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und mich dabei keiner anderen als der von mir ausdrücklich bezeichneten Quellen und Hilfen
bedient habe. Die Dissertation wurde in der jetzigen oder einer ähnlichen Form noch bei
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Abstract

Future wireless networks must cope with an increasing amount of data that needs to be
transmitted to or from mobile devices. Furthermore, novel applications, e.g., augmented reality
games or autonomous driving, require low latency and high bandwidth at the same time.
To address these challenges, the paradigm of edge computing has been proposed. It brings
computing closer to the users and takes advantage of the capabilities of telecommunication
infrastructures, e.g., cellular base stations or wireless access points, but also of end user
devices such as smartphones, wearables, and embedded systems. However, edge computing
introduces its own challenges, e.g., economic and business-related questions or device mobility.
Being aware of the current situation, i.e., the domain-specific interpretation of environmental
information, makes it possible to develop approaches targeting these challenges.

In this thesis, the novel concept of situation-aware edge computing is presented. It is divided
into three areas: situation-aware infrastructure edge computing, situation-aware device edge
computing, and situation-aware embedded edge computing. Therefore, the concepts of
situation and situation-awareness are introduced. Furthermore, challenges are identified
for each area, and corresponding solutions are presented. In the area of situation-aware
infrastructure edge computing, economic and business-related challenges are addressed,
since companies offering services and infrastructure edge computing facilities have to find
agreements regarding the prices for allowing others to use them. In the area of situation-aware
device edge computing, the main challenge is to find suitable nodes that can execute a
service and to predict a node’s connection in the near future. Finally, to enable situation-
aware embedded edge computing, two novel programming and data analysis approaches are
presented that allow programmers to develop situation-aware applications.

To show the feasibility, applicability, and importance of situation-aware edge computing, two
case studies are presented. The first case study shows how situation-aware edge computing
can provide services for emergency response applications, while the second case study presents
an approach where network transitions can be implemented in a situation-aware manner.
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Deutsche Zusammenfassung

Zukünftige drahtlose Netze müssen immer größere Datenmengen bewältigen, die an oder
von mobilen Geräten übertragen werden müssen. Außerdem erfordern neue Anwendungen,
z.B. Augmented-Reality Spiele oder autonomes Fahren, niedrige Latenzzeiten und gleichzeitig
hohe Bandbreiten. Um diese Herausforderungen zu bewältigen, wurde das Paradigma des
Edge Computing vorgeschlagen. Es bringt die Verarbeitungskapazitäten näher an die Nutzer
heran und nutzt die Möglichkeiten von Telekommunikationsinfrastrukturen, z.B. Mobilfunk-
Basisstationen oder drahtlose Zugangspunkte, aber auch von Endnutzergeräten wie Smart-
phones, tragbaren Geräten und eingebetteten Systemen. Das Edge Computing hat jedoch
eigene Herausforderungen, z.B. wirtschaftliche und geschäftsbezogene Fragen oder Mobilität.
Die Kenntnis der aktuellen Situation, d.h. die domänenspezifische Interpretation von Umge-
bungsinformationen, ermöglicht die Entwicklung von Ansätzen, die diese Herausforderungen
adressieren.

In dieser Arbeit wird das neue Konzept des situationsbewussten Edge Computing vorgestellt.
Es ist in drei Bereiche unterteilt: situationsbewusstes Infrastruktur Edge Computing, situa-
tionsbewusstes Geräte Edge Computing Computing und situationsbewusstes eingebettetes
Edge Computing. Daher werden die Konzepte Konzepte der Situation und des Situationsbe-
wusstseins eingeführt. Außerdem werden für jeden Bereich Herausforderungen identifiziert und
entsprechende Lösungen vorgestellt. Im Bereich des situationsbewussten Infrastruktur Edge
Computing werden wirtschaftliche und geschäftliche Herausforderungen angesprochen, da Un-
ternehmen, die Dienste und und Infrastruktur Edge Computing anbieten, Vereinbarungen über
die Preise für die Nutzung durch andere treffen müssen. Im Bereich des situationsbewussten
Geräte Edge Computing besteht die größte Herausforderung darin, geeignete Knoten zu
finden, die einen Dienst ausführen können, und die Verbindungen eines Knotens in der nahen
Zukunft vorherzusagen. Um schließlich situationsbewusstes eingebettetes Edge Computing zu
ermöglichen, werden zwei neue Programmier- und Datenanalyseansätze vorgestellt, die es
Programmierern ermöglichen, situationsabhängige Anwendungen zu entwickeln.

Um die Durchführbarkeit, Anwendbarkeit und Bedeutung des situationsbewussten Edge
Computings zu zeigen, werden zwei Fallstudien präsentiert. Die erste Fallstudie zeigt, wie situ-
ationsbezogenes Edge Computing Dienste für Krisenanwendungen bereitstellen kann, während
die zweite Fallstudie einen Ansatz vorstellt, bei dem Netzwerk-Transitionen situationsbewusst
implementiert werden können.
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Körber, Dr. Pascal Weisenburger and Franz Kuntke. Special thanks to Dr. Patrick Felka
for providing insightful information in the field of business informatics and Bernd Simon for
discussions and explanations about game theory. Both were excellent collaborators with whom
working on scientific publications was a lot of fun and very enlightening.

Of particular importance during my time as a PhD student were my colleagues Dr. Lars
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and me, whereas the implementation and evaluation was genuinely my work. The design
and implementation of Section 7.2.2 was solely my work, while the evaluation was done
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1
Introduction

Future wireless networks will face many challenges due to applications that are not suitable
for current wireless networks. First, according to Ericsson, mobile data traffic, i.e., data sent
through the Internet originating from or destined to mobile devices, already increased by
about 650%, from 10 exabyte to 75 exabyte in the years 2016 to 2021 and will increase even
further about five times, from 75 exabyte to 375 exabyte by 2027 [241]. All of this data
not only has to be transferred, but also needs to be processed. Second, new applications
with special needs and requirements are currently being developed. Augmented Reality (AR)
applications, multiplayer online games, autonomous driving, remote health applications, smart
homes, and industry automation require low latency and high bandwidth at the same time.

However, end user devices like notebooks, tablets, mobile phones, wearables, and embedded
devices in the area of the Internet of Things (IoT) offer interesting computing capabilities for
(pre-)processing data near the users. Furthermore, routers, access points, and base stations of
cellular networks can execute network functionality. New computing paradigms were introduced
in the recent past that aim to bring computation and storage closer to users by relocating
computations and data to the edge of the network, i.e., edge computing, fog computing or
mobile cloud computing bring great benefits in terms of latency and throughput. In particular,
edge computing as an alternative to cloud computing has emerged as a promising approach
by utilizing cellular base stations, wireless access points, end user devices, IoT devices, and
embedded systems as self-contained computing platforms.

However, edge computing also has its own challenges. For example, providing computation
facilities near cellular base stations introduces economic and business-related challenges, since
these facilities have to be operated and maintained. Furthermore, the devices used for edge
computing are connected wirelessly (e.g., Wi-Fi, 4G/5G, LoRa, etc.) either with each other
in a peer-to-peer manner or to centrally organized base stations or access points, introducing
the need to cope with mobile devices, e.g., by developing handover mechanisms or network
paradigms resilient to intermittent connectivity. In addition, new programming paradigms are
required, since traditional imperative programming languages are error-prone and ill-suited
for implementing novel data-driven applications tailored for edge computing applications.

To meet the challenge of rapidly increasing data volumes and the associated processing
functionality, future computing paradigms must perceive their environment and comprehend
the perceived information to derive the current situation to be able to adapt accordingly. The
resulting awareness of their current situation will make it possible to develop applications, e.g.,
in the area of emergency response that can assist and adapt themselves during emergencies.
Transitions, i.e., adaptation between similar mechanisms at runtime to increase the quality of
service, can be implemented with the help of situation-awareness. But also the challenges of
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the individual areas of edge computing, such as identifying suitable targets for a service to be
placed based on the current situation or dealing with devices’ mobility can be addressed.

The concept of perceiving one’s environment, comprehending the perceived information, and
thereby gaining domain-specific knowledge is called situation-awareness. In this thesis, it is
argued that situation-aware edge computing brings forth novel applications to cope with the
above challenges. In contrast to the concept of context, where only environmental information
is analyzed in order to make action decisions based on it, the situation concept goes one
step further. It is not only about analyzing the environment, but also about interpreting it
and arriving at an understanding of the environment that is specific to the system or entity
and contains its own interpretation. To make the difference clear, a short example will be
given. In an emergency, a variety of information is gathered, such as data from early warning
systems, analyses and assessments from authorities, imagery from satellites and so on. This
information represents the context. However, different rescue helpers interpret this context
information differently, according to their domain. Firefighters, for example, interpret the data
in terms of fires, while paramedics interpret the context in terms of people to be rescued. The
context is the same for both firefighters and paramedics, namely an emergency. However, the
interpretation and the information that is important to them leads to different situations.

1.1 Problem Statement

The goal of this thesis is to facilitate situation-aware edge computing in the areas of
infrastructure edge, device edge, and embedded edge. It provides an economic model and
service usage prediction for situation-aware infrastructure edge computing, a protocol for
offloading tasks and avoiding connection losses in situation-aware device edge computing, and
novel analysis and programming methods for situation-aware embedded edge computing.

The first research question is how providers of services and providers of infrastructure edge
facilities can find an agreement with respect to the price for utilizing infrastructure edge
facilities. The two challenges in this area are (i) the problem of incomplete information, i.e.,
both parties are not able or willing to share all their private business information with each
other, and (ii) to predict how many users will use the service, which is required to estimate
the cost for utilizing the infrastructure edge facilities.

The second research question is how to decide which device should be used to offload a
process to in the area of device edge and how to predict whether a wireless connection will
be lost due to the nodes’ mobility. It is crucial to identify nodes that are able to execute
a process to increase the number of successful offloadings. However, it is not possible to
determine the capabilities of the node from outside, i.e., the offloading node has no chance
to find nodes able to execute a process.

The third research question is how to enable programmers of embedded edge applications
to effectively and easily implement situation-aware applications. Programming paradigms
used for embedded edge are usually imperative and rely on the C language. But C, similar to
other imperative languages, is not well suited to implement applications that mainly process
streams of data due to their data handling mode, where developers have to keep track of
data references, allocation, and scoping.

2



1.2 Contributions of this Thesis

1.2 Contributions of this Thesis

In this thesis, the following contributions are presented.

The novel approach of situation-aware edge computing is proposed. It makes use of the
concepts of situation and situation-awareness that allow decision-making based on the
perceived environmental information, comprehended to gather domain-specific understanding
of the environment. Furthermore, situation-awareness is expanded to include incomplete
information, an aspect that takes missing, inaccurate, or uncertain information, which may
result from untrustworthy parties, faulty sensors, or inaccurate measurements, into account.

To achieve the goal of situation-aware edge computing, it is divided into three areas, (i)
situation-aware infrastructure edge computing, (ii) situation-aware device edge computing,
and (iii) situation-aware embedded edge computing. Each of these areas contains its own set
of challenges and open research questions.

In the first area, situation-aware infrastructure edge computing, the main open research
question is how to enable stakeholders of the Internet, i.e., companies and institutions offering
services, providing compute- and storage resources and operating networks, to make economic
decisions using their situation, which is built on information of their users, of other stakeholders
but also of themselves. This is presented in two parts:

• A novel iterative bargaining approach between two stakeholders for nearly optimal
service placement in infrastructure edge scenarios with respect to social cost despite
incomplete information is proposed. By being aware of their situation through using
publicly available information like price lists or scientific papers about pricing, both
stakeholders project their future situation with respect to their own cost and the cost of
respective other stakeholders and use this projection to decide where to place cloudlets
finding a nearly optimal solution.

• A case study based on the AR game Ingress highlights metrics and measures for
situation-aware mobile AR applications. In the course of the analysis, the relationship
between the service provider’s situation and the number of service usages is investigated.
The results show that more than 84% of the variation of the number of in-game actions
can be explained by being aware of the situation. This shows the enormous influence of
the situation on the number of in-game actions.

The second area, situation-aware device edge computing, explores in two parts how situation-
aware offloading and connection loss prediction can be realized:

• OPPLOAD, a novel situation-aware framework for offloading computational workflows
in opportunistic networks, where so-called workers announce their capabilities and
available resources that are perceived and comprehended to gather their situation by
clients, i.e., the offloading devices. Clients then can project their future situation to
decide on which worker a task should be offloaded to. This approach speeds up workflow
execution and spreads the load fairly on spatially close but powerful workers, which
increases the rate of successful offloadings significantly. Due to the workers announcing
their information, clients can deal with incomplete information.

• A novel situation-aware approach Wi-Fi connection loss prediction to perform seamless
vertical Wi-Fi/cellular handovers based on perceived sensor information on mobile
devices is presented that predicts connection losses 15 seconds ahead using a machine
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learning approach. Using this approach mobile devices are able to comprehend their
situation with respect to the connection status and successfully project whether the
connection is lost. This leads to the ability to decide whether a second connection
should be established to provide seamless connections in device edge environments.

The third area, situation-aware embedded edge computing, introduces two approaches that
enable situation-aware applications:

• With ReactiFi, a domain-specific language, programmability of embedded devices is
facilitated. Programmers use a high-level reactive programming language to perceive
environmental information, comprehend the device’s situation and make decisions based
on the projection of future situations. Advantages are its scheduling and memory usage.
By comparing two implementations of a case study implemented in C and ReactiFi,
the programming benefits of ReactiFi compared to C are discussed.

• Multimodal CEP is a novel approach to process streams of events on embedded devices.
In multimodal CEP, queries are formulated in a high-level language, which are then
broken up, and the most adequate execution mode for the involved CEP operators is
selected. A multimodal CEP engine for Android devices is presented. It includes three
novel execution environments for CEP operators in the operating system (based on
Berkeley Packet Filters), on the Wi-Fi chip (based on the Nexmon firmware patching
framework), and for a custom sensor hub, leading to significant power savings.

Finally, the concept of situation-aware edge computing is applied to two case studies.

• The novel idea of situation-aware edge computing for emergency response applications
is introduced. It is identified that by applying the concept of situation-awareness
to emergency response applications based on infrastructure edge, device edge and
embedded edge approaches. Rescue helpers and people affected by emergencies are
provided with useful information and applications that help to handle emergencies.

• DTN-RPC, a new approach to provide RPCs in device edge environments, is presented.
DTN-RPC uses the concept of transitions to significantly increase the rate of successful
RPCs. Further, to decide which transport protocol to use for the RPCs, i.e., to implement
transitions, both client and server comprehend their situation with respect to their
network state based on perceived information like available mobile devices using network
lookups so that it can be decided which transport protocol will be used for the call or
the transmission of the result. Finally, servers use a situation-aware approach where
information from their sensors but also predicates from clients are used to comprehend
their situation based on their ability to execute the called procedure.

During the work on this thesis, the following papers were published:

1. Lars Baumgärtner, Paul Gardner-Stephen, Pablo Graubner, Jeremy Lakeman, Jonas
Höchst, Patrick Lampe, Nils Schmidt, Stefan Schulz, Artur Sterz and Bernd Freisleben.
“An Experimental Evaluation of Delay-Tolerant Networking with Serval.” In: Proceedings
of the Global Humanitarian Technology Conference (GHTC), pp. 70 – 79, IEEE, 2016

2. Artur Sterz, Lars Baumgärtner, Ragnar Mogk, Mira Mezini and Bernd Freisleben.
“DTN-RPC: Remote Procedure Calls for Disruption-Tolerant Networking.” In: Pro-
ceedings of the IFIP Networking Conference (IFIP Networking), pp. 1 – 9, IEEE,
2017
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3. Patrick Felka, Artur Sterz, Katharina Keller, Bernd Freisleben and Oliver Hinz. “The
Context Matters: Predicting the Number of In-game Actions Using Traces of Mobile
Augmented Reality Games.” In: Proceedings of the 17th International Conference on
Mobile and Ubiquitous Multimedia (MUM), pp. 25 – 35, ACM, 2018

4. Pablo Graubner, Christoph Thelen, Michael Körber, Artur Sterz, Guido Salvaneschi,
Mira Mezini, Bernhard Seeger and Bernd Freisleben. “Multimodal Complex Event
Processing on Mobile Devices.” In: Proceedings of the 12th International Conference
on Distributed and Event-Based Systems (DEBS), pp. 112 – 123, ACM, 2018

5. Patrick Felka, Artur Sterz, Oliver Hinz and Bernd Freisleben. “Using Social Media to
Estimate the Audience Sizes of Public Events for Crisis Management and Emergency
Care.” In: Proceedings of the International Conference on Smart Health (ICSH), pp. 77
– 89, Springer, 2018

6. Artur Sterz, Lars Baumgärtner, Jonas Höchst, Patrick Lampe and Bernd Freisleben.
“OPPLOAD: Offloading Computational Workflows in Opportunistic Networks.” In:
Proceedings of the 44th Conference on Local Computer Networks (LCN), pp. 381 –
388, IEEE, 2019

7. Jonas Höchst, Artur Sterz, Alexander Frömmgen, Denny Stohr, Ralf Steinmetz and
Bernd Freisleben. “Learning Wi-Fi Connection Loss Predictions for Seamless Vertical
Handovers Using Multipath TCP.” In: Proceedings of the 44th Conference on Local
Computer Networks (LCN), pp. 18 – 25, IEEE, 2019 (Best Paper Award)

8. Lars Baumgärtner, Jonas Höchst, Patrick Lampe, Ragnar Mogk, Artur Sterz, Pascal
Weisenburger, Mira Mezini and Bernd Freisleben. “Smart Street Lights and Mobile
Citizen Apps for Resilient Communication in a Digital City.” In: Proceedings of the
Global Humanitarian Technology Conference (GHTC), pp. 1 – 8, IEEE, 2019

9. Alvar Penning, Lars Baumgärtner, Jonas Höchst, Artur Sterz, Mira Mezini and Bernd
Freisleben. “DTN7: An Open-Source Disruption-Tolerant Networking Implementation
of Bundle Protocol 7.” In: Proceedings of the International Conference on Ad-Hoc
Networks and Wireless (AdHoc-Now), pp. 196 – 209, Springer, 2019

10. Jonas Höchst, Lars Baumgärtner, Franz Kuntke, Alvar Penning, Artur Sterz and
Bernd Freisleben. “LoRa-based Device-to-Device Smartphone Communication for Crisis
Scenarios.” In: Proceedings of the 17th International Conference on Information Systems
for Crisis Response and Management (ISCRAM), pp. 996 – 1011, ISCRAM, 2020

11. Artur Sterz, Matthias Eichholz, Ragnar Mogk, Lars Baumgärtner, Pablo Graubner,
Matthias Hollick, Mira Mezini and Bernd Freisleben. “ReactiFi: Reactive Programming
of Wi-Fi Firmware on Mobile Devices.” In: The Art, Science, and Engineering of
Programming, Volume 5, Number 2, pp. 1 – 37, AOSA, 2020

12. Artur Sterz, Patrick Felka, Bernd Simon, Sabrina Klos, Anja Klein, Oliver Hinz and
Bernd Freisleben. “Multi-Stakeholder Service Placement via Iterative Bargaining with
Incomplete Information.” In: Transactions on Networking, Early Access, pp. 1 – 16,
IEEE/ACM, 2022
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13. Jonas Höchst, Lars Baumgärtner, Franz Kuntke, Alvar Penning, Artur Sterz, Markus
Sommer and Bernd Freisleben. “Mobile Device-to-Device Communication for Crisis
Scenarios Using Low-cost LoRa Modems” In: Disaster Management and Information
Technology, to appear, Springer, 2022

14. Markus Sommer, Jonas Höchst, Artur Sterz, Alvar Penning, and Bernd Freisleben.
“ProgDTN: Programmable Disruption-tolerant Networking” In: Proceedings of the 10th
International Conference on Networked Systems (NETYS), to appear, Springer, 2022

Furthermore, the following software artifacts were co-developed and released under permissive
open-source licences during the work on this thesis:

1. DTN-RPC: This is a C-based reference implementation of the remote procedure
call protocol presented in DTN-RPC: Remote Procedure Calls for Disruption-Tolerant
Networking [234]. It uses Serval [97] as the disruption-tolerant networking component.
Available at https://github.com/adur1990/DTN-RPC.

2. OPPLOAD: This is an implementation of the computational workflow offloading
protocol presented in OPPLOAD: Offloading Computational Workflows in Opportunistic
Networks [233]. It is written in Python and uses Serval [97] to provide disruption-tolerant
networking capabilities required in opportunistic networks.
Available at https://github.com/umr-ds/OPPLOAD.

3. Seamless Vertical Handover Demo-App: This is a proof-of-concept implementation
of the proposed seamless handover approach presented in Learning Wi-Fi Connection
Loss Predictions for Seamless Vertical Handovers Using Multipath TCP [112].
Available at https://umr-ds.github.io/seamcon/.

4. DTN7-Go: This is a reference implementation of the Bundle Protocol 7 [40] written in
Go. The technical details were published in DTN7: An Open-Source Disruption-Tolerant
Networking Implementation of Bundle Protocol 7 [191].
Available at https://github.com/dtn7/dtn7-go.

5. BlueRa: This is a cross-platform chat app that uses LoRa to realize long-range,
infrastructure-free communication. The app was released as part of LoRa-based Device-
to-Device Smartphone Communication for Crisis Scenarios [111].
Available at https://github.com/umr-ds/bluera.

6. ProgDTN: This is a Go-based reference implementation of ProgDTN: Programmable
Disruption-tolerant Networking [231]. It allows implementing routing protocols using
Javascript for disruption-tolerant networks. It is integrated into DTN7-Go.
Available at https://github.com/umr-ds/dtn7-go/tree/ProgDTN.

1.3 Organization of this Thesis

This thesis is organized as follows. In Chapter 2, fundamental concepts, technologies, and
terms that are required throughout this thesis are explained.
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1.3 Organization of this Thesis

The novel concept of situation-aware edge computing is introduced in Chapter 3. First the
terms situation and situation-awareness are defined followed by the introduction of the area of
edge computing and its sub-areas infrastructure edge, device edge and embedded edge. The
final section formulates challenges and open questions for situation-aware edge computing
and presents how situation-aware edge computing can be achieved.

In the following, the three areas of situation-aware infrastructure edge computing, situation-
aware device edge computing and situation-aware embedded edge computing are discussed.
Chapter 4 presents two approaches using situation-awareness in the area of infrastructure
edge. The first part shows an approach where situation-awareness supports economic decisions
about where to place services on infrastructure devices. The second part presents a method
that uses situation-awareness to comprehend the service provider’s situation with respect to
where users use services.

Chapter 5 presents two approaches using situation-awareness in the device edge area: (i) an
approach where mobile devices in opportunistic networks use their situation to decide on
which mobile devices in the network a process should be offloaded to, and (ii) an approach
that projects the mobile device’s future situation regarding its connection state.

The concept of situation-aware embedded edge computing is discussed in Chapter 6. First, an
innovative programming language is presented that follows the reactive programming paradigm
and can be used to develop novel situation-aware applications executed on embedded devices.
Second, an approach that uses a novel Complex Event Processing (CEP) engine to enable
IoT devices to execute CEP queries to support the analysis of sensor information, such that
situation-awareness can be achieved.

Chapter 7 discusses two case studies for situation-aware edge computing. The first case
study shows how situation-aware edge computing can be used to support emergency response
applications. The second case study presents how situation-awareness can be used to implement
transitions in the device edge area.

Finally, Chapter 8 concludes this thesis and outlines areas for future work.
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2
Fundamentals

In this chapter, fundamental concepts, technologies and terms will be introduced and explained
that are required throughout this thesis. In Section 2.1, different aspects of communication
networks will be introduced, whereas Section 2.2 will introduce two major network access
technologies. Section 2.3 contains fundamentals regarding the concept of Internet of Things.
Programming and data analysis concepts are introduced in Section 2.4. Finally, Section 2.6
establishes the concept of transitions.

2.1 Communication Networks

Communication networks are integral parts of decentralized edge computing. Thus, this section
will first introduce the OSI reference model, followed by a discussion of disruption-tolerant
networking and opportunistic networking.

2.1.1 OSI Reference Model

The International Organization for Standardization (ISO) proposed a seven-layer reference
architecture of protocols, the Open Systems Interconnection (OSI). The main idea is to
bundle services and protocols providing similar or even identical operations into layers and
provide common interfaces between layers. This approach allows protocols within one layer to
be modified without affecting neighboring layers [281].

Fig 2.1 shows the OSI model [281]. The figure depicts how data is transmitted from one
end system to another with an intermediate node. Solid arrows represent dataflow within the
system whereas dotted arrows represent logical network connections between the systems.
The first layer called physical layer (often abbreviated as PHY) contains all aspects regarding
how to use a medium like wires or radio frequencies, e.g., mechanical or electrical functionality
to establish and maintain physical connections between network devices. The data link layer
(abbreviated as MAC for medium access control) builds on top of the PHY layer. It controls
medium access, i.e., reduces, detects and corrects errors and permits data to be sent to the
PHY layer. Both the PHY and the MAC layer provide a point-to-point connection. Although
the OSI model separates PHY and MAC layers, protocols used are usually combinations of
both layers like IEEE 802.3 for Ethernet connections or IEEE 802.11 for Wi-Fi connections.

The upcoming layers provide end-to-end connections between devices possibly over multiple
hops. The network layer provides data transfer between networks and from source to receiver
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Figure 2.1: OSI model [281]

without knowing the route, where intermediate devices act as forwarders to allow data transfer
over multiple hops. At this level, the Internet Protocol (IP) is the most widely used protocol.
On top of the network layer the transport layer provides data transfer between services or
sessions on devices without having to deal with the costs or requirements of the underlying
layers. At this layer, two protocols are used ubiquitously: Transmission Control Protocol
(TCP) for reliable and User Datagram Protocol (UDP) for unreliable data transfer, although
other notable mentions exist like SCTP [237] and QUIC [138].

The first four layers were generally transport-oriented. The remaining three layers are
application-oriented, since they to not handle data transport-specific operations, but application-
specific functionality. Layer five is called session layer and is mainly concerned with functionality
regarding data synchronization. The presentation layer is responsible for all matters related
to the presentation of data. Both the session and the presentation layer are considered
obsolete. There are no widely used protocols for both layers, although they exist, e.g., Remote
Procedure Calls [193] for the session layer and Connectionless Presentation Protocol [118] for
the presentation layer. The final layer is the application layer. It acts as the interface between
the user-facing part and the application itself. This layer contains a plethora of protocols like
the Hypertext Transfer Protocol (HTTP) for transferring and presenting hypertext, Domain
Name System (DNS) for domain-name resolution or Message Queuing Telemetry Transport
(MQTT), a lightweight publish-subscribe protocol for transmitting telemetry data especially
on the Internet of Things area (see Section 2.3).

2.1.2 Disruption-tolerant Networks

Most networking protocols, especially those used on the Internet, are designed in a way that
relies on stable point-to-point or end-to-end connections. If connections between devices are
intermittent and error-prone these protocols do not work, making communications impossible.
One example of such networks can be found in the area of interplanetary communications,
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leading to the development of the InterPlaNetary Internet (IPN) in the 1970s [45]. Here, Cerf et
al. [45] identified two major issues: (i) motion of and long distance between planets, resulting in
long delays and intermittent connections, (ii) no fixed communications infrastructure, requiring
constant route changes. Fall [77] noted other communications networks also have similar
problems to interplanetary communications, for example in mobile networks using wireless
communications, sensor networks or ad-hoc networks in emergency response applications.
Thus, he generalized the concept if IPN, resulting in the concept of Delay-Tolerant Networks
(DTN) [77]. Both efforts of Cerf et al. and Fall resulted in RFCs 4838 [46], 5050 [219] and
the recently published RFC 9171 [40]. The term disruption-tolerant networking has evolved
in the literature as a synonym for delay-tolerant networking.

In general, data transmission in DTN follows the store-carry-forward principle. Here every data
unit, called bundle, is stored locally on reception and forwarded to other, neighboring nodes.
In contrast to IP networks, where packets are only stored temporarily until the forwarding
is finished (i.e., in a store-and-forward manner), DTN nodes store bundles persistently so
that bundles can be forwarded multiple times, increasing chances that bundles receive their
destination despite intermittent connectivity.

In DTN, nodes and endpoints are distinguished. Nodes exchange bundles according to the
store-carry-forward principle. Bundles are addressed at endpoints, or, their characterizing
Endpoint Identifier (EID), which might currently not exist in the network. Multiple nodes can
have the same EID so that multicasts can be realized. A bundle addressed to an EID that is
used by multiple nodes results in that bundle being transmitted to all these nodes [191].

Packets in a DTN consist of blocks to form logical units called bundles. Each bundle begins
with one primary block, containing meta-information about the bundle: version, destination
and source EIDs, timestamp, and size. Each bundle may have multiple canonical blocks
containing block-specific characteristics. The payload of the bundle, i.e., the data to be
transferred, is located in the payload block at the end of each bundle.

Each node must decide to which other node a bundle must be sent. To do so, a plethora
of DTN routing algorithms was proposed in the literature. The most simple one is epidemic
routing, where each node sends a bundle to all other adjacent nodes, resulting in flooding the
network with the given bundle [248]. But also more sophisticated algorithms exist, most notably
Probabilistic Routing Protocol using History of Encounters and Transitivity (PRoPHET) [148],
Spray and Wait [232] and Delay-Tolerant Link State Routing (DTLSR) [67].

Bundles are exchanged over connections between nodes of different types and characteristics,
connections are unidirectional or bidirectional, or vary in transmission speed and bandwidth.
Depending on the connection technology used, more or less complex protocols are required
for delivery, called Convergence Layer (CL) Protocols (CLP). There are two CLPs defined by
the IETF DTN group to exchange bundles over a TCP connection, the bidirectional TCP
Convergence Layer Protocol (TCPCL) [230] and the unidirectional Minimal TCP Convergence
Layer Protocol (MTCP) [39]. In addition to transport layer CLs, there are approaches based
on other technologies like Bluetooth, serial communication or E-Mail

Fig 2.2 shows the general procedure of sending bundles across devices in a DTN [40]. An
application prepares a bundle and hands it over to the bundle protocol, i.e., the implementation
containing the routing and management components. Here, the routing algorithm decides
to which neighbors the bundle should be forwarded. For each forwarding, the bundle will be
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Figure 2.2: Data transfer from source to destination with intermediate nodes [40]

passed down the entire network stack, which is summarized as the CL. The bundle protocol
layer is in Layer 7 of the OSI model. The CL contains all remaining layers, i.e., transport,
network, MAC, and PHY. It might be possible that the CL also contains an application layer
protocol like in the mentioned E-Mail-based CL. On reception of a bundle on the next node,
the bundle is passed up through the entire network stack and persisted in the application layer
by the bundle protocol. This entire process is repeated until the destination of the bundle is
reached, where the bundle protocol will hand the bundle over to the application.

Opportunistic Networks

Opportunistic networks are specific cases in the domain of DTNs [33, 116, 245]. While DTN
provides the conceptual and technical basis, opportunistic networks are concerned with the
type of network and the distribution of data. They establish a mobile ad hoc network in
which human-carried mobile devices connect directly via a short-range wireless technology
like Wi-Fi or Bluetooth whenever they are in transmission range. In contrast to DTNs, which
can include permanent communication infrastructures, opportunistic networks are designed
to be infrastructure-free: nodes store data and carry it based on the underlying user mobility
until a new communication opportunity to transmit the data emerges. The emphasis of
opportunistic networks switches from user-centric to content-centric data distribution. This
decreases network complexity, since selecting suitable intermediary nodes for information
transmission is no longer a priority. Instead, data diffusion is dependent on human movement
patterns as well as certain common content interests.
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2.2 Radio Access Technologies

End user devices such as smartphones, computers or embedded systems can use various
technologies to access the network. These access technologies can be broadly categorized into
two groups: wired technologies such as fiber optics or Ethernet and wireless technologies like
wireless LAN (WLAN) or 5G. Due to the nature of edge computing, wireless technologies play
a far more important role, since devices used in such scenarios are mobile. Therefore, wired
technologies will not be discussed any further. The remainder of this section will first introduce
cellular networks used in public networks and WLAN mainly used in private networks.

2.2.1 Cellular Networks

Cellular networks is a collective term that combines many technologies and concepts. The
historical development of the underlying technologies is described in generations, of which
there are currently five [167]. The first generation (1G) deployment started in the 1980s,
whereas the technological foundations date back to the 1970s. Since mobile devices were
expensive at that time and only targeted limited markets, they never achieved commercial
success. Further, 1G relied on analogous technology. During the 1990s, the second generation
(2G) was introduced, which provided nearly the same services (mainly telephony), but used
digital technologies as a basis. The main driving technology was the Global System for
Mobile communications (GSM) protocol family, consisting of the General Packet Radio
Service (GPRS) and Enhanced Data Rates for GSM Evolution (EDGE). This allowed better
quality, lower cost, and range improvements. With the third generation cellular networks
(3G), the main focus switched from telephony as the main service to data transmission,
web-services and multimedia applications. With a data transmission rate of up to 14 Mbit/s,
the throughput was increased about nine hundred times, mainly achieved by new protocols
such as Universal Mobile Telecommunications System (UMTS) and High Speed Packet Access
(HSPA). The main disadvantage of 3G was the design around so-called bearer services. 3G
system designers defined service types such as speech, videotelephony or high data rate that
influenced MAC layer properties to fulfil the requirements of these types. However, it turned
out to be impossible to predict what type of service will be used, if new types appear that
are not provided and how the requirements of the existing types will evolve. And in fact
only the speech service and the high data rate service is used in modern 3G networks. This
consequently mainly influenced the development of the fourth generation of cellular networks,
4G. The main protocol family of 4G networks is called Long Term Evolution (LTE). LTE is
a data-only system achieving up to 100 MBit/s data throughput that was later improved
to achieve 1 GBit/s using LTE-Advanced. The fifth generation (5G) promises data rates of
up to 10 GBit/s with a capacity of up to one million devices per square kilometer (4G only
achieves 10% of that capacity) and possible latencies of below 10 ms.

In real-world deployments, 1G is not used anymore, since 2G provided better service qualities
in all areas. 2G, 3G, and 4G are currently used ubiquitously around the world. However, with
4G’s large coverage, providers begin to rollback 3G, but not 2G. This leads to the separation
of 4G used for all IP-based communication (including multimedia- and web-service but also
speech in the form of Voice over IP, VoIP) and 2G as a fallback for telephony. However, with
the increasing deployment of 5G mobile networks since 2019, 2G and 4G networks will no
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Figure 2.3: Schematic infrastructure and topology of cellular networks

longer be needed and shut down. Due to the significance of 5G as the new standard and the
shutdown of 2G, 3G and 4G in the future, this thesis will only discuss 5G technologies.

Despite many technological differences of the five generations, they share the basic infrastruc-
ture and topology concepts [203], as shown in Figure 2.3. Cellular networks split their service
area into discrete geographical units known as cells (hence their name). All wireless devices in
a cell (denoted as users in Figure 2.3) connect with a cellular base station using radio waves
via fixed antennas on frequency channels allotted by the base station. Furthermore, to be
able to communicate with devices within the same network the base stations are connected
with high-bandwidth backhaul links with each other to a core network, shown in purple in
Figure 2.3. Base stations and a core network are usually owned by so-called Internet Service
Providers (ISP), while many ISP exist. For connectivity with devices or services in networks of
other ISPs, the base stations are also connected to the Internet via the core network. When a
mobile device switches from one cell to another, it is seamlessly handed off to the current
cell. However, due to the need of supporting higher bandwidths, lower latencies and providing
network and Internet access to a steadily increasing number of devices, 5G introduces a
plethora of new standards and technologies. Radio access is divided into two frequency bands,
FR1 for frequencies below 6 GHz and FR2 for 24 - 54 GHz. FR1 uses channel bandwidths
of 100 MHz, and many of the frequency bands are overlapping with 4G frequencies. FR2
is mainly used for high-bandwidth applications, which is achieved by the high frequencies
used. However, high frequencies impose the problem that they are limited in distance and are
not able to penetrate solid objects. Thus, the coverage and frequency usage in FR2 is highly
application-specific and requires different deployments and cell sizes for the given application.
There are four main cells used in 5G, that are summarized as small cells: (i) femto cells,
(ii) pico cells, (iii) micro cells and (iv) metro cells. Each cell type is designed around a specific
deployment environment. Femto cells are supposed to be used in homes or businesses with 4
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to 16 users per cell with a range of tens of meters. Pico cells should be used in public areas
like airports, train stations or shopping malls with up to 128 users per cell in a range of tens
of meters. Micro cells are designed for urban areas to fill gaps of FR1 base stations, with
up to 256 users per cell in a radius of few hundreds of meters. Finally, metro cells are used
to provide additional capacity in urban areas for more than 250 users per cell in a range of
hundreds of meters. Three additional technologies with less importance for this thesis are
beamforming, Software-Defined Networking (SDN), and Network Function Virtualization
(NFV). Beamforming involves shaping electromagnetic beams by arranging antennas in such
a way as to make more efficient use of spectrum, increase range, and improve signal quality,
resulting in significantly improved overall quality of service. SDN decouples the network
control plane from the data plane, and NFV allows for instantiating logical network functions
on top of a single shared physical network infrastructure. These two concepts allow optimizing
network usage and a fine-grained control of networks, aiming to increase quality of service for
users. Finally, 5G also adopts the concept of edge computing to reduce latencies of services,
reduce traffic congestion and potentially reduce operational cost for providers of core networks
and base stations as well as providers of services that are used by users.

2.2.2 Wireless LAN

WLAN describes a protocol family from the IEEE 802 standards, which are defined in IEEE
802.11 [60]. While the first standards and concepts were developed in the 1980s, WLAN did
not gain acceptance until the early 2000s, when components and end user devices became
affordable and the technology matured. Like all standards of the IEEE 802 family, IEEE 802.11
defines the lowest two layers of the OSI model, i.e. PHY and MAC layer. For IEEE 802.11, the
MAC layer was largely taken over from IEEE 802.3, the standard for Ethernet, and only the
interface for the PHY layer was adapted. The PHY layer, on the other hand, was developed
completely independently, since it was the first wireless transmission medium in the IEEE
802 family. In addition, a goal of the IEEE 802.11 family was to transport IP packets in local
area networks in an unlicensed frequency range so that they can be used without obstacles,
especially in home or corporate networks, to provide simple, easy and wireless access to
the Internet. Today, WLAN is the most widespread wireless Internet access technology. In
addition to WLAN, the term Wi-Fi (wireless fidelity) is often used synonymously. However, it
must be noted that these two terms describe the same thing, namely wireless access to the
Internet using the IEEE 802.11 standards, but from different perspectives. WLAN describes
the technical radio network defined by IEEE 802.11, while Wi-Fi describes the certification of
end user devices according to the IEEE 802.11 standard. This circumstance is also evident in
the fact that the naming of the standards or protocol collections differs between WLAN and
Wi-Fi. At irregular intervals, the IEEE publishes new standards and amendments to them,
which always have the name IEEE 802.11Y , where Y is a consecutive letter (IEEE 802.11a,
IEEE 802.11b, ..., IEEE 802.11ac) [60]. Milestones are published as stand-alone standards
(such as IEEE 802.11b, IEEE 802.11g, IEEE 802.11n, or IEEE 802.11ac), while standards
in between represent extensions or amendments. The publications considered by IEEE as
stand-alone standards are subsequently certified by the Wi-Fi Alliance under the name Wi-Fi
X, where X is a version number. For example, Wi-Fi 4 corresponds to IEEE 802.11n or Wi-Fi
5 to IEEE 802.11ac. Throughout this thesis, however, the term Wi-Fi is used to indicate that
only Wi-Fi certified, off-the-shelf devices are used.
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Infrastructure Mode Ad-Hoc Mode

Figure 2.4: Two main Wi-Fi operation modes: Infrastructure mode and Ad-hoc mode

Since the existence of WLAN, the IEEE 802.11 standard has evolved considerably especially
in the PHY layer, which has resulted in many improvements. While Wi-Fi 1, introduced
in 1999, allowed a maximum data transmission rate of 11 MBit/s, Wi-Fi 4 (2003) already
had 600 MBit/s and the latest standard Wi-Fi 6 (2020) up to 9.6 GBit/s. Wi-Fi uses two
frequency bands, 2.4 GHz - 2.5 GHz (commonly referred to as 2.4 GHz) and 4.915 - 5.825
GHz (commonly referred to as 5 GHz). These bands are divided into channels, with the
channels in the 2.4 GHz band being 5 MHz apart. Due to varying local regulations in different
regions of the world, the channels in the 5 GHz band are not uniformly separated. Furthermore,
depending on the frequency band, standards and regulations, channels can have a bandwidth
of 20 MHz, 22 MHz and 40 MHz for the 2.4 GHz band and 20 MHz, 40 MHz, 80 MHz and
160 MHz for the 5 GHz band (although proprietary extensions exist, e.g., 66 MHz). To encode
data into the frequencies, WLAN uses Orthogonal Frequency-Division Multiplexing (OFDM).
OFDM divides the transmission channel (called carrier) into subchannels (called subcarriers)
over which data can be transmitted independently of one another. In order to modulate
data onto the subchannels, the information is encoded using the amplitude level. Various
amplitude modulation methods can be used. If the transmission conditions are favorable, for
example, the 64 Quadrature Amplitude Modulation (64QAM) method can be used. However,
the worse the ambient conditions, the more robust amplitude modulation methods such as
Binary Phase-Shift Keying (BPSK) can be used, depending on the standard. This can then
achieve more robust communication over a longer range, but at a lower data rate.

Wi-Fi supports two different operation modes, as shown in Figure 2.4: (i) infrastructure mode
and (ii) ad-hoc mode. For the infrastructure mode, a wireless Access Point (AP) coordinates
all clients, called stations. Multiple stations use the same AP to connect to the network. In
ad-hoc mode all devices are equal and are connected in a peer-to-peer manner. Because there
is no central instance in an ad-hoc network, the stations must undertake the coordinating
function themselves. Data packet forwarding between stations is not allowed for and is difficult
to do in reality since no information is shared in ad-hoc mode that may provide individual
stations with an overview of the network. To alleviate this issue, participating stations can
be equipped with routing capabilities, allowing them to pass data between stations that are
not in transmission range of one another, resulting in a mesh network. Besides these two
main operation modes, Wi-Fi also supports hybrid modes in between like Tunneled Direct
Link Setup (TDLS) or Wi-Fi Direct, where the AP serves as a negotiation service to help to
establish peer-to-peer connections between stations.
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On the MAC layer, IEEE 802.11 defines three types of datagrams called frames: (i) management
frames used for managing the state of a connection like authentication, association to an
AP or beacons to announce presence of APs, (ii) data frames, containing the actual data
to be transmitted between Wi-Fi devices and (iii) control frames controlling data exchange
by providing acknowledgements of received frames or indicating when stations are allowed
to send. Each frame consists of a header containing information like frame type or source
and destination address, and the payload in case of data frames. Medium access is controlled
using Carrier-Sense Multiple Access with Collision Detection (CSMA/CD). When a station
is ready to send data, it sends a Ready to Send (RTS) frame to the AP or other station in
case of ad-hoc mode. The AP or station handles this frame accordingly either by ignoring it
when another station is sending or responding with a Clear to Send (CTS) frame. Collision
detection is implemented by using acknowledgement frames. Every transmitted frame has
to be acknowledged by the receiver. If the sender does not receive the acknowledgement, a
collision is assumed and retries sending the data after a random back-off.

2.3 Internet of Things

Internet of Things (IoT) is a term name describing technologies that allow physical and
virtual items to be networked and communicate with one another via information and
communication techniques. To enable the IoT, two areas are usually required: embedded
systems for computing and executing functions, and networking and communication between
these systems. Figure 2.5 [139] shows the structure of an IoT deployment containing of
multiple embedded systems and their communication network.

2.3.1 Embedded Systems

An embedded system is a computer that is embedded in a technical setting and performs
monitoring, control, or regulation activities, or is in charge of some type of data or signal
processing, such as encoding, decoding, or filtering [139]. Embedded systems are frequently
tailored to a specific goal. Embedded systems are frequently subject to severely constrained
conditions, such as low cost, limited space, energy, and memory usage, which necessitates the
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employment of specialized hardware or appropriate designs. In general, only limited resources
exist. A ROM or flash chip substitutes mechanical memory components such as hard drives,
and power-saving CPUs operate without fans since moving parts create wear and tear and
make fall-outs more likely. Furthermore, the software in an embedded system, referred to
as firmware, is typically required to satisfy real-time needs. It is often stored on a ROM or
flash memory. All of these criteria necessitate concepts and technology that enable a suitable
platform for their duties to be realized despite these constraints.

Processors used in embedded systems can be categorized into two categories: (i) microcon-
trollers and (ii) Digital Signal Processors (DSPs). A microcontroller is a small computer
that combines a CPU with peripheral devices such as memory and I/O devices on a single
integrated circuit [139]. They frequently employ 8-bit architectures and are well suited to
applications that require low memory and basic functionalities. They may use a minimal
amount of energy and often have dedicated features like as a so-called sleep mode, in which
components of the CPU are turned off, reducing power consumption to nanowatts and
allowing them to run for several years on batteries. However, separating microcontrollers from
general-purpose processors is not as simple as it may appear, since several CPUs (e.g., the
Intel Atom family or AMD Geode) fulfill some above-mentioned features but are deployed in
devices as general-purpose CPUs. Filtering, system identification, frequency analysis, machine
learning, and feature extraction are just a few of the advanced mathematical processes
that many embedded programs execute on data. DSPs are processors that are developed
specifically to serve such numerically intensive signal processing applications and are often
microcontrollers themselves.

Besides the communication between different embedded devices themselves, CPUs also have
to be able to interact and communicate with periphery or sensors [139]. Therefore, embedded
systems often include numerous I/O hardware components and interfaces. These include
hardware for Pulse Width Modulation (PWM), where a variable amount of data is delivered
to periphery, or General-Purpose Digital I/O (GPIO) to allow digital communication protocols
such as Inter-Integrated Circuit (I2C) or Serial Peripheral Interface (SPI). But also serial
interfaces like Universal Asynchronous Receiver/Transmitter (UART), or buses like Peripheral
Component Interface (PCI) are possible.

Finally, embedded systems are usually programmed using imperative and low-level program-
ming languages, predominantly C. Programs are then either executed on bare metal, i.e.,
without any operating system or by using simple operating systems. Often, embedded systems
do not support concurrent or parallel execution of programs but only sequential execution.
However, due to the popularity of IoT, more modern operating systems provide interrupt-based
concurrency, support multitasking, and parallel execution if multiple CPU cores are available,
e.g., the ESP platform by Espressif Systems.

2.3.2 Networking and Communication

The challenges of embedded systems are mainly resource constraints [120]. This makes it
necessary to design new network protocols for many applications. In addition, the many
possible uses and countless applications of IoT make it impossible to develop a single protocol
or only one protocol family. Instead, a number of different protocols have been developed at
almost all levels of the OSI model [120].
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Similar to conventional networks, PHY and MAC layers are often specified jointly. One of
such protocols is Z-Wave, a low-power protocol to support point-to-point communication in a
range of about 30 meters. It is designed for scenarios like home automation, where one device
acts as the controller that controls multiple agents like light switches, or fire detectors. By
implementing a collision avoidance scheme and acknowledgements, it is considered a reliable
protocol. Bluetooth Low Energy (BLE) is often used in IoT applications for pairing of devices.
IEEE 802.15.4 is designed to support different application scenarios by varying the transfer
rate (between 40 kbit/s and 250 kbit/s) with the trade-off of increased power consumption
at higher transfer rates.

On top of PHY and MAC layers, there are also a number of network layer protocols designed
specifically for the needs of IoT, although the IP protocol is also used widely. ZigBee, which
is built on top of IEEE 802.15.4, is designed to support many devices (up to 65,000), being
less expensive than BLE and Z-Wave and to support a decentralized topology. To support an
IP-based alternative with IEEE 802.15.4 as its foundation, IPv6 over Low-Power Wireless
Personal Area Networks (6LoWPAN) offers similar benefits as ZigBee, with the main difference
of using IPv6 for routing data though the network. TCP and UDP are not only used almost
without exception in conventional networks, but also in the area of IoT, since there are no
alternatives available that are used in real-world deployments.

For application layers, one widely used protocol is the Message Queue Telemetry Transport
(MQTT) protocol. It relies on TCP as the transport protocol and transfers data in a publish-
subscribe manner, where publishers send data in so-called topics to a broker, where subscribers
can read the data. It also supports three quality of service classes: (i) at most once, where
data may or may not be delivered, (ii) at least once, where data is re-transmitted until the
broker acknowledged its delivery and (iii) exactly once, where delivery is assured. Built on
top of IEEE 802.15.4, UDP and HTTP, the Constrained Application Protocol (CoAP) is
designed for a point-to-point state transfer instead of a many-to-many data transfer scheme
as implemented by MQTT.

One challenge in IoT networks is that devices are often dynamically added to and removed
from the network. This imposes the need for service discovery, so that newly added devices
get to know other nodes and services and to inform the network of removed devices. Here,
mainly two protocols are used, which work similar, since both rely on the Domain Name
System (DNS) protocol Multicast DNS (mDNS) and DNS Service Discovery (DNS-SD). They
support automatic configuration of devices, they do not require additional infrastructure, they
are fault-tolerant, and support service discovery by relying on the multicast abilities of IP
networks. These protocols are just examples to illustrate protocols designed specifically for
IoT and embedded systems.

2.4 Programming Paradigms and Data Analysis Concepts

Due to the steady increase of devices on the Internet and the resulting ever-growing amount
of data, it is necessary to develop programming paradigms and data analysis concepts that
are easy to use and support different execution environments, from servers to embedded
systems. Three of these approaches, Complex Event Processing, Reactive Programming, and
Remote Procedure Calls, are presented in the following.
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Figure 2.6: Structure of complex event processing pipeline

2.4.1 Complex Event Processing

The term Complex Event Processing (CEP) was introduced in the late 1990s [153]. Key
concepts include how to specify event patterns and the elements of programming languages
required to do so, how to build efficient event pattern-detection engines, strategies for using
event patterns in event processing, and how to define and use hierarchical abstraction in
processing multiple levels of events for various applications. CEP systems frequently deal with
many event streams from several sources at the same time, as well as different sorts of events
with event rates between a few events per hour to thousands of events per second.

Changes of values or the input of new values are called events [153]. One event is a single
change, while usually events occur as streams of changes at discrete points in time. For
example, the constant typing on a keyboard results in a stream of changes or a sensor
producing data results in one event for every new sensor value which forms an event stream.
In Figure 2.6, events are produced on the left side by sensors that are then passed to the
CEP engine, i.e., the building block where the events are processed. However, the results of
processing events can produce new events that are fed back into the CEP engine.

The initial stage of an event engine is to use simple criteria to eliminate events that do
not contribute to the processing’s goals, a process known as filtering, where the criteria are
called filters. After the filter, more advanced methods are used to analyze the events, such as
applying statistical algorithms, grouping events based on similarities, or using aggregating
methods over time frames. These actions will result in the creation of new events that contain
the summary data. Furthermore, event-abstraction approaches enable development of systems
capable of analyzing large numbers of low-level events and generating high-level events that
abstract the knowledge contained in those events. Thus, they are fewer but more significant
since they provide views of the information contained in the event sources.

All events in CEP are immutable, making it impossible to change or delete an event [153].
If an event contributes to the processing in any manner, the original event must always
be retrievable if necessary. Copies with changes to data or other attributes can be made.
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Prioritizing events as they occur is also a crucial first step. High-priority occurrences are
those that necessitate prompt action. In reality, prioritizing can be performed before or after
filtering, or the two operations might be performed in a different order on the input-event
streams. Computations make use of the data included in events. This step could include
simultaneous computations on the contents of the events. At this step, CEP allows to use
any algorithm for further computation. In reality, a series of algorithms might be run at the
same time, with the new events being added to the event stream for the next steps. Pattern
detection is another type of analysis. An event pattern is a template that can match several
sets of multiple events, or many single events in the case of single event patterns. It may
necessitate the presence of specific data in events, or the events in a matching set to be
related in various ways, e.g., some events may be required to be causes of other events in the
set, or to occur within a specific time window. Some sorts of events may be required to be
absent in an event pattern. Exceptions are errors and anomalies that are detected as a result
of event processing. The existence or absence of events and patterns of events are used to
detect exceptions in CEP. Exceptions are dealt with by producing new events that represent
the exact problem that occurred. When a pattern of events is recognized, the processing may
create new events using properties and data from the set of events that matched the pattern.
Events are frequently categorized into layers, where some events are low-level, while others
are high-level. Higher-level events are made up of groups of lower-level occurrences. Event
hierarchies have several aims, including (i) focusing information for specific users and (ii)
reducing the quantity of events that must be processed at higher levels. At the end of the
CEP engine, some sort of action is triggered, or the gathered information is used otherwise
(e.g., visualized in a dashboard). This process is shown in Figure 2.6.

From a technology standpoint, CEP systems employ domain-specific programming and query
languages to describe patterns and represent data processing stages. Stream SQL (SSQL) and
SQL variations like Continuous Query Language (CQL) are the most common of these, with
modifications for defining events and patterns. One reason for SQL variations’ prominence as
the preferred event pattern specification language is its simplicity of implementation, intuitive
handling and early CEP frameworks being based on database research. Languages that define
event patterns using regular expressions are also used, for example, as extensions to existing
general-purpose programming languages.

2.4.2 Reactive Programming

Reactive programming is a programming paradigm that was established by Elliott et al. in their
implementation of Fran [74], and is built around continuous event streams and propagation of
change caused by events and their evaluation [19]. Applications that operate on continuous
data streams, e.g., in the area of IoT, where sensors produce continuously data that has
to be evaluated and actions have to be performed like triggering actuators, are difficult to
program using conventional control flow drive programming concept due to the unpredictability
of event arrival. To overcome this shortcoming of control flow driven languages, so-called
callbacks are used, where logically independent chunks of code asynchronously operate on
shared data. However, coordinating callbacks is a tedious task, since they have to utilize side
effects to change an application’s state. This leads to the problem that such event handling
logic contributes to nearly a half of the bugs reported, thus, this design was coined callback
hell [19]. In reactive programming, however, the control flow is inverted, i.e., the control flow
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Figure 2.7: Comparison of reactive programming ([19]) and imperative programming

of a program is driven by events and not by imperative program statements. By providing
abstractions (i) to express programs as reactions to external events (ii) having the language
automatically manage temporal, (iii) data and (iv) computation dependencies of events,
reactive programming yields the advantage that developers do not have to worry about the
order of events and computation dependencies.

As a rough overview, using reactive programming, programmers implement what to do and
the language automatically manages when to do it, based on the input of events. To illustrate
this concept, consider the following example shown in Figure 2.7 [19]. The variables var x

= 1 and var y = 2 are assigned values and variable var z = x + y is the combination, in
this case addition, of these variables var x and var y. In most programming paradigms,
such as imperative or object-oriented programming, the variable var z is assigned the value
3 that is, the evaluation of the addition of x and y, i.e., var z = x + y = 3. If now one
of the two or both values of var x and var y change, the value of var z remains with
the mentioned programming paradigms on var z = 3. To update the value of var z the
addition would have to be executed again. In reactive programming, on the other hand, the
value of var z changes as soon as a change is made to var x or var y or both. Thus, the
programmer does not have to worry about it. In this example, it seems trivial. In complex
data processing tasks, however, the programmer would have to constantly make sure that all
references between data and the functions are correct, up-to-date, and valid. With reactive
programming, all these steps happen at the language level.

The term event in reactive programming follows the same definition as in the CEP domain.
However, in reactive programming events are first-class values and are composable. Most
languages provide primitive combinators to arbitrarily combine events or filter a sequence of
events. To be able to react to a new event, the change has to be propagated, i.e., dependent
computations need to be notified so that they can be re-evaluated. To do so, a dependency
graph of values and computations is built that is used to organize the propagation. The
propagation can be performed in two ways, either push-based or pull-based. In the former
case, the source of the event pushed the event to all dependent consumers like functions
that operate on the event. This results in fast recomputations because consumers perform
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their computation as soon as new data is available, but at the cost of potentially inefficient
programs as recomputations may happen often. In pull-based propagation, consumers pull
events from sources on demand, adding the flexibility of only performing recomputations
when they are needed instead of continuously. However, the pull-based method may result in
unbearable latencies or so-called leaks in time and space: “a time leak in a real-time system
occurs whenever a time-dependent computation falls behind the current time because its
value or effect is not needed yet, but then requires catching up at a later point in time. This
catching up can take an arbitrarily long time (time leak) and may or may not consume space
as well (space leak)” [19]. One special pitfall of push-based propagation models are glitches,
i.e., update inconsistencies during propagation. When a computation is run before all of
its dependent expressions have been evaluated, new values may be mixed in with old ones,
resulting in a glitch. Consider the following illustrative example: var x = 1, var y = x *

1 and var z = x + y. The value of the variable var y should always be the same as that
of var x, and the value of var z should always be double that of var x in this example.
When var x = 1, var y = 1, and var z = 2 at first, If the value of var x is changed
to 2, for example, the value of var y will also change to 2, while the value of var z will
remain at 4. Setting var x = 2 may, however, lead the expression var z = x + y to be
recalculated before the expression vary = x * 1. As a result, the value of var z will be
3 for a little period of time, which is wrong. Eventually, the phrase var y = x * 1 will be
recalculated to give a new value to var y, and var z’s value will be recalculated to reflect
the right value of 4. Glitches can be avoided by sorting the dependency graph topologically.

In the recent past, languages like Fran or REScala [206] were proposed. But also outside the
academia, FRP languages are used, for example Svelte.js1 and Elm2 for web-based frontends
or ReactiveX3, which provides a reactive API for general-purpose languages.

2.4.3 Remote Procedure Calls

A remote procedure call (RPC) is a call of a procedure, subroutine or function to run in
another address space or on a different computer on the network, as if it were a regular local
call. Programmers do not explicitly code information for RPCs, instead they write the same
code regardless of whether the function is local or remote, implying location transparency. It
is a type of client-server communication in which the function caller is the client and the
procedure executor is the server.

Figure 2.8 depicts the steps required to perform an RPC [193]. The client first calls a local stub
for the process, handing it the required arguments. The stub hides the fact that the procedure
was called remotely. It converts the arguments to be part of the RPC protocol. The RPC
protocol implementation then transmits the call to the server’s RPC protocol implementation,
which passes the call to the server stub. The RPC is translated into a local procedure call by
the server stub, which is then executed locally on the server. After completion, the server
sends a reply message, which is sent the back to the client. The received result is passed up
to the client stub, which then returns it to the calling program.

1https://svelte.dev
2https://elm-lang.org
3https://reactivex.io
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The stubs are in charge of two things. First, the client stub serves as a client-side proxy for
the remote server operation, whereas the server stub serves as a server-side proxy for the
calling client code. By hiding the ”remoteness” of the code on the other side, the stubs
effectively simulate a local function. Second, the stubs serialize local data so that it may be
transferred via the network protocols in use. On the receiver side, the stub deserializes the
network data so that it may be processed locally. Additionally, the stub encodes the serialized
data into packets that the RPC protocol can process.

The RPC protocol has three main functions: (i) make RPC uniquely identifiable, (ii) correctly
match results to corresponding calls, and (iii) reliably deliver messages between client and
server. The concept of namespaces is used to implement the first function [193]. Namespaces
ensure that names in a given environment are unique and, in the case of RPCs, procedures
can be identified uniquely. Namespaces are either flat or hierarchical. An example for a flat
namespace is the IP protocol. Addresses in the IP namespace are four bytes in size and globally
unique (with some exceptions). The problem with flat namespaces, however, is that there
has to be some central entity coordinating address or name assignment to avoid conflicts.
In contrast, hierarchical namespaces provide the ability to assign names that only require
uniqueness in the lowest level of the hierarchy. To give an example, a file path is structured
as a hierarchical namespace. For matching calls and results, i.e., the second function of the
RPC protocol, usually some sort of ID is used, e.g., a hash. Sequence numbers are also
used. However, sequence numbers bear the problem that they are not unique. A client could
(e.g., due to a reboot) issue the same sequence number twice. A server could then identify
the particular call as a duplicate and reply with the wrong result. Thus, uniqueness for call
IDs must be ensured. To reliably deliver messages between client and server, most RPC
implementations rely on the TCP/IP protocol stack. However, the RPC protocol adds the
at-most-once semantics on top. This means that a call must be delivered at most once to
avoid unnecessarily executing the same call more than once. Taking the above discussed
namespaces and call IDs into account, the server usually preserves the state of which calls
were already executed. In case of a duplicate call, the server may either ignore it or return
the cached result from the previous call.

SunRPC (or ONC RPC, Open Network Computing RPC, which is the standard developed
by the IETF based on SunRPC) is the implementation used for the Network File System
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Figure 2.9: Comparison of different computing paradigms

(NFS), an application layer protocol to support file systems in local networks. SunRPC
allows implementing Unix system calls to be executed on remote computers. SunRPC uses a
three-layer namespace, where the first layer is the computer’s IP address, the second layer is
a program identifier to identify the remote program on the remote computer and a procedure
number to identify the remote procedure within the remote program. For reliable delivery,
SunRPC implements a protocol on top of UDP that uses acknowledgements. Another well
known RPC implementation is gRPC, which relies on HTTP, TLS and TCP for reliable
data transmission and computer and program identification and the HTTP URI scheme for
hierarchical procedure identification.

2.5 Computing Paradigms

Computing, i.e., to process, to structure, to find and to gather various kinds of information [220]
can be divided into multiple categories, e.g., based on capabilities like available resources or on
locations like centralized clouds or decentralized mobile computing. The latter categorization,
i.e., where the computation is executed, relied for a long time on centralized mainframes that
either executed the processes in batches or in a time-sharing manner. This approach relied on
the capabilities of the mainframe vendors like IBM. With the advent of cloud computing, the
centralized resources were democratized, enabling engineers, developers but also researchers
to have access to nearly unlimited computing resources.

However, despite almost infinite resources, cloud computing suffers from different limitations.
For example, in latency-sensitive applications like mobile augmented reality games, the time
from initializing a process until receiving the result may not be fast enough, introducing
unwanted or even unbearable latencies. Thus, in the recent past, new computing paradigms
emerged to cope with the shortcomings of centralized cloud computing approaches. The new
paradigms aim to bring the computation closer to the end user, i.e., to execute processes
not in the central cloud but on other instances like access points or base stations or even
smartphones and embedded devices, called fog computing, mist computing, mobile cloud
computing, multi-access edge (or mobile edge) computing and edge computing. This section
introduces there paradigms and presents differences between these approaches.
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2.5.1 Cloud Computing

The origins of cloud computing can be traced back to the 1960s, when McCarthy and
Parkhill envisioned computing systems as public utilities [122]. Nowadays, cloud computing
has become the de facto industry norm, with all major Internet companies running their own
platforms and making them available to others. The primary notion behind cloud computing
is that users access their data and associated computations via the Internet on remote
servers that are large-scale, redundant, and scalable. Scalability is defined as the ability to
handle virtually unlimited amounts of work and to add or remove resources on short notice,
also known as elasticity. Scalability is achieved through software-controlled deployment and
removal of computing instances such as virtual servers, as well as the partitioning of data,
configuration, and network- and computing resources so that clients are isolated from each
other. The cloud infrastructure is maintained by the cloud computing provider, who is paid
on a pay-per-use basis by the clients, which, when combined with the above-mentioned
characteristics, allows clients to reduce their operating costs by eliminating the need to
maintain and secure their own infrastructure. In addition, service-oriented architecture, which
consists of a collection of loosely connected, platform-independent, and distributed services
accessed via Internet protocols, plays an essential role. Quality-of-Service (QoS) metrics such
as availability, throughput, latency, and others are defined in service level agreements, which
are contracts between a cloud provider and a client that guarantee a specific level of QoS
and define penalties for noncompliance. Infrastructure-as-a-Service (IaaS), Platform-as-a-
Service (PaaS), and Software-as-a-Service (SaaS) are the three main service models that
have emerged. The IaaS service paradigm connects computing resources such as processing,
storage, and networking. Virtualized resources, or logical entities that are abstracted from
the underlying physical components, are controlled by the client. The PaaS service model
provides a programming and execution environment in which a client can develop and run
software using a provider-defined programming language. Software applications and services
that run in a cloud computing infrastructure, on top of PaaS or IaaS resources, and directly
address a user are referred to as SaaS services. Full-fledged apps are often accessed universally
from a thin client via a web browser. Finally, in cloud computing settings, four administrative
layers are common: public, private, community, and hybrid clouds. The public cloud model
allows service providers and consumers who are not affiliated with the same company to
access services. Private clouds, in contrast to public clouds, provide services to users within
a single enterprise. Nonetheless, cloud infrastructure software is employed to give members
of this organization clean service interfaces. In settings where both public and private cloud
services are utilized, a community cloud provides services for exclusive usage by a specific
community with shared concerns, whereas hybrid clouds are used in scenarios where both
public and private cloud services are used.

2.5.2 Fog Computing and Mist Computing

According to the OpenFog Consortium, the cloud computing paradigm is insufficient to
solve problems arising from the recent IoT developments in 5G [183]. Fog computing is
defined by bringing computing services closer to the user and the devices that create the data
needed for computations [119, 183]. It is a horizontal architecture that distributes processing,
storage, control, and networking resources and services anywhere along the continuum from
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the cloud to end-devices, allowing for faster decision-making. Fog computing addresses a
subset of business challenges that cannot be solved using typical cloud-based architectures
or intelligent edge devices alone. It consists of several layers of fog nodes that are the
architecture’s main components. They can be arranged in vertical or horizontal clusters to
support isolation or federation. Nodes at the edge of the network are often focused on data
generated at the edge of the network, e.g., from mobile devices, sensors, or actuators. Next-tier
nodes filter and transform data while also performing latency-critical analytics. Higher-tier
nodes, located near fog nodes on cloud instances, are often utilized to convert data into
knowledge. Fog computing, in contrast to cloud computing, provides minimal latency due to
its proximity to end-devices and allows for unobtrusive dataflow for specific applications thanks
to interoperating fog nodes and federated services. Furthermore, rather than batch processing,
fog computing relies on real-time interactions. Microservices, which enable more fine-grained
application structures aimed at improving modularity and manageability, are mostly utilized
as a specialization of SOAs in addition to cloud computing. Additionally, similar to cloud
computing, NIST defines three architectural service models for fog nodes (IaaS, PaaS, and
SaaS) and four deployment options (public, private, community, and hybrid). Furthermore,
NIST [119] defines mist computing as an additional layer that makes use of more specialized
and dedicated nodes at the network’s edge that have limited processing resources. Finally,
the cloud-to-end-devices continuum is built in a hierarchical manner. Cloud services are
located in centralized data centers at the network’s core. Figure 2.9a shows the architecture
of fog computing and mist computing. Fog nodes are cloud-connected server clusters such
as cloudlets/micro-datacenters or edge devices such as wireless access points/routers that
are near to the network’s edge. Finally, mist nodes are IoT devices such as sensors/actuators
or edge devices such as switches/routers that execute lightweight operations directly on
sensors/actuators or other network fabric components, especially in industrial applications.
The bottom layer of the hierarchical cloud - end device continuum is made up of mist nodes.

2.5.3 Mobile Cloud Computing

Fog computing brings the cloud to the edge of the network. Nonetheless, Mobile Cloud
Computing (MCC), which, as shown in Figure 2.9a, integrates mobile resources into the cloud
computing paradigm by exploiting scalable cloud resources for mobile devices, arose in parallel
to fog computing with similar goals, but a different strategy [2]. However, MCC flips the
perspective. Fog and mist computing give computing resources close to end users that service
providers can leverage to deploy their services. In MCC, end users or their devices, rather
than service providers, offload local computation to nearby computing resources, e.g., to
preserve local resources like power or data storage, or to take advantage of special functions
that can make execution faster or more accurate. MCC, like fog or mist computing, is viewed
as an extension of cloud computing rather than a replacement. Distance and mobility are
two properties that can be used to categorize resources in MCC. Cloud computing provides
large-scale pools of centralized computer resources over long distances. Proximate computing
entities, such as mini cloud-datacenters near the edge of the network, supplement these distant
computing units. Both cloud resources and resources at the edge of the network are immobile.
To provide additional offloading resources in a mobile way, mobile computing entities in
the form of ad-hoc connected groups of mobile devices are deployed. MCC’s resources, like
those in fog and mist computing, can be organized hierarchically. Mobile phones can offload
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computational and storage intensive tasks to immobile, distant entities represented as public
cloud resources, forming the highest tier. The computation can also be offloaded to immobile
entities in the second layer of the hierarchy closer to the offloading device, depending on
the requirements. Furthermore, in the bottom tier of the hierarchy, services and network
applications can be offloaded to nearby MCC nodes that are made up of mobile, ad-hoc
connected devices. The higher the tier, the more resources for computation and storage are
available, but latency increases and mobility support decreases.

2.5.4 Multi-Access Edge Computing

Both fog (and mist) computing and MCC represent an extension of the cloud. In both
paradigms, different classes of devices with different capabilities and degrees of mobility
provide decentralized resources in addition to the cloud. This changes with multi-access edge
computing (MEC, formerly mobile edge computing). The goal of MEC is also the reduction
of latency and the ability to handle future ever-growing data volumes by placing computing
resources close to end users [1, 188], visualized in Figure 2.9b. However, it is not intended
to extend the cloud but rather to provide an additional option to the cloud. This does not
mean that the cloud will be replaced entirely, but that certain applications that rely on the
benefits of MEC will run on the MEC infrastructure. Nevertheless, the cloud can be used
as a fallback if no MEC infrastructure is available or the capacities are not sufficient. MEC
provides storage and computation resources at the edge of the network, i.e., at base stations
or small-scale servers called cloudlets. Application providers can offload processes to compute
nodes that are usually located in a one-hop distance to their users. Finally, ETSI [188] defined
requirements that have to be met in order to be able to fulfil the promises of MEC. These
requirements include functional (e.g., requests have to be finished within a defined time
frame) and non-functional aspects (e.g., the ability of transparently relocating the execution
between the MEC and the central cloud). The design of the MEC concept is mainly driven
by the ETSI and telecommunication providers, especially for 5G networks.

2.5.5 Edge Computing

Edge computing combines parts of all presented paradigms [129, 130]. Figure 2.9b shows edge
computing in the networking and compute stack. Similar to MEC but unlike fog computing
and MCC, edge computing is not designed as an extension of but an alternative to the cloud
to improve the quality of certain applications or to enable novel applications. In contrast to
MEC, edge computing is not limited to the infrastructure of telecommunications companies
at the edge of the network, such as base stations or access points, but, like fog computing
and MCC, also integrates end devices and embedded systems as compute nodes. Finally, edge
computing not only places services of service providers on decentralized infrastructure that
can be used by users, as is the case with Fog computing, but end devices can also offload
local functionality to other edge devices, similar to MCC. Edge computing thus represents
the most universal approach. Even if not all aspects of the other paradigms are implemented,
which means that all the approaches presented, i.e., Fog Computing, MCC, MEC, and Edge
Computing, are widespread used.
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2.6 Transitions

The concept of transitions originated from the area of communication networks and was
developed by the Collaborative Research Center Multi-Mechanism Adaption for the Future
Internet (MAKI), funded by the German National Science Foundation [10, 90]. In the recent
past, however, the concept was also applied to computation transitions [105]. The goal of
transitions is to maintain or even increase the quality of a service, network connection or other
parts of a system by replacing one mechanism with another and thus in response or even
proactively to changing environmental conditions. A simple example would be a handover
between Wi-Fi and LTE without interrupting connections to maintain a high-quality Internet
connection. This section will first introduce the ideas of mechanisms and multi-mechanisms
and then discuss mechanism transitions.

2.6.1 Mechanisms and Mechanism Transitions

Transition, regardless whether in networks or computations, rely on the notion of mechanisms.
A mechanism is a system’s conceptual element that is tied to its manifestation as a system
of collaborating functional elements. Thereby, mechanisms can be found in many areas of a
system, e.g., a particular layer of the OSI model or specific functionality that is only provided
by certain protocols of a specific layer (e.g., reliable data transfer in the transport layer as
supported by TCP). Furthermore, a mechanism can be a functional part of a network protocol
like the routing algorithm of the network layer. And mechanisms can also be functions or
procedures that are executed remotely.

“A mechanism transition is the functional replacement of a source mechanism by a functionally
similar or equivalent target mechanism in a running system” [90]. This implies that the
mechanisms used to transition between are designed in a way that makes them exchangeable.
An example would be TCP/TLS and QUIC as two mechanisms. Both are transport layer
protocols with respect to the OSI layer and both provide the same basic functionality, i.e.,
reliable and secure data transfer between two processes running on different networked
computers. Exchanging TCP with QUIC (or vice versa) due to changes in the environment
(e.g., changed requirements with respect to bandwidth and latency, as QUIC achieves better
latency and TCP better bandwidth utilization) in a running system, i.e., at runtime without
stopping the system or processes on the system, is called a transition.

2.6.2 Multi-Mechanisms

A multi-mechanism contains multiple mechanisms that are similar but achieve their best
results in different environmental conditions, and the transitions between them. Figure 2.10
[105] shows three arbitrary OSI layers, in this example the MAC, network, and layer. Each
layer shows two different mechanisms with transitions between them. On the PHY layer, the
mechanisms are the BPSK and 64QAM modulation algorithms, on the network layer IPv4 and
IPv6, and on the transport layer the mechanisms are TCP and QUIC. In either example, the
mechanism provide the same functionality, i.e., reliable data transmission for the transport
layer, network routing for the network layer, and data modulation for the PHY layer, but for
different scenarios and environmental conditions.
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Figure 2.10: Exemplary multi-mechanisms in a communication system [105]

The same concept can also be applied to transitional computing, which is a computing
paradigm that introduces new transition types that can be paired with existing transition
types to extend the scope of mechanism transitions to a distributed computing system.
Graubner [105] defines three different transitions with respect to computing: (i) transitions
between locations, (ii) transitions between implementations and (iii) transitions between
modes. Services and functionalities can be applied on different virtual or physical hosts in a
distributed system. An example for transitions between locations is the relocation of a service
between clouds in different geographical areas. Transitions between implementations provide
functionally similar implementations of particular algorithms and their transitions. For example,
face detection algorithms with different accuracies and runtime properties (e.g., less acurate
but more efficient versus more accurate and less efficient) and transitions between them
for changing scenarios can be considered as a transition between implementations. Finally,
transitions between modes provide transitions between different software- and hardware layers
within the same system.
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2.7 Summary

This chapter introduced fundamental concepts, technologies, and terms. Different aspects of
communication networks, two major network access technologies and fundamentals regarding
the concept of the Internet of Things were discussed. Programming and data analysis
concepts and the concept of transitions was presented. Each of these topics are essential for
the upcoming chapters, since they are the building-blocks of many contributions throughout
this thesis.
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Situation-aware Edge Computing

In this chapter, the novel concept of situation-aware edge computing is presented. First,
the terms situation and situation-awareness are introduced and defined in Section 3.1. The
first subsection introduces situations as they are understood in the literature, followed by
our own definition of situations. Two examples are presented to illustrate what situation
means, followed by a paragraph that makes the differences between situation and context
clear. The second subsection of Section 3.1 introduces the concept of situation-awareness
and gives a definition that is used throughout this thesis. After that, a three-level approach
to achieve situation-awareness is presented. This is followed by a clear distinction between
situation-awareness and context-awareness.

Section 3.2 introduces edge computing, followed by defining the three relevant sub-areas
infrastructure edge, device edge, and embedded edge. Finally, the remaining chapters of this
thesis are categorized into the three presented sub-areas.

Section 3.3 formulates challenges for situation-aware edge computing, phrases open questions,
and presents how situation-aware edge computing can be achieved and used for various
applications. To achieve situation-aware edge computing, it is broken down into the concepts
of situation-aware infrastructure edge computing, situation-aware device edge computing
and situation-aware embedded edge computing. Within these areas, unique challenges and
open questions are identified, whereas in the last subsection the approaches in this thesis are
introduced together with a brief explanation about how these approaches contributed to the
overall goal of situation-aware edge computing.

3.1 Situation and Situation-awareness

Situation-awareness originates from cognitive science, the interdisciplinary study of human
mind processes. In the recent past, however, situation-awareness played an important role in
the operation of complex non-human systems. Operators of such systems, but with respect to
this thesis also the systems themselves, have to extract essential environmental information
for their domain, rely on the derived knowledge of their environment, and project future
process state changes. According to Endsley, system control can not be effective without this
understanding and projection [76]. To achieve situation-awareness, the term situation must
first be defined and clearly distinguished from the concept of context.
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3.1.1 Situation

The term situation has many meanings in everyday use. On the one hand, it describes the
environment in which one finds oneself, but also means spatial or temporal circumstances of
an entity, i.e., persons or objects. In the literature, different definitions of situation can be
found. For example, Abowed et al. define situation as the state that a system is in. This state
contains all information that is required to characterize the situation [3]. Hossain et al. define
a situation as a set of information and their conditions that exist at a particular time and that
are important to the current application [115]. Meissen et al. view a situation as the semantic
interpretation of perceived information [165], Ye et al. define a situation as a higher-level and
domain relevant concept as a result of the interpretation of the perceived information [268].
Preden et al. use the term situation parameters for such information [196].

Definition

All of these definitions have in common that they are building on information that is perceivable.
Further, a situation is domain or application specific and is an interpretation specific for
the given entity, i.e., a situation may not be the same for different entities, although the
surrounding information might be. Another important aspect for a situation is its time-
dependency, i.e., a situation is only valid for a given time, although the situation might be
the same in the upcoming time periods.

The term situation is defined as follows in the scope of this thesis:

Definition 3.1.1: Situation

A situation is the state of an entity that is based on perceivable information, valid for
a given time in a specific domain or application, and interpreted for the given domain.

Figure 3.1 visualizes the term situation in relation to information, denoted as context. A
situation is derived from the perceived spatial, temporal, and environmental information, but
also from other information sources.
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Example

Consider the example of an emergency, such as a natural disaster. During a disaster, a large
body of information is available. Early warning systems might have sounded the alarm, various
images are available like satellite imagery or pictures provided by affected people, authorities
provide evaluations and forecasts of upcoming events such as floods or buildings in danger of
collapse, or up-to-the-minute reports from rescue helpers on site. Different rescue helpers
like firefighters, medical helpers or security forces have all the same information regarding
the disaster. All this information is perceived by mission control personnel from the different
areas (i.e., the respective heads of the firefighters, medical helpers and security forces) and
interpreted. The interpretation, i.e., the derived state from the information is then called
situation. Since a situation is domain-specific, or in this example specific for each area of
rescue helpers, firefighters, medical helpers and security forces derive a different situation.
The situation of firefighters describes the number, size, and spread of fires, while the situation
of medical helpers revolves around the number and extent of injured people in the crisis
area. All rescue helpers might have the same information available regarding the natural
disaster that occurred and its effects, but the derived situation is specific to their own domain.
Another example in the edge computing domain is a user’s situation of leaving their home. In
this situation the user’s smartphone is about to lose the Wi-Fi connection so that a vertical
handover to a cellular connection is required. The available information here is for example
the received signal strength of the Wi-Fi connection, the sensor readings from the device’s
accelerometer and the device’s state like whether headphones are connected. This information
is comprehended and the user’s situation is interpreted during the comprehension, i.e., when
the user is about to leave home.

Distinction of Situation and Context

In the introduction of this Subsection 3.1.1, it was mentioned that the term situation has
different meanings in everyday usage. One of these meanings may be the synonymous use of
the terms situation and context. However, it is important to note that in the literature, but
of course also for this thesis, these two terms are not interchangeable, but indicate different
concepts. Context denotes all the information surrounding a situation, as shown in Figure 3.1.
Thus, it is possible that the same context might result in different situations for different
entities. Firefighters and medical helpers might have the same information regarding the
natural disaster that occurred, but their respective situation is different. Therefore, a situation
is the continuation of context. If the context is perceived and a higher-level, domain-relevant
concept is derived, this derivation is called situation. Further, the context, i.e., the surrounding
information, is not a singular state but a continuous stream of information, whereas the
situation is the state that follows the interpretation of the entity. To conclude, a situation is a
distillation of the context, i.e., the result of the analysis of contextual information important
for the domain and the application at a given time.

3.1.2 Situation-awareness

The term situation-awareness originates from cognitive science, the interdisciplinary study
of the mind of humans, i.e., cognition, intelligence, and behavior. It involves psychology,
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neuroscience, anthropology, and philosophy to how the human mind works. [242]. Thagard
defines situation-awareness as “[...] understanding, of a dynamic environment” [242] and
further “as a system of cognitive processes” (Durso et al. [71]). To achieve situation-awareness,
it is required to perceive information and to integrate derived semantic information to form a
representation of a situation [71].

In the recent past, the concept of situation-awareness was adopted in various fields of computer
science. For example, in the security domain it is used to build secure IoT applications [278],
detect network attacks [57, 117, 187] or authenticate devices in a local network [261]. Further,
situation-awareness is used in emergency response applications [133], autonomous driving [171]
and aviation [181] or UAV environments [14, 157].

Furthermore, military researchers applied situation-awareness in their field. Endsley [75]
encountered that pilots of combat aircraft used their own mental situation-awareness model.
She proposed important considerations to design aircraft that support the pilot’s situation-
awareness. Endsley proposed a three-level approach, perception, comprehension, and projection
that is widely accepted among researchers in various fields [75]. In the remainder of this thesis,
these three levels are used to achieve situation-aware edge computing, with an additional step,
coping with incomplete information, added later in this section and visualized in Figure 3.1.

Perception First, environmental information has to be perceived to achieve situation-
awareness. Analogous to Definition 3.1.1, perception means recognizing information in the
current environment. This can be any information to characterize a situation, i.e., the context
in which the situation occurs.

Comprehension The second level in achieving situation-awareness is comprehension. Here,
the perceived information is to be synthesized into higher-level concepts that define the current
situation. The synthesis is achieved by analyzing and evaluating the perceived information
collected in the first level, perception. The goal of comprehension is to give a comprehensive
understanding of the situation. At this point, a situation-aware system does not deal with
context information anymore but with situations.

Projection The last of the three levels is projection, i.e., predicting the situation in the near
future. This step is essential in the decision-making process, which is the ultimate goal in
achieving situation-awareness. It means that based on the current situation, the situation in
the near future can be projected so that it can be decided what actions or steps have to be
executed based on the goal of the system or application. This can also be seen in Figure 3.1,
where the projection is leading to a decision that in turn triggers an action.

Incomplete Information One major missing point in the literature is the question of
how to deal with incomplete information. Here, incomplete information can not only mean
that information is missing, but also that information is inaccurate or uncertain, e.g., from
untrusted parties, faulty sensors or inaccurate measurements. Moreover, the problem of
incomplete information does not only concern, as one might misunderstand, the aspect of
perception. Incomplete information can lead to a wrong or only incomplete comprehension of
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the situation being obtained, which in turn can lead to wrong projections and thus to wrong
or non-optimal decisions. Therefore, it is essential to incorporate incomplete information in
the above presented three-level approach to achieve situation-awareness, which is proposed
as a fourth level in this thesis (cf., Figure 3.1).

Definition

Based on the definitions from the literature and the above presented four levels to achieve
situation-awareness, situation-awareness in this thesis is defined as follows:

Definition 3.1.2: Situation-awareness

Situation-awareness is the process of perceiving information in time and space, com-
prehending the information to derive a situation, and projecting future situations.

In simple words, situation-awareness is about understanding what is going on, so the system
can decide what to do. It is important to understand that a triggered action results in changing
the context so that it is crucial to apply these three steps continuously.

Distinction of Situation-awareness and Context-awareness

Similar to the distinction of situation and context, the difference of situation-awareness and
context-awareness is of equal importance. As described in Subsection 3.1.1, context refers
to all information surrounding an entity, whereas situation is the state of the entity that
is derived from the context. The same distinction has to be made for situation-awareness
and context awareness. Context-awareness can be defined as the awareness of every piece
of information in a specific environment. Situation-awareness, on the other hand, is to
be aware of information relevant for the domain and its interpretation. Context-awareness
is the knowledge about the environment, situation-awareness is the understanding of the
environment. Considering the natural disaster example from above, context-awareness would
be the affected persons’ awareness of all information available in the emergency, although it
might not be relevant for their domain, such as information regarding a flood in another part
of the city. Situation-awareness is the awareness of the derived state from domain-relevant
information, such as size and spread of fires in the affected disaster area.

3.2 Edge Computing

Section 2.5 introduced the concept of edge computing as a paradigm that enables data
processing and storage to be decentralized and provides an alternative to cloud computing.
A wide variety of hardware, execution environments, and degrees of decentralization are
united under a single concept. This heterogeneity and its challenges require the field of edge
computing to be considered in a more fine-grained way to be able to develop optimal solutions
and approaches in the area of situation-aware edge computing. Therefore, this section defines
the terms infrastructure edge, device edge, and embedded edge. Figure 3.2 visualizes the
hierarchical organization, the location in the stack of edge computing of the three different
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Figure 3.2: Hierarchical structure of edge computing locations

areas and how they are connected to each other. To the left of Figure 3.2, the chapters of
the remainder of this thesis are grouped into the respective levels to which they make a
significant contribution.

3.2.1 Infrastructure Edge

The infrastructure edge (blue layer in Figure 3.2) is mainly driven by telecommunication
providers. By providing storage and computation resources at the edge of the network, i.e., at
base stations or small-scale servers called cloudlets, application providers can place processes
on compute nodes that are usually located in a one-hop distance to their users instead of
the cloud. These facilities achieve low latencies due to the proximity to users. Furthermore,
they are equipped with decent computing capabilities making it possible to execute rather
complex computations.

Definition 3.2.1: Infrastructure Edge

Infrastructure edge refers to small-scale compute facilities located on or near infras-
tructure at the edge of the network provided by infrastructure providers. Examples
are base stations or small-scale servers. They have sufficient power supply and rather
decent computing and storage capabilities, but they significantly more limited than a
central cloud infrastructure. For the remainder of this thesis, compute facilities at the
edge of the network will be called infrastructure devices.
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3.2 Edge Computing

3.2.2 Device Edge

The device edge (represented as the green layer in Figure 3.2) incorporates mobile devices
like mobile phones or notebooks as compute resources. This makes it possible to execute
processeses in local networks without relying on infrastructures of telecommunication or
cloud providers. Although this facilitates novel applications and supports decentralized
computing approaches, devices used for device edges are often faced with hurdles not found
in infrastructure edge environments. These mobile devices are often constrained in terms of
computational power as they are usually mobile phones or other small computers. Further,
in many cases, the devices used for device edge computing are battery powered and have a
limited power supply. Thus, applications using capabilities of such devices have to take these
restrictions into account and handle them accordingly. In contrast to infrastructure edge,
providers of services are usually not involved on the area of device edge, but devices either
offload processes to other devices or execute them locally. Processes are rarely offloaded to
infrastructure devices or the central cloud.

Definition 3.2.2: Device Edge

Device edge refers to mobile devices like smartphones as computing devices (mobile
devices from now on) used in local networks for processes execution. These devices
are often constrained in computational power, storage, and power supply.

3.2.3 Embedded Edge

With the advent of the Internet of Things (IoT) paradigm and corresponding devices like
sensors and embedded systems, the amount of data produced within local networks increased
significantly. This introduced additional burdens on the network’s backend and central cloud
infrastructure. However, much of the produced data like readings from sensors are not
necessarily required by the end user applications as they are more interested in information
derived from the data. For example, a user might not be interested in the raw values of a
gas sensor but only in the air quality index derived from the gas values. The embedded edge
paradigm (purple layer in Figure 3.2) is a way to facilitate computations on IoT- and embedded
devices so that only preprocessed and aggregated information are consumed by the user or
sent to upper layers of the computation stack. Although embedded systems may be equipped
with sufficient power supply, they are in general very limited in terms of computational power
and available storage. Thus, the embedded edge is quite resource-constraint and only able to
execute specific applications.

Definition 3.2.3: Embedded Edge

Embedded edge refers to IoT devices and embedded systems as computing devices
(embedded devices from now on) usually used to preprocess and aggregate sensor
readings directly on the embedded device itself. Embedded devices often have sufficient
power supply but only very limited computation power and storage abilities.
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Table 3.1: Overview of different computing paradigms

Feature Cloud Infrastructure Edge Device Edge Embedded Edge

Operator IT companies
Telecommunication

providers

IT companies,
private entities,

individuals

Hardware Large-scale servers
Base stations,

small-scale servers
End user devices,

mobile devices

End user devices,
IoT devices,

embedded systems

Architecture Central
Decentralized,

distributed,
hierarchically organized

Mobility No Yes

Latency

Power Supply

Computation

Storage

3.2.4 Overview, Comparison, and Integration

The term edge computing summarizes the approaches of infrastructure edge, device edge
and embedded edge. It is used to distinguish centralized cloud approaches from decentralized
computation facilities, even though infrastructure edge, device edge and embedded edge
describe different computing layer in the domain of edge computing. Table 3.1 gives an
overview of the different layers. In summary, infrastructure edge describes compute facilities
that are operated by telecommunication providers at the edge of the network on devices
like base stations or small-scale servers. They offer virtually unlimited power supply, whereas
computation and storage are more limited compared to cloud computing. Device edge refers
to decentralized approaches operated by IT companies, private entities or individuals beyond
the edge of the network like smartphones. They are mobile, have low latency, whereas power
supply, computation and storage capabilities are limited. Finally, embedded edge describes
approaches where devices like IoT- or embedded systems are organized in a decentralized
manner and operated by the same categories of providers like device edge. They support
mobility and achieve low latency. Power supply and computation capabilities are very limited,
and storage is often not available at all. Finally, in contrast to edge computing, cloud
computing facilities are operated by IT companies in the network core and are usually centrally
organized large-scale servers with no mobility support. They offer virtually unlimited power,
computation and storage, at the cost of high latencies.

The works this thesis is based on are categorized according to the above definitions:

Infrastructure Edge The proposed Multi-Stakeholder Bargaining approach in Section 4.2
copes with incomplete information for placing services on cloudlets, i.e., compute hardware
operated by telecommunication providers, to reduce operating costs. Thus, it is located in
the area of infrastructure edge. Predicting In-Game Actions (cf., Section 4.3) addresses the
area of infrastructure edge, as it also aims to comprehend when and why users play mobile
AR games to find suitable cloudlet locations.
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Device Edge OPPLOAD, presented in Section 5.2, operate on smartphones and is used
in opportunistic networks, which is centered around the device edge paradigm. Seamless
Handovers to predict when users are going to lose their Wi-Fi connection, as discussed in
Section 5.3, to proactively hand over to a cellular connection like LTE are performed on
smartphones. Thus, they are located in the device edge.

Embedded Edge ReactiFi (cf., Section 6.2) is a novel programming language based on
the reactive programming paradigm. It enables embedded devices within off-the-shelf end
user devices to perceive PHY and MAC layer information and to comprehend the situation.
Multimodal CEP, presented in Section 6.3 executes CEP queries on different modes, i.e.,
execution environments such as coprocessors and embedded systems in off-the-shelf end user
devices. These two approaches are in the embedded edge area.

3.3 Design

For situation-aware edge computing, several challenges have to be overcome, and open
questions have to be answered. All three areas of edge computing, i.e., infrastructure edge,
device edge and embedded edge have their own set of hurdles. For example, in the area of
infrastructure edge economic considerations have to be taken into account. For the device
edge, it has to be discussed how to cope with the heterogeneity mobile devices. The area of
embedded edge needs an appropriate programming paradigm for achieving situation-awareness.
Therefore, the remainder of this section separately identifies the challenges of all three areas
with respect to situation-awareness and formulates open research questions and answers that
are essential for addressing these challenges.

3.3.1 Situation-aware Infrastructure Edge Computing

Challenges The challenges in infrastructure edge computing is categorized into two areas.
First, technical considerations and second economic and corporate policy aspects.

The technical issues are widely solved and well researched, since the ideas of edge computing
can be dated back to the 1990s. Further, the ETSI started a standardization process to define
the technical aspects of edge computing, culminating in multi-access edge computing, as
described in Subsection 2.5.4. For example, the computing platforms (i.e., infrastructure
devices) are centered around a so-called application servers, that are either realized as a
virtual machine or containers integrated into cellular networks and offer computing resources,
storage capacity and access to the radio network. The cellular network should then be opened,
e.g., using APIs, for third-party service providers so that they can deploy their services. Finally,
the servers should be either located directly at the base station (e.g., the e-NodeB in LTE
networks) or at other locations that are in proximity of the base station.

The second challenging area of infrastructure edge computing, economic and business aspects,
are almost unexplored. The first challenge in this area is how to decide where to place the
service, i.e., how to decide which of the countless infrastructure devices should be used.
Or maybe the service providers should use all available infrastructure devices at the same
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time? Although this challenge is tackled in the literature from the technical perspective,
it is still largely unclear how to deal with this issue from an economic perspective. The
Internet consists of multiple stakeholders, i.e., parties (mostly companies) that operate the
Internet. These stakeholders, mainly infrastructure providers (IPs, i.e, companies operating
the infrastructure devices) and service providers (SPs, i.e., companies offering services to
users), are usually companies that have economic requirements, constraints and goals. With
situation-awareness, SPs can find infrastructure devices that fulfill their requirements and
have the potential to be financially lucrative. Another open challenge is about how IPs and
SPs should find an agreement with respect to the price the SP should pay for using an
infrastructure device. As noted, both IP and SP are companies that are unable or not willing
to reveal all required information to the respective other stakeholder that is required to agree
on a price, because, for example, the corresponding valuation of the other stakeholder is not
known. Here, again, situation-awareness plays a crucial role because based on a plethora
of contextual information like public price lists of competitors or environmental information
(e.g., weather), the stakeholders can project their future situation with respect to where users
will likely use the service and make economic decisions based on their situation.

Open Research Questions

• How can IPs and SPs achieve situation-awareness without relying on their mutual
proprietary information?

• Which environmental information can be perceived and used to comprehend a situation
with respect as to where users are using a service to find suitable infrastructure devices
to place services on?

• How can both providers comprehend their situations without knowing their mutual
valuation of the infrastructure device?

• Based on the perceived information, how can the service provider comprehend its
situation with respect to where and how users use its service?

• How can IPs and SPs find an agreement regarding the price of placing a service on
infrastructure devices with incomplete information?

• Can both providers reliably project their future situation with respect to their cost
reduction albeit both have to cope with incomplete information?

• How accurate can the service provider project the service usage for particular infras-
tructure devices?

• How can the IP and SP make confident decisions on which infrastructure devices to
place a service on, if they both have to cope with incomplete information?

• Are the placement decisions accurate with respect to the projected service usage
situation from the service providers’ view?

Chapter 4 will address the challenges and open questions separated into two approaches,
Multi-Stakeholder Bargaining dealing with incomplete information and its effects from the
IP’s and SP’s view and Predicting In-Game Actions for the questions regarding the service
provider view dealing with users.
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3.3.2 Situation-aware Device Edge Computing

Challenges In the area of device edge computing, two main challenges have to be addressed.
The first one is about how off-the-shelf end user devices like smartphones can be used as
devices for executing processes. The second challenge is dealing with device mobility, more
specifically intermittent connections and unpredictable disconnections both between mobile
devices and cellular networks but also between the mobile devices themselves.

Regarding the first challenging area, it is, for example, unclear how to decide which surrounding
mobile devices are suitable for computations. In scenarios where the device edge computing
paradigm is beneficial (e.g., for emergency response), it would be counter-productive to
use mobile devices that are not able to compute a given process. This can lead to either
overloading the chosen mobile device or to at least using a non-optimal mobile device.
Thus, the goals of device edge computing, i.e., executing processes faster or more efficiently
than executing it locally, would not be achieved. Further, another crucial part is resource
preservation. As was identified in Section 3.2.2, devices in device edge are usually mobile
devices like smartphones, laptops but also drones, for example. What they all have in common
is that they are usually battery powered, i.e., their amount of energy is limited. Thus, it is
important to preserve as much energy as possible. Here, situation-awareness helps to identify
suitable mobile devices. The problem, however, is that it is not possible to reliably determine
by perceiving environmental information whether a mobile device has sufficient computation
or memory resources, or how much energy is available so that a strategy is required to
cope with this incomplete information. Finally, mobile devices are highly heterogeneous. For
example, they are using different operating systems (iOS, Android, Linux, etc.), different
CPU architectures (x86, ARM, 32 Bit, 64 Bit, etc.) and have different hardware components
(GPUs, coprocessors, DPSs, etc.). Thus, a generic and situation-aware execution environment
is necessary to empower nodes to serve as devices for device edge computing.

The second question imposes challenges regarding the connectivity of mobile devices and
how to cope with the mobile devices’ mobility and intermittent connections. If a process
is offloaded to another mobile device and the connection between the devices is disrupted,
it might not be possible to return the result of the process back to the offloading mobile
device. Thus, it is crucial to detect possible connection losses in advance in order to be able
to take precautions in time, such as setting up a second connection in parallel that does
not drop out because it uses a different wireless technology. To do so, a situation-aware
approach can contribute essentially by comprehending the local mobile device’s situation
and project the future connection situation, i.e., whether the connection is lost or not. In
addition, another way to deal with connection interruptions is to use network protocols and
technologies that go beyond the regular TCP/IP stack. Opportunistic- and disruption-tolerant
networks should be mentioned here in particular, since these two technologies are especially
suitable for challenging networks due to their network topology on the one hand and the use
of unconventional application layer protocols on the other. With situation-awareness, it is
possible to use mobile devices for offloading processes onto where the likelihood of getting a
result is maximized despite a high mobility of devices.
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Open Research Questions

• How can a mobile device be identified as suitable, if the perception of environmental
information is not sufficient?

• How can mobile devices announce their capabilities in an efficient yet effective manner
so that they can be identified as suitable?

• Which perceived information of a device can be used to comprehend the connection
situation?

• What identifies a device as suitable so that the projection of the future situation can
reject unsuitable mobile devices?

• How can the situation of a device with respect to the connection situation be compre-
hended accurately?

• How can the projection identify the most suitable mobile device to offload a process to?
• Which model can confidently project the future connection loss based on the compre-

hended connection situation?
• How can the situation with respect to resource usage and energy depletion of mobile

devices be projected?
• What is the decision basis for offloading a process if resource utilization can not be

projected correctly?
• Based on the projected connection situation, which action is suitable to cope with the

situation of connection loss?

Challenges and open questions regarding situation-aware device edge computing will be
addressed in Chapter 5. OPPLOAD deals with the questions with respect to identifying
suitable mobile devices, whereas Seamless Handovers uses situation-awareness to project if a
mobile device will lose its connection.

3.3.3 Situation-aware Embedded Edge Computing

Challenges In the field of embedded edge computing, the challenges are not in the areas
of economic or corporate politics, since here several independent companies do not have to
negotiate for a price and usage, as is the case with infrastructure edge computing. Furthermore,
it is not necessary to run arbitrary processes on heterogeneous devices that also only have a
finite energy capacity and are highly mobile, as is the case with device edge computing. The
challenges in the area of embedded edge computing are primarily that common programming
and data analysis approaches are built on programming paradigms that are not appropriate
for the goal they try to achieve. The main application areas of embedded edge computing
are either sensor networks, where data is aggregated and preprocessed, or general-purpose
computations of small processes like in the area of IoT. What both application areas have in
common, however, is that they are event- and data-driven. But the predominant programming
paradigms for embedded edge computing are imperative and procedural (especially the C
programming language), which requires a lot of callbacks, data references, and opaque call
graphs to process the incoming events and data streams. The use of inappropriate languages
makes these systems error-prone and unreliable, which gets in the way of easy-to-implement,
situation-aware, embedded edge computing. It is also important that not every area of
embedded edge computing should apply the same programming paradigm. Depending on the
use case, two paradigms are well-suited for particular tasks.
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The first one is complex event processing (CEP). CEP is suitable, for example, for scenarios in
which a data stream has to be aggregated or preprocessed like it is the case in sensor networks
or similar applications. The second paradigm is reactive programming, a paradigm that enables
developers to implement general-purpose computations that are centered around processing
data streams. Reactive programming is especially useful whenever arbitrary general-purpose
computations should be implemented that rely on analyzing and processing of continuous
data streams. These paradigms and the concrete implementations should be able to support
situation-aware embedded edge computing in the first place. For example, it should be
easily possible to perceive various, application specific, environmental information and add
functionality that supports the comprehension of the situation like filtering data or aggregating
multiple data streams. Further, the projection should also be supported so that decisions
can be made about which action to execute. Additionally, it should be possible to actually
execute actions based on the projection.

Open Research Questions

• How can interfaces be defined that support the perception of information that arrives
as a stream of data for CEP?

• How can reactive programming be used to perceive environmental information?
• Which aggregations are required to allow situation comprehension using CEP?
• Which language primitives have to be supported for comprehending situations in the

area of reactive programming?
• How can CEP support the projection of future situations to achieve situation-awareness

on embedded devices?
• Which projection functionality can be supported on embedded devices to aid developers

in making decisions based on the reactive programming paradigm?

In Chapter 6, the open questions and challenges of situation-aware embedded edge comput-
ing will be addressed. ReactiFi introduces a programming language following the reactive
programming paradigm enables developers to implement situation-aware applications on
embedded devices. Multimodal CEP presents a CEP approach supporting situation-aware
embedded edge computing in sensor networks or areas using embedded devices.

3.3.4 Situation-aware Edge Computing

To fully achieve situation-aware edge computing, the above presented challenges have to
be addressed and the open research questions to be answered. Therefore, Table 3.2 lists
the different approaches examined in this thesis, structured according to the three areas of
Situation-aware Infrastructure Edge Computing, Situation-aware Device Edge Computing,
and Situation-aware Embedded Edge Computing.

3.4 Summary

This chapter introduced the novel concept of situation-aware edge computing. The terms
situation and situation-aware were defined, followed by the definitions and classifications of
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Table 3.2: Contributions to situation-aware edge computing

Situation-aware Infrastructure Edge Computing
Multi-Stakeholder Bargaining An approach where situation-awareness supports the eco-

nomic decision about which infrastructure devices a service
should be placed on despite incomplete information.

Predicting In-Game Actions Using situation-awareness to decide where to place services
based on where users use services.

Situation-aware Device Edge Computing
OPPLOAD Suitable mobile devices to execute a process are identified

using situation-awareness by perceiving information an-
nounced by mobile devices, comprehending their situation
and projecting the future situation with respect to the best
suitable device for the given process.

Seamless Handovers This approach uses the situation of a mobile device to
project whether the connection will be lost or not. De-
pending on the projection, a second connection using an
alternative cellular network is established.

Situation-aware Embedded Edge Computing
ReactiFi An approach that proposes a reactive programming lan-

guage that enables developers to implement situation-
aware applications on embedded devices.

Multimodal CEP Introducing a CEP approach that supports situation-aware
and event based applications for embedded devices.

the concepts of infrastructure edge, device edge and embedded edge.

Afterwards, the concept of situation-aware edge computing was broken into three parts:

• situation-aware infrastructure edge computing,
• situation-aware device edge computing, and
• situation-aware embedded edge computing.

While the technical aspects of situation-aware infrastructure edge computing are largely
researched, the economic and business policy aspects are not. In the area of situation-aware
device edge computing, it has to be investigated how to identify suitable mobile devices using
the concept of situation-awareness and how to project their future situation with respect
to the connection state, i.e., if the connection of a mobile device is about to break. Finally,
for embedded edge computing, new programming paradigms have to be applied to support
developers to implement situation-aware applications on embedded devices. The proposed
approaches to address these challenges are presented in Table 3.2.
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4
Situation-aware Infrastructure Edge

Computing

This chapter presents two approaches using situation-awareness in the area of infrastructure
edge computing. Section 4.1 motivates the use of situation-aware infrastructure edge comput-
ing, while Section 4.2 shows an approach where situation-awareness aids to support economic
decisions about where to place services on infrastructure devices. The focus of this approach
is on dealing with incomplete information during placement decisions. Section 4.3 presents a
method that uses situation-awareness to comprehend the service provider’s situation with
respect to where users use services to decide on which infrastructure devices a service should
be placed. Section 4.4 concludes this chapter.

Parts of this chapter have been published previously [81, 236].

4.1 Motivation

In infrastructure edge computing environments, service providers deploy their services on
infrastructure devices, such as small-scale servers operated by telecommunication providers,
at the edge of the network. Such infrastructure devices operate in the proximity of users to
improve service quality, to reduce latency, and to increase throughput [159, 224], but also
to reduce the service providers’ operational cost [253], since the amount of communication
from the edge through the network core can be reduced, e.g., in online gaming contexts up
to 95% [253]. Decision-making regarding which infrastructure device should be used to place
a service on is significantly improved. The novel approach of situation-aware infrastructure
edge computing enables stakeholders of the Internet, i.e., companies and institutions offering
services, providing compute and storage resources, and operating networks, to make economic
decisions using their situations, which are built on information of their users, of other
stakeholders, and also of themselves. The decision about where a service should be placed
depends on information of infrastructure- and service providers, but also on information of
the users’ of the service. Furthermore, as the stakeholders of the Internet are independent
entities, they have to cope with incomplete information, e.g., because companies are not
willing or able to share their private information with other companies.

Figure 4.1 depicts an infrastructure edge computing environment, where a service provider
wants to place its service in an economic reasonable manner. Thus, the service provider has
to be aware of its situation with respect to (i) how much the usage of infrastructure devices
will cost and (ii) when and where its users will use the service. For (i), the service provider
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Figure 4.1: Situation-aware infrastructure edge computing

perceives information of the provider of the infrastructure device, called infrastructure provider,
with respect to the valuation of the infrastructure device. Since the infrastructure provider is
not able or willing to tell its valuation, the service provider relies on secondary information like
public price lists of competitors or companies offering similar compute infrastructures. Based
on the perceived information, the service provider comprehends the infrastructure provider’s
valuation and can project the cost incurred by using the infrastructure device. However, to
fully project the cost for using an infrastructure device, the service provider has to know how
many users will use its service. Therefore, the service provider additionally has to perceive
information of the end users and comprehend their situation, to project when and where users
use the service, which corresponds to part (ii). Based on both situations, the service provider
decides where to place a service and triggers the corresponding action. The service can either
be placed in the cloud, e.g., in the case where the infrastructure devices are too expensive,
or on the infrastructure devices otherwise. If an infrastructure device should be used, the
service provider also decides on which of the available devices the service should be placed.
In Figure 4.1, the dashed arrows indicate possible targets of the placement, although the
service provider chose the infrastructure device with the solid arrow. Finally, the placement
influences information so that the entire procedure will be evaluated periodically.
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4.2 Multi-Stakeholder Service Placement via Iterative
Bargaining with Incomplete Information

To achieve the goals of improved service quality and reduced cost, the use of cloudlets has
been proposed [210], which are small-scale datacenters located at the edge of the Internet
in one-hop proximity to users. In this section, the following stakeholders of the Internet are
considered: (i) infrastructure provider (IP), (ii) service provider (SP), (iii) cloud provider, and
(iv) users. The IP (e.g., AT&T, Vodafone, etc.) owns and operates wireless access networks
consisting of base stations (BSs), the network backend, as well as the infrastructure devices
such as cloudlets. The SP (e.g., Netflix, Niantic, etc.) offers a service, such as a mobile AR
game or a high-quality video stream, to users. Reducing network traffic is beneficial for both
IP and SP, since this reduction results in less expenses for using cloud services for the SP,
and lower operational cost for the IP’s network. Hence, for cost-optimal service placement,
the IP and the SP are equally important, and both stakeholders should be involved to decide
on which cloudlet a service should be deployed. A novel bargaining approach in which the IP
and SP bargain for cost-effective service placements incorporating incomplete information
about the respective other stakeholder in the bargaining is presented. Being aware of their
situation, e.g., by using publicly available information like public price lists or scientific papers
about pricing cloudlets, both stakeholders can project their future situation with respect to
their own cost and the cost of the respective other stakeholder and use this projection to
decide where to place cloudlets.

The remainder of this section is organized as follows. In Subsection 4.2.1, the service placement
scenario and system model is introduced. Subsection 4.2.2 analyzes the bargaining process
with complete information, and Subsection 4.2.3 presents the solution to the bargaining
problem with incomplete information including two variants to discuss different scenarios of
incomplete information. Experimental results based on the collected real-world data set are
provided in Subsection 4.2.4. Finally, Subsection 4.2.5 reviews related work.

Parts of this section have been published previously [236].

4.2.1 System Model

Figure 4.2 provides an overview of our system model. In this scenario, four stakeholders interact
with each other: service provider (SP), infrastructure provider (IP), cloud provider, and users.
However, we only consider IP and SP as active parts, since only these two stakeholders have
to jointly find suitable cloudlets for placing services on them. Users initiate service requests
whenever they use a functionality of a service. Users want a high Quality-of-Experience (QoE)
of a service, which is achieved by handling service requests on nearby cloudlets. A cloud serves
as the default service placement location, where all service requests can be handled. Thus,
users and the cloud provider are not active parts in our system model.

The IP operates base stations (BS) and a network backend, offers network access via its BSs,
and deploys and operates permanently available cloudlets. The cloud is accessible via the IP’s
network backend. Furthermore, BSs provide ubiquitous radio coverage and network access for
users, and multiple users can be connected to one BS. By default, the service is deployed in
the cloud with sufficient capacity to handle the requests of all of its users.
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Figure 4.2: Overview of the system model

The SP may rent resources on the IP’s cloudlets and place the service on them by paying a
monetary compensation. The service is placed on the cloudlet by offloading relevant parts of
the service from the cloud to the cloudlet. If the service is not placed, e.g., because the SP
and IP cannot agree on a cost, it remains in the cloud.

Furthermore, we assume that the network can be divided into a grid G of cells with one
cloudlet per cell g ∈ G. For each cell g ∈ G, we introduce an indicator variable γg, which is 1
if the service is placed on the cloudlet and 0 otherwise. The goal is to place the service on
cloudlets that are advantageous for both IP and SP in terms of cost reductions.

Service Provider

The SP provides a service to users which requires computation and data transfer between the
users and the cloud. There are two different options how the service requests can be handled,
one of which is fixed for each cell g. First, the service requests are handled by the cloud. After
the service requests arrive at the BS, the data of size d̃g data units is transferred from the
BS to the cloud. The computation is done in the cloud, which requires pg processing units.

The second option is that the service requests are handled by a cloudlet in cell g. After the
service requests arrive at the BS in cell g, they are handled by the cloudlet located in cell
g, which requires pg processing units on the cloudlet. In addition to the cloudlet, the SP
needs to use cloud resources and the IP’s backbone network, e.g., in mobile AR games for

50



4.2 Multi-Stakeholder Bargaining

Table 4.1: Mathematical notations

Notation Description Notation Description

g ∈ G Cell g in the grid G αIP
g Cost factor for every data unit

incurred for the IP in cell g

γg ∈ {0, 1} Indicator variable for placement in
cell g. γg = 1 if a service is
placed in g, zero otherwise

αSP
CP,g Cost factor for every data unit

the SP has to pay to the cloud in
cell g

κ{SP,IP} Total cost for SP or IP βSP
CP,g Cost factor for every processing

unit the SP has to pay to the
cloud in cell g

κ
{SP,IP}
g Cost incurred for SP or IP if the

cloudlet is used in cell g
βIP
g Cost factor for every processing

unit incurred for the IP in cell g

κSPIP,g Cost that the SP has to pay to
the IP for using the cloudlet in
cell g

dg Data units from the cloudlet to
the cloud (and vice versa) if
service is placed in cell g

κ̃
{SP,IP}
g Cost incurred for SP or IP if no

cloudlet is used in cell g
d̃g Data units from the BS to the

cloud (or vice versa) if no service
is placed in g

ϕIP
g Fixed cost for placing a service on

a cloudlet in cell g incurred for
the IP

pg Processing units (i) in the
cloudlet in cell g if service is
placed in cell g or (ii) in the cloud
in cell g if no service is placed in
cell g

p̃g Processing units in the cloud in
cell g even though service is
placed in cell g

synchronizing local game states between the cloudlet and the global state in the cloud. The
required data transfer between cloudlet and cloud is denoted as dg. The amount of processing
units required for this case in the cloud is reduced to p̃g < pg.

In the following, the cost models for the two options, using cloud resources or service placement
on cloudlets, are introduced. The cost for providing the service on cloud resources (γg = 0)
in cell g consists of two parts: the cost for data transfer and the cost for computing. First,
the SP has to pay a cost factor αSP

CP,g for utilizing the IP’s network for each of the d̃g data
units that need to be transmitted from the BS to the cloud. Second, the SP has to pay a
cost factor βSP

CP,g to the cloud provider for the amount pg of processing units required in the
cloud, resulting in the following cost function:

κ̃SPg = (1− γg)
[︂
αSP
CP,gd̃g + βSP

CP,gpg

]︂
(4.1)

Note that the SP does not pay any cost for utilizing bandwidth from the users’ devices to
the BS, since these transmissions need to be made regardless of whether cloudlets are used
or not. Therefore, this factor is not considered in our cost model.

The cost for providing the service placed on a cloudlet (γg = 1) in cell g consists of three
parts: the cost for data transfer, the cost for computing resources in the cloud, and the
payment between SP and IP for the service placement. The cost for data transfer contains
the cost factor αSP

CP,g ≥ 0 for every data unit dg that is transferred between the cloudlet and
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cloud. The cost factor βSP
CP,g ≥ 0 denotes the cost of each processing unit in the cloud. The

payment between SP and IP for the service placement on a cloudlet is denoted by κSPIP,g. κSPIP,g
consists of multiple parts, e.g., the cost incurred for placing a service initially on a cloudlet as
well as the processing and data transfer to the cloudlet. The bargaining between the IP and
the SP to agree on the payment κSPIP,g is discussed in Sections 4.2.2 and 4.2.3. The resulting

cost function κSPg of the SP in cases where the service is placed on a cloudlet in cell g is

κSPg = γg

[︂
κSPIP,g + αSP

CP,gdg + βSP
CP,gp̃g

]︂
. (4.2)

The cost function of the SP for providing the service in the whole grid G consists of two
parts: (i) the cost for cells where the service is placed on a cloudlet and (ii) the cost for cells
running the service in the cloud. Overall, the cost function κSP of the SP for the whole grid
G is as follows:

κSP =
∑︂
g∈G

[︂
κSPg + κ̃SPg

]︂
. (4.3)

The SP aims to reduce its cost κSP by placing the service on suitable cloudlets [267]. Only
cells where the cost for running the service on a cloudlet is lower than the cost for using the
cloud should be used [51]. The SP’s cost reduction is a result of the fact that less data has to
be sent through the IP’s network backend from the BS to the cloud, since the service request
will be handled directly at the cloudlet. By optimized selection of the cells, the cost given by
Equation (4.3) is lower than the cost that the SP has to pay to the cloud provider in the
case without any cloudlet due to less network usage in the IP’s backend.

Infrastructure Provider

Cloudlets contribute to the IP’s goal of reducing its cost [267] by reducing the network traffic
in its network backend, since large parts of the service usage are handled directly by the
cloudlet. However, the parameters of the IP’s cost function differ from the parameters of
the SP’s cost function. While the SP has to pay the cloud provider or the IP, depending on
using the cloud or cloudlets, the IP has to pay for establishing and maintaining the network.
Cloudlets reduce this cost by adding computing and storage resources at the edge network and
reducing the traffic in the core network, which leads to a cost reduction for the IP. To reduce
as much cost as possible, a cloudlet should serve many users, otherwise the deployment cost
could be higher than the cost reduction from the decreased network usage.

We distinguish between three components in the cost of the IP: fixed cost required for operating
the infrastructure for deployment and maintenance of the service, cost for processing on the
cloudlet, and the cost for transferring data over the IP’s backend network.

The fixed cost ϕIP
g of the IP related to cell g contains all the infrastructure cost associated

with deployment and maintenance of a service, which is assumed to be independent of the
number of service requests in cell g. The cost for deploying the service, i.e., transferring the
required data from the cloud to the cloudlet over the backend, only has to be paid if the
service is not already deployed on the cloudlet in cell g. We do not consider service migration
between different cloudlets, but we assume that a service is always offloaded from the cloud
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to the cloudlet. The maintenance of a service, e.g., regular updates and monitoring, incurs a
cost for processing and data transfer for the IP (although less compared to cells where the
service is not deployed), even if the service is already deployed on the cloudlet in cell g.

The second component of the cost, the cost for processing on the cloudlet, is modeled in each
cell g by the cost factor βIP

g per processing unit. The total cost for processing is given by the

cost factor βIP
g multiplied by the number pg of processing units required on the cloudlet in

the given cell g.

The third component of the cost is the cost for transferring data over the IP’s backend
network. For each data unit transmitted over the backend network, a cost factor for αIP

g is
incurred. The total cost for data transfer is given by the number of data units dg multiplied
with the cost factor αIP

g .

To make service placement on cloudlets profitable for the IP, the IP has to receive a payment
by the SP, which is larger than the cost. The SP pays κSPIP,g to the IP for placing the service

on the cloudlet in cell g. How the payment κSPIP,g is determined such that is acceptable for
both the IP and the SP is the central problem discussed in this section.

Combining all the components of the cost and the payment of the SP, results in the following
cost for the IP if a cloudlet is used in g ∈ G:

κIPg = γg

[︂
ϕIP
g + βIP

g pg + αIP
g dg − κSPIP,g

]︂
(4.4)

If no cloudlet is used in cell g (i.e., γg = 0), the IP only has the cost factor αIP
g for utilizing

the backend network to transfer each of the d̃g data units from the cloudlet to the cloud,
leading to the following cost function:

κ̃IPg = (1− γg)
[︂
αIP
g d̃g

]︂
(4.5)

This results in the following cost for the IP for the grid G:

κIP =
∑︂
g∈G

[︂
κIPg + κ̃IPg

]︂
(4.6)

Note that the IP does not have to pay the cost given in Equation (4.6) directly to any
stakeholder, but indirectly, e.g., through higher investments into the network to handle the
amount of data from all services, which can be summarized as operating expenses. The cost
for deploying a cloudlet and letting SPs place services on it will be paid by the SP to the IP
to some degree, which results in a cost reduction.

Table 4.1 summarizes the mathematical notation and gives an overview of the used symbols.

Resource Limitations and Competition

We assume that sufficient resources are available at each cloudlet to serve the SP’s demand
for processing units pg in cell g. In cases where the computational demand of the service
would exceed the resources of the cloudlet, we assume that ϕIP

g (i.e., the cost for placing a
service on a cloudlet incurred to the IP due to the initial data transfer) contains additional
cost to scale the provided hardware in cell g accordingly.

53



4 Situation-aware Infrastructure Edge Computing

This implies that although either a single SP may offer multiple services or multiple SPs may
exist, our approach presented in Section 4.2.3 can be applied to each service separately, since
the IP can handle unlimited services without causing conflict situations between SPs. Thus,
we do not consider multiple SPs explicitly in the remainder of this section.

Finally, each cell g may have cloudlets from different IPs. However, we consider only a single
IP in the remainder of the section without loss of generality, since our approach is applicable
to each IP in a cell separately to find the IP with the highest cost reduction per cell. If
multiple cloudlets from different IPs are available in one cell, the cost function applies to
each IP. Furthermore, the SP may also opt to place the service on cloudlets of different IPs
in one cell if the calculated cost reduction exceeds the cost in the cloud for that cell.

Problem Formulation

For each cell g ∈ G, the SP and IP need to come to an agreement whether the service should
be placed on the cloudlet in cell g (i.e., γg = 1) or not (i.e., γg = 0). In the first case, they
also need to agree on a cost κSPIP,g to be paid by the SP to the IP. If they disagree, no service

is placed in cell g (i.e., γg = 0, κSPIP,g = 0). To reach an agreement, a bargaining solution
is needed that satisfies the following properties: (i) no participant of the bargaining should
have disadvantages by participating in the bargaining (individual rationality) and (ii) the cost
reduction caused by a service placement on cloudlets should be shared equally between the IP
and SP (fairness). This gives a strong incentive for both the SP and the IP to participate in a
bargaining for service placement. In the following, we derive a solution for service placement
and the associated cost.

4.2.2 Bargaining with Complete Information

In this section, we present our solution to the problem stated in Section 4.2.1 under the
assumption that both the IP and SP know all parameters of their own cost function and the
cost function of the other stakeholder. In this case, a Nash Bargaining Solution (NBS) can
be used to find an optimal agreement between IP and SP.

Nash bargaining is a two-person bargaining framework [177], where two stakeholders either
reach an agreement a from a set A of alternatives or fail to reach an agreement, in which
case the bargaining ends at a disagreement point d. Each stakeholder i ∈ {1, 2} has a utility
function Ui over the set of agreements and the disagreement point. Nash showed that under
mild technical conditions, there exists a unique bargaining solution, called Nash Bargaining
Solution (NBS), which satisfies a set of four axioms that any plausible bargaining solution
should satisfy [177]. It can be shown [93, 177, 225] that an agreement a ∈ A is a NBS if it
solves the following optimization problem:

max
a∈A

(U1(a)− U1(d)) · (U2(a)− U2(d))

s.t. U1(a) ≥ U1(d), U2(a) ≥ U2(d). (4.7)

Hence, the NBS maximizes the product of both stakeholders’ utility gains compared to the
disagreement outcome. In the following, for each fixed cell g, we compute the NBS for the
problem stated in Section 4.2.1.
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Agreement Set and Disagreement Point

The set Ag of possible agreements between the IP and the SP in cell g is defined by

Ag :=

{︃(︁
γg, κ

SP
IP,g

)︁
|γg = 1, κSPIP,g ∈ (−∞,∞)

}︃
(4.8)

Note that the price κSPIP,g may also be negative, since if placing the service in the cell is more
profitable for the IP than the SP, the IP may have to pay the SP to reach an agreement.

If IP and SP do not come to an agreement for cell g, no service is placed in cell g. A
disagreement in cell g is described by the following disagreement point:(︁

γg, κ
SP
IP,g

)︁
= (0, 0) (4.9)

Utilities of SP and IP

In Nash bargaining, each stakeholder has a utility function over the agreement set and the
disagreement point. In our case, the utility functions per cell correspond to the negative cost
functions per cell. Hence, according to Equation (4.1) and Equation (4.2), the utility of the
SP for cell g is given by

USP
g

(︁
γg, κ

SP
IP,g

)︁
:=γg

[︂
− κSPIP,g − αSP

CP,gdg − βSP
CP,gp̃g

]︂
+ (1− γg)

[︂
− αSP

CP,gd̃g − βSP
CP,gpg

]︂
(4.10)

and, according to Equations (4.4) and (4.5), the utility of the IP for cell g is given by

U IP
g

(︁
γg, κ

SP
IP,g

)︁
:=γg

[︂
− ϕIP

g − αIP
g dg − βIP

g pg + κSPIP,g

]︂
+ (1− γg)

[︂
− αIP

g d̃g

]︂
. (4.11)

Disagreement Outcome

The disagreement outcome is given by the utilities of the SP and IP, if they choose the
disagreement point: (︁

USP
g (0, 0), U IP

g (0, 0)
)︁

=
(︂
−αSP

CP,gd̃g − βSP
CP,gpg,−αIP

g d̃g

)︂
(4.12)

Feasible Agreement Points

The IP and SP will only accept an agreement
(︂
1, κSPIP,g

)︂
∈ Ag if, for both of them, the

agreement is better than the disagreement outcome.
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An agreement
(︂
1, κSPIP,g

)︂
∈ Ag is better for the SP than the disagreement outcome, if

USP
g

(︂
1, κSPIP,g

)︂
≥ USP

g (0, 0) holds, which by Equation (4.10) and Equation (4.12) is equivalent
to

κSPIP,g ≤ αSP
CP,g(d̃g − dg) + βSP

CP,g(pg − p̃g) =: LSP
g (4.13)

Hence, LSP
g ≥ 0 gives an upper limit on the price that the SP would accept. The value LSP

g

corresponds to the cost reduction for the SP when a service is placed in cell g.

An agreement
(︂
1, κSPIP,g

)︂
∈ Ag is better for the IP than the disagreement outcome, if

U IP
g

(︂
1, κSPIP,g

)︂
≥ U IP

g (0, 0) holds, which by Equation (4.11) and Equation (4.12) is equivalent
to

κSPIP,g ≥ ϕIP
g + αIP

g (dg − d̃g) + βIP
g pg =: lIPg (4.14)

Hence, lIPg gives a lower limit on the cost to be paid by the SP such that the IP would accept

the agreement. The value lIPg corresponds to the cost increase that the IP experiences when

the service is placed in cell g. Note that lIPg can also be negative (lIPg < 0) if the IP has a
cost reduction by placing the service in cell g even without a payment by the SP.

A feasible agreement point is an agreement
(︂
1, κSPIP,g

)︂
∈ Ag that satisfies Equation (4.13)

and Equation (4.14). Such feasible agreement points do not necessarily exist. In detail, if
LSP
g < lIPg holds, i.e., the SP’s upper cost limit LSP

g is lower than the IP’s lower cost limit

lIPg , by Equation (4.13) and Equation (4.14), no feasible agreement point exists. In this case,
the IP and SP will choose the disagreement option γg = 0.

However, if LSP
g ≥ lIPg , each cost κSPIP,g in

[︁
lIPg , LSP

g

]︁
leads to a feasible agreement.

Nash Bargaining Solution

We now formulate the optimization problem according to Equation (4.7) to compute the
NBS. If feasible agreement points exist, i.e., if LSP

g ≥ lIPg holds, the NBS is the optimal
solution of the following problem:

max
κSP
IP,g

f(κSPIP,g)

s.t. κSPIP,g ∈ [lIPg , LSP
g ] (4.15)

where

f(κSPIP,g) :=
(︁
USP
g

(︁
1, κSPIP,g

)︁
− USP

g (0, 0)
)︁

·
(︁
U IP
g

(︁
1, κSPIP,g

)︁
− U IP

g (0, 0)
)︁

= −
(︁
κSPIP,g

)︁2
+ κSPIP,g(l

IP
g + LSP

g )− lIPg LSP
g (4.16)

To compute the NBS, we set the derivative to zero, i.e.,

0 = f ′(κSPIP,g,NBS) = −2κSPIP,g,NBS + lIPg + LSP
g , (4.17)
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we get

κSPIP,g,NBS =
1

2

(︁
lIPg + LSP

g

)︁
(4.18)

and since f ′′(κSPIP,g,NBS) = −2 < 0, and κSPIP,g,NBS ∈ [lIPg , LSP
g ], the result in Equation (4.18)

gives the optimal solution of Equation (4.15). Hence, if LSP
g ≥ lIPg holds, according to the

NBS, SP and IP will agree on the price κSPIP,g,NBS in Equation (4.18), which is the average

of LSP
g and lIPg . Intuitively, SP and IP equal out their cost so that after the payment, both

benefit from the same cost reduction.

4.2.3 Iterative Bargaining with Incomplete Information

In Section 4.2.2, we have presented the NBS solution for the case that the SP and the
IP have complete information about their own cost function and the cost function of the
bargaining partner. In this section, we consider two types of incomplete information in the
system model: incomplete information about the cost factors of the bargaining partner and
incomplete information about the service usage. Furthermore, we propose a novel iterative
bargaining approach under incomplete information to overcome the challenges imposed by
the incomplete information.

Nash Bargaining with Incomplete Information

We extend the Nash bargaining problem from Section 4.2.2 to incorporate incomplete
information. The first type of incomplete information is concerning the cost factors of the
bargaining partner. The IP does not know the cost factor αSP

CP,g for transferring data in the

cloud and the cost factor βSP
CP,g for processing in the cloud. The SP does not know the cost

ϕIP
g for placing a service, the cost factor αIP

g for transferring data over the network and the

cost factor βIP
g for processing on the cloudlet. This type of information is relevant to predict

the potential cost savings of the bargaining partner in case of an agreement. The SP and IP
typically do not want to share this private information with each other, therefore we need to
consider this information as incomplete in the bargaining procedure.

The second type of incomplete information is concerning the service usage in the cell g. The
IP has no information about the SP’s users activity and situation. Therefore, the prediction of
service usage from the IP’s perspective can only be based on other information. The service
usage directly affects the cost function κIP of the IP. In particular, the change lIPg in the cost
function by a service placement is not known by the IP.

To incorporate incomplete information about the service usage we present two different
approaches: No Information Sharing (NIS) uses individual service usage predictions by the
IP and the SP, and Partial Information Sharing (PIS), where the SP shares its service usage
predictions with the IP.
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Pre-Bargaining Information Acquisition and Sharing

Cost Factor Predictions Before the bargaining procedure starts, the IP and the SP acquire
information about the bargaining partner. It is possible to obtain predictions of the bargaining
partner’s cost factors within a range of possible values from publicly available sources, e.g.,
from price lists of competitors. Although some information about the bargaining partner can
be obtained using publicly available sources, the available information on both sides is still
incomplete, hence IP and SP cannot simply apply the NBS from Section 4.2.2.

The SP has to predict lIPg (Equation (4.14)), which is the minimum price the IP would accept
for placing the service on the cloudlet in cell g. We model the incomplete information as the
uncertainty of the SP in lIPg . For this uncertainty from the perspective of the SP, we introduce

a probability density function (PDF) of lIPg , which will be denoted as plIPg (lIPg ). We assume
no further knowledge about the IP exists, leading to the assumption of a uniform distribution
between a lower bound lIPg,n,min and an upper bound lIPg,n,max, resulting in the PDF

plIPg (lIPg ) =

{︄
1

lIPg,n,max−lIPg,n,min

, lIPg ∈ [lIPg,n,min, l
IP
g,n,max]

0, else
. (4.19)

The SP can obtain a lower bound lIPg,n,min, e.g., by predicting the cost for the additional

hardware and energy of the IP for service placement [135], and an upper bound lIPg,n,max, e.g.,
by using public price lists for service placement [13].

The IP has to predict LSP
g (Equation (4.13)), which is the upper limit on the price that the

SP would accept. Analogously to the cost factor prediction of the SP, we introduce for this
uncertainty of the IP a PDF of LSP

g , which will be denoted as pLSP
g
(LSP

g ). Furthermore, we

assume that the IP can determine an interval for LSP
g described by a lower bound LSP

g,n,min

and an upper bound LSP
g,n,max, resulting in the PDF

pLSP
g
(LSP

g ) =

{︄
1

LSP
g,n,max−LSP

g,n,min

, LSP
g ∈ [LSP

g,n,min, L
SP
g,n,max]

0, else
. (4.20)

The IP can obtain the lower bound LSP
g,n,min by predicting the reduction in cloud and backhaul

cost of the SP (e.g., [163]), and the upper bound LSP
g,n,max by using public price lists of cloud

providers (e.g., [12], [100]).

In the next step, the IP and the SP predict the service usage in each cell g of the grid G.

Service Usage Prediction The SP can predict the service usage based on measurements
of the users’ activity, users’ context and general information like weather conditions and
population densities. The exact service prediction procedure of the SP will not be further
discussed in this approach, since there are several proposals in the literature (e.g., [81, 142]).
We model the result of the SP’s prediction of the service processing requirements pg and
data dg as

p̂SPg = pg + np,SP
g , d̂SPg = dg + nd,SP

g (4.21)
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where np,SP
g (nd,SP

g ) is a Gaussian distributed random variable with a standard deviation of

σp,SP
g (σd,SP

g ). The accuracy of the prediction, which is given by σp,SP
g and σd,SP

g , depends

on the cell g. The remaining data d̃g and service processing requests p̃g to the cloud are
predicted analogously.

The IP has no information about the SP’s users and therefore relies on situational information
in each cell g, such as weather conditions and population densities. We model the IP’s
prediction of the service processing requirements pg and data dg as

p̂IPg = pg + np,IP
g , d̂IPg = dg + nd,IP

g (4.22)

where np,IP
g (nd,IP

g ) is a Gaussian distributed random variable with a standard deviation of

σp,IP
g (σd,IP

g ). Note that σp,IP
g and σd,IP

g may be substantially larger than σp,SP
g and σd,SP

g

respectively, since the IP has no information about the SP’s users. The prediction of the
remaining data d̃g and service processing requests p̃g to the cloud are modelled analogously
to Equation (4.22).

In the next section, the sharing of the service usage predictions is discussed. For this procedure,
two alternatives will be presented. The first one is without any information sharing between
the stakeholders, whereas in the second one both stakeholders share their service usage
prediction with each other.

No Information Sharing (NIS) This approach does not involve any information sharing
between IP and SP before the bargaining procedure. Therefore, both stakeholders use a
different service usage prediction to forecast their resulting cost of a service placement. To
predict the IP’s cost lIPg in case of a service placement in cell g, the IP considers the service
usage prediction using Equation (4.22). Since the IP knows its own cost factors, the IP
can calculate lIPg by Equation (4.14). The SP can predict its potential cost savings LSP

g

(Equation (4.13)) in case of a service placement with its service usage prediction according
to Equation (4.21).

Partial Information Sharing (PIS) In this approach, both stakeholders report their service
usage predictions for cell g to the bargaining partner. For cases where the SP has no experience
with deploying the service in cell g, the prediction of the IP could be more accurate. In
cells with high service usage in the past, the prediction of the SP could be more accurate.
Sharing the service usage predictions does not introduce negative consequences for both,
since both can measure the service usage anyway. Both the IP and SP will use the more
accurate prediction to calculate their own cost functions lIPg , LSP

g .

Note that using the PIS variant for the upcoming iterative bargaining approach, one of the
stakeholders, or both, could lie about the predicted service usage, whereas using the NIS
variant, this is not possible. To prevent stakeholders from abusing wrong predictions, there
are several mechanisms to enforce truthfulness in repeated games, e.g., reputation-based
methods [262] we will not further investigate it in this thesis. The remaining structure of our
iterative bargaining approach is the same, regardless of whether NIS or PIS is used to acquire
all required information and compute the IP’s and SP’s cost functions.
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No

No

Service placement in cell g (γg = 1)

No service placement in cell g (γg = 0)

IP and SP make a sealed offer
Next
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Is the offer of the SP higher
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▷ Equation (4.25), (4.27)

iteration
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NIS
Section
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Section

accurate prediction
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Figure 4.3: The iterative bargaining procedure

Using either its own prediction of dg, d̃g and pg or the values it got from the SP, the IP can
predict the minimum price lIPg that should be paid by the SP. However, the IP has limited

knowledge about the valuation LSP
g , i.e., how profitable a service placement is for the SP. The

SP, on the other hand, computes the maximum cost LSP
g that it would accept for using the

cloudlet. However, the SP has limited knowledge about the valuation lIPg , i.e., how profitable
or expensive a service placement on a cloudlet in cell g is for the IP.

Iterative Bargaining

Our solution is an iterative bargaining approach with sealed offers, as shown in Figure 4.3.
The value n indicates the index of the current iteration.

Offering Phase The SP offers a maximum acceptable cost oSPg,n to pay for using the cloudlet,

whereas the IP offers a minimum acceptable cost oIPg,n for using the cloudlet. The SP and the
IP update their offers according to their corresponding information in round n, i.e., the cost
oSPg,n and oIPg,n may not correspond to their actual true valuations LSP

g and lIPg .
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Revealing Phase Both offers are revealed simultaneously. If the SP’s offer is higher than
the offer of the IP oSPg,n > oIPg,n the bargaining is finished. The final cost is calculated as

κSPIP,g =
1

2
· (oSPg,n + oIPg,n). (4.23)

Choosing the final cost as the average of the two offers has been shown to maximize the
social cost [176]. If oSPg,n < oIPg,n the bargaining will continue, since the SP’s offer is lower than

the minimum acceptable cost of the IP. If both repeat a previous offer, i.e. oSPg,n = oSPg,n−1,

and oIPg,n = oIPg,n−1, neither SP nor IP are willing to give an offer closer to the acceptable
region. They will disagree, the bargaining procedure will stop, and the service will not be
placed in this cell. Furthermore, we set a limit N for the number of iterations, such that the
disagreement outcome is chosen if n > N .

Update Phase After seeing the offer of the other stakeholder, both stakeholders update
their knowledge about the valuation of the other stakeholder. Then, the next round n+ 1 of
the bargaining process starts.

SP and IP only have access to incomplete information regarding the valuation of the other
stakeholder and consequently do not know the worst case of the other stakeholder. Therefore,
we derive an optimal bidding strategy for SP and IP under incomplete information. The
expected profit of the SP considering the incomplete information about lIPg depending on its

offer oSPg,n in cell g is

πg,SP(o
SP
g,n) = ElIPg

(LSP
g − κSPIP,g) = (4.24)

oSPg,n∫︂
−∞

(︃
LSP
g − 1

2

(︃
oSPg,n + s

)︃)︃
· plIPg (s) ds.

Three edge cases for oSPg,n can be distinguished: (i) oSPg,n < lIPg,n,min: the offer of the SP is
smaller than the predicted lower bound for the cost of the IP, i.e., the expected profit
(Equation (4.24)) is zero, since the probability of an agreement is zero; (ii) oSPg,n > LSP

g :
the offer of the SP is higher than its own benefit from an agreement, i.e., the expected
profit (Equation (4.24)) may be negative; (iii) oSPg,n > lIPg,n,max: the SP’s offer is higher than

the maximum predicted cost lIPg,n,max of the IP, i.e., this offer leads to the probability of an
agreement of 1.0, but is clearly suboptimal for the expected profit of the SP. The SP could
decrease its offer and increase its expected profit.

We assume that SP and IP are risk-neutral, i.e., that they maximize their individual expected
utility. Furthermore, we assume individual rationality, i.e., a stakeholder only gives an offer if
the expected utility is positive. The optimal offer oSPg,n for the SP in g is

o
∗,(t)
g,SP = max

oSPg,n

πg,SP(o
SP
g,n)

=

{︄
2
3 · (LSP

g + 1
2 l

IP
g,n,min) LSP

g < 3
2 l

IP
g,n,min

LSP
g , LSP

g > 3
2 l

IP
g,n,min

(4.25)
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The expected profit of the IP considering the incomplete information about LSP
g depending

on its offer oIPg,n in cell g is

πg,IP(o
IP
g,n) = ELSP

g
(κSPIP,g − lIPg ) = (4.26)

∞∫︂
oIPg,n

(︃
1

2

(︃
oSPg,n + s

)︃
− lIPg

)︃
· pLSP

g
(s) ds.

Three edge cases for oIPg,n can be distinguished: (i) oIPg,n < lIPg : the offer of the IP is smaller
than its own cost induced by the service placement, i.e., the expected profit (Equation (4.26))
may be negative; (ii) oIPg,n < LSP

g,n,min: in this case, the probability of an agreement is 1.0,
since the IP offers less than the minimum predicted cost reduction of the SP, i.e., this type
of offer is suboptimal, since the IP could increase oIPg,n and increase its expected profit; (iii)

oIPg,n > LSP
g,n,max: the offer of the IP is higher than the expected cost reduction at the SP, i.e.,

the expected profit (Equation (4.26)) is zero, since the probability of an agreement is zero.
The optimal offer oSPg,n for the IP in cell g is

o
∗,(t)
g,IP = max

oSPg,n

πg,SP(o
SP
g,n)

=

{︄
lIPg , lIPg > 3

2L
SP
g,n,max

2
3 · (lIPg + 1

2L
SP
g,n,max) lIPg < 3

2L
SP
g,n,max

. (4.27)

After seeing the offers of the other stakeholder, both decide to update their information
about the valuation of the other stakeholder. For this update, we choose a sequential linear
estimator with the adjustment rates λSP, λIP based on the observation of the offer of the
other stakeholder:

lIPg,n+1,min = lIPg,n,min + λSP · (oSPg,n − lIPg,n,min) (4.28)

LSP
g,n+1,max = LSP

g,n,max + λIP · (oIPg,n − LSP
g,n,max). (4.29)

In case of complete information (both sides know the cost function of the other stakeholder),
the proposed algorithm yields the NBS, as computed in Section 4.2.2, in the first iteration.
The final cost is the same as in the NBS:

κSPIP,g =
1

2
· (oSPg,n + oIPg,n)

=
1

2
·
(︃
2

3
·
(︃
LSP
g +

1

2
lIPg

)︃
+

2

3
·
(︃
lIPg +

1

2
LSP
g

)︃)︃
=

1

2

(︁
lIPg + LSP

g

)︁
= κSPIP,g,NBS . (4.30)

However, IP and SP typically do not exchange their cost functions and private valuations.
This incomplete information can lead to inefficiencies compared to the NBS with complete
information [79]. For every cell g ∈ G, the resulting κSPg and κIPg may not result in the

minimum cost for both stakeholders, but if both agree on a cost, it will be lower than κ̃SPg
and κ̃IPg would be. This entire procedure is repeated for every cell g ∈ G, resulting in κSP

and κIP, respectively.
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Complexity Analysis

To discuss the complexity of the proposed approach, the update parameters have to be
discussed first, since they play a crucial role concerning how long the bargaining will take.
Selection of the maximum iteration count N and the adjustment rates λ{IP,SP} of the SP’s
and IP’s offer are interdependent. A small adjustment rate λ{IP,SP} leads to a many iterations
until SP and IP either agree or finally disagree by repeating a previous offer. Choosing N too
small will lead to more cells without an agreement, although it might be profitable for both
to reach an agreement. A high value of λ{IP,SP} is undesirable for the SP and IP, respectively,
since the offer is corrected too much in favor of the other stakeholder.

We assume that both stakeholders agree on a maximum number of iterations, e.g., N = 10,
due to time constraints, i.e., the bargaining should not take too much time compared to
the duration of service placement. Each stakeholder can tune its adjustment rate λ{IP,SP}

individually, e.g., based on heuristics.

The bargaining procedure results in one of the two cases in each cell g: (i) the stakeholders
agree on a cost or (ii) they disagree. In both cases, the number of iterations is bounded by N ,
since the bargaining is stopped after N rounds without agreement. The iterative bargaining
is repeated for every cell g ∈ G. Thus, our iterative bargaining approach will converge at
the latest after N · |G| iterations in the worst case. In the case of complete information,
iterative bargaining yields the NBS, thus both stakeholders will agree on the payment stated
in Equation (4.30) for a particular cloudlet during the first iteration, which yields 1 · |G|
iterations in the best case.

4.2.4 Experimental Evaluation

Case Study and Data Set

As discussed in the Introduction, cloudlets are especially suitable for processing latency-
sensitive applications like mobile AR games. Therefore, our evaluation uses a real-world data
set that we collected from Niantic’s AR game Ingress, which was empirically investigated by
Felka et al. [81] and is available on request for scientific purposes. In this game, players visit
so-called portals that are linked to real points of interest and try to capture them, leading
to continuous player movements in the real world. The data set contains the user’s service
requests including the location of a request, which will be called game actions in the following.
One game action is one interaction between a player and a portal by either trying to capture
or defend it.

The data set was collected over a time period starting on 1st of January 2016 until the 31st

of May 2017 (i.e., almost 1.5 years), but we focus on the data collected for the year 2016.
The data for this period is almost complete, except for a 5-day maintenance period (from
2016/09/20 to 2016/09/24). In the considered period of time, about 21, 250 users of the
game have made over 17 · 106 game actions at 53, 259 portals in the observation area. The
data set covers urban, metropolitan, and rural areas with a total area of 25,200 km2. We
divided the area into cells of 1 km x 1 km each, since 5G base stations approximately have
a radius of about 500m, depending on the selected frequency and antenna. Subsequently,
we assigned the game actions to the corresponding cells of the grid and summed all game
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Figure 4.4: Data preprocessing for every day

Table 4.2: Mathematical notation and their values for the Take-it-or-Leave-it approach

Variable Description Value Source

βSP
IP,g Prcessing cost SP has to pay to IP unif [βIP

g , 4 · βIP
g ] [12, 13, 100]

ϕSP
IP,g Service placement cost SP has to pay to IP unif [ϕIP

g , 4 · ϕIP
g ] [12, 13, 100]

actions on a daily basis within a cell to determine the total daily number of service requests
of a cell. This process is visualized in Figure 4.4. In our case study, the SP deploys the parts
of the game (i.e., the service) relevant for the spatial area of the grid to cloudlets, while
the IP owns the infrastructure, represented by the 25, 200 cells. In our scenario, each cell
represents a possible deployment point for the services. The data set contains the number of
in-game actions for each cell, representing the geographical service usage of Ingress.

Experimental Setup

Besides our iterative bargaining approach with two alternatives (PIS and NIS), we also include
two additional cost models: a traditional Take-it-or-Leave-it approach and the NBS.

Take-it-or-Leave-it The Take-it-or-Leave-it (ToL) approach represents a typical cost-based
model. The IP independently selects prices in the cost functions as follows: First, placing
a service in cell g incurs a fixed cost ϕSP

IP,g ≥ 0 that the SP has to pay. This is the cost
for placing the service on the cloudlet, i.e., transferring required data from cloud to the
particular cloudlet or maintaining a service on a cloudlet. If in a previous bargaining the
service was already placed on the cloudlet in cell g, ϕIP

g and thus ϕSP
IP,g is only a fraction of

the original cost, since the deployment cost is no longer included (the composition of ϕIP
g is

explained at the end of Section 4.2.4 on page 67). Hence, the fixed cost ϕSP
IP,g depends on

the specific cell g. Second, the SP has to pay a cost factor βSP
IP,g ≥ 0 to the IP for each of

the pg processing units required on the cloudlet in cell g:

κSPIP,g = ϕSP
IP,g + βSP

IP,gpg (4.31)

Table 4.2 summarizes the variables required for the ToL approach for this evaluation.
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Table 4.3: Evaluation parameters
Variable Description Value Source

actionsg Number of game
actions in cell g

Taken from data set [81]

d̃g Data from BS to cloud if γg = 1 actionsg ·DU [17]

dg Data from BS to cloud if γg = 0 d̃g · (1− 0.92) [253]
DU Data units d · MB, d ∈ [1, 8] [17]

pg Processing of actions actionsg · PU [12, 100]

p̃g Processing in cloud even if γg = 1 pg · 0.1 [253]
PU Processing time [0.125s, 2.5s, 8.3s] [69, 149, 227]

αSP
CP,g Cost factor for data SP has to pay

to cloud provider in cell g
0.00012 [12, 100]

αIP
g Cost factor for data incurred for IP

in cell g
0.00006 [13]

βSP
CP,g Cost factor for processing SP has to

pay to cloud provider in cell g
0.000029 [12, 100]

βIP
g Cost factor for processing incurred

for IP in cell g
0.000087 [13]

ϕIP
g Cost for placing cloudlet in cell g

incurred for the IP
128MB ·αSP

CP,g [12, 13,
100]

N Number of bargaining iterations 10 Parameter
discus-
sion in
Sec-
tion 4.2.3

λSP Adj. rate of the SP’s offer during iter.
bargaining

[0.1, 0.2, 0.3]

λIP Adj. rate of the IP’s offer during iter.
bargaining

[0.1, 0.2, 0.3]

α̂IP
g Predicted

cost
factors
from
public
sources

unif [0.9, 1.1] ∗ αIP
g Cost

factor
predic-
tion in
Sec-
tion 4.2.3

α̂SP
CP,g unif [0.9, 1.1] ∗ αSP

CP,g

β̂IP
g unif [0.9, 1.1] ∗ βIP

g

β̂SP
CP,g unif [0.9, 1.1] ∗ βSP

CP,g

ϕ̂IP
g unif [0.9, 1.1] ∗ ϕIP

g

lIPg,min SP’s prediction of the IP’s lower limit ϕ̂IP
g + α̂IP

g (dg − d̃g) + β̂IP
g pg

LSP
g,max IP’s prediction of the SP’s lower limit α̂SP

CP,g(d̃g − dg) + β̂SP
CP,g(pg − p̃g)

To place a service on a cloudlet, the SP has to pay the price the IP asks for. The SP makes the
placement decision. Only if the SP can reduce its cost by using a cloudlet, the SP performs a
placement. This approach represents a lower-bound scenario in our evaluation, since the two
stakeholders do not cooperate in any respect to achieve joint benefits.

Nash Bargaining The second approach represents the optimal solution, i.e., the case where
both stakeholders cooperate, have complete information about each other’s cost, and achieve
minimal social cost according to Section 4.2.2.

Iterative Bargaining The third approach includes the two variants of our iterative bargaining
approach. In the first variant, both stakeholders do not exchange any information. In contrast,
in the second variant, information is partly shared between the stakeholders, e.g., the SP
provides service usage predictions to the IP (see Section 4.2.3).
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Figure 4.5: Monthly accumulated cost reduction over one year for all approaches

The data set consists of in-game actions that reflect the service usage of the game but are
not technical measures that we can directly use in our simulation. We therefore translate the
in-game actions into technical measures such as the network traffic or the required processing
power in a cell to conduct a meaningful simulation. In the following, we describe this process
in more detail and present an overview of the parameters in Table 4.3.

Regarding network traffic, one hour of play in Ingress causes about 28MB of traffic on a
mobile device of one player, while a player performs an average of 14.56 game actions per
hour. By dividing the network traffic of one-hour gameplay by the average number of game
actions per hour, we get a value of 2MB per game action. While 2MB per game action
seems like a lot, it includes all unrecorded activities, which also generate traffic (view the map
or photos of the portals) and can thus generate traffic without performing any logged game
action. Therefore, we consider an average of 2MB per game action to be realistic. However,
to avoid being specific for the game Ingress, we vary this parameter in our evaluation to
match the network traffic of other popular AR games [17]. Thus, we assume that mobile AR
games can generate data units DU ranging from 1MB to 8MB. If there is no placement of
a service in cell g, we assume that the entire data has to be sent to the cloud, resulting in
d̃g = actionsg ·DU . Based on the results of a study by Wang et al. [253], we assume an
average reduction of 92% in network traffic to the cloud and remaining overhead traffic of 8%,
if there is a service placement on a cloudlet in a particular cell, thus dg = d̃g · (1− 0.92).

As already explained for the data units, we also vary the processing units to represent AR
games with different processing requirements, which is based on required CPU cycles. Based on
the works of Al-Shuwaili and Simeone [227], Liu et al. [149] and Dinh et al. [69], applications
processed on cloudlets or similar edge computing resources require between 3 · 108 CPU
cycles for simple applications and 20 · 1010 CPU cycles for long-running applications. Based
on the performance of modern CPUs, we assume an average of 2.5GHz processing speed,
resulting in 0.125 s and 8.3 s execution time, respectively. As a third service type we introduce
an execution time of 2.5 s, resulting in PU = [0.125, 2.5, 8.3]. For processing one game
action in the cloud (i.e., no cloudlet is used), we define pg = actionsg · PU . Furthermore,
according to Wang et al., 8%− 12% of requests need to be forwarded from the edge to the
cloud server [253]. Therefore, we assume that 10% of all game actions require one additional
processing unit in the cloud (e.g., to synchronize the game state), resulting in p̃g = pg · 0.1.

As discussed in Section 4.2.3, each stakeholder can tune its adjustment rate λ{IP,SP} individ-
ually. Therefore, we select three values for λ{IP,SP} and simulate all combinations of these
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three values between both stakeholders.

Now that the various service types have been defined, the following result emerges with regard
to the number of simulations: for each combination of PU , DU , λSP and λIP, we simulate the
four different bargaining approaches. Each simulation run simulates the placement behavior
on a daily basis. This results in 311,040 simulations:

|Placement approaches| · |PU | · |DU |
·|λIP| · |λSP| · |days| =
4 · 3 · 8 · 3 · 3 · 360 = 311, 040 (4.32)

Finally, we select and specify the parameters for the cost functions for the simulation. For
data transmission cost factor to the cloud (αSP

CP,g), we use public price lists of Amazon AWS
Lambda [12] and Google Cloud Functions [100] and derive the cost the SP has to pay to the
cloud provider per MB. Furthermore, based on Amazon Lambda@Edge [13], we derived that
data transmission to edge resources (i.e., αIP

g ) costs about half of the data transmission to
the cloud. Using the same approach, i.e., consulting public price lists of Amazon AWS and
Google Cloud, we also could derive that one second of execution in the cloud costs about
0.000029 cents, while processing on edge resources is about three times more expensive. This
results in βSP

CP,g = 0.000029 and βIP
g = 0.000087.

Accuracy in predicting service usage and accuracy in predicting the bargaining partner’s cost
factors characterize incomplete information. We assume that both stakeholders can predict
each cost factor of the corresponding bargaining partner, in an interval of ±10% around the
true value (see the predicted cost factors from public sources in Table 4.3). The accuracy

of the prediction of service usage is assumed to be σp,SP
g = 0.5σcell

g , σd,SP
g = 0.5σcell

g for the

SP and σp,IP
g = 1.5σcell

g , σd,IP
g = 1.5σcell

g for the IP, whereas σcell
g is a cell specific standard

deviation given by the dataset. Therefore, the accuracy of service usage prediction varies
between different cells.

In the ToL approach, the IP has to assign a cost factor the SP has to pay for processing on
cloudlets (i.e., βSP

IP,g) and the initial placement of a service (i.e., ϕSP
IP,g). Data transmission to the

cloud is two times more expensive than data transmission to the cloudlet. Therefore, we assign
the cost factor βSP

IP,g as a random value between βIP
g and 4·βIP

g , which corresponds to twice the

price on the average. We use the same approach to predict a value for ϕSP
IP,g as unif [ϕIP

g , 4·ϕIP
g ],

where ϕIP
g is defined as 128MB · αSP

CP,g because 128MB is the smallest amount that can be
used on AWS Lambda@Edge or Google Cloud Functions. Finally, maintenance cost is usually
considered amounting to about 10% of the deployment cost [100, 143], which we also use as
a reference in our evaluation.

Results

To evaluate the performance of our approach, we analyze the cost reduction, number of
cloudlets used, and percentage of game actions processed on cloudlets. Since the cost
reductions can vary in size between both stakeholders, i.e., distributed unequally between
the two stakeholders, one stakeholder could benefit more than the other. Therefore, we also
evaluate and compare the fairness of the approaches in a final step.
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Since placing a service on a cloudlet incurs a fix cost ϕIP
g for the IP and ϕSP

IP,g for the SP, there
is a trade-off between the number of service placements and the number of game actions
covered within that time period. Therefore, we simulate every single day by calculating every
approach’s placement decisions and the associated cost, network traffic, etc. This means
that the stakeholders bargain every day. Since our iterative bargaining approach with partial
information sharing (PIS) requires the SP to predict the service usage in advance, we add
a slight variance based on a half daily standard deviation to the data in our data set to
simulate inaccuracies in SP’s prediction. In the case of iterative bargaining with no sharing
of information (NIS), the IP performs the prediction. However, since the IP does not have
internal information about the service, the IP can only roughly predict service usage. Therefore,
the IP’s prediction is not as good as the SP’s prediction. To simulate the inaccuracies of the
IP’s prediction, we add one and a half standard deviation variance to the data to simulate
the IP’s prediction, which is an increase of one standard deviation compared to the SP’s
prediction of the PIS variant.

Cost Reduction Figure 4.5 shows the accumulated cost reductions of all approaches for
each stakeholder over one year, where each box shows the accumulated cost reductions at
the end of each month. The term “accumulated cost reduction” refers to the amount of
money that IP and SP are saving (in our case per month) when using cloudlets compared to
a purely cloud-based environment. In essence, it means

Accumulated cost reduction =
∑︂
g∈G

[︂
κ̃{SP,IP}g

]︂
− κ{SP,IP} (4.33)

Starting with the SP’s perspective, the results show that the lower and upper quartiles of the
ToL approach (blue boxes) are significantly lower compared to both variants of our iterative
bargaining approach (red boxes for PIS, yellow boxes for NIS). However, rare cases exist
where the ToL approach performs better than our iterative bargaining (e.g., if the service
usage predictions for the iterative approach deviate significantly from the real values). On the
average, both iterative bargaining variants lead to higher cost reductions. Furthermore, our
PIS variant is quite close to the NBS. From the IP’s perspective, the results are comparable.
Similar to the previous perspective, our NIS and PIS bargaining approach perform better than
the ToL approach and get close to the NBS solution. The mean savings are slightly lower for
the PIS variant than for the NBS, but the variance of the cost reduction is larger for the NBS.
Furthermore, in some rare cases both graphs show that the PIS and NIS approaches can also
achieve negative cost reductions. In other words, both approaches may cause additional cost
and do not reduce cost. The explanation for this effect is that both approaches perform their
bargaining with the predicted service usage. In some rare cases, the predicted service usage
may differ from the actual value in a way that the placement becomes unprofitable, causing
additional cost. More specifically, if such a case occurred and additional monthly costs were
generated, they ranged, on the average, from $1.96 (NIS) to $6.01 (PIS) for the SP and from
$2.88 (PIS) to $17.01 (NIS) for the IP. In considering the average monthly savings of both
approaches, the comparatively low cost that could occur in such an unusual case are rather
marginal and negligible.

On average, the SP achieves about 12% higher cost reduction with the NIS variant than
with the ToL approach, while the IP achieves about 16% higher cost reduction if the IP also
chooses the NIS variant over the ToL approach. When considering the mean values of the
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Figure 4.6: Number of placed services on and game actions processed by cloudlets

PIS variant, the SP achieves about 44% higher cost reduction compared to the ToL approach,
while the IP reaches about 47% higher cost reduction if the IP also chooses the PIS variant
of our iterative bargaining approach over the ToL approach. The differences in cost reduction
are statistically significant (unpaired T-test, p <0.01).

The cost reductions of the NBS (green boxes) are clearly higher than the cost reductions of
the ToL approach, as shown by the blue boxes. Using the NBS, the IP can reduce the cost by
an additional 78% compared to the ToL approach. The SP can reduce its cost up to about
117% compared to the ToL approach. Since both stakeholders share their cost reductions
in the NBS, the cost reductions are identical for both. However, comparing the results of
iterative bargaining with the results of the NBS solution, our NIS variant achieves 52% of
the possible cost reductions for the SP and 65% of the possible cost reductions for the IP. In
contrast, our PIS variant achieves 66% of the possible cost reductions for the SP and 83% of
the possible cost reductions for the IP.

All in all, our approach performs better than the ToL cost-based approach in terms of cost
reduction and comes close to the optimal solution under complete information.

Number of Placed Services Figure 4.6a shows the number of services placed on cloudlets
for all four approaches over one year on a daily basis, grouped by month. The NBS represents
the best case with an average number of 624.5 placed services on cloudlets, the ToL approach
only achieves about 15% of this result with 94.9 placed services. Using our proposed approach
in the NIS variant results in an average number of 248.5 placed services, 39.8% of the best
case, leading to 2.6 more placed services compared to the ToL approach. The PIS variant
results in an average number of 339.6 placed services, which is 54% of the best case, leading
to 3.6 times more placed services compared to the ToL approach. The gaps between the
NBS solution and PIS or NIS approaches appear to be quite significant. However, it is worth
mentioning that the NBS approach has a 100% prediction accuracy, which results in many
placements that are on the verge of profitability. However, considering the number of placed
services alone is less meaningful, since a high number of placed services does not necessarily
lead to improvements, e.g., in case of a bad placement. Therefore, in the following we consider
the average number of game actions performed by the placed services.
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Game Actions Processed by Cloudlets Figure 4.6b shows the ratio of game actions
processed directly by cloudlets to the total number of game actions. The number of game
actions processed by cloudlets can be considered as an indicator for better QoE, since users
experience a lower latency. With an average of 94.9 placed services, the ToL approach covers
an average of 30% of all game actions, i.e., cloudlets compute 30% of all game actions.

While the NBS approach places 6.6 times more services on cloudlets, only 2.5 times more
actions are covered (or 76% of all game actions). This is because service usage is not evenly
distributed, with a few cells having very high utilization. Still, the majority of them have
medium to low numbers of game actions. Therefore, a 6.6 times increase in cloudlets does
not necessarily cover 6.6 times more actions. At this point, it is important to note that 76%
coverage of game actions of the NBS approach is the optimal solution, where the joint savings
are the highest. A coverage of 100% would also be theoretically possible. However, in our
case study, it would not make sense economic, since additional placements would have to
take place, which would cause additional cost and reduce the achieved savings. Both variants
of our approach achieve between 48% (NIS) and 58% (PIS) of the covered game actions,
while the ToL approach only achieves about 30%.

The figure also clearly shows that the lower quartiles of the ToL approach are significantly
lower and close to zero compared to other approaches. The reason for this is that in the ToL
approach, there are cells where a placement is only advantageous for the IP, e.g., if the price
of the IP is too high. However, since the SP decides on the placement, it does not happen
since the SP has no advantage. Our approach attempts to reduce cost across all stakeholders
and achieves significantly better results than the ToL approach in terms of placed cloudlets
and processed game actions.

Overall, the results show that cooperation is beneficial for both stakeholders. The IP can
reduce the load in its infrastructure to reduce cost. If the IP also shares its cost reductions
cooperatively with the SP, the SP deploys more services, leading to further cost reductions
for the IP. The SP also benefits from the cooperative behavior by reducing the cost in the
cloud. In total, the number of service placements on cloudlets is higher, which leads to more
actions covered by cloudlets and a better quality of service, which in turn is beneficial for the
customers of the IP and the SP.

However, full cooperation between SP and IP is rather unrealistic, because it requires a full
exchange of information between both stakeholders. Our novel iterative bargaining approach
requires a minimum level of cooperation (e.g., exchange of predicted service usage) and yields
a solution that comes close to a cooperation with complete information, without requiring
the stakeholders to disclose their cost functions or further business-relevant internal details.

Fairness Comparison If the IP shares its cost reductions cooperatively with the SP, the
SP is able to deploy more services and further reduces the cost for the IP. This reflects a
certain fairness from which both stakeholders can benefit. More precisely, the ratio between
the savings of the IP and the SP reflects the fairness of the approaches. In the ideal case,
both parties can achieve equal savings, resulting in a high fairness. To measure fairness, we
use the well-recognized max-min fairness [30]. It is calculated of each approach using the
accumulated savings once at the end of the simulation.
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Figure 4.7: Measured fairness of all approaches

Figure 4.7 contains a violin plot showing the distribution of the fairness for each approach.
Starting with the NBS, the savings are identical for both stakeholders, resulting in a perfect
fairness of 100%. Comparing the fairness of the ToL approach with the fairness of both
variants of the presented approach, the fairness of the ToL approach is substantially lower
and often below 50%. The reason for this is that in the ToL approach, the IP sets the price,
which allows the IP to achieve a relatively high savings, as opposed to the SP. This leads
to less fairness between both stakeholders. The distribution of fairness of the NIS and PIS
variants are similar. As described in the previous section, the average accumulated savings
differ between the two approaches. However, the ratio of accumulated savings between both
stakeholders is balanced, which leads to a high fairness of both variants, with some cases,
e.g., due to wrong service usage predictions, where the fairness can drop below 50%.

Impact of Incomplete Information The results presented in the previous subsections
show that different aspects of incomplete information yield different outcomes in terms of
cost savings per stakeholder and fairness of the results. In the evaluation, we showed three
different amounts of shared information. Using the NBS, both stakeholders have to share all
information they have, whereas using the NIS variant of our approach no information is shared
at all. Finally, in our approach using the PIS variant only the SP has to share little information
about the service usage, which does not introduce any negative consequences, since the real
service usage can be monitored by the IP anyway. These degrees of incomplete information
are also reflected in the results. The accumulated cost reductions of SP (Figure 4.5a) and IP
(Figure 4.5b) indicate that the more information is shared between the stakeholders, the more
cost reductions both can achieve, resulting in NIS giving the least cost reductions and NBS
the most, although even the NIS variant achieves better results compared to the traditional
ToL approach. This is also visible in the number of placed services (Figure 4.6a) and game
actions processed by cloudlets (Figure 4.6b), since these parameters directly influence the
cost reductions. The different degrees of information sharing also impact the fairness of
the bargaining (Figure 4.7). The NBS, i.e., complete information sharing, always yields an
absolutely fair outcome. The less information is shared, however, the more unfair the results
will become. In summary, however, the bargaining approach with the lowest level of fairness
and with the least cost reduction is still better with respect to all evaluated parameters than the
ToL approach, where also no information is shared, but where additionally both stakeholders
are not bargaining. This leads to the conclusion that stakeholders should cooperate and share
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Table 4.4: Overview of related work

Contributions
Related Work

[99] [225][50,
180]

[144,
276]

[150,
170,
200,
266]

[123][175,
190]

[42] [184][51] Our
Approach

Cloudlet-based edge computing ✓ ✓ ✓ ✓ ✓ ✓ ✓ - - - ✓

Considers IP and SP ✓ ✓ - - - - - ✓ - - ✓

Incomplete information - - ✓ ✓ - - - ✓ ✓ - ✓

Cost-awareness ✓ ✓ ✓ ✓ ✓ - - ✓ ✓ ✓ ✓

Evaluation using real data set ✓ - - ✓ - ✓ - ✓ - ✓ ✓

at least a minimum amount of information. This way, they achieve near-optimal results in
terms of cost savings, but without having to fully share all information, including private
information, which is also reflected in the presented results for the PIS approach. Finally, the
PIS approach seems more desirable as it yields better results across all evaluated parameters,
but it must be taken into account that in the PIS approach the IP has to trust the SP. The
SP could lie about the service usage prediction in its own favor. In scenarios where the SP is
not trusted, the NIS variant offers an alternative. Furthermore, it is also possible to extend the
PIS variant by a mechanism to enforce truthfulness, such as reputation-based methods [262].

4.2.5 Related Work

Service placement is considered in several publications, where cloudlet-based edge computing
takes a large part in recent years, but also other areas like placing services on data caches or
edge servers have been investigated.

Table 4.4 presents an overview of related work on service placement and considers aspects
of existing approaches compared to our approach, such as whether the papers look at both
IP and SP, whether they handle incomplete information, whether they present cost-aware
solutions or try to optimize other aspects, and finally whether they use real-world data sets
to evaluate their approaches.

Related work in the area of service placement often only focuses on one stakeholder (e.g., only
IP or SP), or focuses only on the users. However, it is crucial to understand that stakeholders
have different cost and different information about, e.g., the network, available resources or
service usage. Therefore, it is important to consider both stakeholders in order to optimize
social cost under realistic assumptions. The very few papers that focus on both stakeholders,
however, do not handle incomplete information, but rely on complete information sharing
between the two players. For example, the work of Gedeon et al. [99] requires all stakeholders
not just to know where possible cloudlet locations are, but also what kind of hardware they
use, how many resources are available, and how many users are likely to use a particular
cloudlet. Similarly, in the work of Shih et al. [225], the SP shares its entire knowledge about
its users (e.g., numbers and locations) with the IP so that they can bargain for the price, even
if stakeholders in these markets are usually not willing or not able to fully share information.
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The work of Cao et al. [42] seems to offer a solution that incorporates multiple stakeholders
and incomplete information. However, the authors do not try to optimize the cost for both
stakeholders, but only for the IP, while the SP has to either accept the IP’s decision or decline
it, but they do not interact with each other to find the best solution for both.

The literature on handling incomplete information usually does not take multiple stakeholders
into account, but mainly tries to solve problems from one perspective only. For example, the
work of Nguyen et al. [180] optimizes the IP’s net profit and Zhan et al. [276] try to optimize
the IP’s operational cost in conjunction with the best achievable user experience. Chen et
al. [50] only incorporate collaboration between different IPs. Finally, Ouyang et al. [184] base
their placement strategy on information that is only available to the user.

Furthermore, both stakeholders, IP and SP, do not only try to improve their users’ service
experience, but also try to minimize their operational cost. Thus, it is essential to model the
individual cost for both stakeholders and optimize the cost reductions for both stakeholders
at the same time. However, most previous works mainly focus on optimizing the users’ service
experience, like Jia et al. [123], Mukherjee et al. [175] and Peng et al. [190], and do not
include the stakeholders’ cost at all. Jia et al. [123] offload the workload from the user’s
device to a cloudlet, Mukherjee et al. [175] reduce power consumption and latency, and Peng
et al. [190] maximize the number of served users per cloudlet. Apart from that, the work of
Liang et al. [144] tries to optimize the service placement problem by optimizing the placement
locations so that the IP’s budget is not exceeded.

Finally, large parts of related work evaluate their approaches based on synthetic data and
assumptions that often are not based on real-world data sets. For example, Liu et al. [150],
Ren et al. [200] and Yang et al. [266] use randomly generated data within ranges that are not
motivated by literature or other sources. The work of Mondal et al. [170] models an average
Australian city, but not based on a real-world data set, but on hypothetical assumptions.
The same also applies to other papers cited above, as shown in Table 4.4. While evaluations
based on such data and assumptions are a good starting point to show the general feasibility,
evaluations using real-world data sets help to underpin the practicality and applicability of
theoretical approaches.

4.2.6 Summary

In this section, a novel iterative bargaining approach between IP and SP for nearly optimal
service placement in edge computing scenarios with respect to social cost despite incomplete
information was proposed. By being aware of their situation through using publicly available
information like public price lists or scientific papers about pricing cloudlets, both stakeholders
could project their future situation with respect to their own cost and the cost of the
respective other stakeholder and use this projection to decide where to place cloudlets. The
proposed bargaining method finds a nearly optimal solution of about 83% of the maximal cost
reduction by sharing only service usage predictions and up to 65% of the optimal solution
if no information is shared at all. It was also shown how different degrees of incomplete
information affect the outcome of the bargaining approach. Finally, the case study based on
the mobile AR game Ingress showed that despite incomplete information, this method can
achieve up to two times higher game action coverage on cloudlets than a traditional cost
model by using a situation-aware approach.
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4.3 Predicting the Number of In-game Actions Using Traces of
Mobile Augmented Reality Games

Predicting when and where users will play an augmented reality (AR) game can significantly
improve deciding on which infrastructure device the service, i.e., the game should be placed,
and it is claimed that the situation of the service provider is important for this prediction.
In this section, the results of analyzing a dataset of about 23.9 million in-game actions of
the mobile AR game Ingress is presented. This dataset of in-game actions is enriched with
information describing a service provider’s situation with respect to its users (e.g., temperature,
precipitation), but also environmental characteristics (e.g., the density of Wi-Fi APs and
cellular base stations) during a single in-game action. The results of this analysis emphasize
the importance of situation-awareness in the area of edge computing. The results show that
up to 84% of the variation in the number of in-game actions can be explained when being
aware of the situation. Furthermore, the analysis shows that information that represents time
(e.g., weekday), physical conditions (e.g., weather), computational environment (e.g., density
of Wi-Fi APs), and user information (e.g., game incentives) significantly influence the number
of in-game actions.

The remainder of this section is organized as follows. Subsection 4.3.1 introduces and explains
the collected data, which is analyzed in Subsection 4.3.2 concerning available information
and the derived situation. Finally, Subsection 4.3.3 reviews related work.

Parts of this section have been published previously [81].

4.3.1 Dataset

In this section, we present our dataset by explaining the used collection methods and the
corresponding data sources.

Data Basis

The dataset contains in-game actions of the popular AR game Ingress. The current state
of the game and users’ in-game actions are visible within the Ingress app, but also on the
so-called Ingress Intel Map website1, which contains the current state of all portals worldwide.
To collect this data, we built a crawler based on Python and Selenium that automates browsers
and requests changes in the game state every second. Important for us, these changes include
user interactions with the portals, which have a clear geographical position. This interaction
makes it possible to determine the position of a user since a user needs to be in the immediate
proximity (≤ 40 meters) of the portal to interact with the portal.

Regarding the spatial extension, the dataset covers a large part of the federal state of Hesse
in Germany with the Rhine-Main area in the center of the observation area. The Rhine-Main
area is the third-largest metropolitan area in Germany, with a total population exceeding
5.8 million. Within this area, the three largest cities are Frankfurt (about 670,000 citizens),
Mainz (about 209,000 citizens), and Darmstadt (about 142,000 citizens). The perimeter of

1https://www.ingress.com/intel
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Figure 4.8: Observation area

the observation area is 140 km on the latitude and 180 km on the longitude, resulting in a
total area of about 25,200 km2. We use a grid size of 1 km × 1 km to analyze the data with
a fine granularity without infringing on the individual user’s privacy. Figure 4.8 visualizes the
observation area and the division into the grid.

Within the observation area, we have recorded the in-game actions as interactions of the
Ingress users with the respective portals. Each portal has a geographical assignment as a
WSG84 coordinate. Consequently, the users’ positions are recorded implicitly by the interaction
with the portals. To protect the privacy of individual users, we do not provide the exact
location of the portals where the interaction took place, but the grid in which the portals
are located. Therefore, the motion profiles have a resolution of 1 km × 1 km within an area
of 25,200 km2. Figure 4.9a and Figure 4.9b illustrate the motion profiles for two users with
different mobility behaviors in the form of a heat map. Furthermore, the figures also illustrate
that despite the 1 km2 grid, the mobility traces are still quite accurate, which can be used to
classify users or places of users.

We provide the data for a period of almost 1.5 years, starting on the 1st of January 2016
until the 31st of May 2017. For this period, in-game actions of Ingress are complete, except
for a maintenance phase from September 20th until September 25th, 2016.

Contextual Information

We enriched the Ingress data by adding data for various contextual information. This combina-
tion of data can help us gain a deeper understanding of the relationship between situation and
in-game actions. We classify this information into static and dynamic factors as well as macro-

75



4 Situation-aware Infrastructure Edge Computing

(a) High mobility (b) Low mobility

Figure 4.9: Users with high activity and different mobility

and micro-level factors. Static factors are not subject to changes over time; they are constant
for the period under consideration (e.g., the number of cellular base stations). Dynamic
factors are subject to change and are present in a temporal resolution (e.g., the temperature
on an hourly basis). Macro- and micro-level factors describe the spatial resolution of the
factors. Here, macro-level factors refer to factors that relate to the entire area of observation,
can change over time, but do not differ significantly at the grid level. For example, public
holidays occur over time, but the factor is identical for the entire area of observation. In
contrast, micro-level factors refer to the individual 1 km × 1 km grids of the observation
space. For example, the amount of precipitation is available in tenths of mm for each grid. In
addition to the spatial and temporal properties of the information, we also consider the four
dimensions of contextual information by Bellavista et al. [25] and assign our information to
these dimensions. These four dimensions consist of the physical, the computing, the time,
and user information, which will be explained below.

Physical Information Physical information describes the physical conditions, e.g., weather.
With regard to physical information, we collected high-resolution weather radar data from the
German Meteorological Office (Deutscher Wetterdienst, DWD). The data provides information
about the amount of precipitation (in tenths of mm) on an hourly basis and has the same
resolution and position as the grid. Air temperature and humidity are also available and come
from a weather station provided by the DWD. This weather station is located in Frankfurt
and thus in the center of the observation area and represents a macro-level situation. It is
noteworthy that temperature and humidity are only available as macro-level information. At
this point, we expect no major deviations in temperature and humidity between the grids, in
contrast to precipitation, which often has a local influence. However, precipitation can be
aggregated to a macro-level information by calculating the sum or the average precipitation
of all grids on the micro level. To describe the environment at the micro level, we also have
enriched data on land use and urban characteristics, such as the number of public facilities
that may lead to differences in in-game actions. We also looked at public facilities such as
universities and schools, as well as places with attractions and entertainment establishments.
Here, we used data from OpenStreetMap (OSM) to enrich the dataset with information on
Points of Interests (POIs) that describe places that may influence the game behavior (e.g.,
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Table 4.5: Data sources

Name Source

Ingress Activity https://www.ingress.com/intel

Weather https://www.dwd.de

Precipitation https://www.dwd.de

OSM POIs https://www.openstreetmap.org

Wi-Fi APs https://wigle.net

Base Stations https://www.bundesnetzagentur.de

train stations, universities, public parks, playgrounds). Furthermore, we provide a script in
addition to the dataset, which allows adding information on other types of POIs. This can help
the scientific community to adapt the dataset for specific research questions if necessary.

Computing Information Computing information captures the technical facilities of the
environment, such as the density of Wi-Fi Access Points (APs). Our dataset includes infor-
mation on the density of Wi-Fi APs per grid collected from www.wigle.net, which is one of
the largest Wi-Fi war-driving communities worldwide. Furthermore, we include the number of
cellular network base stations per grid collected from the Bundesnetzagentur (BNetzA), the
German federal network agency.

Time Information Time information incorporates various time-related factors, e.g., time of
the day or public holidays. The dataset includes information on the time of the day, the day
of the week, and seasonal effects. In addition, the dataset also provides information about
local public holidays.

User information User information denotes high-level aspects related to the social dimension
of users, such as user preferences, people nearby, and the current social environment [4].
Concerning the user, we included information on special Ingress events like so-called ”mission
days”. These events are often organized together with the local tourism association to explore
a city and the sights. These Ingress events often attract thousands of users from different
places who then move through a city together. In addition to mission days, we provide
information about so-called anomalies in the dataset. These anomalies represent rule changes
in the game, such as double points, and are likely to affect the players’ behavior.

Table 4.5 provides a brief summary of the data sources in the dataset.

4.3.2 Analysis

Our analysis aims to investigate the relationships between situations and in-game actions.
The analysis consists of three parts, beginning with an overview and description of the main
variables, followed by macro- and micro-level regression analysis examining the relationships
between situations and in-game actions. The macro-level analysis aims to predict in-game
actions for the entire area of observation, whereas the micro-level analysis examines the
influence of situations at the grid level.
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Table 4.6: Descriptive statistics of the dataset

Variable Mean SD Minimum Maximum Total

Users 24,316
Actions 23,903,293
Actions/Day 46,686.12 20,690.24 14,926 409,793
Actions/User 983.03 4,834.11 1 13,9567
Portals/Grid 2.11 7.99 0 215 53,259
Access Points/Grid 103.82 694.13 0 27,899 2,616,213
Base Stations/Grid 0.25 0.84 0 31 6,174
Temperature 10.16 7.83 -12.6 34.9
Portals/Day/Grid 15.84 38.33 0 1,229

Overview

Starting with the summary statistics, Table 4.6 shows an overview the main variables. During
our data collection period, we gathered more than 23.9 million in-game actions from over
24,000 users. Within our observation area of 25,200 km2, there are over 53,000 ingress portals
the users of the game can interact with. On the average, each grid has about 100 Wi-Fi
APs, and every fourth grid has a cellular base station. In the collection period, the average
temperature was 10.2°C, and the average daily precipitation was 1.56 mm/h.

Macro-Level Analysis

Our macro-level analysis primarily considers contextual information that affects the entire
area of observation. We estimate Equation (4.34) using a least squares regression with robust
standard errors to explain the number of in-game actions, ing actions. Our model explains
the in-game actions based on factors of each dimension of information: Physical information
such as precipitation, temperature, temperature2 2, and humidity, Time information such as
day of the week and public holidays, and User information such as game-specific events.

ing actionst = α0+
∑︂
p∈P

βp · Physicapt

+
∑︂
k∈K

γk · Timekt

+
∑︂
u∈U

δu · Userut + ϵ (4.34)

We extend the model step-wise by adding additional information dimensions. This allows us
to compare the information dimensions with regard to their explanatory power. In the first
step, the model contains only the constant (α) and thus simply estimates the average number
of in-game actions. This model constitutes the baseline for a comparison of the following
models that additionally contain information of different dimensions.

2We assume that the effect of temperature follows a quadratic function rather than a linear function.
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Table 4.7: Macro level regression results of Models 1 and 2

Model 1 Model 2
Variable Coef. SD Coef. SD

Trend -24.10** 8.53
Weekday =

Monday -1,567.46 5,276.39
Tuesday -2,183.13 5,349.45
Wednesday -2,106.73 5,383.16
Thursday -850.63 5,330.91
Friday -2,340.52 5,281.10
Saturday -753.39 5,786.99

Pub. Holiday -7,285.36* 3,367.48
Intercept 46,686.12*** 915.28 54,539.47*** 3,561.24

Num. of obs. 512 512
Prob >F 0.000 0.000
adj. R2 0.000 0.0357
Root MSE 20,710 20,498

*: p < 0.10, **: p < 0.05, ***: p < 0.01

Tables 4.7 and 4.8 presents the estimation results of all individual models. The results of the
F-test (p < 0.001) for all four models show that at least one of the variables can significantly
explain some variation in our dependent variable.

The root mean square error (RMSE) of the first model measuring differences between
estimated values by a model and the values observed indicates a high deviation. In line with
this observation, the adjusted R2 amounts to <0.00% and indicates that the model explains
the variance of the in-game actions only poorly.

The second model additionally considers factors of the Time dimension. The results show
that these factors lead to a slight reduction of the RSME, in addition, the adjusted R2 shows
that this model captures 3.57% of the variance of the in-game actions. Furthermore, the
results show a negative trend (p < 0.05) in in-game actions and a negative impact of public
holidays (p < 0.10). This shows that the extension by additional contextual information of
the Time dimension leads to a slight improvement of the estimation quality.

The third model also includes factors of the Physical dimension. Looking at the adjusted
R2 of the third model in comparison to the second model, it becomes apparent that the
consideration of the Physical dimension explains additionally up to 9.31% of the variance
and significantly improves the explanatory power of the model. On the one hand, this indicates
the high explanatory power of the Physical dimension. On the other hand, it shows that
the use of mobile AR games strongly depends on physical information. Thus, temperature
(p < 0.05) and precipitation (p < 0.1) have a significant impact on the number of game
actions and thus on in-game actions.

Finally, the fourth model contains factors of the User dimension. Here, we essentially consider
factors such as game-specific events like mission days and anomalies. The latter are changes
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Table 4.8: Macro level regression results of Models 3 and 4

Model 3 Model 4
Variable Coef. SD Coef. SD

Trend -27.12*** 8.01 -35.95*** 3.30
Weekday =

Monday -1,487.45 5,133.27 3,481.57* 1,377.69
Tuesday -1,527.50 5,105.70 3,058.44* 1,373.02
Wednesday -2,366.97 5,238.52 2,477.78 1,402.93
Thursday -1,395.95 5,316.15 3,793.64** 1,346.51
Friday -1,984.58 5,042.42 2,635.81* 1,325.45
Saturday -94.61 5,542.18 2,904.54 1,646.90

Pub. Holiday -8,794.87*** 2,666.87 -6,609.91** 2,305.84
Temperature 1,538.74*** 207.69 1,189.14*** 126.77
Temperature2 -74.14*** 12.55 -51.81*** 5.33
Humidity -355.68* 168.13 -158.66*** 32.86
Precipitation -41.08 21.43 -59.10*** 12.91
Ing E. 367,917.80*** 1,698.71
Ing. E. (L+1) 143,189.60*** 1,923.38
Ing. E. (L+2) 15,443.17*** 1,443.23
Ing. An. 1 22,340.81*** 1,803.41
Ing. An. 2 3,611.02*** 748.15
Intercept 78,515.16*** 15,708.01 60,110.68*** 2,868.27

Num. of obs. 512 512
Prob >F 0.000 0.000
adj. R2 0.1288 0.8446
Root MSE 19,562 8,313

*: p < 0.10, **: p < 0.05, ***: p < 0.01

in the rules of the game, such as double points for actions (anomaly 1) or “no energy”3

(anomaly 2). With regard to the latter, Niantic shortened the supply of energy which made it
on the one hand more difficult to defend the portals, but on the other hand, it also resulted
in fewer resources to attack the enemy portals. Overall, this led to lower activity in the game.
Such events and rule changes often come with additional incentives (e.g., virtual badges),
which can affect user behavior. The results for the fourth model show a significant increase in
the explained variance and a reduction of the RSME by 57.5%. Also, the results show that the
high explanatory power of User dimension not only explains a large part of the variance in the
in-game actions but also that additional factors of the Time dimension become significant
since we now control for strong outliers caused by the specific User information.

To develop an understanding of the individual factors and their relationship to in-game actions,
we examined the individual contextual information of the last model in more detail. The
first group of variables, Time, measures the relation between temporal factors and in-game
actions. Our results show a significant negative trend of the in-game actions, which suggests
that gaming activity generally decreases over time. Concerning weekday variables, we see
some significant weekday effect, since the in-game actions for Monday (p < 0.1), Tuesday

3To perform an in-game action, a particular amount so-called energy or exotic matter is required.
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Figure 4.10: Relation between temperature and in-game actions

(p < 0.1), Thursday (p < 0.01) and Friday (p < 0.1) are significantly higher in comparison
to the omitted weekday Sunday. In-game actions on the individual weekdays show that the
average number of in-game actions on all days is similar, but that the deviation increases on
weekends, especially on Sundays. Our findings also reveal a negative relationship between
public holidays (p < 0.01) and in-game actions.

The second group of variables, Physical, measures the relation between weather factors and
in-game actions. Our results show that precipitation has no significant relation to the in-game
actions. Furthermore, temperature (p < 0.01) is positively related to in-game actions. As
expected, temperature2 (p < 0.1) is negatively related to in-game actions, which suggests a
U-shaped nonlinear relationship between temperature and in-game actions. We have visualized
the estimated coefficients for temperature and temperature2 in Figure 4.10. This figure shows
that there is an ideal temperature range around 10.5°C at which activity is at its highest level.
As soon as the temperature rises or falls, the number of actions decreases, meaning that if
the outside temperature is too hot or too cold, in-game actions are reduced because fewer
users go outside to play Ingress. Further, we also find that humidity (p < 0.01) is negatively
related to in-game actions. In contrast to temperature, humidity is rather linear and the
number of in-game actions decreases with increasing air humidity (see Figure 4.11).

The results of the third group of variables, User, shows a significant impact of all measured
variables. Especially game events are highly significant (p < 0.01) and positively related to
in-game actions. During game events, the number of in-game actions increases more than
seven times compared to the average number of in-game actions. Since we know that such
events attract users from the surrounding cities and even foreign countries, we have added
two lead variables that capture the variance of the in-game actions on the previous days. Here,
we suspect that users will arrive a few days in advance due to their long journey and this will
also affect in-game actions. Our results support the assumption and also show a significant
increase (p < 0.01) on both preceding days. Also, regarding rule changes in the game (or
Ingress anomalies), the results show logically justifiable values. Anomaly 1 (double points for
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Figure 4.11: Relation between humidity and in-game actions

all game actions) shows a significant (p < 0.01) positive relation to in-game actions, while
anomaly 2 (no energy supply) shows a significant (p < 0.01) negative relation. The results
support our hypothesis that these game-specific events affect user preferences, while double
points provide a clear incentive and are in a positive relationship with in-game actions, the
unavailability of energy supply decreases in-game actions because the users may avoid game
actions that drain their energy points.

Our results indicate a strong relationship between contextual information and the number of
in-game actions. These findings suggest a substantial influence of situations on location-based
services, such as mobile AR games, which are predominantly used outdoors. Furthermore, the
results indicate a significant influence of the user’s situation and properties that are related
to the user’s preferences and in-game actions. From the point of view of the game provider,
these properties do not represent exogenous factors, as do most other contextual information
(e.g., temperature, humidity). In fact, these factors (such as rule changes and events) are
planned and operated by the game provider and are therefore predictable.

To test the predictive power of situations, we forecast the number of in-game actions for
one month with a forecast of one day. For this purpose, we also use a regression model and
apply an out-of-sample prediction. The model is estimated based on data from the first 12
months (January 2016 to December 2016) and predicts the number of in-game actions for
the following month (January 2017).

Figure 4.12 illustrates the observed number of in-game actions (red line) and the results of
the out of sample prediction for models 2, 3, and 4. The graph shows how the prediction
improves with an increasing number of information dimensions at the observed value. Starting
with the Time dimension, there is a recurring weekly pattern with a negative trend (RSME:
16,284.36). The Physical dimension improves the prediction even further (RSME: 8,364.58)
and emphasizes the extremes. The User dimension also leads to an additional improvement
and reduces the root-mean-square error. The calculated RSME for the prediction period
amounts to 3,222.31 and is even lower than the RSME of the previously estimated models.
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Figure 4.12: Prediction of the number of in-game actions

The reason for this is probably hidden because there were no in-game events or similar events
during this period that would otherwise cause a high variance.

In summary, our macro-level analysis indicates a strong relationship between the situation and
the number of in-game actions. Furthermore, we have demonstrated the predictive power of
situations in terms of the number of in-game actions. In order to analyze further influencing
factors that have a local influence, we analyze contextual information at the micro level in
the following subsection.

Micro-Level Analysis

In the third part of our analysis, we examine the relationship between situation and the number
of in-game actions at the micro level. We use negative binomial regression to examine this
relationship. Negative binomial regression is a common method for modeling count variables,
in particular for over-dispersed count outcome variables.

Our regression model essentially consists of three variable groups: Physical, Time, and
Computing (see Equation (4.35)). These variable groups contain the variables of the dataset
presented in the previous section, where i is the grid indicator and t the day during the
observation period.
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Table 4.9: Regression results (Micro level)

Variable IRR Mean

Trend 0.9992*** 0.0000
Weekday =

Monday 1.1690*** 0.0048
Tuesday 1.1196*** 0.0046
Wednesday 1.1151*** 0.0046
Thursday 1.1045*** 0.0046
Friday 1.1400*** 0.0047
Saturday 1.0521*** 0.0043

Public Holiday 0.8217*** 0.0057
Temperature 1.0102*** 0.0005
Temperature2 0.9995*** 0.0000
Humidity 0.9973*** 0.0001
Precipitation 0.9998*** 0.0000
Attractions 1.0245*** 0.0012
Wi-Fi APs 1.0001*** 0.0000
CBS 1.1029*** 0.0009
Ingr. Event 212.5932*** 3.4944
Ingr. Anomaly 1 1.0685*** 0.0073
Ingr. Anomaly 2 1.0507*** 0.0034
Intercept 0.1391*** 0.0013

N 13,028,400
Groups Grids 25,200

*: p < 0.10, **: p < 0.05, ***: p < 0.01

ing actionsti = α0+
∑︂
p∈P

βp · Physicalpti

+
∑︂
k∈K

γk · Timekti

+
∑︂
u∈U

δu · Useruti

+
∑︂
c∈C

ζc · Computingcti

+ϵti (4.35)

Table 4.9 presents the results of the model estimated on in-game actions on the micro level
reported as an incidence-rate ratio (IRR).

Starting with variables related to Physical information on the micro level, we also find
significant relationships for all variables used here. Due to multicollinearity, we have deliberately
dropped variables for the following analysis. For example, the number of Wi-Fi APs of the
Computing dimension provides a good proxy for population density within a grid, while
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places with a high population density also have a high density of restaurants, cafés, and bars
that are part of the Physical dimension.

By considering weather-related variables, we find a significant influence also on the micro level.
In particular, precipitation and humidity (p < 0.01) shows a significant influence. According
to our estimations, a one unit increase in precipitation (measured in tenth of mm) decreases
the in-game actions on average by a factor of 0.9995. Also, areas with tourist attractions
(p < 0.01), which usually increase the attractiveness of a place, have a positive influence
on the in-game actions at this place. A point of interest increases the in-game actions on
average by +2.56% for the given grid.

Followed by the factors of Time information, the results reveal a statistically significant
(p < 0.01) weak negative trend in the in-game actions. This finding is also consistent in the
analysis of macro-level. With regard to weekday effects, the results show a higher activity for
all weekdays compared to Sunday. The effect seems to be greatest for Mondays and Fridays.
Similar to the macro-level analysis, we also see a negative relation between in-game actions
and public holidays at the micro level. According to our estimations, public holidays decrease
the in-game actions by 16.7%.

With respect to the Computing dimension, grids with many cellular base stations (p < 0.01)
and Wi-Fi APs (p < 0.01) show significantly higher numbers of in-game actions. The estimates
show that the effect for cellular base stations is significantly higher than for Wi-Fi APs. This
is probably due to the fact that the mobile network is the only way to access the Internet,
whereas the density of Wi-Fi access points has only a weak effect.

Regarding the User dimension, the results show a significant influence of local in-game
events on the in-game actions within a grid. If an event takes place within a grid, the number
of in-game actions increases by a factor of 212.6 (p < 0.01). Furthermore, with regard to
anomalies, the results indicate a significant (p < 0.01) positive effect of both types.

In summary, a large part of the contextual information of both analyses shows a highly
significant relation. Beyond that, the models show a high explanatory power of situations with
regard to in-game actions at both the micro and macro level. This emphasizes the importance
of situation-awareness, especially in augmented reality applications, which, compared to other
applications, often take place outdoors and are particularly situation-dependent. Furthermore,
the results of our predictions show how the number of in-game actions can be forecasted
accurately based on the situation on the micro and macro level.

4.3.3 Related Work

Service Usage Prediction and Context

Predicting the number of in-game actions can be considered a special case of predicting
service usage, which has a long tradition in computer science and is still an area of recent
research. Researchers have proposed various approaches to predict, for example, CPU and
network load [70], both in the context of grid computing [277] and in cloud computing
infrastructures [41, 121, 169], as well as the utilization of services [229] and infrastructures
such as computer networks [142] or power networks [125].
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For our work, predicting the load in cloud computing infrastructures [41, 121, 169] is of
particular interest. In general, the approaches proposed in the literature use the ability of
dynamic resource allocation in cloud infrastructures in order to optimize resource allocation
and utilization [41, 169] and to reduce power consumption of the cloud computing hosts
[27, 103]. Accurate predictions are necessary to reallocate resources of services according to
their upcoming service usage [41, 121, 169]. However, the majority of approaches use internal
data as sources of information for prediction, i.e., information such as the used resources
(e.g., CPU utilization, memory, and storage) in combination with temporal properties to
predict future utilization. In general, these approaches attempt to predict future service load
by historical load patterns and trends over time. However, this neglects context factors that
also represent an external source of information and can have an impact on service users and
service usage.

In recent years, context-awareness for mobile devices and applications has gained attention
due to the increased availability of context factors measurable by mobile sensors (e.g., GPS,
temperature, acceleration). Researchers use contextual factors to optimize predictions in
various areas, for example, to predict the usage of mobile applications based on context
factors [226], provide recommendations based on a context-aware rating prediction [201], or
predict the most probable activity using context factors [202]. However, approaches in this
area usually consider individual users and are thus influenced by the preferences and usage
patterns of individual users. Hence, it is difficult to predict the general service usage or load
from individual usage patterns only.

Only a few approaches consider the effect of context factors for the prediction of infrastructure
usage or load on the overall level. In particular, approaches to predict the power consumption
or load [125] often use context factors such as weather conditions to improve their prediction
accuracy. These approaches are based on the assumption that users, for example, use
other electronic devices depending on the weather, which explains the variance in power
consumption. Furthermore, researchers have shown how to use user roles for context-aware
service recomendations [259]. Paasovara et al. [186] show that mobile AR games also
incorporate user interactions outside the game, which is part of the social context and can
influence the usage of mobile AR games, e.g., during in-game idle times. In other areas,
Hinz et al. [110] show that the context of TV consumption can influence economic behavior
in online auctions. All these studies demonstrate the influence and the predictive power of
context factors.

Overall, the use of context factors in the prediction of service usage is not very common,
although the optimization potential and application areas are manifold. Our study addresses
this gap in the literature by contributing in two ways. First, through our data analysis, we
highlight the role of context factors in the presented scenario, which serves as an entry point
for further research. Second, we provide a valuable dataset containing the service usage of a
popular AR game with mobility patterns and additional context factors. This dataset can be
used for context-related research, such as context-aware placement of caches and cloudlets.

Dataset Application Areas

Predicting service usage is useful for several applications and use cases that can be evaluated
using our dataset, e.g., cloudlets. Cloudlets bring storage and computing capabilities closer to
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the users. As a consequence, data and computations can be offloaded [210]. Thus, cloudlets
support low-latency services, and existing communication infrastructures such as wireless
access points [166, 210], radio access networks [1], or femtocells [47] can be used to deploy
cloudlets. Liu et al. [151] show that cloudlet placement, as well as offloading data to mobile
edge nodes, is a promising strategy to improve network efficiency.

Taking into account context factors is important for this area of research. One stream in the
literature focuses on the question of where to ideally place cloudlets under the constraints
of capacity utilization and costs for acquisition [37, 38]. Yang et al. [263] discuss the basic
service placement problem as well as the cost-aware service placement problem of cloudlets
as an instance of considering the computing context.

Researchers often use existing datasets or combine different datasets to evaluate these
approaches. For example, Yang et al. [263] use an existing dataset of taxicab movements and
combine this dataset with a demand distribution for certain services. Both data sets together
simulate the demand for certain services at certain locations as a user moves through a city.
The dataset of GPS trajectories of taxicabs published by Yuan et al. [270] is a widely used
dataset for different evaluation purposes in the fields of data and knowledge engineering,
machine learning, mobile intelligence, navigation, and transport [173, 271, 279, 280].

However, this combination of datasets (i.e., mobility traces with demand distribution) does
not consider the dependency of the context. This means that the distribution of the service
demand is identical for all locations, and the overall demand increases depending on user
traces in a location. However, this combination of datasets ignores the fact that the demand
for certain services is also affected by context factors such as location. For example, the
service demand for a mobile app containing places of interest in the state of New York
might be higher in New York City than in surrounding cities. Therefore, the distribution of
the demand for services also depends on the location and is not identical for all locations.
However, there are numerous other factors such as weather, daytime, etc. that can have
an impact not only on service demand but also on the mobility behavior of users. All these
factors are context factors and provide information about the situation in which a user uses a
certain service or not. Our dataset addresses this problem by providing a variety of measured
context factors with respect to the time and location of service usage. This supports the
evaluation of various context-aware applications and use cases, such as context-aware cloudlet
placement strategies.

4.3.4 Summary

The case study based on Ingress highlighted metrics and measures for situation-aware mobile
AR applications. In the course of the analysis, the relationship between the service providers
situation and the number of service usages was investigated. The results show that more than
84% of the variation of the number of in-game actions can be explained by being aware of
the situation. This shows the enormous influence of the situation on the number of in-game
actions. Based on the situation, the number of in-game actions for one month was predicted
with high accuracy.
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4.4 Summary

This chapter contributed to the novel concept of situation-aware infrastructure edge computing.
It was shown how a service provider can leverage the concept of situation-awareness to decide
on which infrastructure devices a service should be placed by perceiving information about its
own situation regarding providers of infrastructure devices and the users.

In particular, the following contributions were presented:

• Multi-Stakeholder Bargaining: A situation-aware approach to support economic decision
about on which infrastructure devices to place a service despite incomplete information.

• Predicting In-Game Actions: Using information regarding the users of a service to derive
the service provider’s situation for deciding where a service should be placed.
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This chapter presents two approaches using situation-awareness in the area of device edge
computing. Section 5.1 motivates the use of situation-aware device edge computing. Section 5.2
introduces an approach where mobile devices in opportunistic networks use their situations to
decide about which mobile devices in the network a process should be offloaded to. After
that, an approach is presented in Section 5.3 that projects a mobile device’s future situation
regarding its connection state. It is predicted whether a device’s Wi-Fi connection is lost
within a given time frame and decided whether a proactive handover to a cellular connection
should be performed or not. Section 5.4 concludes this chapter.

Parts of this chapter have been published previously [112, 233].

5.1 Motivation

One of the features of device edge computing is that processes are offloaded from mobile devices
to other mobile devices in the same network. This provides mobile devices a collaborative
computation and storage resource pool in their proximity. Here, the main goals are to reduce
latencies, to provide computation resources when cloud- or infrastructure devices are either not
available or not feasible, and to reduce unnecessary data transfers through network backends
to clouds if the computation can be done in proximity of the offloading mobile device [269].
There are many use cases for device edge computing, e.g., face detection in emergency
scenarios could help rescue helpers to save resources for essential communication [62], and
environmental monitoring with mobile sensor nodes is a current research topic [24]. Situation-
aware decisions with respect to the question on which mobile devices in the proximity a process
should be offloaded to can lead to significantly reduced latencies and execution times and a
more fair distribution of multiple processes within the network of mobile devices. Further,
situation-awareness in device edge computing improves the selection of mobile devices, since
compute nodes that are especially suitable to execute a given process improve the completion
rates of offloaded processes. Finally, connections between mobile devices, but also between a
mobile device and for example a Wi-Fi access point, can be interrupted due to the mobility
of the devices. With respect to this aspect, a situation-aware approach can reliably predict
such connection losses so that decisions regarding countermeasures like setting up alternative
connections in advance can be made confidently.

Figure 5.1 shows how both above presented problems, i.e. (i) finding the best available
mobile devices to offload a process on and (ii) predicting connection losses in advance, are
solved using the novel concept of situation-aware device edge computing. To cope with
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Figure 5.1: Situation-aware device edge computing

problem (i), a mobile device perceives information published by available mobile devices
within the network and comprehends its own situation with respect to which devices are
available to execute processes on and their capabilities and limitations. This method of mobile
devices announcing their capabilities and limitations copes with two challenges in device edge
computing applications. First, due to the heterogeneity of mobile devices with respect to
operating systems, CPU architectures and available hardware components, announcing this
information aids in using only capable devices. Second, this information is not perceivable
from the outside, leading to incomplete information. By letting the mobile devices publish
this information, offloading devices can cope with this incomplete information. Based on
comprehended current situation the offloading device’s future situation is projected with
respect to which mobile device is able to execute the task and likely is able to return the
result in a given time. Finally, it is decided on which device a process is offloaded to, indicated
by the actions taken in Figure 5.1, where the dashed arrow is the option that was not chosen.
For (ii), a mobile device perceives information that describe its situation with respect to the
own connection status like the signal strength of the wireless connection but also velocity and
altitude. Based on this information, the current situation of the connection is comprehended
and the future situation with respect to the connection state is projected. The projection
is used to decide whether an alternative connection should be established in advance. In
Figure 5.1, the device decides to establish a connection to the base station and leaving the
Wi-Fi access point.
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Client
Offload

Worker
Task 1

Worker
Task 2

Figure 5.2: Illustrative example: executing a workflow on two workers

5.2 OPPLOAD: Offloading Computational Workflows in
Opportunistic Networks

In this section, OPPLOAD is presented, a novel situation-aware framework for offloading
computational workflows in opportunistic networks. Figure 5.2 shows an example for offloading
a simple face detection workflow where Task 1 converts an image to grayscale, and Task 2
extracts faces and returns them to the offloading mobile device, i.e., the client [137]. Using
OPPLOAD, mobile devices search for other suitable mobile devices, so-called workers, for
the next task, using a novel situation-aware approach. To do so workers publish information
regarding their capabilities and resources (available memory, remaining battery capacity,
available hardware components, etc.). Clients perceive this information, comprehend their
situation and only select capable workers based on the projected future situation. Using
this method, clients can deal with incomplete information. Furthermore, workflow tasks
can be executed on multiple workers that are automatically selected based on the situation
of the client with respect to the network to balance the overall load, by projecting the
situation change when a task is offloaded to workers, i.e., workers are rated based on their
available resources, their capabilities, and the proximity to the calling client/worker. To
show the feasibility of this approach, up to 30 mobile devices are emulated in different
experimental settings, showing that the success rate of offloading increases by up to 40%
with negligible overhead. The Python implementation1 and all artifacts23 of this section are
publicly available.

This section is organized as follows. Subsection 5.2.1 presents the design of OPPLOAD
and Subsection 5.2.2 covers its implementation. Subsection 5.2.3 presents an experimental
evaluation of OPPLOAD and Subsection 5.2.4 discusses related work.

Parts of this section have been published previously [233].

1https://github.com/umr-ds/OPPLOAD
2https://github.com/umr-ds/OPPLOAD-experiments
3https://ds.mathematik.uni-marburg.de/oppload/oppload results.tar.gz
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5.2.1 OPPLOAD’s Design

Workflow-based Computations

OPPLOAD supports workflow-based computations where a client defines a workflow that
consists of a chain of tasks. The client assigns each task to a worker, and OPPLOAD will
take care of the execution order, even in unpredictable network environments. Furthermore,
OPPLOAD transparently passes inputs and outputs between the different tasks of a workflow.
Connectivity is achieved using protocols for Disruption-Tolerant Networking (DTN), while we
assume that the communication overhead in terms of CPU and memory resources for remote
execution is negligible [21].

Worker Addressing

OPPLOAD supports two worker addressing modes: Ahead of Time (AoT) and Just in Time
(JiT). This makes it possible to select the best suitable and available worker for each task,
based on the user’s preferences and the network environment.

Ahead of Time Using AoT addressing, the client assigns a task to a worker explicitly. It is
possible to select a different worker for each task, as well as the same worker for different
tasks. This mode exists mainly for two reasons. Privacy-sensitive tasks should be executed on
known and trusted workers. Furthermore, worker operators might give certain guarantees,
e.g., to stay in the network or to always execute a task, even under heavy load.

Just in Time In JiT mode, workers publish all services they offer periodically by broadcasting
them into the network. These offers are stored on every node locally, where workers are
searched from. Since in opportunistic networks nodes can appear and disappear frequently
from the network, these offers are only valid for a certain time period, depending on the
dynamics of the network.
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If a client does not assign a task to a specific worker, OPPLOAD will transparently choose a
suitable worker by passing the workflow description through a number of steps that are part
of worker assignment, as shown in Figure 5.3. During the first step of worker assignment, a
worker with an offer for executing a desired task will be searched in the local database. If the
search is successful, the task will be executed on this worker. This mode is helpful when it is
not clear whether a worker is available for a task.

Worker Capabilities

Workers announce their capabilities and available resources, such as CPU load, available
memory, and other metrics. Additionally, workers announce available special hardware or other
properties that help executing specific tasks better than other workers, e.g., face detection in
images is more energy efficient on a GPU that may not be available on all workers. The time
interval for periodic capability announcements matches the dynamics of the network. The
more dynamic a network is, the more often the capabilities are broadcast. In the second step
of worker assignment using JiT addressing, these capabilities are taken into account. Task
requirements specified by the client are compared to the capabilities published by the workers
to select capable workers.

Worker Assignment

During worker assignment, multiple capable workers may be available. Therefore, we have
developed a novel worker assignment algorithm that distributes the workload fairly in the
network on multiple workers and selects nearby and powerful workers. Instead of simply
selecting a random worker or the worker with the most recent offer, we introduce a worker
rating scheme based on different weighted metrics. The user has to estimate, e.g., CPU,
memory, or disk space requirements for a task. Additionally, the rating scheme also keeps
the tasks spatially close to the calling client. Therefore, the geographical distance between
the two involved nodes is a metric of the rating. During worker assignment, the client will
calculate for each capable worker how well it satisfies each requirement of a task by dividing
the capabilities published by workers by the given requirements for every metric. By applying
this rating scheme, the best capable worker based on the local knowledge is selected. However,
this can lead to an unfair load distribution in the network, where nearby and powerful workers
could be disadvantaged, since they would always be chosen. Therefore, a worker is selected
from the sorted list of workers based on their rating following the folded standard normal
distribution. This ensures that a nearby and powerful worker will be selected with a high
probability, but the load is also distributed to different workers, leading to a fair workload
distribution approach.

Error Handling

Bundle delivery in opportunistic networks cannot be guaranteed. If a worker disappears in
OPPLOAD before it could execute an assigned task, the client would wait infinitely long.
Therefore, users can specify a time-to-live (TTL) for a workflow. This has two implications.
First, the client stops waiting for the results after the TTL has expired, making it possible to
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re-issue the workflow. Second, a worker will not execute a task if the TTL is expired, which
preserves resources on workers. This ensures a defined behavior in cases where no result can
be retrieved in time.

If errors occur in conventional networks, clients can be notified immediately to handle the
error. In opportunistic networks, this is not necessarily possible due to potentially poor network
conditions. Thus, OPPLOAD handles three classes of error. The first class is a task execution
error. These occur during the execution of the task itself. The offloaded task can implement
error and exception handling on its own and provide error messages and stack traces, which
OPPLOAD will deliver to the client. The second error class is a worker selection error. These
errors occur if the execution of a task was successful, but a worker cannot find a subsequent
worker during the assignment. The third error class is a worker calling error. These errors
can occur in different situations, such as when the worker is no longer capable to execute
the task or if it is not offering the service and was called by mistake in AoT mode. Error
handling for these errors depends on the addressing mode. If the worker on which the error
occurred was selected in JiT mode, it will inform the prior worker about the error, which will
retry to assign the task to a capable worker one more time. If the second try also fails or
the worker was chosen in AoT mode, the client will be informed about the error using the
same communication mechanisms as before. The client is then responsible to handle the error
appropriately. After an offloaded task finishes or an error occurs, OPPLOAD will clean up all
involved files and bundles across all workers to save storage.

5.2.2 Implementation

We implemented OPPLOAD based on the bundle store implementation, Rhizome, of the
Serval Mesh [97], which uses a simple epidemic DTN routing protocol. OPPLOAD is written
in Python and uses Rhizome’s RESTful API for handling all network-related duties. In previous
work, we have conducted an in-depth evaluation of Serval in various experiments with different
network setups and usage patterns [21].

Offering a Service

Workers offer a service by name, an arbitrary number of parameters, and an executable. Any
executable that runs on the underlying operating system can be used, e.g., Python programs,
or compiled binaries. Every worker periodically publishes the definitions of its services, and
clients will then use these offers for the JiT worker assignment. In addition to the service
offers, workers also announce their capabilities as key-value pairs that are published together
with the service offers to reduce the network overhead.

Executing a Workflow

To execute a workflow, a user splits it into tasks to be executed across multiple workers. All
tasks have to be described in a workflow description containing the desired worker (either
AoT or JiT), the name of the task, and all required parameters, for each task. A workflow
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Figure 5.4: Exemplary overall workflow time in different configurations

description must include at least one task. This workflow description has to be provided to
the OPPLOAD client that handles the remaining parts transparently.

A workflow description has the following form. First, a task has to be assigned to a worker,
which can be an address for AoT mode or a placeholder indicating that JiT mode should be
used. Then, the name of the service to be executed has to be given, followed by all parameters.
Using another placeholder indicates that the output of a task should be the input for the
next task. Each task can only have one result, and the placeholder is allowed only once per
task. Finally, a task can have requirements that are only used during assignment for this
particular task. After specifying the workflow, OPPLOAD will assign a worker to the first
task, if applicable. The first step is to rank all workers, which is based on the requirements,
as introduced in Section 5.2.1. For each metric, a weighted rank is calculated and summed
up, using the weight and the requirements as well as the worker’s capability for the particular
metric. Workers are sorted based on their ranking, and a random worker is selected based
on the folded normal distribution with location parameter µ = 0 and scale parameter σ = 1.
All files required for a task, the workflow description itself, and task results or errors will be
packed into an archive that will be sent as an encrypted bundle to the selected worker. By
packing everything in a single archive, fragmentation in transmission is avoided, and a worker
is guaranteed to have everything required for processing the task.

When the offloaded task arrives, the worker starts preprocessing by unpacking the archive and
parsing the workflow description. It will check whether it is capable of executing the assigned
task, since the capabilities could have changed during the transmission due to network delays.
If the worker is capable, the service will be executed. After the service finishes, the worker
will replace the parameter placeholder of the next task in the description with the result of
its execution. Finally, the worker assigns a next worker if required, packs everything into an
archive, and passes it on.

When the final task is executed, the last worker will return the result to the client that will
then trigger a network cleanup. This is achieved by having the workers remove their payloads,
and it is finished when the final result is removed. If an error occurs, the worker will stop
further execution, pack all intermediate files including the error log into an archive and return
them as an error bundle to the client, which will raise an exception. The client is responsible
to handle the exception appropriately, e.g., re-execute the workflow.
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5.2.3 Evaluation

Test Setup

To evaluate OPPLOAD realistically, the network emulation framework Common Open Research
Emulator (CORE) was used. In contrast to simulation approaches like NS-3, CORE uses
Linux namespaces to execute binaries and scripts natively, which gives us the opportunity to
evaluate software and frameworks as close to reality as possible by still being able to scale
the experiments easily [8].

Test Cases To evaluate OPPLOAD, the algorithm of Lampe et al. [137] for detecting faces
in images on smartphones was adapted. The workflow of this algorithm has five tasks. The
first task is to denoise an image. The second task is to scale the image up by 10% to increase
the probability of fitting a possible face into the detection window. The third task is to crop
the image by 10% to decrease the image size, which speeds up the detection time while
maintaining a high detection accuracy. The fourth task converts the colored image into an
8-bit grayscale image, which additionally speeds up face detection while maintaining the same
detection accuracy. The fifth task detects faces on the preprocessed image. These five tasks
are executed on five different workers in the network. In every experiment, the bandwidth
of the network links was set to 54 Mbit/s, and a delay of 20 ms was used. All nodes were
configured as workers. In JiT mode, we compared four worker assignment algorithms: (i:
recent) selecting the worker whose offer arrived most recently, (ii: random) selecting a worker
randomly, (iii: best) selecting the best available worker based on our rating, and (iv: spread)
using the algorithm described in Section 5.2.1 to spread the load among the best available
workers. Since OPPLOAD is designed for networks with mobile devices as workers, the weights
for the worker rating were set to keep the tasks on nodes with high energy reserves and
close to the client. Therefore, available energy and distance were weighted with 30%, CPU
with 20%, and available memory and free disk space with 10%. We modelled energy using
an energy unit e. These were used to model energy consumption for each task related to
the task’s execution time, meaning that the longer a task takes on average, the more e is
consumed. A service offer from a worker was set to expire after 120 seconds, as described in
Section 5.2.1. Finally, workers announced their capabilities every 2 seconds, since this is the
sweet spot announcement interval, as shown by Baumgärtner et al. [22].

Baseline Evaluation

The baseline tests show how OPPLOAD performs under good network conditions. For these
tests, twelve static nodes were arranged in a ring, where each node had exactly two neighbors
and only the first node was a client. In AoT mode, workers were selected at the start of an
experiment in the same order as they appear in the network, always skipping one node. The
same workers were used for all AoT experiments for comparability. To evaluate the effect of
worker capabilities, this setup was first executed with all workers equally capable of executing
a task and a second time when we used the following capability distribution: 20% (2) of the
workers were capable with no constraints, 40% (5) were also capable, but had less energy
reserves, 30% (3) could execute the task, but with limited capabilities (like little available
memory) and 10% (2) were not capable to execute the task at all. The capabilities were
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Table 5.1: Average runtimes of workflow parts in the ring scenario in client-only tests and
using AoT addressing

Addr. Exec. (s) Runt. (s) Transm. (s) Total (s)

Client 8.10 (0.21) 3.55 (0.11) 0.87 (-) 12.52 (0.32)
AoT 9.94 (0.26) 3.77 (0.08) 20.44 (0.13) 34.15 (0.47)

modeled using available disk space, memory, CPU resources, and energy e, which was reduced
according to the above description. Since worker assignment requires randomness, our random
number generator was initialized with 25 different seeds. Finally, we executed the experiments
also on the client to have a benchmark for comparison.

Workflow Profiling To analyze the overhead of OPPLOAD, workflow processing was
split into three phases: (i) runtime (red) of the OPPLOAD implementation, i.e., pre- and
postprocessing and worker assignment in JiT tests, (ii) transmission time (blue) for transmitting
the bundle, and (iii) execution time (green) of the task itself. The colors refer to Figure 5.4.
The x-axis shows the workflow execution time, each bar denotes a specific configuration.

As shown in Figure 5.4, OPPLOAD does not introduce significant processing overhead.
The workflows are offloaded from the clients 10 seconds after the start of the experiment.
Regardless of the test configuration, postprocessing and worker assignment require about 1
second, while preprocessing can be neglected. The execution time depends on the task. While
scaling, cropping, and grayscaling only require about 2 seconds, denoising and detecting faces
can take up to 6 seconds.

If AoT addressing is used in known topologies, users can estimate a workflow time range in
which it finishes. The downside is that if a worker is not capable of executing a task, the
entire workflow will be stopped, as indicated by the second last bar in Figure 5.4. Therefore,
tasks should only be explicitly assigned in cases where no other option is desirable, or if a
task must be handled by a specific worker.

The major overhead is due to bundle transmission across the network. The last bar of
Figure 5.4 shows the same workflow executed on the client, thus no networking is needed. The
entire workflow needs about the same time as two to three tasks in the JiT tests, depending
on the worker assignment. Although overhead is introduced by network related operations,
it can still be better to offload workflows than executing them locally. First, the client may
not be able to execute the tasks due to resource constraints or other limitations. Second,
the longer the tasks take to be executed, the more negligible the communication overhead
becomes. Finally, the decision whether to offload also depends on the number of hops between
the offloading node and the worker, as indicated by Graubner et al. [102]. For OPPLOAD,
we assume that the user decides whether to offload during the creation of the workflow.

Tables 5.1 and 5.2 show the average time needed for the parts of a workflow (the numbers
in brackets show the standard deviation) in seconds. Table 5.2 indicates that the overall
workflow time highly depends on the worker assignment in the JiT experiments. The recent
worker assignment with an average of about 64.48 seconds requires the longest time, due to
the long distance between the nodes, since their offers take longer to reach the client and thus
arrive more recently. The standard deviation is also relatively high with more than 10 seconds,
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Table 5.2: Average runtimes of workflow parts in the ring scenario using JiT addressing and
all four assignments

Assign. Exec. (s) Runt. (s) Transm. (s) Total (s)

Recent 9.65 (0.26) 3.89 (0.09) 50.94 (10.20) 64.48 (10.50)
Random 9.82 (0.16) 3.93 (0.09) 32.60 (4.27) 46.35 (4.25)
Best 10.02 (0.28) 3.94 (0.08) 23.54 (9.63) 37.49 (9.99)
Spread 9.95 (0.20) 3.95 (0.09) 24.05 (6.82) 37.94 (7.11)

indicating long-running tasks and differing results. The random worker assignment achieves
better results with about 46.35 seconds on average and a deviation of 4.25 seconds, since
closer workers are chosen. Always selecting the best available worker leads to significantly lower
workflow times, requiring about 37.49 seconds, but with a standard deviation of 9.99 seconds.
Finally, using the spread assignment algorithm, the workflow time does not significantly differ
from the previous assignment algorithm, using about 37.94 seconds, but has a better standard
deviation of 7.11 seconds. If all workers are equally capable, the workflow times using the best
worker or the spread algorithm do not differ. This shows clearly that in terms of workflow
time, the algorithm using the best workers and our spread approach outperform the other
approaches. But since not all workers are equally capable in the different capability tests,
tests using the best worker have a broader standard deviation, since the capable workers are
further away in the topology. This means that always using the best worker is slightly faster
than using the spread algorithm, but is more unpredictable in how long the execution of a
workflow will take, since the very best workers will be worn up and worse workers have to
be chosen consequently. Therefore, we propose our spread algorithm as the best available
solution. Executing a workflow locally at the client would only require execution time and
runtime, since the networking part is not needed. As shown in Table 5.1, the total execution
time is about 12.52 seconds and is pretty stable with only about 300 ms deviation. Finally,
the AoT mode needs about 34.15 seconds in total and is also stable with only about 400
ms deviation. Since in AoT mode a worker is always two hops away from the next hop, the
transmission is even faster than using JiT mode with the best worker assignment.

Worker Load Distribution Figure 5.5 shows the worker load distribution in all four worker
assignment algorithms using JiT mode. On the y-axis, the calling nodes are shown, whereas
on the x-axis the assigned worker is denoted. The lighter the color, the more often a particular
client selected a particular worker.

The recent selection approach spreads the load over particular nodes, but almost always
selects a worker on the opposite side of the network, leading to long-running workflows. Using
a random worker, the workload is distributed on nearly all available workers. Although this
leads to a fair load distribution, the profiling analysis shows that this approach does not
necessarily give the fastest workflow execution times. Additionally, tasks are sent to spatially
far away workers, leading to the same problems of long transmission times and network splits
in mobile networks as in the recent approach. Always using the best available worker keeps
the workflow execution spatially close, and the overall runtimes are the lowest achievable,
but with an unfair load distribution, which disadvantages close and powerful workers over
others that are also able to execute a task. In dense networks with a high offloading frequency,
this could lead to overloaded nodes and empty batteries, which in the end would be less
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Figure 5.5: Selected workers in ring JiT scenarios

beneficial for the overall performance. Finally, our approach spreading the load on the best
workers leads to the best overall results. Close and powerful workers are preferred over others,
while less powerful workers also have chances to be selected. Overall, as previously shown in
Table 5.2, the workflow times are nearly as good as always selecting the best worker. Thus,
our algorithm should be used instead of the other presented approaches.

CPU, Memory, and Bandwidth Utilization

Figure 5.6 shows the CPU and memory utilization of an experiment in AoT mode where every
worker was equally capable to execute a task. On the x-axis, the time is shown, whereas the
left (blue) y-axis denotes the CPU usage and the right (orange) y-axis shows the memory
allocation. In both graphs, the resource usages of all nodes are stacked, whereas 100% CPU
load means that one CPU core of the emulation host is fully utilized (the emulation host had
80 CPU cores and 256 GB RAM, both are not exceeded).

During the first 10 seconds, the emulated nodes are started, configuration files are prepared,
etc. After 10 seconds, Serval and OPPLOAD are started, which require many computations
(e.g., loading Python interpreters into memory, computing hashes for the worker capabilities),
and the CPU utilization has a high peak with more than 400% CPU. During the experiment,
five peaks can be identified, which are the five tasks of the workflow. The CPU peaks are more
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Figure 5.6: CPU and memory utilization in AoT mode; every worker capable

blurred, since not only during the task the CPU is used heavily, but also during transmitting
the result to the next worker using Serval. Memory usage shows that on average every node
requires about 60 MB of memory, while the execution of a task leads to peaks, due to the
fact that the image and the task binary itself have to be loaded into memory.

5.2.4 Related Work

Workflow-based Approaches

To offload tasks to other mobile devices, Serendipity splits each task into smaller tasks that are
offloaded if a worker is found [223]. In a mobile cloud computing scenario, Ahn et al. [7] start
the execution of tasks locally and offload them to suitable cloudlets. Ravi and Peddoju [198]
present an offloading algorithm where an application is partitioned into clusters containing
tasks to decide whether to offload, based on a density-based clustering algorithm.

Although these proposals follow a workflow-based approach, they do not have a worker
selection algorithm to distribute the load fairly in the network and/or they are not suitable
for opportunistic networks.

Proximity-based, Movement-based, and Social Approaches

COMET [101] is a framework for offloading parts of applications to neighboring nodes to
speed up their execution. Mtibaa et al. [174] propose a framework where a task is offloaded
to mobile devices that belong to the same social situation, e.g., the same household or a
group of first responders in a disaster scenario.
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Wang et al. [252] present an offloading scheme for opportunistic networks where mobility
patterns are analyzed to estimate the number and duration of contacts for the offloading
decision. Zhang et al. [275] consider the load of a device, the availability of cloudlets, and user
mobility to maximize the probability of successfully offloading tasks. Honeybee [83] includes a
work sharing algorithm that employs nearby nodes to execute tasks based on job stealing.

These publications either focus on a single aspect (e.g., movement/proximity of nodes or
social relationships), or they are designed for cloudlet scenarios and thus are not suitable for
opportunistic networks. Additionally, most of these approaches do not follow a workflow-based
approach and offload only entire tasks, without splitting them into smaller tasks.

Offloading in Cloud Environments

Deng et al. [68] decide for each task of a workflow whether it should be offloaded to the cloud
or executed locally, based on the capabilities and the movement of nodes. Chatzopoulos [48]
use an incentive mechanism where users have to define how many resources they are willing
to spend for executing offloaded tasks. Chowdhury et al. [58] migrate tasks between cloud,
mobile devices, or robots by considering energy, latency, and task execution deadlines.

All these works are designed for cloud environments and are therefore not optimized for
resource savings in opportunistic networks with mobile devices.

Mobile Cloud, Edge, and Fog Environments

Fan et al. [78] present an approach where a base station in a mobile cloud scenario can either
execute an offloaded task itself or further offload it to another base station. Using a fuzzy
decision engine, Flores et al. [85] consider multiple criteria like CPU power to decide whether
a task should be offloaded to a mobile cloud server. Yang et al. [265] offload computations in
mobile cloud scenarios to maximize the throughput of applications. Chen et al. [53] formulate
a game theoretic approach for offloading tasks in a mobile cloud scenario. Bellavista et al. [26]
present a computation offloading approach, where tasks are offloaded to mobile edge cloud
instances and the results are return over the same node or a different one, if the user has
moved in the meantime. Zhang et al. [273] introduce a task allocation scheme where social
sensing applications are offloaded to edge servers to maximize a node’s payoff by saving
energy. Yang et al. [264] propose an algorithm to offload tasks to a nearby edge server.

These approaches assume the availability of a mobile cloud, cloudlets, or similar technologies.
In addition, neither worker capabilities, nor highly unreliable networks, nor workflow-based
execution to preserve resources are taken into account.

Other Approaches

Funai et al. [92] present an approach that minimizes energy consumption by offloading
computations across multiple hops in an ad-hoc network. Zanni et al. [272] propose an
approach to split arbitrary Android apps into smaller tasks that can be offloaded. Sterz et
al. [234] present a framework for remote procedure calls in disruption-tolerant networks with
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separated control and data channels to cope with short contact durations. Internet-of-Things
devices use more capable devices that are reachable within one hop to execute a task [73].
Feng et al. [82] present an approach where mobile devices offload tasks to other mobile
devices via cellular base stations without prior knowledge of the devices’ resources.

These approaches are either not suitable for opportunistic networks and faulty situations, or
they only consider a very limited scope of capabilities and worker selection. Furthermore, most
of them do not handle workflows but single tasks only, which is not suitable for scenarios
where mobile devices are the main execution platforms.

To the best of our knowledge, there is no work that takes all these parameters into account,
introduces a transparent workflow-based computational task offloading algorithm for multi-hop
opportunistic networks, and provides an open source proof-of-concept implementation.

5.2.5 Summary

This section presented OPPLOAD, a novel situation-aware framework for offloading com-
putational workflows in opportunistic networks, where workers announce their capabilities
and available resources that is perceived by clients and used to comprehend their situation.
Clients then can project their future situation to decide on which worker a task should be
offloaded to. Experiments showed that a situation-aware approach is important for speeding
up workflow execution and for spreading the load fairly on spatially close but powerful workers,
which increases the rate of successful offloadings significantly. Finally, due to the workers
announcing their information, clients can deal with incomplete information.
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5.3 Learning Wi-Fi Connection Loss Predictions for Seamless
Vertical Handovers Using Multipath TCP

In device edge computing environments, smartphones and similar mobile devices are used to
provide computation and storage facilities within a network. This makes seamless connectivity
desirable. The mobility of devices leads to the problem of deciding when to use which wireless
connection. In this section, a novel situation-aware approach to predict Wi-Fi connection
loss before the connection breaks to perform seamless vertical Wi-Fi/cellular handovers is
presented. This approach relies on information perceived by multiple smartphone sensors (e.g.,
Wi-Fi RSSI, acceleration, compass, step counter, air pressure), followed by the comprehension
of the situation followed by a projection of the mobile device’s situation with respect to
the state of the connection. A random forest classifier and an artificial neural network on
roughly 20 GB of sensor information collected by five smartphone users over a period of three
months is trained. The trained models are executed on smartphones and reliably predict Wi-Fi
connection loss 15 seconds ahead of time. Experiments show that the proposed situation-aware
approach provides seamless wireless connectivity, improves quality of experience by increasing
mean opinion scores (MOS) from 2.7 to up to 3.8 for certain scenarios, and requires up
to 50% less cellular data compared to handover approaches without Wi-Fi connection loss
predictions. The data set, analysis scripts, experimental logs, and the mobile app developed
in this part of the thesis are publicly available4.

This section is organized as follows. Subsection 5.3.1 presents an overview of the approach.
Subsection 5.3.2 analyzes the methods for performing predictions, and Subsection 5.3.3
evaluates the performance using vertical Wi-Fi cellular handovers on smartphones. Section 5.3.4
discusses related work.

Parts of this section have been published previously [112].

5.3.1 Conceptual Overview

Figure 5.7 shows the components of our approach and the workflow. First, raw sensor data
is collected by a mobile app developed for this section and uploaded to a server for further
processing. The raw data is appropriately preprocessed and enriched with additional higher
level features. The resulting data is then used to train and evaluate a random forest classifier
and different neural network architectures. The data preprocessing operations as well as
the trained models are transpiled to Java code and integrated into the mobile app on the
smartphone, which in turn makes online predictions for Wi-Fi connection loss 15 seconds
ahead of time. Based on these predictions, vertical Wi-Fi/cellular handover is performed using
MPTCP. We explain the main steps of our approach in more detail below. Neural network
model building and Wi-Fi connection loss predictions for performing MPTCP handovers on a
smartphone are discussed in Sections 5.3.2 and 5.3.3, respectively.

4https://umr-ds.github.io/seamcon/
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Smartphone Sensors

Modern smartphones offer a variety of sensors that directly or indirectly measure different
properties, as explained below. Even though every individual feature might not be a good
Wi-Fi connection loss indicator, combinations of seemingly irrelevant features can improve
the prediction accuracy.

Motion Depending on the abstraction level, direct motion sensor readings (e.g., accelerom-
eter, gyroscope, magnetometer), sensor readings cleaned from unwanted influences (e.g.,
gravity, linear acceleration, rotation vector), or higher level sensor readings as hardware
processed triggers (e.g., significant motion, step counter, step detection), are good predictors
for user movement.

Orientation Orientation sensors can reveal more specific situations, where a phone is in
the pocket or laying on a table. The proximity sensor is typically used to detect whether the
smartphone is held to the ear, but can also be a good hint for other situations, e.g., to detect
whether the smartphone is face down on the table.

Environment Environmental sensors include sensors for measuring ambient light to control
screen brightness, humidity, air pressure, and ambient temperature. Rapid changes in these
sensor readings can reveal a sudden change of the smartphone situation, e.g., going outdoors.
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Global Position GPS can be useful in combination with a world map of Wi-Fi availability.
Due to quality concerns with indoor GPS traces and high energy consumption, we discarded
GPS for this approach.

User Interactivity The user’s current situation can be derived from various indicators,
like device state (interactive, idle, power save), current charging state, audio state (speaker,
headphones, and their volumes), and ringer mode.

Wi-Fi Properties Wi-Fi properties, obtained by the radio interface, provide insights into
the current connection quality along with reachable networks. Relevant indicators include
RSSI, data link layer speed, and used frequency bands.

Sensor Data Preprocessing

To learn Wi-Fi connection loss predictions, the sensor data needs to be preprocessed. The
time component of the sensor readings needs to be incorporated in the feature vector.

Sensor Sampling The used heterogeneous sensors have different reading frequencies. Motion
and orientation sensors can be read with a rather high sampling rate R of 50 Hz, while other
sensors are available and useful just under 1 Hz. As a trade-off between energy consumption
and sensor data quality, we chose a sensor data sampling rate of R = 1 sample per second.
Sensors with lower sampling rates are filled until a new value becomes available.

Observation and Prediction Window To enrich the discrete sensor readings and to
consider the temporal component, the sensor readings are processed in an observation window
OW . We use an observation window of 60 seconds, which is derived from common walking
speeds and Wi-Fi access point ranges. The earlier a Wi-Fi connection loss is predicted, the
more effective the transition between Wi-Fi/cellular is. To define an upper bound on the
prediction window, the quality characteristics of the used network protocols are important.
Transport protocols, such as TCP, use slow-start to avoid congestion. To compensate for this
low-bandwidth start, an early prediction is useful. As a trade-off between performance and
farsightedness, and to avoid long-running redundant MPTCP connections, which are energy
and data plan consuming, we use a prediction window of up to 15 seconds.

Feature Vector The feature vector presented to the learning algorithm consists of the
sensor readings in the observation window. Each individual sensor contributes OW × SR
values to the feature vector. In the selected configuration, this results in 60 values per sensor.
Furthermore, all features are normalized by removing the mean and scaling to unit variance,
as required for the machine learning algorithms used in our approach.
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Precision and Recall

When the Wi-Fi connection loss is predicted too early or too often, this can result in higher
consumption of restricted data plans of the users. Predicting it too late, on the other hand,
can result in a bad QoE. The primary goal is to reach a high recall in predicting Wi-Fi
connection loss. In terms of energy efficiency, the secondary goal is to reach a high precision
predicting Wi-Fi connection loss, thus not performing unnecessary handovers.

5.3.2 Learning Wi-Fi Loss Predictions

In this section, our novel data-driven approach to predict Wi-Fi connection loss is presented.
Feature vector preparation and two sets of features considered will be presented. Finally, a
data example and the machine learning results will be discussed.

Data Set

We collected about 20 GB of smartphone sensor data from 5 users, with more than 900,000
unique samples, over a period of three months. The users were advised to let the mobile
application run throughout the day, thus the traces contain data from the users’ daily lives.

Training and Test Set Machine learning methods require separate data sets for training
and testing to verify the generalization abilities of the models. We investigated different ways
of building training and test sets: (i) randomly split the available samples into, e.g., 70%
training and 30% test data, and (ii) split by users.

Feature Vectors

All features collected on the smartphones can be used as predictors for Wi-Fi connection loss.
We used two feature vector sets, namely the Full and the Reduced Feature Vector.

Full Feature Vector The data collected by the different users shows that some features
are not available on all devices. The 25 features selected for the full feature vector consist
of values of all available sensors: Atmospheric pressure: x, delta; Linear acceleration: x, y,
z, length; Step counter: delta; Power: is charging, battery percentage; Gravity: x, y, z;
Gyroscope: length; Magnetic field: x, y, z; Orientation: x, y, z; Rotation: x, y, z; Wi-Fi:
frequency, speed, RSSI. Thus, the feature vector consists of 25× 60 = 1500 features (i.e.,
with a 60 seconds observation window).

Reduced Feature Vector Many of the sensors, like linear acceleration and gyroscope,
described in Section 5.3.1 share underlying features due to their physical properties. The
number of sensors can be reduced by leaving them aside. For the Reduced Feature Vector,
we used the following sensors: Atmospheric pressure: delta; Linear acceleration: length; Step
counter: delta; Power: is charging; Gravity: z; Wi-Fi: frequency, speed, RSSI.
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Figure 5.8: Different sensors leading to an early (p1) and an ideal (p2) prediction of Wi-Fi
connection loss, based on a trained model with randomly split data

Sensor Data Example

Figure 5.8 shows an example of several sensor data values collected by a smartphone. The
figure shows the computed ground truth and a prediction probability value of a neural
network based on the Full Feature Vector, i.e., a probability value < 50% means that a Wi-Fi
connection loss is predicted and vice versa. The graphical representation of the sensor values
shows that no obvious correlation between one of the sensors and the prediction ground truth
exists. Nevertheless, each of the sensors shows some information that could be useful. For
example, the atmospheric pressure sensor rises from t = 100 to t = 115, which could be
caused by changing the floor in order to leave the building or by a changing ventilation. In
combination with the step counter delta, the first option is more likely, also resulting in a
higher likelihood for a Wi-Fi connection loss. Another example is the gravity sensor’s z axis
that reports about 9.81 for the time period from t = 20 until t = 35, which together with
the linear acceleration sensor is a good sign for laying flat on a table. This again reduces the
likelihood of a Wi-Fi connection loss event.

For the neural network shown on the bottom in Figure 5.8, a 60 seconds observation window
has to be filled before the first prediction is performed at pstart. The classification ends at pend,
since the operating system reports that Wi-Fi is unavailable. Since Wi-Fi becomes unavailable
at loss, the ground truth is 0 from p2 ongoing, matching the 15 seconds prediction window.
The neural network classifier matches the ground truth quite well, except for p1, where
the classifier predicts the loss slightly too early. This example shows that the combination
of sensors available on today’s smartphones can lead to an effective prediction of Wi-Fi
connection loss.
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Table 5.3: Reduced Feature Vector, randomly split data, different learners and configurations

Metric Forest NN 1 NN 2 NN 3

Loss Prec. 0.89 0.95 0.97 0.97
Loss Recall 0.98 0.94 0.95 0.95
F1-score 0.93 0.94 0.96 0.96

Machine Learning Results

This section presents results of training different methods with the data to predict Wi-Fi
connection loss: (i) a random forest classifier [146], and (ii) a multi-layer neural network. In
particular, we use the MLPClassifier and RandomForest implementations of scikit-learn [189].

Random Forest Since random forest learning depends on equally distributed samples, the
data is down-sampled accordingly to match this criterion. The random forest consists of
10 random trees, learned to use the Gini criterion. The overall performance of the random
forest is satisfactory, since all values are greater than 0.97. However, the precision of the
Wi-Fi connection loss class was not very high (0.86), ultimately resulting in triggering early
or unnecessary handovers.

RSSI-only Neural Network Another basic learning approach is to limit the learner to only
use the timeseries of RSSI values, as presented in Section 5.3.4. During our experiments,
different configurations of the neural network were evaluated. The overall performance is
comparable to the performance presented in the related work. The classification quality of
the Wi-Fi connection loss class did not exceed an F1-score of 0.95.

Random Data Split The results for neural networks learned with randomly split data
depend on the neural network architectures. Table 5.3 provides an overview of different
classifier approaches with the Reduced Feature Vector. Classifier NN 1 consists of 100 hidden
neurons, NN 2 of (300, 200, 100) neurons, and NN 3 of 5 hidden layers containing (400,
400, 400, 400, 400) neurons. All results were achieved using 70% of the data set exclusively
for learning and the remaining 30% for testing. In our experiments, NN 1 can reach a
classification quality comparable to the random forest classifier. The F1-score of the Wi-Fi
connection loss class reaches up to 0.94, with either a high precision or a high recall, but
never both. In general, the negative class, representing stable Wi-Fi connections, is predicted
well by all tested neural network classifiers. The experiments show that neural networks can
reach both high precision and high recall in the positive Wi-Fi connection loss class.

The results presented in Table 5.3 show that NN 2 and NN 3 provide reasonably good
performance for both precision and recall in the Wi-Fi connection loss class. Even the neural
network NN 2 consisting of three layers shows significant improvements compared to the
flat neural network discussed in the previous paragraph. It reaches an F1-score of 0.96 with
slightly lower recall or precision.
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Neural network architectures with up to 10 hidden layers were tested. Both precision and
recall could not be improved. Splitting the data randomly, NN 2 and NN 3 perform equally
and enable a prediction with 97% precision, 95% recall, and a combined F1-score of 0.96.

User-based Data Split When testing for previously unseen users, the precision of the loss
worsens in our prediction. With 0.93, 0.92, and 0.79 precision in the Wi-Fi loss class, the
Reduced Feature Vector generalizes better compared to the Full Feature Vector resulting in
0.91, 0.72, and 0.68 precision.

The results show that the neural networks are capable of generalizing even among different
users and devices. A good classification can be achieved using a neural network with the
Reduced Feature Vector. Providing a reasonably well basic functionality in the starting phase,
with data collected on the device, the classification can be improved during usage.

For further application evaluation, the Reduced Feature Vector NN 3 model was used.

5.3.3 Improved Video Streaming with Seamless MPTCP Handovers

As presented in Section 5.3.2, the neural network models reliably predict Wi-Fi connection
loss. To show the usefulness of these results, we evaluated the performance when performing
handovers in real-world mobile usage scenarios. In the following, we present a seamless
Wi-Fi/cellular handover during DASH video streaming sessions.

Seamless Network Connectivity App

To gather the training data, perform the prediction, and test the applicability of the approach,
we implemented a mobile application that performs the following tasks:

Sensor Data Collection and Preprocessing The sensor readings described in Section 5.3.1
are cached in memory and written periodically to a local SQLite database on the smartphone.
When a run ends, the database is uploaded to a server. To execute the neural network on the
smartphone, the sensor values are preprocessed similarly to the offline learning process. The
mean, variance, and the observation window determined offline are used.

Online Prediction The offline learned neural networks are transpiled to Java using the
sklearn-porter[172] framework, which allows execution of the same neural networks trained
with sklearn on the device. This execution on the Android device allows us to achieve low
delays in predictions, independence of Internet access, and protects user privacy.
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Demonstration & Reporting We demonstrate the feasibility of the proposed approach
using an embedded DASH video playback functionality. Here, the goal is to highlight potential
in improved playback quality and stability made possible by seamless connectivity. We use the
open movie Elephants Dream, streamed from a server in the university network. The video
was pre-encoded using the h.264 encoder for video and AAC for audio, in three bandwidths 1,
2 and 4 MBit/s and a segment length of 2 seconds. For video playback, the JavaScript-based
DASH.js player (v 2.5.0) was used with a buffer size of 10 seconds in conjunction with the
BOLA adaptation algorithm. To analyze the QoE, we collect and report raw video metrics in
each streaming session while the video is playing to the server including stalls, playback bit
rates, quality adaptations, and buffer levels for later evaluation.

MPTCP Handovers We use the Wi-Fi connection loss prediction to trigger the cellular
subflow establishment for MPTCP before the Wi-Fi connection is lost. We implemented our
approach on top of the MPTCP kernel implementation for Android5 and the MultipathControl6

app of De Coninck et al. [61]. Furthermore, the video server uses MPTCP version 0.92 with
the redundant scheduler and the fullmesh path manager enabled.

Experimental Setup

Our experiments consist of 3 connectivity modes in 4 scenarios each performed 5 times,
resulting in a total of 60 iterations. The experiments were performed on a Google Nexus 5
smartphone running a rooted Android and the MPTCP Kernel version 0.89.5. The following
connectivity modes were evaluated:

• Stock Android: The default Android mechanism was used to detect Wi-Fi unavailability.
No transition mechanism was used to have a baseline to compare with.

• MPTCP: To see how MPTCP can improve handovers, it was enabled for the entire
run in these tests. The cellular uplink was used as the second interface, and both client
and server used the default scheduler.

• Seamless: During these tests, the Reduced Feature Vector neural network in configura-
tion NN 3 was used, since it showed the most promising results. MPTCP is enabled
when a Wi-Fi loss is predicted and disabled when Wi-Fi is available and no loss is
predicted for 5 seconds.

The following routes are chosen to evaluate scenarios in which Wi-Fi connection losses can
occur. Figure 5.9 shows the room plan of the university building.

Scenario 1: Leaving the Office Starting in the office, the smartphone is connected to the
office Wi-Fi. The tester leaves after 120 seconds of video playback and heads towards the
exit of the building. After the Wi-Fi connection is lost (determined in advance, roughly 50
meters) the tester waits for 10 seconds and ends the scenario.

5https://multipath-tcp.org/pmwiki.php/Users/Android
6https://github.com/MPTCP-smartphone-thesis/MultipathControl
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S4: Roaming
S3: Staircase
S2: Colleague
S1: Leaving

Office AP
AP floor 5
AP floor 4
AP floor 3

Figure 5.9: Map with Wi-Fi APs and scenarios routes

Scenario 2: Visiting a Colleague The beginning is similar to Scenario 1, but the tester
walks around about 20 meters away from the office, visiting a colleague, but not leaving the
Wi-Fi range. The tester stays for 10 seconds and then walks back to the office.

Scenario 3: Using the Staircase Starting as before, the tester leaves the office on the
same route, but then uses the staircase to go up one floor and stays there for 10 seconds.
The scenario shows the impact of a Wi-Fi connection that is available but not usable.

Scenario 4: Wi-Fi Roaming Support Starting in the office, the device is connected to
the university network. The tester leaves after 120 seconds and heads towards the other
end of the building, roaming between multiple possible Wi-Fi APs shown in Figure 5.9. The
tester stays near the exit for 10 seconds and then walks back the same route. This scenario
is created to further investigate the support of roaming gaps in corporate wireless networks
where roaming might be available, but is not sufficient to achieve a high QoE.
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Measuring Quality of Experience

The DASH video streaming technology is widely available, used by many vendors, and
evaluated well. To measure the perceived QoE, several technical values are captured that are
used to compute mean opinion scores (MOS) [238], as discussed below.

Direct Measurements During the experiments, the DASH video player reports different
technical parameters to a server. At the beginning of a video, the initial buffer has to be filled.
This takes time, resulting in initial stallings that are perceived to be more disturbing the
longer they take. Furthermore, stalling events during the video are also reported. Apart from
the stallings, the number of adaptations is counted, since many adaptations also negatively
influence the QoE. In addition, the percentage of time spent in the highest achieved quality is
measured. From a user’s perspective, it is better to hold a certain quality as long as possible,
even if it is not the best quality available. Since stalling events and quality adaptations partly
depend on the buffer level (i.e., how much playable video is in the buffer), the buffer level is
also captured. The buffer level should be as constant as possible for about 10 seconds.

Finally, a packet dump is performed on the server to allow further analysis of the connections
created by MPTCP.

QoE Metrics Apart from directly evaluating the metrics discussed above, derived metrics
are used to capture relations between these metrics and their impact on QoE. The QoEstall

(Equation (1)) is derived on a MOS scale (where 1 denotes a bad user experience and 5
an excellent one) based on the stalling durations and frequencies during video playback.
Furthermore, MOSquality (Equation (2)) is deduced based on playtime in the highest achieved
quality (t). L denotes the average length of all conducted stallings (initially or during video
playback) and N the number of stallings, again either initially or during playback. Since this
approach focuses on Wi-Fi connection loss events, we do not evaluate initial stallings.

MOSstall = 3.5× e−(0.15×L+0.19)×N + 1.5 (5.1)

MOSquality = 0.003× e0.064×t×100 + 2.498 (5.2)

MOScombined =
MOSstall +MOSquality

2
(5.3)

Finally, Stohr et al. [238] propose the average MOS, denoted as MOScombined (Equation
(3)), denoting a total user perception not only depending on stalling or quality adaptations.
We use MOScombined to evaluate QoE.

QoE Experimental Results In Table 5.4, the overall results of the performed tests are
presented, namely the number of stalling events (# St.) and the average duration of a stalling
event (∅ St.), the number of adaptations (# A.), the relative time in the highest playback
quality (HQ), and the average transmitted data (∅ TD).
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Table 5.4: Overview of experimental results

(a) Scenario 1: Leaving

Mode # St. ∅ St. # A. HQ ∅ TD

Stock 3 1.46 s 23 87 % 21.75 MB
MPTCP 0 0 s 20 89 % 41.32 MB
Seamless 0 0 s 27 88 % 36.11 MB

(b) Scenario 2: Colleague

Mode # St. ∅ St. # A. HQ ∅ TD

Stock 0 0 s 10 92 % 0 MB
MPTCP 0 0 s 10 91 % 9.98 MB
Seamless 0 0 s 17 92 % 9.59 MB

(c) Scenario 3: Staircase

Mode # St. ∅ St. # A. HQ ∅ TD

Stock 3 2.06 s 49 80 % 0 MB
MPTCP 0 0 s 32 87 % 33.92 MB
Seamless 0 0 s 28 85 % 16.81 MB

(d) Scenario 4: Wi-Fi Roaming

Mode # St. ∅ St. # A. HQ ∅ TD

Stock 18 14.98 s 42 53 % 0.89 MB
MPTCP 0 0 s 38 86 % 71.99 MB
Seamless 15 5.47 s 23 84 % 15.50 MB

Scenario 1 As shown in Table 5.4a, the Stock tests performed worst with 3 stalling events
in total and an average stalling duration of about 1.5 seconds, while neither MPTCP nor
Seamless tests did show any stalling events, which is a significant improvement compared to
the stock tests. The amount of transferred data over cellular is high in the MPTCP test and
low in the Stock test. Seamless results are between these two tests, thus saving cellular data
compared to MPTCP, while still avoiding stallings. The results of these tests show that our
prediction can avoid the handover gap completely.

When looking at the buffer levels, video stream quality and the used bandwidth, it can be
seen that based on the prediction of Seamless, the cellular subflow is established proactively,
resulting in a seamless handover and thus no video stalling.

Apart from improvements of these technical values, our approach improves QoE for users,
as expressed in the MOScombined. Figure 5.10 shows the MOScombined on the y-axis and
the different connectivity modes on the x-axis, grouped by scenario. For the stock tests, the
MOScombined is between about 2.5 (poor) and 3.5 (fair), indicating that the playback is not
totally unsatisfactory, but far away from a great experience. Seamless, on the other hand,
achieves a MOScombined of almost 4, indicating a good QoE, as high as in MPTCP tests.

Scenario 2 As shown in Table 5.4b, all tests are comparable for all metrics, showing that our
approach does not introduce any negative effects in already good situations. The transferred
amount of data over cellular in Seamless is about as high as in the MPTCP tests. This is
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Figure 5.10: MOScombined values grouped to connectivity modes and scenarios.
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Figure 5.11: Stock and Seamless in Scenario 3

because the classifier predicts a Wi-Fi connection loss due to the movement of the smartphone
and thus switches to the cellular network, even though this is not necessary.

Neither the technical metrics like buffer level or used bandwidth, nor the MOS values differ
in the these experiments, thus they are not further evaluated here, again indicating that our
approach does not worsen the situation by any means.

Scenario 3 As shown in Table 5.4c, the stock tests performed worst with 3 stallings and an
average stalling time of about 2 seconds. Additionally, with 49 adaptations and only 80% of
the time at the highest achieved quality, the stock tests perform badly. MPTCP and Seamless
do not stall at all. With 28 and 30 adaptations and 85% of the time at the highest achieved
quality, the results of our approach are as good as in the MPTCP tests, again showing
significant improvements over the stock implementation. The data usage over cellular shows
the same behavior as in Scenario 1.

Figures 5.11a and 5.11b show bandwidth and buffer level for Scenario 3. In the stock tests,
the maximum distance is shown in the used bandwidth around seconds 150 and 210. Seamless
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improves this situation and establishes a cellular connection timely resulting in no stallings.
MOScombined during the stock tests shows again a relatively bad QoE with about 2.5 to 3.5
compared to the high MOS values of about 4 during MPTCP and seamless tests.

Scenario 4 The results of the stock tests in Table 5.4d indicate that Android does not
handle Scenario 4 well. The video stalls 18 times and for about 15 seconds on average. The
video quality adapts 42 times in total and stays only for 53% of the time at the highest
achieved quality. MPTCP, on the other hand, handles Scenario 4 very well with no stallings,
few quality adaptations, and 86% of the time at the highest achieved quality.

Although Seamless cannot completely cope with the situation, the results are much better
than in the stock tests. With 15 stallings and an average stalling duration of 5.5 seconds, just
23 quality adaptations and 84% percent of the playtime at the highest achievable quality, the
results indicate an improved QoE using our approach. The benefits of these improvements
come with the cost of using more data (14.61 MB) over the cellular network, but only 21.53%
of cellular data compared to the MPTCP tests.

It is evident that our approach predicts Wi-Fi connection loss correctly, since connection
establishment occurs in a timely manner. However, the cellular interface does not reach the
high bandwidth used by MPTCP in the same scenario, which might be due to the fact that
the cellular interface requires a longer starting phase in the concrete area of the building.
Also, due to the relatively short Wi-Fi-less gaps investigated in this scenario, the cellular
connections are dismantled shortly after they are established. A model optimized not only for
predicting Wi-Fi connection loss events but also Wi-Fi recovery could improve such scenarios
by keeping the cellular link longer alive.

MOScombined during the Seamless and stock tests is comparably bad with a value of about 2,
while MPTCP still reaches a MOS of about 4. Nevertheless, our approach reaches a slightly
higher QoE than stock Android, as shown in Figure 5.10.

5.3.4 Related Work

Predicting Wi-Fi Connection Loss

Several approaches to predict Wi-Fi connection loss for performing handovers have been
proposed in the literature [5]. Nasser et al. [178] use neural networks to predict Wi-Fi
connection loss events based on RSSI. Horich et al. [114] use a fuzzy logic controller (FLC)
for making decisions about performing handovers, where the parameters for the FLC are
learned to use a neural network.

Lin et al. [147] propose to use standard Wi-Fi connection properties and a neural network to
predict Wi-Fi connection loss. Monsour et al. [158] use a combination of user velocity and
the Allan variance of the RSSI to predict Wi-Fi connection loss, and use PMIPV6 to manage
the predicted Wi-Fi connection loss. Khan et al. [128] propose a fuzzy logic system to predict
Wi-Fi loss events based on various parameters, such as delay, jitter, bit error rate, packet loss,
communication cost, response time, and network load.
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These approaches are limited to information of wireless connections, which may be helpful
to create metrics for Wi-Fi quality, but is not always the best information for predicting
Wi-Fi connection loss. In contrast, our approach considers information from a wide range of
smartphone sensors that indicate the usage context, leading to high-quality predictions. Other
approaches incorporate the mobility of the users [182] or higher level features like social group
affiliation, time-of-day, and average duration a user spends in a particular network [251].

The predictions in all of these approaches depend on external factors. In contrast, our approach
only requires information that every current mobile device provides and thus can be used in a
straightforward, economic attractive manner. To best of our knowledge, there is no work that
uses smartphone sensor data to predict Wi-Fi connection loss.

Performing Vertical Handovers

There are extensions to the traditional Internet Protocol that allow users to keep a session
alive when (vertical) handovers are performed [192]. These approaches are based on home
and foreign agents that forward traffic for the mobile host. Although they are around for a
long time, mobile IP is not supported widely. Ma et al. [154] propose a vertical handover
method based on the Stream Control Transmission Protocol. While the proposed method
is network-independent and thus does not require home and foreign agents, traditional
TCP-based applications cannot benefit from the advancements. MPTCP is a TCP extension
supporting multiple subflows for a single TCP connection [87]. MPTCP improves throughput
and reliability in data center and mobile environments [54, 197]. Paasch et al. [185] evaluate
MPTCP as a vertical handover mechanism. The authors propose three MPTCP modes for
handover scenarios, namely Full, Backup, and Single-Path Mode. The first two modes maintain
subflows on all interfaces, while the Single-Path Mode exploits the break-before-make design
of MPTCP. Pluntke et al. [195] use MPTCP as a vertical handover mechanism to shift
connections between cellular and Wi-Fi connectivity and finally to save energy. De Coninck
and Bonaventure [65] futher improve the handover by speeding up packet retransmissions
after the cellular subflow is established.

The handover mechanisms in these approaches are either reactive, resulting in temporary
connection losses, or use redundancy, leading to high bandwidth consumption, which is often
contrary to the users’ preferences.

5.3.5 Summary

In this section, a novel situation-aware approach to predict Wi-Fi connection loss to perform
seamless vertical Wi-Fi/cellular handovers was presented. The approach is based on perceived
sensor information on mobile devices. We demonstrated that the trained neural networks
reliably predict Wi-Fi connection loss 15 seconds ahead of time when users move around,
with a precision of up to 0.97 and a recall of up to 0.98. Using this situation-aware approach,
a mobile device can comprehend its situation with respect to the connection status and
successfully predict whether the connection is lost. This leads to the ability to decide whether
a second connection should be established to provide seamless connections in device edge
computing environments.
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5.4 Summary

This chapter presented contributions to the novel approach of situation-aware device edge
computing. It was shown how mobile devices can leverage situation-awareness to decide which
devices should be used to execute a process within the same network and how to predict
whether the wireless connection of a mobile device is about to break so that it can be decided
if a second connection should be established.

In particular, the following contributions were presented:

• OPPLOAD: A novel situation-aware framework that uses information regarding the
capabilities and limitations of other mobile devices to decide on which device a process
should be offloaded to.

• Seamless Handovers: Using information provided by sensors of mobile devices to derive
the own situation regarding the connection status for deciding whether a second
connection using a different wireless technology should be established in cases of
projected connection losses.
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Situation-aware Embedded Edge Computing

In this chapter, two contributions to the field of situation-aware embedded edge computing are
presented. Section 6.1 motivates why situation-awareness is important in the area of embedded
edge computing. In Section 6.2, an innovative programming language is presented that
follows the reactive programming paradigm and facilitates novel situation-aware applications
executed on embedded devices. In addition, Section 6.3 presents an approach that uses a
novel Complex Event Processing (CEP) engine to enable embedded devices to execute CEP
queries to support analysis of sensor information so that situation-awareness can be achieved.
Section 6.4 concludes this chapter.

Parts of this chapter have been published previously [104, 235].

6.1 Motivation

As discussed in Chapters 4 and 5, infrastructure edge computing and device edge computing are
mainly concerted with providing computation and storage resources in the proximity of users,
so that latencies are reduced, quality of experience is increased and, in case of device edge
computing, these resources are even available when infrastructure edge computing or cloud
computing facilities are not available. In the area of embedded edge computing, however, the
primary concern is to reduce the amount of data in the network, since especially IoT and sensor
devices continuously produce data that is pushed into the network. Transmitting these amounts
of data can lead to network congestion and high latencies during the evaluation of sensor data.
Thus, pre-processing, analyzing, and aggregating the data directly on the embedded devices
reduces the network load and immediately provides derived information [127, 221]. To support
situation-awareness, however, the predominantly used programming and analysis paradigms
are not well suited. The vast majority of approaches are based on languages typical for these
platforms, such as C/C++. APIs and SDKs are then used to implement the aggregations
and analyzes that are supposed to cover the weaknesses of these languages, e.g., error-
prone memory management, weak type systems complicating compile-time optimizations, etc.
Furthermore, these languages follow the paradigms of imperative and procedural programming.
The consequence is that data management and the resulting call graphs become confusing,
error-prone, and opaque. Often, callbacks are used to enable the unsuitable languages to
process data that comes in as streams. However, in most cases this leads to the so-called
callback hell [72, 205, 208]. These problems are solved with languages and paradigms that
are designed for applications that have to process and compute streams of data. Therefore,
to facilitate situation-aware embedded edge computing, two concepts are proposed. First, for
general purpose computations in embedded edge computing a reactive language is presented.
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Figure 6.1: Situation-aware embedded edge computing

It supports perception, comprehension, and projection using combinators, such as map and
fold, and domain-specific actions, such as transmitting aggregated data to other devices.
Second, a CEP-based approach is presented. It follows the CEP paradigm, supports perception
of information streams, and comprehension and projection using pre-defined aggregators.
Decisions are made based on thresholds that in turn trigger domain-specific actions.

Figure 6.1 shows a novel situation-aware application in which an embedded device perceives
the signal strength of surrounding devices and comprehends its situation with respect to the
connection quality of the neighboring devices. Based on the projection of the proximity to the
respective neighboring devices, a decision is then made about a device to establish a wireless
connection to. Using this approach, embedded devices will always connect to the device with
the highest signal strength, ensuring the best possible connection quality.
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6.2 ReactiFi: Reactive Programming of Wi-Fi Firmware on
Mobile Devices

This section presents ReactiFi, a reactive language dedicated to programming embedded
systems found in embedded edge computing environments, but also in devices such as
smartphones, e.g., their Wi-Fi chips. It is argued that embedded devices should be programmed
at a high level of abstraction without expert knowledge and in a platform independent way.
Both embedded devices and situation-aware applications are quite diverse and have to adapt
to quickly changing requirements. ReactiFi is conceptually similar to functional reactive
programming languages, e.g., FrTime [63] and REScala [207]. Like these languages, it
provides programming abstractions for defining computations that are automatically triggered
on data arrival and can be composed using functional combinators. ReactiFi differs from
other reactive languages in features that address specific needs of embedded devices. The
ReactiFi compiler handles platform-specific compilation and bindings to platform-specific
APIs. As a result, it is possible to program embedded devices in a platform-independent
manner at a high-level of abstraction. ReactiFi offers only fixed-size types, which together
with its event-based dataflow programming model enables static reasoning about memory
usage of applications. Furthermore, ReactiFi limits dynamic changes of dependencies between
computations to dynamic branching, enabling static reasoning about the order of computations.
A case study is presented to demonstrate the benefits of ReactiFi in realistic applications in a
novel functionality: an adaptive file sharing application by dynamically switching to the most
suitable Wi-Fi communication mode. For this purpose, the signal strength of surrounding
devices is perceived on the basis of which the situation regarding the connection quality of the
neighboring devices is comprehended. The projection of the connection quality then serves
as a basis for deciding to which neighboring device a connection should be established. By
executing this situation-aware applications on the Wi-Fi chip of a smartphone, it is shown that
power consumption can be reduced by up to 87%, and that data throughput is increased by
a factor of up to 3.3. The case study also demonstrates the advantages of using a high-level
dataflow language for situation-aware embedded edge computing: the ReactiFi program for
adaptive file sharing is 9x shorter than a corresponding low-level C program. Moreover, it is
platform independent and has a clear design structure with explicit dataflow paths that are
easy to follow and reason about. Finally, the benefits of ReactiFi abstractions in terms of code
complexity and platform independence come without regrets: the empirical evaluation shows
that there is no runtime performance overhead compared to manually written C code.

Subsection 6.2.1 introduces the design of the ReactiFi language, while Subsection 6.2.2
presents the semantics and the type system of ReactiFi. The compiler is shown in Sub-
section 6.2.3 followed by a discussion of guarantees ReactiFi makes in Subsection 6.2.4.
Subsection 6.2.5 evaluates ReactiFi. Finally, Subsection 6.2.6 discusses related work.

Parts of this section have been published previously [235].

6.2.1 ReactiFi by Example

We introduce ReactiFi’s concepts by discussing implementations of a case study that is also
used in the evaluations in Section 6.2.5. It illustrates functionality that relies on information
not always available in the kernel or in user space.
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Figure 6.2: Scenario for the adaptive file sharing case study. The sender walks back and
forth starting (t=0) and ending (t=55) near the receiver

Adaptive File Sharing In this case study, we use ReactiFi to implement file sharing directly
on the Wi-Fi chip. File sharing in local wireless networks is a common service, e.g., Apple
“AirDrop”, Microsoft “Nearby Sharing”, and Google “Nearby” are APIs and functionalities for
such applications. Unlike these solutions, however, our file sharing application automatically
switches from a direct connection between Wi-Fi devices (IEEE 802.11z Tunneled Direct Link
Setup (TDLS)) to routing over the nearest access point (IEEE 802.11n AP mode), if that
connection is better. This improves throughput and reduces Wi-Fi congestion.

Figure 6.2 depicts our scenario. When a file is distributed in a local wireless network, the sender
as the source of the file transmits the data to an AP that relays it to the receiving destination
of the file, resulting in two data streams with the same payload. If the receiver detects that
the sender is in proximity (as it is the case in the beginning and at the end of the scenario
timeline in Figure 6.2), it switches from AP to TDLS to establish a direct communication
tunnel to the Wi-Fi device, without losing or disturbing the previously established connection
to the AP. This kind of application has to be implemented on the Wi-Fi chip, since the
required information is not accessible in the operating system, and the kernel cannot switch
from 802.11n to 802.11z.

A ReactiFi program consists of reactive definitions – called reactives – that encode individual
processing steps triggered by incoming events. In listing 7.1, all bold keywords (except val)
define reactives for operations such as filters, transformations, and aggregations. Reactives
may be parameterized with functions, e.g., to specify which values are filtered by a filter
reactive. Function bodies (in braces) are written using C code embedded in ReactiFi– they
operate on simple values, may access only their parameters (but not reactive definitions),
and influence the dataflow only via return values. Reactives can be given names (val) and
they can be composed (via the “.” notation) into an acyclic dataflow graph.

Listing 6.1 shows the ReactiFi code. On a high level, the application computes the signal-to-
noise ratio (SNR) (Line 15) for other devices and each supported mode (direct or via AP).
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The SNRs are stored in a hashmap based on a key derived from the source address of the
frame and whether it is a direct frame or a routed frame. To compute the keys, we first use
filter reactives (Lines 7 and 10) to separate the frames into the two types, then use map
reactives to generate keys from each type of frame. The two types of keys are combined using
the choice reactive (——) in Line 12. Choice reactives propagate the value whenever either
the left or right reactive triggers, using the left input if both trigger. Then, the SNRs for the
source address of the current frame are fetched from the hashmap (Line 24) and, depending
on which mode we are in (c1 or c2), we compute a boolean on whether TDLS should be
enabled, which is then sent to the ReactiFi runtime to ensure correct execution (line 28).

1 def src_key = frame ⇒ { compound_key(frame.src , FROM_SRC) }

2 def ap_key = frame ⇒ { compound_key(frame.src , FROM_AP) }

3 val monitor = Source(Monitor)

4 val frames = monitor.filter(frame ⇒ { frame.dst == ADDR })

5 val count = frames.fold({ 0 })((count , frame) ⇒ { count + 1 })

6

7 val fromSource = frames.filter(frame ⇒ {

8 frame.type == FROM_SRC_TO_AP || frame.type == FROM_SRC_TO_DST

9 })

10 val fromAP = frames.filter(frame ⇒ { frame.type == FROM_AP_TP_DST })

11

12 val keys = fromSource.map(src_key) || fromAP.map(ap_key)

13 val foreign_keys = fromSource.map(ap_key) || fromAP.map(src_key)

14

15 val avgSnrPerSrc = (count , frames , keys)

16 .fold({ hashmap_new () })((acc , count , frame , key) ⇒ {

17 int avg = hashmap_get(acc , key);

18 if (avg == MAP_ENTRY_MISSING) {

19 return hashmap_put(acc , key , frame.snr);

20 } else {

21 return hashmap_put(acc , key , avg + (frame.snr - avg) / count);

22 }

23 })

24 val c1 = (avgSnrPerSrc , fromSource , keys , foreign_keys)

25 .map((avgs , frame , k, fk) ⇒ { hashmap_get(avgs , k) > hashmap_get(avgs ,

fk) })

26 val c2 = (avgSnrPerSrc , fromAP , keys , foreign_keys)

27 .map((avgs , frame , k, fk) ⇒ { hashmap_get(avgs , k) < hashmap_get(avgs ,

fk)})

28 (c1 || c2).observe(SetTDLS)

Listing 6.1: ReactiFi program for adaptive file sharing

Dataflow Graph and Event/Data Propagation A ReactiFi program is transformed into
a dataflow graph (DG) (cf. Section 6.2.3) that represents the abstract program logic. Each
reactive r is a node in the DG with incoming edges from all inputs of r. Reactives must be
declared before they are used, thus the DG is always acyclic. The DG guides the process of
handling incoming events. A source is automatically triggered on arrival of incoming events
from the firmware. The reactions are transitively propagated along DG paths, during which
derived reactives transform, filter, and aggregate the results of other reactives, or the state
in fold reactives gets updated. At the end of the propagation process, external effects of
triggered observers are executed in the Wi-Fi firmware. For illustration, the DGs of our case
study is shown in Figure 6.3 (the meaning of the blue boxes is explained in Section 6.2.3).
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Figure 6.3: Dataflow graph of the adaptive file sharing case study

x ::= identifiers Variables

v ::= fixed size values Values

f ::= x ⇒ {cblock} Functions

s ::= Monitor | Timer(v) | . . . Sources

o ::= SendToOs | SwitchChannel | . . . Effects

r ::= Source(s) | x.map(f) | x.fold(v)(f) | fold(v)(x → f) | Reactives

(x||x) | x.filter(f) | x.snapshot(x) | x.observe(o)
d ::= val x : T = r Definitions

Figure 6.4: Syntax of ReactiFi

6.2.2 The ReactiFi Language: Syntax and Semantics

Figure 6.4 shows the syntax of ReactiFi. A ReactiFi program is a sequence of definitions d
of the kind val x = r, each denoting a reactive expression r by an identifier x. A reactive
r is either a source without inputs, or is derived from its input reactives x (shorthand
for (x1, . . . , xn)) using one of the combinators map, fold, —— , filter, or snapshot. Some
combinators are parameterized by an initial value v or a function f . Values and function
bodies are written in the C programming language. The examples shown in Section 6.2.1 use
syntactic sugar for chained pipelines. The single assignment form used here simplifies the
presentation without affecting the semantics.

To interface with the Wi-Fi chip, ReactiFi uses a set of predefined interactions. Interactions are
wrapped into (Source(s)) reactives or are parameters of (x.observe(o)) reactives. Sources
include receiving frames, timers, or changed channel state. Observers include transmitting
custom Wi-Fi frames, sending packets to the network stack of the host operating system,
switching channels, etc. The full list of external interactions is shown in Table 6.1.

Figure 6.5 shows the typing rules of ReactiFi reactives. To simplify our presentation, we do
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Table 6.1: Predefined interactions between ReactiFi application and runtime

Category Declaration Description

Receive SentFrame Outgoing frame
ReceivedFrame Incoming frame filtered by destination addr.
Monitor All incoming frames

Management ScanResult Results of a Wi-Fi access point scan
ChannelState Updated channel state information
TxPower Updated transmit power information

Interrupts IOCTL ioctl data
Timer Timer event with ms granularity

Effects SendFrame Send Wi-Fi frame
SwitchChannel Switch Wi-Fi channel
ChangeCSI Change Wi-Fi channel state information
SetTxPower Set transmit power
SendToOS Send a value frame to the operating system
SetTDLS Change the connection mode to/from TDLS

not show the typing context for variables. We assume each reactive may access all other
reactives defined before, but not after, in the list of definitions, resulting in an acyclic graph of
dependencies between reactives. All reactives in ReactiFi have the type Reactive[A] and are
parametric over the value they carry, but are never nested. We assign semantics to individual
ReactiFi reactives by giving the translation of individual definitions val x : T = r into C-like
statements shown in Figure 6.6. Translation is written CJval x : T = rK). Conceptually, the
translated statements will be executed in the topological order of the DG, as explained in
Section 6.2.3. In general, each statement first checks if the trigger condition (e.g., T JxK) for
its inputs (e.g., x) are fulfilled, and then updates the current value of the reactive (x0). If any
condition for a reactive is false and there is no else branch, then the reactive itself does not
trigger, stopping the propagation at this point. Transformation of functions CJf(x)K result in
a call to a fresh top-level function definition. Compiling an identifier that binds a reactive
CJxK produces code that accesses the value of that reactive.

A source reactive is of type Reactive[A], given that it is triggered by a source s of type
SourceDef[A], i.e., the inner type A of the reactive is defined by the inner type of s (rule
Source). An observe reactive has a single input x of type Reactive[A], given that they
observe an o of type ObserveDef[A], i.e., the inner type of the input reactive must match the
type that is consumed by o (rule Observe). A filter reactive has the same type, Reactive[A],
as its input x. To use the function f for filtering, the function must take a parameter of the
type A and return a Boolean (rule Filter). Filter reactives pass the value of their input
unchanged, if the filter condition f(x) is true. A choice reactive (——) takes two inputs
x1 and x2 which must be of the same type, and the result is also of that same type (rule
Choice). It returns the value of its left operand x1 if x1 triggers, otherwise the right operand
x2 if x2 triggers. The type of map reactive says that the i-th input reactive xi must match
the type of the i-th parameter Ai of the given function f . The resulting type is Reactive[R]
where R is the result type of f . For example, a map reactive that combines three reactives
with types A,B,C as inputs expects a function of type (A,B,C) ⇒ R. The value when a
map reactive r triggers is function f applied to the value of all inputs x of r.
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Source
s : SourceDef[A]

Source(s) : Reactive[A]

Observe
x : Reactive[A] o : ObserverDef[A]

x.observe(o) : Observer

Subtype
x : Fold[A]

x : Reactive[A]

Filter
x : Reactive[A] f : A ⇒ Boolean

x.filter(f) : Reactive[A]

Choice
x1 : Reactive[A] x2 : Reactive[A]

(x1||x2) : Reactive[A]

Map
xi : Reactive[Ai] f : A ⇒ R

x.map(f) : Reactive[R]

Fold
xi : Reactive[Ai] v : R f : (R,A) ⇒ R

x.fold(v)(f) : Fold[R]

FoldAll
xi : Reactive[Ai] v : R fi : (R,Ai) ⇒ R

fold(v)(x → f) : Fold[R]

Snapshot
x1 : Reactive[A] x2 : Fold[B]

x1.snapshot(x2) : Reactive[B]

Figure 6.5: Typing rules of reactives in ReactiFi

CJval x0 = Source(s)K =if (T JsK){x0 = CJsK}
CJval x0 = x.map(f)K =if (T JxK){x0 = CJf(x)K}

CJval x0 = x.fold(v)(f)K =if (T JxK){x0 = CJf(x0, x)K}
CJval x0 = fold(v)(x → f)K =if (T JxK){x0 = CJf(x0, x)K}

CJval x0 = fold(v)(x1 → f1, x → f)K =if (T Jx1K){x0 = CJf1(x0, x1)K};
CJval x0 = fold(v)(x → f)K

CJval x0 = (x1||x2)K =if (T Jx1K){x0 = CJx1K}
else if (T Jx2K){x0 = CJx2K}

CJval x0 = x.filter(f)K =if (T JxK&&CJf(x)K){x0 = CJxK}
CJval x0 = x1.snapshot(x2)K =if (T Jx1K){x0 = CJx2K}
CJval x0 = CJx.observe(o)KK =if (T JxK){CJo(x)K}

Figure 6.6: Compiling individual ReactiFi reactives (left) to C code (right)
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ReactiFi Program C CodeDataflow 
Graph Wi-Fi Binary

generate compile compile
Wi-Fi Firmware

link

Figure 6.7: Stages of compiling ReactiFi to Wi-Fi chips

A fold reactive has type Fold[R] which is a subtype of Reactive[R] (rule Subtype). The
Fold[R] type identifies stateful reactives. This type distinction is used to limit which reactives
are accessed by snapshot reactives. There are two syntactic forms for fold reactives. Both
are of type Fold[R] with an initial value v of type R. The first syntactic form, x.fold(v)(f),
has inputs and a function with matching types, similar to map reactives. In addition to
map reactives, fold reactives have their current value x0 stored globally. If all inputs x are
triggered, then x0 is updated by applying f to x0 and all inputs x. The second syntactic form,
fold(v)(x → f), called fold all reactives, has one function per input. Fold all reactives are
translated to multiple statements, each statement updates the current state x0 by applying
x0 = fi(x0, xi), if the corresponding input xi is triggered, otherwise the application of that
fi is skipped. All fi with triggered xi are applied in the order they are defined, potentially
updating x0 multiple times. The typing rule FoldAll ensures that the second parameter Ai

of each fi matches with the type of the assigned input xi.

A snapshot reactive takes two inputs, where the first x1 is a reactive of type Reactive[A] and
the second x2 is a fold of type Fold[B] and results in a Reactive[B] (rule Snapshot). A
snapshot reactive triggers when its first input x1 triggers, but returns the value of its second
input x2. The type restriction on x2 is because only fold reactives have a defined state when
they do not trigger.

6.2.3 The ReactiFi Implementation

A ReactiFi program is processed in four steps (Figure 6.7): (i) the dataflow graph (DG) is
constructed, (ii) a C program is generated from the DG, (iii) the C source code is compiled
into a binary, which (iv) is loaded to the Wi-Fi chip and linked into the firmware at runtime.

Generating and Typechecking the Dataflow Graph

ReactiFi is implemented as an embedded domain-specific language (EDSL) in Scala, i.e., its
abstractions are implemented as a Scala library. We selected Scala due to its support for
embedding DSLs, e.g., we implement the DSL to reuse Scala’s type checker for the typing
rules in Figure 6.5. A ReactiFi program consists of a set of library calls that look like proper
DSL syntax. These calls construct the DG that is subsequently compiled to C. User-defined
functions are opaque to the Scala DSL – they are directly copied into the generated C code.
Once constructed, the DG is analyzed to extract the following information that is passed
to the subsequent processing phases: (i) a topological order of all reactives, (ii) a set of
conditions guarding the activation of each reactive, and (iii) types and memory requirements
of reactives in the DG.
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Generating C Code for the Update Function

Given the DG and the embedded C code, the ReactiFi compiler generates a single sequential
update function (UF) in C, which implements the reaction to external events. Thereby, the
compiler performs the following domain-specific optimizations:

Static Sequential Scheduling The DG specifies a logically concurrent execution order of
reactives in response to individual external events; moreover, only a subset of reactives is
typically triggered for each external event. Wi-Fi chips only support sequential execution and
network applications are often latency-sensitive. To address these constraints, the compiler
(i) sequentializes the order of updating reactives and (ii) generates a minimum number of
conditional branches to select the updated reactives. While the relative execution order of
reactives can be statically fixed according to the topological order of them in DG, whether
and when reactives trigger depends on runtime conditions. Sources and filter reactives define
new conditions. For all other reactives, the conditions are derived from the conditions of their
input reactives. The choice and fold all reactives use the disjunction of the conditions of all
inputs. All other reactives use the conjunction of the conditions of all inputs. Reactives in
the DG are grouped into uninterrupted pipelines based on shared filtering conditions. The
compiled update function only checks conditions once per group. For illustration, consider
the DG of the file sharing case study in Figure 6.3; the blue boxes mark the uninterrupted
groups; for instance, the rightmost group will execute only if the Monitor source fires, the
condition for the frames filter holds, and either fromSource or fromAP are true.

Optimized Memory Management Wi-Fi chips have limited memory. For instance, the
memory built into the Nexus 5 used in our evaluation has 768 kB RAM, most of which is used
by the basic firmware, with only as little as 100 kB RAM left for higher-level functionality; to
put this into perspective, a single IP packet is up to 2 kB in size. Reactives are abstractions
with zero runtime memory cost, i.e., sizeof(Reactive[T]) == sizeof(T). To facilitate compile-
time estimation of the needed memory, ReactiFi allows only fixed size types T to be used in
code. Memory for reactives is reclaimed at the earliest time possible. Technically, to find the
reclamation point of a reactive r1, the compiler traverses the sequential execution order from
the back to find the last reactive r2 that depends on r1. The scope of r1 extends from r1
until after r2. Unlike other reactives, the state of folds is stored between updates, thus never
reclaimed. Overall, for each reactive r, the compiler knows how much memory is already
allocated when a new value will be computed for r. This is the sum of the memory allocated
to all folds in the program plus the sum of the memory allocated to all non-fold reactives in
scope. This way, the compiler is able to maximize the memory available for executing the
function bodies embedded in the reactives.

Exemplary Compilation For illustration, consider the code below, defining a map reactive
(address) with two inputs, frame and subframe; we assume that both frames are derived
from a Monitor source (not shown for brevity).

1 val address = (frame , subframe).map((fr , sub) ⇒ {/* extractAddress */})
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The generated C code is sketched in Listing 6.2. Since there are no folds, the program has only
local state. The user-defined function is extracted to a top-level C function extractAddress.
Within the update function, first, the variables for the source conditions (monitor_condition
), the values computed for the input reactives (frame_value, subframe_value), and for
the map reactive (address_value) are declared. Then, the trigger conditions of sources are
computed, followed by the guarded execution of reactives, when the sources are triggered.
The code illustrates the two compiler optimizations. First, the trigger condition is only
checked once for all reactives as opposed to once per reactive. Second, the values frame and
subframe are deallocated immediately after they are used and no longer needed. We assume
that address_value is used later in the program, otherwise the whole program would be
optimized away.

1 address_t extractAddress(frame_t fr , frame_t sub) { /* extractAddress */

}

2 // state of fold reactives would be above

3 void update () {

4 bool monitor_condition;

5 frame_t frame_value;

6 frame_t subframe_value;

7 address_t address_value;

8

9 monitor_condition = runtime_is_triggered(Monitor)

10 if (monitor_condition) {

11 frame_value = ...;

12 subframe_value = ...;

13 address_value = extractAddress(frame_value , subframe_value);

14 deallocate(frame_value);

15 deallocate(subframe_value);

16 }

17 }

Listing 6.2: Generated C code example

From C to Binary to the Wi-Fi Chip

There are several available deployment targets. Some of them, e.g., SoftMAC Wi-Fi don-
gles [215], or Espressif’s ESP platform [164], are special-purpose hardware with custom
software. On the contrary, the Nexmon firmware patching framework [213, 214] can also be
used and executed on off-the-shelf smartphones. Since we want to deploy ReactiFi programs
on off-the-shelf smartphones for validating the feasibility of our approach in a real-world
case study, our current implementation uses Nexmon as the target platform. To transfer the
compiled ReactiFi program to the Wi-Fi chip, we created a new ioctl. Such ioctls are
common communication channels between the host (either kernel or user space application)
and dedicated hardware components like the Wi-Fi chip. At this point, the dynamic linker
usually performs a relocation step to adjust the addresses of branches to their absolute
memory location of the loaded code. This relocation step, however, would require the Wi-Fi
chip to be restarted, making Wi-Fi communication temporarily unavailable. However, we want
to reconfigure the Wi-Fi chip at runtime without disturbing ongoing connections. Therefore,
we extended Nexmon to support Position Independent Code (PIC). PIC modules can be
loaded to arbitrary memory addresses from where their execution can be triggered during
runtime. Since the PIC module is unaware of where the binary blob gets loaded, the code
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performs jumps relative to the program counter. Existing firmware functions, on the other
hand, are accessed by first loading the absolute target address from the Global Offset Table
to a register and then jumping to that address. To recap, our PIC extensions enable loading
and executing ReactiFi programs without restarting the Wi-Fi chip. This allows ReactiFi to
always ensure basic functionality of the IEEE 802.11 specification.

6.2.4 Advantages of Using ReactiFi for Wi-Fi Programming Compared to C

In this section, we summarize how ReactiFi’s compiler and runtime address domain-specific
issues of the Wi-Fi platform. In addition, to help the reader appreciate the benefits of using a
high-level dataflow language in terms of code quality, we walk through a C implementation
of the adaptive file sharing application shown in the Appendix, and compare the latter with
the ReactiFi implementation shown in Section 6.2.1.

Properties Ensured by the ReactiFi Compiler and Runtime

ReactiFi’s declarative dataflow programming model enables the compiler to ensure several
properties, as described below.

Minimized Memory Usage ReactiFi’s programming model matches well the assumption
that Wi-Fi chips are supposed to quickly react to incoming events, but only store limited state.
First, data pertaining to an event only exists for the duration of the event. Unused or inactive
reactives and their derived reactives are not executed or initialized at all and, hence, do not
consume any memory. Second, except for folds, other reactives do not require to store state
between updates. Third, the ReactiFi compiler ensures that temporarily used memory is freed
as soon as possible during updates (cf., Section 6.2.3). Finally, usage of memory by reactives
is statically limited in size. ReactiFi only supports parameters to reactive computations with
a statically bound size. The usage of any other types is prohibited by the type checker.

Automatic, Correct, and Optimized Scheduling The DG allows precise and sound
reasoning about the order of reactive computations, enabling compile-time optimizations and
scheduling without any runtime overhead. This is possible because ReactiFi limits dynamic
changes of the DG and the scheduling order to filtering. It has been argued that the limited
expressiveness is sufficient for most programs [257]. As a result, the ReactiFi compiler is free
to rearrange the order of execution as long as explicit dependencies between reactives are
preserved, allowing to minimize dynamic checks (cf., Section 6.2.3).

Platform Independence and Compliance ReactiFi is compliant with the IEEE 802.11
specification by always providing basic functionality of the Wi-Fi firmware. ReactiFi programs
cannot break basic functionality of the Wi-Fi firmware. Interactions only happen through
high-level source reactives and observers (cf., Section 6.2.1 and Table 6.1). Furthermore, the
generated code can be deployed on a Wi-Fi chip without interruption (cf., Section 6.2.3). Thus,
ReactiFi allows developers with no particular Wi-Fi expertise to write platform-independent Wi-
Fi functionality, leaving error-prone and platform-specific aspects to be handled by ReactiFi.
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uint8_t is_tdls = 0;
map_t addr_snr_map = 0;
int *signal_count = 0;
uint8_t MY_MAC[6] = {0};

// If we receive a sk_buff, we have to parse it.
// This is what this function is for.
int make_frame(monitor_frame_t *mntr, struct wl_info *wl, struct wl_rxsts *sts, struct sk_buff *p) {

    char *raw_frame = (char *)p->data;

    mntr->fc->version   = (uint8_t) (raw_frame[FC_OFFSET] & 0x03);
    mntr->fc->type      = (uint8_t) (raw_frame[FC_OFFSET] & 0x0C) >> 2;
    mntr->fc->sub_type  = (uint8_t) (raw_frame[FC_OFFSET] & 0xF0) >> 4;

    if (mntr->fc->type != 2) {
        return -1;
    }

    if (mntr->fc->sub_type != 0) {
        return -1;
    }

    mntr->fc->to_ds      = (uint8_t) (raw_frame[FC_OFFSET + 1] & 0x01);
    mntr->fc->from_ds    = (uint8_t) (raw_frame[FC_OFFSET + 1] & 0x02) >> 1;
    mntr->fc->more_frags = (uint8_t) (raw_frame[FC_OFFSET + 1] & 0x02) >> 2;
    mntr->fc->retry      = (uint8_t) (raw_frame[FC_OFFSET + 1] & 0x02) >> 3;
    mntr->fc->pwr_mngmt  = (uint8_t) (raw_frame[FC_OFFSET + 1] & 0x02) >> 4;
    mntr->fc->more_data  = (uint8_t) (raw_frame[FC_OFFSET + 1] & 0x02) >> 5;
    mntr->fc->protected  = (uint8_t) (raw_frame[FC_OFFSET + 1] & 0x02) >> 6;
    mntr->fc->order      = (uint8_t) (raw_frame[FC_OFFSET + 1] & 0x02) >> 7;

    memcpy(&mntr->duration, &raw_frame[DURATION_OFFSET], 2);

    if (mntr->fc->to_ds == 0 && mntr->fc->from_ds == 1) {
        mntr->ds_type = FROM_AP;
        memcpy(mntr->dst, &raw_frame[ADDR1_OFFSET], 6);
        memcpy(mntr->dst, &raw_frame[ADDR3_OFFSET], 6);
    }
    // REPLY TO AP
    else if (mntr->fc->to_ds == 1 && mntr->fc->from_ds == 0) {
        mntr->ds_type = TO_AP;
        memcpy(mntr->dst, &raw_frame[ADDR3_OFFSET], 6);
        memcpy(mntr->dst, &raw_frame[ADDR2_OFFSET], 6);
    }

    // REPLY TDLS
    else if (mntr->fc->to_ds == 0 && mntr->fc->from_ds == 0) {
        mntr->ds_type = FROM_TDLS;
        memcpy(mntr->dst, &raw_frame[ADDR1_OFFSET], 6);
        memcpy(mntr->dst, &raw_frame[ADDR2_OFFSET], 6);
    }

    else {
        return -1;
    }

    memcpy(&mntr->seq_ctl, &raw_frame[SEQ_CTL_OFFSET], 2);

    mntr->signal = sts->signal;
    mntr->noise = sts->noise;

    mntr->wl = wl;

    return 0;
}

// Function for generating the key for the hashmap
void gen_key(char *key, uint8_t type, monitor_frame_t *input) {
    sprintf(
        key,                // Store in key
        "%d %x%x%x%x%x%x",  // Format: type, space, 6 byte mac address
        type,
        input->src->addr[0],
        input->src->addr[1],
        input->src->addr[2],
        input->src->addr[3],
        input->src->addr[4],
        input->src->addr[5]
    );
}

// The first filter for filtering frames sent to this device.
monitor_frame_t *filter_my_frames(monitor_frame_t *input, uint8_t MY_MAC[6]) {
    // Compare the 6 bytes containing the dst address with my_mac_address
    // If it is the same, yield the next reactive.
    // Otherwise, do nothing.
    if (memcmp(input->dst, MY_MAC, 6) == 0) {
        return input;
    } else {
        return 0;
    }
}

// Aggregates SIGNAL_COUNT signals for the current address to an average
map_t aggregate_average(map_t state, monitor_frame_t *input, int *signal_count) {
    char *key = malloc(15, 0);
    gen_key(key, input->ds_type, input);

    // Get the signals for the current address.
    int *avg = 0;
    int hashmap_state = hashmap_get(state, key, (void **)&avg);

    // If the address is not present, we have not seen this frame yet.
    // Initialize.
    if (hashmap_state != MAP_OK) {
        avg = malloc(sizeof(int), 0);
        *avg = 0;
    }

    // Calculate the average and put the new average to the map.
    *avg = *avg + (input->signal - *avg) / *signal_count;
    *signal_count = *signal_count + 1;

    // Put the newly created avg to the hashmap.
    hashmap_put(state, key, avg);

    return state;
}

// Comparing signals for deciding if TDLS should be setup/destroyed.
struct averages *compare_signals(map_t state, monitor_frame_t *input) {
    char *key = malloc(15, 0);
    gen_key(key, input->ds_type, input);

    int *avg = 0;
    int snr_avgs_state = hashmap_get(state, key, (void **)&avg);

    // If the key is not in the hashmap, something is wrong. Abort.
    if (snr_avgs_state != MAP_OK) {
        return 0;
    }

    char *other_key = malloc(15, 0);
    int *other_avg = 0;
    switch (input->ds_type) {
        case FROM_AP:
        case TO_AP:
            // If this frame if from the AP or to the AP, we compare it to the SNR average 
            // received directly from the other node.
            // If it is smaller, enable TDLS.
            gen_key(other_key, FROM_TDLS, input);

            snr_avgs_state = hashmap_get(state, other_key, (void **)&other_avg);
            if (snr_avgs_state != MAP_OK) {
                return 0;
            }

            break;

        case FROM_TDLS:
            // If this frame is directly from the other node, we compare it to the SNR 
            // average received from the AP.
            // If it is bigger, enable TDLS.
            gen_key(other_key, FROM_AP, input);

            snr_avgs_state = hashmap_get(state, other_key, (void **)&other_avg);
            if (snr_avgs_state != MAP_OK) {
                return 0;
            }

            break;

        default:
            return 0;
    }

    free(key);
    free(other_key);

    // Construct the return struct
    struct averages *ret = (struct averages*) malloc(14 + sizeof(struct wl_info*), 0);
    ret->avg1 = *avg;
    ret->avg2 = *other_avg;
    ret->addr = input->src;
    ret->wl = input->wl;

    return ret;
}

// Filter for enabling TDLS if it should be.
void enable_tdls(struct averages *avgs) {
    if (avgs->avg1 < avgs->avg2) {
        // Before enabling TDLS, check if it already is enabled.
        if (is_tdls == 0) {
            struct tdls_iovar info;
            memset(&info, 0, sizeof(struct tdls_iovar));
            memcpy(info.ea, avgs->addr, 6);

            info.mode = TDLS_MANUAL_EP_DISCOVERY;
            wlc_iovar_op(avgs->wl->wlc, "tdls_endpoint", 0, 0, &info, sizeof(struct tdls_iovar), IOV_SET, 0);

            info.mode = TDLS_MANUAL_EP_CREATE;
            wlc_iovar_op(avgs->wl->wlc, "tdls_endpoint", 0, 0, &info, sizeof(struct tdls_iovar), IOV_SET, 0);

            is_tdls = 1;
        }
    }
}

// Filter for disabling TDLS if it should be.
void disable_tdls(struct averages *avgs) {
    if (avgs->avg1 > avgs->avg2) {
        // Before disabling TDLS, check if is enabled.
        if (is_tdls == 1) {
            struct tdls_iovar info;
            memset(&info, 0, sizeof(struct tdls_iovar));
            memcpy(info.ea, avgs->addr, 6);

            info.mode = TDLS_MANUAL_EP_DELETE;
            wlc_iovar_op(avgs->wl->wlc, "tdls_endpoint", 0, 0, &info, sizeof(struct tdls_iovar), IOV_SET, 0);

            is_tdls = 1;
        }
    }
}

// The monitor source function.
// Whenever a new frame appears, we do the handling here.
void wl_monitor_hook(struct wl_info *wl, struct wl_rxsts *sts, struct sk_buff *p) {
    if (p == 0 || p->data == 0) {
        return;
    }

    monitor_frame_t *frm = (monitor_frame_t *) malloc(42 + sizeof(struct wl_info*), 0);
    frm->fc = (frame_control_t*) malloc(11, 0);
    frm->dst = (mac_addr_t*) malloc(6, 0);
    frm->src = (mac_addr_t*) malloc(6, 0);
    frm->bssid = (mac_addr_t*) malloc(6, 0);

    if (make_frame(frm, wl, sts, p) != 0) {
    goto cleanup;

    }

    monitor_frame_t *my_frames = filter_my_frames(frm, MY_MAC);
    if (!my_frames) {

    goto cleanup;
    }

    addr_snr_map = aggregate_average(addr_snr_map, my_frames, signal_count);

    struct averages *tmp3 = compare_signals(addr_snr_map, frm);
    if (!tmp3) {

    goto cleanup;
    }

    enable_tdls(tmp3);
    disable_tdls(tmp3);

cleanup:
    free(frm->fc);
    free(frm->dst);
    free(frm->src);
    free(frm->bssid);
    free(frm);
    wl_monitor(wl, sts, p);
}

// This is the firmware's main function.
// Initialize the hashmap and the counter.
// Enable monitor mode as the frame source.
void autostart(int a1) {
    addr_snr_map = hashmap_new();
    signal_count = malloc(sizeof(int), 0);
    *signal_count = 1;

    BLPatch(wl_monitor_hook, wl_monitor_hook);
}

Figure 6.8: Dataflow of the C implementation of the adaptive file sharing case study; The
arrows represent the direction of the dataflow

Non-Ensured Properties ReactiFi cannot reason about user-defined C code encapsulated
in reactives. However, the amount of C code necessary can be kept to a bare minimum, and it
is sufficient to review each function individually. While each C function is typechecked by the
C compiler, and ReactiFi ensures type correctness of using the function in the DG, ReactiFi
cannot ensure that C functions terminate or use a bounded amount of memory. Beyond these
type checks and the enforcement of the fixed-sized types, the current type checker of ReactiFi
only inherits the standard guarantees of the Scala type checker. In principle, it is possible
to extend the type system with user-defined specifications about the behavior of C blocks,
e.g., with regard to real-time behavior. With such specifications and the explicit knowledge
about the DG, the compiler can reason about real-time guarantees of ReactiFi programs.
Such extensions remain to be investigated in future work.

Comparison to C

We compare ReactiFi to C, because C is the most widely used language for programming
Wi-Fi chips. Yet, our arguments apply to all imperative languages that do not support a
declarative dataflow programming model1.

To start with, consider how much code complexity and programming effort ReactiFi saves.
While the ReactiFi program is only 28 LoCs long (Listing 6.1), the C program Listing 6.5

1The adaptive file sharing application was implemented in C by me. I have ample experience with C
programming and the Nexmon platform. While I am aware that this is a threat to the validity of the statements
I make in the following, there are no existing programs for the Wi-Fi chip, which I could have used – ultimately,
the starting point is that Wi-Fi chips are not programmable today.

131



6 Situation-aware Embedded Edge Computing

in Section 6.2.8 (page 139) even without #include directives, comments, and empty lines
consists of 229 LoCs (almost 9× more!). Moreover, the dataflow of the C implementation
shown in Figure 6.8 is over-proportionally complex and hard to reason about with data
dependencies modeled implicitly using global state, side effects, and pointers. In contrast,
the dataflow of the ReactiFi implementation of the same functionality shown in Figure 6.3 is
simple and explicit in the program.

Moreover, a programmer that implements Wi-Fi applications in C needs detailed low-level
knowledge of the specific platform. Consider as an example the extract from the C implemen-
tation of the adaptive file sharing case study in Listing 6.3. To enable monitor mode, the
developer must know the memory address of the Monitor source for every target Wi-Fi chip
and firmware version. Similarly, the developer must often use low-level bitwise operations
to implement data extraction from Wi-Fi frames. This requires knowledge of the internal
data structures, since information might be stored in different locations inside the frame,
depending on the conditions, e.g., the source and destination addresses of a frame must be
extracted differently, depending on whether the frame originates from an access point or not.
As an example, Listing 6.4 shows how to get the type field of a Wi-Fi frame.

1 __attribute__ ((at(0x18DA30 , "", CHIP_VER_BCM4339 ,

FW_VER_6_37_32_RC23_34_40_r581243)))

2 __attribute__ ((at(0x18DB20 , "", CHIP_VER_BCM4339 ,

FW_VER_6_37_32_RC23_34_43_r639704)))

3 BLPatch(wl_monitor_hook , wl_monitor_hook);

Listing 6.3: Enabling monitor mode using C

1 mntr ->fc ->type = (uint8_t) (raw_frame[FC_OFFSET] & 0x0C) >> 2;

2 mntr ->fc ->sub_type = (uint8_t) (raw_frame[FC_OFFSET] & 0xF0) >> 4;

Listing 6.4: Parsing type fields of a Wi-Fi frame in C

The above observations indicate that ensuring correctness is difficult in an imperative language
like C. It requires highly skilled programmers to understand the program by manually tracking
memory allocation along the complex dataflow graph. This makes it very hard for the
programmer to assess whether the memory needs of the application can be satisfied by
the available memory. Furthermore, incorrect execution order may lead either to memory
corruption or inefficient execution. Ensuring that this cannot happen is cumbersome and
error-prone: it is necessary to repeatedly test the program to ensure correct order of executions;
even providing basic operation requires enormous effort. What is more, the efforts will have to
be repeated over and over for any new program, as there is no automated language machinery
available. Of course, it is theoretically possible in C to provide higher-level APIs that hide some
low-level details of the platform. However, such libraries would only partly solve the outlined
problems, since providing the memory, scheduling, and platform independence of ReactiFi
fundamentally requires to reason about the DG. Furthermore, it is unclear how to ensure
that APIs are correctly used [11] and this is especially problematic for APIs abstracting a
diverse set of low-level platform-dependent details. At the end, given that ReactiFi’s dataflow
abstractions come without runtime overhead (as we show in the next section), no good
arguments are left for an API-based approach.
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6.2.5 Empirical Evaluation

First, we quantify the basic power consumption and performance of the Wi-Fi chip using a
micro-benchmark. Next, we experiment with our case study to validate our claims regarding
improved power consumption and throughput.

Experiments Using a Micro-benchmark

The Benchmark Since currently there are no other programming languages, implemen-
tations, or applications for Wi-Fi chips in off-the-shelf smartphones, we cannot perform
comparative benchmarks using ready to use applications. Therefore, we adapted parts of the
Linux Internet Control Message Protocol (ICMP) implementation. ICMP is used by nodes in
the network to send control messages like indicating success communicating with other nodes.
Since the Linux implementation is deeply embedded into the operating system kernel, it is
nearly impossible to extract the entire code. Instead, we adapted the ICMP code for handling
ICMP echo packets, as commonly found in the “ping” utility. Using our ICMP adaptation, we
can measure basic power consumption and latency executed in three different environments,
i.e., user space, operating system kernel, and Wi-Fi chip.

Experimental Setup We placed two Nexus 5 smartphones about 30 cm apart from each
other. The first Nexus 5 sent ICMP echo-requests, while the second one processed the received
frames using two different versions of our ICMP program, both returning an echo-reply at
the end of the execution. The first version is implemented in pure C where ReactiFi was not
involved and the ICMP echo-requests are handled in the same way as in the Linux kernel,
sending an ICMP echo-reply without further computations. The second version of our ICMP
program, written in ReactiFi, contains single filter (dropping non-ICMP echo-requests), map
(computing the ratio between Wi-Fi frame size and ICMP packet size), and fold (counting
the received ICMP echo-requests) reactives, and returns a corresponding echo-reply after the
respective reactives. Each of the reactives were used in separate tests. The pure C version
of the program enables us to compare the power consumption and latency to the ReactiFi
implementation. During the experiments, MAC Protocol Data Unit Aggregation (A-MPDU)
and frame re-transmission were disabled in the Wi-Fi firmware. Thus, every packet was sent
once in a separate Wi-Fi frame, allowing an evaluation for each packet. To evaluate latency, we
measured the ICMP round trip time for each packet. For a high-resolution time measurements
without interference, an external device was used to capture ICMP packets between the two
Nexus 5 smartphones using Wireshark2. To measure power consumption without interference
from the battery, we removed the battery from the Nexus 5 and the charge controller from
the battery, soldered wires to the charge controller, and put the controller without the battery
back into the Nexus 5. The measurements were performed using a Monsoon High Voltage
Power Monitor with a sample rate of 5 kHz and a resolution of 286 µA. The voltage was set
to 4.2V, which corresponds to about 92% battery capacity.

2https://www.wireshark.org, last accessed 2020-10-01.
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Figure 6.9: Power consumption: Wi-Fi, OS kernel, and user space

Power Consumption Figure 6.9 shows the power consumption of the micro-benchmark.
Each subplot illustrates a different test case, the x-axis shows the number of requests per
second, grouped by execution environment. The y-axis denotes the power consumption. Note
that for user space tests with high data rates, the boxes where truncated so that the Wi-Fi
based tests can be seen better.

The ICMP program executed on the Wi-Fi chip saves up to 73% power compared to the
user space implementation and 30% compared to the in-kernel execution, regardless of which
program version was used, since the main CPU, which consumes more power in general, has
to process all frames. Given that for low packet rates the kernel falls into power saving mode
and user space applications are suspended and both need to be woken up quite often, tests
with 1 request per second need more power than tests with 10 requests per second. This
effect disappears with higher packet rates, since the ICMP program executed in the kernel or
in user space is not suspended anymore. These tests show that executing code on the Wi-Fi
chip reduces the power consumption compared to execution in the kernel or in user space.
Additionally, when comparing the results of the four Wi-Fi experiments shown in Figure 6.9, it
is evident that reactives do not introduce significant power overhead compared to the purely
C-based tests (shown in the upper left subfigure of Figure 6.9).

Latency Figure 6.10 shows the round trip times (RTT) of ICMP echo-requests and the
corresponding echo-replies. The RTTs, when processing directly on the Wi-Fi chip, are always
low at about 0.3ms, regardless of the number of requests/s. When incorporating reactives,
RTTs are slower (about 1.4ms to 1.8ms), though consistent. The kernel and user space
tests need 5 to 7 times more, depending on the test. With low data rates, however, both the
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Figure 6.10: ICMP Round Trip Time: Wi-Fi, OS kernel, and user space

kernel and the user space application are suspended, resulting in significantly higher RTTs
(up to about 100ms). These tests show that executing code on the Wi-Fi chip reduces the
execution time, and thus, the overall latency vs. execution in the kernel or in user space. We
can further observe that the execution time using the Wi-Fi chip is more predictable across
the tests. Finally, compared to the purely C-based tests (shown in the upper left subfigure of
Figure 6.10), ReactiFi does not introduce significant latency overhead.

Throughput Boosting by Adaptive File Sharing

This experiment empirically validates our claim that making the Wi-Fi chip programmable
enables novel networking applications with improved throughput, such as our adaptive file
sharing case study.

Experimental Setup We used the ReactiFi program in Listing 6.1 on a Nexus 5 smartphone
(receiver) to download a file from a Raspberry Pi 3 (sender) in the scenario shown in Figure 6.2.
The file is served by a standard HTTP server without modifications. We used a Turris Omnia
RTROM01 router in stock configuration as our AP. Wi-Fi was set to IEEE 802.11n mode on
channel 6 in the 2.4GHz band to increase the usable Wi-Fi range.

As illustrated in Figure 6.2, the AP was about 6 meters away from the stationary Nexus 5. In
the beginning, the Raspberry Pi 3 was about 1 meter away from the Nexus 5 at t = 0, we
then moved up to 3m towards the AP (t = 18) and continued farther away from both the AP
and the Nexus 5. The maximum distance between Nexus 5 and Raspberry Pi 3 was about 12
meters and 7 meters between Raspberry Pi 3 and AP (t = 25). After that, the same path was
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Figure 6.11: Throughput of the adaptive file sharing application

used for the way back (t = 35), resulting in the same position as at the beginning of the test
(t = 55). The experiment took 55 s in total, while the maximum distance between Nexus 5
and Raspberry Pi 3 was reached after about 25 s. Since all surrounding wireless traffic had to
be analyzed for this application, the Nexus 5 was set to Wi-Fi monitor mode.

Throughput Figure 6.11 shows throughput in Mbit s−1 (y-axis) and time in seconds (x-axis)
during three tests: (i) using only the AP shown in Figure 6.2 in IEEE 802.11n AP mode, (ii)
using only IEEE 802.11z TDLS to establish a direct connection between the Nexus 5 and the
Raspberry Pi 3, and (iii) using the ReactiFi adaptive file sharing application to automatically
switch between (i) and (ii).

While the throughput of test (i) in AP mode is more or less at about 12Mbit s−1 during the
entire test, the same file shared via TDLS in test (ii) shows peaks at about 40Mbit s−1 at
the beginning and the end of the test, i.e., when the Raspberry Pi 3 is close to the Nexus
5 (t = 0 and t = 55). At the maximum distance (i.e., the worst SNR) between the devices
(t = 25), the throughput drops to 4Mbit s−1 in the TDLS-only test.

The same experiment performed with the ReactiFi program in test (iii) results in significant
improvements over both the AP and TDLS tests, as shown in Figure 6.11. At the beginning
and at the end (i.e., with the best SNR), the results are comparable to the TDLS-only test
(ii), where throughput exceeds 40Mbit s−1. However, with the worst SNR, the throughput
does not fall below the values of the AP-only test (i). This experiment shows that ReactiFi
enables the development of novel Wi-Fi applications that cannot be implemented in the
operating system kernel or in user space and that can have significant performance gains,
leading to up to a factor of 3.3 higher throughput compared to AP-only mode.

6.2.6 Related Work

Extending Network Functionality Using eBPF to program the Linux kernel network stack,
multiple works propose extension systems for IPv6 [113, 260], OSPF [258], TCP [36, 113,
244], Multipath TCP [91], BGP [258], and QUIC [66]. All these approaches, however, rely on
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the C language with its downsides. Additionally, these approaches cannot access information
from the PHY and MAC layers.

Programmable Wi-Fi Firmware Tinnirello et al. [243] present a finite state machine for
implementing MAC protocols on Wi-Fi firmware, and Bianchi et al. [31] extend this approach
by introducing MAClets for simplifying the programmability of MAC protocols executed
on Wi-Fi firmware. In contrast, ReactiFi supports a wide range of applications not limited
to MAC protocols executed on off-the-shelf wireless devices, whereas MAClets require the
software-defined radio platform USRP B200 for execution.

Software-defined Wireless Networking Software-defined networking (SDN) [43, 44, 88,
106] supports programmable network behavior in a centrally controlled manner to facilitate
flexible network management. Several languages and systems can be used to program the
data plane of SDN switches, such as P4 [34] or OpenFlow [161], and wireless networks [28,
64]. Programmability of wireless networks is promising especially at the PHY and MAC layers
due to the dynamicity of wireless communication and the scarcity of the wireless spectrum
[86, 134]. Schulz-Zander et al. have proposed OpenSDWN, an approach based on SDWN and
Network Function Virtualization (NFV) [216–218]. In OpenSDWN, a virtual AP is provided
for each client, where PHY and MAC layer transmission settings can be changed for each
flow. Hätönen et al. [108] use intelligent edge techniques to enable SDWN on off-the-shelf
APs, where virtual machines are used on AP hardware to create multiple virtual APs.

To the best of our knowledge, no existing SDWN approach facilitates the programmability of
Wi-Fi functionality on off-the-shelf mobile devices, as it is supported by ReactiFi. We argue
that SDWN approaches are not well-suited for the goal of programming Wi-Fi firmwares
of mobile devices, because programming wireless networks is about reacting to events, and
maintaining state about a device’s environment (e.g., its neighbors and their distances), not
only about packet processing.

Event-based Embedded Programming TinyOS [141] is a scheduler and a collection of
drivers for low-power wireless embedded systems. It allows event-driven programming with
nesC [98], a C language derivative. RIOT OS [18] is a microkernel-based operating system,
designed to match the requirements of Internet of Things (IoT) devices. It allows thread
execution with a preemptive, priority-based scheduler, but does not include integrated means
to handle dataflow.

Reactive Programming for Embedded Systems Emfrp [211, 256], CFRP [240], and
Hae [254] are reactive programming languages for generic embedded devices, often modeling
sensor-based devices that monitor some external state. This leads to a design that focuses
only on stateful reactives, i.e., the value of a sensor can always be accessed. Thus, these
approaches lack built-in operations such as filtering and alternatives of events. They have
been shown to be easily parallelizable [204].

Juniper [109] is an ML-like language for the Arduino platform. While it supports both stateful
and stateless events, Juniper does not distinguish the two, blurring the semantics regarding
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when an event fires and where the runtime has to store state. Juniper supports a dynamic
dataflow graph by compiling a runtime into the target C++ code, resulting in a more complex
program with a larger memory footprint. It also allows inline C++ code, similar to how
ReactiFi is based on C, but both C++ and Juniper have redundancies, and the interaction
between the Juniper code and the C++ code require understanding of the encodings by the
Juniper compiler.

Flask [156] uses the Haskell type system to type an embedded DSL similar to ReactiFi,
showing the applicability of the approach to other domains. However, since Flask targets
sensor networks, the semantics of Flask are optimized for a system that allows less control,
leading to a language with fewer guarantees.

CÉU [209] and Esterel [29, 84] do not directly focus on embedded devices, but bring
synchronous reactive programming to soft real-time systems. Compared to ReactiFi they use
a more imperative style of syntax, but their underlying semantics, i.e., processing all events
in the same logical time step, is similar to ReactiFi. These languages are used in industry
deployments, demonstrating the advantages over alternatives such as writing C directly.

Reactive Programming for Programmable Networks Frenetic [89], Nettle [249] and
Procera [250] allow programmers to describe network policies using functional reactive
programming abstractions. Compared to ReactiFi, these languages target packet forwarding
on programmable network switches, by compiling to OpenFlow [161] rules. The dataflow
in these languages is very specific to the semantics of OpenFlow and does not directly
translate to Wi-Fi programming. Flowlog [179] adopts a database-like programming model,
where internal state, represented as tables, is updated in response to incoming events. The
SQL-like syntax of Flowlog hides the dataflow of applications and makes it hard to compose
independent event flows without creating intermediate tables.

6.2.7 Summary

This section presented ReactiFi, a domain-specific language to facilitate programmability
of embedded devices. Programmers can use a high-level reactive programming language to
perceive environmental information, comprehend the device’s situation, and make decisions
based on the projection. Advantages of ReactiFi with respect to scheduling and memory usage,
and code length by comparing two implementations of a case study in C and ReactiFi, were
discussed. The empirical evaluation demonstrated the benefits of programming embedded
devices with a reactive language in terms of significant improvements of throughput and
latency, and with support for situation-aware embedded edge computing.
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6.2.8 Appendix: Adaptive File Sharing Implementation in C

1 #define FROM_AP 0

2 #define TO_AP 1

3 #define FROM_TDLS 2

4

5 #define FC_OFFSET 6

6 #define DURATION_OFFSET 8

7 #define ADDR1_OFFSET 10

8 #define ADDR2_OFFSET 16

9 #define ADDR3_OFFSET 22

10 #define SEQ_CTL_OFFSET 28

11

12 #define IOV_SET 1

13

14 typedef struct {

15 uint8_t addr [6];

16 } mac_addr_t;

17

18 typedef struct {

19 uint8_t version;

20 uint8_t type;

21 uint8_t sub_type;

22 uint8_t to_ds;

23 uint8_t from_ds;

24 uint8_t more_frags;

25 uint8_t retry;

26 uint8_t pwr_mngmt;

27 uint8_t more_data;

28 uint8_t protected;

29 uint8_t order;

30 } frame_control_t;

31

32 typedef struct {

33 frame_control_t *fc;

34 uint16_t duration;

35 mac_addr_t *src;

36 mac_addr_t *dst;

37 mac_addr_t *bssid;

38 uint16_t seq_ctl;

39 int32_t signal;

40 int32_t noise;

41 uint8_t ds_type;

42 struct wl_info *wl;

43 } monitor_frame_t;

44

45 struct averages {

46 int32_t avg1;

47 int32_t avg2;

48 mac_addr_t *addr;

49 struct wl_info *wl;

50 };

51

52 uint8_t is_tdls = 0;

53 map_t addr_snr_map = 0;

54 int *signal_count = 0;

55 uint8_t MY_MAC [6] = {0};

56
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57 // If we receive a sk_buff , we have to parse it.

58 // This is what this function is for.

59 int make_frame(monitor_frame_t *mntr , struct wl_info *wl , struct wl_rxsts

*sts , struct sk_buff *p) {

60

61 char *raw_frame = (char *)p->data;

62

63 mntr ->fc->version = (uint8_t) (raw_frame[FC_OFFSET] & 0x03);

64 mntr ->fc->type = (uint8_t) (raw_frame[FC_OFFSET] & 0x0C) >> 2;

65 mntr ->fc->sub_type = (uint8_t) (raw_frame[FC_OFFSET] & 0xF0) >> 4;

66

67 if (mntr ->fc->type != 2) {

68 return -1;

69 }

70

71 if (mntr ->fc->sub_type != 0) {

72 return -1;

73 }

74

75 mntr ->fc->to_ds = (uint8_t) (raw_frame[FC_OFFSET + 1] & 0x01);

76 mntr ->fc->from_ds = (uint8_t) (raw_frame[FC_OFFSET + 1] & 0x02) >>

1;

77 mntr ->fc->more_frags = (uint8_t) (raw_frame[FC_OFFSET + 1] & 0x02) >>

2;

78 mntr ->fc ->retry = (uint8_t) (raw_frame[FC_OFFSET + 1] & 0x02) >>

3;

79 mntr ->fc ->pwr_mngmt = (uint8_t) (raw_frame[FC_OFFSET + 1] & 0x02) >>

4;

80 mntr ->fc ->more_data = (uint8_t) (raw_frame[FC_OFFSET + 1] & 0x02) >>

5;

81 mntr ->fc ->protected = (uint8_t) (raw_frame[FC_OFFSET + 1] & 0x02) >>

6;

82 mntr ->fc ->order = (uint8_t) (raw_frame[FC_OFFSET + 1] & 0x02) >>

7;

83

84 memcpy (&mntr ->duration , &raw_frame[DURATION_OFFSET], 2);

85

86 if (mntr ->fc ->to_ds == 0 && mntr ->fc->from_ds == 1) {

87 mntr ->ds_type = FROM_AP;

88 memcpy(mntr ->dst , &raw_frame[ADDR1_OFFSET], 6);

89 memcpy(mntr ->dst , &raw_frame[ADDR3_OFFSET], 6);

90 }

91 // REPLY TO AP

92 else if (mntr ->fc->to_ds == 1 && mntr ->fc->from_ds == 0) {

93 mntr ->ds_type = TO_AP;

94 memcpy(mntr ->dst , &raw_frame[ADDR3_OFFSET], 6);

95 memcpy(mntr ->dst , &raw_frame[ADDR2_OFFSET], 6);

96 }

97

98 // REPLY TDLS

99 else if (mntr ->fc->to_ds == 0 && mntr ->fc->from_ds == 0) {

100 mntr ->ds_type = FROM_TDLS;

101 memcpy(mntr ->dst , &raw_frame[ADDR1_OFFSET], 6);

102 memcpy(mntr ->dst , &raw_frame[ADDR2_OFFSET], 6);

103 }

104

105 else {

106 return -1;
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107 }

108

109 memcpy (&mntr ->seq_ctl , &raw_frame[SEQ_CTL_OFFSET], 2);

110

111 mntr ->signal = sts ->signal;

112 mntr ->noise = sts ->noise;

113

114 mntr ->wl = wl;

115

116 return 0;

117 }

118

119 // Function for generating the key for the hashmap

120 void gen_key(char *key , uint8_t type , monitor_frame_t *input) {

121 sprintf(

122 key , // Store in key

123 "%d %x%x%x%x%x%x", // Format: type , space , 6 byte mac address

124 type ,

125 input ->src ->addr[0],

126 input ->src ->addr[1],

127 input ->src ->addr[2],

128 input ->src ->addr[3],

129 input ->src ->addr[4],

130 input ->src ->addr [5]

131 );

132 }

133

134

135 // The first filter for filtering frames sent to this device.

136 monitor_frame_t *filter_my_frames(monitor_frame_t *input , uint8_t MY_MAC

[6]) {

137 // Compare the 6 bytes containing the dst address with my_mac_address

138 // If it is the same , yield the next reactive.

139 // Otherwise , do nothing.

140 if (memcmp(input ->dst , MY_MAC , 6) == 0) {

141 return input;

142 } else {

143 return 0;

144 }

145 }

146

147 // Aggregates SIGNAL_COUNT signals for the current address to an average

148 map_t aggregate_average(map_t state , monitor_frame_t *input , int *

signal_count) {

149 char *key = malloc (15, 0);

150 gen_key(key , input ->ds_type , input);

151

152 // Get the signals for the current address.

153 int *avg = 0;

154 int hashmap_state = hashmap_get(state , key , (void **)&avg);

155

156 // If the address is not present , we have not seen this frame yet.

157 // Initialize.

158 if (hashmap_state != MAP_OK) {

159 avg = malloc(sizeof(int), 0);

160 *avg = 0;

161 }

162

141



6 Situation-aware Embedded Edge Computing

163 // Calculate the average and put the new average to the map.

164 *avg = *avg + (input ->signal - *avg) / *signal_count;

165 *signal_count = *signal_count + 1;

166

167 // Put the newly created avg to the hashmap.

168 hashmap_put(state , key , avg);

169

170 return state;

171 }

172

173 // Comparing signals for deciding if TDLS should be setup/destroyed.

174 struct averages *compare_signals(map_t state , monitor_frame_t *input) {

175 char *key = malloc (15, 0);

176 gen_key(key , input ->ds_type , input);

177

178 int *avg = 0;

179 int snr_avgs_state = hashmap_get(state , key , (void **)&avg);

180

181 // If the key is not in the hashmap , something is wrong. Abort.

182 if (snr_avgs_state != MAP_OK) {

183 return 0;

184 }

185

186 char *other_key = malloc (15, 0);

187 int *other_avg = 0;

188 switch (input ->ds_type) {

189 case FROM_AP:

190 case TO_AP:

191 // If this frame if from the AP or to the AP, we compare it

to the SNR average received directly from the other node.

192 // If it is smaller , enable TDLS.

193 gen_key(other_key , FROM_TDLS , input);

194

195 snr_avgs_state = hashmap_get(state , other_key , (void **)&

other_avg);

196 if (snr_avgs_state != MAP_OK) {

197 return 0;

198 }

199

200 break;

201

202 case FROM_TDLS:

203 // If this frame is directly from the other node , we compare

it to the SNR average received from the AP.

204 // If it is bigger , enable TDLS.

205 gen_key(other_key , FROM_AP , input);

206

207 snr_avgs_state = hashmap_get(state , other_key , (void **)&

other_avg);

208 if (snr_avgs_state != MAP_OK) {

209 return 0;

210 }

211

212 break;

213

214 default:

215 return 0;

216 }
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217

218 free(key);

219 free(other_key);

220

221 // Construct the return struct

222 struct averages *ret = (struct averages *) malloc (14 + sizeof(struct

wl_info *), 0);

223 ret ->avg1 = *avg;

224 ret ->avg2 = *other_avg;

225 ret ->addr = input ->src;

226 ret ->wl = input ->wl;

227

228 return ret;

229 }

230

231 // Filter for enabling TDLS if it should be.

232 void enable_tdls(struct averages *avgs) {

233 if (avgs ->avg1 < avgs ->avg2) {

234 // Before enabling TDLS , check if it already is enabled.

235 if (is_tdls == 0) {

236 struct tdls_iovar info;

237 memset (&info , 0, sizeof(struct tdls_iovar));

238 memcpy(info.ea, avgs ->addr , 6);

239

240 info.mode = TDLS_MANUAL_EP_DISCOVERY;

241 wlc_iovar_op(avgs ->wl->wlc , "tdls_endpoint", 0, 0, &info ,

sizeof(struct tdls_iovar), IOV_SET , 0);

242

243 info.mode = TDLS_MANUAL_EP_CREATE;

244 wlc_iovar_op(avgs ->wl->wlc , "tdls_endpoint", 0, 0, &info ,

sizeof(struct tdls_iovar), IOV_SET , 0);

245

246 is_tdls = 1;

247 }

248 }

249 }

250

251 // Filter for disabling TDLS if it should be.

252 void disable_tdls(struct averages *avgs) {

253 if (avgs ->avg1 > avgs ->avg2) {

254 // Before disabling TDLS , check if is enabled.

255 if (is_tdls == 1) {

256 struct tdls_iovar info;

257 memset (&info , 0, sizeof(struct tdls_iovar));

258 memcpy(info.ea, avgs ->addr , 6);

259

260 info.mode = TDLS_MANUAL_EP_DELETE;

261 wlc_iovar_op(avgs ->wl->wlc , "tdls_endpoint", 0, 0, &info ,

sizeof(struct tdls_iovar), IOV_SET , 0);

262

263 is_tdls = 1;

264 }

265 }

266 }

267

268 // The monitor source function.

269 // Whenever a new frame appears , we do the handling here.
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270 void wl_monitor_hook(struct wl_info *wl, struct wl_rxsts *sts , struct

sk_buff *p) {

271 if (p == 0 || p->data == 0) {

272 return;

273 }

274

275 monitor_frame_t *frm = (monitor_frame_t *) malloc (42 + sizeof(struct

wl_info *), 0);

276 frm ->fc = (frame_control_t *) malloc (11, 0);

277 frm ->dst = (mac_addr_t *) malloc(6, 0);

278 frm ->src = (mac_addr_t *) malloc(6, 0);

279 frm ->bssid = (mac_addr_t *) malloc(6, 0);

280

281 if (make_frame(frm , wl, sts , p) != 0) {

282 goto cleanup;

283 }

284

285 monitor_frame_t *my_frames = filter_my_frames(frm , MY_MAC);

286 if (! my_frames) {

287 goto cleanup;

288 }

289

290 addr_snr_map = aggregate_average(addr_snr_map , my_frames ,

signal_count);

291

292 struct averages *tmp3 = compare_signals(addr_snr_map , frm);

293 if (!tmp3) {

294 goto cleanup;

295 }

296

297 enable_tdls(tmp3);

298 disable_tdls(tmp3);

299

300 cleanup:

301 free(frm ->fc);

302 free(frm ->dst);

303 free(frm ->src);

304 free(frm ->bssid);

305 free(frm);

306 wl_monitor(wl, sts , p);

307 }

308

309 // This is the firmware ’s main function.

310 // Initialize the hashmap and the counter.

311 // Enable monitor mode as the frame source.

312 void autostart(int a1) {

313 addr_snr_map = hashmap_new ();

314 signal_count = malloc(sizeof(int), 0);

315 *signal_count = 1;

316

317 __attribute__ ((at(0x18DA30 , "", CHIP_VER_BCM4339 ,

FW_VER_6_37_32_RC23_34_40_r581243)))

318 __attribute__ ((at(0x18DB20 , "", CHIP_VER_BCM4339 ,

FW_VER_6_37_32_RC23_34_43_r639704)))

319 BLPatch(wl_monitor_hook , wl_monitor_hook);

320 }

Listing 6.5: C code of the adaptive file sharing case study
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6.3 Multimodal Complex Event Processing on Mobile Devices

Embedded devices offer exciting possibilities to create new embedded edge computing
applications that make use of the embedded devices’ environmental information, such as
user activities, location information, environmental conditions, operating system events, and
network traffic, to preprocess data before transmitting it to infrastructure- or mobile devices or
cloud backends. Complex event processing (CEP) is an approach for realizing situation-aware
applications on embedded devices, since CEP can be used to filter, aggregate, and correlate
data in a high-level language that allows developers without domain knowledge to formulate
complex queries on event streams. To leverage the full potential of embedded edge computing
for executing application-specific queries on heterogeneous event streams in an energy-efficient
manner, multimodal CEP is presented, a novel approach to access and process event streams
on-device. To broaden the applicability of multimodal CEP, it is able to execute queries not
only on embedded devices but also on multiple modes of mobile devices, where modes in
turn can be embedded devices on their own. More specific, in user space (user mode), in
the operating system (kernel mode), on the Wi-Fi chip (Wi-Fi mode), and/or on a sensor
hub (hub mode), with the two latter modes describing embedded devices. Multimodal CEP
automatically breaks up CEP queries and selects the most suitable execution mode for the
involved CEP operators, allows irrelevant components of the mobile device to be turned
off or set to sleep mode, and avoids unnecessary CPU cycles, such as context switches and
memory copy operations. Filter, aggregation, and correlation operators can be expressed in
a high-level language that abstracts from implementation and execution details associated
with the corresponding modes without requiring system-level domain-specific knowledge.
Multimodal CEP enables developers to efficiently perceive information like user activities,
environmental conditions, or operating system (OS) and network events. Novel situation-aware
embedded edge computing applications can use this information, e.g., to trigger notifications,
initiate network transmissions, or control video and audio data processing.

This section is organized as follows. Subsection 6.3.1 presents the design of the approach,
including the query language. Subsection 6.3.2 describes implementation. In Subsection 6.3.3
experimental results are presented. Finally, Subsection 6.3.4 discusses related work.

Parts of this section have been published previously [104].

6.3.1 Multimodal CEP

In this section, the operator algebra, the modes of multimodal CEP, the query language, and
the mode selection algorithm are presented.

CEP Operator Algebra

We use a common operator algebra for event streams to define CEP operators [132]. Formally,
an event e is a pair (p, t) consisting of a payload p and an event timestamp t; p is from some
domain D, and t is from a discrete and totally ordered time domain T . The validity of p is
the instant t. An event stream E is a potentially unbounded sequence of events, ordered by t.
Repeated readings of a sensor naturally compose an event stream; p consists of the measured
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Table 6.2: Operator algebra for event streams [132]

Name Description

Filter σφ Filters a window based on predicate (φ).
Aggregator α Computes aggregates (e.g., sum, average) of events in the underlying

window.
Correlator ▷◁φ Joins two windows based on predicate (φ).

Wi-Fi
Chip

CPU

User Mode

Wi-Fi Mode

Kernel Mode

Frames

Scheduler

Storage
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Hub
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GPS α

σ

⋈

⋈

Memory

Sink

Figure 6.12: CEP operators in different modes

values (e.g., the X,Y and Z values of an accelerometer), and t is the point in time when the
values are retrieved from the sensor.

Since event streams are potentially unbounded, stateful CEP operators rely on windows
to capture the most recent event history. Windows are based either on time or on counts
(e.g., the last 10 seconds or events) and move forward in a sliding (1 time unit or event) or
jumping (1 < m ≤ size time units or events) fashion. In addition to the window operator,
the algebra consists of three operators, summarized in Table 6.2. Filters, aggregators and
correlators are equivalent to their counterparts in the relational algebra, but for the two
stateful operators (i.e., aggregator and correlator), results are computed using the most
recent set of events (i.e., the defined windows), rather than the entire event stream. The
reason is that result computation over potentially infinite streams is neither meaningful nor
computationally feasible (e.g., computing the sum of an infinite number of events would
never produce a result).

Modes

In principle, any programmable component of a mobile device can be used to provide an
execution mode for multimodal CEP. We focus on components that are useful to gather
information about a mobile device’s situation [25]: user activities (user processes), system
events (operating system), network events (Wi-Fi chip), and physical sensor values (sensor
hub). Figure 6.12 illustrates how CEP operators, as part of a CEP query, are executed in
different modes: (i) user and kernel mode, both executed on the main CPU with access to
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Figure 6.13: Quality-of-Experience (QoE) query example

main memory, (ii) Wi-Fi mode, executed on an ARM microcontroller of a FullMac Wi-Fi chip
that usually controls Wi-Fi PHY and MAC layer protocols, and (iii) hub mode, executed on
a low-power coprocessor that performs basic computations on events arriving from sensors,
e.g., accelerometers or GPS trackers.

A mode is associated with a particular hardware component that can execute mode-specific
binaries. A CEP operator can be executed in a particular mode if it was previously compiled
for and transferred to the particular hardware component. In our approach, CEP operators
are compiled on-device during runtime. CEP queries for the multimodal CEP engine are
transformed into an operator tree, then the operators are assigned to suitable modes, compiled
for and transferred to the corresponding hardware component.

In kernel mode, events are captured with kprobes3. It can be inserted in virtually any instruction
in the kernel, allowing a user to break into any kernel routine and collect information non-
disruptively. Berkeley Packet Filters (BPF)4, a bytecode-based virtual machine in the Linux
kernel, is used to perform, e.g., filters. In Wi-Fi mode, we use the Nexmon firmware patching
framework5 to process Wi-Fi frames on an embedded ARM processor of a FullMAC Wi-Fi
chip. In hub mode, we collect and process values of a gyroscope, an accelerometer, a compass,
a pressure and a proximity sensor, and a GPS sensor with an 8-bit microcontroller.

Query Language

To provide genericity and expressiveness in formulating application-specific queries on event
streams without requiring domain-specific knowledge, we use a CQL-like query language
based on the work of Arasu et al. [16].

1 SELECT AVG(len) AS len FROM

2 (SELECT * FROM kernel.sys_write WHERE pid ==0)

3 WINDOW(COUNT 300 JUMP 300)

Listing 6.6: CQL query example

Listing 6.6 shows an an example of a query. CEP queries are represented via an operator
tree: Events flow from the event sources (leaf nodes) through the operators (inner nodes) to
the result sink (root). The query’s input stream declaration refers to a kprobe-based event

3https://www.kernel.org/doc/Documentation/kprobes.txt
4https://www.kernel.org/doc/Documentation/networking/filter.txt
5https://nexmon.org
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stream on the generic write() system call. It is mapped to a filter on the pid attribute,
an aggregator calculating the average write buffer size, and a window aggregating the most
recent 300 events.

Listing 6.7 shows a query representing a composited sensor to indicate low response times of
mobile apps caused by poor network performance (i.e., high latency, low throughput) within
the radius of a certain point of interest (POI), for example a railway station.

1 SELECT PID , A_TIME , A_BUF FROM

2 (SELECT * FROM

3 (SELECT PID , AVG(TIME) AS A_TIME

4 FROM kernel.finish_task_switch

5 WINDOW(COUNT 300 JUMP 300)

6 GROUP BY PID)

7 WINDOW(PARTITION BY PID COUNT 1) TS,

8 (SELECT PID , AVG(BUFFER) AS A_BUF

9 FROM kernel.tcp_cleanup_rbuf

10 WINDOW(COUNT 300 JUMP 300)

11 GROUP BY PID)

12 WINDOW(PARTITION BY PID COUNT 1) CU

13 WHERE TS.PID = CU.PID)

14 WINDOW(TIME 1 S),

15 hub.gps@(1 Hz)

16 WINDOW(TIME 1 S)

17 WHERE A_TIME > LONG_DURATION AND

18 A_BUF < LOW_BUFFER AND

19 latitude BETWEEN l AND r AND

20 longitude BETWEEN l AND u;

Listing 6.7: Quality-of-Experience (QoE) query example

The kernel function tcp cleanup rbuf() as a first input stream from kernel mode cleans up
the “receive” buffer for full frames, before an acknowledgment is sent. It contains the number
of bytes the tcp recvmsg() function responsible for copying data from the kernel network
stack into the user buffer has given to the user so far. Furthermore, we utilize the function
finish task switch() of the Linux scheduler as a second input stream from kernel mode.
It is used as a cleanup function after a task switch.

Figure 6.13 shows the corresponding operator tree with operators running in hub mode, kernel
mode, and user mode. From the event sources, the event attributes pid, time, buffer

are aggregated by two different aggregators in kernel mode. The filters are applied as close as
possible to the event source, such that the conditions of the where-clause are applied as soon
as these values exist. In our case, filters in kernel mode and in hub mode are used before the
correlator with the predicate pid in user mode.

Mode Selection

We distinguish between user mode and lower-level modes, such as kernel, Wi-Fi, and hub
mode. The goal of mode selection is to select modes for operators such that the number of
events passed from the lower-level modes to the user mode is minimized, while the resource
restrictions of these modes are met. This minimizes the overhead of inter-mode communication
and reduces the load of the more power-hungry main CPU. Each of the lower-level modes has
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Operator Fin Fout

Filter σφ S[0].Fout Fin · sel(φ)
Aggregator αw,agg S[0].Fout Fin/size(w)
Correlator ▷◁w0,w1,φ S[0].Fout + S[1].Fout S[0].Fout · size(w1) · sel(φ)+S[1].Fout ·

size(w0) · sel(φ)

Table 6.3: Output event rate calculation on windows and predicate selectivity (sel)

mode specific resource constraints and hosts a dedicated set of event sources. Furthermore,
the hardware architecture determines how the events are passed between operators: events
from hub and Wi-Fi mode can be passed to the kernel mode or user mode, but not between
hub and Wi-Fi mode; events from the kernel mode can be sent to the user mode only. Our
mode selection algorithm solves a placement problem: we partition the queries’ operators into
candidate sets (one per mode) and decide for each operator of a candidate set whether the
operator is deployed or not. In the first step, we build candidate sets for the Wi-Fi and hub
mode, containing all operators that do not rely on inputs from other modes, and compute
their operator placement. Afterwards, we build the candidate set for the kernel mode. This
set contains all operators solely relying on events from kernel sources as well as unassigned
operators from the hub and Wi-Fi candidate sets, which are (at some point) correlated with
events from the kernel mode. In the last step, all operators that were not placed in one of
the lower-level modes are assigned to the user mode.

The selection of to-be-placed operators from a candidate set is modeled as a variant of the
0-1 knapsack problem with mode-specific constraints. Although this problem is NP-hard, we
opt for the optimal solution using an 0-1 ILP solver6. We limit its execution time to two
seconds and use the best solution found up to that point. In all of our test cases (up to 30
operators per candidate set), the optimal solution was found within one second.

We now formally describe the placement decision problem, including the mode specific
constraints. Every operator is represented by a five tuple Oi := (Ccpu, Cmem, Fin, Fout, S)
where Ccpu is the CPU cost per processed event, Cmem is the memory required by this
operator (including attached windows and the program code), Fin, Fout are its in- and output
frequencies (events/s) and S is the set of upstream operators (child nodes). Cmem and Ccpu

depend on the defined window sizes, which in turn depend on an operator’s input frequency
(time windows). To compute these values, we traverse the operators from bottom to top and
apply the operator specific formulas presented in Table 6.3 to obtain Fin and Fout. Currently,
predicate selectivity is provided by the user. The remaining values are then calculated based
on the frequencies.

Despite mode specific resource constraints, the placement decision for a set of candidates
can be stated as an integer linear program (ILP): given a set of candidate operators O :=
{O1, . . . , On}, we define the set of decision variables X := {x1, . . . , xn} as:

xi :=

{︄
1, if Oi is placed in the considered mode

0 otherwise

6Sat4J, www.sat4j.org
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The objective function to maximize is∑︂
O∈O

X(O) · (O.Fin −O.Fout)

It represents the number of events that are not transferred to another mode. X(O) refers to
the decision variable corresponding to O. Additionally, we define the following constraint:

∀O ∈ O : ∀O′ ∈ O.S : X(O)−X(O′) ≤ 0

This ensures that there are no gaps in the computed placement (i.e., an operator is only
placed, if all of its child operators are placed, too). We add additional constraints to reflect
mode specific restrictions on CPU and memory requirements, which we describe below.

Hub/Wi-Fi Mode In these modes, all operators are executed within a single executable
and thus share the available resources (processing power and memory). This is reflected by
adding the following constraints to our problem formulation:∑︂

O∈O
X(O) ·O.Cmem ≤ Capmem (6.1)∑︂

O∈O
X(O) · (O.Ccpu ·O.Fin) ≤ Capcpu (6.2)

They guarantee that the resource requirements of the placed operators do not exceed the
mode’s memory (Capmem) and processing (Capcpu) capacity. Note that the CPU costs
are scaled according to the operator’s input frequency to reflect the number of operator
invocations during a single loop of execution. For example, if the GPS sensor is queried at 1
Hz and the accelerometer at 2 Hz, the accelerometer operators are executed twice as often
as the GPS operators in a single processing loop.

Kernel Mode Queries in kernel mode are executed via BPF programs. The main difference
to hub and Wi-Fi mode is that there are no global restrictions on CPU and memory usage,
but an instruction limit per BPF program. A BPF program is deployed for every leaf to
root path and invoked once per event. This implies that for paths joined by a correlator,
both corresponding BPF programs must execute exactly the same operators for the common
portion of the paths. For example, consider a query that correlates two streams and filters
the results afterwards. This results in two BPF programs, one processing the left side of the
join and one processing the right side. The correlator and filter can only be placed in kernel
mode, if both BPF programs have the capacity to process them. To include these constraints
into our problem formulation, we define PO := {P1, P2, . . .} as the set of all longest paths
for the operator candidate set O. A path is a sequence of operators Pi :=< Oi,1, . . . , Oi,n >,
such that all operators are connected: ∀j ∈ {1, . . . , n − 1} : Oi,j ∈ Oi,j+1.S and Oi,1 are
attached to an event source (Oi,1.S = ∅). We use paths to express the instruction limit per
BPF program as a constraint in our problem formulation:

∀i ∈ {1, . . . , |P|} :
∑︂
O∈Pi

X(O) ·O.Ccpu ≤ Capcpu
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CapCPU refers to the instruction limit per BPF program and |P| is the number of paths in
P. The alignment of joined paths is ensured by constraint (2).

Special care must be taken for operators that are extracted from the hub- and Wi-Fi candidate
sets: they should only be executed in kernel mode, if the corresponding join is also executed
in kernel mode. The rationale behind this is that if the corresponding join is processed in user
land (i.e., not placed in kernel mode), all the operators should be directly processed in user
land mode to avoid multiple transfers and processing costs in kernel mode. To ensure this, it
is sufficient to manipulate their frequencies, such that Fin − Fout = 0. That is, they produce
costs but do not reduce the output size unless they participate in a join.

Multiple Query Placement For multiple concurrent queries, there might be multiple
paths originating at the same source. Hence, we need to check that transferring the results
from all those paths is more efficient than simply transferring the events generated by the
corresponding source. Consider, for example, a source delivering events with a frequency of
100 Hz. If we place three filters, each having a selectivity of 50% on this source, the expected
output rate is 150 Hz, which is less efficient than simply transferring the source events at 100
Hz and evaluate the filter in user mode. To account for this case, we add artificial operators
to the candidate set (O), one per event source: Osrc := (0, 0, Fin := m · Fsrc, Fout := Fsrc,
S := ∅) where src refers to the corresponding source and m is the number of paths originating
at that source. The frequencies of these artificial operators reflect the reduction of the output
frequency an operator placement has to beat. We incorporate this into our model with the
following constraints:

∀Osrc ∈ O : ∀O ∈ D(O, src) : X(Osrc) +X(O) = 1

Here, O is the set of artificial operators and D(O, src) extracts all operators of the candidate
set O that are directly connected to source src. These constraints act as a mutex allowing
to either place the artificial operator or any combination of descendants of src. Due to
constraint (2), it is sufficient to only consider the source’s direct descendants here.

In hub mode, another preprocessing step is required when considering multiple queries.
Since the polling frequency of a source is specified per query, we may encounter conflicting
frequencies for a single source. We treat the user specified frequencies as a lower bound and
execute each query with the highest specified frequency. To preserve the queries’ semantics,
we adjust the size of count based windows accordingly.

6.3.2 Implementation

In this section, the architecture of our multimodal CEP engine, the assembly of mode-
independent CEP operators to compilable mode-specific programs, their execution model,
and our mode-specific implementation are presented.

Architecture

Figure 6.14 shows the architecture of our multimodal CEP engine in Android. Mobile
applications in Android run on top of the software stack, consisting of the Android kernel
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Figure 6.14: Multimodal CEP architecture in Android

with device drivers, the Hardware Abstraction Layer (HAL) with vendor-specific device
implementations, the managed Android Runtime (ART) used by applications, and the
Application Framework for high-level services, such as activities and notifications. Applications
formulate CEP queries for the multimodal CEP engine. The multimodal CEP software stack
consists of an application interface used by applications, as well as a code generator and a
compiler, both running in a privileged and isolated (chrooted) container, with specific paths
and libraries. The communication between applications and the container is realized via a
Unix domain socket. This facilitates direct access to hardware to deploy CEP operators on the
Wi-Fi chip and on the sensor hub. The multimodal CEP component generates code according
to Section 6.3.2, the compiler translates the generated code into mode-specific programs
and deploys the programs according to Subsection 6.3.2. Events are passed from the event
sources to operators, and the event flow ends at the event sink that notifies the application.
The HAL would also be a candidate to implement a mode, but since mode functions are
performed similarly to the user mode on the CPU in non-privileged mode, this does not have
any advantage. Thus, the HAL is bypassed. CEP operators in user mode are implemented as
processes running in user mode on the CPU within the container, not as part of applications
inside the ART. Our experiments showed that the throughput of our user mode is significantly
higher than the throughput achieved in the ART. The throughput of the filter in user mode is
about 46% higher than in the ART. The correlator is about 73%, and the aggregator is about
79% faster than in the ART, without additional power consumption. These differences are
due to a larger number of in-memory data copy operations in the ART and, due to the Java
garbage collection thread. Even a complex Java implementation can benefit from a generic,
ring-buffer-based C implementation called via JNI.
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Figure 6.15: Execution model and code generation for the (QoE) query example

Code Generation

Each CEP operator has a defined semantics that is independent of the target architecture
and its software dependencies. Therefore, CEP operators are developed as mode-independent
modules, with interfaces to mode-specific operations like reading or writing buffers. These
mode-independent modules are written in a subset of the C programming language. Compared
to the C99 standard, this C subset is restricted as follows: (i) inlineable functions and unrollable
loops: operators must be able to run in platforms like BPF, with only a predefined set of
callable functions and with strong restrictions to backjumps within programs – thus, only
inlined loops and functions are used for creating mode-independent CEP operator modules;
(ii) no global scope and no heap memory allocations: memory sections, such as the data
segment or the heap, are not available in all platforms – therefore, the internal state of an
operator, e.g., the content of its input windows, cannot be stored in the global scope or in
heap-allocated data; it must be read and written in mode-specific buffers, like a BPF queue.

Generic read and write functions within operators are replaced by mode-specific code during
compilation. Mode-specific compilers translate operators, event sources and mode-specific
dependencies to firmware patches and executable programs.

Figure 6.15b shows the code generation for event sink, event source, correlator, aggregator
and filter operators as well as push and pull templates for specific transport modules. On
the right side of Figure 6.15b, our code generation component weaves a producer function
into the event source module. Then, it traverses the operator tree and inserts specific event
producer functions as well as event queue accesses to input or output windows. Window-based
operators, such as aggregators and correlators, communicate differently with their leaves, in
contrast to event-based operators, such as filters and event producers. Event-based operators
transport events on the program stack (by-stack), while window-based operators transport
events by-buffer, i.e., they first store event data in-memory and check whether the window is
in a new state, to be used as input for the next operator. Operators communicating across
mode boundaries always transport events by-buffer.

To generate these source code modules, the meta-compiler must be aware of possible event
sources, i.e., input streams and their attributes. This is achieved using annotated data
structures in the producer functions. First, input streams are defined by producer function
names, in case of Listing 6.7: finish task switch() and tcp cleanup rbuf(). Second,
within these functions, an annotated function call defines the entry point for a CEP operator.
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It expects an instance of an event, i.e., a pointer to a composite data type instance whose
variables define the attributes of an event. This design of the input stream definitions allows
developers with platform specific domain knowledge to reuse their existing implementations
and to introduce CEP capabilities with minimal effort. Finally, as mentioned before, a compiler
component is responsible for compiling the source code for mode-specific programs.

Execution Model

Figure 6.15a shows the execution model of multimodal CEP using the Quality-of-Experience
(QoE) example in Listing 6.7. Events flow from event sources (right) to the event sink
(left). Programs are concurrently executed in user mode (red), kernel mode (yellow) and
hub mode (green). For the hub mode program, the microcontroller firmware is patched to
periodically poll the physical sensors and push the event data to the user program. In kernel
mode, two kprobe event sources push events to BPF programs. While the user as well as
the microcontroller program can be run within a loop for periodic polling, BPF programs
can only run per event. Furthermore, two different communication paradigms are used: push
and pull. On the left, the user program is notified for new events via a blocking read from
the microcontroller, while the microcontroller periodically polls the GPS sensor on the sensor
hub for its sensor values. On the other hand, kernel events occur on the right and trigger a
corresponding BPF program. The kernel programs push their results to a BPF queue that
can be read by both user and BPF programs. Note that the mapping between operators and
programs is not realized in a one-to-one manner. On the contrary, by design, one program
can include as many operators as possible. Limitations for merging operators into a single
program are mainly mode boundaries and resource restrictions, such as the maximum number
of instructions in a BPF program or the available memory.

Modes

In this section, we present implementations of kernel mode, Wi-Fi mode, and hub mode.
They are based on the generic C implementation discussed in the previous section, which is
expanded to include mode-specific execution environments.

Kernel Mode In our implementation, kprobes serve as event sources. The kprobe subsystem
has recently been adapted to mobile architectures, such as ARM64 processors7, based on
arbitrary software breakpoints. CEP operators run within the in-kernel BPF virtual machine
as BPF programs that process incoming kprobe events. BPF allows a user land program
to connect to network sockets to filter packets according to certain conditions. BPF has
been added as a new feature to Linux 3.15 and has seen multiple enhancements since then,
e.g., a JIT compilation feature. The combination of kprobes and BPF allows us to receive
any kind of event from the kernel without modifying the source code of a particular kernel
subsystem (with potentially tens of millions of lines of unfamiliar source code), thus avoiding
unpredictable side effects.

7https://www.linaro.org/blog/kprobes-event-tracing-armv8
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We use the BPF Compiler Collection (BCC)8 to compile C code to BPF bytecode with the
following restrictions: there is no standard library, all function calls are inlined, no loops or
other return jumps are allowed, and there is a maximum number of 4,096 BPF bytecode
instructions and a stack space limit of 512 bytes. Apart from BPF-specific hash tables/arrays,
the stack is the only storage space available, i.e., there is no global space and no heap.

The BCC consists of an LLVM clang frontend9 and an LLVM BPF bytecode backend. The
BCC compiler uses the clang preprocessor to extract the initialization of and the accesses
to BPF data structures that can be used for both the communication between BPF probes
and between kernel and user land. Then, the BPF backend translates the modified C code to
BPF bytecode that can be dynamically injected via the bpf() system call. Thus, CEP queries
for the kernel mode consist of two parts: a BPF bytecode program and a user land program
loading the bytecode and calling the bpf() system call. The user land program loads the
kernel mode programs into the kernel and attaches sockets and kprobes. The BPF program
can write event data into BPF-specific buffers that are accessible from the user land program
via a file descriptor.

Wi-Fi Mode Wi-Fi chips of today’s smartphones cannot be programmed. Therefore, our
implementation of the Wi-Fi mode is based on the Nexmon firmware patching framework10 to
make firmware modifications of lower-layer frame processing on embedded ARM processors of
FullMAC chips. We used the Nexus 5 smartphone that has a Broadcom BCM4339 FullMAC
Wi-Fi/Bluetooth chipset and an ARM Cortex-R4 processor for controlling the dedicated MAC
and PHY layer hardware. The ARM Cortex-R4 is a 32 bit RISC processor with a clock speed
of 1.4 GHz.

To be able to flash and load compiled queries during runtime without disturbing Wi-Fi
connectivity, we use Position Independent Code (PIC). Thus, queries can be compiled into
separate binary files that can be loaded into arbitrary memory addresses from where we can
trigger their execution. After a query has been loaded into the Wi-Fi chip, its execution is
triggered by branching into the newly loaded main function of a PIC module. To dynamically
load PIC modules containing parts of the multimodal query, we use ioctls.

Theoretically, the BCM4339 chip includes 768 kB SRAM and 640 kB ROM. But since we
still need the standard Wi-Fi and Bluetooth functionality of this chip, and we only add new
functionality, we cannot use the entire space. For program code, our patches can use about
20 kB, whereas in the standard firmware implementation without our multimodal code, about
100 kB SRAM memory is free to use. The main data structures used on the Wi-Fi chip are
sk buffs that are typically about 2 kB in size. Thus, queries can store about 50 sk buffs.
This number can be increased by performing memory optimizations, e.g., by only storing
values of the sk buff required by the sub-query on the Wi-Fi chip.

Hub Mode In today’s smartphones, coprocessors and accelerators are used to improve
performance and to decrease overall energy consumption. As a representative example, we
focus on a sensor hub as a low-power coprocessor. Although most smartphone manufacturers

8https://github.com/iovisor/bcc
9https://clang.llvm.org

10https://nexmon.org
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Figure 6.16: Power consumption in user and kernel mode processing system events

do not specify which hardware is used for such coprocessors, it is known, for example Samsung’s
Galaxy S4 uses a 32-bit Atmel AVR UC3 microcontroller11 with 128 kB of flash memory, an
operating frequency of 50 MHz, and 32 kB RAM12. Typically, current sensor hubs process
events from, e.g., accelerometer, gyroscope, and compass sensors.

Since sensor hubs are usually closed-source, we have developed our own external sensor hub
based on an 8-bit Atmel ATmega2560 microcontroller with a clock speed of 16 MHz, 256 kB of
flash memory and 8 kB of RAM. We also have developed a second external sensor hub based on
an ATmega328 microcontroller with 16 MHz clock speed, but slightly less power consumption
due to reduced flash size (32 kB) and RAM (2 kB). Although both microcontrollers operate
at a low clock speed comparable to other sensor hub implementations, we selected them due
to their power-efficient design (26 mW/MHz and 11 mW/MHz, respectively). We use the
following sensors: (i) the L3GD20H gyroscope, (ii) the LSM303 accelerometer and compass,
(iii) the BMP180 MEMS pressure sensor, (iv) the VCNL4010 proximity sensor, and (v) the
MTK3339 GPS sensor. The sensors (i)-(iii) are mounted on a single 10-degrees-of-freedom
breakout board, whereas all other sensors reside on their own breakout board.

Our hub mode implementation contains modules for reading from the physical sensors (sensor
modules), i.e., event producer implementations and event window implementations. In contrast
to kernel mode, the sensor values can be stored on the heap of the processor, but due to the
quite limited RAM sizes of our sensor hub (8 kB/2 kB RAM) and relatively large physical
sensor values (e.g., 60 bytes for GPS), we avoid copies of physical sensor values between
windows. Instead, we have implemented a dedicated reference count memory management
for sensor values. If an event is needed (i.e., at least one operator uses this event), the
reference count is increased. After this event is no longer needed by an operator, the reference
count will be decreased. If the reference count for an event is zero, the memory will be freed
and the reference will be deleted. This allows us to have about 100 filters, correlators, or
aggregators with window sizes of up to 200 elements. Furthermore, a program for our sensor
hub implements two basic functions: a setup() function used for sensor initialization, and
a continuously looping main function, allowing the program to respond to physical sensor
events. Since the flash memory of ATmega chips is only writable during boot and thus not
at runtime of the program, the microcontroller must be flashed each time a new operator

11http://www.techinsights.com/teardown.com/samsung-galaxy-s4/
12http://www.atmel.com/devices/ATUC128L4U.aspx?tab=parameters
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tree is deployed in hub mode. The communication between sensor hub and kernel is realized
by a serial connection via the USB port of the smartphone. This enables us to read the
corresponding device mounted in the Android kernel.

6.3.3 Experimental Evaluation

In this section, we compare kernel and user mode, a network-event benchmark comparing
Wi-Fi and kernel mode, and a sensor hub evaluation.

Kernel Mode

To evaluate our kernel mode implementation, all measurements were performed on the
Dragonboard 410c SoC that uses a Quad-core ARM Cortex A53 at up to 1.2 GHz per core
and 1 GB RAM, running Linux 4.9 for the AArch64 architecture. The power measurements
were taken at the DC input jack of the Dragonboard 410c connected to an INA219 breakout
board, i.e., a power measurement SoC.

The first measurement is used to obtain a benchmark for the throughput in events/s. An
event is a one-byte write to an in-memory character device, i.e., a single system call and
an in-memory write. Compared to benchmarks using other kernel subsystems (e.g., sending
packets via the loopback device), the CPU spents less time in the operating system. Then, we
implemented a program to process these events at a specific rate (in events/s). We defined
an input stream via a kprobe at drivers/char/mem.c:write null, successively executed
CEP operators in user and kernel mode, and measured the power consumption of the device
under test. The kernel mode operators were executed by enabling BPF JIT compilation.

Due to the hard instruction limit of 4,096 instructions, we were able to compile an aggregator
on a window of 300 elements and a correlator on a window of 10 elements on each input
stream in kernel mode. More precisely, the correlator had an instruction size of 2,076, but
its window size could not be increased due to the behavior of the BPF verifier: to ensure a
safe execution of BPF programs, the verifier simulates the execution of every instruction and
records the state of all registers and the program stack13. For a branching instruction, the
verifier has to check both the true and false branch. This may result in some instructions
being tested repeatedly if both branches reach the same instructions, in this case a number
of 55,719 processed instructions. Overall, the verifier has a maximum of 65,536 processed
instructions, which is a hard limit for our correlator implementation.

Figure 6.16 shows the results. The benchmark executed without any modifications is plotted
as a baseline close to the bottom. Both the aggregator and the correlator were executed with a
window size of 10 elements, no matter if they run in user mode or kernel mode. The aggregator
predicate consists of a counter of all window elements. The correlator was implemented as a
self-join, with the identity operation as a predicate. The kernel mode introduces an additional
power consumption of 3.5% for 10k events/s, and a maximum additional power consumption
of 10% for filters, and 21% for aggregators and correlators, for about 430k events/s. On
the other hand, in user mode, the operators consume significantly more power, 7.5% more

13https://github.com/torvalds/linux/commit/17a5267
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for filters, 12% more for aggregators, and 21% more for correlators for 10k events/s, and a
maximum additional power consumption of about 35% for 300k events/s.

The difference between user mode and kernel mode is mainly due to the additional overhead
of system calls, more specifically the access to the BPF-specific data structures from user
land. This is also reflected by the difference between user mode aggregator and correlator.
The correlator operates on two input streams, which results in twice as many accesses to the
BPF data structures. Throughput and power consumption are dominated by this overhead.
Other aggregator predicates do not change these results significantly. Correlator predicates
with a lower selectivity have negative effects on throughput and power consumption, but do
not change the overall result that it is beneficial to perform the operators in kernel mode.

Furthermore, the maximum throughput for correlators and aggregators in user mode (about
300k events/s) is approximately 30% smaller than in kernel mode (about 430k events/s).
Filters can process about 600k events/s, consuming about 2,400 mW power. The benchmark
results also show that the maximum throughput for both user mode and kernel mode is only
a fraction of the maximum throughput of the unmodified benchmark (2.1 million events/s).
This is a result of the kprobe mechanism, combined with additional CPU cycles spent to load
and store event data in BPF data structures to execute CEP operators. Even a very small
overhead has a strong effect at these high event rates, resulting in a throughput degradation
compared to our benchmark for kernel mode operators (user mode operators) in the range of
10-15% (15-30%). To summarize, kernel correlator and aggregator consume up to 32% less
power (for 140k events/s) and achieve up to 30% higher throughput compared to equivalent
operators in user mode. The kernel mode filter consumes up to 32% less power (for 370k
events/s) and achieves up to 52% higher throughput compared to a filter in user mode.

To summarize, the measured power consumption is proportional to the number of processed
events and depends on the computational complexity of the CEP operators. On a mobile
device, process- and wireless network interface-related events occur frequently. For example,
a 802.11n 1x1 radio Wi-Fi interface with 150 Mbps receives 10k-100k packets/s. Applying a
multimodal CEP operator, e.g., for packet inspection on a 802.11n 1x1 radio Wi-Fi interface
at 10k packets/s saves 7.5% power for filters, 12% for aggregators, and 21% for correlators
compared to a user land implementation. Assuming a constant rate at 10k events/s, this will
lead to a 7.5%, 12%, 21% longer battery lifetime.

Wi-Fi Mode

We performed several experiments based on Nexus 5 smartphones (Broadcom BCM4339
FullMAC Wi-Fi chipset, ARM Cortex-R4 processor for controlling MAC and PHY layer, and
Qualcomm Snapdragon 800 main CPU). To run experiments without interferences from the
battery, we removed the battery and the charge controller from the battery, soldered wires
to the charge controller, and put the controller back into the Nexus 5. Then, we performed
measurements using a Monsoon High Voltage Power Monitor with a sample rate of 5 kHz
and a resolution of 286 µA. The voltage was set to 4.2 Volts, which corresponds to about
92% battery capacity.

In our experiments, we used three different operators: a simple packet filter, an aggregator
averaging the signal strength for a number of packets, a correlation of the packet payload
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Figure 6.18: Power consumption of CEP operators on the ATmega328 microcontroller

size and the size of the entire Wi-Fi frame. In our aggregation and correlation tests, we used
different window sizes of 1, 10, 50, 100 and 200 elements. All tests were performed with 100,
200, 500 and 1,000 ICMP echo requests per second. We compared results with the same
operators performed in kernel mode.

Figure 6.17 shows the experimental results. The power consumption of operators in Wi-Fi
mode was always between 265 mW and 309 mW. The power consumption of operators in
kernel mode varies from 404 mW (benchmark) and 1375 mW (correlation with 200 elements).
In general, the kernel mode requires between 34% more power for the benchmark and 60%
more power for correlations with 50 elements than in Wi-Fi mode. In kernel mode, correlations
require more power than other tests, due to the relatively high computational overhead. The
high complexity of correlations is the reason why the Wi-Fi chip could not successfully perform
two correlation tests with window sizes of 100 and 200 elements.

These experiments show that the potential power savings can be up to 60% if code is executed
on the Wi-Fi chip instead of in the kernel. Since the Nexus 5 has a battery with a capacity
of 2300 mAh, the battery would last about 12 to 19 hours longer, depending on the test.
Additionally, the consumed power is always around 260 mW and 309 mW, whereas the kernel
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mode shows a much higher variance due to kernel specific behaviors like context switches,
which consume additional power. On the other hand, these benefits come with the problem
that the Wi-Fi chip is limited in its computational capabilities, as indicated by our correlation
tests with larger window sizes.

Hub Mode

The experimental setup for the evaluation of the hub mode includes the two microcontrollers
used for the sensor hub, ATmega2560 and ATmega328, both operating at the same clock
speed (16 MHz). The bigger ATmega2560 operates at an efficiency of 26 mW/MHz clock
speed and 51.625 mW/kB main memory, while the smaller ATmega328 operates at 11
mW/MHz or 89.5 mW/kB. In other words, while the smaller ATmega328 microcontroller is
more power-efficient, the ratio between memory capacity and power consumption is better
for the larger ATmega2560. The microcontroller’s power consumption was measured with an
INA219 current sensor connected to an Arduino UNO using the I2C bus, polled at a frequency
of 2 Hz. The sensors have different sampling rates. While the GPS sensor provides new values
at a rate of 1 Hz, the gyroscope provides a maximum rate of 760 Hz. Therefore, for CEP
operators on input streams with low sample rates, the microcontroller is put into sleep mode
when no new sensor values are available. This reduces the power consumption of the processor
(ATmega328: from 170 mW to 85 mW; ATmega2560: from 408.5 mW to 194.5 mW).

Figure 6.18 shows the power consumption of the filter, aggregator and correlator executed on
the ATmega328 microcontroller. The lower bound of the measured power consumption is
defined by the aggregator with a window size of 1, starting at 87 mW. For all user mode
operators, power consumption is about 476.7 mW (with a standard deviation of 1.9 mW). In
contrast, power consumption for operators in hub mode is between 87 mW and 170 mW,
which is between 19% and 36% of the main CPU’s power consumption. Thus, the total power
consumption savings are between 64% and 81%.

The minimum and maximum power consumption of aggregator and correlator are similar, but
the maximum is reached earlier by the correlator. In general, higher window sizes correspond
to longer execution times. Windows with 10 elements take about 10 milliseconds, 50 elements
about 15 milliseconds, 100 elements about 20 milliseconds, and 200 elements about 30
milliseconds. Thus, a correlator with a 10-element window can run for up to 100 events/s,
50-element and 100-element windows for up to 50 events/s, and a correlator with 200-element
windows with only 10 events/s.

As already mentioned, the ATmega2560 ratio between memory capacity and power consump-
tion is better. In other words, the ATmega328 is more power-efficient at the cost of not being
able to process complex operator trees. In fact, the main memory of the ATmega328 is only
25% of the size of the ATmega2560, while the flash memory is 87.5% smaller. Therefore,
the window sizes for aggregators and even correlators on the ATmega2560 can be up to ten
times larger than on the ATmega328.

If the microcontrollers are not put to sleep but execute the queries as fast as possible,
the window sizes do not affect power consumption. Furthermore, cascading filters has no
significant impact on power consumption.
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6.3.4 Related Work

Multimodal CEP is related to CEP engines for mobile and resource-constrained environments,
such as distributed embedded systems, wireless sensor networks, and mobile devices. For
example, the µCEP engine [9] features dynamic rule updates in IoT devises. For embedded
wireless devices, operating systems like TinyOS [141] and a correspondnig query processor
TinyDB [155] have emerged. TinyDB, for example, focuses on reducing power by optimizing
data sampling, i.e., where, when, and how often data is physically acquired and delivered
to query processing operators. Additionally, several techniques for reducing the battery
consumption of contextual sensing applications on mobile devices have been proposed. They
range from static [168] to dynamic/adaptive [131] duty-cycling of sensors up to sophisticated
processing pipelines for various sensors [152]. Existing federated CEP systems [35, 194]
combine a set of heterogeneous CEP engines and provide a unified API/query language to
abstract from the underlying systems. In crowdsensing scenarios, the number and reliability of
available sensors vary heavily among the targeted locations. While urban areas are typically
covered by more sensors than required for the targeted accuracy, the coverage in rural
areas is sparse. Marjanovic et al. [160] tackle this challenge by controlling the sensors’ duty-
cycles to save energy by putting sensors into sleep mode while preserving sufficient sensor
coverage at the same time. Their solution is based on a mobile crowdsensing publish/subscribe
middleware [15] that can also be used to orchestrate the sensing process in an energy-efficient
and context-aware manner. In contrast, multimodal CEP assumes that the number events
processed by CEP engines (middlewares) on the main CPU (within the network or on remote
servers) can be significantly reduced by detecting complex events close to the hardware and
software event sources. Therefore, multimodal CEP focuses on filtering, aggregating and
correlating events within the existing mobile hardware/software architecture (mode).

Multimodal CEP is related to other approaches to increase energy efficiency of mobile devices.
Lentz et al. [140] optimize short-lived events in Android systems, where suspend and on
transitions dominate energy consumption. The authors construct a dependency graph between
woke-up threads and other components. They do not wake up all threads / components (as
Android does), but a minimal set of dependent threads / components. All processes still rely
on the main CPU to be executed, which can be avoided by multimodal CEP. A multimodal
CEP engine can be used to complement this approach in a broad spectrum of use cases,
ranging from participatory to opportunistic sensing applications, to achieve battery savings
by executing queries in a more battery-friendly mode.

Moreover, our implementations of the kernel and hub mode are related to other research on
sensor hubs and in-kernel processing. Several approaches [145, 222] address energy-efficiency
by executing application-specific functions on a sensor hub, by automatically rewriting existing
Android applications, or by providing an API for sensor-specific functions. In contrast, we
propose a general approach for heterogeneous modes, including but not limited to a sensor hub.
Berkeley Packet Filters are typically used for in-network filtering and processing [55], virtual
network functions [6], performance monitoring, dynamic tracing and security monitoring [107].
For example, Cheng et al. [55] present a packet capturing mechanism for Android based on
libpcap and BPF. The goal is to create a network packet collection framework inside the
Android OS that could later be used to perform generic analyses. Compared to our use of
BPF, Cheng et al. modify Android by deploying libpcap as a low-level library that can be
accessed using the Java Native Interface. All these approaches use BPF or high-level language
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compilers to BPF for their specific domain. In contrast, multimodal CEP processes operators
in different modes and provides a generic interface for applications from different domains.

6.3.5 Summary

In this section, multimodal CEP was presented, a novel approach to process streams of events
on embedded devices. In multimodal CEP, queries are formulated in a high-level language,
which are then broken up and the most adequate execution mode for the involved CEP
operators is selected. A multimodal CEP engine for Android devices, including three novel
execution environments for CEP operators in the operating system, based on Berkeley Packet
Filters, on the Wi-Fi chip, based on the Nexmon firmware patching framework, and for a
custom sensor hub, leading to significant power savings of up to 81% (32%) for executing
CEP operators in hub mode (kernel mode) compared to user mode, since more components
of the SoC can be set to sleep mode and unnecessary CPU instructions are avoided was
presented. Up to 60% power can be saved if operators are executed on the Wi-Fi chip instead
of in the kernel. Throughput improvements of up to 52% in kernel mode compared to user
mode were measured.
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6.4 Summary

This chapter presented contributions to the field of situation-aware embedded edge computing.
It was shown how the programming and data processing paradigms reactive programming and
complex event processing enable novel situation-aware embedded edge computing applications
that support developers to implement novel situation-aware applications.

In particular, the following contributions were presented:

• ReactiFi: A high-level, domain specific reactive language supporting perception, compre-
hension, and projection to implement actions that make novel situation-aware embedded
edge computing applications possible.

• Multimodal CEP: Using the concept of complex event processing to support efficient
filtering, aggregation and correlation for situation-aware embedded edge computing
applications.
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7
Case Studies for Situation-aware Edge

Computing

This chapter discusses two case studies for situation-aware edge computing. Section 7.1
motivates both case studies. In Section 7.2, it is shown how situation-aware edge computing
can be used to support emergency response applications. In Section 7.3, we present how
situation-awareness can be used to implement transitions in the area of device edge computing.
Section 7.4 summarizes this chapter.

Parts of this chapter have been published previously [23, 104, 233–235].

7.1 Motivation

Throughout this thesis, the novel concept of situation-aware edge computing was discussed.
To show the feasibility, applicability, and importance of this approach, two cases studies
will be presented. Since emergencies like natural disasters will continue to increase in the
future due to the continuously advancing climate catastrophe, it is an imperative for modern
information and communication technology to develop applications that help to cope with
natural disasters, but also other types of emergencies like terrorist attacks, and to support
emergency response activities with novel applications. Therefore, the first case study, presented
in Section 7.2, shows how situation-aware edge computing can be used to support emergency
response with three individual applications in the areas infrastructure edge computing, device
edge computing, and embedded edge computing. The second case study in Section 7.3 shows
how situation-awareness can be used to implement transitions to enable remote procedure
calls in the area of device edge computing with intermittent and error-prone connections
between mobile devices.

7.2 Situation-aware Edge Computing in Emergency Response
Applications

Unfortunately, societies around the world are hit by various emergencies every year, be it
terrorist attacks, infrastructure collapses such as failing bridges or crumbling power grids,
or of course, natural disasters. Due to the advancing climate catastrophe, such events,
but above all natural disasters, will continue to increase in the future. Thus, it is a moral
imperative that modern information and communications technology (ICT) helps to cope
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with such emergencies. Fortunately, many scientists and engineers are working on various
aspects of emergency management using ICT. One area that is particularly affected in
many emergencies is communication. Particularly in natural disasters, the communication
infrastructure often fails for several days. However, there are promising approaches in this area
to cope with such events. Disruption-Tolerant Networking (DTN) makes it possible to establish
a rudimentary communication or data exchange without a communication infrastructure[21,
191]. Furthermore, alternative radio technologies such as LoRa are discussed, which can be
used in case of an emergency to establish a temporary communication infrastructure spanning
a large area [111]. However, since during emergencies communication infrastructure is often
not available, centralized cloud services cannot be reached either, i.e., many functionalities,
applications, and services cannot be supported. As a result, rescue helpers have to use other
information sources like social media, e.g., to gather information about how many people
are within an affected area [80]. Finally, many devices (e.g., smartphones, notebooks, IoT
devices, embedded devices, and infrastructure devices) have computing and storage resources,
but these cannot be straightforwardly used with current computing paradigms.

What all of these approaches lack, however, is situation-awareness. By implementing situation-
aware applications and leveraging the strengths and benefits of edge computing, ICT can
support emergency management, help affected people and rescue helpers make informed
decisions, and complete critical tasks utilizing the computational resources. In the following
sections, three applications are introduced. In Section 7.2.1, 5G infrastructure devices are
enhanced to facilitate infrastructure edge computing during emergencies so that rescue helpers
can utilize the computational capabilities to achieve situation-awareness for informed decision-
making, e.g., during the planning of a firefighting operation. The infrastructure devices
themselves are also using a situation-aware approach to detect emergencies. In Section 7.2.2,
an approach is presented that detects faces in and extracts them from images on mobile
devices while, depending on the situation, specific devices for particular computation steps are
chosen to spread the load fairly across all mobile devices so that sparse resource consumption
is achieved. Using this information, rescue helpers can in turn identify missing people and
coordinate search operations. Finally, Section 7.2.3 utilizes embedded devices to provide
rescue helpers with information regarding the number of affected people in proximity and their
locations in an energy-preserving manner, so rescue helpers can comprehend the situation
with respect to how many people are missing and make informed decision as to where to
intensify the search for missing people.

The remainder of this section is organized as follows. Subsections 7.2.1, 7.2.2 and 7.2.3
introduce and evaluate situation-aware approaches to cope with emergencies in the areas
of infrastructure edge computing, device edge computing, and embedded edge computing.
Subsection 7.2.4 concludes this section.

Parts of this section have been published previously [23, 104, 233, 235].

7.2.1 Situation-aware Infrastructure Edge Computing

With the advent of 5G, network access will be available ubiquitously. High bandwidth using
wireless communications is usually achieved with higher frequencies. Higher frequencies,
however, result in lower penetration (e.g., of buildings) and a lower transmission range. Thus,
to achieve high bandwidths in 5G networks, so-called 5G small cells have to be deployed
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throughout a city [247]. This requirement leads to new opportunities for telecommunications
companies to equip the facilities (e.g., small cells) they roll out for 5G Internet access with
computing capabilities, such that a dense network of infrastructure devices becomes available.
In this section, a novel approach is presented that uses smart street lights equipped with
Internet access, but also infrastructure devices for infrastructure edge computing. The source
code of this proof-of-concept implementation is available under a permissive license1. While
smart street lights have many benefits, such as weather and air quality measurement plus
public 5G Internet access and tourist information during non-emergency times, they can
functionally transition into something different in the event of an emergency. Here, additional
sensors are activated and sensing can be performed with a higher sampling rate, plus live
video feeds can be used. The sensors (especially a camera) can be used to automatically
gather awareness of critical situations prior to an emergency alarm. Furthermore, a hidden
covert channel is used for secure communication with a command center during emergencies.
All of this is done directly on an infrastructure device without having to send all the sensor
data to the cloud. This enables us to provide situation-awareness directly at the infrastructure
edge, allowing rescue helpers to make and implement decisions for further actions based on
the current situation.

This subsection is organized as follows. In Paragraph 7.2.1, presents the design. Paragraph 7.2.1
discusses how situation-awareness can be achieved and how information with respect to the
current situation can help rescue helpers coping with emergencies.

Smart Street Lights as Infrastructure Devices

Smart street lights are an emerging technology for digital cities. Manufacturers are currently
exploring their possibilities and chances. The main goal of smart street lights is to provide
additional features to citizens like Internet access or supply additional information from local
sensors. Thus, a smart street light should contain the following components beyond a light
source: temperature-, humidity-, CO2-, particulates- and light sensors and motion detectors
should be available as a basic set of sensors. In endangered areas with high crime rates,
cameras should also be available in the lamp posts. It is also suggested including batteries
and solar panels to be able to power the smart street light during emergencies. In case of
an emergency, a visual guidance system should be available as well, to help to direct crowds
remotely. Further, smart street lights should contain a dedicated mesh network that connects
all smart street lights to a city-wide network. Finally, a smart street light should contain a
device that allows executing computations at the infrastructure edge.

As a proof-of-concept implementation, a prototype of a smart street light was built. A
prototypical smart street light from Schréder2, one of the largest street light vendors globally
was used. Their product Shuffle is a modular street light, with some capabilities required
already available. First, their modular street light provides the street light itself. As of writing
this work, there are no 5G small cell access points freely availble for purchase. Thus, the
Wi-Fi access point (AP) provided by the vendor of the street light was used to simulate
Internet access though the smart street light. For special purpose solutions or other use cases,
radio links such as LoRa, ZigBee, or Sigfox can easily be added to the setup. Furthermore,

1https://github.com/stg-tud/emergencity_demo
2https://www.schreder.com/
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Figure 7.1: Sensors of the smart street light; orange: visual guidance system; yellow: motion
sensor; red: CCS811 CO2 sensor; blue: Raspberry Pi; green: TSL2561 light sensor;
pink: AM2302 temperature and humidity sensor

Schréder also provides a camera module that was used for building the proposed prototype.
Additionally, a visual guidance system is available (orange in Figure 7.1).

A set of sensors, as shown in Figure 7.1 was integrated: an Aosong AM2302 temperature and
humidity sensor3 (pink), a TAOS TSL2561 light sensor4 (green) that can sense infra-red light
and the remaining broadband spectrum. To sense CO2, an AMS CCS811 gas sensor5 (red), a
HC-SR501 PIR motion sensor6 (yellow) is used. Fianlly, a Raspberry Pi (blue) is used as the
infrastructure device to execute computations.

Achieving Situation-awareness using Smart Street Lights

When no emergency happens or has happened (from here on called everyday mode), the
smart street light functions as a light emitter and Internet AP for the inhabitants of the city.
In everyday mode, the smart street light has two tasks. First, it should provide information
that can be used by citizens to achieve situation-awareness on their own. Thus, the existing
sensors can be used to show the temperature, humidity, air quality, and other available sensor
data. The second task of the lantern is to perceive the information provided by the sensors
directly at the infrastructure edge in order to comprehend its own situation. By then projecting
the future situation, it can be decided whether local warnings about different events have
to be issued. For example, the CO2 and particulates sensor could be used to inform the
local residents to close their windows due to poor air quality. Temperature and humidity
sensors are also valuable for local climate information and behavioral suggestions like giving
drinking advice during hot periods. Motion detectors and light sensors can be used to only
turn on the light if it is dark enough and motion, i.e., people that require light, are detected.
Additionally, the light sensor can also be used to dim or brighten the light according to the
current situation. The optional camera should, for privacy and data protection reasons, not
record or stream data anywhere, but evaluate the taken pictures directly at the infrastructure
edge, i.e., within the street light.

3https://www.sparkfun.com/datasheets/Sensors/Temperature/DHT22.pdf
4https://cdn-shop.adafruit.com/datasheets/TSL2561.pdf
5https://cdn.sparkfun.com/assets/learn_tutorials/1/4/3/CCS811_Datasheet-DS000459.pdf
6https://www.mpja.com/download/31227sc.pdf
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With the infrastructure edge computing capabilities and above described situation-awareness
of the smart street light, it can detect emergencies and transition to a second mode, which
is called emergency mode. The functionality of the smart street light can then change to
support emergency management with information regarding the emergency that can be
perceived by rescue helpers to achieve situation-awareness. They can plan and coordinate
their missions based on the situation. For example, a smart light may have detected a fire
situation, but the fire department may not know where the fire is taking place. Perceiving the
information coming from a particular smart street light and comprehend the situation can
help to project the future fire situation with respect to the size, intensity, and location of
the fire. Furthermore, the camera that only evaluates taken pictures locally during everyday
mode, will now send the pictures to a central command center using a dedicated mesh-based
communication channel, again, supporting the rescue helpers to handle the situation. Besides
providing information for citizens and rescue helpers, the smart street lamp can also execute
own actions based on the made situation-aware decisions. For example, the visual guidance
system can be used to direct people. A red signal could mean that no one should go this way,
and green signal, on the other hand, could indicate a safe direction.

Additionally, during emergencies, the different rescue helpers and authorities on site need a
common communication channel to coordinate recovery actions. This can be provided by the
mentioned city-wide wireless mesh network. However, this communication channel must not
interfere with other legitimate radio spectra to prevent disturbances, and it should be secure
and robust against attackers, e.g., during cyber-attacks or an act of terrorism. Therefore, a
transition of the wireless mesh network to address these properties is proposed. To build the
inter-light mesh network, ESP8266 boards (ESPs from now on) for providing a reliable mesh
network between the street lights are emplyed. To implement the communication channel
for helping authorities, some features of the ESPs boards were exploited. The crystal of the
ESPs oscillates with a frequency of either 40 MHz or 26 MHz. To adjust this frequency to
the frequency required for emitting IEEE 802.11 compliant electromagnetic signals, the ESPs
have two Phase-Locked Loops (PLLs) (i) RFPLL for adjusting the center frequency, and (ii)
BBPLL for adjusting the bandwidth frequency and other peripherals. BBPLL is adjusted using
registers in the CPU, since they have to be adjusted depending on whether the ESP has a
crystal with 40 MHz or 26 MHz. This means that this factor can be set at runtime, resulting
in altered bandwidths. Since in the IC of a Wi-Fi chip different components are used to ensure
a steady and clean radio signal like high- and low-pass filters, the factor for BBPLL cannot be
set arbitrarily. After analyzing the possible values, a bandwidth of 8 MHz was chosen, which
is not IEEE 802.11 compliant anymore. This results in Wi-Fi signal only decodable by other
ESPs with the same BBPLL values, or software-defined radios. In fact, off-the-shelf Wi-Fi
devices cannot even see the Wi-Fi frames. Another advantage of this approach is that the
bandwidth of the Wi-Fi spectrum are effectively shrunk, reducing the overlapping space of
neighboring channels and thus reducing interferences with them. Therefore, we also favor 8
MHz over the other possible bandwidth of 16 MHz. Since a layer of encryption on the MAC
layer was used, a secure and hidden communication channel that reduces the interferences
with legitimate radio spectra was created.
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7.2.2 Situation-aware Device Edge Computing

One key problem during many emergencies is that communication infrastructure is disturbed
or even completely destroyed. Thus, it is not often not possible to offload tasks to cloud
computing facilities. In such scenarios, device edge computing can play a key role in providing
compute resources within the affected area, enabling at least basic computations in cases
where nothing else is usable. However, especially in emergency situations, power is a sparse
resource and should be preserved as much as possible. To this end, situation-awareness can
play a key role in (i) providing appropriate device edge computation facilities and (ii) at the
same time reduce load on mobile devices and preserve power. One application that benefits
from being situation-aware is the task of detecting faces in images. To support the search for
missing people during an emergency, it is sufficient to rely on the extracted imagery of a face
instead of the entire image. It can even be advantageous to send only the face, since the
load on the network is significantly reduced, but the information provides the same result.
A situation-aware device edge computing solution can extract faces from images that help
rescuers to find and identify people and at the same time preserve resources in the network
and reduce the overall load of the network but also of computing and power resources. To
execute this task in a situation-aware manner, the OPPLOAD framework was used, which is
discussed in Section 5.2.

Paragraph 7.2.2 briefly describes the workflow that is used to detect faces in images using
mobile devices. In Paragraph 7.2.2, the experimental setup is presented, and Paragraph 7.2.2
discusses the results.

Detecting Faces in Images

For situation-aware device edge computing in emergency response application, the algorithm
presented by Lampe et al. [137] for detecting faces in images on smartphones was adopted,
which consists of five steps: (i) image denoising, (ii) upscaling the image by 10%, (iii) cropping
the image by 10%, (iv) gray scaling the image, and finally (v) detecting faces.

Experimental Setup

This application was evaluated using 30 emulated and randomly moving nodes. Since OPP-
LOAD is designed to use the best available worker for executing a task in the current situation,
workers were assigned with different capabilities (see Section 5.2.3): 20% of the workers were
capable with no constraints, 40% were also capable but with less energy reserves, 30% could
execute the task, but with limited capabilities (like little available memory) and 10% were not
capable to execute the task at all. Workers announce their capabilities to the network so that
clients can perceive this information. Based on the perception, clients then can comprehend
the situation with respect to the capabilities of surrounding workers and project the future
situation as to which of the available workers is suited best for the given task. Based on this
projection the clients decide on which worker the task will be offloaded to. Furthermore, the
behavior with 5 and 10 clients that offload tasks at the same time in the network at the
start of an experiment were evaluated, which can lead to workers executing multiple tasks
simultaneously. To simulate an IEEE 802.11g network, which is still widely used especially in
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Figure 7.2: Final workflow states, by number of active clients in JiT mode.

countries of the global south, with a bandwidth of 54 Mbit/s, a basic range model for the
Wi-Fi nodes with 40 meters of range was used. The mobility model was configured for 30
nodes, walking randomly in an area of about 1.7 km2 at a speed between 0.8 m/s and 1.9
m/s or rest for up to 60 seconds, which corresponds to human walking speed. This setup leads
to relatively small mesh networks that are appearing and disappearing during the execution
of the experiment. Overall, 200 experiments were executed.

Evaluation

Figure 7.2 shows the final states of the workflows executed in the specific scenarios, where
the bars are grouped by the number of clients per experiment and worker assignment. The
y-axis shows the number of tasks in a particular state. The first case is a successful workflow
(Success), where a workflow was offloaded, all tasks could be executed, and the result arrived
at the client. Second, OPPLOAD performed as intended, but errors occurred (Worker Error)
and the client could successfully be informed about this error. However, since an opportunistic
network was emulated, errors are expected, as bundle delivery in opportunistic networks
cannot be guaranteed. OPPLOAD handles three classes of error. (i) Task execution errors
occur during the execution of the task itself, e.g., due to an exception in the code of the
task. (ii) Worker selection errors occur if no worker for the subsequent task can be found.
(iii) worker calling errors occur for example when the worker is no longer capable to execute
the task. An experiment stopped in the Transmission state, if a task was transmitted to the
next worker, but not received until the end of the experiment, e.g., if the recipient cannot be
reached due to network fragmentation. Due to experiment abortion while OPPLOAD was in a
runtime state or a worker executed the task itself, it is denoted as Runtime and Execution.

Experiments using the recent assignment mode (for the different assignment modes, see
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Table 7.1: Average runtimes of tasks in mobile JiT scenarios in seconds.

Assign. Exec. (s) Runt. (s) Transm. (s) Total (s)

Recent 8.7 (0.64) 5.0 (1.89) 269.0 (336.37) 282.8 (338.91)
Random 8.9 (1.02) 5.0 (1.84) 254.9 (300.75) 268.8 (303.61)
Best 8.9 (0.62) 5.2 (1.80) 135.5 (191.26) 149.6 (193.68)
Spread 8.9 (0.68) 5.1 (1.95) 234.2 (300.75) 248.1 (303.61)

Section 5.2.3) have the lowest success rates, which is due to the fact that workers are selected
that are far away and the offers arrive late. Using a random worker increases the number of
successes slightly. Using the best worker available, all tests were either successful or the client
was informed about an error when 5 clients are used. The spreading approach is as good as
using the best worker in terms of successful workflows or errors returned in time. The fact
that even using the best worker does not lead to 100% successful executions is due to the
worker capabilities and the transmission time in opportunistic networks. A worker updates
its capabilities after executing a task, which can lead to the situation that another task is
offloaded to the worker, even though it is not capable anymore. The falsely assigned worker
will decline task execution and inform the client.

Table 7.1 shows the average workflow runtimes over all experiments. It is evident that using
the spread algorithm gives better results than random assignment and using a recent worker.
Note that the transmission times (and thus also the total times) have a rather high standard
deviation. This is due to the mobility of the nodes and potentially disappearing links between
two nodes, resulting in re-transmissions. These increase the time, whereas many transmissions
are successful within the first try, reducing the mean transmission time.

7.2.3 Situation-aware Embedded Edge Computing

In the area of embedded edge computing, embedded devices can contribute to emergency
response applications by providing information regarding the current situation. Using the
sensing capabilities of embedded devices and the pre-processing capabilities presented in
Chapter 6, the gathered information is then used for further situation-aware applications for
emergency response. For example, rescue helpers can coordinate search operations based on
the number of people in certain areas. But the embedded devices themselves also need to be
situation-aware, for example to decide whether specific sensors should be used or not, e.g., to
save energy, since energy may be in short supply during an emergency. In this section, wireless
devices in the vicinity of a particular embedded device are counted to estimate the number of
people in a certain area. In emergency cases, knowing how many people are in an affected
area can be live-saving [20, 56, 212]. First and foremost, information is provided that can be
used in downstream processes to obtain situation-awareness at a higher level, for example in
the creation of a situation picture. However, to do this efficiently and in a resource-saving
manner, the embedded devices themselves have to be aware of their particular situation, i.e.,
to only use GPS positions if the device is outdoors, because the accuracy of the GPS sensor
is too low indoors anyway.
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Paragraph 7.2.3 presents the code that is used to count nearby devices and report the
information to rescue helpers. Paragraph 7.2.3 describes the experiment setup to evaluate
this approach and Paragraph 7.2.3 discusses results from the evaluation.

Counting Nearby Devices

Listing 7.1 shows the code for this application that is implemented using ReactiFi, the
language presented in Section 6.2. The program counts MAC addresses of Wi-Fi management
frames collected in monitor mode on all Wi-Fi channels and sends the number of addresses
to the host operating system every 200ms.

1 Source(Timer (10ms))

2 .fold({ 0 })((channel , time) ⇒ { (channel % 20) + 1 })

3 .observe(SwitchChannel)

4 val addrs = Source(Monitor)

5 .filter(frame ⇒ { frame.type == MANAGEMENT })

6 .map(frame ⇒ { frame.src })

7 val timer = Source(Timer (200ms))

8 val count = fold({ hashset_new () })(

9 timer → (acc , time) ⇒ { hashset_new () },

10 addrs → (acc , addr) ⇒ { hashset_add(acc , addr) })

11 .map(p ⇒ { sizeof(p) })

12 timer.snapshot(count.change (0))

13 .map(tuple ⇒ { tuple.snd })

14 .observe(SendToOS)

Listing 7.1: ReactiFi program for counting nearby devices

Lines 1-3 switch through all Wi-Fi channels. A time-based event source that triggers an event
every 10ms is used. The fold reactive aggregates state given an initial value, i.e., it counts
how often the source has triggered an event to compute the channel that should be selected.
This fold reactive then propagates the channel number to the observe reactive that executes
the SwitchChannel side effect. SwitchChannel switches to the provided Wi-Fi channel. Line 4
shows a reactive addrs that is derived from a chain of reactives to gather all Wi-Fi frames in
monitor mode, filter out all non-management frames (line 5), and then project the source
MAC address field using map (line 6). A second timer to report the number of distinct
addresses seen within the last 200ms (line 7) is used. The total count is obtained through a
fold reactive with multiple triggering conditions, one on timer and one on addrs (lines 8-10).
Both parts refer to the same aggregated state, initialized with an empty set (hashset new()).
When timer triggers, the set is reset to become empty again, and when addrs triggers, the
source addresses are collected in that set. When both trigger, the functions are executed in
their defined order. The count (line 12) maps the accumulated set to its size. A snapshot
reactive reads the current value of fold reactives, when another reactive triggers, i.e., in line
12, a snapshot of count is taken, when timer triggers. However, the timer reactive also resets
count to zero. To report the count before the timer reactive triggers, change was used. Using
change produces a reactive that reports both the current and the previous value, such that
programmers may reason about what happened before the current time step. The parameter
passed to change is used as the initial value of fold, e.g., zero in the example. In lines 13 and
14, the map reactive then propagates the device count to the observe reactive that executes
the SendToOS side effect. SendToOS sends data back to the operating system.
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1 SELECT * FROM

2 (SELECT src , COUNT (*) FROM wifi.framecount)

3 WINDOW(TIME 1 S JUMP 1S),

4 GPS@(1 Hz) WINDOW(TIME 1 S JUMP 1S);

Listing 7.2: Correlating Wi-Fi management frames and GPS positions

1 SELECT * FROM

2 (SELECT * FROM hub.proximity@ (10 Hz)

3 WHERE ambient > a_threshold)

4 WINDOW(TIME 1 S JUMP 100 MS),

5 (SELECT * FROM hub.magnet@ (10 Hz)

6 WHERE SQRT(x^2 + y^2 + z^2) < m_threshold)

7 WINDOW(TIME 1 S JUMP 100 MS);

Listing 7.3: Outdoor detection query

From here on, further processing is executed using the CEP engine presented in Section 6.3.
Listing 7.2 shows our multimodal CEP query. First, it gathers the device count gathered
from Listing 7.1 in a window of 1 second, i.e., the first part contains all devices seen within
the last second. Second, the GPS sensor on the sensor hub is polled at a frequency of 1
Hz. The final correlation combines the current GPS position and the Wi-Fi management
frame counts. Since GPS is unreliable and power-intensive indoors, the query should only be
executed outdoors. At this point, the embedded device itself has to be aware of its situation
with respect to whether it is indoors or outdoors. This is achieved by an outdoor detection
query shown in Listing 7.3. First, it perceives all information read from the light sensor. Next
consists of two filters are used to comprehend the situation and to project the future situation
whether the device is outdoors or not. The first one filters all values that are below a certain
threshold, indicating that the ambient light is probably too dark. The second filter sieves all
values above a threshold produced by the magnetometer, indicating that the magnetic field is
relatively weak, which usually holds for indoors. Based on this situation, the decision is made
whether to enable the GPS sensor or not.

Experimental Setup

Experiments with two different implementations were performed: (i) where all frames and
sensor values are pumped into user space, (ii) with all sensor values are pre-processed on
different embedded devices within a mobile phone, i.e., the coprocessor that perceived the
data. Using implementation (i), all queries were executed in user mode, while both sensor hub
and Wi-Fi chip sent all data to the process in user mode. To simulate a reporting of counted
devices to rescue helpers, both implementations periodically sent the result of the queries to
a server using an HTTP POST method. With option (ii), the outdoor detection query and
the GPS part of Listing 7.2 were executed on the sensor hub, while only the result of the
correlation was sent to the process in user mode. The Wi-Fi management frame filter and
the aggregation of listing 7.1 were executed on the Wi-Fi chip. The final correlator operated
in user mode. A Nexus 5 smartphone in a controlled environment to identify the number of
devices around the phone was used. Five other devices were distributed around the room so
that a constant and verifiable count could always be guaranteed.
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Figure 7.3: Power consumption of the above presented code

Evaluation

In the first part, the power consumption of the ReactiFi code shown in Listing 7.1 is compared
when run on the Wi-Fi chip versus being executed in user space. Figure 7.3a shows the
average power consumption for both implementations over all runs. The code executed in
user space requires about 1700mW power on the average with 630mW standard deviation.
The ReactiFi program uses only 225mW, thus, achieving 87% improvement compared to
the user space implementation. The peaks every 15 s are due to the LTE interface trying to
connect to a network even if no SIM card is present.

Figure 7.3b shows the power consumption of the Nexus 5 smartphone and the sensor hub. For
this experiment, the ReactiFi code is always executed on the Wi-Fi chip, whereas the CEP
queries are either executed entirely in user mode or on the respective coprocessors. The user
mode requires a ground truth of about 660 mW. As soon as all Wi-Fi management frames
are counted, the subsequent processing and communication with the sensor hub and the
user mode requires more power, i.e., up to 1.3 W. If the queries are executed by multimodal
CEP, the test hardware only needs about 564 mW while executing the query on the sensor
hub and the Wi-Fi chip, respectively. Additionally, during the multimodal tests, the power
consumption shows more peaks, due to the more complex communication between Wi-Fi
chip, sensor hub, and user mode. The average power consumption during the multimodal
tests is about 578 mW, while the same queries executed in user mode require 668 mW on
the average, which is an increase of 13%.

7.2.4 Summary

This section presented situation-aware edge computing for emergency response applications.
It was identified that by applying the concept of situation-awareness to emergency response
applications based on infrastructure edge computing, device edge computing, and embedded
edge computing approaches, rescue helpers and people affected by emergencies are provided
with useful information and applications that help to handle emergencies.
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In particular, three applications where presented:

• Smart Street Lights as Infrastructure Devices can be used to inform citizens about
emergencies based on the situation, but also to provide information to rescue helpers
that they can use to make informed decisions.

• Detecting Faces in Images showed an approach that utilizes the strengths of mobile
devices to detect and extract faces from images. Due to the fact that it is a situation-
aware approach, the load of this task is distributed fairly among all mobile devices and
thus resources are preserved.

• Counting Nearby Devices utilizes embedded devices to count people in proximity effi-
ciently so that rescue helpers can coordinate search operations based on the information.
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Figure 7.4: Calling a remote procedure in a DTN disaster scenario

7.3 Situation-awareness for Transitions at the Edge

To enable device edge computing, paradigms are needed that allow mobile devices to execute
procedures on surrounding mobile devices. Remote Procedure Calls (RPC) offer this possibility
following the client-server paradigm [32], where clients call procedures that are implemented
on remote servers. However, none of the existing RPC implementations are designed to
work properly in device edge computing environments, where devices are mobile, resulting in
potentially periodic, intermittent, and prone to disruptions. One possible way to cope with
these challenges is using the Disruption-Tolerant Networking (DTN) paradigm [77, 162].

The combined use of RPCs and DTNs can provide great services for various scenarios. For
example, enabling mobile devices with limited computation resources can leverage the power
of surrounding mobile devices for computations in rural regions, e.g., in India [126] and
Australia [97], where no telecommunication infrastructure exists and where people cannot
communicate using mobile devices. Another example is to support emergency response
applications by providing civilians and rescue helpers computational resources. For example,
quadcopters could offer a procedure that takes a picture with a mounted camera at a particular
geographical location and returns it over the network. Then, rescue helpers could request an
overview image via an RPC to a quadcopter while performing other tasks until the file arrives
over a DTN connection using nodes of other rescue helpers or citizens as relay nodes. This
example is illustrated in Figure 7.4, where the call takes the blue route, but the result arrives
over the red route due to the connection loss illustrated by the yellow lightning symbol. This
might take longer, but without DTN the call could not be made at all.

However, to support this kind of device edge computing it is necessary to ensure that the
possibility of getting a result of a called remote procedure is maximized. To ensure that
the most suitable transport protocol is used, the transition paradigm is proposed to be
applied. Here, mobile devices can dynamically transition between various transport protocols
to maximize the number of successful remote procedure calls. The question arises, however,
on what basis to decide which transport protocol to use. The question arises, however, on
what basis to decide which transport protocol to use. It is argued that a situation-aware
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approach provides the appropriate basis for decision-making, since this implies that the most
suitable protocol is used in each situation.

In this section, DTN-RPC is presented, a new approach to provide RPCs for DTN environments
by utilizing the concept of transitions. DTN-RPC relies on several components that allow
RPCs to be executed in DTNs. First, it implements transitions between DTN and Non-DTN
transport protocols for transmitting data between clients and servers, called transparent mode.
The decision which protocol to use is implemented in a situation-aware manner. Clients
perceive information regarding their network state (e.g., whether a server can be reached
directly using a lookup-mechanism) and comprehend this information to gather their situation.
Further, they project their future situation with respect to whether a server is reachable
using an end-to-end transport protocol. Based on the projection, it is decided if a DTN or
a Non-DTN protocol should be used to call the procedure. The client also has to be aware
of incomplete information as network lookups in DTNs are error-prone and might result in
inaccurate results like wrongly reporting that a server is reachable. Servers perform a similar
approach to achieve situation-awareness to decide which protocol should be used to return
the result of the called procedure to the client. The second component used by DTN-RPC
to allow RPCs in DTNs is the usage of two distinct channels, control- and data channels,
to cope with potentially short contact durations in DTN, where it is potentially impossible
to transmit large amounts of data using an end-to-end protocol. Using this separation, it
is ensured that both meta-data (e.g., procedure names and parameters) and payload (e.g.,
images that are to be used for a particular procedure) are transmitted using the most suitable
transport protocol. Third, explicit and implicit modes for server addressing are supported that
enabled the possibility of increasing the rate of successful RPCs by allowing arbitrary servers
to respond to called procedure. Finally, to only execute procedures that the called server is
able to, servers perceive information from its own system sensors and predicates from clients
to comprehend its situation with respect to its current capabilities and available resources.
Based on this comprehension, the server will project whether a procedure will be executed or
not, again increasing the success rate of called procedures, because clients will be informed
of calls that are not executed so that it can call this procedure on another server.

The open-source implementation of DTN-RPC7 is based on Serval [21, 94–96], an open-source,
disruption-tolerant wireless ad-hoc networking system. Experimental results obtained within the
network emulation framework CORE indicate that the measured CPU and network overheads
for DTN-RPC are reasonably low, so that DTN-RPC can be executed on mobile devices,
and that the round-trip times and the number of successful RPCs are highly satisfactory in
dynamically changing network topologies with unreliable connectivity due to the transparent
transitions between transport protocols.

The remainder of this section is organized as follows. The design of DTN-RPC, the pro-
posed framework to provide transitions at the edge, will be presented in Subsection 7.3.1.
Implementation issues will be discussed in Subsection 7.3.2 and experimental results will
be shown in Subsection 7.3.3. Existing work on RPCs will be examined in Subsection 7.3.4.
Subsection 7.2.4 concludes this section.

Parts of this section have been published previously [234].

7https://github.com/adur1990/DTN-RPC
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7.3.1 DTN-RPC

Fundamental Considerations

There are several differences between RPCs in traditional networks and RPCs in DTN.

In conventional RPC implementations, errors are handled, for example, if the connection
between client and server is lost. In DTN, it is not certain whether a call even reaches its
destination. Thus, errors in DTN can only be handled in a few situations, since error reports
could just not arrive and the client would not notice that the call was not successful. The
server, on the other hand, would have to spend computational overhead while trying to
inform the client about the error. Furthermore, disruptions and poor connection quality make
it impossible to support real-time communication or to guarantee a predefined quality of
service in DTN. Common RPCs are location transparent. For this purpose, stubs or proxy
functions exist to handle communication via the network. In DTN, a call will explicitly be
executed remotely, and it is expected that there will be networking overhead when executing
a remote procedure. In several RPC implementations, the client has to register at the server
before calling a procedure. Since in DTN the address of a server is typically not known, client
registration is not possible. Traditional RPC servers either announce the procedures they offer
or there exists a lookup service where clients can find information about which server offers
which procedure. In DTN, server announcements might not reach or lookup services might
not be available for clients when needed.

Control and Data Channels

DTN is often used in mobile mesh and ad-hoc networks where the network topology changes
frequently. This can lead to short contact durations between nodes where it is impossible to
transmit large amounts of data. Due to this restriction, two separate communication channels
are introduced in DTN-RPC: the control and the data channel.

The control channel is responsible for transmitting meta-data, such as the procedure name
and the parameters, from client to server, and possible results from server to client. The
control channel supports two modes to address remote servers, explicit and implicit (any or
all), as described below.

Explicit If the address of a server is known and the server is reachable, DTN-RPC will
choose the explicit mode and try to establish an end-to-end connection to the server.

Implicit (any or all) If the address of a server is not known, but potential servers are
reachable, both the any and all modes (summarized as the implicit mode) are used to
broadcast a call. In the any mode, the client waits for exactly one response. This is helpful
if it is known that servers exist that offer a particular procedure, but it does not matter
which server responds. The first arriving response will be accepted. In the all mode, the
client will wait for as many answers as possible until its internal timeout occurs. This is
useful in scenarios where the quality of the results varies with the executing machine (e.g.,
GPU support, different algorithms), where different answers should be combined (e.g., to

179



7 Case Studies for Situation-aware Edge Computing

Client

Start

Transparent 
Call Address

Reachable 

Call via
Non-DTN

Broadcast 
Non-DTN

Reachable

Call via
DTN

Receive 
Result

Stop

Explicit

Implicit

Yes

Yes

No

No

Server

Start

Offer 
Procedure

Wait for 
Call

Eval. 
Predicates

Execute

Receiving  
Proto.

Reachable

Return via
Non-DTN

Return via
DTN

Yes

No

DTN

Non-DTN

No

Yes

Figure 7.5: DTN-RPC flowchart for client and server

implement aggregate functions that return a value across all items in the results set), or is
influenced by other factors such as geolocation (e.g., sensor readings, taking a picture).

The payload of the control channel packets must not exceed the payload size of the underlying
transport protocol to keep the data on the network as small as possible.

The data channel transports larger amounts of data from client to server and vice versa. It is
used if a file is required as a parameter for a particular call. The transport of the payload in
the data channel is always performed via DTN. The transport of the meta-data in the control
channel is explained below.

Transparency

In both explicit and implicit addressing modes, the control channel of DTN-RPC supports
Non-DTN and DTN transport protocols and automatically switches between them for
performing a procedure call, as explained below.

Non-DTN vs. DTN As illustrated in Figure 7.5, if the server is reachable in the explicit
mode, DTN-RPC will use a Non-DTN transport protocol to call the server. If the server is
not reachable, the call will be issued using a DTN protocol.
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After having called a remote procedure in the explicit mode, the client waits for the response
using the same transport protocol that was used to call the procedure. If the connection is
interrupted, the client additionally waits for results that arrive via a DTN protocol.

After having successfully executed a received call, the server checks whether the explicit
control channel on which the call was received via a Non-DTN protocol is still available, as
shown in Figure 7.5. If the channel is not available anymore, the result will be sent via a
DTN protocol. The DTN-RPC server does not attempt to reestablish a Non-DTN connection,
since it is unlikely that a reconnection is successful if one of the nodes has physically moved
out of the network’s reach. If the call was received via a DTN protocol, the server also uses a
DTN protocol for its response.

Since the implicit modes use broadcast addresses to call procedures, a different transport
protocol has to be used than in the explicit mode, because reliable point-to-point transport
protocols like TCP do no support broadcast packets. Since a server availability check in a
broadcast scenario would imply communication between multiple nodes, which would add
additional delays, a call just gets broadcasted without any prior availability checks. If a timeout
occurs and no result arrives, the call is performed via a DTN protocol.

Transparent DTN-RPC is designed to automatically select the most suitable transport
protocol in any given scenario. In the transparent transport method, both client and server
are designed to make all the above discussed decisions without any user interaction.

Offering and Executing Calls

Offering a remote procedure as shown in Figure 7.5 is a two steps process. The first step is
the declaration of the procedure as a prototype in a configuration file to tell the server which
procedures are available for execution. Second, the implementation has to be provided as an
external executable written in any programming language.

The parameters of an incoming call are passed in the order they were received to the external
program that then executes the procedure. After the procedure finishes, the result is returned
to the server that marshals the result and prepares the result to send it back to the client.

Typically, computational resources and battery lifetimes of nodes in DTN are limited. To avoid
the execution of calls that would consume too many resources regarding a server’s curent
state, a server can decide whether a remote procedure should be accepted. For this purpose,
we define particular predicates per server, e.g., thresholds for resource constraints (number
of concurrent processes, remaining battery life etc.) or available hardware like sensors (also
shown in Figure 7.5). The server checks whether defined predicates are satisfied. If at least
one requirement is not met, the procedure will not be executed.

Furthermore, each call can provide its own requirements that also have to be checked by the
server. For example, some calls should only be executed on non-moving nodes, or require
special sensor hardware or extensive resources, such as disk space or RAM. Therefore, there
is a two-stage predicate check per server: the first one is the general server acceptance check,
and the second one is call-specific and evaluated after having passed the first check.
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7.3.2 Implementation

The implementation of DTN-RPC is based on the Serval Project [94–96]. Serval is centered
around a suite of protocols designed to allow infrastructure-independent communications. The
Serval Mesh Protocols abstract from lower-layer protocols, such as IP, UDP, Wi-Fi or others.
Serval’s real-time packet-switched protocol is the Mesh Datagram Protocol (MDP), which
can be compared to UDP/IP, but uses SIDs (Subscriber ID, the public key of an asymmetric
elliptic curve key pair) instead of IP addresses, and includes encryption, authentication and
integrity features by default. To route packets, MDP uses a protocol inspired by OLSR [59]
and B.A.T.M.A.N. [124] for both node discovery and maintaining a routing table, which
facilitates multi-hop routing of packets. On top of MDP, the Mesh Streaming Protocol (MSP)
provides reliable data streaming, similar to TCP. Finally, Rhizome is a simple store-and-forward
protocol defining files as bundles. Intended as the DTN protocol of Serval, Rhizome uses an
epidemic routing protocol to transmit files hop-by-hop from source to destination. Rhizome
is purposely agnostic of the transport protocols below it, requires no routing table and
focuses on single-hop communications, with multi-hop communications emerging as a natural
consequence of bundles replicating among nodes. DTN-RPC uses MDP, MSP, and Rhizome
to handle different situations and addressing modes.

An in-depth experimental evaluation of Serval’s DTN aspects for various network setups and
usage patterns in the previous work [21] was conducted. The results have indicated that
Serval is capable of handling extreme conditions such as saturated networks or many-hop
transmissions in a satisfactory manner. It has also been shown that Serval works well in
realistic scenarios, where the topology changes over time and users have different requirements.
Thus, Serval is an elaborate and ready-to-use software for DTN and mesh networks.

For programmers, an API is offered that can be used to develop programs using the DTN-RPC
library to execute procedures on remote devices in DTN environments.

Calling a Remote Procedure Transparently

To call a remote procedure transparently, a single function is required that is part of the
offered DTN-RPC API. This function has five parameters: the server address, the name of
the called remote procedure, the number of parameters of the procedure, the parameters
themselves and the execution requirements discussed in Section 7.3.1. The mode to be used
is determined by the first parameter of this API function call.

Explicit If the parameter is a valid address the call will be issued via Serval’s MSP, if the
server is available. A routing table is built in an ad-hoc manner. If the address of the server
can be found in this routing table, this particular server is reachable. While waiting for the
result, the client checks periodically whether the connection is still alive. If the connection
terminates, the client starts a Rhizome DTN listener.
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Implicit The modes any and all are used if the address is the ANY address provided by
Serval for any or the broadcast address for all. Since Serval’s MSP supports point-to-point
communication only, it is not possible to send data to the broadcast address. Therefore, any
and all use Serval’s MDP.

Since a reachability test is not possible for broadcasts, the procedure will be called without
any checks. Because delivery is uncertain, the client sends a call every second until at least
one server responds or a timeout occurs. If an acknowledgment arrives, the threshold for
the timeout is increased. Only if the new timeout occurs, the client will additionally start a
Rhizome DTN listener and wait for the result via DTN.

The difference between the modes any and all is the number of results. In the first case, the
client stops listening as soon as the first result arrives. In the second case, the client waits for
as many results as possible, but at least for one.

Returning the Result Transparently

While executing the called procedure, the server does not check periodically whether the
client is still reachable. Instead, this check is done once when the response is ready to be
sent. If the call arrived via MSP or MDP, but the connection is broken, or the client is not
reachable, sending will fail, and the server will send the result via Rhizome.

7.3.3 Experimental Evaluation

In this section, an experimental evaluation of DTN-RPC for different network topologies and
in various configurations is presented. Due to the lack of comparable RPC implementations
that can handle disruptive networks, DTN-RPC is not compared against other approaches. A
comparison with widespread software solutions such as JSON-RPC or SOAP would be unfair,
since they would fail each time the network connection is lost.

Test Setup

The evaluation of DTN-RPC is based on the open source network emulation framework
CORE8. Compared to protocol simulations, CORE can run DTN-RPC without modifications
in a more realistic Linux environment. All tests are performed on a 64-core AMD Opteron
6376 CPU with 256 Gigabyte RAM, emulating up to 64 virtual nodes at the same time.

Measurements Standard Unix tools are used to measure system properties with a time
resolution of one second. For CPU statistics, pidstat9 is used, and the Serval and DTN-RPC
processes are monitored from within a node. Network usage is measured from within the nodes
on every network interface for Serval and DTN-RPC using a custom Python script based

8https://www.nrl.navy.mil/itd/ncs/products/core
9http://sebastien.godard.pagesperso-orange.fr
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Table 7.2: Topologies

Name # Nodes Description

Hub 28 All nodes connected to each other
Chained 32 Pair-wise connected
Islands 64 Partitioned islands with dynamic links in between

(a) Chained topology (b) Hub topology

Figure 7.6: Bandwidth and CPU usage for 1 MB and 100 MB in different topologies

on libpcap10. To monitor the behavior of DTN-RPC, metrics such as call times, round-trip
times, and logging functions were implemented and integrated into the binary.

Network Topologies Three network topologies are considered, as shown in Table 7.2.

Hub The Hub topology connects 28 nodes with each other. As shown in the previous
work [21], the Hub topology is challenging for Serval and thus also for DTN-RPC due to the
high number of direct neighbors, all using bandwidth and flooding each other with status
information. Therefore, the Hub topology helps to investigate whether DTN-RPC can handle
RPCs when the network is under heavy load.

Chained The Chained topology consists of a chain of 32 nodes, 31 hops from the first to
the last node. Typically, network connections over the Internet require less than 16 hops. In a
DTN mesh network, more hops might be needed for messages to reach their destination.

Islands The Islands topology represents a partitioned, dynamic network with 64 nodes. At
the beginning, there are 4 islands each containing 16 nodes. The 16 nodes per island are
connected randomly with each other, creating an ad-hoc mesh network. Then, four different
behaviors can occur randomly every 60 seconds: two islands are connected, two connected
islands are disconnected, all islands are connected, or all islands are disconnected resulting in
the original state.

10http://www.tcpdump.org
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Network Connections DTN-RPC adds a new layer of abstraction to the Serval networking
stack. Although Serval can cope with several degraded networking scenarios, DTN-RPC is
only evaluated in situations where network connections are completely lost, because this is the
most challenging situation in DTN. Network degradation and bandwidth limitations would
only lead to higher delays, but not break DTN-RPC itself.

Test Sets and Modes The remote procedure used implements an echo service. It is called
with three different test sets: (i) 0 MB, where no file is used; (ii) 1 MB, where a file of 1
megabyte is transmitted; (iii) 100 MB, where a file of 100 megabytes is sent.

Additionally, all tests are executed in 10 different modes: explicit, any and all via Rhizome;
explicit, any and all via MDP; explicit, any and all transparently and explicit via MSP.

Servers Since the successful execution of remote procedures in DTN depends on the number
and distribution of servers, every test in Hub and Islands is executed twice, first with 5%
of the nodes as servers and second with 50%. In Chained, the goal is to determine how
DTN-RPC performs if the call has to travel a long distance. Thus, only one server and one
client at the opposite ends of the chain are needed.

In each test setup, the procedure is called 30 times to get reliable results. The acknowl-
edgement from the server has to arrive within 30 seconds on the explicit channel. After the
acknowledgement, the client waits an additional 90 seconds for the result. If within these
90 seconds no results arrived, the procedure is called via DTN, which has an additional 90
seconds to finish. After the client has received the result or all timeouts are reached, the next
procedure will be called.

Since the evaluation is concerned with the overhead and the performance of DTN-RPC, the
possibility of DTN-RPC to perform predicate checks to decide whether a remote procedure
should be accepted has been disabled in our experiments.

Fundamental Properties In Hub where each node is a single hop away from all other
nodes and Serval uses broadcast packets to announce meta-data, each node produces a flood
of data that is sent to all neighbors. Thus, both the CPU usage and the network load in
Hub are always higher than in the corresponding tests in Chained or Islands, due to the high
number of direct neighbors. Furthermore, DTN-RPC does not only use the API, but also the
networking stack and the communication mechanisms provided by Serval. Thus, DTN-RPC
cannot be measured separately, but only together with other Serval traffic.

Similar to the network usage, the CPU utilization has to be measured not only for DTN-RPC,
but also for Serval running on a node. The evaluation of the CPU usage shows that the CPU
consumption of DTN-RPC is negligible with about 1% in heavy load situations. However, the
Serval process has a higher CPU usage, since Rhizome computes a hash for each file sent.
The larger the file, the more time-consuming the hash computation becomes. DTN-RPC, on
the other hand, is independent of file sizes, because it simply issues a call to the Rhizome
API, which leads to the described 1% CPU utilization increase in the DTN-RPC process.
Therefore, since the CPU utilization is dominated by Rhizome, in the experiments below it is
always based on the Serval process.
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(a) Chained topology (b) Hub topology

Figure 7.7: Round trip times in different topologies

Network Performance

For the 0 MB tests in the Chained topology, the overall network load averages at about 2
Mbit/second for each of the three transport protocols (MDP, MSP and Rhizome). This is
true for all three modes, explicit, any and all. Since DTN-RPC uses only a single packet
for calling the remote procedure and returning the result in 0 MB, these packets get lost in
the overall network load that is produced by Serval exchanging meta-data and therefore not
plotted in Figure 7.6.

During the 1 MB and 100 MB test sets, the network load increases up to 70 Mbit/s for 1
MB and up to 500 Mbit/s for 100 MB, as indicated by the blue and red graph of Figure 7.6a,
in which the stacked bandwidth for all network interfaces together with the CPU usage in a
logarithmic scale for 5 calls with the 100 MB test set and 30 calls with the 1 MB test set is
shown. In the 1 MB and 100 MB calls, a file always has to be transmitted via the Rhizome
DTN for calling the remote procedure and receiving the result. The difference between the 1
MB and 100 MB calls is due to the different file sizes.

The Hub topology shows a similar behavior, as illustrated by Figure 7.6b, where the stacked
bandwidth for all network interfaces together with the CPU usage in a logarithmic scale for
3 calls with the 100 MB test set and 30 calls with the 1 MB test set is shown. The main
difference is that the Hub topology suffers from the problems discussed in Section 7.3.3. The
overall network usage for the 1 MB test sets exceeds 1,000 Mbit/s (blue graph) and 10,000
Mbit/s for the 100 MB test sets (red graph).

Comparing the bandwidth consumption to the previous results [21], DTN-RPC does not
add any measurable network traffic to the traffic produced by Serval, and thus can handle
scenarios where the network has a high bandwidth usage well.

CPU Usage

As shown in Figures 7.6a and 7.6b, CPU usage highly correlates with network usage. Since
CPU usage in the 0 MB tests does not exceed 1% after the initial discovery phase, it is not
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plotted in Figures 7.6a and 7.6b. For the 1 MB tests, the maximum is at about 2% up to 3%
(red line) and up to 20% for the 100 MB tests (black line) in the Chained topology.

In the Hub topology, the behavior is comparable to the Chained topology, with the difference
that the CPU usage is generally higher. In the 1 MB tests, the CPU usage increases up to
about 10% and for the 100 MB tests up to 90% during the sending phase. This relatively high
CPU consumption happens only while a hash of a file is computed and the file is inserted into
the Rhizome store, and thus only during a relatively short time period. As already mentioned,
the CPU usage of DTN-RPC does not exceed 1%.

Round Trip Times

To measure the round-trip times (RTTs), only the Chained and Hub topologies are considered,
since the Islands topology would not give any credible results. RTT is only used to indicate
the time that is needed to transmit the payload through the network to be sure no additional
delays are introduced by DTN-RPC. The execution of a procedure typically takes longer to
finish than the implemented echo service.

As shown in Figure 7.7a, the 0 MB tests in Chained called by MDP or MSP (i.e., Non-DTN)
are executed within a second. As the files grow, the RTT increases.

In the DTN tests, the RTTs are similar, regardless of the file size. Due to the fact that in
DTN the control channel as well as the data channel are transferred via Rhizome, both server
and client have to wait for two files. Therefore, all tests take about 40 seconds.

Transparent calls are slower than the calls via MDP or MSP for the 0 MB and 1 MB tests.
Some calls are issued via MDP or MSP, while others are executed via Rhizome, as explained in
Section 7.3.1. The illustrated RTTs are averaged over 30 calls, including the slower Rhizome
calls. Furthermore, the time it takes to wait until the transport protocol will be switched is
also part of the RTT. Therefore, the transparent tests are slower than the corresponding
explicit tests, but faster than the DTN tests. Since all 100 MB tests are issued using Rhizome
and the switch time is included in the RTT, the time it takes for finishing is higher than for
MDP or MSP.

As shown in Figure 7.7b, the RTTs for tests in Hub do not differ much from the tests in
Chained. The only difference is that the 0 MB and 1 MB tests are faster in Hub, because all
nodes are only one hop away from each other.

To summarize, DTN-RPC can execute remote procedures satisfactorily fast. The fallback
method using Rhizome is slower, but still can get a result back to the client within an
acceptable time, even if the files are large.

Transparency Behavior

In this section, it is examined how DTN-RPC behaves in the dynamic Islands topology with
different numbers of available servers. The figures below show how many of a total of 30
procedures are called using Non-DTN or DTN, respectively, in terms of percentage values.
The left half of the pie charts represents outgoing calls and the right half incoming results.
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Figure 7.8: Percentages of procedures called and results returned via Non-DTN and DTN
for 100 MB in the Islands topology
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Since the Islands topology consists of 4 islands with 16 nodes that merge and separate over
time, it is possible that not all results arrive within 210 seconds at the client if the call was
issued in explicit mode, especially in tests with only 5% servers. Additionally, as the file size
increases, the transmission time increases too, and the number of successful calls decreases
as expected, as indicated by Figure 7.8a, Figure 7.8c, and Figure 7.8e. Furthermore, it is
evident that some results arrive via MDP or MSP (i.e., Non-DTN), others only via Rhizome
(i.e., DTN). There are two reasons. First, it is possible that a call is issued successfully using
MSP, but the route from the server to the client gets lost because the islands have separated.
Then, the result is sent via Rhizome and arrives after the islands have merged again. Second,
the client cannot establish a connection to the server at all, because the islands are not
connected. The procedure will be called using Rhizome and the client will wait via Rhizome
for the result. Even if some results do not arrive in the explicit mode, the DTN protocol
helps to improve the number of successful calls, as shown in Figure 7.8. 41.9% of the results
in the explicit tests with the 100 MB test set with 50% of the nodes as servers arrive via
Rhizome, and in 41.9% of the tests, no result arrives. In the implicit tests with the 100 MB
test set with only 5% of the nodes as servers, 61.1% of the results arrive via Rhizome, and
only 27.8% of the results do not arrive at all.

Figures 7.8b, 7.8d and 7.8f show implicit tests in the Islands topology for three different
file sizes with different numbers of servers. It is evident that the implicit mode increases
the number of successful calls in every situation compared to the explicit tests. Due to the
dynamically changing Islands topology and the relatively short contact durations, it is still
possible that not all results arrive in 100 MB. For the explicit calls, the more servers are
available, the more results arrive.

The number of missing results can be decreased if the contact duration is increased or the
waiting time for results is increased. Furthermore, more elaborate remote procedures require
a lot more time to finish than the simple echo service used in the evaluation. Therefore,
the waiting time for results of up to 210 seconds in the experiments should be increased in
production environments, since it might be possible that a result arrives after hours at the
client via DTN.

To summarize, the transparent mode helps to improve the probability of receiving results in
dynamically changing network topologies like Islands. Furthermore, the transparent mode can
deliver results where a traditional RPC would not lead to any response due missing network
connections. Finally, if the waiting time for results is adequately large, the probability of
receiving results increases, because when a DTN protocol is used, results do not get lost, but
simply are not transmitted via a direct connection to the receiving node. Therefore, given
sufficient time, results will always reach their destinations.

7.3.4 Related Work

Tu and Stewart [246] present a Java RPC framework where small data is replicated and
sent over a second TCP connection to the server or back to the client. At the destination, a
listener collects all arriving data on all connections, reassembles the original data, and passes
it to the corresponding handler.
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Stuedi et al. [239] increase the efficiency of RPCs in data centers by softening the user land
and kernel separation in the network stack and by using remote direct memory access to
minimize the overhead of network operations by performing them with less context switches
and zero-copy network I/O.

Chen et al. [49] introduce memory regions where server and client exchange data to improve
the efficiency of RPCs between virtual machines (VMs) on the same host computer. The
proposed framework has three components: (i) a notification channel that informs the server
about new calls and the client about arriving results, (ii) a control channel that sends meta-
data, and (iii) a transfer channel that is responsible for transmitting data between server and
client and putting the data in the predefined memory regions.

Shyam et al. [228] propose solutions for situations where an RPC server is not available. The
first solution is a heartbeat server that observes whether the RPC server is operative. The
second solution is that every node sends a health check message to the RPC server. Since
these messages are typically smaller than an RPC request and no computations take place,
the answer of the health check should arrive faster. If the answer does not arrive within a
timeout that is smaller than the timeout for the RPC, the server is considered inoperative.

Reinhardt et al. [199] address the problem of providing RPCs in wireless sensor networks.
In particular, the authors eliminate the need of conventional RPCs to send predefined data
to predefined destinations, typically addressed by ports, by publishing descriptions of new
sensors that can be used by other sensors or nodes dynamically.

Shi et al. [223] present a framework where mobile devices can offload jobs to other mobile
devices. In scenarios where node mobility is high, only small tasks will be offloaded; otherwise
larger jobs will be offloaded, too. To increase the number of offloaded jobs, every job is split
into smaller tasks. Additionally, every node has to announce its capabilities, such as CPU
capacity and available battery power. To offload a job, the framework compares the task
requirements with the capabilities of the client and tries to find a server that satisfies the
requirements better than the client. If no server is found, the job will be executed locally.

Chen et al. [52] propose a solution for offloading computations to ad-hoc cloudlets. A job is
offloaded via an ad-hoc communication channel that is closed after the procedure has been
called successfully. The result of the job can arrive (i) via an ad-hoc channel if server and
client are in proximity, (ii) via a cellular network used when an ad-hoc connection is not
possible, (iii) via a Wi-Fi access point, if available.

Zhang et al. [275] propose a solution for cloudlets with intermittent connectivity where parts
of a job will be executed either locally or remotely. The decision which of both options is
chosen is based on a probability that includes the cost of executing a task. Two cost factors
are calculated: (i) the cost when the phase is executed locally, where, e.g., energy consumption
is important, (ii) the cost when the phase is executed in a cloudlet, where, e.g., available
bandwidth is important. Based on this information, a Markov chain can be constructed, and
the optimal path can be found.

Lai et al. [136] propose an offloading algorithm for delay-tolerant mobile networks that
increases the amount of offloaded data without increasing the transmission overhead or delay.
The transfer channel is chosen based on the contact duration between two nodes and the
available transmission protocols. Therefore, every node logs which neighbors are available.
Based on the available neighbors, on the size of the data that is offloaded, and the estimated
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waiting time, a priority is computed. With these factors, a utility is calculated that denotes
whether data should be offloaded using this particular channel or not.

To summarize, several of the related works address problems of RPCs in traditional networks,
where links are either static or tasks are on the same machine, such as in VMs. Furthermore,
direct memory access methods to reduce networking overhead cannot be used in a DTN
environment, due to possibly untrustworthy nodes. Also, control mechanisms like heartbeats
or duplicating data on multiple channels are no options for DTN. In the offloading approaches,
the particular problems of RPCs in DTN are either not addressed or would require additional
infrastructure, such as cell towers for 3G or LTE connectivity, or nodes with access to the
Internet. The proposed DTN-RPC is designed to provide RPCs in DTN environments without
requiring any additional infrastructure.

7.3.5 Summary

In this section, DTN-RPC was presented, a new approach to provide RPCs in device edge
environments. DTN-RPC uses the concept of transitions to significantly increase the rate of
successful RPCs. Furthermore, to decide which transport protocol to use for RPCs, i.e., to
implement transparent transitions, both client and server comprehend their situation with
respect to their network state based on perceived information like available mobile devices
using network lookups so that it can be decided which transport protocol will be used for
the call or the transmission of the result. Besides the use of using transitions to cope with
challenging networks in device edge computing environments, DTN-RPC also differentiates
between control and data channels to cope with potentially short contact durations in DTN
where it is potentially impossible to transmit large amounts of data and uses explicit and
implicit modes to address remote servers. Finally, servers use a situation-aware approach
where information from their sensors but also predicates from clients are used to comprehend
their situation based on their ability to execute the called procedure. The experimental results
have indicated that the measured CPU and network overheads for DTN-RPC are reasonably
low, so that DTN-RPC can be executed on mobile devices, and that the round-trip times and
the number of successful RPCs are highly satisfactory in device edge environments. Thus,
DTN-RPC adds computing capabilities in the form of RPCs to device edge environments.

There are several areas for future work. First, DTN-RPC has been tested and evaluated
using emulated networks. To get a better view on the real-world performance of DTN-
RPC, real mobile devices should be used. Second, since the Non-DTN transport protocols
produced satisfactorily results in the Chained and Hub topologies, DTN-RPC should be
evaluated without relying on the strict differentiation between control and data channels.
Finally, although it is relatively difficult to implement error handling and acknowledgement
mechanisms, our evaluation has shown that this is not impossible. Thus, an acknowledgement
system should be implemented for the any mode to inform other servers that the execution
has already started to reduce unnecessary computations.
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7.4 Summary

This chapter discussed two case studies for situation-aware edge computing. They emphasize
the feasibility, applicability, and importance of the novel concept of situation-aware edge
computing. It was shown how situation-ware edge computing can contribute to emergency
response applications and how to implement transitions in the area of device edge computing.

In particular, the following contributions were presented:

• Situation-aware edge computing in emergency response applications: Providing three
applications in the areas of infrastructure edge computing, device edge computing, and
embedded edge computing to support rescue helpers and affected people.

• Situation-awareness for transitions at the edge: Using information regarding the network
status to comprehend a situation with respect to which transport protocol should be
used and to transition between different transport protocols.
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Conclusion

This chapter concludes this thesis and outlines areas of future work.

8.1 Summary

In this thesis, the novel approach of situation-aware edge computing was presented. It is
based on the concepts of situation and situation-awareness, i.e., approaches that allow
decision-making based on the perceived environmental information, comprehended to gather
a domain-specific understanding of the environment.

Situation-aware edge computing was divided into three areas: (i) situation-aware infrastruc-
ture edge computing, (ii) situation-aware device edge computing, and (iii) situation-aware
embedded edge computing.

For (i), the main research question was how to enable stakeholders of the Internet to make
economic decisions using their current situations. In particular, the following two approaches
were presented:

• A novel iterative bargaining approach between two stakeholders for nearly optimal
service placement in infrastructure edge computing scenarios with respect to social cost
despite incomplete information was proposed.

• A case study based on the mobile augmented reality game Ingress highlighted metrics
and measures for situation-aware mobile augmented reality applications, where the
relationship between the service provider’s situation and the number of service usages
was investigated.

For (ii), situation-aware offloading and connection loss prediction was realized:

• A novel situation-aware framework was presented for offloading computational workflows
in opportunistic networks, where so-called workers announce their capabilities and
available resources that are perceived by clients, i.e., the offloading devices, and
comprehended to get their situations. Clients then can project their future situation to
decide on which worker a task should be offloaded to.

• A novel situation-aware approach was presented to predict Wi-Fi connection loss to
perform seamless vertical Wi-Fi/cellular handovers based on perceived sensor information
on mobile devices; it predicts connection losses 15 seconds ahead using a machine
learning approach.
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For (iii), two approaches that enable situation-aware applications in the area of embedded
edge computing were presented:

• With ReactiFi, a domain-specific language following the reactive programming paradigm,
programmability of embedded devices was facilitated, where programmers use a high-
level reactive programming language to perceive environmental information, comprehend
the device’s situation and make decisions based on the projection of future situations.

• Multimodal CEP is a novel approach to process event streams on embedded devices. In
multimodal CEP, queries are formulated in a high-level language, which are broken up.
The most adequate execution mode for the involved CEP operators is selected.

Finally, situation-aware edge computing was applied in two case studies:

• The novel idea of situation-aware edge computing for emergency response applications
was introduced. By applying the concept of situation-awareness to emergency response
applications, rescue helpers and people affected by emergencies are provided with useful
information and applications that help to handle emergencies.

• A new approach to provide RPCs for device edge computing was presented that uses
the concept of transitions to significantly increase the rate of successful RPCs.

8.2 Future Work

This section presents future work for situation-aware edge computing, which can be split
into three parts: (i) situation-awareness, (ii) situation-aware infrastructure edge computing,
situation-aware device edge computing, and situation-aware embedded edge computing, and
(iii) putting it all together.

8.2.1 Situation-awareness

While the concept of situation-awareness has been explored in the field of cognitive science
for several years, it is still quite new in computer science, which calls for further research. This
thesis provides a unified definition of the concepts of situation and situation-awareness in
computer science. However, this definition is exemplary and not formalized. Such formalization
is necessary, however, for scientists to conduct research in situational-awareness on a common
basis. Furthermore, in addition to a formal model, a common framework needs to be developed
to enable systematic modeling and implementation of situation-aware systems. Such models
can rely on research from context(-awareness) modeling, where a variety of approaches already
exist, e.g., ontologies or system context diagrams for visualization.

8.2.2 Areas of Situation-aware Edge Computing

In the area of situation-aware infrastructure edge computing, infrastructure devices have
constrained resources with respect to how many services a single infrastructure device can serve.
This factor should be taken into account when designing a situation-aware placement approach.
In addition, the aspect of incomplete information should be investigated further, especially
when the information sources not only provide incomplete information, but the information
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sources are adversaries and deliberately provide false information. Also, mechanisms to enforce
truthfulness between stakeholders, such as reputation-based methods, should be investigated.
Furthermore, the Internet consists of more than two stakeholders. The cost model should also
consider cloud providers and users of the service. With respect to the analysis of environmental
factors influencing the service provider’s situation a broader analysis should be conducted. For
example, the release of services from competitors has a significant influence. Additionally, this
approach should be applied to other service types beyond mobile augmented reality games
and adjusted accordingly to cope with specific features of different services.

In the area of situation-aware device edge computing, incorporating further network
or social information could improve comprehension and projection further with respect to
the decision where to offload a process to. Further, one promising network paradigm is
Named Data Networking (NDN) [274]. Applying the concept of situation-awareness could be
interesting, since clients or intermediate workers would not need to do the worker assignment,
but use the abstraction NDN introduces to achieve the same results. Beyond deciding where
to offload a process to, predicting connection loss also has interesting areas for future work.
While the sensor information used for the approach presented in this thesis support high-quality
predictions, other more domain-specific information might be useful to predict, e.g., Wi-Fi
overloads. To use these approaches efficiently on off-the-shelf mobile devices, lightweight
neural networks on dedicated processing engines should be considered.

In the area of situation-aware embedded edge computing, supporting an execution
environment like eBPF could help to create secure platforms, where unknown code could be
executed with limited security implications, allowing platforms for distributing and sharing
arbitrary programs written in a reactive language. On the language side, the proposed
DSL could support federated execution, allowing to program parts of an application on
multiple embedded devices. Another interesting area is to extend the type system with
assume-guarantee reasoning, by letting the programmer provide high-level specifications of the
memory and real-time characteristics of the user-defined functions. This could then be used
to harden the guarantees of the entire application. Regarding multimodal CEP, (i) changing
the execution environment for operators to an interpreted bytecode approach to simplify
compilation and deployment, (ii) introducing an approach to distribute operators to remote
devices and to receive events via the network, and (iii) providing further operators, e.g., a
pattern matcher or probabilistic CEP operators [255] would be interesting to investigate.

8.2.3 Situation-aware Edge Computing

This thesis introduced the novel concept of situation-aware edge computing by discussing the
three individual areas of situation-aware infrastructure, device, and embedded edge computing.
However, situation-aware applications utilizing all three of these areas into one system could
even further improve qualities of existing services or enable novel applications. Consider, for
example, a situation-aware edge computing system in the area of mobile AR games. Here,
the service provider has to place the service on edge resources despite incomplete information
as to where the users will play the game. Furthermore, the application running on users’
devices executing the game will connect to the next available game instance, no matter
whether it is deployed on a cloudlet or cloud. This system could be improved by utilizing the
embedded systems on the users’ devices for perceiving the users’ context information in an
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energy-efficient manner similar to the proposed approaches throughout this thesis. Based on
the perceived information from embedded systems as well as further perceived information
from sources not usable with embedded devices (e.g., user preferences), the users’ situations
regarding their application usage behavior can then be comprehended directly on a device
utilizing situation-aware device edge concepts. This on-device situation comprehension could
then be used by service providers to predict where users are going to play their game and
deploy the service on cloudlets where users will play the game.

Such a system requires multimodal analysis models to provide situation-awareness across all
three edge computing areas simultaneously. One of the biggest challenges is the fact that
the three edge computing areas are heterogeneous in terms of computing power. Thus, a
way must be found to enable the processing of a wide variety of data types in a variety
of computing environments, from embedded systems to servers. Furthermore, if this is not
possible to process data locally, for example because the data rate exceeds the capacity of
an embedded system, communication methods are needed that enable efficient and fast
communication between the three areas of edge computing. Maintaining high efficiency in
such protocols is important to not negate the energy-saving advantages of embedded systems,
but also of mobile devices such as smartphones. High execution speed requirements must
be met to not undermine the low latency advantages of edge computing in general. Finally,
such a system also needs a feedback channel that enables a decision made on the basis of a
projection to be converted into a corresponding action, and the resulting context changes
must be taken into account.
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[135] Jarno Lähteenmäki, Heikki Hämmäinen, Nan Zhang, and Matti Swan. “Cost modeling
of a network service provider cloud platform.” In: IEEE International Conference on
Cloud Engineering Workshop. IEEE. 2016, pp. 148–153 (page 58).

[136] Yongxuan Lai, Xing Gao, Minghong Liao, Jinshan Xie, Ziyu Lin, and Haiying Zhang.
“Data gathering and offloading in delay tolerant mobile networks.” In: Wireless
Networks 22.3. 2016, pp. 959–973 (page 190).
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