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Abstract 

Computed tomography (CT) has become the diagnostic modality of choice for head trauma due 

to its accuracy, reliability, safety, and its availability. CT scanning of the head is typically used 

to detect infarction, calcifications, tumors,  bone trauma, and hemorrhage.   

Motion correction (MC) is of general interest in CT imaging. Motion correction techniques 

have two categories. The first group requires motion information and consists of motion 

acquisition and motion compensation processes. The motion acquisition derives the motion 

information from reference images, surrogate signals, or the data themselves. Motion 

compensation compensates the motion during a reconstruction process. The second group is 

based on image-processing techniques and corrects the motion without prior knowledge of the 

motion. Based on what prior information is available, one can choose the appropriate approach 

to perform the motion correction. A CT motion correction method prototype was available from 

the University of Sydney. The technique is based on the rigid motion of the helical head CT 

scans and only requires the measured data as the available information. A 3D registration of the 

object to each 2D view was accomplished individually to estimate the position of the object for 

each acquired CT view. The initial rough estimate of the 3D object is achieved with a 

preliminary reconstruction without incorporating motion compensation with this intermediate 

estimated motion, a motion-compensated reconstruction can be performed. The motion and 

reconstructed image can be updated alternately within a multi-resolution scheme until an 

optimal motion estimate is found. The final compensation can be performed in a fine-resolution 

reconstruction process with acceleration.  

The study aimed to validate the data-driven 3D iterative motion estimation (ME) and motion 

compensation algorithm on phantom as well as clinical studies with head movements during 

computed tomography (CT) scan and to optimize the data-driven 3D iterative algorithm for 

robust application.  

The Hoffman 3D brain phantom provides a quantitative and qualitative study of the three-

dimensional effects of scatter and attenuation similar to the human brain. Water-filled Hoffman 

brain phantom acquired on Siemens Biograph mCT scanners with 128 slice CT scanner 

(Siemens Medical Solutions USA, Inc., Malvern, PA) using routine head CT. A reference 

stationary helical CT scan (gold standard) of the phantom was acquired and afterward, a series 

of CT scans were acquired with a variety of motions. The effect of MC on phantom CT scans 

was evaluated by comparing the gold standard stationary phantom images with corresponding 
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uncorrected and MC images. The phantom scans with small to moderate motion were 

reconstructed without artifacts. But for fast motion scans, some residual artifacts were observed 

after motion correction had been applied. It has been seen that these artifacts were due to data 

insufficiency. These fast massive phantom motions are not clinically expected in human scans.  

The raw data of fifteen anonymized patients that moved during head CT scans were collected. 

Each patient scan was reconstructed using fully automated data-driven 3D iterative image 

reconstruction with motion compensation. The image data sets were independently assessed by 

two blinded radiologists and scored on a 4-point scale.  

The method performed well even for relatively large patient motions. With data-driven motion 

estimation and correction, 65% of the patient scans became dramatically better, 14% of the 

scans much better, 11% negligibly better and 5% of the scans demonstrated no improvement. 

It has been observed that the proposed approach usually worked well when the amplitude of the 

rotations was less than 10o and the amplitude of the translations was less than 30 mm, which in 

our opinion are unlikely to be exceeded in most clinical scans. However, we observed that it 

did not achieve motion-free images in cases of very severe motion.  

In the few patient scan after MC, it was observed that some scans still have residual motion 

artifacts. To make motion correction robust, it is intended to investigate each shortfall that has 

a significant impact on ME and MC. After numerous studies, it was identified that smoothing 

kernel (SK) length, projection tolerance (PT)  and angle rebin (AR) can affect the performance 

of the algorithm. The patient's scans with residual artifacts were reconstructed using various 

smoothing kernel (SK) lengths, projection tolerance (PT), and angle rebin (AR) to remove 

residual motion artifacts (MA) in head CT.  All reconstructed MC images were scored. The SK 

length, PT, and AR have a significant impact on ME, and MC. The SK 60, PT 0.001, and AR 

8 generate satisfactory artifact-free images.  The mean reconstruction score (MRS) for SK 60, 

AR 8 were found statistically significant (p < 0.05) as compared with SK 120, SK 230, and SK 

320 and AR 16, AR 32, respectively. Although, MRS for PT 0.001 not providing statistically 

significant differences (p > 0.05) from PT 0.0015, PT 0.0018, PT 0.0025, and PT 0.005 

respectively. 

Furthermore, we also performed MC for head movement during the CT  part of the scan of the 

brain PET/CT and examined its significance for final image reconstruction. A series of PET/CT 

scans of Hoffman brain phantom filled with fluorodeoxyglucose (18F-FDG) were acquired 

using mCT Siemens Biograph PET/CT scanner. The phantom was acquired with a variety of 
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movements during the CT part of the acquisition, to simulate patient movements, but the 

phantom remained stationary during the PET scan. Each motion corrupted CT scan was 

reconstructed using fully automated 3D iterative data-driven image reconstruction with motion 

compensation (MC) to remove motion artifacts and afterward an attenuation map was generated 

from this MC CT. The PET raw data was reconstructed offline using the JSrecon algorithm 

with an attenuation map from motion-corrected CT and compared with the PET scan 

reconstructed with an attenuation map from motion-corrupted CT. The data-driven motion 

compensation approach was also implemented on patients presenting head movement during 

CT part of brain PET/CT scan. All reconstructed images were independently assessed for 

qualitative analysis and the scenium analysis was performed for quantitative analysis. The 

reconstructed PET images of 10 basic brain regions using both nMC-PET and MC-PET were 

analyzed and the results showed that the SUVmean of all brain regions in nMC-PET were 

significantly higher than those in MC-PET. The 3D-standard surface projection (3D-SSP) Z 

score was evaluated on both nMC-PET and MC-PET. The 3D-SSP method compares the data 

from the individual to a database of healthy controls by defining a large number of points on a 

spatially normalized brain surface. With the little head motion, motion correction had only a 

slight impact on the Z score image in qualitative terms.  

The data-driven ME and MC approach is based on measured raw data and successfully removed 

motion artifacts in head CT scans for a variety of rigid human head movements in clinical scans. 

Furthermore, it can be easily implemented to correct motion artifacts in clinical head helical 

CT scans as no further measurements are needed, and decrease the number of repeat scans. We 

conclude that the methods developed can provide accurate and artifact-free MC images with 

most types of head motion likely to be encountered in CT imaging, provided that the motion 

can be accurately determined. The data-driven iterative motion compensation approach for head 

CT significantly increases the quantitative and qualitative accuracy of the PET/CT brain image 

affected by patient movement. The method could be applied to both stand-alone helical CT 

scans and the CT component of hybrid imaging systems such as PET/CT and SPECT/CT. 
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Zusammenfassung   

Die Computertomographie (CT) hat sich aufgrund ihrer Genauigkeit, Zuverlässigkeit, 

Sicherheit und breiten Verfügbarkeit zur diagnostischen Methode der Wahl bei Kopftraumata 

entwickelt. Die CT-Untersuchung des Kopfes wird in der Regel zur Erkennung von Infarkten, 

Verkalkungen, Tumoren, Knochentraumata und Blutungen eingesetzt.   

Die Bewegungskorrektur (MC) ist bei der CT-Bildgebung von allgemeinem Interesse. Es gibt 

zwei Kategorien von Bewegungskorrekturverfahren. Die erste Gruppe erfordert 

Bewegungsinformationen und besteht aus Verfahren zur Bewegungserfassung und zum 

Bewegungsausgleich. Bei der Bewegungserfassung werden die Bewegungsinformationen aus 

Referenzbildern, Surrogatsignalen oder den Daten selbst abgeleitet. Die 

Bewegungskompensation gleicht die Bewegung während eines Rekonstruktionsprozesses aus. 

Die zweite Gruppe basiert auf Bildverarbeitungsverfahren und korrigiert die Bewegung ohne 

vorherige Kenntnis der Bewegung. Je nachdem, welche Vorabinformationen verfügbar sind, 

kann man den geeigneten Ansatz für die Bewegungskorrektur wählen. Ein Prototyp einer CT-

Bewegungskorrekturmethode wurde von der Universität Sydney zur Verfügung gestellt. Die 

Technik basiert auf der starren Bewegung der helikalen Kopf-CT-Scans und benötigt nur die 

gemessenen Daten als verfügbare Informationen. Eine 3D-Registrierung des Objekts zu jeder 

2D-Ansicht wurde einzeln durchgeführt, um die position des Objekts für jede erfasste CT-

Ansicht zu schätzen. Die anfängliche grobe Schätzung des 3D-Objekts wird mit einer 

vorläufigen Rekonstruktion erreicht, ohne dass eine Bewegungskompensation mit dieser 

zwischenzeitlich geschätzten Bewegung erfolgt. Die Bewegung und das rekonstruierte Bild 

können in einem Mehrfachauflösungsschema abwechselnd aktualisiert werden, bis eine 

optimale Bewegungsschätzung gefunden ist. Der endgültige Ausgleich kann in einem 

Rekonstruktionsprozess mit Feinauflösung und Beschleunigung erfolgen 

Ziel der Studie war es, den datengesteuerten iterativen 3D-Bewegungsschätzungs- (ME) und 

Bewegungskompensationsalgorithmus an einem Phantom sowie an klinischen Studien mit 

Kopfbewegungen während eines Computertomographie-Scans (CT) zu validieren und den 

datengesteuerten iterativen 3D-Algorithmus für eine robuste Anwendung zu optimieren.  

Das Hoffman-3D-Gehirnphantom ermöglicht eine quantitative und qualitative Untersuchung 

der dreidimensionalen Effekte von Streuung und Dämpfung ähnlich dem menschlichen Gehirn. 

Das mit Wasser gefüllte Hoffman-Gehirnphantom wurde mit Siemens Biograph mCT-

Scannern mit 128 Schichten (Siemens Medical Solutions USA, Inc., Malvern, PA) im Rahmen 

einer Routine-Kopf-CT aufgenommen. Ein stationärer Helical-CT-Referenzscan 
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(Goldstandard) des Phantoms wurde aufgenommen, danach wurde eine Reihe von CT-Scans 

mit einer Vielzahl von Bewegungen durchgeführt. Die Auswirkungen von MC auf die 

Phantom-CT-Scans wurden durch den Vergleich der stationären Goldstandard-Phantombilder 

mit den entsprechenden unkorrigierten und MC-Bildern bewertet. Die Phantomaufnahmen mit 

geringer bis mittlerer Bewegung wurden ohne Artefakte rekonstruiert, aber bei Aufnahmen mit 

schneller Bewegung wurden nach der Bewegungskorrektur einige Restartefakte beobachtet. Es 

hat sich gezeigt, dass diese Artefakte auf unzureichende Daten zurückzuführen waren. Diese 

schnellen massiven Bewegungen sind klinisch bei Scans in der Humanmedizin nicht zu 

erwarten.  

Die Rohdaten von fünfzehn anonymisierten Patienten, die sich während der Kopf-CT-Scans 

bewegten, wurden gesammelt. Jeder Patientenscan wurde mit einer vollautomatischen 

datengesteuerten iterativen 3D-Bildrekonstruktion mit Bewegungskompensation rekonstruiert. 

Die Bilddatensätze wurden unabhängig voneinander von zwei verblindeten Radiologen 

beurteilt und auf einer 4-Punkte-Skala bewertet.  

Die Methode schnitt selbst bei relativ großen Patientenbewegungen gut ab. Mit der 

datengesteuerten Bewegungsschätzung und korrektur wurden 65% der Patientenscans 

dramatisch besser, 14% der Scans viel besser, 11% vernachlässigbar besser und 5% der Scans 

zeigten keine Verbesserung. Es wurde festgestellt, dass der vorgeschlagene Ansatz in der Regel 

gut funktionierte, wenn die Amplitude der Rotationen weniger als 10o und die Amplitude der 

Translationen weniger als 30 mm betrug, was unserer Meinung nach bei den meisten klinischen 

Scans kaum überschritten wird. Wir stellten jedoch fest, dass bei sehr starken Bewegungen 

keine bewegungsfreien Bilder erzielt werden konnten.  

Bei wenigen Patienten-Scans wurde nach der MC festgestellt, dass einige Scans noch 

Restbewegungsartefakte aufwiesen. Um die Bewegungskorrektur robust zu machen, soll jeder 

Mangel untersucht werden, der einen wesentlichen Einfluss auf ME und MC hat. Nach 

zahlreichen Studien wurde festgestellt, dass die Länge des Glättungskerns (SK), die 

Projektionstoleranz (PT) und der angle rebin (AR) die Leistung des Algorithmus 

beeinträchtigen können. Die Aufnahmen des Patienten mit Restartefakten wurden unter 

Verwendung verschiedener Glättungskernlängen (SK), Projektionstoleranz (PT) und angle 

rebin (AR) rekonstruiert, um Restbewegungsartefakte (MA) in der Kopf-CT zu entfernen.  Alle 

rekonstruierten MC-Bilder wurden ausgewertet. Die SK-Länge, PT und AR haben einen 

signifikanten Einfluss auf ME, und MC. die SK 60, PT 0,001, und AR 8 erzeugen 

zufriedenstellende artefaktfreie Bilder. Der mittlere Rekonstruktionswert (MRS) für SK 60 und 
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AR 8 wurde als statistisch signifikant (p < 0,05) im Vergleich zu SK 120, SK 230 und SK 320 

bzw. AR 16 und AR 32 eingestuft. Obwohl die MRS für PT 0,001 keine statistisch signifikanten 

Unterschiede (p > 0,05) zu PT 0,0015, PT 0,0018, PT 0,0025 bzw. PT 0,005 ergab. 

Darüber hinaus haben wir auch MC für Kopfbewegungen während des CT-Teils des PET/CT-

Scans des Gehirns durchgeführt und deren Bedeutung für die endgültige Bildrekonstruktion 

untersucht. Eine Reihe von PET/CT-Scans des Hoffman-Gehirnphantoms, das mit 

Fluordesoxyglukose (18FDG) gefüllt war, wurde mit dem mCT Siemens Biograph PET/CT-

Scanner aufgenommen. Das Phantom wurde während des CT-Teils der Aufnahme mit einer 

Vielzahl von Bewegungen erfasst, um die Bewegungen des Patienten zu simulieren, aber das 

Phantom blieb während des PET-Scans stationär. Jeder bewegungsgestörte CT-Scan wurde mit 

Hilfe einer vollautomatischen, iterativen 3D-Bildrekonstruktion mit Bewegungskompensation 

(MC) rekonstruiert, um Bewegungsartefakte zu entfernen, und anschließend wurde aus diesem 

MC-CT eine Abschwächungskarte erstellt. Die PET-Rohdaten wurden offline mit dem 

JSrecon-Algorithmus mit der Abschwächungskarte aus der bewegungskorrigierten CT 

rekonstruiert und mit dem PET-Scan verglichen, der mit der Abschwächungskarte aus der 

bewegungsverfälschten CT rekonstruiert wurde. Der datengesteuerte Ansatz zur 

Bewegungskompensation wurde auch bei Patienten mit Kopfbewegungen während des CT-

Teils der PET/CT-Untersuchung des Gehirns angewandt. Alle rekonstruierten Bilder wurden 

unabhängig voneinander für die qualitative Analyse bewertet, und die Sceniumanalyse wurde 

für die quantitative Analyse durchgeführt. Alle rekonstruierten Bilder wurden unabhängig 

voneinander für die qualitative Analyse bewertet und die Scenium-Analyse wurde für die 

quantitative Analyse durchgeführt. Die rekonstruierten PET-Bilder von 10 grundlegenden 

Hirnregionen sowohl mit nMC-PET als auch mit MC-PET wurden analysiert, und die 

Ergebnisse zeigten, dass der SUV-Mittelwert aller Hirnregionen bei nMC-PET signifikant 

höher war als bei MC-PET. Der Z-Score der 3D-standard surface projection (3D-SSP) wurde 

sowohl für nMC-PET als auch für MC-PET ausgewertet. Bei der 3D-SSP-Methode werden die 

Daten der Person mit einer Datenbank gesunder Kontrollen verglichen, indem eine große 

Anzahl von Punkten auf einer räumlich normalisierten Hirnoberfläche definiert wird. Bei der 

geringen Kopfbewegung hatte die Bewegungskorrektur nur einen geringen Einfluss auf das Z-

Score-Bild in qualitativer Hinsicht. 

Der datengesteuerte ME- und MC-Ansatz basiert auf gemessenen Rohdaten und entfernte 

erfolgreich Bewegungsartefakte in Kopf-CT-Scans für eine Vielzahl von starren menschlichen 

Kopfbewegungen in klinischen Scans. Darüber hinaus kann er leicht zur Korrektur von 
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Bewegungsartefakten in klinischen Helical-CT-Scans des Kopfes eingesetzt werden, da keine 

weiteren Messungen erforderlich sind und die Anzahl der Wiederholungsscans verringert 

werden kann. Wir kommen zu dem Schluss, dass die entwickelten Methoden genaue und 

artefaktfreie MC-Bilder bei den meisten Arten von Kopfbewegungen, die in der CT-

Bildgebung vorkommen, liefern können, vorausgesetzt, die Bewegung kann genau bestimmt 

werden. Die datengesteuerte iterative Bewegungskompensation für die Kopf-CT erhöht die 

quantitative und qualitative Genauigkeit des PET/CT-Gehirnbildes, das durch 

Patientenbewegungen beeinflusst wird, erheblich. 
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SK60 / PT 0.001 / AR 8 removed ghosting, column (c, d) SK 60 / PT 0.001 / AR 16 and SK 60 

/ PT 0.001 / AR 32 respectively still have the residual artifact. 77 
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Chapter 1.  Aims and objective 

1.1 Motivation and aims of the research 

The most essential and common diagnostic technique in medicine is X-ray computed 

tomography (CT). CT is the most common medical imaging, in the United States alone, 70 

million scans are performed each year (Brenner et al., 2007). In various medical diagnoses, CT 

has a vital role, including traumatology, cardiology, vascular radiology, oncology, 

interventional radiology (Dance et al., 2014) hybrid imaging (Beyer et al., 2000), and 

radiotherapy planning (Jaffray et al., 2012, Ferrando et al., 2015). CT scanning is commonly 

available, cost-effective, and provides higher sensitivity for the evaluation of skull fracture, 

calcification, and acute hemorrhage (Raj at el., 2014). 

Generally, CT motion artifacts are due to voluntary and involuntary actions like head motion, 

cardiac motion, and respiratory motion (Popilock et al., 2008, Yazdi et al., 2008). Head motion is 

also very frequently noticed in CT brain perfusion imaging of acute ischemic stroke patients 

(Fahmi et al., 2014). Moreover, severely injured patients or small children often move during 

scanning, thus generating motion artifacts (Barrett et al., 2004). Children must often be 

anesthetized, which is accompanied by some risks (Davidson et al., 2006). If the patient moves 

during the scan the motion artifacts can cause false diagnosis or in severe cases deliver distorted 

images that are inappropriate for diagnosis (Edlow et al., 2000). For these patients, scanning 

needs to be repeated resulting in a high undesirable radiation burden to the patient (Boone et 

al., 2012). The ability to compensate for head motion would reduce the need for a repeat scan 

and deliver artifact-free images in CT, PET/CT, and SPECT/CT, as these hybrid imaging 

techniques are dependent on the CT image for accurate anatomical localization and functional 

data for attenuation correction (Akamatsu et al., 2014, Ay et al., 2007). Moreover, effective head 

motion compensation methods are available for SPECT, PET, and MRI, but there is a lack of 

equivalent methods for CT, particularly for rigid motion. 

Motion artifacts might be reduced by faster scanning and employing immobilization devices 

(Beyer et al., 2005), and using sedation for pediatric patients or general anesthesia (Wachtel et 

al., 2009). However, each of these approaches has limitations, such as fast imaging protocols 

might compromise on image quality and anesthetics in children can have unfavorable side 

effects (i.e., respiratory depression, oxygen desaturation, and hypoxemia) (Malviya et al., 2000, 

Kaste et al., 2004). In some cases, anesthesia does not entirely avoid movement and requires 

more staff and other resources. It has also been demonstrated that in helical CT scans for the 
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head and neck, immobilization devices do not eliminate patient movement (Wagner et al., 

2003). Therefore, there is an urgent need to mitigate motion artifacts by retrospective motion 

correction method.  

Motion correction methods can be classified into two categories. The first group requires the 

motion acquisition data, such as surrogate signals or reference images to derive motion 

information, and motion is compensated during the reconstruction process. The second method 

is to compensate for motion without prior information about the motion using image-

processing techniques. Rigid motion correction in helical CT scan is complicated as the object 

is continually truncated from the axial side which provides limited data to restore the 

consistency in projections (Kim et al., 2013) comparatively, a small number of studies already 

performed motion correction in helical CT scanning, and a few of these studies need 

supplementary measurement to acquire the motion information (Kyme et al., 2014, Bhowmik et 

al., 2012, Sisniega et al., 2017, Kim et al., 2015, Kim et al., 2016, Man et al., 2004).   

In the present study, a data-driven fully 3D automatic reconstruction approach has been used 

to minimize motion artifacts in helical CT imaging (Sun et al., 2016). The proposed motion 

estimation, correlation, and compensation technique only require the measured raw data and 

the iterative reconstruction process to estimate the correction required. The study aimed to 

validate the data-driven 3D iterative motion estimation (ME) and motion compensation (MC) 

algorithm on scans with head movements during computed tomography (CT) and to optimize 

it for robust application. The implementation and optimization of a data-driven 3D iterative 

motion correction algorithm will be performed on brain phantom as well as patient scans to 

correct motion artifacts in human head CT. 

This work will involve the development of methods for: 

1. Validation of data-driven motion correction algorithm using moving phantoms studies 

on the helical CT systems.  

2. The evaluation goal is to prove that the method is robust.  

3. The optimitation of motion estimation and reconstruction in the 3D iterative data-driven 

motion reconstruction method. 

4. To evaluate the effect of CT image motion correction on PET image in hybrid PET/CT 

brain imaging. 
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1.2 Significance of study 

Motion is an important artifact in patient imaging that causes a reduction in the qualitative and 

the quantitative accuracy of the image. Primarily there are no motion correction techniques 

available for commercial CT scanners. Furthermore, this technique has primary importance for 

the patient all over the world and need immediate attention. The ability to compensate for head 

motion would alleviate the need for a repeat scan and deliver artifact-free images in CT and 

PET/CT. Moreover, the development of new techniques for motion correction in CT will be 

beneficial for patients as they can save their time, money, and undesired radiation exposure 

due to repeat CT scans. 
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Chapter 2. Introduction 

2.1 X-ray computed tomography 

X-ray computed tomography is a noninvasive imaging technique that provides a three-

dimensional view of anatomical details of the body. The first x-ray CT was introduced in 1971, 

with continual development CT scan became an essential diagnostic technique in medicine 

(Cherry et al., 2012). CT scanning is commonly available, cost-effective, and has a wide range 

of applications in hybrid imaging, traumatology, cardiology, vascular radiology, oncology, and 

interventional radiology. The number of CT examinations is growing exponentially all over 

the world. 

2.2 Historical overview  

2.3 X-rays production 

The x-ray tube is a vacuum tube consisting of a tube housing, a cathode (source of the electron), 

an anode (target) made up of high Z material, and a focusing cup to control the focal spot size 

as shown in figure 2.1. When the cathode is heated electrons are generated by thermionic 

emission. These electrons are accelerated and focused on the target by applying a potential 

difference between an anode and a cathode. The highest x-ray energy is equal to the peak 

voltage applied (20 to 150 kVp). A metal filter is used to remove low-energy x-ray before 

reaching the patient. On the interaction of the electron with the target material, bremsstrahlung 

and characteristic x-rays are produced.   

 

Figure 2.1: Schematic image of x-ray production (radiologycafe.com). 
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(a) Bremsstrahlung (breaking radiation) produced from inelastic interactions of the high-speed 

electron and the nucleus of the atom as shown in figure 2.2. When an energetic electron passes 

close to the nucleus of the atom the attractive coulomb's forces deaccelerate the electron and 

produce bremsstrahlung. These radiations cover the entire energy range of the spectrum and 

the total energy of the radiation depends on incident kinetic energy and the amount of energy 

is given off during the interaction.  The  target material´s Z2  determines the liklihood of 

bremsstrahlung emission. 

(b)  In the second type of interaction, the high-speed electron collides with one of the target 

atom's inner shell (K shell) electrons and ejects it. Another electron from the outer shell fills 

this vacancy and discrete characteristic radiation is released with its energy equal to the 

difference between the binding energies of two shells. 

(c) In the third sort of interaction, an electron collides with a nucleus directly, converting its 

entire energy into x-ray radiation. The x-ray energy produced by this interaction is the x-ray 

spectrum's upper energy limit. 

 

 

Figure 2.2: A typical x-ray spectrum produced by an X-ray tube (physicsopenlab.org). 

It is noticeable that the major portion of the x-ray is produced by bremsstrahlung while the 

spikes represent the characteristic x-rays. The x-ray quantity is approximately proportional to 

Ztarget × kV2×mAS  and the quality of x-rays depends on kVp, tube filtration as well as generator 

waveform. 

2.4 Photon interaction mechanism with matter 

X-rays and gamma rays transverse through matter and transfers their energy via nine different 

interactions. There are four major types of interaction: Rayleigh scattering, Compton 
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scattering, photoelectric absorption occurs between 30 keV- 150 keV, and pair production at 

higher energies > 1.022 MeV. The first three play a significant role in diagnostic radiology. 

2.4.1 Rayleigh scattering 

When there is an interaction of a photon with an outer shell electron through a non-ionizing 

process, the photon is scattered without losing energy. The chance of Rayleigh scattering 

increases as the target material's atomic number (Z) increases and decreases as the incident 

photon's energy (E) increases. 

2.4.2 The photoelectric effect 

In this process, incident photons is being absorbed by an atom. Figure 2.3 shows a schematic 

example of the photoelectric effect, in which a photon is absorbed and its energy is released by 

an electron known as a photoelectron. The difference in energies between the incident photon 

and the binding energy of the electron gives the photoelectron kinetic energy. Only when the 

energy of incident photons surpasses the binding energy of the electron in that shell can the 

photoelectric effect occur. The photoelectric effect's probability is related to Z3/E3. 

 

Figure 2.3: Schematic representation of photoelectric effect (Cherry et al., 2012). 

 

2.4.3 Compton scattering 

When an extremely high-energy photon collides with an atom's weakly connected outer-shell 

orbital electron, this interaction happens. The photon is not lost via Compton scattering; 

instead, it is deflected at an angle, as illustrated in figure 2.4, and only a portion of its energy 

is passed to the 'recoil' electron. A scattered photon and a Compton electron are created in this 

process. According to the conservation of energy and momentum, the energy of the scattered 

photon is proportional to the scattering angle. 
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E′ = 𝐸 [1 + 𝛼(1 − cos 𝜃)]⁄  

 

( 2.1 ) 

Where E′ is scattered and E is incident photon energies, α is E/moc
2 and moc

2 = 0.511 MeV is 

the rest energy of an electron. The probability of Compton scattering increases with an increase 

in E of the incident photon but is independent of Z of the target material. 

 

 

Figure 2.4: Schematic demonstration of Compton scattering (Cherry et al., 2012). 

 

2.4.4 Pair production  

A charged particle, generally an atomic nucleus, interacts with the electric field of a photon 

with an energy of 1.022 MeV. The photons vanished, and their energy was transformed into a 

pair of positrons (e+) and electrons (e-). The kinetic energy between the positron-electron pair 

is equal to the difference between incident photon energy E and the energy necessary to form 

the electron pair, as shown in the equation: 

E𝑒+  +  E𝑒−  =  E −  1.022 MeV ( 2.2 ) 

 

Through ionization and excitation, the positron annihilates with another neighboring electron 

at the end of the route, resulting in a pair of 511 keV photons traveling in opposing directions, 

as seen in figure 2.5. With rising E and Z2, the likelihood of pair production rises. 
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Figure 2.5: Schematic demonstration of pair production, energy of incident photon converted into an 

electron and positron. The position at the end of its range undergoes an annihilation process emitting 

two 511 keV electrons (Cherry et al., 2012). 

 

The x-rays beam undergoes different interactions with matter, the flux of the beam reduces 

depending upon the composition of the material and the energy of the photon. The most 

probable interactions versus photon energy for elements of different atomic numbers shown in 

figure 2.6. For the diagnostic x-ray energies, Compton scattering and photoelectric absorption 

are the two most dominant interactions. The attenuation of a narrow monenergistic x-ray beam 

transverse through homogenous material of thickness x can be written as 

I = Iₒ 𝑒𝑥𝑝−µ𝑥 ( 2.3 ) 

 

Where Io represents the initial intensity without an absorber, I represent the beam intensity 

after transmission through an absorber of thickness t and represent the linear attenuation 

coefficient. The x-ray beam is polychromatic, and the equation (2.3) can be written to represent 

the diversity of attenuation in biological tissues. 

I(E) = Iₒ(E)𝑒𝑥𝑝−∫ µ(𝐸,𝑥)𝑑𝑥
𝑥=𝑇
𝑥=0  ( 2.4 ) 

 

Io(E) is x-ray spectra before attenuation and I (E) x-ray spectra after attenuation, T is the 

thickness of the medium,  µ(𝐸, 𝑥) is the linear attenuation coefficient.  
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Figure 2.6: The most probable interactions versus photon energy for elements of different atomic 

numbers (Cherry et. al., 2012). 

2.5 X-ray detection 

X-ray detectors were used to measure the intensity of x-rays and were often used in the 

integrating current mode. The detectors' output current is proportional to the number of x-rays 

that impact the detector (Shefer et al., 2013). The indirect conversion approach was used to 

measure x-rays with a solid-state detector. The scintillator detector has a high density and 

atomic number, and it typically has a high x-ray absorption efficiency. A scintillator and a 

photodetector combine to form a solid-state CT detector. When x-rays hit the scintillator 

detector it converts x-rays into optical photons, a photodiode translates that optical signal into 

a proportional electrical signal. 

 

 

 

 

 

 

 

 

CdTe/CZT sensor 

CMOS ASIC 

CSI Scintillator 

Photodiode 

TFT/CMOS 

(a) (b) 

 
Figure 2.7: (a) Indirect conversion detector used in clinical multi-row CT and some cone-beam CT. (b) 

direct conversion detector used in some cone-beam CT (Sun, 2018).  

 

file:///C:/Users/A.Ashfaq/Desktop/thesis/Afshan_Thesis_19.09.2021.docx%23_Toc83032638
file:///C:/Users/A.Ashfaq/Desktop/thesis/Afshan_Thesis_19.09.2021.docx%23_Toc83032638


Chapter 2.  Introduction 

 

10 

 

Afterward, the signals are amplified and digitized to create images. Most of the cone-beam CT 

used these indirect conversion detectors for the measurement of x-rays, as shown in figure 2.7. 

The Photon counting detectors convert x-rays to electronic signals through the direct 

conversion method. Moreover, it is very efficient and can detect every individual photon if the 

induced signal is above a threshold energy level. By comparing these pluses signal per pixel 

with threshold level noise can be easily filtered out.  Each photon is assigned a discrete different 

energy bin according to its energy as illustrated in figure 2.8. The photon-counting detectors 

have several advantages over integrating detectors like enhanced spatial resolution, less 

radiation dose to the patient, better signal-to-noise ratio, are the capability of differentiating 

numerous contrast agents (Ji et al., 2009, Polster et al., 2016). 

 

 

 

 

 

 

 

 

 

 

In modern CT scanners, two-dimensional CT detector arrays are used to acquire multiple slices 

simultaneously (Steve et al., 2004). The patient bed is shifted during the scan while the detector 

ring rotates around the patient to generate a helical route, ensuring comprehensive sampling 

for reconstruction. By keeping the detector size between 0.25 and 1.25 mm, high spatial 

resolution can be attained. The system could have 16, 32, 64, and so on rows of detectors. A 

number of slices equal to the number of detector rows can be acquired in a single rotation of 

the system. For typical x-ray energy (40-140 keV) used in CT scanners, the x-ray detectors 

have the maximum efficiency. 

In CT reconstructed image each pixel value corresponds to the attenuation coefficient value of 

the tissue for that pixel. These attenuation coefficients are represented on a normalized scale in 

CdTe/CZT sensor 

CMOS ASIC 

X-ray 

Photons 

 

1 2 3 

Energy Bin Energy Bin Energy Bin 

amplifier 

Comparator 

Counter 

Figure 2.8: Photon counting detector output signals are grouped in different bins according to 

photon energies (Sun, 2018). 
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terms of Hounsfield units (Cherry et al., 2012).  This normalization generates a wide range of 

CT numbers -1000 to +3000, like air, water and bone have Hounsfield units of -1000, zero, and 

+1000 respectively.  The soft tissue has CT numbers of -300 to -100 and dense bone and 

contrast-filled areas have a CT number of +3000. The Hounsfield units named after Sir Godfrey 

Hounsfield are simply scaled units of x-ray attenuation as calculated by CT.  

CT (x, y) =
µ(x, y) − µ𝑤

µ𝑤
× 1000 ( 2.5 ) 

 

Where µ and µw are the attenuation coefficient of the pixel(x, y) and attenuation coefficient of 

water respectively.  

2.6 CT history geometric expansion 

2.6.1 The generations of CT scanners 

The first generation was introduced by Godfrey Hounsfield (1971) for the first brain scan. It 

employed a pencil x-ray beam and two detectors to measure the x-ray transmission through the 

patient by parallel ray geometry. This geometry is very effective for scatter reduction, as the 

scatter deflected away from the pencil beam was not measured by detectors (Bushberg et al., 

2012). The tube and detector had translated motion, the total scan time was 25-30 mins. For 

each angle, the x-ray tube and detector assembly translated and acquired data across the field 

of view and rotated to acquire for another angle, this process was repeated for all 180o angles 

shown in the figure. 2.9 (a).  

In the next generation (1976) narrow fan beam (10o) and a linear array of 30 detectors were 

used, which significantly reduced the acquisition time. However, the procedure of data 

acquisition was yet based on translation and rotation movement. The x-ray source is 

inefficiently used in pencil beam geometry, yet it gives good rejection of x-ray scatter. In 

standard fan-beam scanners, scattered radiation contributes to about 5% of the signal. 

The third generation of CT systems, detector array, and x-ray tube was mechanically joined, 

and the data acquisition was based on rotate/rotate configuration. A larger scanning area at one 

time was possible due to the increase in the number of detectors (more than 800) as well as fan 

beam angle. This configuration eliminates translation motion and offers a shorter acquisition 

time. The transmission measurement for two detectors can be written as (Cherry et al., 2012);  

ln (𝑔1𝐼𝑜/ 𝑔2𝐼𝑡)  =  µt  ( 2.6 ) 
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where g1 and g2 are the gain of two detectors if the gain of two detectors is not equal (g1 ≠ g2) 

that affects µt and during back-projection generates ring artifacts. The ring artifact was a 

common problem in the third-generation scanner. To solve this problem the fourth-generation 

scanner was introduced. 

The fourth-generation CT had a stationary/rotating configuration. In the complete circular array 

of stationary detectors, the x-ray tube revolves. In comparison to a third-generation CT scanner, 

this architecture necessitates approximately six times the number of individual detectors.  

The ring artifacts were removed because each detector functions as its reference detector. 

Therefore, for fourth-generation scanners, equation 2.7 can be written as (Bushberg et al., 

2012); 

ln(𝑔𝐼𝑜/ 𝑔𝐼𝑡)  =  µt ( 2.7 ) 

 

X-ray 

Translation 

(a) (b) 

(c) (d) 
X-ray 

source 

Detector 

Figure 2.9: Schematic of four generations of CT scanner from a-d. 
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The fifth-generation scanners were specially designed for cardiac. They were named cine CT 

or electron beam scanners. The cine CT had a unique design and was not using a conventional 

x-ray tube and detector configuration. The increase in computer storage capacity and 

advancement in detector technology also increased the matrix size from 80×80 to 1024×1024 

for CT scans.  For all generations of CT scanners mentioned above object remained stationary 

during 360o rotation (one slice), subsequent slices were obtained by moving the table in steps.  

Kalender et al (1989) introduced the concept of helical CT scan after the development of slip 

ring technology. Slip rings are circular contact with sliding brushes that enabled the gantry to 

move continuously. In a helical scan, volumetric data is acquired when x-ray sources and 

detector rotate in a spiral path around the patient while the patient table moved at a fixed speed 

on the Z-axis throughout the scanning time as revealed in figure 2.10. 

The clinical multi-row CT increased the axial coverage of the detector as well as the temporal 

resolution of CT systems by reducing CT acquisition time, hence reducing the possibility of 

motion artifacts.  By resolving many slices, the multi-detector-row CT (MDCT) improves 

longitudinal resolution (slice thickness far below 1mm), achieving the goal of isotropic 

resolution (Cherry et al., 2015). Figure 2.11 shows how the number of detector rows increases 

over time and how this affects axial coverage. 

 

 

Figure 2.10: Axial & helical CT scanning. 
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Figure 2.11: Single slice scanner and multi-slice scanner (Rydberg et al., 2000). 

 

The detector size, not the collimator, determines the slice thickness in a multiple detector array. 

The pitch factor is the ratio of table distance traversed in one 360° gantry rotation by beam 

collimation. The effects of various pitches for a helical CT scan are shown in Figure 2.12. 

A higher pitch offers faster table translation and greater volume covered per unit time, resulting 

in patient dose reduction but lower image quality due to sparse sampling. Single-slice CT 

scanners had a rotation time of 1 to 2 seconds and a nominal beam width of 5-10 mm (Yan et 

al., 2013).  

 

 

 

Figure 2.12: Effects of a different pitch for helical CT scan. 

 

All C-arm CT and micro-CT scanners are using the cone-beam CT configuration. Figure 2.13 

and figure 2.14 demonstrate the major difference between the cone beam and the fan beam. 
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The cone-beam CT uses flat-panel-based detectors, while clinical multi-row CT uses a 

dedicated curved detector. 

 

 

 

Figure 2.13: Schematic of cone-beam CT (Reiser et at., 2009). 

 

 

 

Figure 2.14: Schematic of fan-beam CT (Reiser et at., 2009). 

 

Dual-source CT (DSCT) systems were introduced, which have two x-ray tubes and two 

detectors mounted on the same rotating gantry with a 90o angular offset. Figure 2.15 depicts 

such a system. Cardiac imaging with a better temporal resolution is the key advantage of DSCT.  
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Figure 2.15: Dual-energy CT scan (courtesy Siemens). 

 

The higher temporal resolution allows for a time-dependent heart function to be added to the 

morphological data derived from x-ray attenuation coefficients. The scanner also provides 

separate mA and kVp settings for both x-ray tubes, allowing for simultaneous dual-energy data 

capture to support tissue differentiation (Brodoefel et al. 2007). 

2.7 Hybrid imaging 

Positron emission tomography/computed tomography (PET/CT) is primarily a nuclear 

medicine procedure that combines a PET system and a CT system into a single gantry system.  

Therefore, images can be obtained sequentially on both scanners during the same session, and 

united into a single co-registered image (Saha et al., 2016). The first PET/CT scanner was 

developed in the late 1990s.  

PET imaging is a three-dimensional molecular imaging technique that produces functional 

images of the body. Moreover, PET is significantly superior to CT in the recognition of 

malignant and benign lesions, the assessment of therapy response, and the detection of viable 

tumor cells after treatment. Therefore, in the past few years, the use of clinical hybrid PET/CT 

systems has increased rapidly, and such a development has directed to an increase in the use of 

CT-based attenuation correction (Bushberg et al., 2012). PET/CT is an essential cancer 

diagnosing and staging tool. It is beneficial in the entire spectrum of cancer care for example 

in diagnosis, evaluation of treatment responses, and treatment planning (Hausmann et al., 

2012). PET/CT has transformed medical diagnosis in many fields by appending precision of 

anatomic localization to functional imaging, oncology, cardiology, neurological diagnostic 

imaging as well as surgical planning (Schoder et al., 2004). 
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2.7.1 Significance of hybrid imaging 

Nuclear medicine imaging, PET, and SPECT are superior to conventional imaging such as CT 

and MRI in the detection of tumors (Schöder et al., 2004). Although there is anatomical 

information in some nuclear medicine tests, the spatial resolution is limited when compared to 

CT or MRI. As the clinical decision is not only based on the signal coming out of the body but 

also on the exact extent and the location of the site from where the signal being originated, for 

several decades low-resolution nuclear medicine images were compared with high-resolution 

CT or MRI images. Usually, in the early days, both images were acquired on separate systems 

at different time points. It was quite difficult to co-register these images. In image co-

registration to obtain spatial correspondence on a one-to-one basis, parameters like matrix size, 

voxel intensity, and image orientation are adjusted between two sets of images (Hausmann et 

al., 2012). The process of image co-registration is also called image fusion. Patient position 

reproduction is essential for image co-registration; however, x-rays images and nuclear 

medicine images do not correspond properly and result in misregistration of the image leading 

to inaccurate determination of the disease localization (Rachel et al., 2013). To ensure accurate 

registration of two images combined systems were developed having two modalities physically 

attached in a single unit. Combined systems are known as PET/MRI and PET/CT hybrid 

scanners. In PET/CT hybrid system CT images are used for anatomical localization of activity 

and also CT data can be utilized to create an attenuation map for gamma rays as they transverse 

the body tissues to reach the detector (Hausmann et al., 2012). 

2.8 PET/CT system 

David Townsend, Ron Nutt, and colleagues have developed the first PET/CT scanner in the 

late 1990s. A single slice CT scanner and a partial ring PET scanner were both installed on a 

single gantry in this setup (Rachel et al., 2013). The tandem arrangement is a modern back-to-

back PET/CT scanner where the PET and CT scanner's fields of view are separated axially by 

around 60 to 120 cm. PET and CT components are separate in these systems. The CT part of a 

PET/CT scanner is closer to the patient, and the CT scan is frequently acquired before the PET 

scan. 
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Figure 2.16: Schematic of PET/CT system 

 

PET/CT system is primarily used for whole-body imaging,  for example, using 18F-FDG as a 

radiotracer, in cancer patients. CT component is used to provide precise anatomical localization 

of tracer uptake in the tumor or its metastatic sites. CT vbvdata is being used for an attenuation 

map for PET scans that can be generated using CT data. 

Positron emission tomography detectors can detect the annihilation of photons (511 keV) 

resulting from the annihilation process after a positron-electron interaction. Annihilation 

photons can also be detected by SPECT detectors operating in conventional mode counting 

single-photons, but these detectors are designed for lower energy single-photon detection and 

have comparatively less efficiencies at annihilation photon energies. Data reconstruction is 

similar to SPECT with the exemption that attenuation correction is always performed in PET 

by CT data. PET provides a variety of benefits over typical gamma cameras, including 

sensitivity, high resolution, and the availability of positron emitters with low atomic numbers. 

The principal drawback of PET is equipment cost and the rapid decay of positron emitters. 

Since in PET oppositely directed 511 keV annihilation photons are detected simultaneously, to 

locate the position of annihilation reaction and direction of detected photons no collimator is 

required. This is known as annihilation coincidence detection. PET has higher sensitivity than 

traditional gamma cameras as PET cameras have 360° detector coverage. PET/CT has been an 

extensively used modality in nuclear medicine (Saha et al., 2016). 

2.8.1 Basic principles of PET imaging 

Two 511 keV photons are produced, when a positron mutually annihilates with an electron they 

travel directly opposite to each other. Depending on the energy of positron annihilation, 

photons are emitted within a few tenths of a millimeter to a few mm of the position of positron 
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emission. The origin of annihilation photons can be localized on a line between the two 

detectors by simultaneous detection. This mechanism of photon detection is called annihilation 

coincidence detection (Bailey et al., 2005), after a pair of photons is detected in a 6 to 12 ns 

coincidence window. 

When two events occur within a given time range, coincidence detection generates an output. 

Generically, these events are known as prompt coincidences. Prompt coincidences may be of 

the following three types; 

2.8.1.1 True coincidence events  

PET has high resolution due to coincidence detection. If two annihilation photons are detected 

on two detectors located opposite each other, the annihilation event took place along a 

hypothetical line between the two detectors. The imaginary line is called the line of response 

as shown in figure 2.17. These simultaneously detected events are registered by a coincidence 

circuit. Events resulting from a single positron annihilation reaction are referred to as true 

coincidence events. 

 

 

Figure 2.17: Line of response and true coincidence events. 

2.8.1.2 Single events 

A single event is reported when an unpaired photon from a non-annihilation event reaches the 

detector. In other words, unpaired photons detection is known as a single event shown in figure 

2.18. In PET imaging impact of single events is rejected. 
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Figure 2.18: Single event due to non-annihilation events detected at two detectors with the timing and 

energy window of the system. 

 

2.8.1.3 Time of flight measurement 

The resolution of the system is improved with the use of time of flight measurement. The 

assumption used in time-of-flight measurements is that annihilation reaction can be localized 

along the line of response by measuring the timing difference between two photons arriving at 

opposing detectors. Photon arrival time difference is proportional to the difference in distance 

traveled by two photons along the line between pair of detectors (Saha et al., 2016, Rachel et 

al., 2013). 

2.8.2 PET detectors 

One of the important parameters of PET sensitivity and performance is its detection efficiency. 

Mostly PET systems use high-Z scintillation detectors, which are organized in rings of detector 

elements around the item being imaged (Bushberg et al., 2012). Usually, circular rings of 

detectors have diameters ranging from 70 to 90 cm and an axial length of 15 to 25 cm. In early 

systems, individual detectors have been used that consist of a scintillator crystal attached to a 

PMT. The early PET scanner was operated in 2-D mode, allowing only coincidence detection 

due to septa between detector rings. Today almost all scanners have no septa between rings 

providing 3-D acquisition. 3-D acquisition increases the scanner sensitivity but also made 

reconstruction and correction more complicated. Small crystals are arranged in a matrix form 

to make up a block. Block detectors are attached to PMT (Rachel et al., 2013). The block 

detector was designed by Cassy and Nutt (1980s), they used smaller crystals to improve spatial 

resolution and a smaller number of PMTs to control. Optical cross-talk between scintillator 

elements is decreased by filling the gaps between the elements with a reflecting substance. 

Block detectors are advantageous as they allow the decoding of many detector elements using 

only four PMTs. This improves the spatial resolution and decreases the cost per detector 



Chapter 2.  Introduction 

 

21 

 

element. 20 to 30 mm thick scintillator crystal is used to make a block detector with a sub-

element width of 4 to 6 mm (Saha et al., 2016). The original block detector design is modified 

by making two modifications. In the first modification, proportionally larger PMTs are 

positioned in a way to overlap part of adjacent blocks. The new design allows each block to be 

monitored by four PMTs and the adjacent corner of four blocks is monitored by a single PMT. 

This approach is known as the quadrant sharing approach.  This approach is useful in creating 

larger panel detectors for PET systems. With the advantage of cost reduction, the quadrant 

panel approach has the drawback of extended dead time, as each PMT is accumulating signal 

from a large scintillator volume. In the second modification single scintillation material is 

replaced by two different scintillation materials, the resulting combination is called phoswich. 

The decay time difference between two scintillators is utilized to locate events in the upper or 

lower scintillator layer. The disadvantages of this approach include manufacturing 

complications and differing stopping power and light output of two scintillator materials. 

A whole-body PET system may use discrete element crystal or continuous detectors with a 

larger area. Discrete element detector design may be arranged in full ring modular block 

detector design.  

2.8.2.1 Scintillator detector crystals 

The energy of gamma photons is converted into the energy of light photons in crystals. The 

conversion of gamma energy to light photon energy is a complicated process. Compton or 

photoelectric interactions are used by gamma rays to interact with the crystal. Electrons 

produced as a result of these interactions pass on their energy to electrons in the crystal, causing 

them to become excited. Excess energy is emitted by these excited electrons as light photons, 

which return them to their original condition. Thallium-doped sodium iodide NaI(Tl) crystal is 

one of the earliest detector crystals used for PET systems. Due to its relatively low-density 

sodium iodide crystal is less effective at absorbing 511 keV photons. To overcome the low-

density problem of sodium iodide, crystals having a high atomic number and high density have 

been developed, such as bismuth germinate Bi4Ge3O12 (BGO), lutetium oxyorthosilicate 

Lu2SiO5 (LSO), gadolinium oxyorthosilicate Ga2SiO5 (GSO) and lutetium yttrium 

oxyorthosilicate (LYSO). For 511 keV annihilation photons, these detectors have 

comparatively high stopping power.  In high Z crystal photon interaction per unit volume 

increase as the probability of photoelectric effect increase with Z number. Photoelectric 

interactions are preferred over Compton interactions, in detector design, as in photoelectric 

interactions most of the photon energy is imparted to photoelectrons, and electrons deposit 
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almost their total energy close to the location of photoelectric interaction. In the case of 

Compton scattering, only a slight amount of energy is shifted to the electron and most of the 

energy is carried by the interacting photon out of the crystal. Properties of detector crystals 

including density, decay time, light yield are given in table 2.1. LSO, LYSO, and GSO have 

shorter decay time and higher light yields as compared to BGO and NaI. The shorter decay 

time is advantageous because it is the time in which an excited atom returns to its ground state.  

 Table 2.1: Detector crystal properties 

CRYSTAL DENSITY(G/CM3) DECAY TIME 

(NS) 

%AGE LIGHT YIELD 

(RELATIVE TO NAI) 

NAI(TL) 3.67 230 100 

BGO 7.13 300 14 

GSO 6.71 60 41 

LSO 7.40 40 75 

LYSO 7.40 40-44 75 

 

During decay time a second gamma-ray entering the crystal cannot be absorbed. The number 

of light photons per unit of energy absorbed is called light yield. For greater spatial resolution 

and better energy resolution higher light yield is required. Better energy resolution makes it 

possible to distinguish lower energy scattered or non-annihilation photons from annihilation 

photons.  

Improved light output also improves spatial resolution, as with a larger number of photons it is 

easy to categorize exactly which detector crystal detected the annihilation of photons that in 

turn improves spatial resolution. LSO and LYSO are more suitable detector crystals due to 

their high density, low decay time, and high light output (Bailey et al., 2005, Townsend et al., 

1993). 

2.8.2.2 Data acquisition for PET 

The basic concept of PET data acquisition is the detection of annihilation of photons coming 

out of the patient's body as a result of positron-electron annihilation. A coincident event is 

registered if two photons arrive at the detector within a short timing window (Bailey et al., 

2005, Lewellen et al., 2004). This method of coincidence detection is known as electronic 
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collimation. Events detected within the timing window are known as prompts, prompts include 

all types of three coincidence events (true, random, scatter) (Tong et al., 2010). 

2.8.2.3 2-D Data acquisition 

Earlier PET scanners were developed with septa between detectors rings. Septa allow only 

those photons to reach the detector which was originated in direction of the detector ring. The 

mode of acquisition is called 2-D data acquisition. Scattered annihilation photons are rejected 

by septa. The acquired projection data is similar to data acquired by a gamma camera using a 

parallel hole collimator, as a single slice acquisition is possible for each detector ring. In the 2-

D acquisition mode, those annihilation photons are rejected that are emitted at oblique angles. 

In this way, perhaps useful events annihilation photons are rejected by septa (Bailey et al., 

2005) and consequently, the sensitivity of the scanner is reduced.  

2.8.2.4 3-D Data acquisition 

In the 3-D mode of data acquisition, no septa are used between the detector rings. Sensitivity 

is increased four to eight times as data are acquired for all normal and oblique lines of response. 

However, random and scatter coincidence detection is also increased in 3-D acquisition mode 

degrades the spatial resolution, and increases the memory required to store data (Saha et al., 

2016). Although 3-D data acquisition requires large storage and high computational power, 

due to increased sensitivity, all commercial scanners offer 3-D acquisition mode as an option. 

2.8.3 PET data corrections 

The intensity of the reconstructed image must be proportionate to the activity concentration at 

the relevant place in the subject for an appropriate comparison of activity concentration in 

various organs or normal versus malignant tissues. The following corrections are applied to 

PET data during reconstruction (Saha et al., 2016); 

2.8.3.1 Normalization  

The number of detector elements in a common PET scanner range from 10,000 to 30,000. The 

detector element dimensions and scintillation light output may be subjected to small variations. 

Also, the effective thickness traveled by the photon varies for the varying angle of incident. 

These variations are adjusted by normalization correction. All detectors are exposed to the 

same radiation source and the number of counts recorded by every detector pair is recorded. 

Ideally, all detector pairs would record a similar number of counts but in practice, there is 

variation in detector efficiencies. Normalization factor is 𝑓𝑖,𝑗 computed as:  
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𝑓𝑖,𝑗 =
𝑛𝑖,𝑗

< 𝑛 >
 ( 2.8 ) 

 

<n> is the average of ni,j counts for coincident detector pairs. The number of counts recorded 

by every detector pair is corrected by normalization factor.  

𝑁𝑛𝑜𝑟𝑚𝑖,𝑗 =
𝑁𝑖,𝑗

𝑓𝑖,𝑗
 ( 2.9 ) 

 

 

 Ni,j is the recorded number of counts. This correction is applied before image reconstruction 

(Cherry et al., 2012, Brodoefel et al., 2007).  

2.8.3.2 Random correction 

Random coincidences cause image artifacts and suppress image contrast by adding a uniform 

background across the image. The delayed window method and singles method is used to 

estimate random coincidences. In the delayed window method coincident timing window is 

delayed at a time that is much longer than its width. In a delayed window no true counts are 

accepted and only counts with that much delay are accepted. The detected counts are subtracted 

from total coincident events. In a single method the estimate of random events is based on the 

following equation; 

 

𝑛𝑟𝑎𝑛𝑑𝑜𝑚 = ∆t 𝑛𝑠𝑖𝑛𝑔𝑙𝑒,1𝑛𝑠𝑖𝑛𝑔𝑙𝑒,2 ( 2.10 ) 

 

∆t is coincident timing window, nsingle, 1 and nsingle, 2 are count rates at opposite detectors of 

coincident pair (Wachtel et al., 2009, Lewellen et al., 2004). 

2.8.3.3 Scatter correction 

Scattered radiation causes an unclear background in the reconstructed image. Like random 

events scatter events also decrease image contrast and affect the relationship between perceived 

activities in the image to actual activity in the object. Two methods of scatter correction are 

currently used for PET. In the first approach original scattered contaminated and transmission 

images are used to estimate the scattered contribution. The estimated scattered contribution is 

deducted from projection data and reconstruction is done again. In the second approach, 

projection profiles are examined just outside the object. Interpolation of an analytic function is 

made from outside the object to the source inside the object. Scattered corrected data is obtained 

by subtraction of interpolated scattered counts from measured source counts.  
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2.8.3.4 Attenuation correction 

The most significant correction is attenuation correction. For attenuation correction two basic 

approaches are being used. The first one is the use of a positron-emitting source for 

transmission scans. In this approach, two measurements are made, a blank scan without an 

object and a transmission scan with the object in the scanner. The attenuation correction factor 

for pair i,j of detectors is calculated as; 

𝑓𝑎𝑡𝑡𝑖,𝑗 =
𝑛𝑏𝑙𝑎𝑛𝑘,𝑖,𝑗

𝑛𝑡𝑟𝑎𝑛𝑠,𝑖,𝑗
 (2.11) 

 

Here nblank and ntrans represent counts recorded by the detector pair in the blank and transmission 

scan. In the second approach, CT transmission data is utilized for attenuation correction. 

However, linear attenuation coefficients measured by the CT systems are much different from 

the attenuation coefficient for 511 keV annihilation photons. To use CT information for PET 

data attenuation correction, the linear attenuation coefficient for 511 keV photons essentially 

be predicted from the linear attenuation coefficient measured by CT systems. One technique of 

determining the attenuation coefficient for 511 keV photons using the CT number methodology 

is to split the voxels into two groups. Soft tissue, fluids, or gases, or a mixture of them, are 

thought to be found in voxels with CT numbers less than a certain value, while bone minerals 

and soft tissue are thought to be found in voxels with CT numbers more than that value. The 

linear attenuation coefficient for 511 keV is derived using equation 2.12 for low CT number 

voxels, 

𝜇511 = (9.6 × 10
−5𝑐𝑚−1)(𝐶𝑇 𝑛𝑜. +1000) (2.12) 

 

For air CT no. = -1000 and µ511= 0 and for water CT no.= 0 and µ511=  9.6×10-5 cm-1. For high 

CT number voxels linear attenuation coefficient for 511 keV photons is computed as given in 

equation 2.13. 

𝜇511 = 𝑚(𝐶𝑇𝑛𝑜. ) + 𝑏 (2.13) 

 

Where m and b are constant, their values are determined empirically and differ from the kV 

used by the CT system (Bushberg et al., 2012). 

2.8.3.5 Deadtime correction 

The minimum time interval that two consecutive counts must be separated to be recorded as 

two different events is called a dead time of the system. With large counting rates, PET 
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detectors also exhibit dead time effects. A second event occurring during the dead time cannot 

be registered and ultimately the event will be lost. In PET systems, dead time loss is a severe 

issue. Using detector materials with less decay time and quicker electronics is one technique to 

reduce dead time. Empirical models are used for dead time corrections in which the range of 

object size and energy threshold is used to measure the count rate as a function of activity 

concentration. In another model, the true count rate is obtained by extrapolating low activity 

data to high activity data. 

2.8.3.6 Decay correction 

When using 18F-FDG for the measurement of glucose metabolism decay correction is necessary 

because the half-life of 18F is slightly longer than the scan duration. Decay correction is 

necessary for PET data during the data acquisition. The effective decay factor is given in 

equation 2.14; 

𝑓𝑒𝑓𝑓 = 𝑒
−(
𝑙𝑛 2×𝑡
𝑇1/2

)
× [(1 − 𝑒−𝑥)/𝑥] (2.14) 

 

Where x =ln 2 ×∆t/T1/2 (Dance et al., 2014). 

2.9 CT based attenuation correction 

In hybrid PET/CT scanners PET and CT are intrinsically co-registered.  CT data can be utilized 

to adjust attenuation in PET. As a result, the PET system doesn't need separate transmission 

sources, and total scan times will be cut in half. In certain circumstances where the patient's 

radiation dose is of great importance, such as young children or volunteers engaging in clinical 

studies, the choice to incorporate a transmission source may be relevant. The CT scan reduces 

the overall PET scanning time in half and enhances the accuracy of the attenuation correction 

parameters (Tong et al., 2010). 

When the CT scan is finished, the CT attenuation coefficients for various tissue types are 

mapped to their relevant PET energies (511 keV) to create a PET attenuation correction map. 

This process is currently carried out using a variety of conversion methods. (Kinahan et al., 

1998) proposes a system that separates CT images into distinct tissue categories and then 

adjusts each tissue attenuation coefficient to its associated PET standards using predetermined 

scaling factors. Bilinear transformation, which may be thought of as a combination of 

segmentation and scaling approaches, is another method used by GE Healthcare.  

It is important to remember that linear attenuation is energy-based while employing CT data 

for PET attenuation correction. PET uses monoenergetic 511 keV photons, whereas CT scans 
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use a range of x-rays ranging from 40 to 140 keV. As a result, the CT-derived attenuation must 

be scaled to the proper energy for PET. For annihilation of photon energies of 511 keV, 

Compton scattering is the main process. But, in the CT energy value, photoelectric absorption 

is the predominant source of attenuation in bone (Khalil et al., 2017). At 511 keV, there is no 

easy method for converting Hounsfield units to linear attenuation coefficients that are 

applicable for every material. The photoelectric and Compton contributions to attenuation can 

be extracted using a dual-energy CT scan, as suggested by (Kinahan et al., 2003). But, when 

other, simpler means of correction are available, this increases the patient doses unnecessarily. 

The segmentation method, for example, substitutes the CT number in the reconstructed image 

with a tissue-specific attenuation value of 511 keV. 

The density of some tissue types varies significantly and cannot be effectively represented by 

a discrete value, which is one drawback of this technique. A scaling strategy is an alternative 

technique that involves multiplying the entire CT image by the ratio of water attenuation 

coefficients (representing soft tissues) at CT and PET photon energies ( Bailey et al., 1998, 

Tong et al., 2010). The attenuation coefficients at different energies are assumed to have a 

constant ratio in this technique. A bilinear or hybrid technique can be used instead because this 

is an unsatisfactory approximation for bone. In the bilinear procedure, CT numbers are given 

a distinct scaling factor based on a threshold set between 0 and 100 Hounsfield units. All body 

materials are assumed to be linear mixtures of air and water or water and bone in this technique. 

By first calculating the attenuation map at 511 keV and then differentiating the tissue types 

based on CT number and using various scaling factors for bone and non-bone components, the 

hybrid technique includes both scaling and segmentation.  

When applying CT-based attenuation correction in nuclear medicine, there are several potential 

sources for adding artifacts or biases. The spatial resolution of the CT image is often 

substantially higher than that of the PET or SPECT investigation. With PET/CT scanners, 

artifacts might arise if the resolutions are not matched.  

A 511 keV attenuation map is generated from the CT image to compensate for the PET 

emission data for photon attenuation. The use of CT to obtain transmission images for PET 

emission data attenuation correction has four major advantages: CT data will have far less 

statistical noise than transmission data recorded with radioactive sources, especially for whole-

body PET imaging. Second, a CT scan can be obtained significantly faster than a traditional 

PET transmission scan (Fessler et al., 2000). The capacity to gather uncontaminated post-

injection transmission scans is the third factor, which is a significant practical consideration. 
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Emission photons contaminate radionuclide-based transmission scans until the transmission 

data is obtained before the PET agent is supplied to the patient. CT transmission scans, on the 

other hand, can be obtained at any moment after the PET tracer has been activated. Fourth,  

with x-ray transmission scanning there is no requirement for PET transmission hardware as 

well as the necessity for 68Ge positron sources to be replaced regularly. The direct inclusion of 

anatomical data acquired from CT  into the PET image reconstruction procedure is a potential 

benefit that has yet to be extensively explored.



Chapter 3.  Tomographic Reconstruction Methods 

 

29 

 

Chapter 3. Tomographic Reconstruction Methods 

 

3.1 Image reconstruction 

The mathematical process of converting projection data into a cross-sectional image of an 

object is known as image reconstruction (Bushberg et al., 2012). When the pencil x-ray beam 

passes the plane, the linear attenuation of the x-ray via the object f (x, y) is provided as the line 

integral along the beam path L in equation 3.1; 

𝐼𝑡
𝐼0
 = 𝑒𝑥𝑝−∫ 𝑓(𝑥,𝑦)𝑑𝑠

0
𝐿     (3.1) 

 

The line integral, on the other hand, provides the total attenuation p  of a ray at location r on 

the projection at angle θ; 

𝑃(𝑟, 𝛳) =    −ln(
𝐼𝑡
𝐼0
 ) =  ∫ 𝑓(𝑥, 𝑦)𝑑𝑠

0

𝐿 (𝑟,θ )

 (3.2) 

 

A density profile of the object at θ is given by the line integration of the object along all parallel 

lines; 

 

p(r, θ) = ∫ ∫ 𝑓(𝑥, 𝑦)𝛿(𝑥𝑐𝑜𝑠𝜃 + 𝑦𝑠𝑖𝑛𝜃 − 𝑟)𝑑𝑥𝑑𝑦
∞

−∞

∞

−∞

 (3.3) 

 

The line integral at θ in the coordinate system (r, s) can be expressed as; 

p(r, θ) = ∫ 𝑓(𝑟𝑐𝑜𝑠𝜃 − s 𝑠𝑖𝑛𝜃, 𝑟𝑠𝑖𝑛𝜃 + s cosθ)
∞

−∞

𝑑𝑠 (3.4) 

 

3.1.1 Projection 

A pencil beam transverse the 3D object  as shown in figure 3.1. The line integral in x-ray CT 

represents the overall attenuation of the x-ray beam as it is transverse through the item in a 

straight line. An object's projection is consist of a set of line integrals at a given angle θ. A set 

of several such projections for various angles arranged in 2D is called a sinogram. 
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In the image reconstruction f (x, y) is calculated from the series of measurements p(r, θ). The 

x-ray transform produces the set of all line integrals, while the Radon transform produces a set 

of integrals over all hyperplanes.  

For reconstruction procedures usually, it is assumed that the x-ray is monochromatic.  

Therefore, p(r, θ) can be estimated: 

 

p(r, θ) =  ln[
𝐼0(𝑟, 𝜃)

𝐼(𝑟, 𝜃)
] (3.5) 

 

 

Regarding the integral in the projection equation 3.4, it is assumed that a continuous detector 

as well as continuous reconstruction volume. An actual detector is discrete and the 

reconstruction volume is discretized in pixels. The discrete form of the projection is: 

𝑝𝑖 =∑𝑎𝑖𝑗𝑓𝑗
𝑗

    (3.6) 

 

Where i is the index for sinogram pixels (r, θ), j is the index for image voxels (x, y) and aij 

defines the intersection length of the projection line i with voxel j, and f is the real distribution 

of the attenuation. 

Figure 3.1: A pencil beam transverse the object and the line integral along the beam path provide 

one point of the profile P(r, θ). 
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3.1.2 Back projection 

The back-projection is fundamental to all analytic tomographic reconstruction algorithms. The 

projection technique maps a two-dimensional object f(x, y) into a sinogram p(r, s), which 

contains all line integrals through the object (Saha et al., 2016). The back-projection is the 

adjoint operation of projection, which is defined as: 

𝑓(x, y) = ∫ p(xcosθ + ysinθ, θ)
π

0

dθ (3.7) 

= ∫ p(r, θ)
π

0

dθ (3.8) 

 

In the parallel-beam geometry, all projection values back to the volume along the same 

projection lines are used to produce the sinogram. The back-projection gives a blurred version 

of the object. The discrete version of equation 3.8 is  

𝑏𝑗 =∑𝑎𝑖𝑗𝑝𝑖
𝑖

  (3.9) 

 

 

Figure 3.2: Back Projection. 

 

3.2 Reconstruction algorithms 

In the process of 3D reconstructing an object from its projections, practical reconstruction 

algorithms have been formulated. The mathematics of the Radon transform, the geometry of 

the data, statistical knowledge of the data scanning procedure, and the imaging system are all 

used to create these methods. 
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3.2.1 Analytic reconstruction 

An analytical reconstruction algorithm is based on the continuous representation of the object 

and the sinogram (discretization is only used to implement the algorithm), it is a mathematical 

inversion, and provides a one-stop solution. 

3.2.1.1 Direct Fourier reconstruction 

The Fourier slice theorem explains the mathematical relationship between an image and its 

projections. It provides theoretical support for the exact inverse operation to avoid blurring 

from simple back-projection (Cherry et al., 2012, Saha et al., 2016). 

 The Fourier transform of a 2D object is: 

 

𝐹(𝜃, 𝜔) =  ∫ 𝑝(𝑟, 𝜃)
∞

−∞

𝑒−𝑗2𝜋𝜔𝑟𝑑𝑟 (3.10) 

 

𝐹(𝜃, 𝜔) = 𝑝𝜃(𝜔) 
 

(3.11) 

 

The object could theoretically be exactly reconstructed by applying a 2D inverse Fourier 

transform (equation 3.10) for the 1D Fourier transform of the projections. If an indefinite 

number of projections are measured, 𝐹(𝜃, 𝜔) would be known at all positions in the frequency 

domain.  

The reconstruction process includes the following steps 

1. Compute, 𝐹(𝜃, 𝜔) from the 1D Fourier transforms of the projections at all angles  

𝐹(𝜃, 𝜔) = 𝐹𝑇{𝑝(𝑟, 𝜃)} 

2. Convert 𝐹(𝜃, 𝜔) from polar coordinate into a Cartesian coordinate in the Fourier domain, 

grid interpolation 

3. Apply the 2-Dimensional inverse Fourier transform to obtain the reconstructed image. 

3.2.1.2 Filtered back projection 

In the filtered back-projection method, the raw data is mathematically filtered before being 

back-projected onto the image matrix. The filtering step mathematically reverses the image 

blurring, restoring the image to an accurate representation of the scanned object. The 

mathematical filtering step involves convolving the projection data with a convolution kernel. 

Many convolution kernels exist, and different kernels are used for varying clinical applications 

such as soft tissue imaging or bone imaging (Tong et al., 2010).  
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𝑓(x, y) = ∫ p´(r, θ)
π

0

dθ (3.12) 

 

The mathematical filtering operation (convolution) is the difference between filtered back 

projection and simple back projection. The Fourier transform (FT) converts a function defined 

in the spatial domain (millimeters) to the frequency domain (cycles per millimeter), and the 

inverse Fourier transform (FT-I) converts it back. 

P´(r, θ) = P(r, θ) ⊗ k(r) 

 
(3.13) 

Where the filtered data in the spatial domain is p' (r, θ),  p(r, θ) is the projection data (in the 

spatial domain) at a specified angle, and convolution is represented by the symbol ⊗. 

 

𝑘(𝑟) = 𝑊
sin(2𝜋𝑊𝑟)

𝜋𝑟
−
𝑠𝑖𝑛2 (𝜋𝑊𝑟)

𝜋𝑟2
 

 

k(r) represents the spatial domain kernel and W is the cutoff frequency typically chosen to be 

the Nyquist frequency. Ramp filtering or convolution can be further combined with low pass 

filtering, e.g. Hann filtering, to remove the undesired noise in the measured data. 

P´(r, θ) = FT-1{FT [P(r, θ) × K(f)} (3.14) 

 

Where K(f) = FT[k(r)], is the kernel in the frequency domain. According to equation 3.14, the 

convolution operation is achieved by Fourier transforming the projection data, multiplying (not 

convolving) it by the frequency domain kernel K(f), and then applying the inverse Fourier 

transform to the result to obtain the filtered data to be back-projected. 

3.2.2 Iterative reconstruction 

An iterative algorithm commences from a discrete sinogram as well as an object, based on the 

numerical inversion, and iteratively updates the image. Iterative algorithms use several iteration 

stages to find the proper solution, allowing for an improved reconstruction by a longer 

calculation time. 
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Figure 3.3: Reconstruction with filtered back projection (Gonzalez et al., 2018). 

 

The first image at the initial iteration is often an image having uniform numbers in each voxel. 

Forward projection of the CT image approximation provides a series of estimated angular 

projection images by modeling the acquisition of the projection data by integrating along the 

different ray paths (Cherry et al., 2015). The iterative reconstruction algorithm image estimate 

goes through the forward model and the residual errors in the projection domain are back-

propagated via the transpose of the forward model. Every iteration initiates with an 

approximation of the CT image to be reconstructed.  

 

 

Figure 3.4: Schematic of an iterative reconstruction method.  
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The computed projections are then compared with the actual measured projections and the 

discrepancies are computed as a cost function, that is utilized to update the next estimate of the 

CT image by a back-projection. Iterative reconstruction aims to gradually decrease the cost 

function till the disparities among the approximated and actual projections have converged to 

the expected phase. 

The method that uses the ratio of two projection views, computed projection views, and 

measured projection views, to generate a correction factor is known as Maximum Likelihood 

Expectation Maximization (MLEM), the Additive Simultaneous Iterative Reconstruction 

technique (ADIR) is using the difference between two projection views. Mathematically 

iterative reconstruction can be described by the equation;  

pi = ∑ ai,jqj
m
j=1   

 
(3.15) 

𝑞𝑗
𝑘+1 =

𝑞𝑗
𝑘

∑ 𝑎𝑖,𝑗
𝑛
𝑖

∑
𝑎𝑖,𝑗𝑝𝑖

∑ 𝑎𝑖,𝑗𝑞𝑗
𝑘𝑚

𝑗

𝑛

𝑖

 

Iteration number is represented by k and the number of bins by n. sk+1
j updated estimate and sk

j 

is the initial estimate (Saha et al., 2016). The iterative reconstruction method has the 

disadvantage of a large number of iterations to achieve an acceptable image estimate. A large 

number of iterations requires extended computation time to reconstruct the image (Khalil et 

al., 2017).  

The problem of computational time in iterative reconstruction is solved by the introduction of 

the Ordered Subset Expectation Maximization (OSEM) algorithm. OSEM is a modification of 

MLEM, in that groups of projection views are generated called subsets, and MLEM approach 

is used on these subsets. MLEM is applied to one subset at a time the resulting correction is 

used for the next subset. When all subsets in the set of projection views are processed an 

iteration is said to be completed. The convergence of the estimate to the measured image is 

accelerated by the number of the subset in OSEM approach. If there are n subsets in OSEM 

approach and 2 iterations, MLEM would reach the results of OSEM by 2n iterations of all 

projection views. Image variance increases with the number of subsets, so an optimized number 

of subsets is necessary for optimum image quality and acceptable computational time. 
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The forward projection step during the iterative reconstruction technique uses accurate and 

realistic physical models. These models include the x-ray spectrum, detector responses, focal 

spot size, and photon statistics. The more accurate modeling of the acquisition procedure in the 

iterative reconstruction approaches offers a significant dose decrease without compromising 

the image quality, that is an important benefit of iterative reconstruction algorithms in CT 

(Beister et al., 2012). 

3.3 Image artifacts in CT 

The distortion of signal that obscures the interpretation of a study or irregularity that appears 

in an image not exist in the object but is produced by some external action is called artifact in 

CT. Physics-based artifacts appeared due to the acquisition of CT data. Patient movement or 

metallic implants in the patient's body cause patient-based artifacts. CT system artifacts result 

from a defective scanner and the image reconstruction method. Artifacts in clinical CT may 

render images that are not interpretable (Barrett et al., 2004) or reduce the diagnostic value of 

the images (Hsieh et al., 2009) by hiding underlying pathology. 

The categories of the artifact that can be encountered are outlined: 

1. Patient motion: voluntary and involuntary patient motion are very common causes of 

image artifacts in CT imaging. Small blurring is caused by little motion, and larger 

physical dislocations appear as image ghosting. 

Figure 3.5: Schematic of OSEM reconstruction method (Saha et al., 2016). 
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2. Noise: Statistical error of low photon counts is Poisson noise, which generates random thin 

dark and bright streaks. 

3. Beam hardening: It generates dark strips between two high attenuation objects (such as 

bone or metal), with adjacent bright strips. 

4. Rings artifacts: Generally, appears as a result of errors in individual detector calibration. 

5. Metal artifacts: Metal objects in the scan field can cause significant streaking artifacts. 

6. Partial volume averaging:  The CT number in every pixel is proportional to the mean µ in 

the corresponding voxel. Partial volume averaging is especially noticeable when voxels in 

the image contain a variety of different tissues, such as softly rounded structures that are 

almost parallel to the CT slice. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To optimize image quality, it is essential to understand why artifacts occur and how to avoid 

them. Iterative reconstruction can help to eliminate the noise artifacts. Iterative reconstruction 

can also reduce metal artifacts, resulting in a more accurate diagnosis. CT scans with dual and 

multi-energy (photon counting) energy can help to reduce beam hardening and improve tissue 

contrast. Increased tube current can solve the problem of photon deficiency parallel to the CT 

slice. 

(a) (b) (c) 

(d) (e) (f) 

Figure 3.6: Artifacts in CT (a) patient motion, (b) Noise, (c) ring artifact, (d) streak 

artifact, (e) streak artifact due to photon starvation, (f) metal artifact (Boas et al., 2012). 
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3.4 Motion estimation 

Patient motion can be categorized into either rigid motion (head and extremities) or non-rigid 

motion (heart, lung, and other internal organs).   

The first group requires motion information and consists of motion acquisition and motion 

compensation processes. Motion acquisition derives the motion from reference images, 

surrogate signals, or the data themselves. Motion compensation compensates the artifacts 

during a reconstruction process. The second group corrects the motion artifacts using ways of 

image-processing techniques, without knowing the motion information. 

3.4.1 Non-rigid motion estimation 

The direct measurement of lung or heart movement is hard during scanning. usually, all 

approaches estimate a movement vector field subsequently with the acquired CT data. These 

methods are based on model-based techniques or feature-based techniques. 

The model-based method computed the time-varying motion field by considering the 

distortions as a collection of parameters and fitting the model to the obtained data. The motion 

information is obtained from the captured projection data using the feature-based technique, 

which tracks recognized features. 

For the non-rigid motion of the internal organs, external tracking can only provide surrogate 

signals but not the actual motion. Cardiac and respiratory surrogate signals are measured with 

the help of dedicated devices in diagnostic imaging, image-guided surgery, and radiation 

therapy (Li et al., 2010, Gendrin et al., 2012). 

To estimate internal motion fiducial markers are used to track the movement of internal organs, 

this practice is stated as internal tracking. Accurate beam delivery is crucial in radiotherapy; 

therefore, internal tracking is frequently used in radiotherapy (Gendrin et al., 2012).  

3.4.2 Rigid motion estimation  

Numerous methods have been recently developed for rigid motion estimation. Rigid 

transformations can be indicated with three translations (Tx, Ty, and Tz) and three rotations 

(Rx, Ry, and Rz) parameters about the x, y, z-axes, respectively. 

3.4.2.1 Reference images 

When the prior motion-free scan of the same patient is available the motion information can be 

computed. The researcher derives motion from the reference scan by 2D/3D registration that 

estimates the motion of the reference volume that fits best to the motion-contaminated 
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projections. Both rigid and non-rigid motion among projections can be computed with such a 

technique 

3.4.2.2 External tracking devices 

The motion can be estimated by using external or internal tracking devices. These devices are 

commercially available and work with acoustic, mechanical, and optical tracking techniques. 

Optical tracking systems are very common as they offer wireless measurement, have a fast-

sampling rate, and are compact. Kim J. et al., applied a marker-based optical tracking scheme 

to monitor the movement of the head of a patient during helical CT scans (Kim et al., 2015).  

In several medical imaging modalities, a marker-based optical tracking system has been 

utilized to monitor patient motion, e.g. CT (Fulton et al., 2002), PET (Herzog et al., 2005, 

Zaitsev et al., 2006), and MRI (Fulton et al., 1994), SPECT (Kyme et al., 2014), and also in 

preclinical microPET application. Markerless optical tracking techniques have been also 

applied in tracking head movement in positron emission tomography (PET) and CT scans (Kim 

et al., 2015). 

3.4.2.3 Data-driven approach 

The data-driven method does not need any additional measurement and is purely based on 

acquired raw data. The data-driven motion estimation technique is based on data consistency. 

Data consistency is the foundation of the data-driven motion estimate approach. Data 

consistency in a CT scan refers to the data redundancy resulting from several scanning 

positions of the same object. When motion happens, the consistency conditions in the measured 

data are no longer satisfied. Therefore, the motion can be estimated by forcing the data to satisfy 

the consistency conditions. The Helgason-Ludwig consistency condition (HLCC) is a 

condition describing the relationship between the Radon transform of parallel projections and 

the imaged object (Ludwig et al., 1966, Helgason et al., 1999). For example, in parallel-beam 

geometry, the zero-order HLCC describes that the summation of all projections is a constant 

independent of the view. HLCC was extended into fan-beam (Leng et al., 2007, Yu et al., 2006) 

and cone-beam geometries (Clackdoyle et al., 2013), and showed promising results when 

applied to motion estimation. Other consistency conditions can also be used for motion 

estimation including the Epipolar consistency condition (Aichert et al., 2015), Fourier 

consistency condition (Berger et al., 2017), and John's equation-based consistency condition 

(Levine et al., 2010). Nearly all the above methods were only verified in simulation studies. 

One probable explanation is that all consistency conditions are derived based on ideal 
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assumptions like continuous image and detector models, the monochromatic x-ray source, and 

no truncation. But a real scan cannot match all these assumptions. Therefore, artifacts from 

these all sources may affect the accuracy of the motion estimation, as several other factors also 

contribute to the violation of the data consistency. 

3.5 Motion compensation 

An analytical reconstruction algorithm can be used to accomplish the motion compensation. 

Both parallel-beam and fan-beam geometries can be reconstructed using accurate filtered back 

projection (FBP) in two dimensions with known affine motion (Desbat et al., 2007, Roux et 

al., 2004). In 3D, a generalized back-projection filtration (BPF) technique is presented to 

precisely reconstruct non-truncated data recorded using an arbitrary source trajectory, which is 

effectively a motion-corrected trajectory when motion is present (Ye et al., 2005). Others 

employ approximation methods to do motion compensation instead of accurate algorithms due 

to the difficulty of implementing an exact algorithm. Feldkamp, Davis, and Kress's (FDK) 

approach, for example, corrects motion in the back-projection step while neglecting ramp 

filtering and weighting adjustments (Feldkamp et al.). The reconstructed image quality is often 

acceptable when the motion is small. 

It is feasible to implement motion compensation in an iterative reconstruction process in 

addition to an analytical algorithm. Kim et al corrected the rigid motion for an arbitrary 

coordinate system fixed to the object (Kim et al., 2015). During both forward and backward 

projections, they re-oriented the ray trajectories by altering the source-detector pairings. An 

iterative reconstruction algorithm does not use ramp filtering or pre-weighting like an FBP-

type algorithm. This permits for compensating larger motions but often with long computation 

times due to the repetitive nature of the iterative algorithm. 

3.5.1  Joint motion estimation and compensation  

When the motion is known, the motion-compensated reconstruction is quite simple to execute. 

Another method for removing artifacts is to use a joint motion estimation and compensation 

procedure. Rohkohl et al. and Hahn et al. calculated non-rigid motion in a cardiac ROI and 

used an FDK reconstruction to adjust for it (Rohkohl et al., 2013, Hahn et al., 2017). The 

process was repeated for several iterations until a satisfying image was obtained. 

3.6 Image-processing based methods 

When the motion is unknown, an image-processing procedure can be used to fix it, directly 

targeting artifact-contaminated projections or images. Under the assumption of a simple motion 
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model, Lu et al. correct the observed data from a respiratory motion-contaminated scan (Lu et 

al., 2002). 

The restored projections can then be reconstructed to an artifact-reduced image. Schretter et al. 

attempted to segment an artifacts-only image, by comparing the forward projections of an 

initial reconstructed image and the actual measured projections and reconstructing the 

differential projections (Schretter et al., 2009). The artifacts-only image can then be subtracted 

from the initial reconstructed image and the above procedure can be repeated multiple times. 

Marchant et al. tried to register the measured projections to the forward projections of the initial 

reconstructed image non-rigidly (Marchant et al., 2011). The registered projections were 

utilized to create an initial compensated image, which could then be iterated until a final 

compensated image was obtained. Due to the lack of precise motion information, all of the 

preceding image-processing algorithms frequently yield images with residual artifacts. 
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Chapter 4. 3D Iterative Data-Driven Motion Correction Algorithm 

4.1 Motion estimation and compensation method 

A c helical CT scanner typically has a cylindrical detector surface, having a radius equal to the 

source-detector distance. Here c is a world coordinate scheme and c = (x, y, z) ϵ R3 as in figure 

4.1.  

Which is fixed to the scanner and the z-axis coincides with the scanner's rotation axis.. c′ = (u, 

v, z) ϵ R3 where c′ represents the detector coordinate system, v is orthogonal to the detector 

and u is tangent. The origin of c′ moves along the z-axis while the system moves, and it is fixed 

to the rotating source-detector system. The rigid motion transforms (Sun et al., 2015) for one 

projection view in the coordinate system c can be defined as; 

Sworld   = (𝜑𝑥, 𝜑𝑦, 𝜑𝑧 , 𝑡𝑥, 𝑡𝑦, 𝑡𝑧 )
T  (4.1) 

 

Where three rotations are 𝜑𝑥, 𝜑𝑦, 𝜑𝑧
   , while three translation parameters are tx, ty, tz. The 

motion can be mapped in a detector coordinate system c′ 

 

Sdetector   =  (𝜑𝑢, 𝜑𝑣 , 𝜑𝑧 , 𝑡𝑢, 𝑡𝑣, 𝑡𝑧 )
T (4.2) 
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Figure 4.1: The scanner and detector scheme used for motion estimation and 

compensation (Sun et al., 2016). 
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A small magnification of the projection is created by a slight motion perpendicular to the 

detector in the tv direction, which is supposed to be negligible (Gullberg et al., 1987). In the 

detector coordinate system for every projection, we take tv as zero and estimate only five 

parameters. Equation 4.2 can be written as; 

Sdetector   =  (𝜑𝑢, 𝜑𝑣 , 𝜑𝑧 , 𝑡𝑢, 𝑡𝑧 )
T (4.3) 

  

4.2 Motion correction method 

A 3D registration of the object to each 2D view was accomplished individually to estimate the 

posture of the object for each acquired CT view. The initial rough estimate of the 3D subject 

is attained with a preliminary reconstruction without incorporating motion compensation. 

Therefore, motion artifacts in the initial image will have a significant impact on the accuracy 

of the posture estimates for each projection. 

However, this 2D-3D registration process can still estimate the part of the real motion and 

enhance the reconstruction. This first rough motion estimation is used to create a motion-

corrected image during the first iteration. Afterward, the iterative algorithm reiterates the 

process of reconstruction, generates more accurate motion estimates for each view, and 

alternatively compensates for the motion for each view, and the iteration process stopped when 

the reconstructed image is converged. 

The algorithm is divided into two parts: the first portion grasps joint image and motion 

estimation (JIM), and the second part does the final reconstruction using motion compensation. 

A motion update and an image update are computed for each JIM iteration, with the image 

update obtained by using several iterations of the OSEM method (Sun et al., 2016). 

For an iterative algorithm, computed projections are produced by employing a forward 

acquisition model on the current image estimate. This algorithm tries to consider the true 

interpretation of the object by imposing the data consistency among the computed projections 

and measured data numerically. Consequently, the image update is improved at every iteration.  

In contrast, in FBP a single step inversion is applied to images. To model physical processes 

during acquisition (noise, scattering, motion, etc.) the forward acquisition model algorithm is 

superior to an analytical inverse acquisition model. Therefore, motion-corrected CT 

reconstruction will be executed from motion-contaminated raw data by using OSEM iterative 

reconstruction (Hudson et al., 1994).  

𝜇𝑗
𝑘+1 =

𝜇𝑗
𝑘

∑ 𝑎𝑖𝑗   𝑖 ∈ 𝑆𝑏
    ∑ 𝑎𝑖𝑗   
𝑖 ∈ 𝑆𝑏

𝑙𝑖
∑ 𝑎𝑖ℎ𝜇ℎ

𝑘
ℎ

  ( 4.4 ) 
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In equation 4.4, Sb represents one subset (comprising b views) and l indicates the log converted 

sinogram. A modified version of conventional OSEM was used to enable motion correction 

(Sun et al., 2016): 
 

𝑇𝜃
𝑛+1 = 𝑖𝑛𝑣𝑒𝑟𝑡(𝑇𝜃

𝑛+1) 
 

 

𝜇𝑗
𝑛+1 = 

𝜇𝑗
𝑛

∑ 𝑇𝑖
𝑛+1

𝑖 (𝑎𝑖𝑗)
 ∑𝑇𝑖

𝑛+1

𝑖

(𝑎𝑖𝑗) 
𝑚𝑖

∑ 𝑇𝑖
𝑛+1

𝑘 (𝑎𝑖𝑗) 𝜇𝑗
𝑛
  ( 4.5 ) 

 

   

Thus, the execution includes four steps: 

1. A motion update: this is a 2D-3D image registration that updates the pose estimation 

for every view in the present JIM iteration. 

2. An image update: At the current JIM iteration, the new motion estimate was 

incorporated into the system matrix through an iterative reconstruction technique. 

3. A multi-resolution scheme updates alternatively both image and motion. 

4. The final reconstruction uses a system matrix derived from the final motion estimate. 

4.2.1 Motion update  

The posture of the object was estimated by the 3D registration of the object for every 2D 

projection. In the present JIM iteration,  2D-3D image registration was utilized to update the 

pose estimate for every view. The initial estimate of the 3D object was achieved by a 

preliminary reconstruction with no motion compensation. This 2D-3D registration detected a 

part of the real motion, and this motion estimate was helpful in the improvement of the further 

reconstruction process. The algorithm is executed in two parts, motion estimation, and motion 

compensation (Sun et al., 2016). 

To develop the forward projection of the estimated image µ, we integrate along the projection 

line i at the current JIM iteration: 

𝑓𝑖  = ∑𝑎𝑖𝑗
𝑗

𝜇𝑗 ( 4.6 ) 
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In equation (4.6)  i represents the projection line index and j the voxel index while aij is the 

effective intersection length of line i with voxel j. In helical CT, the line integrals are organized 

into views, with each view 𝜃 including all line integrals related to a single source position; 

𝑓𝜃 = {𝑓𝑖} ( 4.7 ) 

 

Figure 4.2 depicts the general motion estimate and compensation technique. Let us suppose the 

motion correction is at the JIM-iteration n, therefore the present equation (4.3) motion estimate 

is  𝑠𝑛  for  𝜃 view, the current pose estimate is 𝑠𝜃
𝑛 and the 5 motion parameters are estimated 

one by one. Let s be one of these parameters (translation or rotation) be estimated. If the change 

in the pose parameter described by s ̂ is small, the derivative of projection  f  regarding ŝ can be 

estimated as a finite variation of the intensities as; 

𝜕𝑓𝜃
𝜕𝑠
 ≈  

𝑓𝜃(ŝ) − 𝑓𝜃(𝑠
𝑛)

ŝ
 ( 4.8 ) 

Motion estimation 

Motion update μn Image updates Sn 

Converged 

No 

Yes 

Final 

Reconstruction 

Figure 4.2: Schematic of motion estimation technique. μ is the update of the attenuation image, s is the 

update of the rigid transform, n is the iteration number (Sun et al., 2015).  
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where 𝑓𝜃(𝑠
𝑛) is the calculated re-projection by employing the current estimates of the image 

and motion, 𝑓𝜃(ŝ) is the measured projection for view 𝜃. Therefore, to measure ŝ  the equation 

(4.8) can be written as (Sun et al., 2016); 

𝜕𝑓𝜃
𝜕𝑠
 ≈  

𝑓𝜃(∆𝑠) − 𝑓𝜃(𝑠
𝑛)

∆𝑠
 ( 4.9 ) 

 

Where ∆𝑠 is a small increment of the parameter to be approximated, if ∆𝑠 is the translation 

parameter then 𝑓𝜃(∆𝑠) can be estimated as a simple translation of the current re-

projection 𝑓𝜃(𝑠
𝑛). If  ∆𝑠 is in-plane rotation, then 𝑓𝜃(∆𝑠) can be estimated as a simple rotation 

of the re-projection 𝑓𝜃. For the two out-of-plane rotations, 𝑓𝜃(∆𝑠) computed with a forward 

projection utilizing a system matrix according to ∆𝑠 (Sun et al. , 2016). 

We assume in equations (4.8) and (4.9) that a slight change in one degree of freedom of rigid 

movement only gives a linear change in the projection intensities. At the current JIM-iteration 

n, this leads to the least-squares minimization problem for view 𝜃 (Sun et al., 2015); 

𝑠𝑖𝑛𝑐𝑟𝑒
𝑛  = argmin⏟    

ŝ

‖∆𝑠 ∙ [𝑓𝜃(𝑠
𝑛 + ŝ) − 𝑓𝜃(𝑠

𝑛)] − ŝ ∙ [𝑓𝜃(𝑠
𝑛 + ∆𝑠) − 𝑓𝜃(𝑠

𝑛)]‖ 
(4.10) 

To find   𝑠𝑖𝑛𝑐𝑟𝑒
𝑛  the equation ( 4.10) is solved analytically by defining; 

𝑃𝜃 = 𝑓𝜃(𝑠
𝑛 + ŝ) − 𝑓𝜃(𝑠

𝑛) (4.11) 

𝑄𝜃    = 𝑓𝜃(𝑠
𝑛 + ∆𝑠) − 𝑓𝜃(𝑠

𝑛) (4.12) 

 

The derivative of the right-hand side of equation 4.10 with relation to  ŝ  to zero; 

𝑠𝑖𝑛𝑐𝑟𝑒
𝑛 =

∑ 𝑃𝜃.𝑁 ∑ 𝑄𝜃𝑁

‖∑ 𝑄𝜃
2

𝑁 ‖
∆𝑠   (4.13) 

 

The total number of voxels in the projection 𝜃 view is N. This method explains the estimation 

of one parameter in a single projection view. For all 𝜃 views, all five parameters are estimated 

by using this procedure in equation 4.3. The sequence of the estimation was a translation, then 

rotation. The recently estimated parameter values were employed instantly for estimating the 

value of the next parameter. As shown in figure 4.2, this sequential estimation of five motion 

parameters for all projection views accomplished the update of the rigid motion at the present 

JIM iteration (Sun et al., 2016). 

In the detector coordinate system, the rigid motion parameters for every projection view were 

then translated into a homogeneous matrix. Because the reconstruction involves a 
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transformation in the world coordinate system, the estimated motion in the detector coordinate 

system was transformed into the motion in the world coordinate system (Sun et al., 2016): 

Sdectector            Tdetector 

Tworld = R. Tdetector 

 

The homogenous matrix representation of the transform is the 4×4 matrix T, transformation 

matrix that maps the detector coordinate system to the world coordinate system is the 4×4 

matrix R. 

{𝑆𝜃         → 
𝑛,𝑖𝑛𝑐 ∆𝑇𝜃

𝑛} (4.14) 

  

𝑇𝜃
𝑛+1 = 𝑇𝜃

𝑛 ∙ ∆𝑇𝜃
𝑛 (4.15) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The transformation matrix attained in the nth JIM-iteration was later utilized to update the prior 

motion estimate for each view, which was employed in the subsequent JIM-iteration (n + 1). 

Iterative reconstruction can be used to update the image representing the attenuation 

coefficients after the motion has been found.  

Source 

C 

m . Δs 

Δs 

Source 

Translation 

C 

Δs 

Rotation 

Δs 

Figure 4.3: The impact of object rotation and translation  parallel to the detector can be better 

approximated in the detector coordinate system as translation and rotation of the projection. m 

is the magnification factor from the object to the detector. For simplification, the curvature of 

the detector is omitted (Sun et al., 2015). 
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4.2.2 Image update 

A modified version of standard OSEM  was used to enable motion correction (Sun et al., 2016): 

𝑇𝑖
𝑛+1 = 𝑖𝑛𝑣𝑒𝑟𝑡(𝑇𝑖

𝑛+1) (4.16) 

 

𝜇𝑗
𝑛+1 = 

𝜇𝑗
𝑛

∑ 𝑇𝑖
𝑛+1

𝑖 (𝑎𝑖𝑗)
 ∑𝑇𝑖

𝑛+1

𝑖

(𝑎𝑖𝑗) 
𝑚𝑖

∑ 𝑇𝑖
𝑛+1

𝑘 (𝑎𝑖𝑗) 𝜇𝑗
𝑛

 (4.37) 

 

Where aij is the effective intersection length of line i with voxel j, i is the projection line index, 

j is the voxel index, Sb is one subset consisting of b projections and Ti is the 4×4 transformation 

matrix applied to the projection line I, and m is the log converted sinogram. The above equation 

will be comparable to standard OSEM if Ti is the identity matrix for all projection lines. For 

the helical CT, Ti is constant for all projection lines in one projection view, hence the inversion 

is done for every single view. The motion within a single view is insignificant due to the rapid 

rotation speed and a vast number of views. 

4.2.3 Multi-resolution alternate update scheme 

The problem of error propagation is mitigated since the image and motion parameters are 

estimated from the measured data jointly. A multi-resolution system was utilized to accelerate 

the convergence of the joint estimation of the motion and image update (Sun et al., 2015). The 

algorithm proceeded from a coarse to a fine image representation. The initial image resolution 

level is 8 ×8 × 8, i.e. which means that an eight-fold down-sampling factor was used in all 

directions (Sun et al., 2015). Early JIM-iterations reconstructed image updates at a coarse 

resolution, with the resolution increasing as the number of iterations amplified. The number of 

OSEM-iterations performed for the image update was similar within one resolution level. 

4.2.4 Final reconstruction 

 From the last motion estimate, a final iterative reconstruction was completed. Due to the large 

volume of the raw data set, a motion was assessed at each 8th projection to speed up both motion 

and image updates. To get rid of outliers, a Savitzky-Golay filter was used to smooth motion 

updates (Savitzky et al., 1964). It was not clear where to stop iteration during estimating the 

movement at every resolution level. For all projects, the sum of projection errors (PE) between 

re-projected and measured data was calculated. It was decided that the iterations would be 

halted when the PE did not exceed 0.2 % for each resolution level. 
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 The appropriate smoothing kernel size is determined by the axial detector extent as well as the 

view sampling rate of the measured data. The axial extent varies depending on the scan 

configuration. A final diagnostic quality reconstruction must be generated after the motion 

estimate has converged. To accelerate reconstruction, the final reconstruction from an 

approximate helical FDK reconstruction (motion correction was enabled in the back-projection 

step), provided the image is not affected much by the motion artifacts. The forward and 

backward projection operations were applied in OpenCL (Sun et al., 2016) and executed on a 

GPU to further speed up the final reconstructions (NIVIDIA Tesla C2075). 

4.2.5 Data-sufficiency 

A precondition for an exact reconstruction is the data-sufficiency condition. Before designing 

a reconstruction algorithm for a specific imaging application, it is useful to determine whether 

the available data are sufficient for the exact reconstruction of the attenuating object. Here, 

exact reconstruction means that the reconstruction problem has a unique solution, and a stable 

estimate of that solution can be computed from noisy data. In parallel-beam tomography, Orlov 

developed a data-sufficiency criterion (Orlov et al., 1975). In cone-beam tomography, Tuy 

expanded it to a data-sufficiency condition (Tuy et al., 1983). Later, Metzler et al. described 

the geometrical equivalence between Orlov's and Tuy's sufficiency conditions (Metzler et al., 

2003). Note that the above conditions assume that all projections at all source positions are not 

truncated, i.e. all projection lines that intersect the object also intersect the detector. 
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Chapter 5. Validation of 3D iterative data-driven motion correction 

algorithm 

5.1 Introduction 

Patient motion, is a primary source of artifacts in clinical x-ray computed tomography because 

it generates inconsistencies in the acquired projection data. Head motion during head CT 

imaging can have severe effects on image resolution and originate distortion and other related 

artifacts (Rachel et al., 2013). 

Motion artifacts come out as dark or bright shadowing and shape distortion that sometimes 

looks like a disease.  There are two types of motion-related artifacts like voluntary motion and 

involuntary motion (Barrett et al., 2004). The voluntary motion included external body 

movement, respiration, and swallowing. The beating heart, coughing, and peristalsis, sneezing 

are involuntary movements.  

In 1995, G. Wang published a study on helical CT methods for patient motion estimation and 

compensation (Wang et al., 1995). In 1998, different possibilities were considered Ritchie et 

al. studied scan speed to reduce motion artifacts, but they concluded an ultrafast scan time 

cannot reduce the motion artifacts. Therefore, they suggested the need for the development of 

other techniques to minimize motion artifacts. 

When imaging children, as well as patients suffering dementia or head trauma a method of 

compensating for head motion in helical CT, would be of substantial benefit. To compensate 

for head motion, several retrospective motion correction algorithms have been developed 

(Schäfer et al., 2004, Wang et al., 2007).  All of these use the information about the motion of 

the head in the CT coordinate system in the CT scan. Several studies have also proposed 

approaches for motion estimation from the acquired projection data (Yu et al., 2007). The 

existing motion estimation methods (Bodensteiner et al., 2007, Bhowmik et al., 2012), can 

offer 6 degrees of freedom (d.o.f.) motion estimates in CT coordinates. The method proposed 

by Wagner did not evaluate the quantitative accuracy of derived motion estimates. His 

technique might potentially be adapted to provide estimates directly in CT coordinates, using 

the information of bed position, and is a possible alternative to the technique explained here 

(Wagner et al., 2003).  



Chapter 5. Validation of 3D iterative data-driven motion correction algorithm 

 

51 

 

The object dislocations of roughly 1-pixel width can originate in considerable image artifacts 

(Jacobson et al., 2008). These estimates are dependent on several factors, like the geometry of 

the scanner, the number of projection angles employed in the image reconstruction, the track 

of motion, the extent and attenuation of the entity, and the application of motion-decline 

reconstruction algorithms. In this work, they studied the degree of motion artifacts on test 

phantoms by varying velocities. 

Bhowmik used radio-opaque markers in each projection to compute motion estimates in cone-

beam CT (Bhowmik et al., 2012). In a similar study, Bodensteiner et al. evaluated artifacts 

caused by positioning errors in CT images acquired by mobile C-arm systems. They suggested 

2D/3D registration technique to compensate for projection data discrepancies and an iterative 

3D-reconstruction technique. This algorithm with 3D reconstructions decreases the small 

motion artifacts.  

Feldkamp-Davis-Kress (FDK) supported 3D cone-beam brain imaging technique, using 

markers to curtail motion artifacts (Hengyong et al., 2007). Motion-related artifacts could also 

be alleviated by using a customized form of the FDK algorithm (Westermann et al., 2000). 

Another interesting method (Katsevich et al., 2011) uses an empirical measure of image clutter 

called edge entropy to assess local motion in cardiac imaging. As local motion estimation is a 

more difficult problem than rigid motion estimation, it is probable to adapt this technique to 

rigid motion.  

Our goal is to validate the data-driven rigid head motion correction method in CT. The 

validation of a data-driven 3D iterative motion correction algorithm will be performed on brain 

phantom as well as patient scans. 

5.2 Phantom studies 

A tissue-equivalent material to mimic the human body is known as a phantom. Phantoms are 

used to do experimentation for research as a human being cannot be used in the experiment. 

The Hoffman 3D brain phantom provides a quantitative and qualitative study of the three-

dimensional effects of scatter and attenuation similar to the human brain. Nineteen independent 

plates stack within the cylindrical phantom for easy disassembly and assembly. This phantom 

represents a whole brain, both white and gray matter. It consists of a single fillable chamber.   
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Figure 5.1: Hoffman brain phantom. 

 

5.3 Hoffman brain phantom 

Acquisition of Hoffman brain phantoms on CT 

Hoffman's brain phantom was scanned on a Siemens Biograph mCT scanner with a 128 slice 

CT system (Siemens Medical Solutions USA, Inc., Malvern, PA) using routine head CT. The 

acquisition and reconstruction parameters of the phantom scan are listed in table 4.1.  The 3D 

Hoffman brain phantom in CT imaging experiments was filled with water. 

 

 

Figure 5.2: Hoffman brain phantom acquisition on Biograph mCT. 
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Table 5.1: Acquisition and reconstruction protocol for Hoffman brain phantom 

Parameters Values 

Detectors rows 128 

kVp 120 

mAs 44 

Pitch 0.5 

Collimation 128 × 0.6 

Slice thickness 2 mm 

Rotation time 0.5 sec 

Rebinned projection 1600 

 

The phantom was placed on the patient's couch, elevated on the curved surface of the bed, and 

supported by a wedge. The phantom was scanned with a reference stationary helical CT scan. 

Afterward, a series of CT scans were acquired with a variety of motions, without moving the 

phantom. The variety of motion was generated when a string was pulled from outside the room. 

The following phantom scans were acquired; 

a. Stationary 

b. Slight motion (SM) 

c. Moderate motion (MM) 

d. Fast motion (FM) 

Stationary phantom scan: The Hoffman phantom was positioned using a LASER marker at 

the center and the phantom was supported by a wedge. A reference stationary scan was 

acquired using routine head CT acquisition as listed in table 4.1. 

 Moving phantom scans: Without changing the position of the phantom as well as 

acquisition parameters the phantom scans were acquired with a variety of motion b-d as 

mentioned above. 

Phantom analysis: The effect of motion correction on phantom CT scans was evaluated by 

separately comparing the gold standard stationary phantom images with corresponding 

uncorrected and motion-corrected images as illustrated in figure 5.3. 
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5.4 Clinical studies 

For clinical studies, 3D iterative data-driven motion correction algorithm will be used to reduce 

motion artifacts in diagnostic helical CT by estimating motion from raw x-ray projection from 

the human head. During the image reconstruction process, the planned motion estimation and 

compensation technique using only the measured x-ray raw data to iteratively estimate and 

compensate the human head movement. Our next objective is to evaluate this approach in 

inpatient studies and to improve it for more robust applications. 

5.4.1 Data collection 

The raw data of fifteen patients presenting head movement during CT acquisition has been 

acquired at the radiology department at children hospital Westmead and Westmead hospital, 

Sydney, Australia. The study had been started with the authorization of the human research 

ethics committees of the Western Sydney health district. CT studies of the head were acquired 

for a range of clinical indications on a Siemens Sensation 64 system, Siemens Definition AS, 

Hoffman Brain Phantom 

Motion contaminated 

CT scan 
Stationary scan 

Stationary scan 

reconstruction 

(MF) 

Uncorrected 

reconstruction (UC) 

Motion-corrected 

reconstruction 

(MC) 

Reconstruction 

Reconstruction 

(With data driven 

software) (With vendor software) 

Figure 5.3: Hoffman brain phantom analysis (Kim et al., 2016). The motion-induced phantom scans 

were reconstructed with and without a motion correction and compared with a reconstructed stationary 

phantom scan. 
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and Siemens Somatom Force scanners at these institutions (Siemens Medical Solutions USA, 

Inc., Malvern, PA).  

5.4.2 Motion estimation and compensation scheme 

CT image reconstruction is a mathematical procedure that creates tomographic images from x-

ray projection data acquired from a variety of angles around the patient. Iterative reconstruction 

has the potential to improve image quality while also lowering radiation exposure. Images from 

iterative reconstruction (IR) may have a different appearance (e.g., noise texture) than those 

from FBP reconstruction due to the inherent differences in data handling between FBP and IR. 

More crucially, due to the non-linear regularization term and other factors during the 

optimization process, the spatial resolution in a local region of IR-reconstructed images is 

highly dependent on the contrast and noise of the surrounding structures.  

With advancements in computing technology, IR has become a common alternative in 

everyday CT practice due to its several advantages over traditional FBP procedures. When 

compared to FBP, important physical characteristics like focus spot and detector geometry, 

photon statistics, x-ray beam spectrum, and scattering may be more precisely included in IR, 

resulting in lower image noise and improved spatial resolution. In addition, image artifacts like 

beam hardening, windmill, and metal artifacts can be reduced using IR. 

For an iterative algorithm, computed projections are produced by employing a forward 

acquisition model on the current image estimate. The iterative algorithm tries to consider the 

true interpretation of the object by imposing the data consistency among the computed 

projections and measured data numerically. Consequently, the image update is improved at 

every iteration. In contrast, in FBP a single step inversion is applied to images. To model 

physical phenomena during acquisition (noise, scattering, motion, etc.) the forward model 

algorithm is superior to an analytical inverse model. Therefore, motion-corrected CT 

reconstruction will be executed from motion-contaminated raw data by using OSEM iterative 

reconstruction (Hudson et al., 1994).  

𝜇𝑗
𝑘+1 =

𝜇𝑗
𝑘

∑ 𝑎𝑖𝑗   𝑖 ∈ 𝑆𝑏
    ∑ 𝑎𝑖𝑗   𝑖 ∈ 𝑆𝑏

𝑙𝑖

∑ 𝑎𝑖ℎ𝜇ℎ
𝑘

ℎ
                                     (5.1) 
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In equation 5.1, Sb represents one subset (comprising b views) and l indicates the log converted 

sinogram. Motion correction was enabled by using a customized version of standard OSEM 

(Sun et al., 2016);.  

𝑇𝜃
𝑛+1 = 𝑖𝑛𝑣𝑒𝑟𝑡(𝑇𝜃

𝑛+1) 
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𝜇𝑗
𝑛
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 ∑ 𝑇𝑖

𝑛+1
𝑖 (𝑎𝑖𝑗) 

𝑚𝑖

∑ 𝑇𝑖
𝑛+1

𝑘 (𝑎𝑖𝑗) 𝜇𝑗
𝑛                                       (5.2) 

 

In the first step of reconstruction, a 3D object estimation is achieved by initial reconstruction, 

not including motion compensation. In the motion correction method, it is assumed that all in 

the CT system field of view moved rigidly except the patient headrest and couch. Therefore, 

patient headrest and couch segments were deleted from the raw data preceding reconstruction 

after the completion of the first step (Fig. 1).  In the second step, a new set of projections was 

generated through forward projection from this new segmented data. These new projections 

were then deducted from the measured projections prior to the motion estimation and 

compensation was implemented. 
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Figure 5.4: ROI for removal of patient headrest and couch from raw data before motion estimation.  

 

It is assumed that the pose of the measured object might be unique for every projection. As a 

result, a rigid transformation inferring the object posture is calculated for each projection and 

used to update the system matrix. The whole framework was executed in four parts, a multi-

resolution approach was utilized to accelerate the convergence of the joint estimation of the 

motion and image update (Sun et al., 2016). Using the most current motion estimate, a final 

iterative reconstruction was completed. Due to the large volume of the raw data set, the motion 

was assessed at each 8th projection to speed up both motion and image updates. To get rid of 

outliers, a Savitzky-Golay filter was used to smooth motion updates (Savitzky et al., 1964). It 

was not clear where to stop iteration during estimating the motion at every resolution level. 

The sum of projection errors (PE) between the re-projected and measured data for all 

projections was calculated. It was decided that the iterations would be halted when the PE did 

not surpass 0.2 % for each resolution level.  

5.4.3 Scoring of images 

All the patient scans were reconstructed with standard algorithm configuration. After 

reconstruction images were analyzed for removal of motion artifacts by comparing 
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reconstructions with and without motion correction. The image data sets were independently 

assessed by two blinded radiologists and scored on a 4-point scale,  (dramatically better = 3, 

much better = 2, negligible better = 1, and no improvement = 0). The scoring criteria were 

designed according to the European Commission guidelines on quality criteria for CT images 

(Bongartz et al., 1999, Zue et al., 2012).  

5.5 Results 

The phantom scans were acquired with a 128 detector row CT system, but the patient studies 

were scanned with a 64-row, 96-row, and 128-row CT. The data-driven motion estimation and 

compensation worked effectively for data from systems having different numbers of detector 

rows. The performance of the algorithm was improved with a large number of detector rows, 

as the broader detector delivers more data in a single projection view. To reduce the noise of 

the predicted movement, stronger smoothing was required for data from a system with a 

narrower detector. 

The degree of motion was arbitrarily classified into six parameters three rotation parameters 

Rx, Ry, Rz, and three translational parameters Tx, Ty, and Tz. Although the motion is complex 

and always affects two or more of the six parameters concurrently in different manners, the 

weighting between rotation and translation is not unrealistic as a technique of expressing the 

degree of motion with a single parameter, because rotation may happen around any place 

between the center and a margin of the brain.  
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Figure 5.5: Motion of Hoffman brain phantom rotation motion (o) and translation motion (mm)  of the 

phantom in CT isocentre coordinates, concerning its pose at the start of the scan. This figure explains 

the nature of the motion, which is intricate motion in all six DoF, (a) slight motion, (b) moderate 

motion, (c) fast motion.  

 

Wagner et al. recorded motion in 20 patients during helical CT scans, with rotations of up to 

2.3o and translations of up to 5 mm, which was substantially larger than what is generally 

expected in patients (Shefer et al., 2013). However, we expected that some individuals would 

experience the motion of the magnitude tested here. Fahmi et al., for example, recorded 

translations of more than 60 mm during helical CT perfusion scans in patients with acute 

ischemic stroke (Fahmi et al., 2013). 
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The phantom scans with SM and MM were reconstructed without artifacts, but with FM some 

residual artifacts were seen after motion correction had been executed. It has been seen that 

these artifacts were due to data insufficiency, A fast-rolling motion of a cylindrical phantom 

can produce artifacts that motion correction cannot completely remove, as demonstrated in 

figure 5.6. These massive motions are not clinically expected in human scans. This leads to the 

important question of whether the approach would produce similar residual artifacts when used 

in clinical scanning. 

 

 

5.6 Discussion 

The overall resolution of the Hoffman brain phantom image was deprived. One possible 

explanation is that the proposed method is based on 2D to 3D image registration, which is 

likely to be less effective when the object contrast is low. The high contrast between the skull 

and soft tissue was determined to give sufficient information for calculating motion in CT brain 

imaging. But the Hoffman brain phantom did not have skull bones so due to low contrast the 

quality of the image is poor. Preprocessing to improve the contrast of the raw projection data 

may be required for situations where the contrast is poor. 

 

 

 

 

 Stationary SM MM FM FM 

Uncorrected 

     

Motion 

Corrected 

     

 
 

Figure 5.6: Comparison of axial reconstructed slices from the moving phantom uncorrected and 

motion-corrected, (a) stationary phantom, (b) slight motion, (c) moderate motion, (d-e) fast 

motion.  
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Figure 5.7: A 58-year-old man's head CT scan, two different CT scan slices are shown, (a-b) the top 

row is original scan slices with motion, bottom row is motion-corrected. 

 

Clinical scans with a significantly large number of CT views imposed a computational 

problem. It takes around 2 hours to estimate motion for a single patient scan, and about 12 

hours to complete the final iterative reconstruction (a good number of updates is essential to 

obtain a quality similar to the vendor images). The multi-resolution technique accelerated the 

motion estimation. Excessive blurring can obscure critical high-frequency features, hence 

using a coarse beginning resolution should be discouraged.  

Among the six co-registration parameters, Z-axis translation, Y-axis translation, and X-axis 

rotation (and sometimes Z-axis rotation) tended to present larger values than the other 

parameters. Axial translation (creeping up or down) and flexion-extension are the major types 

of motion (nodding or looking up). In the six registration parameters, these major kinds of 

motion tend to accompany Y-axis translation. The most head holds and fixation techniques do 

not prevent these forms of movements from occurring due to tension and relaxation of cervical 

muscles. The shaking head (Z-axis rotation) motion is likewise difficult to control and may 

occur when the individual is distressed. Motion correction has a quantitative effect that is 

dependent on the region and amount of motion. 

 a) b) 
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As presented in figure 5.7, the proposed technique performed well even when the patient's 

motion was relatively large. With data-driven motion estimation and correction, 65% of the 

patient scans became dramatically better, 14% of the scans much better, 11% negligibly better 

and 5% of the scans demonstrated no improvement. It was determined that the method worked 

better when the rotation amplitude was less than  10o  and the translation amplitude was less 

than 30 mm, which we believe are unlikely to be surpassed in most clinical scans. However, in 

circumstances of extreme motion, such as that seen in figure 5.6 e, it did not produce motion-

free images. Optical motion tracking systems have already been proved to be successful, even 

for very severe motion, by our group (Kim et al., 2016, Sun et al., 2016). 

 

 

 

 

 

 

 

 

 
Figure 5.8: A male patient sneeze during a CT scan a) uncorrected axial slices and b) motion-corrected 

slices reveal the improvement in image quality. 

 

 

Finally, by reducing the need for repeated scans in the event of motion, an effective and usable 

motion correction solution could expedite clinical procedures. The majority of diagnostic CT 

scans of the head are done at a low pitch (e.g. 0.5), which reduces the risk of artifacts. 

a) Uncorrected b) Motion corrected 
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Figure 5.9: Selected transaxial, sagittal, and coronal planes, with and without compensation for residual 

motion. Top: original image; bottom: motion-corrected image 

 

 

With most types of head motion expected to be encountered in CT imaging, our approach can 

give accurate and artifact-free MC images. The sole input required for the data-driven motion 

estimate and compensation method for helical x-ray CT of the head is measured raw data; no 

supplementary measurements are necessary. Therefore, it can be employed retrospectively to 

standard helical CT data.  It will become a significant clinical tool and reduce the number of 

repeat scans if it is sufficiently accelerated. 
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Chapter 6. Optimization 

In this chapter, we will optimize the data-driven 3D iterative motion estimation (ME) and 

motion compensation (MC) algorithm for its robust application in patient scan with head 

movements during computed tomography (CT).   

6.1 Introduction 

CT is an essential diagnostic technique in medicine. Computed Tomography (CT) scanning is 

commonly available, cost-effective, and provides higher sensitivity for the evaluation of skull 

fracture, calcification, and acute hemorrhage (Raj at el., 2014). Generally, CT motion artifacts 

are due to voluntary and involuntary actions like head motion, cardiac motion, and respiratory 

motion (Yazdi et al., 2008). In CT brain perfusion imaging of acute ischemic stroke patients, 

head motion is also highly common (Barrett et al., 2004). Furthermore, during scanning, 

seriously injured patients or small children frequently move, resulting in motion artifacts 

(Barrett et al., 2004). Children must often be anesthetized, which is accompanied by some risk, 

if the patient moves during the scan the motion artifacts can cause false diagnosis or severe 

movement deliver distorted images that are inappropriate for diagnosis. For these patients, 

scanning needs to be repeated resulting high undesirable radiation burden to the patient (Boone 

et al., 2012). The ability to compensate for head motion would reduce the need for repeated 

scans and deliver artifact-free images in CT, SPECT/CT, and PET/CT images. Motion artifacts 

might also be reduced by faster scanning and employing immobilization devices (Beyer et al., 

2005).  

Motion correction methods can be classified into two categories. The first group requires the 

motion acquisition data, such as surrogate signals or reference images to derive motion 

information, and motion is compensated during the reconstruction process. The second method 

compensates for motion without prior information about the motion using image-processing 

techniques. Rigid motion correction in helical CT scan is complicated as the object is 

continually truncated from the axial side which provides limited data to restore the consistency 

in projections. A comparatively, small number of studies already performed motion correction 

in helical CT scanning, and a few of these studies need supplementary measurement to acquire 

the motion information (Kyme et al., 2014, Sun et al., 2016).   

In the current study, a data-driven fully 3D automatic reconstruction approach will be used to 

eliminate MA in helical CT imaging. This technique only needs the measured raw data and 

during the iterative reconstruction procedure estimate and compensates the motion. The 
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standard data-driven 3D iterative motion estimation and compensation technique effectively 

removed head MA in various scans. But in a few patient scans after MC, it was observed that 

some scans still have residual motion artifacts. To make motion correction robust, it is intended 

to investigate each shortfall that has a significant impact on ME and MC. It was identified that 

SK length, PT threshold, and AR can affect the performance of the algorithm. Therefore, we 

decided to optimize the SK length, PT threshold, and AR to eliminate residual artifacts in head 

CT scans using a data-driven motion correction approach. 

6.2 Material and methods 

The raw data of fifteen anonymized patients presenting head movement during CT acquisition 

at the Radiology department at children hospital Westmead and Westmead hospital, Sydney, 

Australia were collected. The study had been started with the approval of the human research 

ethics committees of the Western Sydney health district. CT studies of the head were acquired 

for a range of clinical indications on a Siemens Sensation 64 scanner, Siemens Definition AS, 

and Siemens Somatom Force scanners at these institutions (Siemens Medical Solutions USA, 

Inc., Malvern, PA). 

The data of each patient was reconstructed by fully automated data-driven 3D iterative image 

reconstruction with motion compensation with various smoothing kernel (SK) lengths, 

projection tolerance (PT), and angle rebin (AR) to remove residual motion artifacts (MA) in 

the head CT.  All reconstructed MC images were scored.  

6.3 Smoothing kernel (SK) 

The scans with residual artifacts were reconstructed by using four different SK values SK 60, 

SK 120, SK 230, and SK 320. Motion estimation and projection error were plotted against each 

projection angle for all SK values to analyze their impact on motion correction. 

6.4 Projection tolerance (PT) 

The change in the summation of PE among the re-projected and measured data for all views at 

every resolution level from each iteration to the next was computed. Projection tolerance is a 

stopping criterion, when the percentage change in PE among two consecutive iterations is less 

than the PT, the algorithm stops iterating at the current resolution level and selects the next 

resolution level. When estimating the motion at each resolution level, it was not clear when to 

stop iteration, as no motion-free image was available for these clinical studies. To analyze the 

impact of the number of iterations for each patient study was reconstructed with a fixed value 

of smoothing kernel SK 60 and changing projection tolerance PT 0.001, PT 0.0015, PT 0.0018, 
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PT 0.0025, and PT 0.005. Motion estimation was plotted against each projection angle for all 

PT values. 

6.5 Angle rebin (AR) 

Head scans have a large number of views approximately between 45,000 to 50,000. Projections 

were rebinnd by summing groups of 8, 16, and 32 consecutive projections to speed up 

reconstruction. 

6.6 Scoring of images 

All the patient scans were reconstructed with standard algorithm configuration. After 

reconstruction images were analyzed for removal of motion artifacts by comparing 

reconstructions with and without motion correction. The image data sets were independently 

assessed by two blinded radiologists and scored on a 5-point scale (best (no MA in entire scan) 

= 4, more than average (one MA) = 3, average (two MA) = 2, fair (partial motion correction) 

= 1 and worst (no motion correction) = 0). The scoring criteria were designed according to the 

European regulations on quality criteria for CT images (Bongartz et al., 1999, Zue et al., 2012). 

The scans with residual artifacts and receiving scores between 0-3 were reconstructed again by 

employing different SK, PT, and AR values and scored again.  

6.6.1 Statistical analysis 

The statistical analysis was done by using SPSS version 23.0 (SPSS, Inc., Chicago, IL). The 

quantitative mean scoring of reconstruction was evaluated using Wilcoxon sign-rank test and 

the differences were considered significant at P <0.05. The Wilcoxon sign-rank test checks 

whether the mean values of two dependent groups differ significantly from each other. The 

Wilcoxon test is non-parametric, and it is utilized to evaluate mean scores when the dependent 

variable is not normally distributed. 

6.7 Results 

The accumulative head movement was quantified with a mean rotation angle up to ± 4.0° with 

a maximum 13.0° and mean translation up to ±21 mm with a maximum 54.4 mm. The most 

common motion was observed in the TZ translation direction. The standard data-driven 3D 

iterative motion estimation and compensation scheme effectively removed head MA in various 

scans. But in a few patient scans after MC, it was observed that some scans still have residual 

motion artifacts. Figure 6.1 represents a patient scan reconstructed by the data-driven fully 3D 

iterative algorithm and compared with the real image without motion correction with the 

manufacturer´s reconstruction, figure 6.1b images improved after MC but presented a small 
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residual error. To eliminate these residual artifacts scans were reconstructed by using different 

smoothing kernel lengths, projection tolerance, and angle rebin.  

 

 

 

 

 

 

 

 

 

 

 

  

6.7.1 Smoothing kernel  

The mean scoring was calculated for all patient scans reconstructed employing different SK 

values. Generally, the images reconstructed by SK 60 have got the highest mean score and 

offer more promising results, and are acceptable for reporting. Furthermore, in some cases, it 

has been observed that the SK 120 also offers comparable results to SK 60 and the images 

reconstructed with SK 320 and higher did not produce significant motion correction in the 

images. Figure 6.2, figure 6.3, and figure 6.4 indicate patient scans reconstructed by the data-

driven iterative algorithm using SK 60, SK 120, SK 230, SK 320 and compared with real 

images reconstructed by using manufacturer software without motion correction. It is clear 

from figure 6.2b, figure 6.3b, and figure 6.4b ghosting in the images was successfully removed 

by using SK60. 

 

 

 

(a) (b) 

Figure 6.1: (a) Image reconstructed with Siemens software without motion correction, the arrow 

pointing ghosting, (b) image reconstructed with 3D iterative data-driven motion correction approach. 
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Figure 6.2: (a) Real image reconstructed with Siemens software without motion correction, the arrow 

pointing ghosting (skull to appear in 3 locations), (b) iterative image reconstruction with data-driven 

motion correction using smoothing kernel 60, (c-e) iterative image reconstruction with data-driven 

using SK120, SK 230, and SK 320, respectively. Ghosting was almost completely corrected in (b), but 

the correction was less complete in (c-e). 

 

 

 

 

 

 

 

In Fig. 6.4 column (b-e) are displaying images reconstructed with SK 60, SK 120, SK 230, SK 

320 respectively, and also offered similar results in column b, SK 60 improved MA.  

 

 

 

(b) (c) 

(d) (e) 

(a) 

(c) (b) (a) (d) (e) 

Figure 6.3: (a) Real image reconstructed with Siemens software without motion-correction, the arrow 

pointing ghosting (skull to appear in multiple locations), (b) iterative image reconstruction with data-driven 

motion correction using smoothing kernel 60, (c-e) iterative image reconstruction with data-driven using 

SK 120, SK 230, and SK 320, respectively. MA was almost completely corrected in (b), but the correction 

was less complete in (c-e). 
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Figure 6.4: Column (a) various patient scans demonstrating MA with vendor reconstruction without 

motion correction, column (b-e) iterative image reconstruction with data-driven motion correction SK 

60, SK 120, SK 230, and SK 320 respectively, MA was nearly completely corrected in column (b). 

 

The degree of motion was determined for the 6 motion parameters, three rotation parameters 

Rx, Ry, Rz, and three translation parameters Tx, Ty, Tz. Certainly, precise motion estimation 

is crucial for motion compensation. Thus, it is very important to select the suitable length of 

the smoothing kernel. Our experiment reveals that SK 60 generates more satisfactory images, 

as the value of SK increases the motion estimation becomes smoother as shown in figure 6.5. 

            (a)                      (b)                        (c)                           (d)                         (e) 
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It is evident that motion estimation with different lengths of smoothing kernel is considerably 

different. PE drop with the increase in the number of iterations for different smoothing kernel 

lengths as presented in figure 6.6.  

6.7.2 Projection tolerance  

After the optimization of the smoothing kernel, we observed that in a few patient scans, the 

residual artifact is still present after motion compensation. To enhance the performance of the 

algorithm we analyzed the impact of projection tolerance by keeping the smoothing kernel 

length constant as SK 60 and only changing projection tolerance. For each value of projection 

tolerance, we also calculated the number of iterations and total time consumed for complete 

reconstruction. Figure 6.7 illustrates a comparison between scans reconstructed with 

manufacturer software without motion correction along with motion-corrected with SK 60 but 

various projection tolerance thresholds. Image reconstruction with applying SK 60 and PT 

0.001 completely corrected MA. Conversely, images reconstructed by employing PT 0.005, 

PT 0.0012, PT 0.0015, PT 0.0018, and PT 0.0025 still indicate residual motion artifact. From 

figure 6.8 b similar conclusion can be drawn that SK 60 and PT 0.001 nearly corrected MA. 

Figure 6.9 corresponds to the graph between projection angle and motion estimation with 

different PT values. It is obvious that motion estimation with different PT values is not 

considerably different. Figure 6.10 indicates that PT values have a very small impact on motion 

estimation but while reducing the value of PT the number of iterations increases at each 

resolution level. Consequently, total reconstruction time increases with the smaller value of 

PT.  

To evaluate the effect of extended iteration the projection tolerance was reduced to a very small 

value of 0.0001 with a constant value of SK 60. Various images were reconstructed and 

compared with standard non-motion-corrected images to analyze the impact of the increased 

number of iterations. Figure 6.11b represents the image with the smallest PT 0.0001 and having 

more iterations. This image is not superior to figure 6.11c and figure 6.11d with PT 0.001 and 

PT 0.0015, respectively. 
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Figure 6.5: Comparison of different smoothing kernels for three rotation parameters (Rx, Ry, Rz) and 

three translation parameters (Tx, Ty, Tz). 
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Figure 6.6: Number of iterations and projection error for different SK values, PE drops as the number 

of iterations increases. 

 

In our trials, we noticed that the motion estimate hardly improved during the computation by 

escalating the number of iterations. As these computations (if incorporated) are the priciest 

ones in terms of computation time, therefore, it was decided that PT 0.001 could be sufficient 

for eliminating residual motion error.  The mean number of iterations for different PT values 

is listed in Table 6.1. 

Table 6.1: Mean number of iterations for different PT values at each resolution level 

 

Resolution 

Level 

Mean number of iteration 

PT 

(0.0001) 

PT  

(0.0010) 

PT  

(0.0012) 

PT  

(0.0015) 

PT  

(0.0018) 

PT  

(0.0025) 

PT 

(0.005) 

Resolution 441 18 11 10 9 8 7 7 

Resolution 221 9 7 6 5 4 4 3 

Resolution 111 8 7 7 6 5 5 4 
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Figure 6.7: (a) Image reconstruction obtained using Siemens software without motion correction, the 

arrow pointing to MA, (b-g) image reconstruction with data-driven using smoothing kernel 60 and PT 

set to 0.001, 0.005, 0.0012, 0.0015, 0.0018, and PT 0.0025, respectively. MA was completely corrected 

in (b), but the correction was less complete in (c-g).  

 

Figure 6.8: (a) Image reconstruction by using Siemens software without motion correction, (b) image 

reconstruction with data-driven using SK 60 and PT 0.001 completely corrected MA, (c-g) image 

reconstruction with data-driven using SK 60 and PT 0.005, PT 0.0012, PT 0.0015, PT 0.0018, and PT 

0.0025 respectively. 
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Figure 6.9: Comparison of three rotation parameters (Rx, Ry, Rz) and three translation parameters (Tx, 

Ty, Tz) for different projection tolerance. 
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Figure 6.10: Number of iterations and projection error for different projection tolerance. 
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6.7.3 Angle rebin 

To study the role of AR the projections were rebinned by summing groups of 8, 16, 32 

consecutive projections. Figure 6.12 column b demonstrates iterative image reconstruction 

with data-driven using SK 60/PT0.001/AR 8 removed MA, while in SK 60/PT 0.001/AR 16 

(column c) and SK 60/PT 0.001/AR 32 (column d) respectively still have the residual artifact. 

Due to a large number of views in the scan, it is necessary to speed up the reconstruction 

process, using AR 8 significantly reduces computation time. 

 

 

 

 

 

 
Figure 6.11: Impact of extended iteration with constant smoothing kernel, (a) real image without motion 

correction, (b) SK 60/0.0001, (c) SK 60/0.001, (d) SK 60/0.0015. 

 

MRS for SK 60, AR 8 were found statistically significantly (p < 0.05) as compared with SK 

120, SK 230, and SK 320 and AR 16, AR 32, respectively. Although, MRS for PT 0.001 not 

providing statistically significant differences (p > 0.05) from PT 0.0015, PT 0.0018, PT 0.0025, 

and PT 0.005 respectively. The reconstructed scans were considered diagnostically appropriate 

and decreased the possibility of repeat scanning. 

 

 

 

(a) (b) (c) (d) 

  



Chapter 6. Optimization 

 

77 

 

Figure 6.12: Column (a) Real image reconstruction with Siemens software without motion correction, 

column (b) iterative image reconstruction with data-driven using smoothing kernel SK60 / PT 0.001 / 

AR 8 removed ghosting, column (c, d) SK 60 / PT 0.001 / AR 16 and SK 60 / PT 0.001 / AR 32 

respectively still have the residual artifact. 

6.8 Discussion 

Patient head movement during CT scanning causes a reduction in the quantitative and 

qualitative accuracy of the image. Sometimes a repeat scan is indispensable to acquire an 

artifact-free image that entails a detrimental radiation burden to the patient.  In almost 25% of 

patients with acute ischemic stroke, moderate to the severe head movement was detected in CT 

perfusion scans (Allmendinger et al., 2012). Furthermore, motion correction in head CT 

scanning is a common concern as CT attenuation correction is also critical for an accurate 

evaluation of the distribution of brain radioactivity in PET/CT and SPECT/CT (Brady et al., 

2008).  MC methods based on motion tracking systems were reported for neurological PET 

(Bloomfield et al., 2003,  et al., 2002). Nevertheless, the MC in the helical CT part of hybrid 

imaging was envisaged before. Using a CT MC approach with PET MC methods would 

facilitate motion correction in hybrid PET/CT images. As the patient's motion during helical 

CT scanning may considerably affect image quality, it is necessary to limit patient movement 
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in the CT scan. But, the possibility of complete motionlessness is unrealistic in routine clinical 

application. It was reported that patient movement was significantly more prominent at the 

beginning of the scan when sound and vibrations were probably a major source of irritation to 

the patient (Hanzelka et al., 2013).  

The performance of the data-driven motion correction was validated for several CT scanner 

models with considerably different numbers of detector rows. It was observed that the MC 

method could be easily implementable on most clinical helical CT scanners presently in routine 

use if access to the raw data is available. For the six motion parameters, three rotation 

parameters Rx, Ry, Rz, and three translation parameters Tx, Ty, Tz, the degree of motion was 

determined (Kim et al., 2016, Sun et al., 2016). A translation motion < 1.5 mm in 16 from 19 

healthy volunteers, and 4 mm in only 3 volunteers were previously reported (Li et al., 2010). 

In another study of 20 patients, CT mean rotational motion of 1.06 mm and mean translational 

motion of 2.5 mm respectively was observed (Wagner et al., 2003). Moreover, a study of 103 

suspected acute ischemic stroke patients with head motion reported similar rotational and 

translational excursion (Sun et al., 2017). Hence, the translational and rotational movement in 

our patient data was found to be comparable in magnitude to values formerly reported by 

(Allmendinger et al., 2012, Li et al., 2010, Wagner et al., 2003).  

Extreme head motion generating insufficient data for reconstruction is the only constraint on 

the accuracy of the MC approach. Certainly, it was not a limitation of the technique but the 

inadequacy of the data accessible for reconstruction due to enormous motion. Our group 

formerly proposed a method to measure data sufficiency in helical CT scans by Tuy map (Sun 

et al., 2017).  In the clinical framework, the Tuy map could be a precise way of predicting the 

data-insufficiency artifacts. We have validated that significant motion correction can be 

achieved with data-driven motion correction for a variety of human head movements in clinical 

helical CT scanning if the data sufficiency condition is not violated. 

Reconstruction kernels define the sharpness and smoothness of CT images. Sharper kernels 

block low-frequency and utilize high-pass filter content to offer better spatial resolution at the 

cost of more noise. In contrast, smoothing kernels block high-frequency and preserve low-

frequency content to offer better low-contrast resolution with less noise in the final CT images. 

The SK length, PT, and AR have a significant impact on ME as well as motion compensation. 

The SK 60, PT 0.001, and AR 8 generate satisfactory artifact-free images. Overall, the images 

reconstructed by SK 60 offer more promising results. As the value of SK increases the motion 



Chapter 6. Optimization 

 

79 

 

estimation becomes smoother, not demonstrating a true motion estimation. The best size of the 

smoothing kernel varies with the number of views per rotation and the axial extent of the 

detector. The axial extent depends on various scan configurations (slice collimation). The 

number of kernel points is directly related to the number of projections per rotation. With the 

increase in the number of views per rotation the size of kernel points increased. 

Due to a large number of projections data, it was necessary to accelerate the reconstruction 

process. The projections were rebinned by accumulating groups of 8 consecutive projections, 

which significantly accelerates convergence. Moreover, a fast convergence might be obtained 

by reducing iteration at a low-resolution level or by using an analytic method of reconstruction. 

Another approach could be the use of different projection models in different segments of the 

reconstruction volume to accelerate the convergence (Slambrouck et al., 2012).  In clinical 

helical CT scanning, the MC images were superior to the uncorrected images in nearly all 

patient scans with a variety of head movements. The amount of movements (slight to severe), 

the interval of motion, and the timing of the start of motion can affect the compensation. The 

technique could facilitate the evaluation of patient scans that otherwise was not possible with 

conventional reconstruction approaches. The MC application alleviates the requirement for 

repeat CT scans and reduces the radiation burden on the patient. Certainly, it would be 

significant to implement data-driven motion correction to a big sample of motion-affected 

scans and accomplish a thorough assessment of the impact of MC on clinical diagnosis. 
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Chapter 7. The Effect of Head Movement During CT on Hybrid PET/CT 

Brain Scan 

7.1 Introduction: 

PET/CT scans are commonly used in the clinic for oncological cardiologic and neurologic 

applications (Brady et al., 2008). The CT image of the PET/CT scan not only delivers anatomical 

information but is also used in computing attenuation correction and scatter correction (Kinahan et 

al.,1998, Watson et al., 2004) to substitute for the transmission scan. In stand-alone PET scans, the 

effects of head movements on attenuation correction and scatter correction have previously been 

examined (Wardak et al., 2010, Anton-Rodriguez et al., 2010). Due to the mismatch between the 

CT and PET images, head motions during CT scans might cause artifacts in attenuation correction 

and scatter correction. 

The PET/CT system is a hybrid imaging system that incorporates CT for anatomical information, 

localization of lesions on PET, and also for attenuation correction of the PET data (Kinahan et 

al.,1998 ). Head movement during CT imaging results in a mismatch between CT and PET images. 

It can cause artifacts in CT-based attenuation corrected PET images, thus affecting both the 

qualitative and quantitative aspects of the PET images. A motion correction method could change 

diagnostic accuracy in the event of motion. The data-driven iterative reconstruction method could 

be advantageous for patient groups in hybrid imaging using SPECT/CT and PET/CT as well as 

standalone CT.  This would be helpful to the patients prone to motion who are at risk of getting an 

unnecessary radiation dose from repeat scans. The problem is especially serious for children and 

patients with movement disorders.   

In PET-only scanners, a lot of effort has gone into reducing motion artifacts. To realign the 

transmission image to each emission frame for more accurate attenuation and scatter correction, 

two general approaches have been investigated: using a motion tracking system (Keller et al., 2012, 

Bloomfield et al., 2003) or using image-based realignment (Costes et al., 2009, Mourik et al., 

2013). For phantom scans, movement correction (MC) using motion tracking devices like the 

Polaris system is very accurate. But, image-based motion correction was found to outperform the 

other approaches in a majority of situations due to fixation issues in human scans (Mourik et al., 

2013). 
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Our group and many others have used the Polaris motion tracking system to apply MC algorithms 

for neurological PET, e.g. (Fulton et al., 2002, Bloomfield et al., 2003, Mourik et al., 2013, 

Suchorska et al., 2014). However, the possibility of also correcting for motion through the CT 

phase of hybrid imaging scans does not seem to have been envisaged before. Combining a CT MC 

method with existing PET MC methods would enable MC to be applied to both the CT and PET 

part of PET/CT. The objective of this work is to evaluate the impact of a 3D iterative data-driven 

motion compensation technique to compensate for head movement during a CT scan of brain 

PET/CT and investigate its significance for final image reconstruction. 

7.2 Materials and methods 

 A series of PET/CT scans of Hoffman brain phantom filled with fluorodeoxyglucose (18F-FDG) 

was acquired on Siemens Biograph mCT scanners with 128 slice CT scanner (Siemens Medical 

Solutions USA, Inc., Malvern, PA) using routine head CT ( ref. mAs 250 tube current, rotation 

time 0.5 s, tube voltage 120 kVp, pitch = 0.8, 40 x 0.6 mm slice collimation). The phantom was 

acquired with a movement during the CT part of the acquisition, to simulate patient movement, but 

the phantom remained stationary during the PET scan. 

 Subsequently, the data-driven motion compensation approach was also implemented on the patient 

presenting head movement during the CT part of the brain PET/CT scan. The patient was acquired 

on Siemens biograph mCT  PET/CT scanner having 128 slice CT. 

CT  acquisition: 120 kVp,  1 second rotation time,  pitch 0.8, regular-dose mode, 250 ref. mAs tube 

current, 100 kVp tube voltage, 40 x 0.6 mm slice collimation, pitch = 0.8) and patient acquired 

using Care Dose 4D to minimize radiation doses.  

PET acquisition: With 103 MBq activity, a whole-body CT was done (from the base of the head to 

the proximal thighs). 

 

 



Chapter 7. The Effect of Head Movement During CT on Hybrid PET/CT Brain Scan 

 

 

82 

 

 

Figure 7.1: Hoffman brain phantom acquisition on Biograph mCT. 

 

1. Each motion corrupted CT scan was reconstructed using fully automated 3D iterative data-

driven image reconstruction with motion compensation (MC) to remove motion artifacts. 

Motion corrected CT was reconstructed by using the data-driven algorithm described in 

chapter 5. 

2. An offline attenuation and scatter map was generated from these motion-corrected CT 

scans. 

3. The raw data of the PET scan was reconstructed offline using the JSrecon algorithm with 

attenuation and scatter map generated from motion-corrected CT. 

4. The images were compared with the PET scan reconstructed with an attenuation map from 

motion corrupted CT.  

5. For qualitative analysis, all reconstructed images were scored,  absolute differences, 3D-

standard surface projection (3D-SSP) analysis, and Scenium analysis were obtained for 

quantitative analysis. 

6. In the motion correction method, it is assumed that all in the CT scanner field of view 

moved rigidly except the couch. So, couch segments were deleted from the raw data 

preceding reconstruction after the accomplishment of the first step (Figure 7.2).   
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Figure 7.2: Top: phantom scan with couch segment, bottom: couch segments were deleted from the raw 

data before reconstruction. 

7.3 Results 

3D iterative data-driven motion estimation and correction were used for the reconstruction of 

Hoffman's brain phantom, and the approach worked well as shown in figure 7.3.  
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Figure 7.4 is a comparison of an axial view of the 18F-FDG-PET scan of static Hoffman brain 

phantom with phantom scan reconstructed using a CT image with motion artifacts (nMC image) 

and reconstructed using a motion-corrected CT image for scatter and attenuation correction (MC 

image). Reconstructed CT and PET images are shown in figures 7.3 and 7.4, a significant decrease 

in movement artifacts is evident in both CT and PET images with motion correction. 

 

   

 

 

 

 

 

 

 

 

 

Figure 7.4: Axial view of an 18F-FDG-PET scan of (a) stationary phantom, (b) reconstructed using a CT 

image with motion artifacts (nMC), (c) reconstructed using a motion-corrected CT image for attenuation 

and scatter correction (MC), (d) The profile along the lines for stationary, nMC and MC PET images. 

When motion-corrected CT data were utilized for attenuation correction of acquired PET data, 

profile comparison revealed that whether the motion-corrected CT attenuation map or the motion-

Figure 7.3: CT scan of a) stationary phantom, b) moving phantom, c) motion-corrected.  
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free CT attenuation map was used for attenuation correction, equivalent results were achieved, as 

shown in figure 7.4. (d). 

7.4 Patient scan 

The 18F-FDG PET/CT brain scans were acquired on individuals after fasting 4 hrs before scanning. 

18F-FDG was administered 45 min before scanning based on the weight of the patient. FDG-

PET/CT images were acquired for 3-5 min bed position using a Siemens biograph mCT  PET/CT 

scanner having 128 slice CT. The patient was included in the study having movement during the 

CT part of the acquisition, but they remained stationary during the PET scan. 

Each motion corrupted CT scan was reconstructed by 3D iterative data-driven image reconstruction 

with motion compensation. CT image reconstructed by vendor software without motion correction 

and CT image with motion corrected reconstruction with data-driven algorithm demonstrated in 

figure 7.5  and ghost artifact removed after motion correction.  

An offline attenuation and scatter map was created from these MC CT scans. The PET scan was 

reconstructed offline using raw data by JSrecon algorithm with attenuation and scatter map 

generated from MC CT, an example is shown in figure 7.6. Attenuation-corrected PET images 

were also iteratively reconstructed by standard vendor-provided software with an attenuation map 

from motion corrupted CT (nMC). Both images nMC and MC were visually inspected by qualified 

nuclear medicine physicians and a substantial difference in image quality was noticed. 

 

 

 

 

 

 

 

 

 

 

 

1000 

-1024 

(a) (b) (c) 

Figure 7.5: (a) CT image reconstructed by vendor software without motion-correction, (b) motion 

corrected reconstruction and ghost artifact removed after motion-correction, (c) absolute 

difference between a and b image. 
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Figure 7.7: (a) PET image using a CT image with motion artifacts (nMC), (b) PET image reconstructed 

using a motion-corrected CT image for attenuation and scatter correction (MC), (c) |Difference| 

bewteen a and b image. 

 

The image in the middle of Figure 7.7 has been reconstructed using a motion-corrected CT image 

for scatter and attenuation correction, whereas the one on left was reconstructed using a CT image 

with motion artifacts. Although the images appear identical, there are quantitative differences 

(a) (b) (c) 

(a) (b) 

(c) (d) 

Figure: 7.6 (a) CT image reconstructed by vendor software without motion-correction, (b) PET image 

reconstructed using a CT image with motion artifacts (nMC), (c) CT image with motion-corrected 

reconstruction and artifact removed after motion-correction, (d) image reconstructed using a motion-

corrected CT image for attenuation and scatter correction. 
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between them as exhibited in (c). Whether these differences are large enough to be clinically 

significant would require a larger study with more cases having a variety of emotions as well as 

different diagnostic scans. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) (b) 

(d) (c) 

 

Figure 7.8  (a) CT image reconstructed by vendor software without motion-correction, (b) PET image 

reconstructed using a CT image with motion artifacts (nMC), (c) CT image with motion corrected 

reconstruction and artifact removed after motion correction, (d) image reconstructed using a motion 

corrected CT image for attenuation and scatter correction (MC). 
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Figure7.9: (a) PET (nMC), (b) corrected PET for attenuation and scatter correction (MC), (c) 

“|Difference|”. 

 

7.5 Quantitative Scenium analysis 

Scenium is a completely automated, FDA-approved software that is often used in clinical settings 

(Syngo.Via.v11 platform, Siemens). It is an advanced neural assessment tool designed for voxel-

wise evaluation. It can automatically draw 10 basic brain regions and calculate the SUVmean using 

the template, avoiding human error. As a result, it may be used to compare different brain imaging 

modalities quantitatively, improving the accuracy and reliability of the results. The voxel-wise 

analysis produces statistical parametric maps highlighting regions on a patient’s scan with 

significantly different metabolism.  

The axial, coronal, and sagittal PET views with attenuation map obtained with nMC-CT attenuation 

correction and with PET views reconstructed with MC-CT are illustrated in figure 7.10. The 

scenium analysis of MC-PET and nMC-PET are presented in figure 7.11 and arrows point to the 

differences. 
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Figure 7.10: (a) Axial, coronal and sagital PET (nMC), (b)  axial, coronal and sagital PET (MC). 

 

(a) 

(b) 

(c) 
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Figure 7.11: (a) Axial, coronal, and sagittal PET views with attenuation map obtained with nMC-CT 

attenuation correction, (b) scenium analysis nMC-PET, (c) axial, coronal, and sagittal PET views 

reconstructed with MC-CT, (d)  scenium analysis MC-PET (arrows pointing the differences). 

 

Tables 7.1 and 7.2 offered the details of Scenium analysis nMC-PET and Scenium analysis MC-

PET. The reconstructed PET images of both nMC-PET and MC-PET were evaluated and the results 

depicted that the SUVmean of all brain areas in nMC-PET was significantly higher in comparison 

to MC-PET. 
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Table 7.1: Scenium analysis nMC-PET 

ROI Site SUV Min.  SUV 

Avg. 

SUV Max. Standard 

deviation 

Basal ganglia L 1.12 5.67 11.92 -0.5 

Basal ganglia R 0.88 3.99 8.00 -5.4 

Central region L 0.28 6.31 11.13 1.2 

Central region R 0.16 5.38 9.69 -2.2 

Cerebellum L 0.10 5.22 10.91 -5.6 

Cerebellum R 0.12 5.46 9.65 -0.2 

Cingulate and paracingulate gyri L 0.87 4.78 9.16 -3.2 

Cingulate and paracingulate gyri R 0.59 3.88 8.97 -5.2 

Frontal lobe L 0.42 5.30 10.28 -3.4 

Frontal lobe R 0.14 3.70 10.89 -10.2 

Mesial temporal lobe L 0.95 4.20 9.49 -3.2 

Mesial temporal lobe R 1.51 4.26 7.13 -2.6 

Occipital lobe L 0.08 6.19 10.73 -1.1 

Occipital lobe R 0.77 5.83 10.80 -2.0 

Parietal lobe L 0.57 5.95 11.08 -1.4 

Parietal lobe R 0.30 4.78 8.68 -5.2 

Temporal lobe L 1.02 6.00 11.55 -0.8 

Temporal lobe R 0.05 5.03 11.43 -3.9 
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Table 7.2: Scenium analysis MC-PET 

 

 

 

 

ROI Site SUV Min.  SUV Avg. SUV Max. Standard 

deviation 

Basal ganglia L 1.25 5.80 11.44 0.7 

Basal ganglia R 0.96 3.97 7.68 -4.9 

Central region L 0..49 6.33 11.05 2.7 

Central region R 0.22 5.32 9.76 -1.1 

Cerebellum L 0.16 4.79 10.12 -7.3 

Cerebellum R 0.13 5.25 9.32 0.6 

Cingulate and paracingulate gyri L 0.70 4.73 9.05 -2.6 

Cingulate and paracingulate gyri R 0.49 3.85 8.97 -4.6 

Frontal lobe L 0.50 5.28 10.24 -2.2 

Frontal lobe R 0.10 3.63 10.22 -9.6 

Mesial temporal lobe L 1.00 4.08 8.42 -2.6 

Mesial temporal lobe R 1.59 4.11 6.97 -2.3 

Occipital lobe L 0.16 6.14 10.49 -0.0 

Occipital lobe R 0.67 5.72 10.31 -1.2 

Parietal lobe L 0.67 6.01 11.02 0.0 

Parietal lobe R 0.38 4.75 8.80 -4.2 

Temporal lobe L 0.96 5.77 10.88 -0.4 

Temporal lobe R 0.07 4.98 11.07 -3.0 
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7.6 Discussion 

Generally, the most common use of brain PET scanning is in tumor diagnosis (Marcus et al., 

2014), Alzheimer's disease diagnosis (Roberts et al., 2014), and cognitive function research (Zaidi 

et al., 2007). Photon attenuation in tissues has long been thought to be the most important physical 

element affecting image quality and quantitative accuracy. In the qualitative and quantitative 

analysis of brain PET imaging, attenuation correction is a critical step. Therefore, a correct 

attenuation map is essential for quantitative PET image reconstruction, to compensate for 

attenuation. 

The attenuation correction (AC) method, which uses transmission scanning, produces the least 

amount of bias and is regarded as the "gold standard" of brain PET imaging (Zaidi et al., 2004, 

Kinahan et al., 2003). In PET/CT scans, CT AC is widely used because it is fast, has low noise, 

and has good data statistics (Quinn et al., 2016). However, CT AC has disadvantages, including 

increased subject radiation exposure (Brink et al., 2010), overestimation of SUV of high-density 

materials (Huang et al., 1979, Herzog et al., 2005), and the possibility of image artifacts due to 

patient movement between sequential scans (Rahmim et al., 2007).  

The head motion correction has received less attention in x-ray helical CT than in other imaging 

modalities. A retrospective motion compensation method for helical CT, on the other hand, would 

be extremely useful in clinical practice. Even with the latest, state-of-the-art CT scanners, patient 

motion artifacts are still observed in CT images. Patient movements in head CT imaging are 

assumed to be rigid, in contrast to cardiac and respiratory motions. Several head restraints are 

currently used which include neoprene caps, thermoplastic masks that reduce the amount of 

movement but do not eliminate it (Hoffman et al., 1990). Depending on the type of mask and the 

scan duration, typical translations of 5 to 20 mm and rotations of 1 to 4 degrees are recorded even 

with head restraints. 

In PET/CT motion can occur during the CT part of the scan or PET or both. Motion in CT could 

potentially affect the diagnosis of a PET/CT scan. We studied these effects in phantom studies and 

patient studies where PET/CT scan was affected by CT motion. A 3D Hoffman brain phantom was 

used to simulate the activity distributions present in the human brain in the cerebral blood flow. 

The phantom consists of a single chamber and thin layers of lucite to give relative concentration 

for ventricles, white matter, grey matter respectively in the brain. 
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Motion in CT scan affects PET scan in a variety of ways 

1. Attenuation correction 

2. Scatter correction 

3. Quantification 

4. Potential alignment in localization 

5. Distort image 

Image reconstruction has an important influence on image quality and consequently on radiation 

exposure. It is necessary to reconstruct images with the minimal amount of noise possible for a 

given dose without compromising image quality or spatial resolution (Logan et al., 1996). Image 

quality can be improved without increasing radiation dose by using a smart image reconstruction 

algorithm.  

Siemens SMART neuro attenuation correction (SNAC) is a new type of CAC procedure. It can be 

used to model tissue and bone structures in the lack of anatomical information by employing 

attenuation and scatter uncorrected PET data within the attenuation map (Peyrat et al., 2012). The 

method is similar to the automatic contour detection method described previously for attenuation 

map modeling (Zaidi et al., 2003). SNAC, on the other hand, uses the image domain to identify 

contours rather than the sinogram domain. Transmission-less attenuation correction reduces 

radiation dose and significantly reduces acquisition time, allowing for increased patient throughput 

(Herzog et al., 2005). 

By establishing a large number of points on a spatially normalized brain surface, the 3D-standard 

surface projection (3D-SSP) method analyzes the data of an individual with the database of healthy 

controls. The findings can be utilized to identify cortical areas with statistically significant 

impairments. Because of the underlying statistical calculations, these deficiency maps are also 

known as Z-score maps (or simply Z-maps). They help readers recognize patterns and make 

differential diagnosis easier. Despite the quantitative results, motion correction had only a little 

impact on the Z score image of the 3D-SSP study in a qualitative sense (Ikari et al., 2012, Wong et 

al., 2010). As shown in figures 7.12 and 7.13, if 18F-FDG PET images are employed qualitatively 

as in visual interpretation, a little head motion will not impact the diagnostic outcome. 
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Figure 7.12: Z score image of 3D-SSP analysis global normalization nMC-PET. 
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Figure 7.13: Z score image of 3D-SSP analysis global normalization MC- PET. 
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Chapter 8. Conclusions and Future Work 

Motion artifacts are still present in many clinical images even with state-of-the-art CT scanners, 

especially in patients with mental disorders, stroke, and children. Sometimes a repeat scan is 

essential to acquire an artifact-free image, which certainly increases the radiation dose to patients. 

The data-driven ME and MC approach is based on measured raw data and successfully removed 

motion artifacts in head CT scans for a variety of rigid human head movements in clinical scans. 

Furthermore, it can be easily implemented to correct motion artifacts in clinical head helical CT 

scans as no further measurements are needed, and decrease the number of repeat scans. We 

conclude that, if the motion can be accurately determined, the established approaches can provide 

accurate and artifact-free MC images with most types of head motion expected to be encountered 

in CT imaging. 

The data-driven motion estimation and compensation approach is based on measured raw data and 

successfully removed MA in head CT scans for a variety of rigid human head movements in clinical 

scans. Furthermore, it can be easily used in clinical head helical CT scans with MA as no further 

measurements are needed. Moreover, the smoothing kernel length, projection tolerance, and angle 

rebin have a considerable impact on motion estimation along with motion compensation in the 

data-driven algorithm. All experiments indicate that the SK 60, PT 0.001, and AR 8 produce 

acceptable artifact-free images. These scans were considered diagnostically appropriate and 

significantly decreased the number of repeat scans. 

The data-driven iterative motion compensation method for head CT improves the quantitative and 

qualitative accuracy of the PET/CT brain image that is impacted by patient movement significantly. 

The motion-corrected CT PET/CT images were always superior. In brain PET, the attenuation map 

has an impact on both absolute and relative quantitation. The technique could be useful for both 

stand-alone helical CT scans and also in the CT part of hybrid imaging systems such as SPECT/CT 

and PET/CT. 

The average time to perform motion correction on a normal head scan is about 8-10 hours. The 

first 1-2 hours are for the motion estimation, and 6-8 hours are required on a GPU for the final 

reconstruction. The bottleneck is the final iterative reconstruction. The future work could be the 

acceleration of final reconstruction. It can be achieved by the acceleration of the motion estimation. 
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As the motion can be different, it can be large in certain views but little in others. One can formulate 

an estimation scheme that does more computation on motion-affected views, but less on other 

views. This requires an initial identification of the views possibly affected by motion before the 

actual estimation. For example, similarity metrics (e.g. mean structural similarity index ) can be 

measured for all adjacent views, which will probably produce a profile that can be used to identify 

views that are likely to be affected by motion. When performing the estimation, early iterations 

will only focus on the possible motion-affected views. Another way can be the use of advanced 

hardware for further acceleration of the final reconstruction such as implementing the whole 

iterative algorithm on GPU or replacing the iterative reconstruction with an iterative FBP 

reconstruction. 

The data-driven method has been designed for rigid motion correction, it would be exciting to 

investigate how to extend it to non-rigid motion correction. For the non-rigid motion, more 

parameters need to be estimated in each view, compared with the previous six rigid parameters. 

One can calculate the derivative of the projection intensity with respect to each non-rigid 

parameter. From those derivatives, one can obtain a first estimate of the motion fields across views. 

Then, the motion compensation with this initial motion estimate can be performed, and repeat the 

motion estimation and compensation for several iterations until convergence. 

The data-driven ME and MC approach is based on measured raw data and successfully removed 

motion artifacts in head CT scans for a variety of rigid human head movements in clinical scans. 

We conclude that this approach can offer accurate and artifact-free MC images with various types 

of head motion expected in CT imaging if the data is sufficient for accurately determining the 

motion. Furthermore, it can be easily implemented to correct motion artifacts in clinical head 

helical CT scans as no further measurements are needed, and it will possibly decrease the number 

of repeat scans. The technique could be very useful for both stand-alone helical CT scans and also 

in the CT part of hybrid imaging systems such as SPECT/CT and PET/CT. The data-driven iterative 

motion compensation method for head CT significantly increases the quantitative and qualitative 

accuracy of the PET/CT brain image affected by patient movement. 
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