∥
,q∥

V α,β,β′,α′
ĉ†α,k∥−q∥

ĉ†
β,k′

∥
+q∥

ĉβ′,k′
∥
ĉα′,k∥

(2.27)

with the matrix elements

V α,β,β′,α′
=

∫

uc

∫

uc
d3r d3r′ u∗αk∥−q∥

(r)u∗βk′
∥
+q∥

(r′)Vq∥
(z, z′)uβ′k′

∥
(r′)uα′k∥

(r). (2.28)

Inserting for the Coulomb potential the expression we derived above for a slab geometry,

Eq. 2.20, we can separate the matrix elements as a product of the Coulomb potential

and a form factor term

V α,β,β′,α′
= V 2D

q∥
Fα,β,β′,α′

k∥,k
′
∥

(q∥)−∆V 2D
q∥

∆Fα,β,β′,α′

k∥,k
′
∥

(q∥). (2.29)

Here, we introduced the form factor

Fα,β,β′,α′

k∥,k
′
∥

(q∥) =

∫

uc

∫

uc
d3r d3r′ u∗αk∥−q∥

(r)u∗βk′
∥
+q∥

(r′) e−q̃|z−z′| uβ′k′
∥
(r′)uα′k∥

(r).

(2.30)
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and its correlated part

∆Fα,β,β′,α′

k∥,k
′
∥

(q∥) =Fα,β,β′,α′

k∥,k
′
∥

(q∥)− fα,α′

k∥
(q∥) f

β,β′

k′
∥

(q∥) (2.31)

fα,α′

k∥
(q∥) =

∫

uc
d3r u∗αk∥−q∥

(r) eq̃z uα′k∥
(r). (2.32)

This shows that the Coulomb interaction in the quasi-two-dimensional structure can be

described by a simple modification of the exact two-dimensional Coulomb interaction.

Considering the limiting case of an exact two-dimensional material, the orthonormality

of the wave functions and the vanishing argument in the exponential terms result in a

recovery of the exact two-dimensional Coulomb potential. Further analysis of the expres-

sion shows that for no momentum interchange, q∥ = 0, the form factor and correlated

parts are Fα,β,β′,α′

k∥,k
′
∥

(q∥ = 0) = fα,α′

k∥
(q∥ = 0) = fβ,β′

k∥
(q∥ = 0) = δα,α′δβ,β′ . In the

opposite limit of large scattering vectors, the form factor approaches 0.

The exact modelling of the interaction and of the form factor in particular formed an

essential part of the studies that underlie this thesis. Therefore, a more extensive elabo-

ration of these topics is contained in Ch. 3.

Light-matter interaction

The interaction between a material and an electromagnetic field can be described on the

semiclassical level within the concept of minimal coupling by replacing the momentum

operator p = ℏk by the canonical momentum p → p− e
cA(t) with A(t) being the time-

dependent classical vector potential. Employing this procedure for the above introduced

MDF Hamiltonian, the resulting light-matter interaction Hamiltonian reads

ĤI = −e

c

∑

k

vF,sτ Ψ̂
†
k(τAxσ̂x +Ayσ̂y)Ψ̂k. (2.33)

Expanding the pseudospinors Ψ̂k in terms of the eigenfunctions of the single-particle

Hamiltonian Ĥ0, Ψ̂k∥
=

∑

α |αk∥⟩ âαk∥
, the Hamiltonian reads

ĤI = −e

c

∑

α,β,k∥

vF,sτ ⟨αk∥|τAxσ̂x +Ayσ̂y|βk∥⟩ â†αk∥
âβk∥

(2.34)

= −e

c

∑

α,β,k∥

vF,sτ ⟨αk∥|A(t) · σ̂τ |βk∥⟩ â†αk∥
âβk∥

(2.35)

with σ̂τ = (τ σ̂x, σ̂y). Here, the so-called circular dichroism, which states that the dif-

ferent K/K ′-valleys can be addressed by light with different circular polarisation, is

implied.

A comparison to the more general formulation of the light-matter interaction – in Cou-

lomb gauge (∇ ·A = 0) and neglecting contributions quadratic in A –, which is used in
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publication [IV],

ĤI = − e

m0c

∑

α ̸=βk∥

A(t) · pαβ

(

k∥

)

â†αk∥
âβk∥

, (2.36)

with the momentum operator pαβ

(

k∥

)

, allows in the vicinity of the K/K ′-point the

identification

A · pαβ

(

k∥ ≈ K/K ′
)

= m0vF ⟨αk∥|A(t) · σ̂τ |βk∥⟩ . (2.37)

Besides an interband transition, the coupling with an electromagnetic field may induce

an intraband current as charge carriers in the bands get accelerated. The interaction can

be described via

ĤI,intra = −A(t) ·
∑

α,k∥

jα(k∥)â
†
αk∥

âαk∥
, (2.38)

with the intraband current matrix elements jα(k∥) = |e|
ℏ
∇k∥

ϵαk∥
. While this contribution

to the total induced current is negligible in scenarios with resonant and above-band gap

excitations, it becomes dominant for the interaction with low-frequency fields. There-

fore, we include this term when studying the interaction with a THz field and omit it

otherwise.

Magnetic field interaction

As introduced in the previous chapter, the interaction of a material to an electromagnetic

field can be dealt with employing the concept of minimal coupling. To study the influence

of a magnetic field, we hereby start with H0 in first quantization H0 =
∑

i
ℏ
2

2me
p2
i .

Substituting the momentum in this expression by the canonical momentum as stated

above, applying the Coulomb gauge, ∇ · A = 0, and working in the symmetric gauge

A(r) = 1
2B× r, we find for the interaction with a magnetic field

H =
∑

i

e

2mec
B · Li +

e2B2

8mec
r2i sin

2 θi (2.39)

with L = r× p being the orbital angular momentum and θ denoting the angle between

B and r [55]. For a magnetic field perpendicular to the plane, B = Bê⊥, we find for the

interaction in second quantization in effective mass approximation

ĤB =
∑

αk

(

eB

2mαc
l̂z +

e2B2

8mαc2
r̂2
)

â†αkâαk. (2.40)
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This shows that the magnetic field contributes within two terms to the Hamiltonian.

The first term induces a linear shift depending on the states angular momentum and is

called Zeeman-shift. The second term gives rise to a diamagnetic shift that is quadratic

in B.

Phonon interaction

The interaction of the particles with distortions and vibrations of the lattice structure

is summarised as electron-phonon interaction. Considering the vibrations of the lattice

as perturbation and introducing phonon operators b
(†)
q∥
, describing the absorption or

emission of a phonon with momentum q∥, the intraband interaction of electrons and

phonons is described in linear approximation by the so-called Fröhlich Hamiltonian

Ĥe−ph =
∑

α,m

∑

k∥q∥ ̸=0

gmk∥;q∥
â†αk∥+q∥

âαk∥

(

b̂q∥
+ b̂†−q∥

)

. (2.41)

Here, the phonon matrix element gmk∥;q∥
describes the probability amplitude that an elec-

tron of momentum k∥ + q∥ is scattered into a state of momentum k∥ under absorption

(emission) of a phonon with momentum (−)q∥ and branch index m. As the unit cell of a

monolayer TMDC contains three atoms, there are nine phonon branches, three acoustic

and six optical. In publication [III] we only include longitudinal optical (LO)-phonons

that were shown to have the most important contributions at the K/K ′-point [56]. Fur-

thermore, we adapt the model Sohier et al. developed to describe the interaction matrix

in vicinity to the high-symmetry point and in an anisotropic dielectric environment by

gLO
k∥=K/K′;q∥

= CZ
ϵeff (|q∥|)

with the bare interaction CZ and the effective screening appro-

ximated in first order Taylor expansion ϵeff (|q∥|) ≈ ϵ0eff + reff |q∥| with the effective

screening parameter reff . For both parameters, we employ ab initio based approximati-

on as derived in [56].

For the analysis of the relaxation dynamics within the whole Brillouin zone (publication

[IV]), in contrast, we include all nine phonon branches and the full k- and q-dependence

of their matrix elements. Here, the phonon dispersions and coupling matrix elements

were calculated by means of density function perturbation theory (DFPT) using the

Quantum Espresso code [57, 58]. While the previous model only allowed to study the

intervalley interaction in proximity of the main valleys at the high-symmetry points, this

expansion additionally allows to study phenomena like intervalley-scattering.

2.2.3 Summary

In summary, against the background of DFT calculations, we have derived a model for the

energetic ground state and introduced formalisms and approximations to model different

intrinsic material interactions – between the carriers and with phonon – as well as with

external parameters – such as electromagnetic fields and dielectric environments. With
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these different components, we are able to describe the many-body system restricted to

the valence and conduction band. Based on the full model Hamiltonian

Ĥ = Ĥ0 + ĤC + ĤI + ĤB + Ĥe−ph

=
∑

αk∥

ϵk∥
â†αk∥

âαk∥
+

1

2

∑

αα′ββ′

∑

k∥k
′
∥
q∥ ̸=0

V αββ′α′

q∥;k
′
∥
;k∥

a†αk∥−q∥
a†
βk′

∥
+q∥

aβ′k′
∥
aαk∥

− e

m0c

∑

α ̸=βk

A(t) · pαβ

(

k∥

)

â†αk∥
âβk∥

−A(t) ·
∑

α,k∥

jα(k∥)â
†
αk∥

âαk∥

+
∑

αk∥

(

eB

2mαc
l̂z +

e2B2

8mαc2
r̂2
)

â†αk∥
âαk∥

+
∑

α,m

∑

k∥q∥ ̸=0

gmk∥;q∥
â†αk∥+q∥

âαk∥

(

b̂q∥
+ b̂†−q∥

)

, (2.42)

we now want to deduce the systems dynamical properties. As already stated in the

different subsection, in our studies, we do not always include the full Hamiltonian, but

focus on specific aspects and only include those parts that contribute in the chosen

settings.

2.3 Equation of motion approach

To describe the dynamics of the many-body system determined by the previously intro-

duced Hamiltonian, we employ the Heisenberg equation of motion approach (eom). Here,

the observables are treated as time-dependent quantities, and their temporal evolution

is derived by the expectation value of the commutation of the corresponding operator

Ô = Ô(t) with the system Hamiltonian

−iℏ
∂

∂t
⟨Ô⟩ = ⟨

[

Ĥ, Ô
]

⟩ . (2.43)

Formally, this equation looks simple, but the interaction terms that are contained within

the Hamiltonian induce an infinite series when the commutation is evaluated. We can

picture the problem in the following way: If we select just one single particle, e.g. an

electron, of the system, then we have to evaluate how this electron pairwise influences

and is influenced by every other individual particle – holes, electrons and phonons –

in the system. But, then the question arises how these pairs of particles interact with

one another and with further particles. Any time we try to evaluate the interaction of

a subsystem of N particles with the remaining particles in the system, we experience,

that the subsets we have to take into account grows. Formally spoken, the interaction

between charge carriers as well as with phonons and, if treated in a quantised way, with

photons causes that the dynamics of an N -particle operator couples to the dynamics of

an (N + 1)-particle operator. The latter in turn couples to the dynamics of an (N + 2)-



24 2. Theory

Abbildung 2.5: Illustration of the basic idea of the cluster expansion: The full correlated
system of N interacting particles is systematically split up in correlated
subsystems – called clusters.

particle operator. This pattern can be described by

∂

∂t
⟨N⟩ = T [⟨N⟩] + V [⟨N + 1⟩] , (2.44)

where ⟨N⟩ symbolises an N-particle operator consisting of N creation and annihilation

operators and in the functionals T and V the non-interacting and interacting parts of the

equation are formally summarised. This pattern does not end but discloses an infinite

series of dependencies.

This infinite hierarchy can not be treated exactly, but requires a reasonable truncation

of the occuring series. An effective way of truncation is proposed by the concept of a

cluster expansion (CE) that finally yields a closed set of equations [59, 60]. Its basic idea

is sketched in Fig. 2.5. The idea is to systematically split up larger groups of particles

into contributions of smaller groups of particles – called clusters. At the lowest level of

approximation, which is equivalent to the so-called Hartree-Fock approximation (HF),

one factorises all groups into its contributions of single particles, called singlets, according

to the scheme

⟨N⟩S =
∑

π

(−1)π
N
∏

i=1

⟨a†ki
akπi⟩ , (2.45)

where π refers to the permutation of the ki. Regarding a single particle, we only have

singlet contributions, but already for a two-particle state, in this approximation one

neglects the correlated part ∆ ⟨2⟩. Formally, the full particle state can be written as

⟨2⟩ = ⟨2⟩S +∆ ⟨2⟩ . (2.46)

The cluster expansion approach now yields a recursive scheme describing the systematic
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splitting of an N -particle state into its lower clusters and correlated parts:

⟨1⟩ = ⟨1⟩S
⟨2⟩ = ⟨2⟩S +∆ ⟨2⟩
⟨3⟩ = ⟨1⟩S + ⟨1⟩∆ ⟨2⟩+∆ ⟨3⟩
⟨N⟩ = ⟨N⟩S + ⟨N − 2⟩∆ ⟨2⟩+ ⟨N − 4⟩∆ ⟨4⟩

+ ...+ ⟨N − 3⟩∆ ⟨3⟩+ ...+∆ ⟨N⟩ . (2.47)

Here, in analogy to the Hartree-Fock factorisation, the terms include sums over all per-

mutations of the N coordinates with a corresponding sign.

This expansion is formally exact, but still only reformulates the problem. The advantage

of this reformulation is that it allows for a systematic truncation of the scheme at a

certain level of correlation. Often, higher order terms are then approximated as additio-

nal screening and by phenomenological approximations. The actual level of truncation

needs to be chosen in accordance to the physical system and situation as for studying

an effect that involves m particles, at least all terms up to ∆m need to be included. In

this way, the cluster expansion approach allows to find a closed set of equations that

approximately describes the system.

Ground state renormalisation

In quasi-two-dimensional materials, the strong Coulomb interaction causes a difference

between the non-interacting and the interacting ground state, as the interaction e.g.

results in an unphysical finite expectation value for the interband polarisation in the

ground state [61, 62, 63]. In [61] an expression for the interacting ground state is derived

that is explained in detail in [62], in the following only the main concept is sketched.

The starting point is a Hamiltonian including only the groundstate Hamiltonian and

Coulomb interaction, Ĥ = Ĥ0+ ĤC . For the ground state to be stationary, the variables

Πsτk∥
= ⟨b†sτk∥

asτk∥
⟩ and Γsτk∥

= f b
sτk∥

− fa
sτk∥

= ⟨b†sτk∥
bsτk∥

⟩ − ⟨a†sτk∥
asτk∥

⟩, where
a
(†)
sτk∥

and b
(†)
sτk∥

refer to operators that annihilate (create) a particle with pseudospin up

(down), need to be stationary. The variable dynamics can be determined by the above

introduced equation of motion and are in Hartree-Fock approximation given by

iℏ
∂

∂t
Πsτk∥

=
(

∆sτk∥
+ V [Γsτk∥

]
)

Πsτk∥
+
(

τℏvFke
−iτθk∥ − V [Πsτk∥

]
)

Γsτk∥

iℏ
∂

∂t
fa
sτk∥

= −iℏ
∂

∂t
f b
sτk∥

= 2ℑ
{

Πsτk∥
τℏvFke

−iτθk∥
}

, (2.48)

where the abbreviation V [f ] =
∑

k′
∥
̸=k∥

V|k∥−k′
∥
|fk′

∥
was introduced. Under the cons-

traint Γ2
sτk∥

= 1 − 4|Πsτk∥
|2, which holds for any coherent state, the demand of sta-

tionary variables yields a closed set of integral equations for the renormalised band gap
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and Fermi velocity. The so-called gap equations (GE) read

∆̃sτk∥
= ∆sτ +

∑′

k′
∥
̸=k∥

V|k∥−k′
∥
|

∆̃sτk′
∥

2ϵsτk′
∥

(2.49)

ṽFk∥
= vF,sτ +

∑′

k′
∥
̸=k∥

V|k∥−k′
∥
|

k′∥

k∥

ṽF,k′
∥

2ϵsτk′
∥

cos(θk∥
− θk′

∥
), (2.50)

where the abbreviation
∑′

k′
∥
̸=k∥

=
∑

k′
∥
̸=k∥

δs,s′δτ,τ ′ was introduced. Furthermore, we

introduced the renormalised gap and Fermi velocity as

∆̃sτk∥
= ∆sτ + V [Γsτk∥

]

τℏṽF,sτk∥
ke

−iτθk∥ = τℏvF,sτke
−iτθk∥ − V [Πsτk∥

]. (2.51)

This explicit determination of the renormalised ground state by solving the GE itera-

tively was applied when magnetic field contributions were included.

In the remaining publications, we account for the interacting ground state by inclu-

ding the so-called Coulomb-hole contribution, that enters the Dirac-Bloch equations

discussed below upon traversing from the conduction-valence-band to the electron-hole

picture. Here, the complete valence band was shifted by a constant shift ∆ϵvb,k∥
=

−
∑′

k′
∥
̸=k∥

(

V vvvv
k∥−k′

∥
;k′

∥
;k∥

− V vcvc
k∥−k′

∥
;k′

∥
;k∥

)

. Thus, the interaction between the particles

in the valence band results in an increase of the electronic band gap. The Fermi velocity

was renormalised equivalently. These two formulations of renormalising the band struc-

ture were numerically verified to yield the same results.

The Hamiltonian correctly describing this interacting system is achieved by substituting

the band gap ∆sτ and the Fermi velocity vF,sτ by their renormalised correspondents in

the above expressions ∆̃sτk∥
and ṽFk∥

.

Dirac-Bloch equation

Having found the systems interacting ground state, our aim is to describe the dynamics

of electrons in a material on the microscopic level under varying external conditions.

Precisely, we are interested in the dynamics of the carrier occupations in the different

bands fα
k∥

= pααk∥
= ⟨a†αk∥

a†αk∥
⟩ and the transition amplitudes between different bands,

namely the microscopic polarisation, pk∥
= ⟨a†αk∥

a†α′k∥
⟩ with α ̸= α′. The application of

the eom approach reveals the temporal evolution of these quantities to be described by
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the coupled set of integral equations [59]

iℏ
d

dt
pk∥

=
(

Σc
k∥

− Σv
k∥

)

pk∥
−
(

fv
k∥

− f c
k∥

)

Ωk∥
+ iℏ

d

dt
pk∥

∣

∣

∣

∣

corr

(2.52)

ℏ
d

dt
f
c/v
k∥

= ∓2ℑ
{

Ωk∥
p∗k∥

}

+ ℏ
d

dt
f
c/v
k∥

∣

∣

∣

∣

corr

, (2.53)

with k∥ and k′
∥ summarising spin, valley index and crystal momentum. These equations

are formally equivalent to the widely used semiconductor Bloch equations (SBE), but

due to their derivation based on the MDF Hamiltonian, they are often named Dirac-

Bloch equations (DBE). Here, the renormalised energies Σ
c/v
k∥

and the renormalised Rabi

energy Ωk∥
contain the Hartree-Fock contributions and explicitly read

Σ
c/v
k∥

= ϵ
c/v
k∥

−
∑′

k′
∥
̸=k∥

(

V
cccc/vvvv

k̄∥−k̄′
∥
;k̄′

∥
;k̄∥

− V
cvcv/vcvc

k̄∥−k̄′
∥
;k̄′

∥
;k̄∥

)

f
c/v
k′
∥

(2.54)

Ωk∥
=

e

m0c
A · pcvk∥

−
∑′

k′
∥
̸=k∥

(

V cvvc
k̄∥−k̄′

∥
;k̄′

∥
;k̄∥

pk′
∥
+ V ccvv

k̄∥−k̄′
∥
;k̄′

∥
;k̄∥

p∗k′
∥

)

. (2.55)

Here, non-resonant Auger and pair-creation contributions are already neglected as they

were shown to have minor impact on the renormalisation for wide gap materials [64]. In

the renormalised Rabi frequency, the term ∝ p∗
k′
∥
, which couples the temporal evolution

of the microscopic polarisation to its complex conjugate, makes the problem non-trivial.

As approaches of treating this term perturbatively have shown its negligible influence

on the results, we drop this contribution in the following. Moreover, ϵ
c/v
k∥

denote the

unrenormalised single-particle energies, as the ground state renormalisation due to the

Coulomb-hole introduced above is included implicitly and seen explicitly, when trans-

forming into the electron-hole picture, where fv
k∥

= 1− fh
k∥

= 1 holds. All contributions

due to many-body correlations, thus contributions beyond the HF approximation, are

subsumed in iℏ d
dtpk∥

∣

∣

∣

corr
and ℏ

d
dtf

c/v
k∥

∣

∣

∣

corr
.

Instead of expressing the DBE for electrons in valence and conduction band respectively,

they are often transformed into the electron-hole picture, in which instead of analysing

the behaviour of electrons in the valence band, the lack of electrons – named holes – are

considered. The transformation between the two pictures is given via

ϵck∥
→ ϵek∥

ϵvk∥
→ −ϵh−k∥

(2.56)

f c
k∥

→ f e
k∥

fv
k∥

→ (1− fh
−k∥

). (2.57)

Coulomb-induced particle interaction

In the DBE as written above, only singlet terms are included explicitly and all many-

particle correlations arising from Coulomb- and phonon-mediated interactions are hidden
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in the equations last terms. On the simplest level of approximation, namely the singlet or

Hartree-Fock level, we assume that relaxation and dephasing processes are independent

of exact excitation conditions and can be treated by constant decay/dephasing rates γ.

Thus, we include correlation contributions by setting e.g.

iℏ
d

dt
pαα

′

k∥

∣

∣

∣

∣

corr

= −iℏγαα′pαα
′

k∥
.

At this level, the constant treatment of decay and dephasing conceals insights on relaxa-

tion processes due to scattering processes, density-dependent changes in the dephasing

or plasma screening effects. In order to gain insights into these processes, we have to

analyse the correlation term in more detail. The following elaboration follows the pre-

sentation in publication [III]. The Coulomb interaction couples the singlet terms pαα
′

k∥
to

the doublet correlation ∆ ⟨a†αk∥
a†
γk′

∥
−q∥

aγ′k′
∥
aβk∥−q∥

⟩ ≡ ∆Cαγγ′β
q∥k

′
∥
k∥

according to

iℏ
d

dt
pαα

′

k∥

∣

∣

∣

∣

el.

corr.

=
∑

q∥k
′
∥

∑

βγγ′

{

V α′γγ′β
−q∥;k

′
∥
;k∥−q∥

∆Cαγγ′β
q∥k

′
∥
k∥

−
[

V αγγ′β
−q∥;k

′
∥
;k∥−q∥

∆Cα′γγ′β
q∥k

′
∥
k∥

]∗}

.

(2.58)

Neglecting, again, Auger contributions (γ ̸= γ′) and the orbital- as well as k∥/k
′
∥-

dependence of the Coulomb potential, the eom resulting from the system Hamiltonian

for the doublet correlations reads

iℏ
d

dt
∆Cαββα′

q∥k
′
∥
k∥

= ∆Σαββα′

q∥k
′
∥
k∥
∆Cαββα′

q∥k
′
∥
k∥

+

(

fβ
k′
∥
−q∥

− fβ
k′
∥

)

Iαα
′

q∥k∥
+ Sαββα′

q∥k
′
∥
k∥

+ remaining doublets + iℏ
d

dt
∆Cαββα′

q∥k
′
∥
k∥

∣

∣

∣

∣

el.

tri

, (2.59)

where ∆Σαββα′

q∥k
′
∥
k∥

= Σα′

k∥−q∥
+Σβ

k′
∥
−Σβ

k′
∥
−q∥

−Σα
k∥
. Here, we factorised the triplet terms in

its singlet and doublet contributions and kept the remaining fully correlated term [60].

In the following, we truncate the expansion at this level and approximate the triplet

correlations by a constant dephasing iℏ d
dt∆Cαββα′

q∥k
′
∥
k∥

∣

∣

∣

∣

el.

tri

= −iℏγT∆Cαββα′

q∥k
′
∥
k∥
, marking the

singlet-doublet approximation. Furthermore, we separated the plasma screening contri-

butions summarised in Iαα
′

q∥k∥
= Vq∥

∑

βk′
∥
Cαββα′

q∥k
′
∥
k∥

from the remaining contributions. In

Sαββα′

q∥k
′
∥
k∥
, the terms resulting from the singlet factorisation are subsumed, that explicitly
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read

Sαββα′

q∥k
′
∥
k∥

= Vq∥

(

pαα
′

k∥
fβ
k′
∥
−q∥

f̄β
k′
∥
− pαα

′

k∥−q∥
f̄β
k′
∥
−q∥

fβ
k′
∥

)

+ Vk∥−k′
∥
pαβk∥

∑

γ

pβγ
k′
∥
−q∥

(

pγα
′

k∥−q∥
− δγα′

)

− Vk∥−k′
∥
pαβ
k′
∥

∑

γ

pγα
′

k∥−q∥

(

pβγ
k′
∥
−q∥

− δγβ

)

+ Vk∥−k′
∥

(

pβα
′

k′
∥
−q∥

− pβα
′

k∥−q∥

)

∑

γ

pαγk∥
pγβ
k′
∥
. (2.60)

Assuming plasma screening to be the dominant correlation effect and the single-particle

distributions to be quasistatic, we neglect the remaining doublet contributions, which

makes it possible to solve the dynamics of the doublet correlations by Fourier transfor-

mation. Finally, within these approximations, we find a frequency-dependent expression

for the Coulomb-mediated transition/occupation probabilities, including the full doublet

contributions Cαββα′

q∥k
′
∥
k∥

Iαα
′

q∥k
′
∥
k∥
(ω) = Iαα

′

q∥k
′
∥
k∥
(ω)

∣

∣

∣

S
+ Vq∥

∑

βk′
∥

fβ
k′
∥
−q∥

− fβ
k′
∥

ℏω − Σαββα′

q∥k
′
∥
k∥

+ iℏγT
Iαα

′

q∥k
′
∥
k∥
(ω)

+ Vq∥

∑

βk∥

Sαββα′

q∥k
′
∥
k∥

ℏω − Σαββα′

q∥k
′
∥
k∥

+ iℏγT

= Wαα′

q∥k∥
(ω + iℏγT )

∑

βk′
∥

Cαββα′

q∥k
′
∥
k∥

∣

∣

∣

∣

S

+Wαα′

q∥k∥
(ω + iℏγT )

∑

βk∥

Sαββα′

q∥k
′
∥
k∥

ℏω − Σαββα′

q∥k
′
∥
k∥

+ iℏγT
. (2.61)

Here, the screened Coulomb-matrix element including the Lindhard polarisation functi-

on, Πq∥
(ω),

Wαα′

q∥k∥
(ω) =

Vq∥

1− Vq∥
Παα′

q∥k∥
(ω)

Παα′

q∥k∥
(ω) =Πq∥

(

ω +
(

Σα
k∥

− Σα′

k∥−q∥

))

Πq∥
(ω) =

∑

βk∥

fβ
k∥−q∥

− fβ
k∥

ℏω +Σβ
k∥−q∥

− Σβ
k∥

(2.62)
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was introduced. The first term of the second line of Eq. 2.61, which describes the re-

normalisation of the single-particle and Rabi energies, shows that one consequence of

the doublet correlations is the screening of the Coulomb interaction at the singlet le-

vel. Consequently, this advises to replace the Coulomb-matrix even in the Hartree-Fock

approximation by its screened counterpart to include an important part of the doublet

correlations. Taking the CE approach further, it can be seen, that next order correlations

among others result in a screening of the energies entering the denominator of the Lind-

hard polarisation function and the scattering integral [60]. Hence, these contributions

should be included by replacing these energies by their screened counterparts.

Phonon scattering

To determine phonon-mediated scattering processes, we analyse the eom resulting from

the electron-phonon Hamiltonian (Eq. 2.41), following the description in [59],

iℏpαα
′

k∥

∣

∣

∣

ph
=

∑

q∥mζ

gmk∥q∥

(

Gαα′mζ
q∥k∥

−Gαα′mζ
q∥,k∥−q∥

)

, (2.63)

where ζ = ±1 and Gαα′m+
q∥k∥

= ⟨a†α′k∥+q∥
aαk∥

bmq∥
⟩ and Gαα′m−

q∥k∥
= ⟨a†α′k∥+q∥

aαk∥
bm†

−q∥
⟩

are the phonon-mediated density matrices describing the in- and out-scattering into/from

state pαα
′

k∥
under absorption (−) respectively emission (+) of a photon. As the factorisa-

tion of these matrices would vanish at this level of approximation, an analysis of their

dynamics is mandatory to gain insights into phonon-induced scattering and dephasing

processes. As the matrices describing emission and absorption can be deduced from each

other by reversing the momentum and phonon frequency, it is sufficient to evaluate

the dynamics for one of them. Similar to the Coulomb-induced scattering, we trunca-

te the infinite hierarchy and factorise the occurring expectation values into its singlet

contributions, where we approximate the phonon number ⟨b†q∥
bq′

∥
⟩ ≈ nq∥

δq∥,q
′
∥
to follow

a Bose-Einstein distribution. The resulting eom, neglecting corrections to the energy

spectrum and approximating higher order correlations by a constant phenomenological

damping η, reads

iℏ
d

dt
Gαα′m+

q∥k∥
= −

(

Σα′

k∥+q∥
− Σα

k∥
− ℏωm

q∥
+ iℏη

)

Gαα′m+
q∥k∥

+ gmq∥

∑

γ

{

nq∥
pαγk∥

(

δγα′ − pγα
′

k∥+q∥

)

− (nq∥
+ 1)pαγk∥+q∥

(

δγα′ − pγα
′

k∥

)}

.

(2.64)

Proceeding with these scattering terms in a comparable way as for the electronic scatte-

ring terms, thus, assuming quasistatic single-particle occupations, this equation can be
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solved by Fourier transformation, which yields the frequency-dependent expression

Gαα′m+
q∥k∥

(ω) =
gmq∥

∑

γ

{

nq∥
pαγk∥

(

δγα′ − pγα
′

k∥+q∥

)

− (nq∥
+ 1)pαγk∥+q∥

(

δγα′ − pγα
′

k∥

)}

ℏω +Σα′

k∥+q∥
− Σα

k∥
− ℏωm

q∥
+ iℏη

.

(2.65)

Again, on this level of approximation, the unrenormalised energies and interaction matrix

elements enter the equation. In order to treat Coulomb- and phonon-induced scattering

terms on the same level of approximation, we replace the unscreened quantities by their

screened counterparts.

2.4 Macroscopic optical response

In the previous sections, the fundamental microscopic approach that was applied within

this thesis was elucidated, but the question how the described relationships are expres-

sed on a macroscopically measurable level has not yet been addressed. Macroscopically,

optical phenomena are captured with the Maxwell equations that determine the wave

equation for the optical vector potential A(r, t) = − d
dtE(r, t)

(

∇2 − n2

c2
∂

∂t

)

A(r, t) = −4π

c
j (2.66)

linking the incoming field E(r, t) and the induced current j. The induced current in turn

can be related to the microscopic quantities. In terms of the microscopic polarisation

and occupations, it is given by

j = −c ⟨δH
δA

⟩ = − e

m0

∑

αα′k∥

pαα′k∥
⟨a†αk∥

aα′k∥
⟩ . (2.67)

Here, the off-diagonal parts result from interband contributions, while the diagonal parts

result from intraband contributions. The relative weight between these two contributions

depends on the intensity and frequency of the incoming fields. The intraband contributi-

ons vanish for equilibrium occupations due to the different parity of density distribution

and intraband current. Consequently, they mainly contribute for low-frequency fields,

which induce an oscillation of carriers in the bands, and can be neglected for near-

resonant and above-band gap excitation.

Important physical insights on a materials optical properties are gained by probing their

linear response to an external field. For low-intensity fields, the response can be model-

led in its linear approximation: j(ω) = ϵ0ω
2χ(ω)A(ω), where we introduced the linear

optical susceptibility χ(ω). It can be shown that its imaginary part is directly connected

to the damping through the sample of the field and thus yields first insights on the qua-
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litative features of monolayer absorption. Further evaluation of the above wave equation

and an evaluation of reflected and transmitted signal for an incoming field perpendicular

to the plane yields, that the true absorption coefficient of a monolayer, embedded in an

environment with refractive index of nT/B, is given by

α(ω) =
4πnT

ω
cℑ{χ(ω)}

∣

∣

nT+nB
2 − 2πiωc χ(ω)

∣

∣

2 . (2.68)

In the low density regime, the optical response is, due to the large Coulomb interaction

in TMDC monolayers, even at room temperature dominated by excitonic features. To

gain further insights on this behaviour, we take one step back and take again the mi-

croscopic equation into account. For (quasi-)static density distributions, the coupled set

of equations simplifies to a single equation for the microscopic polarisation:

iℏ
d

dt
pk∥

=
(

Σc
k∥

− Σv
k∥

− iℏγ
)

pk∥

−
(

1− f e
k∥

− fh
k∥

)







e

m0c
A · pcvk∥

−
∑

k′
∥

(

V cvvc
k̄∥−k̄′

∥
;k̄′

∥
;k̄∥

pk′
∥

)






. (2.69)

Here, a phenomenological dephasing γ was introduced, that summarises phononic, elec-

tronic, radiative and intrinsic dephasing contributions. Its electronic dependence on the

amount and distribution of excited carriers in the material is discussed in Ch. 6. Further-

more, the Auger term was neglected. In order to gain further insights, we first analyse

the homogeneous part of the equation, the so-called (Dirac-) Wannier equation (WE)

(

Σc
k∥

− Σv
k∥

)

ΦR
λ (k∥)−

(

1− f e
k∥

− fh
k∥

)

∑

k′
∥

(

V cvvc
k̄∥−k̄′

∥
;k̄′

∥
;k̄∥

ΦR
λ (k

′
∥)

)

= ϵλΦ
R
λ (k∥),

(2.70)

which can be solved numerically by matrix inversion.3 This equation is similar to the

two-particle Schrödinger equation, and its eigenstates and -energies define excitons: qua-

siparticles that are formed due to the Coulomb-mediated attraction between opposi-

tely charged carriers. Upon expanding the polarisation in terms of these eigenstates,

pk∥
=

∑

λ pλΦ
R
λ (k∥), the DBE can be solved in frequency space yielding

pλ(ω) =
Qλ

ℏω − ϵλ + iℏγ
, (2.71)

3In this formulation, we find different right- and left-handed eigenfunctions, which are connected via

ΦL
λ (k∥) =

ΦR

λ
(k∥)

1−fe

k∥
−fh

k∥

. The equation may be symmetrised by division through
√

1− fe
k∥

− fh
k∥

, yiel-

ding equivalent right- and left-handed eigenfunctions.
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where Qλ = e
m0c

A·pcvk∥
is the linear source term. Based on this result, the susceptibility

is given in the exciton basis by the so-called Elliott formula [65]

χ(ω) = − e2

m2
0ω

2

∑

λ

∣

∣

∣

∑

k∥
pcvk∥

ΦR
λ (k∥)

∣

∣

∣

2

ℏω − ϵλ + iℏγ
. (2.72)

As the system absorption depends on the susceptibilities imaginary part, several features

of the linear optical spectrum can be directly deduced from this expression. First of

all, this shows that resonances occur at frequencies, that equal the excitonic eigenstate

frequencies, whereat the resonances width is determined by the dephasing constant γ.

Furthermore, the nominator correlates to the oscillator strength of the transition.
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3. Interaction in low dimensions –

Coulomb interaction revisited

Coulomb interaction plays an important role in monolayer TMDC materials. This can

for example be seen in their linear absorption spectra that exhibit clear resonances

below the continuum absorption indicating excitons – bound electron-hole pairs – with

large binding energies. Analyses of the differences between optical and electronic band

gap show that the strong Coulomb interactions in these materials causes these excitons

to have binding energies in the order of few hundred meV [18, 66, 67]. From this, the

necessity of a proper description of the Coulomb interaction to model the opto-electronic

properties of monolayer materials becomes evident. As introduced in section 2.2.2, two

challenges arise due to density distributions that are confined within the layer on the

one hand, but have a finite out-of-plane extension on the other hand. Different ansatzes

have been pursued to address these challenges. Regarding the treatment of the material

finite thickness the ansatzes reach from neglecting the finite extension in close proximity

to the K-point and assuming point charges to introducing an effective finite thickness,

e.g. via the Ohno potential, or approximating the density distribution by a step function

of the layers thickness, thus, assuming line charges [32, 49]. We developed an ansatz

that explicitly takes into account finite extension of the wave functions: Our ansatz

is based on a derivation of the Coulomb potential of a layered structure – including

environmental effects – by solving the Poisson equation for point charges, as sketched in

section 2.2.2. In a next step, we consider the full three-dimensionality and q∥-dependence

of the wave functions when calculating the Coulomb-matrix elements using the Kohn-

Sham eigenfunctions. Finally, an analytical approximation is established by formulating

a form factor that captures the main features of the DFT based results and successfully

yields an effective approximation which can easily be included in further calculations.

This ansatz is outlined in the first section of this chapter. Here, the results are elaborated

for the example of MoS2 and deviations for other material systems are pointed out where

appropriate.

Thereafter, different aspects of screening effects on the Coulomb interaction, namely

the influence of the dielectric environment and excited carriers and their interplay, are
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discussed.

As an extensive analysis of the importance of the Coulomb interaction, its modelling and

consequences for the opto-electronic properties, are already contained in our publication

“Microscopic Coulomb interaction in transition-metal dichalcogenides” (Ref. [I]), here, I

focus on a summary of key insights on a more qualitative level. For further explanations

and more quantitative descriptions, the reader is referred to the original publication.

3.1 Finite thickness effects

As Fig. 2.3 illustrates, the global extrema of valence and conduction band are mainly

formed by the transition metals d-orbitals and only very small contributions arise from

the chalcogen atoms. Consequently, the probability density distribution is mainly locali-

sed around the transition metal atoms which includes that it is mainly localised within

the monolayer, in between the chalcogen layers surrounding the transition metal sheet.

As a result, even in a multilayer structure, the density distributions forming the relevant

bands are only marginally affected by neighbouring layers, resulting in a relatively large

independence of the band gap at the K-point. Still, the d-orbitals are not planar but the

resulting wave functions have a finite extension perpendicular to the layer. To account

for this finite extension, we strive for an approximation of the Coulomb-matrix elements,

Eq. 2.29, on basis of the DFT wave functions in the limit of |k∥ − k′
∥| = |q∥|, that is

most relevant for optical excitations. The matrix elements are

V α,β,β′,α′
= V 2D

q∥
Fα,β,β′,α′

k∥,k
′
∥

(q∥)−∆V 2D
q∥

∆Fα,β,β′,α′

k∥,k
′
∥

(q∥), (3.1)

where we introduced Fα,β,β′,α′

k∥,k
′
∥

(q∥) as a form factor and ∆Fα,β,β′,α′

k∥,k
′
∥

(q∥) subsuming its

correlated parts. Whereas the correlated part ∆Fα,β,β′,α′

k∥,k
′
∥

(q∥) becomes zero due to the

wave functions orthonormality in the long wavelength limit, the contribution due to

image charges ∆V 2D
q∥

is especially relevant in this limit. In the different limits always

one of the factors of the second term in the equation is negligible, which results in an

overall small contribution of their product. Thus, the overall contribution of the second

term is small in comparison to the first term and the Coulomb-matrix elements of the

quasi-two-dimensional structures are captured in good approximation by the exact two-

dimensional term modified with the form factor Fα,β,β′,α′

k∥,k
′
∥

(q∥).

Let us first take a look on an approximate calculation, where we evaluate this term on

the basis of the MDF Hamiltonians eigenfunctions and assume that the wave functions

k-dependence is fully captured by the MDF prefactors. We find that the inter- and

intraband matrix elements in proximity to the K-point can be equally approximated by

FMDF
inter/intra(q∥) ≈ u2q

∫

uc

∫

uc
d3r d3r′ u∗αK(r)u∗βK(r′)e−q̃|z−z′|u∗β′K(r′)u∗α′K(r), (3.2)
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Abbildung 3.1: Form factor matrix elements around the K-point shown exemplary for

MoS2, with the K point at the center. One of the M points – 0.66 Å−1

apart – is given for orientation.

as ⟨vk′
∥|vk∥⟩ ⟨vk∥|vk′

∥⟩ = ⟨ck′
∥|ck∥⟩ ⟨ck∥|ck′

∥⟩ = u2ku
2
k′ +2ukuk′vkvk′ cos(θk−k′)+v2kv

2
k′ ≈

u2q for |k∥−k′
∥| = |q∥| and similarly for the interband matrix, where we used that uK = 1

and vK = 0. The resulting graph for MoS2 is shown in grey in Fig. 3.2 together with

the exact calculations, where the full k∥-dependence of the wave functions is taken into

account, that are shown in blueish colors and discussed later on. This MDF based ap-

proximation correctly captures the limiting case Fα,β,β′,α′

k∥,k
′
∥

(q∥ = 0) = δα,α′δβ,β′ and the

decrease with larger momenta, as we would expect from theoretical considerations, but

a comparison to the blueish graphs – more exact calculations – shows that the decrease

is underestimated. Thus, this MDF model based approximation shows to overestimate

the Coulomb interaction for larger scattering vectors and indicated the necessity of an

inclusion of the full wave functions q-dependence.

The exact calculation of the form factor depends on the path in reciprocal space along

which we move away from the direct band gap. In order to analyse this path-dependency,

we calculated the form factor matrix elements along different paths through the BZ star-

ting at the K point. These results for the inter- and the two intraband-matrix elements

are depicted in Fig. 3.1 exemplary for MoS2, where a circular area with a radius of

|k∥ − k′
∥| ≈ 0.66 Å−1 around the K point is shown. Similar results were obtained for

all investigated materials. For the intraband contributions, the form factor shows to be

isotropic up to a range of |k∥ − k′
∥| ≈ 0.15 Å−1, for the interband contributions, this

holds up to a range of |k∥ − k′
∥| ≈ 0.45 Å−1 for molybdenum- and |k∥ − k′

∥| ≈ 0.30 Å−1

for tungsten-based materials. But even for larger scattering vectors, the angular depen-

dence is small. This observation legitimises to employ an isotropic approximation of the

form factor. As a consequence, we have used a weighted average of the calculations for

different paths for further analysis.

Averaged results for the inter- and intraband matrix elements are illustrated in blueish

colors in Fig. 3.2. In proximity to the high symmetry point and up to |k∥−k′
∥| ≈ 0.22 Å−1,
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these matrix elements are of comparable slope. For larger distances the intraconduction

band form factor decreases faster than the inter- and intravalence band terms. This be-

haviour holds for all material systems investigated in the course of this thesis, but the

general slope of the form factor steepens with the mass of the incorporated atoms. Thus,

the slope is slightly steeper for tungsten- than for molybdenum-based materials and stee-

pens for materials containing tellurium in comparison to those containing selenium. As

the form factor was introduced as a measure of the deviation of the exact two-dimensional

Coulomb potential, this trend resembles the expectation as larger incorporated atoms

lead to larger deviations – the material is for larger atoms ‘less two-dimensional’.

In order to describe the slope of the decrease properly and to simplify the expressions

for consecutive calculations it is useful to find an analytical formulation to approxima-

te the form factor. Here, we started with the approach of including a finite thickness

(d) by means of the so-called Ohno potential, F (q) ≈ e−q∥d , that was established in

the description of molecules and nanotubes but also successfully applied in the descrip-

tion of graphene [61, 68, 69]. As we found that the Ohno potential can not be fitted

properly to the form factor, we extended the formula and described the form factor by

F (q) ≈ e
−(σ2q2

∥
/2+q∥d). Furthermore, we additionally included the prefactors arising from

the overlap matrix elements in the MDF model in this fit function in the cases where we

applied the MDF model in subsequent calculations.

Further insights on the physical interpretation of this form factor can be gained by taking

a look at its real space representation that is given by V (r∥) =
∑

q∥
eiq∥·r∥F (q∥)V

2D
q∥

= 1
2πσ2

∫

d2r′∥ e
−|r∥−r′

∥
|/2σ2

1
√

r′2
∥
+d2

and illustrated in Fig. 3.2. While the exact two-di-

mensional potential and the quasi-two-dimensional potential are equal for distances

|r∥ ≥ 7Å|, for small distances the exact potential diverges whereas the modified one

reaches a finite value. The comparison shows that the exponent linear in q∥ results in a

regularisation of the Coulomb potential for r∥ = 0 Å by introducing an effective thick-

ness d and thereby suppressing the divergence. Due to the effective thickness term, the

denominator
√

r′2∥ + d2 that enters the Coulomb potential and that is responsible for the

divergence does not approximate 0 Å any more but approximates this finite thickness,

0 Å+d, through which the potential remains finite even at the origin. This linear ex-

pression resembles the previously mentioned Ohno potential. Additionally, the exponent

quadratic in q∥ leads to a convolution of this linear expression with a Gaussian of width

σ.

In conclusion, we found that the modifications of the Coulomb interaction resulting

from finite extension of the wave functions perpendicular to the sample can be captu-

red in good approximation by an isotropic model. This modification can be analytically

modelled and taken into account in subsequent calculations by means of a form factor.
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Abbildung 3.2: Form factor and resulting real-space Coulomb potential. Left panel: Form
factor for inter- and intraband Coulomb-matrix elements for MoS2 (blu-
eish) as calculated based on full wave functions and comparison to quasi-
MDF approximation, where q-dependencies are only included in the ex-
ponential and the main contribution of the MDF prefactor (grey). In
red, the analytic approximation of the form factor is shown. Right pa-
nel: Comparison of two-dimensional real-space Coulomb potential with
(green) and without (grey) including a form factor.

3.2 Screening of the Coulomb interaction – Influence of surrounding and increased

carrier density

Besides the regularisation of the Coulomb potential for small distances due to the ma-

terial finite extension perpendicular to the layer, this also causes high sensitivity to

screening effects i.e. due to the environment or carrier populations. Here, we study how

these environment- and carrier-induced effects on the screening reveal themselves in a

renormalisation of the band gap and changes of the excitonic resonance energies. Here,

we discuss the dependencies only with respect to the A-bands, similar results can be

obtained for the B-bands.

The renormalised band gap in presence of excited carriers is given by

∆̃ = ∆sτ +
∑

k′
∥
̸=k∥

(

W eeee
k̄∥−k̄′

∥
;k̄′

∥
;k̄∥

−W hehe
k̄∥−k̄′

∥
;k̄′

∥
;k̄∥

)

(

1− fh
k∥

− f e
k∥

)

. (3.3)

This shows that the band gap is influenced by two contributions. On the one hand, there

is the Coulomb interaction that is changed depending on the dielectric environment and

screened by excited charge carriers – as included in the interaction with image char-

ges ∆W and through the Lindhard polarisation function respectively. Comparing the

excitation-induced band gap shrinkage (see publication [I] for a detailed comparison) to

experimental data we found that treating the Lindhard polarisation in the static limit

ℏω → 0, successfully applied for many semiconducting systems, overestimates the scree-
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Abbildung 3.3: Influences of dielectric environment and excited carriers on the screening
of the Coulomb energy as it indirectly manifests in the changes of band
gap. The excitation-induced band gap renormalisation is shown for MoS2
in two different dielectric environments and for different processes of car-
rier creation: Solid lines resemble optical excitation with equal number
of electrons and hole, dashed lines resemble electron doping. In the dy-
namical screening a triplet dephasing of γT = 150meV is included.

ning for small carrier densities. Similarly, in another project the simulation of a probe

experiment showed that calculating the dynamics of the microscopic polarisation in this

static limit results in unphysical absorption behaviour (see publication [III]). These two

observations emphasise the necessity to reconsider the application of this static limit and

the treatment of the frequency-dependence. While the band gap properties are captured

to a good approximation assuming the dominant time contribution being proportional

to e
i(Σe

k∥
−Σh

k∥
)t
, for the description of the systems optical behaviour the full frequency-

dependence of the Lindhard polarisation had to be taken into account. Additionally, a

large triplet dephasing in the order of few 100 meV had to be included to match experi-

mental observations on the excitation-induced band gap shrinkage. The role and impact

of the triplet dephasing will be discussed in more detail in Ch. 6.

Furthermore, phase space filling effects contribute to the shrinkage of the band gap with

increasing carrier density via
(

1− fh
k∥

− f e
k∥

)

. Whereas screening can be seen as a global

phenomenon in the sense that excited carriers with certain crystal momenta affect the

Coulomb interaction for all carriers, phase space filling effects can be considered to act

more locally as they only affect the bands and valleys, the carriers are located at.

To analyse the complex interplay of these different contributions, in Fig. 3.3 we com-

pare the carrier density-dependent band gap shrinkage for MoS2 in different dielectric

environments. Furthermore, we analyse how the distribution of the carriers in the dif-

ferent bands affects the band gap renormalisation. Therefore, we compare a scenario of

optically excited carriers, where equal amounts of carriers occupy the electron and hole



41

band, and a scenario of electron doping. In both scenarios, we assume that the carriers

are Fermi distributed at a temperature of 300K and occupations of the A and B band

are equal. Thus,

f
e/h
ik∥

(

µ
e/h
i , T = 300K

)

=

(

e
β
(

Σik∥
e/h−µ

e/h
i

)

+ 1

)−1

, with β = kBT,

with temperature T and µ
e/h
i denoting the band-dependent chemical potential – with

i = σ, τ summarising band and valley index. The chemical potentials are assumed to be

decoupled and determined by the condition that the total number of carriers equals the

k-space integration of the distribution.

For the unexcited samples, we find band gaps (A-band) of 2.279 eV and 2.16 eV for MoS2

on a SiO2 substrate and encapsulated in hBN, respectively. Thus, through the increase

of the dielectric screening by changing the substrate, band gap changes in the range of

more than 100meV can be expected. Both values are in good agreement with experimen-

tal findings deduced from photoluminescence (PL) and scanning tunnelling spectroscopy

(STS) measurements [70, 71]. Similar good agreements both concerning absolute ener-

gy values and relative band gap changes due to the environment-induced changes in

screening were found for all material systems including molybdenum-based materials.

A detailed table comparing our results to experimental and theoretical findings can be

found in publication [I]. For tungsten-based material systems, the relative changes were

captured in good agreement with experimental deductions. Concerning the absolute va-

lues our calculations predict values that are about 100− 200meV below experimentally

predicted values – even though these experimental values spread over a wide range of

up to 600meV demonstrating the sensitivity of the deduction of the quasiparticle band

gap from experiments on the underlying theoretical model and the sample quality. As it

is well known that DFT underestimates the band gap, we assume that these discrepan-

cies between our results and the experimental findings may be a consequence from this

uncertainty. Despite the discrepancies in absolute values, our model for the Coulomb

interaction can successfully describe the influence of the dielectric environment on the

band gap. Thus, in contrast to standard DFT and GW calculations, where the dielectric

environment needs to be included explicitly, which results in numerically very costly

calculation, our model of the Coulomb interaction enables us to predict the influence of

any dielectric environment in a computationally efficient and parameter-free way.

Besides the environmental screening, screening due to an enhancement of the carrier

densities induces a reduction of the band gap. While for small carrier densities scree-

ning effects dominate the band gap behaviour, where contributions of environment- and

density-induced screening contribute, the increased splitting between the dashed and

the solid line in Fig. 3.3 manifest the complex interplay of screening and phase space

filling effects for larger carrier densities. For medium to large carrier densities, the envi-
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SiO2 hBN
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Abbildung 3.4: Influence of dielectric environment on the excitonic spectrum. In the top
row, the structure of the different environmental settings is sketched.
Calculated exciton resonance energies and band gap together with expe-
rimental findings (light colors) for MoS2 (middle) and WS2 (bottom) for
different environmental setting. For a better comparability, the band gap
is shifted by 149meV for WS2-based systems, as discussed in the text.
Experimental findings are taken from [30, 31, 66, 70, 72, 73, 74, 75, 76].
(According to publication [I].)

ronmental screening fade into the background. Here, the effects occurring from different

distributions of the carriers dominate the effects of the dielectric environments. For a

symmetric excitation of electrons and holes – as by optical excitation –, phase space

filling contributes both to valence and conduction band renormalisation. In contrast, in

the case of electron doping, phase space filling only contributes to a conduction band re-

normalisation and the valence band is shifted only due to screening of the Coulomb-hole

contribution. The former leads to a steeper slope for the band gap renormalisation than

the latter. For larger densities, the overall slope of the band gap reduction becomes flat-

ter and the environmental contributions get negligible in comparison to the differences

in density distribution.

The comparably large Coulomb interaction in quasi-two-dimensional materials does not

only result in large band gap renormalisation effects as described above, but also in large

excitonic binding energies in the range of several hundred meV. To analyse the effects

of dielectric screening on the excitonic resonance and binding energies, we analyse the

excitonic spectra for different materials. In Fig. 3.4 the resonance energies and band gap

calculated by solving the Dirac-Wannier equation, Eq. 2.70, for four different material
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systems are depicted. With the applied model for the Coulomb interaction, the known

non-hydrogenic exciton series can be reproduced and is in good agreement with experi-

mental findings marked by differently shaped light coloured symbols. Note that due to

the previously discussed systematic underestimation of the non-interacting band gap for

tungsten-based materials, we shifted the gap by 149meV prior to renormalisation and

calculation of the excitonic resonances. Furthermore, it can be seen in Fig. 3.4 that for

all material systems, the influence of the dielectric environment mainly affects higher

excitonic resonances and the band gap, whereas the lowest exciton resonance is more

or less unaffected by a change of the dielectric environment. Both, the higher resonance

energies and the band gap experience a pronounced red shift with an increase of the

dielectric screening. In contrast, for the lowest exciton resonance, the renormalisation of

the band gap and of the binding energy nearly cancel out resulting in a very small red

shift of the resonance. Consequently, comparing the samples embedded on a SiO2 sub-

strate and encapsulated in hBN, the 1s exciton binding energy reduces, for both TMDC

samples, by 90 − 100meV, whereas the binding energy of the higher states is reduced

only by about a third of this amount.
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4. Excitons in a magnetic field –

tunable gain and absorption spec-

tra

As discussed in the previous chapter, the strong Coulomb interaction causes large exci-

ton binding energies. So far, we only analysed the s-type excitonic resonances. Due to

the optical selection rules, only these excitonic states can be formed upon single-photon

processes and are therefore referred to as ’bright’ excitons. But, comparable to atomic

states, there are further excitonic states which are called optically ’dark’ as they can

not be addressed by single-photon processes. Nevertheless, for example p-type excitonic

states are accessible via two-photon processes processes or can be addressed in proper-

ly pre-excited samples, by inducing transitions between optically bright s- to optically

dark p-type excitonic states by means of a second light pulse. In TMDC materials, these

intraexcitonic transitions take place energetically in the mid-IR- to THz-range, thus,

they can be studied by optical pump-THz probe-experiments (OPTP) [77, 78, 79]. Here,

s-type excitonic populations build up after excitation by an optical pulse and intraexci-

tonic transitions are mediated by a second pulse in the THz-regime. Depending on the

initial conditions after excitation, intraexcitonic transitions can lead to an absorption or

amplification of the probing THz light.

Additionally, the energetic spectra of a material can be manipulated by external mo-

difications of the setup, for example by changing the samples dielectric environment or

applying an external magnetic field.

In our publication “Magnetic-field tuning of the intraexcitonic absorption and gain in

transition metal dichalcogenides” (Ref. [II]), we investigated the influences of a magnetic

field – applied perpendicular to the sample – on the energetic spectrum of the excitons

and its manifestation in absorption spectra when an initial occupation of s-type exci-

tonic states is assumed. Here, main insights of this study are summarised. Note, that

in contrast to the published data, the encapsulating hBN was modelled by an effective

dielectric screening of κ = 4.5 to be consistent within the scope of this thesis. The con-

sequences of the exact choice of the effective dielectric constant will be discussed in Sec.
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4.2.3. Moreover, in addition to the published data, the interplay of the magnetic field-

induced and the screening induced energetic shifts as well as the material-dependence of

the observed tunability of the intraexcitonic spectra will be discussed.

4.1 Influence of a magnetic field on the excitonic spectrum

The application of a magnetic field perpendicular to the sample results in a change of

its electronic structure. As introduced in Sec. 2.2.2, the magnetic field induces a Zee-

man shift linear to the angular momentum as well as a diamagnetic shift. Concerning

a materials optical properties, both the influence on the ground state band structure

and on the excitonic energy states needs to be considered. In the following, the different

contributions resulting from a Zeeman and diamagnetic shift are separated and analysed

independently.

For TMDC materials, the optically interesting bands at the main valleys are prima-

rily composed of the transition metals d-orbitals. While the dz2-orbitals forming the

conduction bands display an angular momentum quantum number of mz = 0, the an-

gular momentum of the orbitals forming the valence band is mz = ±2. Due to the

different character of the valence bands at the different valleys, the difference in their

angular momentum quantum number |∆mz| = 4 induces a Zeeman splitting between

the different main valleys non-interacting groundstate which is further increased by the

gap renormalisation. Theoretical results show g-factors slightly larger than 4 and are

in good agreement with experimental findings [76, 80, 81]. At each valley, the Zeeman

shift influences the excitonic states. The optically bright s-type excitons have an angular

momentum quantum number of zero and therefore no Zeeman shift would be expected

for these states. Nevertheless, a small linear shift in the range of few meV is seen that

can be referred to the magnetic field dependent modification of the ground state. Thus,

the s-type states experience an indirect Zeeman shift. For the optically dark p-states on

the other hand, the term ∝ l̂z results in a splitting of the excitons with positive and

negative angular momentum and an enhancement, respective reduction, of the magnetic

g-factor proportional to the inverse reduced mass, as can be expected from the Wannier

equation.

The diamagnetic shift, in contrast, directly leads to a shift for all excitonic states. Nume-

rically, we employ the relation r̂ = i∇k and approximate the resulting second derivative

by a first order central finite difference method – at the boundaries of our grid, we employ

the forward/ backward finite difference method – to include this diamagnetic contributi-

on in the Wannier equation. The diamagnetic shift increases with the radial extension of

the eigenstate that in turn increases with its main quantum number. Consequently, the

shift is more pronounced for higher excitonic states. Furthermore, we find that the dia-

magnetic shift is more pronounced for the s- than for the corresponding p-states which

again can be referred to the radial extension and is in correspondence with the larger
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Abbildung 4.1: Magnetic field-dependent exciton spectrum at the K-valley for s-(solid
lines) and p±-excitons (dashed, dotted lines) in hBN encapsulated MoS2.
p-type excitons are below s excitons of equal quantum number n.

binding energy.

The resulting magnetic field dependent excitonic resonances are shown in Fig. 4.1, both

for the s- and p-type excitons at the K valley. The corresponding spectrum at the

K ′ valley is obtained by reversing the sign of the magnetic field and, concerning the

p-states, interchanging p+ and p−. Here, the differing influence of the magnetic field

on the various excitonic states as described above can be seen. The s-state resonances

lie energetically below the p-state resonances of equal main quantum number, but due

to the different behaviour under application of a magnetic field, these differences are

strongly field-dependent. This tunability opens up possibilities for optical applications,

as intraexcitonic transitions are in the technologically interesting mid-IR to THz range.

4.2 Optical Pump – Terahertz Probe Experiments

4.2.1 Terahertz-Elliott Formula

To gain further insights into the consequences of the above described intraexcitonic

transitions on the interaction with an optical field, we want to analyse the systems

linear absorption spectrum. As introduced above, interesting intraexcitonic transition

are energetically in the range below 150meV. Consequently, they can be probed by low
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intensity radiation in the mid-IR to THz regime. In this regime, the electromagnetic field

primarily induces an intraband current and the induced interband current contributions

are negligible. In effective mass approximation, the intraband current, Eq. 2.38, can be

written as

jintra = −e
∑

αk∥

ℏk∥

(

1

mα
fαk∥

)

. (4.1)

Taking its derivative, we can insert the equations of motion for the density distributions

yielding

d

dt
jintra =

2e

ℏmr
ℑ







∑

k∥,Q∥,q∥

ℏk∥V
cvvc
q∥,k∥+q∥,k∥

⟨a†c,k∥+Qe
∥
av,k∥−Qh

∥
a†
v,k∥−q∥−Qh

∥

ac,k∥−q∥+Qe
∥
⟩







+
2e2

mrℏc
ℑ







∑

k∥

ℏk∥A · pcvk∥







,

with the reduced mass mr and momenta Q
e/h
∥ =

me/h

me+mh
Q∥. In the following, we omit

the term proportional to the interband dipole matrix as this term has insignificant con-

tributions for low-frequency fields and is thus negligible even in an OPTP scenario, if

the different pulses are temporally separated.

As we are interested in intra-excitonic absorption, it is intuitive to make a basis transfor-

mation and express the intraband current in terms of excitonic creation and annihilation

operators. For the symmetrised WE, the operator annihilating an exciton in state λ reads

B†
λ(Q∥) =

∑

k∥

ψ∗
λ(k∥)

√

1− f ek∥
− fhk∥

a†
v,k∥−Qh

∥

ac,k∥+Qe
∥
. (4.2)

Inserting this expression in the equation of motion for the intraband current and using

that ψλ(k∥) are eigenstates of the DWE with eigenvalues ϵλ, we find for the intraband

current in the exciton basis

iℏ
d

dt
jintra =

∑

λλ′

jλλ′(ϵλ′ − ϵ∗λ)nλλ′ − iℏΓjintra. (4.3)

Here, we introduced the excitonic current matrix jλλ′ = e
mr

∑

k∥
ψ∗
λ(k∥)ℏk∥ψλ′(k∥)

and the excitonic density operator nλλ′ =
∑

Q∥
⟨B†

λ(Q∥)Bλ′(Q∥)⟩, where the diagonal

elements describe populations of true excitons and off-diagonal elements a correlated

electron-hole plasma. Additionally, a phenomenological dephasing rate Γ for the ma-

croscopic THz-induced intraband current is included. Note, that the well known optical

selection rules for intraexcitonic transitions follow directly from the formulation of the
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excitonic current matrix. Based on symmetry, an excitonic current matrix element is

non-zero only for excitonic states of opposite parity. In particular, it vanishes for tran-

sitions between excitons of equal angular momentum, but has a finite contribution for

transitions between s- and p±-states. The optical selection rules are thus comparable to

the atomic dipole transition rules. The excitonic density operator is determined by its

equation of motion reading

iℏ
d

dt
nλλ′(Q∥) = (ϵλ′ − ϵλ)nλλ′(Q∥) +

1

c

∑

λ′′

(jλλ′′nλ′′λ′ − nλλ′′jλ′′λ′) ·ATHz

+ iℏ
d

dt
nλλ′(Q∥)

∣

∣

∣

∣

corr

. (4.4)

Treating the scattering contributions by a phenomenological dephasing, d
dtnλλ′(Q∥)

∣

∣

corr
=

−γnλλ′(Q∥), the above equations of motion can be solved by Fourier transformation. This

results in the THz-Elliott formula for the susceptibility [60]:

χTHz(ω) =
c

ω2

δjintra
δATHz

=
1

ω2

∑

λλ′λ′′

1

ℏω − iℏΓ

ϵλ′ − ϵ∗λ
ℏω − ϵλ′ + ϵ∗λ + iℏγ

jλλ′ (jλλ′′nλ′′λ′ − nλλ′′jλ′λ′′) . (4.5)

The optical absorption is proportional to the susceptibilities imaginary part. Consequent-

ly, resonances in the absorption spectra arise for optical frequencies matching energetic

differences between excitonic states, ℏω = ℜ{ϵλ′ − ϵ∗λ}. Their amplitude depends on the

initial excitation state of the sample as well as the energy difference between the states.

Furthermore, in contrast to optical absorption arising from interband currents, the am-

plitude may involve all and not only initial and final state. In the following, the optical

absorption spectra for specific initial conditions and their tunability by application of

a magnetic field and changes in the dielectric environment are discussed. Finally, the

material-dependence of the optical spectra is analysed.

4.2.2 Tuning the absorption via a magnetic field

To analyse varying dependencies of the absorption spectrum, we restrict ourselves to

two particular scenarios, namely an initial occupation of the 1s- and 2s- excitonic states,

respectively, without microscopically studying the exciton formation processes [79]. In

these cases, the susceptibility is linear proportional to the initial exciton density. Fur-

thermore, we restrict our analyses to the K valley, as the respective spectra at the K ′

can be deduced from these.

In Fig. 4.2, the upper row shows the absorption spectra for an initial occupation of the

1s state and circular polarised light. Here, the dominant contribution arises from the

1s → 2p± transition, where the absorption of σ± photons induces transitions to 2p±,
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Abbildung 4.2: Magnetic field dependent absorption spectra for different initial exciton
populations and polarisation sequences. Upper row: Initial 1s-population.
Absorption due to transition from 1s to np states. Lower row: Initial 2s-
population. Positive and negative absorption separate upon application
of magnetic field. Left panels: Co-polarised light, Right panels: Cross-
polarised light. Phenomenological decay rates of γ = 10meV/ℏ and Γ =
2.5meV/ℏ are assumed.
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respectively. It can be seen, that the transition oscillator strength increases with incre-

asing field strength, making transitions to higher excitonic states visible at higher field

strengths.

When assuming that not the ground state but an excited state is populated initially,

absorptive and gain features compete, as transitions to lower p± states correspond to an

emission of photons, while the transition to higher states occurs upon the absorption of

photons. In the lower row of Fig. 4.2, the absorption spectra for an initial occupation of

the 2s state is shown. At low magnetic fields, the competing processes result in a partly

superposition of absorptive and gain features resulting in a low net gain, but by applying

a magnetic field these features can be shifted with respect to each other resulting in more

pronounced gain.

As discussed in the previous section, the p± states behave differently under application of

a magnetic field as the Zeeman shift explicitly depends on the angular momentum quan-

tum number. As a consequence, the absorptive and gain features separate in opposite

directions depending on the polarisation direction of the light.

4.2.3 Tuning the gain via the dielectric surrounding

As discussed in Sec. 3.2, the energetic position of the excitonic states can additionally be

changed by the dielectric environment. Here, we want to examine, how this additional

screening influences the intraexcitonic absorption, when an external magnetic field is

applied.

The excitonic binding energies reduce for enhanced screening, which only partly compen-

sates with the decrease of the band gap but overall results in a red-shift of the resonances.

The spectral shift is not equivalent for all excitonic states but it is more pronounced for

higher excitonic states, thus, for states that are extended further in real space, the chan-

ges in screening are more influential. In particular, this affects the energetic separation

between the 2s- and the p-states and allows a tuning of the THz-probe spectra by chan-

ging the dielectric environment. In Fig. 4.3, the spectra of a MoS2 sample encapsulated

in materials with dielectricity – modelled by changing the effective dielectric constant

κ =
√
ϵ∥ϵ⊥ – is shown for a magnetic field with B = 20T and co-polarised pulses. Both

the gain-region (2s → 2p+ transition) and the absorption-region (2s → 3p+ transition)

are red-shifted upon increasing the dielectric constant and their energetic separation

decreases. Hereby, the relative shift with enhanced screening decreases with increasing

dielectric screening and the energetic difference between the 2s→ 2p and 2s→ 3p transi-

tion reduces. While the total shift of the peaks is in the order of 40meV, their difference

energy reduces by 5meV only. Furthermore, the intensity of the signals varies, namely,

the peak gain and absorption are reduced with increasing dielectric screening.
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Abbildung 4.3: Absorption spectrum for MoS2 in dependence on the environmental
screening (encapsulated sample) for an initial 2s-exciton population. The
magnetic field is kept fixed with B = 20T and the pump and probe pulse
are co-polarised.

4.2.4 Material-dependence

All previous analyses were executed exemplary for the widely studied material MoS2.

Naturally, the question arises, in which way the observations alter when interchanging

not the dielectric surrounding but the basic material itself. Therefore, in Fig. 4.4, we

exemplary compare the magnetic field dependent absorption spectra for MoS2 and its

tungsten-based correspondent WS2, both encapsulated by hBN layers, for an initial

occupation of the nλλ′ = n2s at the K point for σ+-polarised light.

Besides the smaller absolute intraexcitonic transition energies, in this juxtaposition, two

aspects stand out. First, the oscillator strength for the optical transitions in the tungsten-

based material is larger than in the molybdenum base material such that even transition

to the 5p+-state are clearly visible, especially when a magnetic field is applied. Second,

also the magnetic field induced changes are more pronounced in the tungsten- than in

the molybdenum-based material. While the absorption and gain peak shift about 25meV

for MoS2, the shifts are 10/15meV larger for WS2.

Both observations are in accordance with the smaller reduced mass in WS2 (mr(WS2) =

0.161me) than in MoS2 (mr(MoS2) = 0.161me), as both the current matrix element

jλλ′ determining the oscillator strength and the magnetic field-induced changes in the

Wannier equation depend on the inverse of the reduced mass.

Consequently, a smaller reduced mass results in an enhancement of oscillator strength

and magnetic field-induced changes.
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Abbildung 4.4: Magnetic field dependent absorption spectrum for initial 2s-exciton po-
pulation and different materials embedded in hBN. Left panel: MoS2;
Right panel: WS2.
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5. Relaxation on a higher level –

scattering through the full Bril-

louin zone

In order to analyse the carrier dynamics in TMDC materials, we investigated the tempo-

ral evolution of the material properties upon optical excitation above the quasiparticle

band gap. When exciting the sample close to the direct quasiparticle band gap, it is legi-

timate to assume that the interaction with the optical pump pulse mainly results in the

creation of carriers close to the main gap. Thereafter, different scattering processes cause

a reordering of the carriers within the bands. In bulk materials, intervalley scattering

processes were seen to take place on 101 − 102 fs timescales [82, 83], but in contrast to

bulk materials, monolayers exhibit a direct band gap and MoTe2 exhibits a large offset

between global and local conduction band minimum. Both of these aspects reinforce the

assumption of larger intervalley scattering times in monolayer materials. Hence, in a first

study, that led to publication “Ultrafast band-gap renormalization and build-up of optical

gain in monolayer MoTe2” (Ref. [III]), we focused on this area in reciprocal space and

employed the MDF model that only captures the behaviour in this area. Nevertheless,

to gain first insights on the changes due to carrier relaxations into the side valley, in a

next step, we analysed the linear response upon an ultrashort, low-intensity pulse and

changes in the gain spectra when comparing the scenario before and after intervalley

relaxation processes and an equilibration of the carriers in the bands took place. In a

consecutive study, summarised in “On the importance of electron-electron and electron-

phonon scatterings and energy renormalizations during carrier relaxation in monolayer

transition-metal dichalcogenides” (Ref. [IV]), we extended our model and explicitly took

into account the full two-dimensional band structure enabling the detailed analysis of

different relaxation processes including intra- as well as intervalley scattering.

The carrier dynamics were analysed exemplary for MoTe2.



56 5. Relaxation on a higher level – scattering through the full Brillouin zone

5.0.1 Analysis of excitation and relaxation dynamics at theK-point

To analyse the carrier dynamics in proximity to the K-point, we simulate the interaction

of MoTe2 with a pump pulse of central frequency slightly above the interacting B-band

gap (ℏω ⪆ ∆̃B) with aid of the DBE, Eq. 2.52. Considering the excitation and relaxation

dynamics it was seen that the exact dephasing of the microscopic polarisation is of minor

importance such that it is sufficient to include higher order scattering contributions on

the screened Hartree-Fock level. Thus, we replaced in Eq. 2.52 the Coulomb-matrix

elements by their respective screened counterparts, including plasma screening in the

static limit. The carrier scattering terms were treated within Markov approximation and

the explicit quantum-Boltzmann-like scattering rates due to carrier-carrier and carrier-

phonon interaction read

d

dt
fαik∥

∣

∣

∣

∣

el

=
2π

ℏ

∑

q∥ ̸=0

Wq∥

∑

j,p∥

(

Vq∥
− Vk∥−p∥

δij

)

D
(

Σ̃α
ik∥

− Σ̃α
ik∥−q∥

− Σ̃α
jp∥

+ Σ̃α
jp∥−q∥

)

×
[

fαik∥
f̄αik∥−q∥

fαjp∥−q∥
f̄αjp∥

− f̄αik∥
fαik∥−q∥

f̄αjp∥−q∥
fαjp∥

]

+
2π

ℏ

∑

q∥ ̸=0,ᾱ

Wq∥

∑

j,p∥

(

Vq∥
− Vk∥−p∥

δij

)

D
(

Σ̃α
ik∥+q∥

− Σ̃α
ik∥

− Σ̃ᾱ
jp∥

+ Σ̃ᾱ
jp∥−q∥

)

×
[

fαik∥
f̄αik∥+q∥

f ᾱjp∥
f̄ ᾱjp∥−q∥

− f̄αik∥
fαik∥+q∥

f̄ ᾱjp∥
f ᾱjp∥−q∥

]

, (5.1)

d

dt
fαik∥

∣

∣

∣

∣

ph

=
2π

ℏ

∑

q∥ ̸=0,m

gα,mk∥;q∥
g̃α,mk∥;q∥;k∥+q∥

D
(

Σ̃α
ik∥+q∥

− Σ̃α
ik∥

− ℏωm
q∥

)

×
[

(nmq∥
+ 1)fαik∥+q∥

f̄αik∥
− nmq∥

fαik∥
f̄αik∥+q∥

]

+
2π

ℏ

∑

q∥ ̸=0,m

gα,mk∥;q∥
g̃α,mk∥;q∥;k∥

D
(

Σ̃α
ik∥−q∥

− Σ̃α
ik∥

− ℏωm
q∥

)

×
[

nmq∥
fαik∥−q∥

f̄αik∥
− (nmq∥

+ 1)fαik∥
f̄αik∥−q∥

]

. (5.2)

Here, α ̸= ᾱ denote the band indices and m the phonon branch. When concentrating on

the intravalley scattering processes, we only included LO-phonons, that were reported to

have major contributions, with an approximately constant energy of ℏωLO
q∥

= 27.72meV

[56]. In this case, the sum over m vanishes in the above equation. The energy conserva-

tion was treated numerically via πD(x) = η
x2+η2

, where a phenomenological broadening

η was included. It was numerically tested that the exact value η was of minor influence

for the final results. Furthermore, in these energy conservation terms, energy conser-

vation is required with respect to the renormalised energies. But, as all these energy

difference terms pairwise belong to energies of the same band, thus, they are of the form

Σ̃α
k∥

− Σ̃α
k∥−q∥

, and as excitation-induced renormalisation mainly yield constant shifts of

the bands, it is a reasonable approximation to replace the renormalised energies by their

unrenormalised equivalents.
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Regarding the carrier-carrier scattering processes, the first two lines of the equation de-

scribe scattering of particles in the same band, whereas scattering processes between

electrons and holes are contained in the last two lines. For all processes, the initial state

has to be occupied with a probability fαk∥
> 0, whereas the final state needs to be empty

f̄α
k′
∥
= 1 − fα

k′
∥
> 1. Concerning the phonon scattering, in- and out-scattering processes

due to phonon absorption (∝ nmq∥
) and emission (∝ (1 + nmq∥

)) are described.

The coupled set of equations was solved applying a forth-order Runge-Kutta method

[84]. The resulting carrier dynamics for excitation with a high-intensity Gaussian sha-

ped pulse (E0 = 1.25 MV
cm , σ = 300 ps) is depicted exemplary for the electron distribution

in the A band in Fig. 5.1. The dynamics of the corresponding hole distribution is equi-

valent and the carrier dynamics in the B band is similar but even more efficient as the

excitation energy was chosen nearly resonant with this band. Further details on the nu-

merical implementation are provided in [85].

During excitation, no accumulation of carriers at the excitation energy is seen. It was

seen that ultrafast carrier-carrier scattering relaxations in combination with the renor-

malisation of the states – both processes enhanced by the strong Coulomb interactions

– drives the carriers away from the excitation energy and enables an efficient absorp-

tion of incoming photons. Already within a few femtoseconds the carriers have relaxed

into a hot quasi-equilibrium distribution due to carrier-carrier relaxation. The efficient

absorption is accompanied by a large renormalisation of the band gap in the order of

390meV, when the maximum of optically induced charge carriers is reached. Thereaf-

ter, carrier-phonon interaction results in a thermalisation of the distributions, as is seen

in a narrowing of the distribution in Fig. 5.1. The hot carriers are predicted to have

relaxed into room temperature Fermi-like distributions, and thus reached the phonon

bath temperature, within 2.5 ps. As the screening wave vector is approximately given by

the value of the carrier distributions at k∥ =K, which increases through cooling of the

carriers, this thermalisation leads to further screening of the Coulomb interaction and

consequently in a further reduction of the band gap in the order of 20meV.

Experimentally, the carrier dynamics is not observable directly, but changes in the ma-

terial response upon an additional second low-intensity pulse can be seen. To model this

scenario, we assume that the pump and probe pulse can be decoupled in the simulation

and the density distributions obtained by evaluating the carrier dynamics can be trea-

ted as quasistatic with respect to the ultrashort probe pulse. In this limit, the equation

determining the microscopic polarisation can be solved in frequency space

[

ℏ(ω + iγ)−
(

Σh
k∥

+Σe
k∥

)]

pk∥
(ω) + (1− fhk∥

− f ek∥
)

∑

k′
∥
̸=k∥

V cvvc
k̄∥−k̄′

∥
;k̄′

∥
;k̄∥
pk∥

− Γhe
k∥
(ω)

= − (1− fhk∥
− f ek∥

)
e

m0c
pcv(k∥) ·A(ω). (5.3)
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Abbildung 5.1: Dynamics of the electron distribution in the A-band after excitation with
a linear polarised Gaussian shaped pulse with E0 ∝ 1.25MV/cm, FWHM
of σ = 300 ps slightly above ∆̃B.

Here, the plasma screening effects are fully contained in the dephasing parameter Γhe
k∥
(ω),

in which carrier- and phonon-induced scattering contributions are subsumed. Thus, the

unscreened Coulomb interaction needs to be included in the remaining parts of the equa-

tion. Formally the dephasing can be separated into carrier- and phonon-contributions

Γhe
k∥
(ω) =

∑

k′
∥
̸=k∥

[

∆Ihek∥−k′
∥
,k∥

(ω) +Ghe,+
k∥−k′

∥
,k∥

(ω) +Ghe,−
k∥−k′

∥
,k∥

(ω)− (k∥ ↔ k′
∥)

]

(5.4)

Neglecting exchange contributions and only considering contributions that are linear in

the microscopic polarisation, based on Eq. 2.61 and 2.65, the different contributions can

be explicitly written as

∆Ihek∥−k′
∥
,k∥

(ω) = W he
k∥−k′

∥
,k∥

(ω)Vk∥−k′
∥

[

Λhe
k∥−k′

∥
,k∥

(ω)−Πhe
k∥−k′

∥
(ω)fhk∥

]

pk′
∥
(ω)

−W he
k∥−k′

∥
,k∥

(ω)Vk∥−k′
∥

[

Λhe
k∥−k′

∥
,k∥

(ω)−Πhe
k∥−k′

∥
(ω)f ek′

∥

]

pk∥
(ω) (5.5)

Ghe,+
k∥−k′

∥
,k∥

(ω) = ghek∥−k′
∥
,k∥

(ω)g0k∥−k′
∥

{

f̄ ek∥
nk∥−k′

∥

}

Σ
pk∥
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{

f̄hk∥
nk∥−k′

∥

}

Σ
pk′

∥
(ω)

∆Σ̃he
k∥−k′

∥
,k∥

(ω) + ℏωk∥−k′
∥
+ iℏη

(5.6)

Ghe,−
k∥−k′

∥
,k∥

(ω) = ghek∥−k′
∥
,k∥

(ω)g0k∥−k′
∥

{

f ek∥
nk∥−k′

∥

}

Σ
pk∥

(ω)−
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fhk∥
nk∥−k′

∥

}

Σ
pk′

∥
(ω)

∆Σ̃he
k∥−k′

∥
,k∥

(ω) + ℏωk∥−k′
∥
+ iℏη

,

(5.7)
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Abbildung 5.2: Absorption spectra for various time differences in the thermalisation re-
gime after exciting a MoTe2 sample. The inset depicts the corresponding
carrier distribution of the electrons in the A-band. (According to publi-
cation [III].)

where the shorthand notations

{

f̄αknq
}

Σ
≡ fαknq + f̄αk (1 + nq),

∆Σ̃he
k∥−k′

∥
,k∥

≡ ℏω − Σ̃h
k∥

− Σ̃e
k′
∥
,

Ohe
k∥−k′

∥
,k∥

(ω) ≡ Ok∥−k′
∥

(

∆Σ̃he
k∥−k′

∥
,k∥
/ω + iγT

)

were introduced. Furthermore, we introduced the function

Λq∥
(ω) =

∑

αk∥

fαk∥−q∥
f̄αk∥

ℏω + Σ̃α
k∥−q∥

− Σ̃α
k∥

. (5.8)

To reduce the numerical complexity, both this function and the Lindhard polarisation

function were pre-calculated on a dense frequency grid and in subsequent calculations

the desired energy value is mapped to the closest grid point. In this approximation, the

microscopic polarisation can be calculated numerically efficient via matrix inversion.

In Fig. 5.2 the changes in the absorption spectra during the thermalisation process are

depicted together with the corresponding electron distribution in the A-band. Due to

the narrowing of the carrier distribution, the phase space filling factor decreases and

results after 0.5 ps in inversion (1 − f ek∥
− fhk∥

< 0) and optical gain slightly below the

resonance of the lowest A-exciton in the low density regime. Our calculations predict

that the continuum absorption of the A band overcompensates the negative absorption

of the B band and no netto gain is expected in this energy region.

To gain first insight on the impact of the intervalley scattering processes, we estimate

their influence by comparing the absorption spectra for different carrier densities before
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and after equilibration within the bands. In particular, we compare the cases of an equal

distribution of carriers in the different bands and valleys to the case where the carriers

in different valleys have an equal chemical potential. In the latter, the distribution of

the carriers is determined by solving

0 = ne − 1

A
∑

s,k∥,ζs

dgn(ζs)f
e
τsk∥

(µe, T )

0 = nh − 1

A
∑

s,k∥,ζs

dgn(ζs)f
h
ζsk∥

(µh, T ),

for a given temperature T and carrier density ne/h. Due to the hexagonal symmetry,

the degeneracy of the side valleys is dgn(ζs = Λ/Σ) = 3. Regarding the holes, only the

two main valleys K and K ′ are included. Due to the large spin-splitting of the valence

bands at the K- and K ′-valley of about 230meV, less than 1% of the holes is located at

the energetically unfavourable valley, even in the high density regime of n = 1014 cm−2.

Regarding the excited electrons, both the main and the side valleys need to be considered.

Even though the side valley is energetically above the main minimum, up to 25% of

the electrons occupy the different side valleys in this high density regime. These two

aspects of carrier equilibration have counteracting effects on the gain spectrum. While

the decrease in electron population at the main valley reduces the amount of carriers

that can recombine optically, the hole drain to the A band increases the inversion. In Fig.

5.3, the spectra before and after equilibration of the carriers in the bands are depicted.

Here, it is seen that the mentioned counteracting processes lead to an overall increase

in peak optical gain. Normalised to the layer thickness, the peak optical gain reaches

105 cm−1 for the largest carrier density analysed here. According to our simulations, the

optical gain per material thickness in MoTe2 is an order of magnitude larger than in

typical III/V semiconductors, where the optical gain is in the order of 5000 cm−1.

5.0.2 Analysis of a pump scenario in two dimensions

This first estimation of the contribution of the side valleys already showed their con-

siderable influence on the optical properties of MoTe2 for the examined high carrier

densities. Additionally to this observed influence on the optical spectra, it is frequently

discussed whether TMDCs become indirect semiconductors upon optical excitation, as

the side gap renormalisation overruns the renormalisation of the main valley [86, 87].

To address this question on the renormalisation dynamics and get deepened insights on

the relaxation dynamics of the carriers in the full BZ, we expanded our model beyond

the MDF approach. Instead of approximating the band structure and absolute dipole

matrix elements, the full k∥-dependent energy dispersion and dipole matrix elements

for the conduction and valence bands, as well as all nine phonon branches were taken
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Abbildung 5.3: Comparison of absorption spectra for different amounts of excited car-
riers from 2 × 1013 cm−2 (yellow) to 12 × 1013 cm−2 (black) with (solid
lines) and without (dotted lines) inclusion of carrier drain to side valley
and between K-valleys. Equilibration results in an enhancement of peak
optical gain. (According to publication [III].)

into account as derived by DF(P)T calculations. Here, the eigenvalue problem determi-

ning the energetic states is solved independently for every k-point and the eigenvalues

are sorted according to their energetic value only, neglecting any correlation of the va-

lues of neighbouring points. Thus, a post-processing of the data in which the data is

sorted according to their energetic bands is needed prior to consecutive calculations.

Unfortunately, an automated sorting according to the overlap and the gradient between

neighbouring k-points did not work out, and this sorting was executed manually. Both

DFT and SBE calculations were performed on the irreducible BZ, thus, the basis points

for the numerical evaluations where distributed equidistantly on an equilateral triangle.

To include scattering processes through the whole BZ, the symmetries of the system

were made use of.

Regarding the various interactions, we applied similar approximations as before. Na-

mely, we treated the microscopic polarisation on the screened HF level and included

the Boltzmann-like scattering terms concerning the carrier occupation probabilities (Eq.

5.1), where screening was included in the static limit. The Coulomb interaction was

modelled on the basis of the previously introduced form factor. The form factor was cal-

culated explicitly only with respect to the main and side valley and was approximated

for all other points with the form factor of the closest valley respectively.

To study the influence of the different relaxation processes and their respective time

scales separately from the excitation processes, we set an artificial initial carrier distri-
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approximating the excitation by a laser pulse at energy ℏωL and of width ∆ = 66meV.

In order to analyse the relaxation dynamics of carriers excited high above the band gap,

the central frequency of the pulses was chosen to be 800meV above the non-interacting

band gap. Furthermore, the occupation probabilities is weighted by the dipole matrix

elements, pk∥α, that are normalised by the maximum dipole matrix element between

any states, pmax.

In Fig. 5.4, the relaxation dynamics after such an artificial excitation is shown for the

excited electrons (f0 = 1.28) in the A band at different times after excitation. The

contributions to the electron dynamics arising from carrier-carrier and carrier-phonon

interaction are shown separately. In accordance with the observations in our first study, it

is seen that the dynamics is dominated by carrier-scattering during the first few fs. These

carrier-scatterings result in an initial broadening of the distribution. Here, it is seen that

these contributions are up to two orders of magnitude larger than contributions arising

due to phonon-scattering. To analyse the carrier dynamics even more closely, in Fig. 5.5

the contributions arising from the different phonon branches are compared by depicting

the full phononic contributions and the contributions arising from optical phonons side

by side. Here, a lower excitation density (f0 = 0.16) was used in the simulation, as the

relative importance of phononic contributions is larger decreases with increasing carrier

density. It can be seen that both optical and acoustic phonons are of equal importan-

ce in the first few femtoseconds but affect the distribution in different ways. Changes

due to optical phonons are found in the proximity of the regions of initial excitation, in

contrast, acoustic phonons induce changes that are spread larger in momentum space.

This shows, as expected, that optical phonons are efficient for small scattering vectors,

while acoustic phonons are of importance for larger scattering vectors, and thus are of

key importance to model intervalley scattering processes.

Similar to previous observations in the isotropic model, already within the first few fem-

toseconds, the carriers have relaxed into hot Fermi like distributions. This undermines

the previously seen ultrafast relaxation times resulting from efficient carrier-carrier scat-

tering due to the enhanced Coulomb interaction. Thereafter, the scattering dynamics

slow down by 2-3 orders of magnitude and contributions due to phonons and electrons

become of equal importance (see Fig. 5.4). The closer look on the different phonon branch

contributions (Fig. 5.5) reveals, that in this time domain, where mainly a process of coo-

ling takes place, the phonon contributions are mostly due to optical phonons. 0.5 ps after

excitation, the carrier dynamics further slow down by an order of magnitude, but the
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carriers still have a temperature of about 1900K. Nevertheless, the in- and out-scattering

contributions due to phononic and electronic interaction respectively become more alike

demonstrating the evolution of the carrier distribution towards a quasi-equilibrium si-

tuation.

As these analyses show, under conditions of an artificial distribution approximating the

scenario of excitation high in the band, scattering takes place over the whole BZ with a

non-negligible amount of carriers being scattered into the side valley already within a few

femtoseconds. In contrast, when assuming resonant excitation conditions, as analysed in

more depth in publication [IV], the intervalley transfer was seen to be strongly slowed

down and takes place on a picosecond time scale. This justifies our previous assumption

regarding the different time scales of intra- and intervalley scattering processes for nearly

resonant excitation conditions.

Finally, the strong Coulomb interaction in TMDC materials gives rise to large excitation-

induced band gap renormalisations. The exact renormalisation of the bands depends

on their occupation as well as the Coulomb-matrix elements and their screening. The

Coulomb-matrix elements depend on the overlap of the respective wave functions of

the states. As the orbital contributions to the wave functions differ, slight differences

of the matrix elements at the main and side valley are experienced. Furthermore, the

screening depends both on plasma screening and phase space filling effects. Plasma

screening is a global effect in the sense that the screening equally affects electronic

interactions all over the BZ. In contrast, phase space filling can be seen as a more local

effect in reciprocal space. It depends on the local occupation that in turn is connected

to the local dispersion, as the excitation-dependent occupation changes are enhanced in

valleys with lower effective mass. Thus, resulting from the local dispersion, the excitation-

induced band gap renormalisation at the side valley is stronger than at the main valley.

But, despite the larger renormalisation per occupation effects, the initial energy offset

between the valleys results in a higher occupation of the main valley. Even if we assume

that the carriers are in a global thermal equilibrium, the difference in occupation of

the different valleys is so large that we do not observe a transition from a direct to an

indirect band gap. Our study thus indicates that the question whether such a transition

takes place in TMDC structures highly depends on the ground-state band structure

that in turn is highly sensitive e.g. to the exact lattice structure. As has been shown in

different studies – both experimentally and theoretically–, the energy offset between the

valleys is in particular sensitive to strain. Theoretical studies e.g. indicate that changes

of the lattice constant below 1% lead to a shift of the conduction band side valley

below the main valley [88, 89, 90]. Consequently, the carrier dynamics in the bands and

the material lattice structure are interrelated and the energetic structure of monolayer

materials are highly sensitive to changes in both parameters. Clarifying this interplay of



64 5. Relaxation on a higher level – scattering through the full Brillouin zone

Abbildung 5.4: Comparison of the influence of different scattering contributions on the
dynamics of the electron distributions in the A-band at different times.
Left panel: Contributions from electron-electron scattering. Right panel:
Contributions from electron-phonon scattering. Mind that changes are
shown for different time scales for topmost ([1/fs]) and bottom ([1/ps]).
(According to publication [IV].)
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Abbildung 5.5: Comparison of the influence of different phonon scattering contributions
on the dynamics of the electron distribution in the A-band at different
times. Left panel: Scattering contributions from all phonon branches.
Right panel: Scattering contributions from optical phonon branches only.
(According to publication [IV].)

lattice structure, carrier dynamics and excitation-induced renormalisation effects would

be an interesting extension of our study.
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6. Increase destructive interference –

Electron-hole plasma induced de-

phasing

The absorption spectra of TMDC monolayers are in the low excitation regime, even

at room temperature, dominated by excitonic resonances. The exact shape of the reso-

nances is influenced by many different aspects that were partially discussed in previous

studies [91]. For example, it was observed that the dielectric environment goes along

with a change of the pulse shape. Experimentally it was seen that an encapsulation with

hBN dramatically reduces the linewidth, yielding linewidths of down to 2meV in the

low energy regime, compared to the fivefold value for samples on quartz substrates. This

narrowing is usually attributed to a higher stability of and a suppression of impurities

in the sample. Due to the narrowing, the encapsulation with hBN enables further dis-

crimination of the signals and the observation of higher excitonic states [92, 93, 94].

Furthermore, due to the temperature-dependence of exciton-phonon-interactions, the

linewidth was shown to increase superlinear with temperature, whereas different excito-

nic contributions dominate the increase for tungsten- and molybdenum-based materials

[95, 96]. Additionally, the dephasing increases when excited carriers are generated in the

material. Here, previous studies focused on changes due to enhanced occupations of ex-

citonic states. In particular, the different contributions of inter- and intravalley excitons

to the homogeneous linewidth were analysed. Here, different relative contributions we-

re observed for molybdenum- and tungsten-based materials. While intervalley excitonic

contributions are marginal in molybdenum-based materials, they contribute significantly

in tungsten-based materials. This different behaviour can be attributed to the different

energetic ordering in these materials, as the intervalley excitons were seen to be energe-

tically favourable in these materials [95, 97, 98, 99, 100, 101]. Because optical excitation

high in the bands leads to an electron-hole plasma prior to the population of bound exci-

tonic states, we extended these studies by focussing on the excitation-induced dephasing

due to an electron-hole plasma. In our study, which led to publication “Electron-hole

plasma-induced dephasing in transition metal dichalcogenides” (Ref. [V]), we neglected
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Abbildung 6.1: Frequency-dependent eigenvalues of Hk∥k
′
∥
(ω) for a Fermi distributed

carrier density located around theK point of nA = nB = 1.5×1012 cm−2.
In the representation of the real values (left) the black line indicates whe-
re R(ϵ) = ℏω, which allows to identify the resonance positions. The ima-
ginary part correlates to the linewidth. An additional intrinsic dephasing
of ℏγ = 2meV and a triplet dephasing of ℏγT = 300meV are included.

phononic contributions – which would only yield a lattice-temperature-dependent con-

stant shift – but focused on the influence of electronic interactions.

Let us first examine the results of the homogeneous part of the polarisation equation,

Eq. 2.52, including the dephasing in form of the previously deduced excitation- and

frequency-dependent carrier-scattering contributions, Eq. 5.4. The right hand side of

the equation can be reformulated in a matrix representation, where upon substituting

p̃k∥
=

√

k
1−fe

k∥
−fh

k∥

pk∥
the matrix excluding scattering contributions becomes hermitian,

yielding

iℏ
d

dt
p̃k∥

=
∑

k′
∥

Hk∥,k
′
∥
p̃k′

∥
,with

Hk∥,k
′
∥
=

(
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k′
∥
− Σv

k′
∥

)
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√

√
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k∥k

′
∥

√

√

√

√

k′

1− f e
k′
∥
− fh

k′
∥

(6.1)

In Fig. 6.1, the frequency-dependent matrix eigenvalue spectrum for a MoS2 monolayer

embedded in hBN is shown exemplary for a carrier density of nA = nB = 1.5×1012 cm−2

following a Fermi distribution at room temperature. Real and imaginary part are shown

separately. Here, an intrinsic dephasing of γ = 2meV and a triplet dephasing of γT =

300meV were inserted. In the real part of the eigenvalue spectrum the lowest eigen-

value is clearly recognisable, whereas the higher eigenvalues are overshadowed in the
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Abbildung 6.2: Frequency-dependent lowest eigenvalue of Hk∥k
′
∥
(ω) for a Fermi dis-

tributed carrier density located around the K point of nA = nB =
1.5× 1012 cm−2 for different triplet dephasings γT . Furthermore, the re-
spective band gap is indicated along the x-axis.

lower frequency range by continuum states, which shift spectrally below them, and are

visible as distinct states in the high frequency range only. Thus, instead of sorting the

eigenvalues according to their real part eigenvalue, it proves to be more appropriate to

sort them according to their oscillator strength. This insight becomes even more obvious

when taking into account the imaginary part of the eigenvalue spectrum expressing the

frequency-dependent dephasing of the states. Here, the continuum states show immense

dephasing constants of more than 25meV in the whole analysed frequency range. Con-

cerning the linear absorption spectrum, according to the Elliott formula, which implies

that χ(ω) ∝ (ℏω − ϵλ + iℏγ)−1, resonances are observed when ℏω = R{ϵλ(ω)}, which in

the figure corresponds to a crossing with the black curve. Thus, in the relevant regime,

the dephasing of the continuum states reaches values exceeding 100meV. In general, it

is seen that the frequency-dependence of the states increases with its resonance energy

(ℏω = R{ϵλ(ω)}). Consequently, for the higher states, the electron-hole plasma-induced

dephasing is more pronounced than for the lowest state indicating a bleaching out of

these states already for lower excitation densities.

In our model, in the unexcited case, both real and imaginary part would be frequency-

independent, whereby the imaginary part only reflects intrinsic dephasing. The above

analysis reveals a significant frequency-dependence of the resonances and, even more

pronounced, of their dephasing for an excited sample. This observation highlights the

importance of including screening effects dynamically when evaluating the polarisation

dynamics and consecutive absorption spectra.

In the applied treatment of the carrier-polarisation scattering, we explicitly include terms

up to the doublet level only and include higher order correlations by means of screening.

We summarise further contributions in a constant dephasing γT . In general, this term

is density- and frequency-dependent. To determine the influence of the size of γT on
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Abbildung 6.3: Dependence of EID on carrier distribution and carrier temperature. Up-
per left: EID before and after equilibration of carriers in the different
valleys. Carriers are either distributed equally in the different bands
and valleys (light blue) or assumed to have relaxed towards a common
chemical potential (dark blue). Exemplary, the carrier distributions for
n0 = 2.0 × 1012 cm−2 in the conduction (lower left) and valence (lower
right) band are shown. Right: Temperature-dependence of the excitation-
induced dephasing for various fixed carrier densities distributed equally
in the bands and valleys. (Adapted from publication [V].)

the EID of the lowest exciton resonance, the real and imaginary part of the lowest

eigenvalue of H is shown in Fig. 6.2 for various triplet dephasings. Additionally, the

respective quasiparticle band gap is indicated. As already discussed in Sec. 3.2, the

density-dependent band gap is underestimated for small triplet dephasings but depends

only little on its exact value, if the triplet dephasing is chosen to be large enough. In

contrast, the real part of the eigenvalue is affected only marginally already for small

triplet dephasings. In particular, in the relevant frequency range – in proximity to the

resonance energy –, changes are in the sub-meV range. Regarding the imaginary part of

the eigenvalues, the differences for increasing triplet dephasings become smaller and are

moderate for ℏγT > 100meV. In conclusion it is seen that an exact treatment of higher

correlation contributions would be desirable to gain further insights in the relaxation

dynamics and to justify more profoundly the short dephasing times. But, for the present

analysis that is focused on the EID of the lowest exciton resonance, the approximation

of the dephasing by a constant value seems to be appropriate to gain first insights. The

value (ℏγT = 300meV) is chosen to yield density-dependent band gap changes that are

consistent with experimental observations.

The relaxation studies in the previous chapters revealed, that the excitation of carriers

is followed by their ultrafast relaxation towards hot Fermi like distributions and a con-

secutive redistribution of the carriers in the BZ. Therefore, we analysed the influence
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of these two effects on the homogeneous linewidth of the lowest exciton resonance and

found that both processes result in a sharpening of the resonance as displayed in Fig.

6.3. Here, only the imaginary part of the eigenvalues of H are shown excluding further

phenomenological dephasing to illustrate the different dependencies. In (a) we depict

the influence of hole drain to the energetically favourable valence band for a constant

carrier temperature of 300K. The large conduction band offset between side and main

valley of 133meV causes that for the analysed low carrier densities only a small amount

of electrons moves to the side valley. Unlike to observations in tungsten-based materials,

where the smaller energetic distances between the valleys and the different spin ordering

at the main valley was shown to result in large contributions of the side valley, those

contributions are negligible in the MoS2 [95, 100]. In contrast, the large valence band

offset between the main valleys leads to a more pronounced reorganisation of carriers.

After the reorganisation of carriers in the materials, nearly all holes occupy the energe-

tically favourable valley. Even though this reorganisation is similar for all investigated

carrier densities, it has only marginal influence for low densities, but becomes somewhat

more pronounced with increasing densities.

The cooling results in a reorganisation of the carriers within the valleys and bands as

with decreasing temperature the distribution becomes narrower in k-space. This in turn

results in an enhanced screening of the Coulomb interaction – that is approximately

proportional to the occupation at k = K – and an increase of phase space filling effects.

For small carrier densities, the occupation is below 0.5 × 10−2 cm−2 for all tempera-

tures and thus the influence on the EID is small. In contrast, for the largest density

analysed, the occupation at K decreases from 0.22 at 200K to 0.04 at 800K and con-

sequently the influence of the cooling process is much larger resulting in an additional

temperature-dependent broadening of 1.6meV. For high temperatures the broadening of

the distribution results in the analysed excitation regime in low occupations all over the

whole BZ. Therefore, the EID does not increase further but reaches for high temperatures

a density-dependent plateau.

Experimentally, in the linear spectrum, the linewidth of a resonance is determined by

a combination of homogeneous and inhomogeneous broadening effects. A possibility to

separate these two contributions are e.g. four-wave mixing (FWM) experiments, where

the response of a sample upon interaction with two (degenerate FWM) or three low

intensity ,temporally sharp pulses for which the temporal delay is varied is investigated.

The homogeneous linewidth can be deduced from the delay-dependent integrated signal.

Explicitly, in a DFWM experiment, we are interested in the signal resulting from the

interaction of the second pulse with the grating induced by the interaction of the po-

larisation of the first and the second pulse, that can be detected in direction 2k2 − k1,

where ki denote the respective wave vectors. To gain insight on the electron-hole plasma-

induced dephasing, the sample additionally needs to be excited by a prior high intensity
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Abbildung 6.4: Excitation-induced dephasing as observed in DFWM spectra. The blu-
eish lines show the integrated DFWM signal for different carrier den-
sities that are assumed to be Fermi distribute equally in the different
bands/valleys. The corresponding densities are indicated in the inset.
The gray area marks the self-correlated signal of the pulses of temporal
width twidth = 150 fs and central frequency ω1 = ω2 = ω1s. (Adapted
from publication [V].)

pulse. To model such a scenario, we separate the polarisation (pk∥
) and occupations

(f
e/h
k∥

) into contributions arising from a pre-pulse (x0) and those arising from further

pulses (∆x):

pk∥
= p0k∥

+∆pk∥

f
e/h
k∥

= f
e/h,0
k∥

+∆f
e/h
k∥

. (6.2)

Inserting these expressions in the DBE, Eq. 2.52, one can derive, for the case of tem-

porally separated pulses, where the pre-pulse induced polarisation already has decayed

before further pulses arrive, the relation
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where the approximation is valid if the polarisation induced by further pulses is small

compared to
(

1− f e,0k∥
− fh,0k∥

)

.

Making the ansatz pk∥
=

∑

n p
[n]
k∥
, where n denotes the order in the optical field, and

expanding the polarisation in terms of the eigenfunctions ϕRλ (k∥) of H0 including pre-

pulse generated carrier distributions, p
[n]
k∥

=
∑

λ p
[n]
λ ϕRλ (k∥), we can solve the problem
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iteratively, as the temporal evolution of p
[n]
λ is given by

p
[n]
λ (t) = − i

ℏ

∫ t

∞
dt′ e−i(ϵλ/ℏ−iγ)(t−t′)Q

[n]
λ (t′). (6.4)

Here, Q
[n]
λ (t) denotes the source term in nth order of the optical field. As discussed

above, in general, the eigenvalues and -functions are frequency-dependent, but as we are

interested in the homogeneous dephasing of the lowest excitonic state and the system

response upon pulses resonant to this state, we reduce our calculations in the following

to the dominant frequency ω = ω1s = ϵ1s
ℏ
. Furthermore, for the numerical calculations,

the eigenvalues were sorted according to their oscillator strength and it was tested to be

sufficient to include the 50 lowest states. The linear source term hereby reads
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While experimentally, the signal need to be measured in the correct scattering direction,

mathematically, we are able to separate the relevant and irrelevant contributions to the

cubic source term. Keeping only terms proportional to ∝ A∗
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2
1, the relevant cubic source
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,

with the left-/righthanded eigenstates ϕ
L/R
λ (k∥), that are unequal due to the non-Hermitian

scattering contributions. The resulting time-integrated signal for pulses of width twidth =

150 fs and central frequency ω1 = ω2 = ω1s is shown in Fig. 6.4 for different pre-pulse

generated Fermi distributed (T = 300K) carrier densities. In the inset, the respec-

tive carrier density and the corresponding homogeneous linewidth γhom are depicted.

The integrated signal decreases for positive delay times exponentially with an exponent

proportional to 2γhom. Due to the electron-hole plasma-induced dephasing, the slope

steepens with increasing carrier density approaching the self-correlated signal, that is

illustrated as gray area.
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7. Summary and outlook

The physical properties of TMDC materials are promising, their potential applications in

opto-electronic devices are versatile. To further advance the understanding of these ma-

terials, in this thesis we aimed to elaborate computational efficient and comprehensible

but precise theoretical models to describe monolayer TMDC materials, namely MoS2,

MoSe2, MoTe2, WS2, WSe2, under varying external conditions and utilize these models

to investigate the impact of the varying conditions on the material response to external

optical fields. Here, the complex interplay of initial excitation, dielectric environment

and magnetic field and its influence on the interaction of electrons and phonons and

the energetic spectrum was analysed. In the different studies summarised in this thesis,

different physical phenomena were focused on and the theoretical models were adapted

to the respective research question.

In general, we applied a combined approach based on DFT and SBE/DBE formalisms

to model the material systems. Here, DFT was employed to find fundamental material

properties like the single-particle band structure, dielectric properties and phononic di-

spersions. These findings were then used to set up a model Hamiltonian to describe the

energetic structure and interactions of electrons, phonons and electromagnetic fields.

Different models regarding the interactions were applied to describe the behaviour in

proximity to the K/K ′-points (MDF model) and the remaining BZ. The dynamics of

the density matrix, as described by their equation of motion based on the model Hamil-

tonian, was evaluated in different approximations and yielded, with the time-dependent

microscopic density matrix, all informations to derive the macroscopic optical properties.

The material thinness causes enhanced many-body interactions and a high sensitivity on

environmental conditions resulting in large exciton binding energies, large renormalisa-

tion effects, versatile tools to tune the opto-electronic properties and ultrafast dynamics

within the sample. Hence, a proper model for describing the Coulomb interaction in these

materials is essential for further investigations. In our model, we explicitly included finite

thickness and environmental screening effects by deriving an expression for the Coulomb

potential based on a solution of the Poisson equation for a slab geometry and by deriving

an analytical approximation of the Coulomb-matrix elements which were evaluated ba-

sed on the DFT wave functions. Here, the Coulomb potential differs from both the exact



76 7. Summary and outlook

two-dimensional and the exact three-dimensional case. Our study has shown that the

effective thickness of a material increases with the size of the incorporated atoms, in line

with the expectation. The precise incorporation of the Coulomb interaction into the SBE

enables the prediction of the electronic and optical energy spectrum. Comparisons to ex-

perimental studies have shown that our model is able to successfully describe the ground

state optical and electronic band gap and its dependence on the dielectric environment.

The Coulomb interaction is screened by the dielectric environment and consequently,

the electronic band gap and the exciton binding energy are reduced for materials with

enhanced dielectric constants. Furthermore, the Coulomb interaction is screened by the

presence of excited carriers due to higher order correlations. Here, two aspects were ob-

served in different studies: First, it was seen that a static approximation of the screening

results in an overestimation of screening effects for small carrier densities. In contrast, for

larger densities, differences between a static and a dynamical treatment become smaller

and are in the range of 10meV only. This legitimises this static approximation when

studying relaxation dynamics after excitation with high-intensity laser pulses. Second,

further analyses of the frequency-dependence have shown that approximations are ju-

stified when restricting to the analysis of particular properties. Here, it is sufficient to

take into account only the dominant frequency. But, in contrast, this does not hold for

an analysis of the density-dependent linear optical response. It was seen that regarding

the optical response, the full frequency-dependence needs to be considered. Moreover,

we included higher order correlations exceeding the singlet-doublet approximation by a

phenomenological dephasing that also enter the equations via the plasma screening. Our

studies have shown that a large triplet dephasing constant of several hundred meV needs

to be assumed to achieve proper descriptions of the density-dependent band gap shrinka-

ge and optical spectra. Here, a deepened understanding of the dephasing processes due

to higher correlations is desirable – to test the assumption of this large triplet depha-

sing and to investigate e.g. its density-dependence. To analyse the dephasing processes

in more detail requires the explicit treatment of next order correlations and is thus a

challenging task. Nevertheless, the present model is already effective and its predictions

for the excitonic spectrum and the density-dependent band gap renormalisation are in

good agreement with experimental data.

Based on this efficient description of the Coulombic interactions between carriers, in

further studies, we investigated the carrier dynamics in the materials after strong above-

band gap excitation. Here, we focused on molybdenum-based materials that display an

optically bright (spin-allowed) direct band gap. The strong Coulomb interaction was

shown to lead to large renormalisations of the band gap in the order of several 100meV

already during the first femtoseconds and ultrafast carrier-relaxation dynamics. In a first

study, the numerical analysis of a pump-probe scenario showed an efficient absorption

of the incident light as the carriers were effectively driven away from the excitation
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energy due to carrier-carrier-scattering and large renormalisation effects. Thereafter, the

phonon-mediated thermalisation of the carriers led to the build-up of optical gain below

the lowest A-exciton which was predicted to be enhanced due to equilibration of the

carriers in the different valleys of the BZ.

Because the model applied in this first study was restricted to the dynamics at the main

valley, and the equilibration of the carriers was shown to have an impact on the material

optical response, we expanded and modified our model for a consecutive study. Here,

we took into account the full DFT band structure and absolute dipole matrix elements

of conduction and valence bands, as well as all phonons. Again, it was seen that exci-

ted carriers were driven into hot, Fermi-like distributions on a femtosecond timescale,

where carrier-carrier scattering processes were seen to dominate the dynamics. Further-

more, the timescales for intravalley scattering processes mediated by acoustic phonons

were shown to depend crucially on the initial excitation conditions – we experienced

intravalley-scattering on the femtosecond timescale for excitation high in the bands and

on picosecond timescales for resonant excitation. After the first few femtoseconds, pho-

nonic contributions of optical phonons dominate the dynamics and result in a cooling of

the hot distributions. In contrast to previous theoretical predictions, we did not find a

transition of the material to an indirect semiconductor upon optical excitation for any

of the investigated molybdenum-based materials [86, 87].

Furthermore, in the low-density regime, the strong Coulomb interaction gives rise to

pronounced excitonic resonances. In two studies, we investigated different aspects of

these quasiparticles under varying initial conditions. First, we focused on the influence

of the interplay of material properties, magnetic field and dielectric environment on the

excitonic spectrum and changes in the optical spectrum upon occupations of the dif-

ferent excitonic states. Within our model we could predict the magnetic field-induced

shifts for the excitonic resonance energies. Our findings regarding the magnetic field-

induced shift of the s-exciton series are in good agreement with experimental findings

[76]. Furthermore, our studies predict an optical gain in the THz-regime upon proper

excitation conditions, namely in the presence of a 2s-excitonic occupation. This gain is

tunable by applying a magnetic field – due to the different dependencies of s- and p-type

excitonic states on the magnetic field – and by changing the dielectric environment. This

tunability was seen to be even more pronounced in tungsten than in molybdenum-based

materials. Second, we analysed the homogeneous broadening of the lowest excitonic re-

sonance in the presence on an electron-hole plasma. We have seen a density-dependent

linear increase of the broadening, which in a simulation of a FWM measurement results

in a faster decay of the signal for higher densities, as the signal decreases exponentially

with twice the dephasing constant. Additionally, both processes taking place after an

initial excitation – the cooling and the redistribution of carriers in the different valleys

due to equilibration – result in a sharpening of the exciton resonance.
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In these two case studies, we assumed idealised density distributions: Whereas we ass-

umed excitonic occupations in the former, we assumed an electron-hole plasma in the

latter. In a realistic scenario, a conglomeration of bound and unbound states is present

after excitation, and their ratio depends on the excitation conditions [78, 79, 102]. Hence,

in an experimental study slightly different results can be expected. To include more rea-

listic density distributions, expansions of our model in two ways would be interesting.

First, a combination of the numerical simulation of the relaxation dynamics in the full

BZ and their influence on the optical spectra. Second, a detailed analysis of the exciton

formation processes and its dependence on the excitation conditions. However, this pos-

sibility of choosing the initial conditions enables the theoretical study to discriminate

influences of different contributions on the optical spectrum. Thus, in first approxima-

tions, the influence of excitonic occupations on the dephasing of the exciton resonances

and an estimation of the OPTP-spectrum upon mixed occupation conditions of bound

and unbound states could be investigated.

In the course of this thesis, we blazed a trail from the linear optical properties in the low-

density regime to the high-density regime and took a step back again to the low-density

regime where we analysed the non-linear FWM signal. Continuing on this path, a next

intermediate goal shows up: the study of the highly non-linear high-harmonic generation

(HHG). In conventional semiconducting structures, the research on high-harmonic ge-

neration is well advanced, but the origin of even order harmonics in particular has been

questioned again in the last years. A discussion arose around the importance of the wa-

ve functions phase, which is expressed in phase-dependent dipole- and Coulomb-matrix

elements [103, 104, 105]. In previous studies, the phase-dependency was neglected in

favour of an exclusive consideration of absolute values. In contrast, in recent studies of

the HHG signals parallel and perpendicular to the incident field, differing importances

of even and odd order harmonics in these spectra were explicitly explained in a semiclas-

sical approach by a finite Berry curvature [106]. Regarding the microscopic evaluation of

the dynamics, several difficulties occur when one aims to include the phase. In general,

the derivation of the ground state by diagonalising the system Hamiltonian, is executed

independently for the different crystal momenta. Therefore, a random k-point-dependent

phase of the wave functions is introduced, whereas the microscopic analysis requires a

continuous phase. Thus, a post-processing of the DFT output data, regarding the wave

functions and dipole-matrix elements, is needed in order to smooth the phase along the

chosen path in reciprocal space. Different procedures based on parallel-transport theory

and executed using either the real or the momentum space representation of the wa-

ve functions have been established [103, 107, 108]. Here, especially if a Berry phase is

accumulated along a path which results in a finite Berry connection (≡ ‘intraband di-

pole’), and if a periodicity of the dipoles is desired, a reconsideration of the assignment

of different HHG contributions to inter- and intraband terms is required [108]. Additio-
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nally to these challenges arising with a proper treatment of the complex dipole matrix

elements, in TMDC materials the Coulomb interaction is important, other than in con-

ventional semiconductors, where the Coulomb interactions are of minor importance and

consequently neglected in many theoretical studies [109, 110]. In previous experimental

studies, enhanced HHG signals per layer for a monolayer compared to the bulk material

were attributed to Coulomb interactions [106]. Despite the slightly increasing number

of experimental studies that were mostly interpreted on a semiclassical basis, a model

describing the observations on a microscopic level is lacking [111, 112, 113]. Such a model

would require to go beyond the MDF and the effective two-band model as well as an in-

clusion of phase information. Studying the interplay of quantum interference, geometric

phase and Coulombic contributions as observed in HHG spectra of TMDC monolayers

promises to be an interesting new task in the context of low-dimensional materials.
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Abstract

The quasi-two dimensional Coulomb interaction potential in transition metal dichalcogenides
is determined using the Kohn–Sham wave functions obtained from ab initio calculations. An
effective form factor is derived that accounts for the �nite extension of the wave functions in
the direction perpendicular to the material layer. The resulting Coulomb matrix elements are
used in microscopic calculations based on the Dirac Bloch equations yielding an ef�cient
method to calculate the band gap and the opto-electronic material properties in different
environments and under various excitation conditions.
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1. Introduction

With a thickness of just one unit cell, TMDC (transition metal
dichalcogenide) monolayer materials can be viewed as the
realization of effectively two-dimensional (2D) system. As
revealed by density functional theory (DFT) calculations, the
resulting 2D quasi-particle dispersions differ not only quan-
titatively, but also qualitatively from the three dimensional
(3D) bandstructure of the corresponding bulk materials, mak-
ing these systems interesting both for fundamental material
science as well as technological applications. In particular,
monolayers of TMDCs and TMDC-based heterostuctures are
currently investigated with regards to their application poten-
tial in opto-electronic devices. Unlike the bulk TMDC materi-
als, the monolayers display a direct gap in the visible range
with strong light matter interaction and many-body effects
due to carrier con�nement and weak intrinsic screening of the
Coulomb interaction [1–5].

A central challenge for the predictive modeling of the
TMDC opto-electronic properties is the analysis of the many-
body effects and their in�uence on the optical spectra.
Although state of the art, full ab initio GW–BSE calculations
have been employed to calculate the linear optical spectra of
∗ Author to whom any correspondence should be addressed.

freely suspended TMDC monolayers, these are numerically
extremely challenging and practically intractable for the gen-
eral nonlinear response. Furthermore, numerical implemen-
tations of GW–BSE calculations for quasi-2D TMDCs are
arti�cially 3D and require the insertion of large vacuum
regions or truncations of the Coulomb interaction to avoid
spurious inter-layer interactions. This not only increases the
numerical effort despite decreasing the material’s dimension-
ality, but also limits the applicability to situations where a
monolayer is embedded into a more complex heterostucture
or photonic crystal cavity. Hence, there is a need for ab initio
based theoretical descriptions that are both accurate and �exi-
ble to describe the linear and nonlinear optical response under
various excitation conditions and different geometries, and at
the same allow for the identi�cation and intuitive interpretation
of the relevant physical processes.

A powerful tool to compute the optical response of semi-
conductors for a wide variety of excitation conditions is
provided by the semiconductor Bloch equations (SBE),
respectively the Dirac Bloch equations (DBE) for TMDCs.
Based on the observation that only few bands contribute
to the optical response, one derives the equation of motion
(eom) for the relevant material parameters from an effective
system Hamiltonian including only the relevant valence and

1361-648X/20/035301+12$33.00 1 © 2020 IOP Publishing Ltd Printed in the UK
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conduction bands, thus reducing the numerical complexity
enormously. Due to its non-perturbative nature, this approach
is particularly well suited to describe the linear and nonlin-
ear optical response in the presence of strong many-body
interactions.

As an essential input, the SBE/DBE approach needs the
single-particle band structure and the interaction matrix ele-
ments. Whereas band dispersions and dipole matrix elements
can be either accessed directly from ab initioDFT calculations
or from a DFT based model Hamiltonian, the determination
of the quasi-2D Coulomb potential and its matrix elements is
a nontrivial task. For this purpose, we develop in this paper
a parameter-free approach that allows us to ef�ciently deter-
mine the Coulombic input for the SBE from the Kohn–Sham
wavefunctions without the need of additional approximations.

The paper is organized as follows: in the following
section 2, we brie�y summarize the microscopic SBE/DBE
approach and introduce an orbital dependent form factor that
accounts for the quasi-2D nature of Coulomb interaction
potential in TMDCs. We show how this form factor can be
computed from the Kohn–Sham wave functions. In section 3,
we then provide details of the needed DFT calculations and
present a detailed analysis of the form factor. In section 5,
we develop an analytic approximation for the form factors
that allows us to ef�ciently calculate the density dependent
band-gap renormalization and exciton resonances for differ-
ent material systems. We discuss and compare our results to
available experimental and GW–BSE based ab initio results in
section 5.1.

2. Preliminaries

2.1. 2D semiconductor Bloch equations

For a strictly 2D semiconductor, the basic system Hamiltonian
is given by

H = H0 + HI + HC

where
H0 =

∑

αk‖

εαk‖c
†
αk‖
cαk‖

describes the single-particle part,

HI =
e

m0c

∑

αα′k‖

A · pαα′k‖
c
†
αk‖
cα′k‖ ,

contains the light–matter interaction, and

HC =
1
2

∑

αα′ββ′
k‖k‖

′q‖ �=0

V
αββ′α′

q‖;k‖
′;k‖
c
†
αk‖−q‖

c
†
βk‖

′+q‖
cβ′k‖′cα′k‖ .

represents the Coulomb interaction, respectively. Here, �k‖ is
the in-plane crystal momentum, α combines spin and band
index, εαk‖ contains the effective single-particle band disper-

sion, and pαα′k‖
and Vαββ′α′

q‖;k‖
′;k‖

= Vq‖〈αk‖ − q‖|α′k‖〉〈βk‖
′
+

q‖|β′k‖
′〉 denote the momentum and Coulomb matrix ele-

ments, respectively. Furthermore, Vq‖ is the Fourier transform
of the 2D Coulomb potential. In the presence of a dielec-
tric environment, the environmental screening of the Coulomb
potential can be included into the de�nition of the ‘bare’
Coulomb potential.

The optical response is then given by j =

− e
m0

∑

αα′k‖
pαα′k‖〈c

†
αk‖
cα′k‖〉 and can be computed from

the Heisenberg equations of motion for the transition
amplitudes Pαα′

k‖
= 〈c†αk‖cα′k‖〉:

i�
d
dt

Pαα′
k‖

=

(

εα′k‖ − εαk‖ − iγ
)

Pαα′
k‖

+ Q̃αα′
k‖

−
(

Q̃α′α
k‖

)∗

+ i�
d
dt

Pαα′
k‖

∣

∣

∣

∣

corr

. (1)

Here,

Q̃αα′
k‖

=
∑

β

P
αβ
k‖
Ω̃

βα′
k‖

(2)

Ω̃
βα′
k‖

=
e

m0c
A · pα′βk‖

−
∑

γγ′
k‖

′ �=k‖

V
α′βγγ′

k‖−k‖
′ ;k‖;k‖

′P
γγ′

k‖
′ (3)

contains the sources and the renormalizations of the single par-
ticle energies and internal �eld. For the interband polarization
Pνc
k‖
, we explicitely have

Q̃νc
k‖
−
(

Q̃cν
k‖

)∗
=

(

Ω̃
cc
k‖
− Ω̃

νν
k‖

)

Pνc
k‖
+

(

f νk‖ − f ck‖

)

Ω̃
νc
k‖
,

Ω̃
cc
k‖

=
e

m0c
pcck‖ · A−

∑

k‖
′ �=k‖

×
(

Vcccc
k‖−k‖

′ ;k‖;k‖
′ f

c
k‖

′ + Vccνν
k‖−k‖

′;k‖;k‖
′ f

ν
k‖

′

)

+ NR,

Ω̃
νc
k‖

=
e

m0c
pνck‖

· A

−
∑

k‖
′ �=k‖

Vcννc
k‖−k‖

′;k‖;k‖
′P

νc
k‖

′ + NR,

and a similar expression for Ω̃νν
k‖
. Here, NR refers to non-

resonant Auger and pair-creation contributions. As can be
recognized, Coulomb renormalizations of the single particle
energies are contained in Ω̃cc

k‖
and Ω̃νν

k‖
whereas the attrac-

tive electron–hole interaction responsible for the formation of
bound excitons is contained in Ω̃νc

k‖
. Correlation effects beyond

the mean �eld approximation are contained in

i�
d
dt

Pαα′
k‖

∣

∣

∣

∣

corr

. (4)

It can be shown that the dominant correlation effect
is the replacement of the ‘bare’ Coulomb potential in
equation (3) by its dynamically screened counterpart, yield-
ing the screened Hartree–Fock approximation [6], whereas
if correlation effects are neglected, the renormalizations of

2
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the single particle energies correspond to the Hartree–Fock
approximation.

If the system is excited with an optical pulse of central
frequency ωL, the induced optical current is dominated by
transition amplitudes Pαα′

k‖
corresponding to dipole allowed

transitions with transition energies εα′k‖ − εαk‖ ≈ �ωL that are
resonant or nearly resonant with the optical frequency. If the
relevant bands are suf�ciently isolated, one can restrict the
microscopic analysis to the resonant transition amplitudes and
occupation numbers f αk‖ = Pαα

k‖
of those bands and the only

coupling to remote bands is via screening of the Coulomb
potential. Treating screening within the RPA approximation,
we can make the separation

Πq‖ (ω) = Π
GS
q‖
(ω)+∆Πq‖(ω) (5)

Wq‖ (ω) =
Vq‖

1− Vq‖Πq‖(ω)
=

WGS
q‖

1−WGS
q‖
∆Πq‖(ω)

. (6)

Here,WGS
q‖

includes all ground state and environmental screen-
ing contributions,

∆Πq‖(ω) =
∑

αα′k‖

∆ f αk‖−q‖
−∆ f α

′
k‖

�ω + iγT + εαk‖−q‖ − εα′k‖

×
∣

∣〈αk‖ − q‖|α′k‖〉
∣

∣

2
,

contains the optically induced deviations from the ground state
polarization function only, and γT is the triplet dephasing rate,
respectively. Hence, if the single particle dispersions, optical
dipole and Coulomb matrix elements as well as the ground
state screening of the Coulomb potential are known from ab

initio calculations, the SBE provide a very ef�cient scheme to
compute the optical response since they only need to be solved
for a few bands and that part of k‖ space in which populations
and/or polarizations are optically induced.

Speci�cally, for TMDCs it is often suf�cient to include
the two spin–split valence and conduction bands near the K-
points where the single particle dispersion displays a direct
gap. Here, the single particle dispersion can be approximated
by the relativistic dispersion

ε
c/v
iK+k = EF,i ±

1
2

√

∆
2
i + (2�vF,ik)2, (7)

that results from the widely used massive Dirac–Fermion
(MDF) model Hamiltonian?. Here, i = sτ combines the spin
and valley index,∆i, vF,i andEF,i are the spin and valley depen-
dent gap, Fermi velocity and Fermi level, respectively. The
occurring parameters can be adjusted to reproduce the DFT
bandstructure near the K-points. The overlap matrix elements
resulting from the MDF Hamiltonian are

〈cK+ k‖|cK+ k‖
′〉 = 〈νK+ k‖

′|νK+ k‖〉

= uk‖uk‖′ + vk‖vk‖′ e
−iθk‖−k‖′

〈cK+ k‖|νK + k‖
′〉 =

(

uk‖vk‖′ e
−iθk‖′ − vk‖uk‖′ e

−iθk‖
)

Figure 1. Illustration of the different dielectric settings considered
in the calculations presented in this paper.

with u2k‖ = 1− v2k‖ =

√

∆2
i +(2�vF,ik)2+∆i

2
√

∆2
i +(2�vF,ik)2

.

2.2. Coulomb potential and screening in quasi-2D materials

Although the material excitations in quasi-2D materials are
con�ned to a region |z| � d/2 � L/2, the Coulomb potential is
long ranged and the interaction among particles con�ned in the
layer is sensitive to the dielectric environment. Furthermore,
for the evaluation of the opto-electronic system response, one
needs the screened Coulomb potential that not only contains
screening contributions from the dielectric environment but
also all ground state contributions from the material itself.

Within DFT, the macroscopic (3D) dielectric constant is
obtained as

ε−1
M (q) =

〈Ṽq(r)〉Ω
V0

= ε−1
00 (q),

where Ṽq(r) is a lattice periodic function and 〈. . .〉Ω denotes
a spatial average over the elementary unit cell. If applied to
an arti�cial 3D crystal consisting of parallel monolayers sep-
arated by large vacuum regions, the averaging over a region
much larger than the extension of the electron density yields
a dielectric function that decreases with the size of the arti-
�cial unit cell and hence, cannot be used to construct the
screened 2D Coulomb potential [7]. To avoid this complica-
tion,we developed in a previous publication [6] an electrostatic
model that is based on the bulk dielectric functions which can
be directly computed from 3D DFT calculations, thus avoid-
ing any dif�culties related to the arti�cial insertion of large
vacuum layers.

Whereas we refer to reference [6] for a detailed deriva-
tion of our electrostatic model, we brie�y summarize the most
important steps with respect to the screened interaction for fur-
ther use in this paper (�gure 1). As visualized in �gure 1, we
considered TMDCs embedded in different dielectric surround-
ings, such as in vacuum, on a substrate and embedded in two
different dielectric media.

To account for the environmental and ground state screen-
ing, we consider a slab geometry with

ε‖(z) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

εT‖ z < −L/2,
ε‖ |z| < L/2,

εB‖ L/2 < z

ε⊥(z) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

εT⊥ z < −L/2,
ε⊥ |z| < L/2,

εB⊥ L/2 < z.

and determine the interaction potential as solution of Poisson’s
equation. The resulting interaction potential within the slab is
given by

3



J. Phys.: Condens. Matter 33 (2021) 035301 J Neuhaus et al

Figure 2. Probability density ρ = |ψ(r)|2 for (a) the conduction and
(b) the valence band of MoS2 at the K-point plotted for cuts through
the unit cell along the x-, y- and z-axis centered around the
molybdenum atom. The black lines indicate the atomic z-position
and illustrate the wave function localization in between the
chalcogen layers.

φq‖(z, z
′) =

2π
κq

(

e−q̃|z−z
′ |

+ c+− e−q̃(L+z+z
′)
+ c−+ e−q̃(L−z−z

′)

+ c−− e−q̃(2L−z+z
′)
+ c−− e−q̃(2L+z−z

′)
)

=
2π
κq

e−q̃|z−z
′|
+∆φq‖(z, z

′) (8)

with q̃ =
√

ε‖
ε⊥
q, κ =

√
ε‖ε⊥ and similar for κT/B and

cηη
′
=

(κ+ ηκT)(κ+ η′κB)

(κ+ κT) (κ+ κB)− (κ− κT) (κ− κB) e
−2q̃‖L

,

from which the 2D Coulomb potential is obtained as φ2D
q‖

=

φq‖(0, 0). In the last line of equation (8), the �rst term describes
the direct interaction of two electrons located at z and z′

whereas the second term describes the interaction with image
charges. From equation (8), the ‘bare’ Coulomb interaction
Vq‖(z, z

′), containing environmental screening only, is obtained
by setting ε‖ = ε⊥ = 1 within the slab, whereas the true vac-
uum Coulomb interaction Vvac

q‖
(z, z′) is obtained by addition-

ally setting κT = κB = 1. Hence, equation (8) suggests that
the Coulomb potential without intrinsic screening can be
expressed as Vq‖(z, z

′) = Vvac
q‖

(z, z′)+∆Vq‖(z, z
′), where the

last term describes the interaction via image charges. Simi-
larly, one obtains the screened Coulomb interaction in bulk,
Wbulk

q‖
(z, z′), by inserting the bulk parameters for the in- and

out-of-plane dielectric constants εB‖ and ε
B
⊥ bothwithin the slab

and for the top and bottom environment.
Whereas both Vvac

q‖
(z, z′) andWbulk

q‖
(z, z′) are independent of

the slab thickness L, the interaction with image charges in
the presence of environmental screening introduces a depen-
dence on the slab thickness L both for the ‘bare’ and screened
monolayer interaction potential. To model the monolayer
potential, we shall assume a slab thickness L = D where
D = c/2 is the natural layer-to-layer distance in the nat-
urally stacked bulk crystal. In the long wavelength limit

q‖D→ 0 one obtains WGS,2D
q‖

= 2π
q((κT+κB)/2+r0q) , correspond-

ing to the widely used Rytova–Keldysh potential with a
screening length r0 = D(2κ2 − κ2

T − κ2
B)/4ε⊥ that depends on

the dielectric contrast between the TMDCmaterial and dielec-
tric environment. In particular, if the dielectric environment is
the bulk TMDC crystal itself, the screening length vanishes.
For the short wavelengths q‖L/2→∞, the screened poten-

tial approaches 2π/κq e−q̃|z−z
′ |, independently of the dielec-

tric environment.Comparisonwith the bulkCoulombpotential
allows us to identify ε‖ = εB‖ and ε⊥ = εB⊥ for the ground state
screening even in the case of a monolayer. Hence, we can write
for the Coulomb potential including environmental and ground
state screening

WGS
q‖

(z, z′) = Wbulk
q‖

(z, z′)+∆Wq‖(z, z
′), (9)

where∆Wq‖(z, z
′) describes the screened interaction via image

charges. Equation (9) should be compared with the division
W = WML +∆W that has been used in the G∆W approach
where ∆W contains the changes in the screened potential as
compared to the suspended monolayer [7].

2.3. Form factor to quantify the impact of

three-dimensionality

Evenmonolayer TMDCs have an intrinsic thickness since they
consist of three atomic layers and their atomic orbitals have a
�nite extension perpendicular to the layer plane. Consequently,
the Coulomb interaction in these materials differs both from
the exact 2D and the three-dimensional cases. Taking the in-
plane periodicity and the �nite out-of-plane extension into
account, a 2D ansatz gives the Bloch states,

φαk‖(r) =
1√
A

eik‖·ruαk‖(r) (10)

with strictly 2D crystal momenta but 3D spatial coordinates
r. Hence, the Coulomb Hamiltonian contains the quasi-2D
matrix elements

V
αββ′α′

q‖ ;k‖
′ ;k‖

=

∫

ec

d3r
∫

ec

d3r′ u∗αk‖−q‖
(r)u∗βk‖′+q‖

(r′)

× Vq‖(z, z
′)uβ′k‖′ (r

′)uα′k‖(r),

and a similar expression holds for the matrix elements of the
screened Coulomb potential.

According to equation (8), the Coulomb interaction differs
from the exact two-dimensional potential only in the expo-
nential terms. Hence, we can write for the screened Coulomb
potential

W
αββ′α′

q‖;k‖
′;k‖

= W2D
q‖
F
αββ′α′

k‖
′;k‖

(q‖) (11)

−∆W2D
q‖
∆F

αββ′α′

k‖
′;k‖

(q‖). (12)

Here,

F
αββ′α′

k‖
′;k‖

(q‖) =
∫

ec

d3r
∫

ec

d3r′ u∗αk‖−q‖
(r)u∗βk‖′+q‖

(r′)

× e−q̃‖|z−z
′|uβ′k‖′ (r

′)uα′k‖(r) (13)
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is a form factor and

∆F
αββ′α′

k‖
′;k‖

(q‖) = F
αββ′α′

k‖
′ ;k‖

(q‖)− f αα
′

k‖
(q‖) f

ββ′

k‖
′ (q‖) (14)

f αα
′

k‖
(q‖) =

∫

ec

d3r u∗αk‖−q‖
(r)e−q̃‖zuα′k‖(r) (15)

is its correlated part, respectively. In the 2D limit, the expo-
nential term in the form factor approaches unity and the 2D
Coulombmatrix element is recovereddue to thewavefunctions
orthonormality. Furthermore, F

αββ′α′

k‖
′;k‖

(q‖ = 0) = δαα′δββ′ =

f αα
′

k‖
(q‖ = 0) f ββ

′

k‖
′ (q‖ = 0), while for large scattering vectors

q‖ →∞ the form factor approaches 0. Since the potential of
the image charges is particularly important in the long wave-
length limit where the correlated part of the form factor is neg-
ligible, the Coulomb matrix elements of the quasi-2D TMDC
structures can be expressed in a good approximation by the
exact 2D term modi�ed by the form factor.

2.4. Combined SBE/DFT approach

In the following, we will assume that the single-particle band
dispersion and wave functions can reliably be computed from
DFT and use the DFT parameters as input for the SBE/DBE
evaluations. From a fundamental point, this is in fact a non-
trivial assumption. As is well known, DFT is based on the
assumption that the two-particle interaction in any given sys-
tem is a universal functional of the electron density while all
system speci�c contributions to the many-body Hamiltonian
are contained in the external potential. Using the dielectric
model presented in section 2.2, it becomes clear that the sub-
strate not only changes the screened Coulomb potential but
also modi�es the ‘vacuum’ potential that now contains inter-
actions with image charges. Thus, in the presence of exter-
nal screening, all particles (electrons and ions) interact via a
modi�ed Coulomb potential and hence, the electron–electron
interaction can no longer be considered as universal.

However, analytical estimates based on the expression for
the ‘bare’ Coulomb potential presented in section 2.2 show
that the in�uence of the dielectric screening on the DFT sin-
gle particle energies should be small for particles con�ned to a
region |z| � d/2 < D/2. Indeed, rigorous treatments ofmono-
layer TMDCs embedded in different dielectric environments
have shown that the single-particle bandstructure in the prox-
imity of the direct band gap at the K point remains unchanged
for different environments [10]. Therefore, the single-particle
bandstructure near the K-point can be obtained from an arti�-
cial 3D supercell calculation even in the presence of external
screening.

3. Details of DFT computations

For our DFT calculations, we use the plane-wave based code
Vienna ab intio Simulation Package (VASP) [11–14] includ-
ing the core electrons contribution by precalculated projec-
tor augmented-wave pseudopotentials [15]. All calculations
were performed using the non-empirical generalized gradi-
ent Perdew–Burke–Ernzerhof (PBE) functional [16], with

Figure 3. Form factor for inter- and intraband interaction of MoS2
in a range of |KM| = |k‖ − k′‖| ≈ 0.62 Å−1 around the K-point. As
path dependent changes of the form factor are only small, they are
approximated as isotropic around the K-point and subsequent
calculations are performed using path-averaged form factors.

additionally including spin–orbit coupling and van-der-Waals
interactions by the dispersion correction as proposed by
Grimme (DFT-D3) [17].

In a �rst step, the materials structure was relaxed
until remaining forces acting on the atoms were less than
1 meV Å−1. The number of plane waves was hereby restricted
by a cutoff energy of 750 eV and convergence was checked
with respect to the discretization of the Brillouin zone and the
vacuum region that was added in z-direction to prevent inter-
actions between the monolayers despite periodic boundary
conditions. For further calculations of electronic properties,
the Brillouin zone was discretized by a 12× 12× 1, Γ cen-
tered k-point Monkhorst–Pack [18] grid and the energy cutoff
was set consistently with the precalculated pseudopotentials.
In practice, approximately 15 Å of vacuum were included in
z-direction.

Using the relaxed structures, the electronic properties were
calculated for different paths in the Brillouin zone originating
in one of the K points where the direct TMDC band gap is
found. The paths were chosen along KM in addition to paths
of the same length but rotated by 30◦ and 60◦ which, due to
the hexagonal symmetry, is suf�cient to describe the behavior
around each K point in steps of 30◦.

As the Kohn–Sham wave functions are determined up to
an arbitrary phase that can be chosen at each k‖-point inde-
pendently, we pick the phases such that the intra- and inter-
band matrix elements are given by pααk‖ =

m0
�
�∇k‖εαk‖ and

pαα′k‖
=

m0
�
(εα′k‖ − εαk‖)〈αk‖|�∇k‖ |α′k‖〉 respectively, corre-

sponding to the p · A gauge. The remaining free global phase
is chosen such that bright excitons are predominantly s-type.

3.1. Ab initio wave functions

The �nite extension of the electron density in the direction per-
pendicular to the TMDC plane is illustrated in �gure 2(a) for
the example of MoS2. Here, the normalized density distribu-
tion for both valence and conduction band at the K-point is
plotted for different cuts through the unit cell.

For MoS2, the wave functions are linear combinations of
the transition metal’s d-orbitals that are strongly localized in
between the chalcogenite layers. While the conduction-band
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wave function is dominated by the dz-orbital, the wave func-
tion of the valence band is a linear combination of the in-plane
dxy- and dx2y2 -orbitals [19]. This is different in tungsten based
materials where the transition metal’s s-orbital and the chalco-
gen atom’s pz-orbital both have a �nite contribution to the
conduction or valence band respectively. These features result
in a relatively higher density distribution in the tungsten layer
for the conduction band whereas for the valence band the den-
sity distribution extends farther in the direction towards the
chalcogen atoms, respectively.

4. Analysis of the form factor

4.1. Path-dependency

For the optical response, the properties of the form factor are
of interest especially close to the direct band. Therefore, we
compute the form factor for scattering vectors |k‖ − k′‖| with
k‖ �xed at the K-point and k′‖ modi�ed along different paths
through the �rst Brillouin zone. The band structure is simi-
lar for all paths close to the K-point but changes signi�cantly
farther away, particularly for the conduction band where in
the K + 60◦ direction a secondary minimum can be seen that
forms the indirect band gap in the reference bulk structure.

In Figure 3, we show a density plot of the form factor
for inter- and intraband interaction in the region around the
K-points for the example of MoS2. Despite the anisotropy of
the band structure, theMoS2 form factor of the interband inter-
actions Fcv decreases isotropically around the K-point up to
a range of |k‖ − k′‖| ≈ 0.45 Å−1. The same is true for tung-

sten based materials, but only up to |k‖ − k′‖| ≈ 0.30 Å−1.
Thereafter, the gradient in K-direction is smaller than in Γ-
direction, whereby the absolute differences are less than 0.06.
Path dependent differences are larger with regard to the intra-
band interactions. Here, the gradient is smaller in the direction
towards the Γ-point for the valence and towards the M-points
for the conduction band, respectively. However, but even here,
the form factor is isotropic in a range of |k‖ − k′‖| ≈ 0.15 Å−1

and absolute differences are always less than 0.12. Thus, the
differences occurring for the intraband form factor depending
on different orbital compositions of the states seem to balance
out in the integration over both valence and conduction band
states in the interband form factor. In the following, averages
over calculations along different paths are shown and used in
subsequent calculations.

4.2. Supercell dependency

In order to be useful, the introduced form factor should be
insensitive to the periodic boundary conditions applied in the
DFT code and it should be applicable not only to model the
Coulomb interaction in monolayers but also in bulk struc-
tures. To check these properties, we calculated the form factor
for different extensions of the vacuum region included in the
supercell.

Our results show that as long as we properly relax the struc-
ture before calculating the form factor we obtain similar results
independent of the used super cell size. The same is true even
if we consider the transition to a quasi-bulk structure differing

Figure 4. Comparison of the exact 2D Coulomb potential and the
quasi-2D Coulomb potential in real space for the example of MoS2.

Figure 5. Comparison of the interband (subscript vc) and intraband
(subscripts cc and vv) form factors together with the analytical
approximation (red curve). The grey curve shows
FMDF = u2k‖

∫
ec
d3r

∫
ec
d3r′ u∗αK(r)u

∗
βK(r

′)e−q̃‖|z−z
′|
uβ′K(r

′)uα′K(r).

from the common crystalline structure of MoS2 in stacking
order (usually 2H-/3R-phases) and in the interlayer distance
by about 0.6 Å. On this basis, we conclude that we can use the
determined form factors to model a wide range of mono- and
multi-layer systems in different dielectric environments.

4.3. Analytical description

To illustrate the effect of the form factor in real space, we
compare in �gure 4 the exact 2D and the quasi-2D Coulomb
potentials for MoS2. As we can see, the form factor effectively
removes the Coulomb singularity at the origin but leaves the
potential unchanged for larger distances, i.e., for r‖ � 7 Å. the
slope of the quasi-2D potential approaches that of the original
2D potential.

In �gure 5, we show examples of the momentum depen-
dent form factors for inter- and intraband transitions that were
numerically evaluated using the full wavefunctions. To sim-
plify detailed calculations on the SBE/DBE level, it is useful
to develop analytical approximations for the form factor. For
this purpose,we replace the full wavefunctions by their respec-
tive values at theK-point and incorporate the orbital dependent
overlap matrix elements that occur within the MDF model.
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As shown by the green curve in �gure 5, this procedure
captures the main features of the full form factors for small
scattering vectors. However, for scattering vectors larger than
0.1 Å−1 or 0.2 Å−1 clear deviations are seen such that addi-
tional corrections are needed.

In some of our previous works (see e.g. references [6, 20]),
we adopted a semi-empirical Ohno potential to account for the
�nite thickness of the TMDC layers. This approximation has
also been used to describe the Coulomb potential of molecules
and nanotubes (see references [21, 22]) and was successfully
applied in calculations of optical properties of graphene and
monolayer TMDCs.

By using the Ohno potential, one regularizes the singularity
of the Coulomb potential by introducing an effective thickness
parameter d, which in reciprocal space occurs in an additional
prefactor e−q‖d of the Coulomb potential. Even though this
ansatz reduces the Coulomb scattering for larger scattering
vectors, the detailed analysis shows that it underestimates the
form factor for small scattering vectors. Therefore, we addi-
tionally introduce an orbital independent exponential function

of the form F(q‖) = e−(σ2q‖
2/2+q‖d), while the orbital depen-

dency is given by theMDF overlapmatrix elements.With help
of this function, the form factor can be described properly and
physically correctly as it approximates 0 for large scattering
vectors. Since the orbital dependence is contained in the MDF
overlap matrix elements, the orbital independent part can be
combined with the strictly 2D Coulomb potential to de�ne the
quasi-2D Coulomb potential Vq‖ = F(q‖)V

2D
q‖
.

A physical interpretation of the quadratic contribution can
be obtained by considering the real space representation of the
quasi-2D Coulomb potential:

V(r‖) =
∑

q‖

eiq‖·r‖F(q‖)V
2D
q‖

=
1

2πσ2

∫

d2r′‖ e
−|r‖−r′‖|

2/2σ2 1
√

r′2‖ + d2
. (16)

Hence, the linear term in the exponent of the form factor
changes the pure 2D Coulomb potential into the Ohno poten-
tial with thickness d, whereas the quadratic term lead to an
additional convolution with a Gaussian of with σ.

4.4. Material dependence of the form factor

In �gure 6, we show a comparison of the interband form fac-
tor for �ve commonly discussed examples of semiconducting
TMDCs. We notice that for tungsten based materials the form
factor decreases slightly faster than for molybdenum based
materials. Even more signi�cant modi�cations occur for dif-
ferent chalcogen atoms. The comparison in �gure 6 reveals a
more rapid form factor decay when changing from S to Se
to Te demonstrating that the gradient becomes steeper with
increasing atom size. Since the microscopic distance between
the chalcogenide sheets increases with the size of the involved
atoms, the systems become slightly more 3Dwhich is re�ected
in the form factor being ameasure for the in�uence of the �nite
thickness.

Figure 6. Interband form factors for different (a) Mo based and
(b) We based TMDC monolayers. While the general slope is similar
for all materials, the decay steepens with increasing size of the
respective chalcogenide atoms.

5. Applications

5.1. Environmental dependent band gap renormalization

As a �rst application, we calculate the renormalization of the
direct K point band gap for different dielectric environments.
For the unexcited monolayer, the renormalized band gap is
given by

∆K = ∆
DFT

+
∑

q‖

(

Wνννν
q‖;K;K+q‖

−Wccνν
q‖;K;K+q‖

)

(17)

In �gure 7, we show the dependency of the gap on the envi-
ronmental screening for �ve widely studied semiconducting
monolayers (upper part). Since we plot the gap against the
inverse value of the substrate dielectric constant, the �gure
covers the whole range of {1,∞} and {−∞,−10}. For
all materials investigated, we �nd a similar gap reduction
for increased environmental screening. In the lower part of
�gure 7, we compare the gap shift of the different materials
relative to the respective suspended monolayer with and with-
out the form factor included. We note that the shift is almost
independent of the form factor. To understand this behavior,
we write the equation for the renormalized gap as

EG = ∆
DFT

+
(

Wνννν
K;K (r‖ = 0)−Wccνν

K;K (r‖ = 0)
)

(18)

and make use of equation (16).
Thus, for a strictly 2D system, the gap renormalization

is determined by the screened Coulomb matrix elements at
r‖ = 0 and z = z′ = 0. However, the form factor replaces
z = z′ = d in the value of the screened Coulomb potential
and additionally averages the Coulomb potential over a region
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Figure 7. Dependence of the band gap on dielectric substrate
screening of the �ve canonical TMDCs. Here, the limit εS →−∞
represents the case of a conducting metallic substrate. The upper
part (a) shows the absolute value of the gap, the lower part (b) the
shift of the gap relative to the gap of a suspended monolayer with
(full lines) and without (dashed lines) inclusion of the form factor.

around the origin using a Gaussian weight function. Both
effects have a signi�cant impact on the direct interaction con-
tained inW2Dbulk(r‖) = 1/κr‖ that varies strongly in the region
around the origin. In contrast, changes contained in ∆W ∝
1/

√

r‖2 + L2 vary only weakly within the region around the
origin and hence are less affected by the form factor.

Furthermore, a comparison of the relative changes for the
differentmaterials in the regime of positive dielectric constants
shows that these are slightly smaller for Mo rather than for
W based materials with maximum differences in the range
of few meV. Again, the in�uence of the incorporated chalco-
genide atoms is more signi�cant. Here, the maximum relative
differences increase from Te to Se to S based compounds by
approximately 80 meV and 45 meV, respectively.

In table 1, we give an overview of the computed band gaps
for a variety of TMDCs and different dielectric environments.
Comparison with available experimental data shows excellent
agreement for all three Mo-based material systems. E.g. for
MoS2 we �nd EG = 2.025 eV for the direct gap at theK-points
in bulk, whereas we �nd EG = 2.473 eV for the freely sus-
pended, EG = 2.279 eV on top of a fused silicon substrate,
and EG = 2.160 eV for an hBN encapsulated monolayer. The
gap on a metal substrate (e.g. gold) can be estimated from
the limit 1/εS → 0−, yielding EG = 1.944 eV. These values
are in excellent agreement with available experimental data,
listed also in table 1. In contrast, the gaps for the W-based

materials appear to be 130–150 meV below reported exper-
imental values. Comparison with the MoX2 systems shows
that the predicted gaps for the correspondingWX2 and MoX2

are very similar, whereas the experimentally reported WX2

gaps are always above those of the corresponding MoX2 sys-
tems under comparable conditions. Since the environmentally
induced band gap changes are captured very well by our anal-
ysis, we speculate that the origin for the systematic underesti-
mation of the gap in the W-based systems is most likely at the
DFT level.

For the suspended monolayers, we can also compare our
results with other ab initio methods. Reported quasi-particle
gaps based on the GW/GdW approach vary over a wide range
of up to 400 meV and we �nd our results at the lower end of
this spectrum. Regarding the relative differences in the gaps
of the W- and Mo-based monolayers, the LDA and PBE based
GW results show the same trend as our results, namely almost
equal gaps for the sul�des and the selenides, thus supporting
the assumption that the systematic discrepancy for the WX2

originates at the DFT level. Regarding the shifts of the band
gap with increased dielectric screening, our results agree well
with the available GW-based predictions.

5.2. Density dependent band gap renormalization

As a second application, we calculate the band gap renor-
malization resulting from �nite carrier densities in different
TMDCs. In the presence of excited carriers, the renormalized
band gap

∆K = ∆
DFT

+
∑

q‖

(

Wνννν
q‖;K;K+q‖

−Wccνν
q‖;K;K+q‖

)

×
(

f νk‖−q‖
− f ck‖−q‖

)

. (19)

contains the dynamically screened Coulomb matrix ele-
ments Wq‖(�ω − ε̃cK+k‖−q‖ + ε̃νK+k‖), that, in turn, con-
tain the renormalized single particle dispersions ε̃c/νk‖ .
These equations are solved self consistently together with
equation (6), assuming thermal carrier distributions at 300 K
within the renormalized bands. Here, we distinguish between
optically excited carrier densities (equal numbers of electrons
and holes) and carrier densities due to doping, where we
restrict the analysis to electron doping only. In the presence
of excited carriers, both, screening of the Coulomb potential
by the excited carriers and phase space �lling contribute to
the conduction and valence band renormalization. In contrast,
for the case of electron doping, the valence band renormal-
ization is solely due to screening effects corresponding to the
Coulomb hole, whereas the phase space �lling effects addi-
tionally contribute to the conduction band renormalization.

The interplay between phase space �lling and screening
contributions sensitively depends on the employed screening
model. In particular, the approximation of static screening
leads to an overestimation of screening effects. To show the
importance of dynamical screening, we compare the band gap
of a SiO2 supported MoS2 monolayer in �gure 8 for differ-
ent carrier excitation conditions. Using the static approxima-
tion for the screened Coulomb interaction, the gap decreases

8
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Table 1. Substrate dependent quasiparticle band gap of �ve semiconducting TMDC systems. The band gap is given for freely suspended, a
substrate supported (fused silicon and metal), and hBN encapsulated monolayers. Additionally, literature values based on experimental
and/or theoretical investigations are listed for comparison. Here, we distinguish between theoretical GW/GdW calculations building on DFT
calculations employing different functionals, namely a local density approach (LDA), the generalized gradient approximation parametrized
as by PBE or the hybrid functional Heyd–Scuseria–Ernzerhof (HSE). Additionally, results based on the GVJ-2e approach are summarized.
Furthermore, concerning experimental results, we distinguish between photoluminescence (excitation) [PL(E)] measurements yielding the
optical band gap from which the quasiparticle gap is extrapolated on the basis of a model for the exciton resonance energies, and scanning
tunneling spectroscopy (STS) and angle-resolved photoemission spectroscopy (ARPES) measurements.

Material Substrate Eg (eV) Theor. Exp.

LDA + GW/GdW PBE/HSE+ GW/GdW GVJ-2e PL/PLE+ model STS/ARPES
MoS2 2.473 2.8 [10], 2.9 [23], 2.55 (@300 K), 2.38 [25]

2.63 (@0 K) [24],
2.53 [26], 2.62 [27],

2.54/2.65 [28]
SiO2 2.279 2.17(4) [29]

hBN encaps. 2.16 2.16 [30],
2.146 [29]

Au 1.945 2.3 [10] 1.95(5) [32],
1.90 [33]

MoSe2 2.111 2.6 [23], 2.26 [34], 2.12 [26], 2.24 [35] 2.03 [25]
SiO2 1.941

hBN encaps. 1.835 1.874 [30]
Au 1.628

MoTe2 1.57 1.72 [35], 1.72 [36]
SiO2 1.444

hBN encaps. 1.356 1.352 [30]
Au 1.166

WS2 2.41 2.81 [23] 2.53 [26], 2.83 [35] 2.51 [25]
SiO2 2.206 2.73 [37], 3.01 [38],

2.37 [3], 2.40 [39]
hBN encaps. 2.084 2.238 [30]

Au 1.877
WSe2 2.063 2.4 [23] 2.35 [40] 2.11 [25]

SiO2 1.885 2.63 [38], 2.35(20) 2.38(6) [29]
[41], 2.02 [5]

hBN encaps. 1.777 2.22 [40] 1.884 [42], 1.890 [43]
Au 1.573 1.75 [33]

very rapidly with increasing carrier density. Here, the decrease
depends only little on the fact whether the carriers are gen-
erated by optical excitation or doping, indicating that the
gap renormalization is completely dominated by the Coulomb
hole. In contrast, for the case of dynamic screening, the gap
decreases more slowly with increasing carrier density and is
larger for the symmetrical, optically induced electron–hole
densities than for electron densities alone.

Using the dynamical screening calculations, we compare
in �gure 9 the density dependent gap for the �ve investi-
gated monolayer materials assuming optically induced elec-
tron–hole densities (solid lines) and electron densities only
(dashed lines). Whereas the overall behavior is similar in all
materials, the effects are somewhat more pronounced in Mo
than in based systems, also increasing from S to Te. Further-
more, the renormalization depends on the distribution of car-
rier densities, thus the band gap changes are weaker due to
doping densities than due to optically excited carriers. This
effect is more pronounced in than in Mo based materials.

Finally, we compare the in�uence of excited carriers on
the band gap of MoS2 for different dielectric environments in

�gure 10. As we can see, the environmentally induced band
gap offset vanishes rapidly with increasing carrier density,
showing that density dependent screening effects dominate the
band gap over dielectric screening effects formoderate to large
carrier densities.

5.3. Exciton resonances and binding energies

As third and �nal application, we calculate the resonance ener-
gies of the A exciton series for different TMDCs in various
dielectric environments. Similar to the band gap renormaliza-
tion, we �nd that the exciton binding energy decreases due to
enhanced screening of the Coulomb interaction in media with
increased dielectric constant. For the 1s exciton, the decrease
in the band gap renormalization and binding energy nearly can-
cel. As a net result, the 1s exciton shows only a small red shift
with increased dielectric screening. In contrast, for the higher
exciton states, the band gap renormalization dominates over
the decreased binding, yielding a pronounced red shift of the
excited states with enhanced dielectric screening.

As representative examples, we show in �gure 11 the exci-
tonic resonances generated by solving the Dirac–Wannier

9
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Figure 8. Comparison of the band gap renormalization in
dependence of the carrier density n for static and dynamic screening
for the example of a quartz supported MoS2 monolayer. Here,
n0 = 0 indicates the absence of doping and ne/h = 0 denotes the
absence of optically excited carriers, respectively.

Figure 9. Dependence of the band gap renormalization on the
carrier density for dynamical screening with γT = 100 meV for
different transition metal dichalcogenides. Solid lines mark
calculations with n0 = 0 cm−2, dashed lines belong to calculations
with ne/h = 0 cm−2.

equation for MoS2 and WS2 on a quartz substrate and for an
hBN encapsulated con�guration. Here, the four energetically
lowest resonances are shown together with the quasiparticle
band gap. As mentioned earlier, the gap of the W-based sys-
tems is systematically underestimated such that we have to
shift the DFT gap by 149 meV for WS2 while keeping the
dipole matrix elements constant BEFORE we compute the
renormalizations and exciton binding energies.While the band
gap decreases from the SiO2 to the hBN encapsulated sam-
ple by about 110 meV, the 1s resonance energy decreases only
by less than a fourth of this amount. Thus, the binding energy
is reduced by about 90–100 meV for WS2 and MoS2 respec-
tively. In contrast, the binding energies of the 2s, 3s, 4s excitons
are reduced by 40− 20 meV only.

Figure 10. Dependence of the band gap renormalization on the
carrier density for dynamical screening with γT = 100 meV for
different MoS2 in different dielectric environment, namely SiO2
supported or hBN encapsulated.

Figure 11. Resonance energies of the A exciton series and
quasiparticle band gap for MoS2 and WSe2 at a SiO2 substrate (left)
and hBN encapsulated (right) as illustrated in the above sketch.
Colored symbols mark our results. Experimental values were taken
from 28, 29, 34, 39–44 and are shown for comparison (grey
symbols). As for WS2 the band gap is underestimated in DFT
calculations, we shifted the DFT gap for WS2 by 149 meV while
keeping the dipole matrix elements constant. For both materials, the
exciton resonances are in acceptable agreement with experimentally
derived values.

6. Summary and conclusions

In summary, we investigated the effectively quasi-2D nature
of the Coulomb interaction potential in TMDC monolayers.
We compute the matrix elements at the K-points of the Bril-
lioun zone and introduce a form factor that effectively captures
the deviations from the corresponding ideally 2D case. We
apply this concept to ef�ciently compute fundamental proper-
ties such as excitonic resonances and density-dependent band
gap renormalizations for a range of TMDC monolayers in
different dielectric environments and under various excitation
conditions.

10
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Table 2. MDF model parameters for different TMDCs based on DFT calculations using the
PBE functional, namely the spin- and valley dependent band gap ∆sτ , the spin splitting
2λv , the dielectric constants for bulk materials εB‖ , ε⊥ and the bulk interlayer distance d
resulting directly from the calculations. Fermi velocity �vF and in-plane dielectric constants
ε‖ are derived from the band structure and the bulk value, respectively.

Material s · τ ∆sτ (eV) �vF (eV Å) λv (eV) εB‖ ε‖ ε⊥ d (Å)

MoS2 + 1.682 3.532 0.146 15.19 11.65 6.38 6.18
− 1.831 3.467

MoSe2 + 1.41 3.027 0.183 16.72 12.81 7.81 6.52
− 1.614 3.001

MoTe2 + 1.017 2.526 0.214 20.30 15.43 10.9 6.99
− 1.266 2.574

WS2 + 1.626 4.433 0.428 13.98 10.56 5.93 6.22
− 2.022 4.208

WSe2 + 1.385 3.941 0.46 15.58 11.81 7.65 6.51
− 1.801 3.757

Comparing our results both to current experimental data
and theoretical approaches based on GW/GdW–BSE calcu-
lations, we obtain good quantitative agreement as summarized
in table 1. In particular, our computed dependence of the band
gap dependence on the dielectric surrounding is qualitatively
in good agreement with the GdW based study of Riis-Jensen
et al [47]. Also the comparison with experimental data yields
excellent agreement for the quasiparticle band gap of all Mo
based materials.

For the W based systems, the experimentally obtained val-
ues vary in a wide rangewith differences up to 600meV. Using
the DFT results as an input, our computed band gaps are about
100–200 meV below most experimental values. Interestingly,
it can be observed that results based on the PBE functional
tend to be below results using an LDA functional. Thus, the
choice of theXC-functional has an impact on the absolute band
gap value and absolute differences may result from an under-
estimation of the band gap in the DFT calculations. Fitting
the underestimated DFT gap for subsequent calculations for
WS2-systems but maintaining the gap unchanged for MoS2-
systems, we �nd an acceptable agreement of the A exciton
series with experimental data, see �gure 11. Furthermore, our
approach reproduces the experimentally observed in�uence of
the dielectric environment.

To illustrate the usefulness of our approach for the exci-
tation dependent system properties, we compute the mod-
i�cations induced by charge carriers on the dynamic band
gap renormalization. In experimental studies, this effect has
been analyzed by employing electrical gating, examining the
in�uence of doping to the band gap [39, 48], or by pump-
probe experiments, using laser pulses to modify the excited
electron–hole density in the material [44, 49]. In agree-
ment with experimental observations, our analysis shows that
smaller band-gap modi�cations are obtained in the con�gura-
tion where additional electrons are introduced by doping rela-
tive to the case where symmetrical electron–hole populations
are generated by optical excitation.
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Appendix. Material parameters

In table 2 we summarize the DFT based parameters used to
model the dielectric and optical material properties near the
respective K-points. While the bulk dielectric constants ε⊥,
εB‖ and interlayer distance are direct results of DFT calcu-
lations, the band gap ∆sτ , the valence band splitting 2λv ,
and der Fermi velocity �vF are determined by �tting the
DFT band structure. The back ground dielectric constant ε‖
is derived in dependence of the bulk value as εB‖ = ε‖ +

limq‖→0 4πe2χL(q‖,ω)/D [6] where χL(q‖,ω) is the contribu-
tion of upper spin–split valence and lowest conduction bands
to the total longitudinal susceptibility.
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A systematic microscopic approach combining ab-initio density functional theory with the Dirac-Bloch
equations is applied to investigate the intra-excitonic transitions of magneto-excitons in transition metal dichalco-
genide monolayers. For the example of hBN-encapsulated MoS2, the linear optical response and mid-infrared
spectra of the pre-excited system are numerically evaluated. It is shown that the transition probability between a
subset of the magneto-excitons can be inverted under suitable conditions to display negative absorption, i.e., gain.
With the help of an applied magnetic field, the absorption and gain spectra can be tuned over a wide spectral
range. Evaluating the Zeeman shift of the excitonic states, effective g factors are deduced that depend on the
dielectric environment of the sample under consideration.
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Monolayers of transition metal dichalcogenides (TMDCs)
have attracted considerable interest in the past decade. The
systematic thickness reduction leads to physical properties
that differ qualitatively and quantitatively from the respective
bulk counterparts and opens new perspectives regarding the
study of fundamental physical processes as well as innovative
technological applications. As has been demonstrated both ex-
perimentally and theoretically, the fundamental gap changes
from indirect to direct [1–7] and the lack of an inversion center
in the monolayer crystal lead to valley-selective optical se-
lection rules [8–10]. Due to their reduced dimensionality and
weak intrinsic screening, the optical spectra of TMDC mono-
layers are dominated by strong many-body effects, manifest-
ing themselves as a huge renormalization of the single-particle
band gap [11–16] and the existence of strongly bound excitons
with binding energies of hundreds of meV [17–20]. Many
of the unusual TMDC exciton properties have been vividly
discussed in the literature [17–22] and optical spectroscopy
under various excitation conditions in conjunction with so-
phisticated microscopic many-body theory has provided key
insights into their energetic spectra, ultrafast dynamics, and
many-body interactions [22–27]. In a properly pre-excited
system, it is possible to study intra-excitonic transitions that
couple optically bright s excitons to dark p-type excitons.
These transitions require the absorption or emission of light
with much lower energy, ranging from the THz to the mid-
infrared frequency range, depending on the material system
under investigation. For the typical semiconducting TMDCs,
the transition energies from the 1s-exciton ground state to the
np-excited exciton states range between 100 and 500 meV
and are thus in the mid-infrared regime, whereas transitions
between excited ns- and n′ p-exciton states with n, n′ > 1 are
typically in the THz range [26,28–30]. Hence, intra-excitonic
transitions can be studied by means of optical pump-THz-
probe (OPTP) spectroscopy, where the exciton is created by an
optical pump-pulse and subsequently probed by a THz probe-

*tineke.stroucken@physik.uni-marburg.de

pulse. In conventional semiconductors, OPTP spectroscopy
has been proven to be the method of choice to study the
formation dynamics of incoherent excitons after nonresonant
excitation above the fundamental gap [31–34]. Similar studies
have been performed for TMDC monolayers yielding exciton
formation times on the picosecond time scale [26,28–30].

In this article, we theoretically investigate the possibility
to magnetically control intra-excitonic transitions and their
fingerprints in THz and mid-infrared optical spectra, for the
example of hBN-encapsulated MoS2. Under the influence of
a perpendicular magnetic field, magneto-excitons exhibit a
state-dependent Zeeman and diamagnetic shift. For the opti-
cally bright s excitons, these have been investigated both ex-
perimentally and theoretically [35–49]. Here we compute the
field-induced shifts not only for the s-type states but also for
the p-type states. We show that the peculiar level alignment
in TMDCs with the p-type excitons energetically below the
s-type excitons of equal main quantum number not only leads
to THz absorption, but also, for proper initial conditions, en-
ables THz amplification. Furthermore, we show that both the
strength and the resonance energy of the THz absorption and
gain can be tuned by an external perpendicular magnetic field,
covering the technological interesting range from 1 to 10 THz.

The paper is organized as follows: In Sec. I, we briefly
review the microscopic theory to describe the optical and
THz response of magneto-excitons in TMDCs. In Sec. II, we
present results for the linear optical response for the magneto-
excitons for the example of hBN-encapsulated MoS2 and we
extract effective g factors for the different excitonic states.
The THz response of an optically excited sample is evaluated
in Sec. III and we discuss the magnetic field-induced tuning
properties of the absorption and gain spectra. A short sum-
mary and conclusions are presented in Sec. IV.

I. THEORY

The wave equation for the vector potential

�∇ × �∇ × A +
ε(r)

c2
· ∂

∂t2
A = 4π

c
j
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couples to the optically induced material current

j = −c

〈

δH

δA

〉

= − e

m0

∑

αα′k

pαα′k〈c†
αkcα′k〉 . (1)

Here, ε(r) is the anisotropic dielectric tensor, including
screening contributions from the dielectric environment, as
well as nonresonant static background contributions from the
TMDC monolayer; α ≡ {s, τ, c/v} combines the spin, val-
ley, and band index, and k is a two-dimensional (2D) wave
number; and pαα′k = 〈αk|p|α′k〉 is the matrix element of the
momentum operator between the Bloch states.

The material current induced by the externally applied
vector potential can be divided into its inter- and intraband
contributions according to

j = jintra + jinter, (2)

with

jintra = − e

m0

∑

k

(

pcck f c
k + pvvk f v

k

)

= −e
∑

k

h̄k

(

1

mc

f c
k + 1

mv

f v

k

)

(3)

and

jinter = − e

m0

∑

k

(pvckPk + H.c.). (4)

Here, f α
k = 〈c†

αkcαk〉 denote the populations in the respective
bands and Pk = 〈c†

vkcck〉 is the coherent interband polariza-
tion. The populations and interband polarization are computed
from their respective equations of motion, which, in the pres-
ence of a perpendicular static magnetic field B = Bez, are
given by

ih̄
d

dt
Pk =

(

εck − εvk + e

mrc
h̄k · A + eB

2mrc
l̂z + e2B2

8mrc2
r̂2

)

Pk

+
∑

q �=0

Vq

[

Ivc
q;k −

(

Icv
q;k

)†] + e

m0c
A · pcv ( f v

k − f c
k ),

(5)

h̄
d

dt
f c
k = 2Im

[

∑

q �=0

VqIcc
q;k + e

m0c
A · pcvP∗

k

]

, (6)

h̄
d

dt
f v

k = 2Im

[

∑

q �=0

VqIvv

q;k − e

m0c
A · pcvP∗

k

]

. (7)

Here, mr is the reduced mass of the electron-hole pair, l̂z is
the angular momentum operator, r̂ = i∇k is the position op-
erator, Vq is the quasi-two-dimensional Coulomb interaction
that contains screening from the dielectric environment and

background contributions of the remote bands,

Iαα′
q;k = 〈c†

αkρ̂qcα′k−q〉 (8)

are two-particle correlations, and

ρ̂q =
∑

αk

c
†
αk−qcαk

is the density operator, respectively. For an optical pump-THz-
probe scenario with

A = Aopt + ATHz,

the optical field resonantly excites a coherent interband po-
larization, whereas the THz-field couples resonantly to the
intraband current.

In the following, the TMDC monolayer is treated within
the massive Dirac-Fermion (MDF) model [8] with a noninter-
acting single-particle dispersion ε

c/v

sτk = ± 1
2

√

	2
sτ + 4h̄2

v
2
F k2

with a spin- and valley-dependent gap 	sτ , the effective
mass mc = −mv = 	sτ/2v

2
F , and a valley-dependent inter-

band momentum matrix element pcvK± =
√

2m0vF e±. The
valley dependence of the dipole matrix elements leads to the
well-known valley-specific optical selection rules, addressing
the K± valley with σ± circular polarized light. As all physical
properties at the K± valleys are related by parity or time-
reversal symmetry, we will restrict the analysis to the K+

valley. Furthermore, we refer to the spin-valley combination
sτ = ±1 as A and B bands.

The necessary input material parameters for the Dirac-
Bloch equations (5 − 7) are obtained from density functional
theory (DFT) [50] calculations utilizing the Vienna ab ini-

tio simulation package (VASP) [51–53]. In our calculations,
we used the Perdew-Burke-Ernzerhof functional [54] includ-
ing spin-orbit interaction [55]. The noninteracting gap and
Fermi velocity are subsequently extracted by fitting the DFT
band structure in proximity of the K points by the MDF
dispersion. Coulomb-related properties are inferred by em-
ploying additional analytical approaches that combine the
dielectric properties of the parent bulk material with Poisson’s
equation to calculate the screening under various environ-
mental conditions as described in Ref. [21], and the DFT
wave functions are exploited to obtain expressions for the
Coulomb matrix elements [56]. Altogether, this provides a
fully ab-initio description for the optical response of the
monolayer/environment material system.

II. LINEAR OPTICAL RESPONSE

In the linear optical regime, the two-particle correlations
Ivc
q;k can be treated on the screened Hartree-Fock level [16]

where the Coulomb interaction leads to a renormalization of
the free-particle dispersion and the emergence of bound exci-
ton resonances. In the presence of a magnetic field B = Bez,
the linearly induced optical interband polarization displays
resonances at the eigenvalues of the exciton equation [37],

(

E
e
k[B] + E

h
k [B] + eB

2mrc
l̂z + e2B2

8mrc2
r̂2

)

ψμ(k) −
∑

k′

W
cvvc

|k−k′|[ f ]ψμ(k′) = εμψμ(k). (9)

075438-2



MAGNETIC-FIELD TUNING OF THE INTRAEXCITONIC … PHYSICAL REVIEW B 104, 075438 (2021)

Here, W
cvvc

k−k′ [ f ] = √

f v

k − f c
k W cvvc

k−k′
√

f v

k′ − f c
k′ with W cvvc

k−k′

denote the quasi-two-dimensional screened electron-hole
Coulomb matrix element and f

c/v

k describe static incoherent
populations that may be induced, e.g., by doping or pumping
by an optical prepulse. Furthermore, Ee/h

k [B] is the Coulomb-
renormalized single-particle dispersion that can be computed
with the aid of the gap equations [21,57],

	̃k = 	[B] + 1

2

∑

k′

W|k−k′|
	̃k′

Ek′

(

f v

k′ − f c
k′
)

, (10)

ṽk = vF + 1

2

∑

k′

W|k−k′|
k′

k

ṽk′

Ek′
cos(θk − θk′ )

×
(

f v

k′ − f c
k′
)

, (11)

Ek =
√

	̃2
k + 4h̄2

ṽkk2. (12)

As a consequence of the magnetic field, the unrenormal-
ized single-particle dispersion contains a Zeeman shift of the
atomic orbitals contributing to the valence and conduction
band. As the valence band of TMDCs in proximity to the
K points is composed of d-type orbitals exhibiting an orbital
angular momentum of mz = ±2, the application of a perpen-
dicular magnetic field leads to a Zeeman shift of ±2μBB of
the valence band maxima, where μB = eh̄/2m0c is the Bohr
magneton. Hence, the Zeeman shifts in the different valleys
are related by 	K+ [B] = 	K−[−B]. The respective shifts re-
sult in a splitting 	K+[B] − 	K−[B] = −4μBB between the
K± valleys [40,42,43]. Due to the gap renormalization, the
Zeeman shift is slightly enhanced, without changing the sym-
metry relation between the distinct valleys under a change in
the sign of B. This leads to g factors for the splitting with
an absolute value slightly larger than 4, in good agreement
with experimental findings [36,37,40,42,58] on similar ma-
terial systems. Additionally, the term ∝ l̂z in Eq. (9) leads
to a Zeeman shift of the exciton states. Although this term
does not contribute to optically bright s-type resonances in the
linear optical spectra, it does affect p-type excitons that can
be addressed by a subsequent THz-field. For free particles,
i.e., if Coulombic effects are neglected, the term ∝ B2 leads
to the formation of Landau levels. Within the effective mass
approximation, these are given by En = h̄ωc(n + 1/2) with a
cyclotron frequency h̄ωc = eh̄B/2mrc. If Coulombic effects
dominate, i.e., the exciton binding is large compared to the
Landau energy, the terms quadratic in B lead to a diamagnetic
shift of the exciton resonances that is approximately quadratic
in B.

Numerically evaluating our microscopic theory allows us
to compute the linear and nonlinear response to a wide range
of excitation conditions. As an example, we show in Fig. 1 the
computed linear optical susceptibility of an hBN-encapsulated
MoS2 monolayer at zero magnetic field. Here, the hBN en-
capsulation is modeled by a thin anisotropic dielectric with
in-plane and out-of-plane dielectric constants ε‖ = 4.91 and
εz = 2.79, respectively, which is valid at the optical frequency
range. Here and in the following, we used a phenomenolog-
ical dephasing of γ = 2.5 meV/h̄ for the A-exciton series
and γ = 20 meV/h̄ for the B excitons, respectively, yielding
linewidths in the order of experimentally observed values on

FIG. 1. Imaginary part of the calculated linear optical suscepti-
bility at B = 0 T of a hBN-encapsulated MoS2 monolayer on a fused
silicon substrate. Blue parts show the contribution of the A-exciton
series and red parts of the B-exciton. Spectra have been calculated us-
ing a phenomenological decay rate γ = 2.5meV/h̄ for the A-exciton
series and γ = 20meV/h̄ for the B exciton.

hBN-encapsulated samples. Using ab-initio parameters only,
we find the renormalized band gap at EG = 2.22 eV and
the lowest 1s-exciton resonance at E1s = 2.00 eV, yielding a
binding energy of 220 meV. The calculated 1s-exciton energy
is in good agreement with other ab-initio values reported in
the literature but approximately 50 meV above experimen-
tally reported values. However, the calculated binding energy
is in very good agreement with experimental observations
[25]. Since our theoretical prediction for the renormalized
single-particle gap seems to be slightly too large, we shift
the computed spectra in the following by 50 meV for a better
quantitative comparison with experiment.

In Fig. 2, we show the magnetic field dependence of the
linear transmission spectrum on excitation with σ+-polarized
light for the hBN-encapsulated MoS2 monolayer on a fused
silicon substrate. Propagation of the optical field through the
sample and the supporting substrate is included into the cal-
culations using the refractive index nSiO2 = 1.46. One clearly
recognizes the A1s and B1s—partially overlapped by the A2s—
excitons with an extinction of about 10% of the incoming
light and a nearly linear B dependency. For stronger magnetic
fields, the oscillator strength of the excited states increases, in
good agreement with experimental findings [25].

To analyze the dependency on the magnetic field strength,
we show the calculated even (Ens[B] + Ens[−B])/2 and odd
parts (Ens[B] − Ens[−B])/2 in Fig. 3. The even part results
from the term ∝ B2r̂2 in the exciton Hamiltonian and contains
the diamagnetic shift. As it does not couple to the spin or
orbital angular momentum, the diamagnetic shift is equal for
both valleys. The odd part results from the Zeeman shift of
the underlying atomic orbitals and is of opposite sign in the
nonequivalent valleys, leading to a Zeeman valley-splitting
twice as large as the shift shown here. Since excitation with
circular polarized light of opposite handedness addresses the
different valleys, the linear optical spectra under excitation
with right- and left-handed circular polarized light are re-
lated by changing the direction of the magnetic field, i.e.,
T [σ+, B] = T [σ−,−B]. As can be recognized, the quadratic
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FIG. 2. Calculated transmission spectrum T/T0 for a hBN-
encapsulated MoS2 monolayer on a fused silicon substrate. Spectra
have been calculated using a phenomenological decay rate γ =
2.5 meV/h̄ for the A-exciton series and γ = 20 meV/h̄ for the B ex-
citons and have been shifted by 50 meV to match the experimentally
observed gap. Calculations are performed for the K+ valley that is
addressed with right-handed circular polarized light. Results for the
K− valley (σ−) are obtained by reversing the sign of the magnetic
field.

approximation for the diamagnetic is valid only for a pretty
small range of the magnetic field strength. In particular,
the shifts of the excited states change their slopes toward
a linear dependency in the intermediate field range without

approaching the Landau levels expected in the high field
limit. The dots in the left part of Fig. 3 denote experimen-
tally observed values [25]. Although small deviations in the
range of few meV exist for the lowest exciton states, the
theory/experiment agreement is pretty good in view of the
fact that we use only ab-initio parameters.

For the Zeeman shift, we find g factors slightly smaller
than expected from the atomic orbitals alone. Deviations
from the strictly atomic contribution result from the in-
terplay between the gap renormalization and the binding
energy. Within a linear approximation in the range −80T �

B � 80T, one finds the g factors g1s = −2.05, g2s = −2.10,
g3s = −2.10, and gGap = −2.17, which are all smaller than
−2. These results are in good agreement with most exper-
imental findings on similar material systems which observe
state-dependent valley g factors gvalley = 2g slightly smaller
than −4 [36,37,40,42,58]. However, it should be mentioned
that the Zeeman shift is not strictly linear in B; thus, the
g factors obtained within a linear approximation depend
on the B range used in the fit. Considering −30T � B �

30T, one finds the values g1s = −2.06, g2s = −2.12, g3s =
−2.13, and ggap = −2.17, respectively. Furthermore, we note
that via Coulomb renormalization effects, the exciton g

factors depend on the dielectric environment that screens
the monolayer Coulomb potential, though this effect is
smaller than the dependency on the considered magnetic field
range.

III. LINEAR THZ RESPONSE

To calculate the intra-excitonic absorption, we insert
Eqs. (6) and (7) into Eq. (3), yielding

d

dt
jintra = 2e

h̄mr

Im

[

1

A

∑

k,Q,q �=0

h̄kVq〈c†
k+Qe

vk−Qh
v

†
k−q−Qh

ck−q+Qe
〉
]

+ 2e2

m0 h̄c
Im

[

1

A

∑

k

h̄kA · pcvP∗
k

]

(13)

with Qe/h = me/h

M
Q. The last term on the R.H.S. of Eq. (13)

contributes significantly only during the optical pulse and
can be neglected for a scenario where a short optical pulse
is followed by a THz pulse with a time delay significantly
exceeding the pulse duration.

Defining the exciton annihilation operator as

Bλ(Q) =
∑

k

ψ∗
λ (k)

√

f v

k − f c
k

v
†
k−Qh

ck+Qe
, (14)

where ψλ(k) is the solution of the Wannier equation (9), one
finds for the THz current

ih̄
d

dt
jintra =

∑

λλ′

jλλ′ (ελ′ − ε∗
λ )nλλ′ − ih̄�jTHz. (15)

Here, jλλ′ = e
mr

∑

k ψ∗
λ (k)h̄kψλ′ (k) is the intra-excitonic cur-

rent matrix element and nλλ′ = 1
A

∑

Q〈B†
λ(Q)Bλ′ (Q)〉 is the

exciton density matrix, respectively. We included a phe-
nomenological dephasing rate �.

The equation of motion for the exciton density matrix is

ih̄
d

dt
nλλ′ (Q) = (ελ′ − ε∗

λ − ih̄γ )nλλ′ (Q)

+ 1

c

∑

λ′′

(jλλ′′nλ′′λ′ − nλλ′′jλ′λ′′ ) · ATHz, (16)

where we again included a phenomenological dephasing rate
γ for the exciton populations. Given an initial exciton density
nλλ′ , linearization with respect to the THz field yields

jintra(ω) = 1

c

∑

λλ′λ′′

ελ′ − ε∗
λ

ε∗
λ − ελ′ − ih̄�

×
[

1

h̄ω + ih̄(� + γ )
− 1

h̄ω − ελ′ + ε∗
λ + ih̄γ

]

× jλλ′ (jλλ′′nλ′′λ′ − nλλ′′ jλ′λ′′ ) · ATHz, (17)

from which the THz-susceptibility can be obtained via

χTHz(ω) = c

ω2

δjintra

δATHz(ω)
.
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FIG. 3. Even part of the exciton energies containing the diamag-
netic shift (left) and Zeeman shift (right) of the optically bright
s-type states at the K+ valley. For the K− valley, the Zeeman shift
is in opposite direction, leading to a g factor for the valley-splitting
twice as large as the g factor here. Dots in the left panel denote
experimental values extracted from Ref. [25].

As the intra-excitonic dipole matrix elements are nonvan-
ishing only for m′ = m ± 1, the THz-susceptibility displays
resonances at the transition energies between s- and p-type
states only. In the left panel of Fig. 4, we show the computed
spectral position of the dark p± states at the K+ valley with
mz = ±1 together with those of the bright s-type states. Re-
sults for the K− valley are obtained by the relations EK+

np+ [B] =
EK−

np− [−B], EK+
np− [B] = EK−

np+ [−B]. As can be recognized, the
p±-type states are nondegenerate and energetically below the
s-type states with equal main quantum number. In the middle
and right panels, we also show the diamagnetic and Zeeman
shift of the optically dark p-type states. The p-type states
exhibit a diamagnetic shift that is of comparable magnitude
for p+- and p−-type states, but significantly smaller than that

of the s-type excitons. As the diamagnetic shift is a measure
for the extension of the exciton wave functions, this is in
agreement with the differences in the binding energy. The
Zeeman shifts of the p states differ from the Zeeman shift of
the s states by ±m0

mr
μBB = ±3.83 μBB.

Given an initial exciton density nλλ′ = nλδλλ′ , transitions
to energetically higher excitonic states require the absorption
of a THz-photon, where the absorption of a σ±-polarized
THz-photon induces the transition s → p± with m′ = ±1.
Correspondingly, the transitions to energetically lower p±

states correspond to the emission of a σ∓-polarized THz-
photon, as indicated by the arrows in Figure 4. Hence, a
population of the exciton ground state leads to absorptive
features in the THz/mid-infrared spectrum only, as shown
in the first row of Fig. 5, where we show the mid-infrared
absorption α(ω) = 4π ω

c
Im[χTHz(ω)] of a MoS2 monolayer

after resonant optical excitation of the 1s-exciton at the K+

valley as function of the externally applied magnetic field for
different polarizations of the IR/THz-photons. In the low-
density regime, the THz absorption increases linearly with
the exciton density, and the calculations have been performed
for an initial 1s-exciton density of n1s = 1010 cm−2. The
dominant absorption features around 150 meV result from the
1s → 2p± transition. Clearly observable are also transitions
to the 3p and 4p states. With increasing field strength, the os-
cillator strength to the higher excited states increases, making
them more clearly visible. Due to the lifting of the degeneracy
of the p± states at B = 0, the absorption spectra on σ+ and
σ− THz probe on the σ+ pre-excited sample are not related
by a sign reversal of the magnetic field. Instead, reversing
the sign of the magnetic field B yields the spectra at the K−

valley. Explicitly, we have the relations for the optical pump-
THz-probe spectra OPT P[σ+σ+, B] = OPT P[σ−σ−,−B],
OPT P[σ+σ−, B] = OPT P[σ−σ+,−B].

An even more interesting situation arises if an optical
pulse predominantly generates excited-state populations. In
this case, a population inversion with respect to the energeti-
cally lower p states allows the amplification of a subsequent
THz probe-pulse as shown in the second row of Fig. 5 for

FIG. 4. Left: Spectral position of the bright s-type excitons (solid lines) at the K+ valley together with those of the dark p+ (dashed lines)
and p− (dotted-dashed lines) states as function of the magnetic field. The red arrows denote dipole-allowed transitions with right-handed
circular polarized light and the blue arrows those for left-handed light. The middle panel shows the diamagnetic shift of the respective states
and in the right panel, the Zeeman shift of the optically dark p-type states is visualized.
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FIG. 5. Mid-IR-absorption as function of a perpendicular magnetic field after resonant optical excitation of the 1s-exciton resonance
(upper part) and THz-gain after resonant optical excitation of the 2s-exciton resonance (lower part). The left figures show the gain on σ+σ+-
polarization of the optical and THz-pulses, the middle figures after σ+σ−-polarized excitation, and the right figures on σ+σx-excitation. The
corresponding spectra on σ−σ−- and σ−σ+-excitation are obtained by reversing the sign of the magnetic field. The absorption spectra scale
linearly with the initial 1s-exciton density and are shown for n1s/2s = 1010/cm2 using a phenomenological decay rate γ = 2.5 meV/h̄ and
� = 1meV/h̄. The white dashed lines separate the regions with positive and negative gain (absorption).

the example of an initial population of the 2s-exciton after
resonant optical excitation and different combination of the
pulse polarization. Here, the transition to the 2p states induces
gain, whereas the transitions to p-type states with n > 2 are
absorptive. At small magnetic fields, these competing pro-
cesses lead to a very small net gain of the THz pulse as the
absolute energetic distance from the 2p and 3p states to the
2s state are of comparable magnitude. However, as can be
recognized from Fig. 5, the Zeeman shift of the p± states leads
to a clear separation of absorptive and gain features, leading to
clearly recognizable gain in the THz spectra at high magnetic
fields. As the Zeemann shift of the p-type states is of opposite
sign, the region of gain depends on the polarization sequence
of the pulses. For linear polarized light, the net gain even for
larger fields is smaller as the processes due to the different
p-type states cancel partially.

IV. DISCUSSION

In summary, we investigated the linear optical and the THz
response and their dependence on a perpendicular magnetic
field of a monolayer TMDC for the example of hBN-
encapsulated MoS2 and varying polarization of the pulses.
The THz response couples directly to intra-excitonic tran-
sitions and thus provides access to otherwise dark p-type

exciton states. Depending on the excitation conditions, we
have shown that counteracting processes of absorption and
amplification take place. In particular, a net gain in the range
of several 10 meV due to the transition from the A2s exciton
to the energetically lower 2p states is seen. Furthermore, the
resonance energies of the intra-excitonic transitions can be
tuned with the aid of a perpendicularly applied magnetic field,
utilizing the different g factors of the s- and p-type states.
The application of a perpendicular magnetic field enables an
energetic separation of absorptive and gain features on the one
hand, enhancing the THz-amplification, and on the other hand
a tuning of the resonance energy that is roughly between 10
and 20 meV for the investigated sample.
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APPENDIX A: COMPUTATIONAL DETAILS

For the MDF model Hamiltonian, we use as input spin- and
valley-dependent gaps obtained from our DFT calculations.
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TABLE I. DFT-based MDF model parameters based used in the
calculations.

MoS2 	 [eV] mr [m0] ε‖ ε⊥ D [Å] d[Å] σ 2/2[Å2]

A 1.682 0.261 15.19 6.38 6.18 1.06 3.067
B 1.831 0.284

The Fermi-velocity vF is related to the gap and effective exci-
ton reduced mass via 	sτ = 4mrv

2
F and is obtained by fitting

the DFT band structure. Resulting parameters are summarized
in Table I. For the Coulomb interaction potential, we use the
solution of Poisson’s equation within an anisotropic, inhomo-
geneous dielectric environment as described in Refs. [21,56].
In the strict 2D limit, this yields the screened interaction
potential

Wq = 2π

κq
(1 + c+− + c−+ + c−− + c−−), (A1)

where κ = √
ε‖ε⊥ contains the in- and out-of-plane dielectric

constants of bulk MoS2, κT/B are defined accordingly for the
top and bottom dielectric environment,

cηη′ = (κ + ηκT )(κ + η′κB)

(κ + κT )(κ + κB) − (κ − κT )(κ − κB)e−2q̃‖D
,

and D is the interlayer distance in a bulk MoS2 crystal. The
required in- and out-of-plane dielectric constants for bulk
MoS2 and interlayer distance are also obtained from the DFT
calculations. In the strict 2D limit, the electron-hole Coulomb
matrix element W cvvc

k−k′ in the exciton equation is given by

W cvvc
k−k′ = W|k−k′|

(

u2
ku2

k′ + 2ukvkuk′vk′e∓i(θk−θk′ )

+ v
2
k v

2
k′e

∓2i(θk−θk′ )
)

,

where u2
k = (εk + 	)/2εk = 1 − v

2
k , θk is the angle of the

k-vector and the ± sign holds for the K± valley, respec-
tively. To account for the finite extension of the Bloch waves
in the z-direction, the strictly 2D Coulomb matrixelements

are modified by a form-factor e−q‖d−q2
‖σ

2/2 as described in
Ref. [56].

Exploiting the rotational symmetry of the gap and Fermi
velocity, the gap Eqs. (10) and (11) were integrated inserting
the noninteracting values of the gap and Fermi velocity in the
integrands. Integrals were performed on an equidistant grid
of 200 points spaced by 	k = .025h̄vF /	A = 3.125 · 10−3 Å
with mathematica [59] using standard in-build integration
routines. A single shot already yields convergent results, as
can be recognized from Fig. 6 showing the ratio 	̃k

Ek
after 1

iteration of solving the gap equation. If this ratio is unchanged,
convergence of the gap equations is achieved.

As the exciton Hamiltonian commutes with the orbital
angular momentum l̂z, Eq. (9) was solved for each value
m of the angular momentum separately by matrix inver-
sion. To this end, the k sums in the Coulombic part were
converted into integrals according to

∑

k′ → A
(2π )2

∫

d2k′ =
A

(2π )2

∫

dθk′k′dk′ that were subsequently discretized accord-
ing to

∫

dθk′k′dk′ →
∫

dθk′	k
∑

j k′
j . In order to obtain

a Hermitian equation, we substituted ψ̃ (k) =
√

kψ (k) and
multiplied Eq. (9) with

√
k. Subsequently, the Coulomb inter-

action for the m states W m
k,k′ =

∫

dθk

∫

dθk′e−im(θk−θk′ )W cvvc
k−k′

was evaluated on a 200 × 200 grid with 	k = 3.125 · 10−3 Å.
Due to the angular dependence of the Coulomb matrix el-
ement, states with different angular momentum quantum
numbers m are nondegenerate. For the position operator we
used r̂ = i∇k and ∇2

kψnm(k) = 1√
k

(

∂2

∂k2 + 1−4m2

4k2

)

ψ̃nm(k). The

second-order derivative was discretized according to
(

∂2

∂k2

)

i j
=

δi+1, j−2δi, j+δi, j+1

	k2 .

FIG. 6. Left: Ratio of the gap and dispersion before and after renormalization. Right: Quasi-particle dipersion in the vicinity of the K-points
before and after renormalization.
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The dynamics of band-gap renormalization and gain build-up in monolayer MoTe2-H is investigated by
evaluating the nonequilibrium Dirac-Bloch equations with the incoherent carrier-carrier and carrier-phonon
scattering treated via quantum-Boltzmann type scattering equations. For the case where an approximately
300-fs-long high-intensity optical pulse generates charge-carrier densities in the gain regime, the strong Coulomb
coupling leads to a relaxation of excited carriers on a few-femtosecond timescale. The pump-pulse generation
of excited carriers induces a large band-gap renormalization during the timescale of the pulse. Efficient phonon
coupling leads to a subsequent carrier thermalization within a few picoseconds, which defines the timescale for
the optical gain build-up energetically close to the low-density exciton resonance.

DOI: 10.1103/PhysRevB.101.075401

I. INTRODUCTION

Monolayers (MLs) of transition-metal dichalcogenides
(TMDCs) hold great promise as active material in next-
generation optoelectronic devices. Unlike their bulk counter-
parts, MLs of many semiconducting TMDCs exhibit a direct
gap with transition energies in the visible to near-infrared
regime [1–7]. As compared to conventional semiconductors,
they provide strong light-matter coupling and many-body
effects due to carrier confinement and weak intrinsic screening
of the Coulomb interaction. At low excitation levels, the
electron-hole attraction leads to the formation of excitons
with large binding energies that absorb as much as 10–20%
of the incoming light for a single layer [8–11]. Because of
this strong light-matter interaction, TMDC-based photonic
devices promise high efficiency and have the potential for sat-
urable absorbers, nanoemitters or nanolasers with the smallest
possible amount of optically active material. Indeed, room
temperature lasing has been reported for different TMDC
materials for comparatively low pump intensities and emis-
sion frequencies centering around the respective A exciton
resonances [12–14].

One of the key properties for operation and design of
nanophotonic devices is the quasiparticle or optical band gap.
Due to Coulombic renormalizations, the quasiparticle gap is
modified by the presence of excited carriers and depends on
the precise excitation conditions. In a conventional semicon-
ductor where screening is strong, these band-gap renormaliza-
tions are typically in the meV range. In contrast, in TMDCs
excitation-induced band-gap shrinkages of several hundred
meV have been reported in experimental [15,16] and theo-
retical [17,18] investigations. The injection of external charge
carriers has been proposed as a possibility to dynamically con-
trol the optical gap on a femtosecond timescale [15,16]. Fur-
thermore, carrier-carrier and carrier-phonon scattering lead to

*tineke.stroucken@physik.uni-marburg.de

excitation-induced dephasing and the build-up of screening,
thus dynamically modifying the exciton binding and peak
gain positions. In particular, for laser applications precise
predictions for the peak gain are desirable to design optical
cavities correspondingly.

In this paper, we use the example of MoTe2-H to per-
form a microscopic calculation of the carrier dynamics and
optical gain development after nonresonant optical excitation.
Among semiconducting TMDC materials, MoTe2-H provides
the most favourable conditions to achieve optical plasma gain.
Whereas in W-based TMDCs the fundamental gap corre-
sponds to spin-forbidden, dark transitions, in MoTe2-H, for
each spin component, the fundamental gap is undoubtedly
direct with a relatively large spin splitting and offset between
the side and global minima in the conduction band. With-
out such an offset substantial amounts of electrons can leak
quickly from the K/K′-points to the side valley. This reduces
the carrier inversion at the global band minima and reduces or
even prevents optical gain.

A well-established scheme to deduce the carrier dynamics
and its influence on the optical spectra is to probe the optical
response of the system at different delay times after excitation
with a strong optical pump pulse. To simulate such a sce-
nario, we extend our recently developed Dirac-Bloch equation
(DBE) scheme [18–21] beyond the linear low-excitation and
quasiequilibrium regime. In particular, we include incoher-
ent interactions due to electron-electron and electron-phonon
scattering to study the carrier dynamics and to determine
the dephasing of the optical polarizations and the resulting
broadening of optical spectra self-consistently.

II. METHODS

To compute the carrier dynamics and its influence on the
optical spectra, we use a hybrid density functional theory
(DFT) and equation of motion (EOM) approach. In a first
step, we determine the relevant material parameters, i.e.,

2469-9950/2020/101(7)/075401(11) 075401-1 ©2020 American Physical Society
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TABLE I. Material parameters for MoTe2-H, i.e., the conduction-band (valence-band) valley minima (maxima) εc
K and εc

� (εv
K ), effective

masses m∗
K and m∗

� , dipole-matrix elements d±
K , as well as the dielectric constants εB

‖ , ε⊥ and out-of-plane lattice constant D (c/2), based on
our DFT calculations. For the K ′ and � valleys, the spin components are interchanged.

Spin εc
K [eV] εv

K [eV] εc
� [eV] m∗

K [m0] m∗
� [m0] d±

K [eÅ] εB
‖ ε⊥ D (c/2) [Å]

↑ 1.017 0.0 1.114 0.607 0.407 3.51
20.30 10.90 6.99

↓ 1.052 −0.214 1.099 0.728 0.428 2.88

the band structure, dipole-matrix elements, as well as the
dielectric constants of bulk MoTe2-H, via density functional
theory. To compute the carrier dynamics and evolution of
the optical spectra on a dense k-grid, we use an effective
four-band Hamiltonian that is based on the single-particle
band structure and dipole-matrix elements derived from our
DFT calculations to describe the regions of the Brillioun
zone that are actually populated. Subsequently, we derive the
EOM for interband polarizations that couple directly to the
optical field, and the respective occupation probabilities of
the involved bands. Since DFT-based band structure calcula-
tions usually underestimate the quasiparticle gap, we compute
the ground-state band-gap renormalization self-consistently
from the gap equations.

A. DFT calculations

The relevant material parameters are calculated via den-
sity functional theory (DFT) [22] using the Vienna ab initio

simulation package (VASP) [23–26] and listed in Table I. All
computations employ the generalized-gradient-approximation
via the Perdew-Burke-Ernzerhof (PBE) functional [27], in-
cluding the spin-orbit interaction [28]. The unit cell describing
a MoTe2-H ML contains three atoms in total, while a vac-
uum region of 20 Å around the ML is sufficient to prevent
unphysical interactions with its periodic copies. The unit
cell of bulk MoTe2-H in the common 2H form, used in the
computations of the bulk dielectric constant, consists of two
MLs and contains six atoms. The Van-der-Waals interaction
between neighboring layers is modeled via Grimme’s disper-
sion correction method (PBE-D3) [29,30]. In both cases, bulk
and ML, a full relaxation of atomic positions and the unit
cell shape and size is performed until all inter-atomic forces
are smaller than 2.5 × 10−3 eV/Å. The reciprocal space is
sampled by a 15 × 15 × 3 Monkhorst-Pack [31] k-mesh in the
case of the ML and 10 × 10 × 10 in the bulk case. The cutoff
energy of the plane wave expansion is set to 750 eV for the
structural relaxations and the MLs properties, while a value of
500 eV is used in the bulk case. The self-consistency cycle
of the electronic minimization is repeated until an energy
convergence criterion of 10−8 eV is reached.

The resulting ML band structure is shown in Fig. 1 and
exhibits direct gaps at the K and K ′ points of the Brillioun
zone with a noninteracting gap of �A = 1.017 eV and �B =
1.266 eV for the A (K↑/K ′

↓) and B (K↓/K ′
↑) bands. As in

other TMDC materials, the atomic orbitals predominantly
contributing to the valence and conduction bands at the K

and K ′ point are the d-type Mo-orbitals with equal parity.
Furthermore, the conduction bands display a spin splitting
of −35 meV and side valleys at the �/� points, that are

97 meV (�↑/�↓) and 82 meV (�↑/�↓) above the respective
K/K ′-valley minima. These values are on the lower end of
the range of published values that have been obtained using
different functionals for the exchange correlation potential or
GW corrections [32–34] and sufficiently large to prevent an
excitation-induced transition from a direct to indirect band
gap [35,36].

The interband dipole-matrix elements are accessed via
the linear optics routine in VASP as described in Ref. [37]
and include contributions associated with a geometric phase.
Furthermore, we compute the macroscopic static dielectric
tensor of bulk MoTe2-H using density functional perturbation
theory as described in Refs. [37,38], following Ref. [39].

B. DFT-based model Hamiltonian

To model the DFT band structure presented in the previous
section, we include the two spin-split valence and conduction
bands to obtain an effective four-band Hamiltonian. As the
different valleys are separated by large barriers, intervalley
scattering is expected to be significantly slower than intraval-
ley scattering and, on the ultrashort timescale, the valley index
can be considered to be approximately conserved. Hence, we

FIG. 1. DFT band structure of a MoTe2-H ML. Bands with spin-
up are depicted in red, bands with spin-down in blue.
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TABLE II. Resulting MDF model parameters for MoTe2-H.

Band � [eV] h̄vF [eVÅ] EF [eV]

A 1.017 2.526 0.509
B 1.266 2.574 0.419

write the single particle part of the Hamiltonian as

H0 =
∑

αk

εαkc
†
αkcαk,

where α combines the spin, valley, and band index. Using the
p · A gauge, the light matter interaction is given by

HLM =
e

m0c

∑

αα′k

A · pαα′kc
†
αkcα′k,

where the interband momentum matrix elements are related
to the DFT dipole matrix elements via eh̄

m0
pαα′k = (εα′k −

εαk )dαα′ . Whereas the side valleys at �/� are modeled
within the effective mass approximation, we treat the K and
K ′ valleys utilizing the widely used massive Dirac-Fermion
(MDF) model Hamiltonian [40] to account for the geometric
phase contained in the dipole matrix elements. The MDF
Hamiltonian has the relativistic dispersion

ε
c/v

ik = EF,i ± 1
2

√

�2
i + (2h̄vF,ik)2, (1)

where i = sτ combines the spin and valley index, �i, vF,i,
and EF,i are the spin- and valley-dependent gap, Fermi ve-
locity and Fermi level, respectively. Whereas the spin- and
valley-dependent band gaps are directly taken from our DFT
calculations, the Fermi-velocities of the A and B bands are
determined to reproduce the DFT band structure around the
K/K ′ points and listed in Table II. Within the MDF model, the
nonvanishing dipole moments at the Dirac points are solely
associated with the geometric phase or pseudospin. They are
related to the Fermi velocity via d±

i = e
√

2h̄vF,i/�i and agree
within less than 5% with the DFT dipole matrix elements. The
approximated band structure is shown together with the DFT
bands and the equilibrium carrier distributions at the delay
time τ = 2.5 ps in Fig. 2.

The Coulomb interaction Hamiltonian

HC =
1

2

∑

q 	=0

∑

αα′ββ ′kk′

V
αββ ′α′

q;k′;k c
†
αk−qc

†
βk′+qcβ ′k′cα′k

contains the quasi-2D Coulomb matrix elements

V
αββ ′α′

q;k′;k =
∫

ec

d3r

∫

ec

d3r′ u∗
αk−q(r)u∗

βk′+q(r′)

×Vq(z − z′)uβ ′k′ (r′)uα′k(r)

that are computed using the DFT wave functions. The
Coulomb interaction potential Vq(z − z′) for the unexcited ML
is determined from Poisson’s equation according to Ref. [20].
Here, we use the parameters ε‖ and ε⊥ for the in- and out-of-
plane dielectric constants based on bulk DFT calculations of
MoTe2-H. From the previously stated bulk in-plane dielectric
constant εB

‖ we obtained the nonresonant 2D contribution ε‖ =
15.32 as described in Ref. [20]. The so determined “bare”
Coulomb interaction potential contains screening contribu-
tions from the dielectric environment and all remote bands,

FIG. 2. Comparison of the relevant DFT bands (dotted) with
the approximated unrenormalized relativistic band dispersion (solid).
Arrows indicate the spin of the correspondingly colored bands.
The dashed-dotted lines show the equilibrium carrier distributions
(2.5 ps after excitation) for the excitation conditions discussed in
the text. For the distributions the baseline is taken to be the edge
of the corresponding band and the maximum values are set to be the
corresponding chemical potentials.

as well as the ground-state screening contributions from the
valence and conduction bands.

The interaction with longitudinal optical (LO) phonons,
which has been shown to be the most effective phonon-
coupling contribution in monolayer MoTe2-H [41], is con-
tained in the Fröhlich Hamiltonian

He−LO =
∑

αk,q

g0
qc

†
α,k+qcα,k(bq + b

†
−q).

For the “bare” Fröhlich-interaction matrix element g0
q, we use

the explicit expression based on the analytical model of Sohier
et al. [41] that, similarly to the “bare” Coulomb interaction,
already contains background screening contributions from the
remote bands and dielectric environment.

C. Dirac-Bloch Equations

To evaluate the material response after optical excitation,
we compute the microscopic interband polarizations Pik =
〈c†

ivkcick〉 and occupation probabilities f λ
ik = 〈c†

iλkciλk〉 (λ =
c, v) from the Dirac Bloch equations (DBE)

ih̄
d

dt
Pik =

(

�c
ik − �v

ik

)

Pik +
(

f v
ik − f c

ik

)


ik

+ ih̄
d

dt
Pik

∣

∣

∣

∣

corr.

, (2)

ih̄
d

dt
f

c/v
ik = ±2i�[Pik


∗
ik] + ih̄

d

dt
f

c/v
ik

∣

∣

∣

∣

corr.

. (3)
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Here,

�c
ik = εick −

∑

k′

[

V cccc
k−k′;k′;k − V cvcv

k−k′;k′;k

]

f c
ik′

+
∑

k′

[

V cvcc
k−k′;k′;kPik′ + c.c.

]

, (4)

�v
ik = εivk −

∑

k′

[

V vvvv
k−k′;k′;k − V vcvc

k−k′,k′,k

]

f v
ik′

+
∑

k′

[

V vvvc
k−k′;k′;kPik′ + c.c.

]

, (5)


ik =
e

m0c
A · picvk −

∑

k′

V cvvv
k−k′;k′;k

(

f v
ik′ − f c

ik′

)

−
∑

k′

[

V cvvc
k−k′;k′;kPik′ + V ccvv

k−k′;k′;kP∗
ik′

]

(6)

contain the Hartree-Fock contributions to the single particle
energy renormalizations �

c/v
ik and the renormalization to the

Rabi energy 
ik, while all many-body correlations that arise
from the two-particle Coulomb interaction and carrier-phonon
scattering are contained within d

dt
Pik|corr. and d

dt
f

c/v
ik |corr.,

respectively.
The DBE are formally equivalent to the semiconductor

Bloch equations (SBE), but the expression for the renormal-
ized Rabi and single particle energies differ by the Coulomb
matrix elements of the type V cvvv

k−k′;k′;k and V ccvv
k−k′;k′;k referring

to Auger- and pair creation/annihilation processes, where at
least one of the particles changes its band index. Within the
MDF model Hamiltonian, these Coulomb matrix elements
contain the geometric phase and induce a coupling between a
dark static interband polarization and the carrier populations.
Consequently, the initial condition f c

ik = 1 − f v
ik = Pik = 0

does not correspond to a stationary solution of the DBE in
the absence of an external field and hence, does not specify
the system’s ground state.

To determine the ground-state band renormalization, which
is the initial state before the pump pulse arrives, we require
a stationary solution of the Dirac-Bloch equations in the
absence of an external field as described in Refs. [19,20,42].
This leads to the gap equations

�̃ik = �i +
1

2

∑

k′

V|k−k′|
�̃ik′

ε̃ik′
, (7)

ṽik = vF,i +
1

2

∑

k′

V|k−k′|
k′

k

ṽik′

ε̃ik′
cos(θk − θk′ ), (8)

from which the ground-state quasiparticle dispersion is ob-
tained via ε̃

e/h

ik = 1
2

√
�̃2

ik + (2h̄ṽikk)2. Similar to the Coulomb

matrix elements V
αββ ′α′

q;k′;k , the “bare” quasi-2D Coulomb in-
teraction entering Eqs. (7) and (8) already contains the pre-
viously mentioned background and ground-state screening
contributions. The solution of the gap equations yields a
rigid shift of the single-particle dispersion with an interacting
gap �̃ik that depends on the dielectric environment. For a
suspended ML, we find a ground-state band renormalization
of 549 meV for the A band, that shrinks by 70 meV for a
SiO2-supported MoTe2-H ML.

In the low density limit, where correlation effects can be
neglected, we find the transition energies for the lowest 1s-

FIG. 3. Linear absorption spectra of a suspended (black) and
SiO2-supported (red) ML MoTe2-H. Here, we used a phenomeno-
logical dephasing rate of h̄γ = 10 meV. To match the experimentally
observed data, the spectra have been shifted by −0.044 eV.

exciton resonance at 1.230 and 1.225 eV, for the suspended
and SiO2 supported MoTe2-H ML, respectively, which is
slightly above the experimentally observed low-temperature
resonance energy of about 1.18 eV for the SiO2-supported
ML [43]. To allow for a direct comparison between the pre-
dicted excitation-induced modifications of the optical spectra
with the experiment, we correct the bare DFT computed band
gap and shift all spectra by −0.044 eV. The resulting linear ab-
sorption spectra for a freely suspended and quartz-supported
MoTe2-H ML are shown in Fig. 3 using a phenomenological
dephasing rate of h̄γ = 10 meV.

D. Many-body correlations

Incoherent processes that lead to the dephasing of the mi-
croscopic polarizations and to the carrier relaxation dynamics
are contained within d

dt
Pik|corr. and d

dt
f

c/v
ik |corr., respectively.

Using the notation Pαα′

k = 〈c†
αkcα′k〉, f α

k = Pαα
k for the single-

particle expectation values, the Coulomb interaction leads to
a contribution

ih̄
d

dt
Pαα′

k

∣

∣

∣

∣

el.

corr.

=
∑

q 	=0

[

�Iαα′

q;k −
(

�Iα′α
q;k

)∗]
, (9)

where

Iαα′

q;k =
∑

βγ γ ′

∑

k′

V
α′γ γ ′β
−q;k′;k−qC

αγ γ ′β
q;k′;k

are the density-assisted transition/occupation probabilities
that contain the two-particle expectation values C

αγ γ ′β
q;k′;k =

〈c†
αkc

†
γ k′−qcγ ′k′cβk−q〉. In general, the two-particle expectation

values can be divided into a Hartree-Fock (singlet) part and a
correlated part according to

C
αγ γ ′β
q;k′;k = C

αγ γ ′β
q;k′;k

∣

∣

S
+ �C

αγ γ ′β
q;k′;k ,

and it is easily verified that the Hartree-Fock contributions
to the renormalized single particle energies and Rabi-energy
given in Eqs. (4)–(6) correspond to the singlet part Iαα′

q;k |
S
.

Physically, Iαα′

q;k describes Coulomb mediated transitions
from all initial states βk − q to the final state αk via the
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intermediate states γ k′ − q, γ ′k′ with the Coulomb matrix
elements V

α′γ γ ′β
−q;k;k−q. As mentioned above, the Coulomb ma-

trix elements with β 	= α′ and/or γ 	= γ ′ correspond to
Auger recombinations and pair creation/annihilation pro-
cesses. Whereas these processes give a small contribution to
the static ground-state renormalization of the valence bands
contained in the singlet parts, they are strongly nonresonant
for the optically induced density dependent modifications
contained in the correlated part. As verified numerically,
the timescales for Auger recombinations and pair cre-
ation/annihilation processes are four to five orders of magni-
tude longer than those of intraband scattering processes and
will be neglected in the following. Additionally neglecting
the weak orbital and k, k′-dependence of the Coulomb ma-
trix elements, the expression for the density-assisted transi-
tion/occupation probabilities simplifies to

Iαα′

q;k = Ṽq〈c†
αkρqcα′k−q〉,

where Ṽq is a quasi-2D Coulomb matrix element that again
contains ground-state and background screening contributions
only and ρq =

∑

βk′ c
†
βk′−qcβk′ is the density operator.

To derive an approximation for the correlated part of the
density-assisted transition amplitudes, we employ a second-
order cluster expansion where we derive the EOM for the
relevant two-particle correlations and factorize the occurring
three-particle expectation values into singlet and doublet con-
tributions [44]. Within this approximation, the singlet factor-
izations act as source terms for the two-particle correlations,
whereas the doublet contributions lead to a renormalization of
the single-particle energies, excitonic correlations, biexcitons,
and screening of the Coulomb interaction in the Hartree-
Fock contributions. Assuming screening to be the dominant
correlation effect at elevated densities, we write the EOM for
the relevant two-particle correlations as

ih̄
d

dt
�C

αββα′

q;k′;k =
(

��
αββα′

q;k′;k − ih̄γT

)

�C
αββα′

q;k′;k

+
(

f
β

k′−q − f
β

k′

)

Iαα′

q,k + S
αββα′

q;k′;k

+ remaining doublets, (10)

where we explicitly quoted only the doublet correlations
that lead to the build-up of screening, ��

αββα′

q;k′;k = �α′k−q +
�βk′ − �βk′−q − �αk, and included a phenomenological de-
phasing of the triplets γT . Note that in Eq. (10), the density
assisted transition probabilities Iαα′

q,k contain both the singlet
and correlated part and the remaining singlet sources are con-
tained in S

αββα′

q;k′;k . Using the shorthand notation f̄
β

k = 1 − f
β

k ,
the singlet sources are explicitly given by

S
αββα′

q;k′;k = Ṽq

(

Pαα′

k f
β

k′−q f̄
β

k′ − Pαα′

k−q f̄
β

k′−q f
β

k′

)

+ Ṽk−k′P
αβ

k

∑

γ

P
βγ

k′−q

(

P
γα′

k−q − δγα′
)

− Ṽk−k′P
αβ

k′

∑

γ

P
γα′

k−q

(

P
βγ

k′−q − δγ β

)

+ Ṽk−k′
(

P
βα′

k′−q − P
βα′

k−q

)

∑

γ

P
αγ

k P
γ β

k′ (11)

and treated on the level of a second Born approximation.

FIG. 4. Diagrammatic representation of the density assisted
transition/occupation probabilities. The full density assisted tran-
sition amplitudes are represented by twofold contoured circles
whereas the singlet and correlated parts are represented by sim-
ple and threefold contoured circles, respectively. Similarly, simple
and doubly contoured wiggles represent the “bare” and screened
Coulomb interaction, respectively. The upper line corresponds to
the division into the singlet (Hartree-Fock) and correlated part and
the second and third lines represent the first and second line of
Eq. (12).

If one assumes quasistatic single-particle distributions f
β

k

and neglects the remaining doublet contributions, then one can
analytically solve Eq. (10) in frequency space [44]. A subse-
quent summation over β and k′ yields the closed expression

Iαα′

q;k (ω) = Iαα′

q;k (ω)
∣

∣

S
+ Ṽq�

αα′

q;k (ω + iγT )Iαα′

q,k (ω)

+ ṼqT αα′

q;k (ω)

= W αα′

q;k (ω + iγT )
∑

βk′

C
αββα′

q;k′;k (ω)
∣

∣

∣

S

+W αα′

q;k (ω + iγT )T αα′

q;k (ω), (12)

where the screened Coulomb matrix element W αα′

q;k is given by
Dyson’s equation

W αα′

q;k (ω) = Ṽq + Ṽq�
αα′

q;k (ω)W αα′

q;k (ω)

and

�αα′

q;k (ω) = �q(ω + (�αk − �α′k−q)/h̄),

�q(ω) =
∑

βk′

f
β

k′−q − f
β

k′

h̄ω + �βk′−q − �βk′

is the standard Lindhard polarization function. Furthermore,
we define

T αα′

q;k (ω) =
∑

βk′

S
αββα′

q;k′;k (ω)

h̄ω − ��
αββα′

q;k′;k + ih̄γT

.

Hence, the doublet contributions explicitly written in Eq. (10)
lead to screening of the Coulomb potential both in the Hartree-
Fock and scattering contributions, as shown schematically in
Fig. 4. Note that at this level of approximation, the energy
denominators in the scattering integrals and Lindhard po-
larization function still contain the unscreened Hartree-Fock
renormalizations. However, it can be shown that screening in
these contributions is introduced by the inclusion of the next
level cluster expansion [44] and we will replace all unscreened
energy renormalizations �α

k by their screened counterparts
�̃α

k in the following.
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If one would neglect the remaining scattering integrals
contained in

∑

q W αα′

q;k T αα′

q;k , then one would thus arrive at the
level of the screened Hartree-Fock approximation where all
the Coulomb matrix elements in Eqs. (4)–(6) are replaced
by their screened counterparts. The remaining scattering
contributions predominantly lead to carrier relaxation and
excitation-induced dephasing of the coherent interband polar-
ization. They contain only small additional renormalizations
of the single-particle dispersion. Hence, the screened Hartree-
Fock renormalizations of the single-particle energies provide
a useful measure for the band-gap renormalization in the
presence of excited carriers. In particular, in a fully incoherent
quasistatic equilibrium situation, a steady state solution of
the screened DBE equations yields the density-dependent gap
equations

�̃ik = �i +
1

2

∑

k′

W|k−k′|
�̃ik′

ε̃ik′

(

f v
ik′ − f c

ik′

)

, (13)

ṽik = vF,i +
1

2

∑

k′

W|k−k′|
k′

k

ṽik′

ε̃ik′
cos(θk − θk′ )

(

f v
ik′ − f c

ik′

)

,

(14)

where Wq is the statically screened Coulomb interaction.

Equation (12) together with Eq. (11) provides an effi-
cient scheme to compute the Coulomb correlations numer-
ically. As a consequence of the strong Coulomb interac-
tion in TMDCs and the large associated exciton binding,
it is important to properly include the full frequency de-
pendence of the screened interband matrix elements W vc

q;k
which enter the scattering contributions of the microscopic
polarizations and lead to memory effects beyond the Markov
approximation.

In addition to the Coulomb correlations, the inclusion of
the Fröhlich Hamiltonian introduces the scattering of ex-
cited charge carriers within their bands by the absorption or
emission of LO phonons. These are evaluated on the level
of quantum-kinetic theory in second Born approximation.
Our analysis shows that, similarly as for the Coulombic
scattering rates, it is sufficient to treat the phonon scat-
tering rates of the quasistatic carrier distribution functions
within the Markov approximation, whereas it is crucial to
maintain the full frequency dependency for the polarization-
phonon scattering rates. The resulting phononic contributions
to the electron and polarization scattering rates are given
by

d

dt
f c
sk

∣

∣

∣

∣

ph.

corr.

=
2π

h̄

∑

q

g0
qgcc

q;k+q Dη

(

�̃c
sk+q − �̃c

sk − h̄ωq

)[

(nq + 1) f c
sk+q f̄ c

sk − nq f c
sk f̄ c

sk+q

]

+
2π

h̄

∑

q

g0
qgcc

q;k Dη

(

�̃c
sk−q − �̃c

sk + h̄ωq

)[

nq f c
sk−q f̄ c

sk − (1 + nq) f c
sk f̄ c

sk−q

]

, (15)

ih̄
d

dt
Psk

∣

∣

∣

∣

ph.

corr.

= ih̄
d

dt
Psk

∣

∣

∣

∣

c,ph.

corr.

+ ih̄
d

dt
Psk

∣

∣

∣

∣

v,ph.

corr.

, (16)

ih̄
d

dt
Psk

∣

∣

∣

∣

c,ph.

corr.

= F

[

∑

q

g0
qgvc

q;k

{

f̄ c
sk−qnq + f c

sk−q(1 + nq)

h̄(ω + ωq) + �̃v
sk − �̃c

sk−q + iη
+

f̄ c
sk−q(1 + nq) + f c

sk−qnq

h̄(ω − ωq) + �̃v
sk − �̃c

sk−q + iη

}

Psk

−
∑

q

g0
qgvc

q;k+q

{

f̄ c
sknq + f c

sk(1 + nq)

h̄(ω + ωq) + �̃v
sk+q − �̃c

sk + iη
+

f̄ c
sk(1 + nq) + f c

sknq

h̄(ω − ωq) + �̃v
sk+q − �̃c

sk + iη

}

Psk+q

]

, (17)

ih̄
d

dt
Psk

∣

∣

∣

∣

v,ph.

corr.

= F

[

∑

q

g0
qgvc

q;k+q

{

f v
sk+qnq + f̄ v

sk+q(1 + nq)

h̄(ω + ωq) + �̃v
sk+q − �̃c

sk + iη
+

f v
sk+q(1 + nq) + f̄ v

sk+qnq

h̄(ω − ωq) + �̃v
sk+q − �̃c

sk + iη

}

Psk

−
∑

q

g0
qgvc

q;k

{

f v
sknq + f̄ v

sk(1 + nq)

h̄(ω + ωq) + �̃v
sk − �̃c

sk−q + iη
+

f v
sk(1 + nq) + f̄ v

sknq

h̄(ω − ωq) + �̃v
sk − �̃c

sk−q + iη

}

Psk−q

]

, (18)

and a similar equation holds for the valence-band distribu-
tion functions. Here, πDη(x) = η

x2+η2 denotes the numeri-
cal energy-conserving function, nq is the phonon occupation
number, h̄ωq = 27.72 meV [41] is the corresponding LO-
phonon energy, and F[ f ] denotes the Fourier transform of
function f . The inclusion of the screened Fröhlich interac-
tion gαα′

q,k(ω) = g0
q + g0

q�
αα′

q,k(ω)gαα′

q,k(ω) accounts for screen-
ing contributions arising from the excited charge carriers in
addition to the background screening contributions of the
remote bands and dielectric environment already included in
g0

q. Thus, Coulomb and phonon-coupling matrix elements are
treated on the same level of approximation.

III. NUMERICAL RESULTS

In this section, we present the results of our numerical anal-
ysis of the excitation dynamics and gain build-up in mono-
layer MoTe2-H. As physical conditions, we assume a pump-
probe scenario, where we consider a room-temperature ML
of MoTe2-H, which has been placed on a quartz substrate and
is excited by a high-intensity linear-polarized optical pump
pulse (E0 ∼ 1.25 MV/cm). The central pump frequency is
chosen to be slightly above the interacting B-band gap and
the pump pulse has a full width at half maximum (FWHM) of
333 fs corresponding to a photon density of 1.8 × 1015 cm−2
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(a pump fluence of 520 μJ/cm2). For these excitation condi-
tions, it is ensured that virtually all carriers are created in the
K and K ′ valleys.

For the pump simulations, we solve the Dirac-Bloch
Eqs. (2) and (3) in the time domain. The optically induced in-
terband polarizations lead to the generation of excited charge
carriers and the subsequent carrier relaxation dynamics is
computed from the carrier-carrier and carrier-phonon scatter-
ing contributions, Eqs. (9)–(12) for α = α′ and Eq. (15), re-
spectively. For the carrier dynamics, the numerically most im-
portant effect of the many-body correlations of the interband
polarizations is the replacement of the “bare” Coulomb po-
tential by its screened counterpart in the Hartree-Fock contri-
butions, whereas the detailed excitation-induced dephasing of
the interband polarizations play only a minor role. As verified
numerically, it is sufficient to compute the carrier dynamics
within the Markov approximation and the excitation-induced
band-gap renormalization is determined from the density de-
pendent gap Eqs. (13) and (14). They yield the renormalized
single-particle bands wherein the excited carriers relax on
the level of screened Hartree-Fock approximation. We then
define the excitation-induced band-gap renormalization as the
density-dependent change of the gaps between the spin-split
renormalized single-particle bands relative to the respective
gaps in the low-density limit.

For the probe pulse and for equilibrium configurations,
we solve Eq. (2) in frequency domain via a matrix-inversion
scheme, where the carrier distribution functions are qua-
sistatic and we restrict ourselves to the terms linear in Psk in
the singlet sources. However, to predict the correct line shapes
of the optical spectra, it turns out to be crucial to include
the detailed and fully dynamical many-body correlations of
the interband polarizations, Eqs. (9)–(12) for α/α′ = v/c and
Eq. (16)–(18).

A. Carrier dynamics and band-gap renormalization

In Fig. 5(a), we plot the excitation and subsequent re-
laxation dynamics of the A-band electron distribution func-
tion f e

A,k(t ) = f c
A,k(t ) in the vicinity of the K/K ′ points.

Since conduction and valence bands with the same spin
and valley indices have identical effective masses within the
MDF model, the evolution of the hole distribution function
f h
A,k(t ) = f̄ v

A,−k(t ) is identical to that of the electrons. The
excitation dynamics of the B-band distribution functions are
similar and not shown here.

Due to the strong Coulomb interaction, carrier-carrier scat-
tering is extremely efficient and drives the carrier distributions
into hot quasiequilibrium distributions within a few femtosec-
onds. Here, the carrier temperature reaches T = 2350 K 10 fs
after the pump maximum has interacted with the sample.
This ultrafast carrier-carrier scattering quickly redistributes
the pump injected carriers to energies near the band gap and
away from the excitation energy, thus almost completely pre-
venting the accumulation of carriers at the excitation energy
and effectively removing the associated Pauli-blocking of the
absorption during the excitation process. The result is a highly
efficient generation of excited charge carriers which is limited
only by the absorption coefficient of the unexcited layer. After
the pump pulse has passed, we find a total carrier density

FIG. 5. (a) Dynamics of the A-band electron distribution in the
vicinity of the K/K ′ points after excitation with a 333 fs pump pulse
with peak amplitude of 1.25 MV/cm at t = t0. (b) Time evolution
of the excitation-induced band-gap renormalization (black) and the
density of excited charge carriers (red). The solid lines correspond
to the A-band properties, whereas the dashed lines show the B-band
properties. The gray shaded area indicates the envelope of the optical
pump pulse.

of 1.040 × 1014 cm−2, or equivalently, 5.20 × 1013 cm−2

generated electron hole-pairs, corresponding to an absorption
of about 2.9% of the incoming photons. Due to the Coulomb
enhancement of the above band-edge absorption, this value
is slightly larger than the universal low-density continuum
absorption of πα = 2.3% for noninteracting Dirac Fermions.

The initial ultrafast relaxation into hot quasiequilibrium
distributions is followed by a phonon-induced thermalization
that takes about 2.5 ps until a quasiequilibrium at the tempera-
ture of the phonon bath (300 K) is reached. At τ = 0.1 ps and
τ = 1 ps, we find intermediate temperatures of T = 2175 K
and T = 555 K, respectively. This relaxation time is about
twice as fast as in conventional semiconductors and based on
the efficient phonon coupling in ML MoTe2-H [41].

The time evolution of the excitation-induced band-gap
renormalization (black) and the total carrier density with given
spin and valley index ni(t ) = 1

A

∑

α,k f α
ik(t ) (red) is shown in

Fig. 5(b). With solid lines, we depict the respective A-band
properties, whereas the B-band properties are plotted using
dashed lines. The gray shaded area shows the envelope of
the Gaussian shaped optical pump pulse centered around t0.
Due to the initially nearly resonant excitation with the B-band
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gap, the final amount of charge carriers in the B bands (nB =
5.56 × 1013 cm−2) is slightly higher than in the A bands
(nA = 4.84 × 1013 cm−2). Note that due to the opposite spin,
there are no relaxation processes between the B and the A
bands on the timescales of interest here.

As can be recognized in Fig. 5(b), the build-up of popula-
tions during the excitation process is accompanied by an al-
most instantaneous large shrinkage of the band gap, followed
by a much slower further reduction. The band-edge shrink-
age results from combined screening and phase-space-filling
effects. As in conventional two-dimensional semiconductors,
the screening wave number is proportional to the carrier occu-
pation at k = 0. Due to the ultrafast Coulomb scattering, the
major contribution to screening develops within the timescale
of the pump pulse with a correspondent reduction of the band
gap of about 389 meV within the first 0.4 ps. Once the amount
of excited charge carriers has saturated, the band edge can
only be further reduced by phase-space filling. This leads to an
additional reduction of about 17 meV on the timescale of the
thermalization, yielding the total excitation-induced band-gap
renormalizations of 406 meV (A gap) and 419 meV (B gap),
respectively, for the investigated excitation conditions. These
results are in good agreement with our previous findings
in the equilibrium regime [18] and reported experimental
observations [15,16] on similar systems.

B. Evolution of optical spectra and build-up of optical gain

In Fig. 6, we present the time evolution of optical absorp-
tion/gain spectra computed as linear response to an ultrashort,
low-intensity probe pulse for different delay times τ = t − t0.
To cover the wide relevant energy range of several hundred
meV, we choose a temporal width of 10 fs for the probe pulse.
The use of such an ultrashort probe pulse also provides the
necessary time resolution to study the evolution of the optical
response during the excitation process, which is shown in
Fig. 6(a). Here, the pump-probe delay increases from τ =
−0.30 ps to τ = −0.05 ps in 0.05 ps steps. For comparison,
the linear absorption spectrum of the unexcited ML is depicted
in black. We notice an initial increase of the excited carrier
density leading to dephasing, excitation-induced band-edge
shrinkage, and reduction of the exciton binding energy. As a
consequence of compensating effects, we observe practically
no shift of the exciton resonance position under the given
excitation conditions. Excitation-induced dephasing increases
the 1-s-exciton linewidth from 2.3 meV at a delay time
τ = −0.25 ps to 42.2 meV at τ = −0.15 ps. Note, that we
include an additional dephasing constant of 10 meV for the
microscopic polarizations to assure convergence in the zero-
density limit. At τ = −0.05 ps and a density of about 3.36 ×
1013 cm−2 the exciton resonance is completely bleached out,
marking the Mott-density.

In Fig. 6(b), we show the optical absorption in the ther-
malization regime. Here, pump-probe delays increase from
τ = 0.5 ps to τ = 1.5 ps in 0.2 ps steps. The inset displays
snapshots of the corresponding A-band electron distribution
functions. In this time regime, no additional excited charge
carriers are generated, but thermalization relaxes the exist-
ing carriers into quasiequilibrium at the lattice temperature
(300 K). As a consequence of the high barriers between

FIG. 6. Optical absorption spectra at distinct pump-probe de-
lays. (a) Excitation regime. Pump-probe delays increase from
τ = −0.30 ps to τ = −0.05 ps in 0.05 ps steps. The black solid
line represents the low-density limit before the excitation. (b) Ther-
malization regime. Pump-probe delays increase from τ = 0.5 ps to
τ = 1.5 ps in 0.2 ps steps. The absorption spectrum in the quasiequi-
librium limit (τ � 2.5 ps) is shown in black. The corresponding
A-band distribution functions are depicted in the inset.

the K/K ′ and �/� valleys, no significant percentage of the
excited carriers can reach the side valleys on the fast carrier
relaxation timescale. Therefore, the total carrier densities
in the K/K ′ valleys is practically conserved. The absorp-
tion spectrum for quasiequilibrium conditions is depicted
in black in Fig. 6(b). With decreasing temperature of the
quasiequilibrium distributions, the occupation probabilities
near the band-gap increase. About 0.5 ps after the pump pulse,
inversion with (1 − f e

ik − f h
ik ) < 0 is reached and optical gain

(negative absorption) appears in the spectrum. Inversion and
gain increase with increasing cooling of the carriers. After
about 2.5 ps thermal equilibrium is reached, where we observe
broad A-band optical gain with a peak energy of 1.13 eV,
slightly below the low density A-exciton resonance. Note that
while the inclusion of the carrier-phonon scattering is crucial
for the thermalization of the carriers, linewidths and energy
renormalizations within the optical spectra are dominated by
polarization-carrier rather than polarization-phonon scattering
contributions. The maximum gain approaches a value of 0.5%
amplification of the incoming light, which is clearly below
the theoretical upper limit of πα/2 = 1.15% for the free
carrier, single-band case. Therefore, continuum absorption of
the A band overcompensates the gain of the B band at higher
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FIG. 7. (a) �↑ (top) and �↑ (bottom) side-valley electron den-
sities (left axis, black circles) and �↑ (top) and �↑ (bottom)
conduction-band offsets (right axis, red crosses) in dependence of the
total amount of excited charge carriers. (b) Similarly, charge-carrier
dependence of the K ′

↑ hole density (left axis, black circles) and
K↑/K ′

↑ valence-band splitting (right axis, red crosses). The respective
spin-up electron (hole) densities are stated as fraction of the total
spin-up electron (hole) density.

energies yielding a net absorption in the frequency range of
the B exciton.

C. Influence of the side valleys

The full DFT band structure displays six side minima in the
conduction band located at the �/� points of the Brillioun
zone. For the previously considered excitation conditions,
carrier equilibration leads to a net electron drain from the
K/K ′ to the �/� valleys as well as a hole drift between
the K and K ′ valleys. To compute this side-valley drain and
hole drift and its influence on the optical gain spectra, we
consider an equilibrium situation where all electrons and
holes have relaxed to a common chemical potentials. The
side valleys are treated within the effective mass approxi-
mation and the influence of their populations is considered
self-consistently including their contribution to screening and
excitation-induced renormalizations.

The electron drain to the side valleys critically depends on
the offset between the side valleys and the conduction band
minima at the K/K ′ points, which in turn are modified by
the carrier occupations in each valley. In Fig. 7(a), we depict
the �↑ (top) and �↑ (bottom) side-valley electron densities
(black circles) as well as the corresponding conduction-band
offsets (red crosses) in dependence of the total density of
excited charge carriers. Increasing the total carrier density

FIG. 8. Optical absorption spectra before and after equilibration
of the carriers between the different valleys. The solid lines show
the optical spectra after equilibration, the dotted lines before equi-
libration, where all carriers are located in the K and K ′ valleys. The
inset shows the peak optical gain for the corresponding charge-carrier
densities after (before) equilibration in circles (crosses).

from 2 × 1011 cm−2 to 1014 cm−2, the �↑ (�↑) conduction-
band offset increases by 7.0 meV (6.6 meV), while the
fraction of �↑ (�↑) electrons increases from about 3.1%
(5.8%) in the low-density regime to about 8.8% (15.1%) in
the regime investigated by the pump-probe simulations. The
larger electron drain towards the �↑ valleys arises from the
smaller side-valley offset, that increases from 82 meV (DFT
value) to 89.7 meV for the highest investigated carrier density.
For the �↑ valleys, the band offset increases from 97 meV
(DFT value) to 105.2 meV.

In addition to the electron drain, intervalley scattering leads
to a drift of the hole density between the K and K ′ valleys. In
our calculations, the influence of this is taken into account in
a similar manner as the side-valley drain, i.e., by considering
an equilibrium situation with a common chemical potential
for the holes in different valleys. In Fig. 7(b), we plot the
charge-carrier dependence of the fractional K ′

↑ hole density
(black circles) and the corresponding K↑/K ′

↑ valence-band
splitting (red crosses). Because of the large valence-band
splitting in the low-density limit, almost all the holes from
the K ′

↑ valley have drifted to the energetically favorable K↑
valley after equilibration. Only for carrier densities as high
as 1014 cm−2, the K ′

↑ valley is occupied with at least 1% of
the spin-up holes. Thus, the increasing valence-band splitting
with increasing carrier density is exclusively introduced by
the dominant occupation of holes in the K↑ valley. For the
shown carrier densities, the valence-band splitting increases
by 7.4 meV from 231.4 to 238.8 meV.

Finally, we present the resulting optical absorption spectra
after equilibration within the entire Brillioun zone for ele-
vated charge-carrier densities in Fig. 8. The carrier densi-
ties increase from orange (2.0 × 1013 cm−2) to black (1.2 ×
1014 cm−2). The solid (dotted) lines show the optical spectra
after (before) equilibration. The inset depicts the peak optical
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gain for the corresponding charge-carrier densities. Prior to
equilibration, all carriers are assumed to be located in the
K and K ′ valleys. As pointed out before, equilibration not
only leads to electron drain to the side valleys, but also to
hole drift between the K and K ′ valleys. Both processes
have counteracting effects on the optical spectra. While the
electron drain to the side-valleys leads to a loss of optically
recombining electrons, the hole drift between the K and K ′

valleys increases the amount of optically recombining holes.
Because of the large K↑/K ′

↑ (K ′
↓/K↓) valence-band splitting

about 99% of the holes contribute to A-band population inver-
sion after equilibration, compared to the nearly 50% before
equilibration. This overcompensates the effect of electron
drain—between 10.8% and 26.9% of the electrons for the
stated carrier densities—to the side valleys. Consequently,
enhanced peak optical gain is observed in equilibrium. In
particular, for carrier densities of 0.8/1.0/1.2 × 1014 cm−2

peak optical gain increases by 86/53/28% due to equilibra-
tion. For a carrier density as high as 1.2 × 1014 cm−2, we
observe peak optical gain occurring slightly below the low-
density A-exciton resonance with a magnitude of 0.83% of
the incoming light. Normalized to the layer thickness of D =
6.99 Å (see Table I), this corresponds to a peak gain of about
105 cm−1, which should be compared to the gain maximum
of 5000 cm−1 in typical III/V semiconductors under realistic
excitation conditions [45].

IV. DISCUSSION

In summary, we investigated the carrier dynamics in ML
MoTe2-H after excitation with a strong optical pump pulse
slightly above the interacting B-band gap. Our investigations
cover two distinct time regimes. In the excitation regime,
i.e., during the optical pulse, generation of photo-induced
charge carriers is accompanied by an almost instantaneous
band-gap renormalization of about 410 meV in our case, that
exceeds the exciton binding energy of the unexcited crystal.
In the low-density regime, the band-gap renormalization is
almost exactly canceled by the weakening of the excitonic

binding such that the exciton resonance displays a negligible
spectral shift. The initial fast carrier relaxation is followed
by a much slower thermalization of the hot carriers. Due to
efficient phonon coupling, the thermalization occurs within a
few picoseconds, whereas it is typically of the order of tens of
picoseconds in conventional III–V quantum well systems. For
the chosen pump-pulse intensity, thermalization finally leads
to population inversion. Here, we observe the transition from
plasma absorption to broadband optical gain. The maximum
of the A-band optical gain occurs slightly below the low-
density A-exciton resonance and its magnitude approaches
0.5% of the incoming light.

On the longer timescale, equilibration of the excited carri-
ers among different valleys is expected with a simultaneous
electron drain from the K/K ′ to the side valleys at the �/�

points of the Brillioun zone. Although the electron drain leads
to an efficiency drop of several percent in the gain regime,
there is no evidence for an excitation-dependent roll-over
from a direct to an indirect band gap, as has been predicted
theoretically for similar material systems [35,36]. Instead, we
find that the drop due to the electron drain is overcompensated
by a hole drift between the K and K ′ valleys, leading to a net
increase of the optical gain up to several 10%.

Our results are in general agreement with experimentally
observed excitation-induced band-gap shrinkage of similar
TMDC systems [15,16] and confirms the possibility of ul-
trafast band-gap modulation by the injection of carriers. Fur-
thermore, our results identify conditions for achieving plasma
gain in ML MoTe2-H and the short relaxation times enable
high repetition rates for possible applications in pulsed laser
operation.
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Abstract

An ab initio based fully microscopic many-body approach is used to study the carrier
relaxation dynamics in monolayer transition-metal dichalcogenides. Bandstructures and
wavefunctions as well as phonon energies and coupling matrix elements are calculated using
density functional theory. The resulting dipole and Coulomb matrix elements are implemented
in the Dirac–Bloch equations to calculate carrier–carrier and carrier–phonon scatterings
throughout the whole Brillouin zone (BZ). It is shown that carrier scatterings lead to a
relaxation into hot quasi-Fermi distributions on a single femtosecond timescale. Carrier cool
down and inter-valley transitions are mediated by phonon scatterings on a picosecond
timescale. Strong, density-dependent energy renormalizations are shown to be
valley-dependent. For MoTe2, MoSe2 and MoS2 the change of energies with occupation is
found to be about 50% stronger in the Σ and Λ side valleys than in the K and K′ valleys.
However, for realistic carrier densities, the materials always maintain their direct bandgap at
the K points of the BZ.

Keywords: monolayer TMDC, Dirac Bloch equations, energy renormalisation,
electron–electron scattering, electron–phonon scattering, inter-valley carrier dynamics,
non-equilibrium

(Some �gures may appear in colour only in the online journal)

1. Introduction

Monolayer transition-metal dichalcogenides (TMDCs) have a
variety of properties that make them very interesting for appli-
cations in opto-electronic devices. Two of the most important

∗ Author to whom any correspondence should be addressed.

characteristics are their direct bandgap and the exceptionally
strong Coulomb interaction due to inef�cient screening out-
side the monolayer plane. The highly ef�cient optical coupling
leads to a near-bandgap absorption of up to 10%–20% from
a single layer [1, 2] which makes the material attractive for
applications like photo-detectors [3–5] or solar cells [6, 7]. The
prominent optical coupling also leads to strong luminescence

1361-648X/22/285601+15$33.00 1 © 2022 IOP Publishing Ltd Printed in the UK
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Figure 1. (a)/(b) Electron/hole occupations of the A-band for a total electron/hole density of 12.5 × 1012 cm2 in a monolayer MoTe2.
Carriers are assumed to be in thermal equilibrium Fermi distributions at 300 K. (c) Renormalization of the A-bandgap in the presence of the
carriers.

and, consequently, promising performance as light-emitting
diodes [8–10]. Monolayer TMDCs have also been shown to
be able to provide strong optical gain [11, 12] which enables
them to be used as active material in lasers [13–15].

The strong Coulomb interaction also enables the possibil-
ity to tune the bandgap over a wide spectral range. Injecting
carriers into the system leads to energy renormalizations on
the order of the exciton binding energy which in these mate-
rials is of the order of hundreds of meV [16–19]. Figure 1
gives an example for the energy renormalizations in a mono-
layer of MoTe2. Here, equal electron and hole densities of
12.5× 1012 cm2 were placed in Fermi distributions at 300 K.
Figures 1(a) and (b) show the carrier distributions in the
band that is energetically closest to the bandgap at the K-
point (A-band). Mirroring these results along the Γ–M line
gives the results for the B-band which has the opposite spin
and the same gap atK′ as the A-band atK. As can be seen from
�gure 1(c), the presence of the quasi-equilibrium carriers

reduces the bandgap by about 100 meV throughout the whole
Brillouin zone (BZ). The renormalization is strongly enhanced
in the vicinity of high carrier occupations, reaching over
260 meV at the K-point.

The strong energy renormalizations open the interesting
possibility to tune the operatingwavelength through controlled
carrier injection. Also, the energetic order of the valleys could
potentially be changed, e.g., by exciting resonantly with a spe-
ci�c valley transition and/or using polarized, spin-valley sen-
sitive excitation [20, 21]. However, valley speci�c renormal-
izations require non-thermal carrier distributions. Once pump
injected carriers have thermalized into Fermi distributionswith
a global Fermi level throughout the BZ, the energies of individ-
ual valleys will only be determined by the total carrier density.
A potential drawback of the density dependent renormaliza-
tions was pointed out in references [11, 22]. If the energies
of a side valley of the electron A-band renormalize faster with
increasing carrier density than the energy at the direct bandgap

2
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at K, it could potentially happen that the side valley is lowered
below the K-valley and the material becomes optically indi-
rect. In this case, the pump injected electrons would predomi-
nantly occupy the side valley, and, since the hole bandstructure
does not have side valleys, electrons in them are not available
to recombine optically. This will degrade the material’s per-
formance for applications like light emitting diodes or lasers.
As we will show here, whether such a transition will occur
strongly depends on details of the bandstructure.

Valley- and excitation-dependent renormalizations for car-
riers in static thermal equilibrium distributions were discussed
in reference [22] using similar �rst principles based micro-
scopic models as we employ here. In reference [23] a sim-
ilar model was extended in order to be able to study the
nonequilibrium carrier relaxation due to electron–electron
scatterings. However, inter-valley carrier transitions involve
large momentum transfer which is predominantly mediated
by scatterings involving optical and acoustical phonons. These
were not included in reference [23]. The in�uence of phonon-
assisted inter- and intra-valley scatterings were investigated
in references [24–26], but only for carriers in equilibrium
distributions. In reference [12] electron–electron and elec-
tron–phonon scatterings were included to study nonequi-
librium carrier relaxation. However, that investigation was
limited to intra-valley dynamics using a simpli�ed one-
dimensional bandstructure model.

Here, we employ a fully microscopic many-body model
that includes electron–electron and electron–phonon scatter-
ings throughout the full BZ. The model is based on input
from �rst principle density functional theory (DFT) for band-
structures, electron wavefunctions and phonon energies and
coupling matrix elements. The model is used to determine
timescales for the relaxation of carriers that are excited above
the bandgap. It also yields times for inter-valley and intra-
valley scatterings that lead to global quasi equilibrium distri-
butions as well as for the subsequent cool-down to the ambient
temperature by removal of excess energy via phonon emission.

Details of the model are outlined in section 2 where we will
also show results of the DFT calculations. Results of the many-
body model are discussed in section 3 for monolayer MoTe2,
MoSe2 and MoS2. In section 3.1 we present numerical results
assuming an arti�cial static carrier distribution to initialize the
system in order to be able to clearly distinguish between the
excitation related dynamics and the subsequent carrier relax-
ation. Carrier scattering processes are turned on after the ini-
tialization. In section 3.1.1 we examine the case of an initial
distribution that is energetically located above the barriers sep-
arating different bandstructure valleys.We determine the char-
acteristic carrier relaxation times and show the in�uence of
electron–electron scatterings versus electron–phonon scatter-
ings due to optical and acoustical phonons at various stages
of the relaxation process. In section 3.1.2 we present results
where we assume excitation at the bandgap in the K-valley
and investigate the subsequent carrier transfer to the K′, Σ and
Λ valleys. After that, in section 3.2, we simulate the situation
where the system is excited dynamically using a 50 fs optical
pulse which allows us to identify characteristic details of the
relaxation dynamics might be observable in the experiment.

Finally, in section 3.3, we investigate the energy renormaliza-
tions after full carrier thermalisation for various excitation lev-
els in order to see if a transition from direct to indirect bandgap
occurs. We summarize our results in section 4.

2. Theoretical models

The theoretical approach used here is based on the
Dirac–Bloch equations (DBE) as described in reference
[12] and references therein. The DBE are the equations
of motions for the microscopic polarizations, pki, and the
occupation probabilities for electrons/holes, f e/hki :

ih̄
d
dt
pki =

(

εeki − εhki
)

pki −
(

1− f eki − f hki
)

Ωki

+ ih̄
d
dt
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,
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Here, Ω are the renormalized Rabi frequencies
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e
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whereµki are the dipole matrix elements between the electron
and hole bands with band index i and momentum k, and ε are
the renormalized energies:

ε
e/h
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e/h
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∑
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[
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eeee/hhhh
k−k′;k′ ;k
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∑
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]

. (4)

Coulomb matrix elements of the type Vehhh in equation (3)
and Vehee/hhhe in equation (4) mediate Auger-like processes.
Coulomb terms of the type Veehh in equation (3) and Veheh/hehe

in equation (4) represent pair creation and annihilation pro-
cesses. Whereas these processes can be neglected in systems
with weaker Coulomb interaction, like III–V semiconductors,
they are important in TMDCs. Here, they lead to a non-trivial
ground state deviating from the case of zero occupations and
polarizations. The dominant in�uence of these terms is to con-
tribute to a renormalisation of the hole bands which we take
into account by calculating the so-called Coulomb hole. We
have tested that these Auger- and pair-processes have a neg-
ligible impact on the carrier dynamics and can be neglected
there.

The term involving Vehhe in equation (3) represents the
renormalisationof the optical coupling as known from the clas-
sical semiconductor Bloch equations (SBE). It leads to the
generation of bound excitonic states below the bandgap and
to the Coulomb-enhancementof the continuum absorption. As
in the SBE, the term involving Veeee/hhhh in equation (4) leads

3
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to the exitation dependent energy renormalisation that we will
investigate in detail here.

The terms marked |corr summarize many-body correlations
beyond the Hartree–Fock level. They contain carrier scatter-
ings due to electron–electron and electron–phonon interac-
tions. The higher order correlations are also responsible for the
plasma-screening of the Coulomb interaction. In monolayer
TMDCs, the correct inclusion of these higher order terms is
of particular importance due to the exceptional strength of the
Coulomb interaction. We treat these terms and the resulting
screening as outlined in reference [12].

For the calculations as shown here, scatterings are only
taken into account explicitly for the carrier distributions.
Polarizations are only included for the optical excitation of
carriers. Since our focus is on the subsequent incoherent
dynamics of the distributions and not details of the excitation,
we approximate the scatterings that lead to the dephasing of
the polarisations by a simple dephasing rate.

The electron–electron scattering equations solved here are
outlined in reference [12]. Whereas in that reference only
one branch of dispersionless optical phonons was taken into
account for the electron–phonon scattering, here, we include
all optical and acoustical phonon branches. The generalized
electron–phonon scattering equations take the form:

d
dt
fki

∣

∣

∣

∣

ph.

corr.

=
2π
h̄

∑

q,m

gi,mk;qg̃
i,m
k;q;k+qD

(

ε̃k+qi − ε̃ki − h̄ωm
q

)

×
[

(nmq + 1) fk+qi f̄ ki − nmq fki f̄ k+qi

]

+
2π
h̄

∑

q,m

gi,mk;qg̃
i,m
k;q;kD

(

ε̃k−qi − ε̃ki − h̄ωm
q

)

×
[

nmq fk−qi f̄ ki − (1+ nmq ) fki f̄ k−qi

]

, (5)

where we use the abbreviation f̄ for (1− f ) and com-
bined the band indices i with the electron/hole index e/h.
πD(x) = η

x2+η2
denotes the numerical energy-conserving

function, where we include a phenomenological broadening of
η = 50 meV. Numerical tests showed that the exact value
of this broadening was insigni�cant for the �nal results.
The renormalized transition energies ε̃ are calculated as in
equation (4) but with Coulombmatrix elements which include
plasma-screening due to excited carriers in addition to the
screening from the dielectric environment which is already
included in the matrix elements V . The index m labels the
nine phonon branches [39, 40], all of which are taken into
account in our numerical evaluations. The phonon energies
are denoted by h̄ωm

q . n
m
q are the phonon occupation numbers.

The quantities g and g̃ are the unscreened and screened phonon
couplingmatrix elements, respectively. The additional k-index
on the phonon coupling matrix elements arises from the fact
that the momentum dependence of the electron wavefunctions
is included explicitly here while the studies in reference [12]
exclusively focused on the K-valley and used the electron
wavefunctions at this point only.

In equation (5), the �rst term of the second line corre-
sponds to scattering of carriers into the state k, i via phonon
emission and the second term represents out-scattering via

phonon absorption. The �rst term of the fourth line repre-
sents in-scattering via phonon absorption and the last term
out-scattering via phonon emission. For all processes the ini-
tial state has to be occupied, i.e. the occupation f has to
be non-zero, and the �nal state has to be at least partially
empty, (1− f ) > 0. Energy has to be conserved and the scat-
tering probability is given by the phonon coupling matrix
elements g.

The unrenormalized single-particle energies, ε, are calcu-
lated via DFT using the Vienna ab initio simulation pack-
age [27–31]. Details of these calculations are described in
reference [12] for MoTe2 and executed analogously for the
other materials. Besides the bandstructures, we also extract
the dipole matrix elements and the wavefunctions needed to
evaluate the Coulombmatrix elements from these calculations.
The full k-dependence throughout the BZ is taken into account
in all calculations for the single particle energies and dipole
matrix elements. Unlike in reference [12], no simpli�cation
in terms of a massive Dirac fermion model with �tted bands
is used. For the Coulomb matrix elements we evaluate the
wavefunction-dependent form factors only in the vicinity of
the K and Σ point and assume the same factors for the K′ and
Λ valleys. In regions away from these points the form factor of
the nearest valley is used.

For all materials investigated here, the bandstructure has
the same basic features. As representative example, �gure 2
shows the calculated unrenormalized electron and hole bands
for the case of a monolayer of MoTe2. The lowest two elec-
tron bands and highest two hole bands are related through
time reversal symmetry. Spin–orbit splitting lifts the degener-
acy of the bands with opposite spin at K and K′. The electron
band with the lowest energy at K and the hole band with the
highest energy at K are referred to as the A-bands. Carriers
in the so-called B-band have the opposite spin from those in
the A-band. Energies of the B-band can be derived from those
of the A-band by mirroring perpendicular to the Γ-M line.
For excitation with linear polarized light the physics within
the A-band at K is the same as that within the B-band at K′.
Thus, we reduce our presentations to the the A-band in the
following.

There are three additional minima in the electron A-band
structure at K′, Σ and Λ. The hole A-band has maxima at the
K- and K′-points and, additionally, a local maximum at the Γ-
point. The energies of the unrenormalized electron A-bands at
critical points of the BZ are listed for all materials investigated
here in table 1. Hole energies in the A-band are listed in table 2.

It should be noted that the exact valley energies are
very sensitive to details of the DFT calculation. In turn, the
excitation dependent energy renormalizations thatwill be stud-
ied in section 3.3 are strongly in�uenced by the exact sep-
arations between main and side valleys. One major aspect
concerning the offset between the different valleys is the lat-
tice constant. Already differences of one percent in the lattice
constant change the calculated DFT bandgap in the range of
100 meV and may result in the transition from a direct to an
indirect semiconductor [32–35]. In order to be as precise as
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Figure 2. (a) Lowest two electron and highest two hole bands in a monolayer of MoTe2 along a one-dimensional path through the BZ.
Red/blue: bands for carriers with spin up/down (A/B-band). Bottom: energy of the electron (b) and hole (c) A-bands in the irreducible sector
of the BZ. Spacing between contour lines is 50 meV.

Table 1. Calculated unrenormalized energies in the electron A-band at critical points of the BZ and at energy maxima, mP;P′ , between points
P and P′. Energies in (eV).

K K′
Λ Σ mK;Σ mK′;Λ mK;K′

MoTe2 1.058 1.093 1.091 1.108 1.323 1.363 1.410
MoSe2 1.446 1.468 1.496 1.474 1.769 1.784 1.900
MoS2 1.708 1.711 1.821 1.892 2.156 2.160 2.309

possible, we included van-der-Waals interaction via Grimme’s
dispersion correction, resulting in relaxed in-plane lattice con-
stants of 3.50 Å for MoTe2, 3.28 Å for MoSe2, and 3.15 Å
for MoS2, which is comparable to experimental �ndings [38].
Based on these parameters, we �nd a direct bandgap at K for
all materials investigated here and a separation from the side
valleys at Σ and Λ that exceeds the room temperature thermal
energy of about 26 meV.

Phonon energies and coupling matrix elements are calcu-
lated using the DFT software Quantum Espresso [36, 37]. For
the non-collinear Kohn–Sham wavefunctions with spin–orbit
coupling, the plane-wave basis set with a 49 Rydberg energy
cut-off, Perdew–Burke–Ernzerhof type generalized gradient
approximated exchange–correlation functional, and projec-
tor augmented wave method with full-relativistic potentials
were used. The resulting phonon dispersions were found
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Table 2. Calculated unrenormalized energies in the hole A-band at K, K′ and Γ and at energy minima, mP;P′ , between points P and P′.
Energies in (eV).

K K′
Γ mK;K′ mK;Γ mK′ ;Γ

MoTe2 0.000 −0.214 −0.393 −0.633 −0.656 −0.705
MoSe2 0.000 −0.183 −0.670 −0.435 −0.777 −0.853
MoS2 0.000 −0.146 −0.153 −0.706 −0.838 −0.919

in good agreement with the literature (see e.g. references
[39, 40]). The full k- and q-dependence of the phonon dis-
persions and coupling matrix elements are taken into account
in all calculations.

3. Results

In the following we examine results for monolayers of MoTe2,
MoSe2 and MoS2 suspended on a SiO2 substrate and at a tem-
perature of 300 K. In all studies of the dynamics only the low-
est two electron and highest two hole bands—A and B—are
included. Excitation with linear polarized light is assumed
which creates equal amounts of carriers at the K and K′ points
in bands of opposite spin.

3.1. Artificial excitation

Here, we initialize the carrier distributions with an arti�cial,
static distribution that allows to clearly determine timescales
in the subsequent relaxation as well as the importance of vari-
ous scattering processes within it. The initial distributions are
given by the formula:

fki =
f0μ

2
ki

μ2
max

exp

(

−
1
2

(

εeki − εhki − h̄ωL
∆

)2
)

, (6)

wherek is the two-dimensionalmomentumvector, i is the band
index and εe/h are the unrenormalized electron/hole energies.
These distributions approximate a case where carriers are opti-
cally excited at an energy h̄ωL and form aGaussian distribution
of width ∆. The occupation probabilities are weighted with
the square of the dipole matrix element μki between the ith
electron and hole band assuming a vanishing optical coupling
between states with unequal spin. μmax is the largest dipole
matrix element between any states. For all cases studied here,
a broadening∆ = 66 meV is used.

3.1.1. Above bandgap excitation. Figure 3(a) shows the dis-
tributions created in the electron A-band using equation (6)
for an excitation energy h̄ωL 800 meV above the unrenor-
malized bandgap. Here, a scaling f0 = 1.28 was used which
leads to a total electron sheet carrier density of about
1× 1014 cm2. Figures 3(b)–(d) show the distributions after
1 fs, 10 fs, and 500 fs of relaxation, respectively. As can be
seen in �gure 3(b), carrier scatterings broaden the distribution
dramatically on a single femtosecond timescale. The excita-
tion high above the bandgap is ideal for fast relaxation. Initial
states are highly occupied and �nal states at lower energies are
mostly empty which eliminates slow down of the relaxation
due to phase space �lling in this initial phase. Also, carriers

located in rather narrow momentum regions at high energies
screen the Coulomb interaction far less ef�ciently than if the
same amount of carriers are relaxed and distributed throughout
wide regions of the BZ.

After only 10 fs the carriers have relaxed to the bottom
of the band and assume Fermi-like distributions with maxi-
mum occupation at minimum energy (see �gure 3(c)). The
excess energy from the excitation leads to very hot distribu-
tions. Using Fermi distributions for the same electron density
we �nd a very goodmatch to the distribution after 10 fs assum-
ing a carrier temperature of 8500 K (see �gure 3(e)). The car-
riers subsequently cool down due to phonon emission. As can
be seen from �gures 3(d) and (f), after 500 fs the distribu-
tion can bematched assuming a carrier temperature of 1900K.
Subsequently, the carriers cool down further toward the lattice
temperature of 300 K on a picosecond timescale.

Figure 4 shows the individual contributions of elec-
tron–electron scatterings and of electron–phonon scatterings
to the carrier relaxation at the start of the relaxation and
after 10 and 500 fs of relaxation. Initially, the relaxation is
dominated by electron–electron scattering which broadens the
localized distributions according to a hot plasma temperature
on a single femtosecond timescale. During this initial phase,
the dynamic due to electron–phonon scatterings is about two
orders of magnitude slower and, thus, irrelevant at that time.
Once the carriers have relaxed into hot quasi-Fermi distribu-
tions after about 10 fs, the overall dynamic slows down by two
to three orders ofmagnitude (see the change of units in �gure 4
from [1 fs] to [1 ps]). Here, electron–electron scattering and
electron–phonon scattering become equally important. The
scatterings slow further down by roughly another order of
magnitude once the distributions cool down near room tem-
perature after a few picoseconds. In- and out-scatterings due to
electron–electron and electron–phonon scatterings lead even-
tually to the detailed balance that de�nes equilibrium Fermi
distributions.

As can be seen in �gure 5, during the �rst few femtosec-
onds of relaxation the phonon scatterings involving acous-
tic phonons are of similar importance as scatterings on opti-
cal phonons. Here, the phonon scattering rates including all
phonon contributions are about twice as high as when acous-
tical phonons are omitted. For the broadening of the initial
distribution scatterings involving large momentum transfers
are of particular importance. While acoustical phonons have
rather limited coupling strength for small momentum trans-
fers as they are typically involved in intra-valley relaxation,
their coupling strength and energy increases with increasing
momentum transfer which increase their importance for inter-
valley scatterings.Without the acoustic phonons there are only
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Figure 3. (a)–(d) Occupations of the electron A-band in a monolayer MoTe2 at various times after initialisation according to equation (6)
with f0 = 1.28. Labels give the time after the start of relaxation. (e) and (f) Occupation of the electron A-band for the same total electron
density as in (a)–(d), but using Fermi distributions with carrier temperatures of 8500 K and 1900 K, respectively.
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Figure 4. Change of occupations of the electron A-band in a monolayer MoTe2 at various times after initialisation as for �gure 3. Left: change
due to electron–electron scattering. Right: change due to electron–phonon scattering. Units for the top two (bottom four) panels are [1 fs]
([1 ps]).
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Figure 5. Change of occupations of the electron A-band in a monolayer MoTe2 due to phonon scatterings only. Top: at the beginning of
carrier relaxation. Bottom: after 10 fs of relaxation. Initialisation as for �gure 3 but with f0 = 0.16. Left: change due to all electron–phonon
scatterings. Right: change only due to optical phonons.

very few scatterings far from the initial distribution, like into
the area between Σ, K, and M or between Σ, Λ and Γ. After
the carriers have assumed a hot quasi-Fermi distribution after
about 10 fs, the carrier relaxation becomes dominated by intra-
valley scatterings. Here, scatterings involving optical phonons
dominate the total electron–phonon interaction and the total
phonon rates are almost identical to those in the absence of
processes involving acoustical phonons.

For the comparison of phonon scattering contributions in
�gure 5 we assumed an eight-times weaker excitation than
for the results in �gures 3 and 4. Electron–electron scat-
tering roughly scales with the density squared, while elec-
tron–phonon scattering scales about linearly with it. Thus, for
this lower excitation, phonon scatterings are overall more rele-
vant than in the earlier study.Also, it has been observed that for
strong excitations the limited phonon density of states in the
two-dimensional system leads to a hot phonon bottleneck
[41–44]. Here, a build-up of a nonequilibrium distribution

for optical phonons can strongly limit their cooling power
which, in turn, increases the relative importance of acoustical
phonons. This hot phonon effect is not included in our current
model.

3.1.2. Resonant excitation. In order to study the inter-valley
carrier transfer we place an arti�cial initial distribution almost
exclusively in the K-valley of the A-band (and K′-valley of
the B-band) and then calculate the scattering related carrier
generation in the other valleys. Figure 6 shows the occupations
of the electron A-band in MoTe2 2 fs after initialisation with
equation (6) resonantly at the bandgap, i.e. with h̄ωL = (εeK,A −
εhK,A), and f0 = 1.28. This initialisation creates an occupation
of about 0.75 atK. After the initial 2 fs of dynamics, scatterings
have created electron occupations of about 0.0014 atK, 0.0003
at Σ and 0.0007 at Λ.

Electron–electron scattering leads to a very fast ini-
tial relaxation within the K-valley to establish a Fermi-like
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Figure 6. Top: logarithm of the occupation of the electron A-band in a monolayer MoTe2 2 fs after initialisation with equation (6) resonantly
at the bandgap with f0 = 1.28. Bottom left: change in occupations within the electron A-band due to electron–electron scattering. Bottom
right: change due to electron–phonon scattering. Grid-line spacing is 0.05 ps in the lower two �gures. Please note that the solid black areas
near K in the lower two graphs are due to steep slopes resulting in overlapping contour lines and not data exceeding the color bar scale.

distribution there on a femtosecond timescale. However, it
does not lead to signi�cant inter-valley scattering due to the
large involved momentum transfer. The rate is only about
0.1 ps for electron–electron scattering from K to K′ and even
less for transitions to Σ and Λ. Inter-valley transfer is domi-
nated by electron–phonon scattering which during this initial
phase creates carrier at a rate of about 0.8 ps in the K′-valley,
0.2 ps in the Λ-valley, and 0.3 ps in the Σ-valley.

Due to the much larger energy separation between the K
and K′ valley for holes than for electrons, the carrier transfer
is signi�cantly slower for these. We �nd a carrier generation
rate atK′ for holes within the A-band of only 0.004 ps for elec-
tron–electron scattering and 0.0006 ps for electron–phonon
scattering,

3.2. Optical excitation

After having used arti�cial occupations in section 3.1 in order
to determine carrier relaxation timescales and the importance
of underlying mechanisms, we investigate here signatures of
carrier relaxation under more realistic optical excitation con-
ditions. We excite the system with a Gaussian pulse with an
envelope of E0 exp

(

−(t− t0)2/∆
2
t

)

, with a width∆t of 50 fs.
Since we are not concerned with details of the polarisation
dynamics we do not evaluate the pertinent microscopic scat-
tering processes but use a simple phenomenological dephas-
ing rate h̄γ = 30 meV. The central frequency of the pulse
is 800 meV above the unrenormalized bandgap. While the
pulse is present, carriers created by it lead to a dynamic
renormalization of the bandgap [12]. As we have shown in
section 3.1, these renormalizations can be comparable to the
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Figure 7. Occupation of the electron A-band at various times during optical excitation with a 50 fs long Gaussian pulse. The pulse maximum
is at 0 fs and the excitation energy is 800 meV above the renormalized bandgap. Top (bottom): for an optical �eld E0 = 0.0625 MV cm−1

(E0 = 2.00 MV cm−1).
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Figure 8. Left: renormalized energies of the electron A-band at critical points in the BZ as function of the electron density for monolayers
of MoTe2, MoSe2 and MoS2. Short dashed vertical lines mark the density at which the occupations are 50%. Right: change of energies with
increase of occupation.

spectral width of the 50 fs pulse. Thus, the detuning between
central frequency of the pulse and the renormalized bandgap
changes during the pulse which leads to an excitation that
is spectrally broader than the one created by the arti�cial
instantaneous excitation.

Figure 7 shows the occupations in the electron A-band of
a monolayer of MoTe2 at various times during the excitation
and for two optical �eld strength, E0 = 0.0625 MV cm−1 and
E0 = 2.00MV cm−1. These pulses create electron densities of

about 1× 1011 cm2 and 8× 1013 cm2, respectively. For low
excitation the carrier occupations stay below one percent at all
times and smaller than 10−4 until after the center of the pulse
passed. For these low occupations electron–electron scattering
is very weak. Carriers remain near the original excitation until
after the pulse maximum has passed and relax into the side
valleys on a 10 fs timescale rather than the single femtosec-
ond scale seen for higher excitation levels in section 3.1. Some
deviations from the strictly monotone energy dependence of
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the quasi Fermi distributions can still be seen 50 fs after the
pulse maximum at the K′ point.

For the strong excitation carriers relax into hot quasi-Fermi
distributions already during the pulse. At the pulse maximum
carriers are already predominantly relaxed to the bottom of
all valleys and the only non-thermal signature is the fact that
occupations at the individual valleys are not increasing with
decreasing valley energy and are, e.g. higher at Λ and K′ than
at K. The subsequent cooling down of the carriers happens on
a similar timescale as for lower excitation.

3.3. Energy renormalizations

In the next step, we evaluate the density dependence of the
energy renormalizations formonolayers ofMoTe2, MoSe2 and
MoS2 with carriers in global thermal equilibrium in order to
check whether a transition from direct gap to indirect gap
occurs. Figure 8 shows the computed renormalizations at the
points K, K′, Σ and Λ for these materials. At the highest den-
sities considered here, the occupations at the K-point of the
electron A-band reach reach values above 90%. For MoTe2
the occupation at the highest density of 1014 cm2 is about 95%,
for MoSe2 it is about 93%, and for MoS2 the occupation at the
highest density of 0.55× 1014 cm2 is about 97%.We use these
high percentages in order to test the extreme limits of the renor-
malizations, well knowing that realistic densities for technical
applications such as lasers create electron occupations of only
about 50% which is suf�cient to generate inversion in the gain
regime since the hole occupation at the K-point are usually
larger due to the lack of side valleys in the hole bandstruc-
ture. To provide benchmark, we therefore mark in �gure 8 the
densities at which the occupations reach the 50% level.

All together, we never observe a transition to an indirect
bandstructure for any of the materials investigated here. For all
realistic densities, the lowest electron energy always remains
at the K-point. For all materials, the change in energy with
change in occupation is stronger in the Σ and Λ side valleys
than at the K and K′ points (see the right-hand side panels of
�gure 8). This difference in renormalizations is caused in part
by the valley dependence of the Coulomb interaction strength
due to its dependence on the local wavefunction overlaps. It
is also a consequence of the local bandstructure dispersion. In
valleys with lower effective mass and, thus, lower density of
states the occupations change stronger for a given change the
in overall excitation level. However, since the side valleys are
energetically signi�cantly above the K-valley energies, their
occupations in thermal equilibrium are low such that the local
energy renormalizations are not strong enough to catch up to
or even go below the K-point energy. Only in the hypotheti-
cal case where the energy separations in the unexcited ystems
were smaller, the occupations in all valleys would be of similar
order and a transition from direct to indirect would be possible.

The DFT determined energetic differences between the
side- and the main-valley used in our work are considerably

larger than those assumed in reference [22] where, e.g., the
valley splitting at zero density in MoS2 was assumed to be
less than 15 meV while our calculations yield a separation of
113 meV (see table 1). For MoSe2, we �nd a direct gap with
a minimum valley separation of about 30 meV while refer-
ence [22] assumes an indirect bandgap for that material. Our
determination of a direct bandgap for MoSe2 agrees with most
of the literature (see e.g. references [45, 46] and references
therein).Alltogether, the larger energy separations are themain
reason why our calculations do not predict any transition to
an indirect band con�guration in contrast to the �ndings of
reference [22].

4. Summary and outlook

We combine �rst principle DFT calculations with fully micro-
scopic many-body models based on the semiconductor DBEs
in order to study the carrier dynamics and excitation induced
energy renormalizations in monolayer TMDCs. Quantum
Boltzmann type scattering equations for the electron–electron
and electron–phonon scattering are solved taking into account
the full BZ in order to resolve the detailed inter- and intra-
valley relaxation processes.

For excitation high above the bandgap, we �nd that
the carriers relax into hot quasi-Fermi distributions at the
valley minima within less than 10 fs. This initial relax-
ation is dominated by electron–electron scatterings. For the
subsequent intra-valley relaxation, electron–electron and elec-
tron–phonon scatterings turn out to be of comparable impor-
tance. The subsequent cooling of the hot plasma is mediated
by phonon emission on a picosecond timescale. For resonant
excitation at the K-gap, the subsequent transfer of carriers to
other valleys is found to be dominated by phonon scatterings
on a single picosecond timescale.

We �nd that non-equilibrium signatures in the electron
distribution as caused by a spectrally narrow optical excita-
tion are only observable in the low excitation regime. Elec-
tron–electron scattering processes on the same timescale of
typical femtosecond pulses hide details of the excitation at
higher excitation levels.

Finally, we show that for monolayer TMDCs with a direct
bandgapat zero excitation and an energetic separation between
the main valley and side valleys on the order of the thermal
energy or more, like MoTe2, MoSe2 and MoS2, the valley
dependent energy renormalizations do not lead to a transition
fromdirect to indirect bandgap.While the energy renormaliza-
tion with increasing density can be stronger in the side valleys,
at realistic densities it is not suf�cient to shift the side-valley
energetically below theK-point energy for any of the materials
investigated here.

An investigation of further mono- and multi-layer TMDC
materials and their heterostructures is required in order to see
whether one of them allows for such a transition from direct
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to indirect due to smaller valley separations, and/or a signi�-
cantly valley-dependent Coulomb strength and/or density of
states (effective mass). For example, an excitation induced
transition from an indirect to a direct gap con�guration might
be possible in TMDC bi-layer systems.
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Electron–Hole Plasma-Induced Dephasing in Transition
Metal Dichalcogenides

Josefine Neuhaus,* Tineke Stroucken, and Stephan W. Koch*

1. Introduction

Since the first successful studies on graphite and its single and
few-layer configurations, the research on van der Waals bonded
materials, including the class of semiconducting transition metal
dichalcogenides (TMDCs), has become increasingly topical.
While several aspects of bulk TMDCs were already investigated
in the 1960s and 1970s,[1–3] it was the ability to systematically
reduce the thickness down to a monolayer that revealed the tran-
sition from an indirect to a direct bandgap in these materials.[4]

This feature, in combination with the strong light–matter inter-
action and the additional degrees of freedom such as the valley
index resulting from the quasi-2D hexagonal symmetry, stimu-
lated vivid and manifold research on these systems and makes
TMDCs interesting even for technological applications.

Generally, the TMDC thickness reduction down to a monolayer
not only leads to a direct bandgap but also to strong Coulomb inter-
actions and reduced intrinsic screening, yielding excitonic binding
energies of several hundredmeV.[5–8]Many aspects of the resulting
pronounced excitonic properties and related interaction effects in
semiconducting TMDC materials have been investigated and

discussed in the past years.[4,5,9–11] As one
of the consequences of the reduced intrinsic
screening in monolayer TMDCs, one experi-
ences a strong dependence of near-bandgap
optical properties on details of the dielectric
environment and the excitation conditions.
With regard to the excitonic linewidth, a
drastic narrowing was seen in experiments
when monolayers were encapsulated in
hBN. Even though this feature is not yet
completely understood, it was interpreted
as a suppression of inhomogeneities due
to reduced sample imperfections.[12]

As an intrinsic feature, the excitonic res-
onance broadening due to temperature changes or the additional
occupation of different excitonic states has been analyzed both
experimentally and theoretically.[13–19] For example, in four-wave
mixing experiments, exciton population changes have been
induced by varying the spectrally selective excitation power of
the first pulse.[20] It was shown that the details of the excitonic
scattering processes are influenced by the different energetic
structures in molybdenum and tungsten-based materials.[16]

To extend these studies into the range of unbound electron–
hole plasma excitations, we theoretically investigate in this work
the homogeneous linewidth changes and the four-wave mixing
decay in the presence of the above-bandgap-excited TMDCs.
As a representative example, we evaluate a fully microscopic the-
ory to determine the impact of prepulse-generated incoherent
carrier populations for parameters corresponding to an hBN-
encapsulated monolayer of MoS2. In particular, we analyze
the excitation-induced dephasing (EID) dependence on details
of the carrier distributions in different parts of the bandstructure
and at different electronic temperatures.

2. Theory

In our calculations, we use a systematic approach where density
functional theory (DFT)[21,22] is utilized to extract the fundamen-
tal material properties such as its bandstructure, as well as the
Coulomb and optical dipole matrix elements. These quantities
serve as inputs for our many-body equation of motion (EOM)
approach, which is then numerically evaluated to gain insight
into the dynamical and optical properties of the system under
investigation. For the studies presented in this work, we map
our full DFT bandstructure onto an effective four-band
Hamiltonian. In particular, we include the spin-split conduction
and valence bands as these are dominant for the optical response
of the system and take the bandstructure around the direct
bandgap (K/K 0) and side (Σ/Λ) valley into account.
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We use the massive Dirac–Fermion (MDF) model[23] to
describe the single-particle dispersion around the K/K 0 valley,
yielding a noninteracting relativistic single-particle dispersion

of εc,v
στk ¼ � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δ
2
στ þ 4ℏ2v2F,στk

2
q

, with spin (σ)- and valley

(τ)-dependent gap Δστ and Fermi velocity vF,στ, and treat the dis-
persion at the side valley in effective mass approximation. Here,
the necessary input parameters are obtained by fitting the DFT
bandstructure that is calculated using the Perdew–Burke–
Ernzerhof (PBE)[24] functional as implemented in the Vienna
Ab initio Simulation Package (VASP).[25–27] Due to the finite
thickness of monolayer TMDCs, the dielectric environment as
well as the finite extension play a crucial role for the Coulomb
interaction in these materials. The screening contributions
resulting from remote bands and the dielectric environment
are modeled within an analytic approach by solving Poisson’s
equation for the layered system[28] and the Coulomb matrix ele-
ments are calculated exploiting the DFT wave functions.[29]

In this work, we are interested in the electron–hole plasma-
induced dephasing of the interband polarization Pvc

k ¼ c†kνk
� �

and its manifestation in the linear and the four-wave mixing
(FWM) spectrum. We assume a scenario where an initial quasi-
static carrier distribution f 0k is generated by a pulse that precedes
any later probe or FWM pulses such that the prepulse-induced
polarization Pvc,0

k already decays. For this case, the dynamics of
the interband polarization caused by additional pulses can be
described via the screened Dirac–Bloch equation.

iℏ
d
dt
Pvc
k ¼ ð2Σ̃½0�

k � iγÞPvc
k � ð1� 2f 0kÞΩ̃vc

k þ Γ
vc
k ½f 0k�

� 2
X

k0
ðWvvvv

k�k0 ;k;k0 �Wcvvc
k�k0 ;k;k0ÞΔf k0 � Δf kΩ̃

vc
k

 !

(1)

where Δf k denotes the changes in the carrier distribution arising
from the later pulses. In Equation (1), the first line represents the
linear part and the second line contains the nonlinear sources.

Furthermore, Σ̃
½0�
k describes the renormalized single-particle

energy, Ω̃vc
k the renormalized Rabi energy including the inter-

band momentum matrix element pcv with p
cv,K ð0 Þ ¼ m0vF for lin-

ear polarized light, and γ is a phenomenological dephasing rate

2Σ̃½0�
k ¼ 2εk þ

X

k0
ðWvvvv

k�k0 ;k;k0 �W cvvc
k�k0 ;k;k0Þð1� 2f 0k0Þ

Ω̃
vc
k ¼ e

m0c
pcv ⋅ A�

X

k0
W ccvv

k�k0 ;k;k0P
vc
k0

(2)

The contribution Γ
vc
k ½f 0k� represents the linearized scattering

due to the initial carrier densities from polarization-carrier inter-
action in second-order Born approximation. Beyond that, corre-
lation effects enter the calculations through screening of the
Coulomb interaction

Wα,β,β0 , α0

q,k,k0 ¼ WqðωÞ αk� qjα0kh i βk0 þ qjβ0k0h i
WqðωÞ ¼ Vq þ VqΠqðωÞWqðωÞ

ΠqðωÞ ¼
X

α, p

f 0,αp�q � f 0,αp

ℏω� Σ̃
α
p�q þ Σ̃

α
p þ iℏγT

(3)

where Vq is the Coulomb potential that includes contributions
from ground state and environmental screening. In the
Lindhard polarization function, Πq, the sum is evaluated for
all spin, valley, and band indices subsumed in α. Here, the
screened renormalized energies enter the denominator and
we include a phenomenological background dephasing γT to
account for all the processes not treated explicitly in our theory.
In our numerical evaluations, we use a value of 300meV to
match the experimentally determined slope of the excitation-
induced bandgap renormalization.[30]

With all those ingredients, the scattering contributions are

Γ
vc
k ½f k�ðωÞjel ¼

X

q 6¼0

½Ivcq;kðωÞ � Ivcq;kþqðωÞ� (4)

Ivcq;kðωÞ ¼
X

αk0
VqWqðωÞ

f ck�qf
α
k0 f

α
k0þq

� �

Σ

Pk � f vk f
α
k0 f

α
k0þq

� �

Σ

Pk�q

ℏω� Σ̃
c
k�q þ Σ̃

v
k � Σ̃

α
k0þq þ Σ̃

α
k0 þ iℏγT

(5)

where we used the shorthand notation ðf αk1 f
β

k2
f γk3ÞΣ ¼

f αk1 f
β

k2
ð1� f γk3Þ þ ð1� f αk1Þð1� f βk2Þf

γ

k3
.

3. Numerical Results

We numerically evaluate our coupled set of equations for param-
eters corresponding to an hBN-encapsulated monolayer of MoS2.
As shown in Figure 1, the unrenormalized band dispersion εα,k
in the vicinity of the main (K/K 0) and side (Σ/Λ) valleys is approxi-
mated on the basis of the DFT bandstructure. The resulting non-
interacting bandgap at the K=K 0 point is ΔA ¼ 1.682 eV and
ΔB ¼ 1.831 eV for the A (K"/K 0

#) and B (K#/K 0
") bands, respectively.

The valence band maxima are split by 146meV. The local conduc-
tion band minima marking the side valley (Σ/Λ) are
λc,A ¼ 133meV, respectively, and λc,B ¼ 200meV above the min-
ima at the K/K 0 point with the corresponding spin. The local band
curvature is described in good approximation by a relativistic disper-
sion with Fermi velocity ℏvF,A ¼ 3.532 eVÅ and ℏvF,B ¼ 3.467 eVÅ
for themain and by an effectivemass approach withm�

A ¼ 0.611m0

and m�
B ¼ 0.705m0 for the side valley, respectively. Comparable

Figure 1. DFT bandstructure of a MoS2 monolayer (gray scale) and

approximated unrenormalized band dispersion (blue scale) around the

main and side valleys. The spin of the bands is indicated by the corre-

sponding colored arrows.
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results were reported in different DFT studies.[31,32] Furthermore, to
model the background screening, we carried out DFT calculations
for the bulk structure of MoS2, yielding in-plane and out-of-plane
dielectric constants of εBk ¼ 15.19 and ε⊥ ¼ 6.38 and an interlayer

distance of D ¼ 6.18 Å, respectively. To model the influence of the
encapsulating hBN, we use κ ¼ ffiffiffiffiffiffiffiffiffi

εkε⊥
p ¼ 4.2.

3.1. Excitation-Induced Absorption Changes

Generally, after the short-pulse excitation of a TMDC monolayer
well above the bandgap, strong Coulomb scattering leads to relaxa-
tion into hot quasiequilibrium distributions within the first tens of
femtoseconds. Thereafter, the carriers equilibrate with the lattice via
carrier–phonon interactions on the timescale of few picoseconds.[30]

To analyze the consequences of the pre-excited carrier populations,
we evaluate the excitation-induced broadening of the 1s-exciton
absorption linewidth for different distributions. As relevant exam-
ples, we show in Figure 2 results for the case where we have an
equal amount of carriers in the A- and B-band and compare it with
the situation of thermal equilibrium, where the holes experience a
drain between the K and K 0 valley due to the large energy offset
between the valleys. In all calculations we assume that the carriers

can be described via Fermi distributions f αkðμα,TÞ ¼
ð1þ eðΣ̃

½0�
k
�μαÞβÞ�1

with the chemical potential μα that is determined
iteratively with the renormalized single-particle dispersion and the
screened Coulomb matrix elements.

Figure 2a shows the impact of the excited electron–hole
plasma on the excitation-induced broadening of the linear

spectra. As a dominant effect, we notice a nearly linear increase
of the 1s-exciton linewidth with the carrier density by evaluating
the first line of Equation (1) in the frequency domain. To investi-
gate the dependence on details of the electron–hole distributions,
we carry out calculations for different equilibration conditions
and an electronic temperature of T ¼ 300 K.

As a representative example, Figure 2b shows for the density
n0 ¼ 2� 1012 cm�2 that the carrier distribution in the conduc-
tion band is only weakly affected by the overall carrier equilibra-
tion within the bandstructure. However, due to the large valence
band splitting, there is a significant drift of holes between the
valleys, as depicted in Figure 2c. This leads to a higher occupa-
tion of the lowest-lying band and further increases the valence
band offset by 27meV for the illustrated density.

Comparing the different results in Figure 2a, we see that the
dependence of the linewidth increase on the details of the carrier
distributions is marginal for low densities, whereas it becomes
somewhat more pronounced in the regime of elevated electron–
hole pair populations. Moreover, we notice that the unequal hole
distribution in different valence bands, respectively, the different
valleys, leads to a somewhat reduced broadening of the lowest
excitonic state.

The different distributions selected for Figure 2 are motivated
by the fact that generally, in addition to the redistribution of the
holes between the K valleys, an electron drift toward the side
valleys takes place. However, as the offset between the valleys
is considerably large–133meV in MoS2 without initial
carriers–in the regimes considered in this work, only a small
amount of carriers is located in the side valley. Hence, the influ-
ence of the side valley in MoS2 in the low-density regime is neg-
ligible if only scattering processes with incoherent carriers are
considered. This scenario differs from that in a tungsten-based
sample, where EID effects were studied depending on the exci-
ton density, and a crucial importance of the intervalley scattering
with the side valley was reported.[13,16] These observations dem-
onstrate the importance of the different energetic structures in
tungsten- andmolybdenum-basedmaterials on the one hand and
the dependence of EID effects on the particular nature of the
investigated scattering processes on the other hand.

To get some insight into the importance of carrier tempera-
ture on the excitation-induced modifications of the optical
response, we show in Figure 3 the changes in the linear absorp-
tion spectra and the excitonic linewidth. In Figure 3a, we see that
resonance broadening increases with increasing temperature for
all densities investigated. The changes becomemore pronounced
for elevated densities and reach a plateau for higher tempera-
tures. While the increase in the linewidth for n0 ¼
0.6� 1012 cm�2 is in the range of 0.1meV, the overall broaden-
ing for n0 ¼ 2.4� 1012 cm�2 increases by 1.58meV between a
carrier temperature of T ¼ 200 K and T ¼ 800 K, which can
be seen even in the linear absorption spectrum (Figure 3b).

Generally, an increasing carrier temperature leads to a spread-
ing of the Fermi distributions and less occupation close to the
main valley. As is indicated on the energy axis of Figure 3b, this
distribution broadening goes along with a smaller bandgap
renormalization. The microscopic origin of this reduction can
be found in both the influence of the screening, that is approxi-
mately described by the screening wave number, which in turn is

(a)

(b) (c)

Figure 2. a) Dependency of the excitation-dependent linewidth of the E1s
exciton resonance on the carrier distribution in the sample. The carriers

are either distributed equally to the A- and B-bands in the different K-valleys
(light blue) or a common chemical potential is assumed (dark blue),

resembling the situation of thermal equilibrium, where a drain of holes

between the K valleys is observed. The carrier distribution in the

b) conduction and c) valence band and the different bands (A: dashed,

B: solid) at the K-valley are shown exemplarily for n0 ¼ 2.0� 1012 cm�2.
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proportional to the carrier occupation at k ¼ K , and the influence
of phase-space filling that decreases due to the distribution
broadening effects. In addition to the carrier temperature-depen-
dent bandgap reduction, a shift of the excitonic resonance on the
order of few meV can be noticed in Figure 3b.

3.2. EID Signatures in Four-Wave Mixing Spectroscopy

Experimentally, homogeneous and inhomogeneous broadening
effects cannot be separated in a linear absorption spectrum.
However, the influence of homogeneous broadening can be
identified using nonlinear spectroscopic techniques such as
degenerate four-wave mixing (DFWM) spectroscopy. In
DFWM, two laser pulses with wave vectors k1 and k2, varying
time delay τ, and low intensities are used, and the scattered
signal P½3�, resulting from the interaction of the second pulse
with the grating induced by the interaction of the polarization
P½1� generated by the first pulse and the second pulse, in direction
2k2 � k1, is measured.

Assuming low-intensity pulses and complete decay of the
prepulse-induced coherent polarization, changes in the

population due to the four-wave mixing pulses in the presence
of initial incoherent carriers can be approximated by

Δf k �
jPvc

k
j2

1�2f 0
k

≡ jP̃vc
k j2. The resulting equation for the polarization

P̃vc
k is solved iteratively in the eigenbasis of

H½0� ¼ 2Σ̃½0�
k δ

k,k
0 �
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1� 2f 0k

q

Wccvv
k;k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2f 0k0
q

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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with the left and right eigenstates ϕL
λðkÞ and ϕR

λ ðkÞ for
eigenvalues ελ ¼ ℏωλ. Here, the Coulomb matrix elements are
evaluated for the dominating frequency ω ¼ ω1s. The polariza-
tion of nth order in the optical field is then given by
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The intensity of the FWM signal is proportional to the sum

over the contributions from the different eigenstates, jPðt, τÞj2 ¼
�

�
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e
2πm0

pvc
P

λ P
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�

�

�

2
with γλ ¼

P

k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2f 0k

q

ϕλðkÞ.
As an example of our results, we show in Figure 4 the

computed dependence of the time-resolved DFWM signal on
the initial carrier density for the case of zero delay between

the pulses (τ ¼ 0 ps). Here, we assumed excitation pulses reso-
nant to the lowest exciton having a temporal width of 150 fs. Due

to the carrier-induced increase in dephasing, we notice a signifi-

cantly faster decay of the DFWM signal with increasing density.
Figure 5 shows the integrated FWM signal for different initial

carrier densities. The pulses have a temporal width of 150 fs and
their central frequency is adjusted to the 1s excitonic resonance.

(a) (b)

Figure 3. a) Dependency of the excitation-dependent 1s-exciton linewidth on the carrier temperature for different carrier densities distributed equally in

the bands. The dephasing increases with elevated temperatures and reaches a density-dependent plateau for high temperatures. b) The linear absorption

spectrum for the carrier density n0 ¼ 2.4� 1012 cm�2 and the carrier temperatures of 200, 400, 600, and 800 K. The respective renormalized A and B

bandgaps are marked by the vertical bars on the energy axis.
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For positive delay times, the signal decreases proportional to
2γhom, where γhom is composed of the inserted phenomenological
background dephasing ℏγ ¼ 2meV and the EID of the lowest-
lying exciton resonance. Due to the density-dependent increase
in EID, the slope of the integrated signal gets steeper with
increasing carrier densities, approaching the self-correlated sig-
nal of the pulses depicted as gray areas in the figure.

4. Summary and Conclusion

Using a fully microscopic approach combined with DFT calcu-
lations of the linear material properties, we investigated EID
effects caused by incoherent electron–hole excitations.

We evaluated the theory for different carrier distributions for
the example of hBN-encapsulated MoS2 and computed the
excitation-dependent linewidth of the energetically lowest exciton
resonance as well as the decay of the DFWM signal. As relevant
examples, we analyzed the influence of different static carrier
distributions within the bands and the consequences of an
increased carrier temperature. For small densities, our results
show that the EID depends only weakly on the exact carrier dis-
tribution, whereas distribution details become more important
with increasing density. The unequal occupation of the valence
bands resulting from the hole drain between the K and K 0 valley
leads to a reduced dephasing. Furthermore, an increase in carrier
temperature results in an EID increase, reaching a plateau for
high temperatures. These effects should manifest themselves,
for example, in time-dependent measurements of the excitonic
linewidth and in DFWM spectroscopy. In particular, the EID
after incoherent carrier generation is expected to decrease with
increasing time as both the cooling of hot carrier distributions on
a short timescale as well as the drain of the holes due to inter-
valley scattering on a longer timescale result in an EID decrease.
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