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Abstract

We investigate 3-(α, δ)-Sasaki manifolds through their canonical connection. These mani-
folds are almost 3-contact metric manifolds satisfying the condition

dηi = 2αΦi + 2(α− δ)ηj ∧ ηk,

thus generalizing 3-Sasaki manifolds. They admit a canonical metric connection ∇ with
parallel skew torsion uniquely characterized by

∇Xφi = β(ηk(X)φj − ηj(X)φk), β ∈ R. (1)

This condition restricts the holonomy hol(∇) ⊂ (sp(n)⊕sp(1))⊕so(3) and thereby induces a
locally defined Riemannian submersion π along the Reeb orbits. This canonical submersion
connects the geometries on the base N and total space by the key equation

∇gN
X Y = π∗(∇XY ). (2)

Combining (1) and (2), we obtain that for the projections φ̌i of φi

∇gN
X φ̌i = 2δ(η̌k(X)φ̌j − η̌j(X)φ̌k),

defining a quaternionic Kähler structure on the base N . We show that the scalar curvature
of N is given by scalgN =16n(n+2)αδ, leading to vastly different behavior if αδ = 0, αδ > 0
or αδ < 0. These cases are called degenerate, positive and negative respectively.

Non-degenerate homogeneous 3-(α, δ)-Sasaki manifolds are a particularly well-behaved class
to investigate, since the underlying homogeneous quaternionic Kähler manifolds of non-
vanishing scalar curvature are classified. The first option are symmetric spaces of compact
(scalgN > 0) and non-compact (scalgN < 0) type. We treat this case in a unified manner
showing that pairs of positive and negative homogeneous 3-(α, δ)-Sasaki manifolds appear
as quotients of simple Lie groups. The other option are Alekseevsky spaces which admit
a transitive solvable group action. These are harder to deal with than those admitting a
transitive simple group action, but a careful construction gives rise to additional negative
homogeneous 3-(α, δ)-Sasaki manifolds.

In a third part we exploit identity (2) once more applying it to investigate the curvature.
This yields a decomposition of the canonical curvature operator

R = αβR⊥ +Rpar

where R⊥ is controlled by the 3-(α, δ)-Sasaki structure and Rpar encodes the Riemannian
curvature of the quaternionic Kähler base. If RgN ≥ 0 or RgN ≤ 0 and α, δ are suitable
parameters, the decomposition allows us to derive the same properties forR. By the formula
Rg = R + 1

4GT + 1
4ST we can also control positivity of Rg. These results are tailor-made

for the first class of homogeneous examples as their symmetric base automatically satisfies
RgN ≥ 0 or RgN ≤ 0 depending on whether they are compact or not. We thus obtain
semi-definite curvature operators on all of them and strongly positive curvature in some
instances.
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Zusammenfassung

Wir untersuchen 3-(α, δ)-Sasaki Mannigfaltigkeiten anhand ihrer kanonischen Zusammen-
hänge. Diese sind eine Klasse von metrischen fast 3 Kontaktmannigfaltigkeiten, welche

dηi = 2αΦi + 2(α− δ)ηj ∧ ηk

erfüllen, und daher eine Verallgemeinerung von 3-Sasaki Mannigfaltigkeiten darstellen. Sie
besitzen einen Zusammenhang ∇ mit paralleler, schief-symmetrischer Torsion, der eindeutig
durch

∇Xφi = β(ηk(X)φj − ηj(X)φk), β ∈ R (1)

gegeben ist. Dies führt zu einer Reduktion der Holonomie hol(∇) ⊂ (sp(n)⊕ sp(1))⊕ so(3)
und induziert dadurch eine lokal definierte Riemannsche Submersion π entlang der Reeb
Orbits. Die so gegebene kanonische Submersion verbindet die Geometrie der Basis N mit
dem Totalraum durch die zentrale Beziehung

∇gN
X Y = π∗(∇XY ). (2)

Kombinieren wir (1) und (2), so erhalten wir für die Projektionen φ̌i von φ

∇gN
X φ̌i = 2δ(η̌k(X)φ̌j − η̌j(X)φ̌k)

und definieren dadurch eine quaternionisch Kähler Struktur auf der Basis N . Wir zeigen,
dass die Skalarkrümmung von N durch scalgN = 16n(n+2)αδ gegeben ist, was zu wesentlich
unterschiedlichem Verhalten in den Fällen αδ = 0, αδ > 0 und αδ < 0 führt. Wir bezeichnen
diese als den degenerierten, positiven oder negativen Fall.

Nicht-degenerierte homogene 3-(α, δ)-Sasaki Mannigfaltigkeiten sind besonders gut zu unter-
suchen, da die ihnen zugrunde liegenden homogenen quaternionisch Kähler Räume von nicht
verschwindender Skalarkrümmung klassifiziert sind. Die erste Option sind symmetrische
Räume von kompaktem (scalgN > 0) und nicht kompaktem (scalgN < 0) Typ. Wir
geben eine vereinheitlichte Beschreibung dieses Falles und zeigen dabei, wie Paare von
positiven und negativen 3-(α, δ)-Sasaki Mannigfaltigkeiten als Quotienten einfacher Lie-
Gruppen entstehen. Die andere Option sind Alekseevsky Räume, also homogene Räume mit
transitiver Wirkung einer auflösbaren Gruppe. Obwohl diese schwieriger zu handhaben sind
als solche mit transitiver Wirkung einer einfachen Gruppe, erhalten wir durch behutsame
Konstruktion weitere Beispiele negativer homogener 3-(α, δ)-Sasaki Mannigfaltigkeiten.

Im dritten Teil nutzen wir nochmals (2), um die Krümmung zu untersuchen. Dies führt zu
einer Zerlegung des kanonischen Krümmungsoperators

R = αβR⊥ +Rpar,

wobei R⊥ durch die 3-(α, δ)-Sasaki Struktur bestimmt ist und Rpar die Riemannsche Krüm-
mung der quaternionisch Kähler Basis widerspiegelt. Falls RgN ≥ 0 oder RgN ≤ 0 und
entsprechende Parameter α, δ gegeben sind, erhalten wir aus der Zerlegung die jeweilige
Eigenschaft auch für R. Via Rg = R + 1

4GT + 1
4ST haben wir auch Kontrolle über die

Positivität von Rg. Diese Ergebnisse sind maßgeschneidert für den ersten Typ von ho-
mogenen Beispielen, da ihre symmetrische Basis automatisch entweder RgN ≥ 0 oder
RgN ≤ 0 erfüllt, je nachdem, ob sie kompakt ist oder nicht. Wir erhalten semi-definite
Krümmungsoperatoren auf all diesen und in manchen Fällen sogar stark positive Krümmung.
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1 Introduction

1.1 Motivation

The investigation of geometry via transformation groups dates back to F. Klein’s Erlangen
Program [Kle72]. For geometries with tensorial data, the linear group G transforming
adapted frames into one another was mainly investigated. This yields a reduction of the
frame bundle to a principal G-bundle nowadays called a G-structure, where for Riemannian
manifolds one has G ⊂ SO(n). However, soon people became aware that, unlike in the
Euclidean case, G-structures are not necessarily preserved by parallel transport along curves.
The thereby defined new group of transformations was coined the holonomy group of a
manifold by E. Cartan in [Car26a].

Cartan’s understanding of the holonomy group would prove to be crucial shortly thereafter,
as he managed to show that for a symmetric space M = G/H the Riemannian holonomy
group is equal to H. This observation gave rise to his celebrated classification of symmetric
spaces in [Car26b]. A second development promoting the importance of the holonomy group
was its remarkable connection to curvature. In fact, W. Ambrose and I. M. Singer in [AS53]
showed that the holonomy algebra is generated by elements

P−1
γ ◦R(X,Y ) ◦ Pγ

for X,Y ∈ TM and parallel transport Pγ along some piecewise smooth curve γ.

It was apparent that in order to understand Riemannian geometry, an investigation into pos-
sible Riemannian holonomy groups was mandated. Around the same time of the Ambrose-
Singer Theorem, G. de Rham proved a splitting theorem [Rha52], that made a classification
at all feasible.

Theorem (de Rham Splitting Theorem). Suppose that (M, g) is a simply connected man-
ifold such that the Riemannian holonomy representation is reducible on the tangent space,
i.e. TM = T1 ⊕ T2. Then

(M, g) ∼= (M1, g1)× (M2, g2).

This theorem restricted the question to irreducible holonomy representations and an answer
was finally given in [Ber55] by M. Berger.

Theorem (Berger Holonomy Theorem). Let (M, g) be a non-symmetric, irreducible and
simply connected Riemannian manifold. Then the holonomy group Holg is one of the sub-
groups of SO(n) in the table below.

1



1 Introduction

Name Holg dimM

generic manifold SO(n) n

Kähler U(k) n = 2k

Calabi-Yau SU(k) n = 2k

quaternionic Kähler Sp(k)Sp(1) n = 4k

hyperkähler Sp(k) n = 4k

parallel G2 G2 n = 7

parallel Spin(7) Spin(7) n = 8

[Spin(9)] [n = 16]

Table: Possible Riemannian holonomy groups.

Berger’s list only gave possible Riemannian holonomy groups, but did not show whether
these occurred as holonomy groups of compact non-symmetric manifolds. In fact, with
the exception of holonomy Spin(9) manifolds that were shown to be necessarily symmetric
by D. Alekseevsky and independently by R. Brown and A. Gray all entries of Berger’s
list exist. However, at the time of Berger’s Theorem the only class known to exist were
Kähler manifolds. The program finding these examples spanned the second half of the 20th
century. Among others, Contributions were made by S.-T. Yau in 1978, for holonomy groups
SU(n) and Sp(n), by D. Alekseevsky constructing non-symmetric homogeneous quaternionic
Kähler spaces in 1975, and, finally, by D. Joyce who constructed compact manifolds with
holonomy G2 and Spin(7) in 1996.

The remarkable shortness of the list is both its strength and weakness alike. The non-generic
classes show remarkable geometric properties. The most prominent are Kähler manifolds
defined by a parallel almost complex structure, ∇gJ = 0, and have been studied intensively
by complex and algebraic geometry methods. With bigger codimension of Holg ⊂ SO(n)
generally the conditions on these classes tend to be even more restrictive. This, in particular,
applies to the quaternionic counterparts in the form of quaternionic Kähler and hyperkähler
manifolds.

However, since these classes are so few and examples exceptionally rare, the holonomy is
generic for almost all Riemannian manifolds - in odd dimension n ̸= 7, the list even fails to
account for any specialized geometries at all. This is unsatisfying at best. A particularly
notable case can be found in Sasaki manifolds. Already at their introduction in [SH62] by
S. Sasaki and Y. Hatakeyama they have been deemed odd dimensional analogues to Kähler
manifolds. Yet neither they nor their quaternionic counterparts, 3-Sasaki and 3-(α, δ)-Sasaki
manifolds, have special Riemannian holonomy.

Given this discrepancy, people have looked for generalizations of the classical Riemannian
holonomy theory, for instance, the notion of weak holonomy due to A. Gray. The approach
we follow is to look at the holonomy group of a connection other than the Levi-Civita con-
nection. Folklore is that many exceptional geometries admit metric connections with torsion
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1 Introduction

better adapted to their geometry. This thesis can be read as an exhibitory case underlining
that assessment. We investigate 3-(α, δ)-Sasaki manifolds. Introduced in [AD20], they are
defined as almost 3-contact metric manifolds satisfying the condition

dηi = 2αΦi + 2(α− δ)ηj ∧ ηk, where α, δ ∈ R, α ̸= 0.

They generalize the special case of 3-Sasaki manifolds for values α = δ = 1. Naturally they
are endowed with a metric connection ∇ of parallel skew torsion whose holonomy repre-
sentation is reducible. Unlike in the de Rham theorem, we do not locally get a product.
However, we will show that the reducible holonomy leads instead to a locally defined Rie-
mannian submersion over a quaternionic Kähler manifold coupling the canonical connection
to the Levi-Civita connection on the base by

∇gN
X Y = π∗(∇XY ).

We show how this coupling and thereby the canonical connection lead to a deeper under-
standing of the geometry of 3-(α, δ)-Sasaki manifolds.

1.2 Outline

In Chapter 2 we recall the notion of connections with skew torsion and some classical
examples. The curvature tensor for connections with skew torsion is investigated. We
compare results on the reducibility of the holonomy representation of a connection with skew
torsion in the spirit of de Rham and Berger. This leads to the investigation of connections
with parallel skew torsion whose holonomy is reducible but non-decomposable, started in
[CMS21]. We give a slight generalization, Corollary 2.2.7, of their submersion theorem
which will be the key tool in the investigation of canonical submersions.

Chapter 3 is a compendium of almost contact metric and almost 3-contact metric mani-
folds, related definitions, classical results and well adapted connections. In Section 3.3 we
focus purely on our main geometry, 3-(α, δ)-Sasaki manifolds, together with their canonical
connections. We provide an overview of the state of the art and derive some immediate
formulas for the canonical curvature needed later.

The key Chapter 4 applies the submersion result from Corollary 2.2.7 to 3-(α, δ)-Sasaki man-
ifolds and their canonical connection. In Section 4.1 we discuss the technique in the simpler
case of Sasaki manifolds, reproving that any Sasaki manifold locally admits a Riemannian
submersion over a Kähler space. The main application is described in Section 4.2. We
obtain a structure theorem for 3-(α, δ)-Sasaki manifolds showing that these admit a locally
defined Riemannian submersion over a quaternionic Kähler space with scalar curvature a
positive multiple of αδ. As the result is a priori local, we investigate its global behavior in
Section 4.3. We show that for non-degenerate 3-(α, δ)-Sasaki manifolds the patches of the
canonical submersion give rise to a globally defined submersion over an orbifold. For de-
generate 3-(α, δ)-Sasaki manifolds Theorem 4.3.3 gives a model construction of such spaces
submerging onto hyperkähler manifolds.

3



1 Introduction

Non-degenerate homogeneous 3-(α, δ)-Sasaki are investigated in Chapter 5. We give explicit
expressions of 3-(α, δ)-Sasaki manifolds over all known homogeneous quaternionic Kähler
manifolds of non-vanishing scalar curvature. This yields a construction over Wolf spaces,
deforming the description given in [DOP20], as well as their non-compact duals. Both
are given in Theorem 5.1.2, showing the duality of both cases. Independently, over Alek-
seevsky spaces we give a construction in Theorem 5.2.3 using a description of the latter
given by V. Cortés in [Cor00]. We provide detailed descriptions of the 7-dimensional Aloff-
Wallach space and its negative counterpart which submerge onto the 4-dimensional Wolf
space SU(3)/S(U(2)×U(1)), respectively its non-compact dual. We further display explic-
itly the homogeneous 3-(α, δ)-Sasaki space T̂ (1) in dimension 19 sitting above the lowest
dimensional non-symmetric Alekseevsky space T (1). In Section 5.4 we compute the No-
mizu map associated to the canonical connection, a necessary tool for further investigation
of these spaces. In the symmetric base case we find the Nomizu map of the Levi-Civita
connection as well.

Chapter 6 is then a discussion of the curvature operators of 3-(α, δ)-Sasaki manifolds. The
discussion is led by a decomposition given in Proposition 6.1.2 introduced through the canon-
ical submersion. Section 6.2 is devoted to the structure tensor part of this decomposition.
We compute special eigenvalues and eigenvectors of the canonical and Riemannian curvature
operators. We obtain, in particular, a characterization of the Einstein property in terms of
eigenvalues in Theorem 6.2.6. Section 6.3 relates the Riemannian curvature of the quater-
nionic Kähler base to the canonical and Riemannian curvature operators of a 3-(α, δ)-Sasaki
manifold. In particular, Theorem 6.3.3 shows that the canonical curvature is non-negative if
the base is and either αβ ≥ 0. If the base satisfies a certain positivity condition we prove in
Theorem 6.3.9 that the 3-(α, δ)-Sasaki manifold above even has strongly positive curvature.
Section 6.4 is an application to the homogeneous spaces described in Chapter 5. Finally, we
give an outlook into possible application on non-homogeneous 3-(α, δ)-Sasaki manifolds.

Chapter 5 and the main result of 4.2 have been published in the joint work [ADS21a] with
I. Agricola and G. Dileo. A publication [ADS21b] with the same authors is in preparation
including most of Chapter 6.
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2 Connections with Skew Torsion

2.1 Decomposition of the space of Torsion Tensors

Let (Mn, g) be a Riemannian manifold. If we investigate a non-symmetric geometric struc-
ture outside the scope of Berger’s list of special holonomies the Riemannian holonomy will
always be of general SO(n) type. For further investigation we, thus, look for more general
connections better adapted to the geometry. Since the space of connections on TM is an
affine space with associated vector space (T ∗M)2⊗ TM we may write any connection ∇ on
TM as

∇XY = ∇g
XY +A(X,Y ),

relative to the Levi-Civita connection ∇g. As we consider a Riemannian manifold any
suitable connection ∇ should be metric, i.e. ∇g = 0. Viewing A via the metric as a (3, 0)-
tensor the condition ∇g = 0 can be expressed as A ∈ T ∗M ⊗ Λ2T ∗M .

Recall that the Levi-Civita connection is the unique metric connection that is torsion-free.
Hence, the torsion

T∇(X,Y, Z) := g(T∇(X,Y ), Z) = g(∇XY −∇Y X − [X,Y ], Z)

of ∇ is non-trivial whenever ∇ ≠ ∇g. The space of torsion tensors T is then Λ2T ∗M⊗T ∗M .
The group SO(n) acts on both spaces. In fact, the spaces are isomorphic as SO(n)-modules
via

T∇(X,Y, Z) = A(X,Y, Z)−A(Y,X,Z). (2.1)

If n ≥ 3 the space of torsion tensors decomposes under the action of SO(n) into 3 irreducible
representations

T = TM ⊕ Λ3T ∗M ⊕ T 1.

We will only be concerned with the second summand. For a more extensive survey including
the other classes see [Agr06].

Definition 2.1.1. A metric connection ∇ on a Riemannian manifold (M, g) is said to have
skew symmetric torsion, or skew torsion for short, if T∇ ∈ Λ3T ∗M .

For a connection with skew torsion ∇ the isomorphism (2.1) shows that A = 1
2T

∇ and
hence

∇XY = ∇g
XY +

1

2
T (X,Y, ·).

A consequence is that the geodesic curves γ of (M, g) are geodesic with respect to ∇ as well.
Indeed,

∇γ̇ γ̇ = ∇g
γ̇ γ̇ +

1

2
T (γ̇, γ̇, ·) = ∇g

γ̇ γ̇

5



2 Connections with Skew Torsion

As we will see often an additional assumption on the connection is necessary for a meaningful
investigation.

Definition 2.1.2. A metric connection ∇ with torsion T is said to have parallel torsion if
∇T = 0.

We take a short detour for an important example of connections with skew torsion. Consider
a homogeneous space M = G/H with a reductive decomposition g = h ⊕ m. The Nomizu
Theorem characterizes G-invariant connections, see [KN96, Theorem X.2.1, Proposition
X.2.3, p.191]

Theorem 2.1.3. Let M = G/H be a homogeneous space with reductive complement m.
Then there is a bijective correspondence

{∇ G-invariant connection on M} 1:1←→
{︁
Λ∇ : m×m→ m h-invariant

}︁
given by Λ∇

XY = ∇X0Y − [X,Y ]0. The torsion tensor of a connection ∇ is given on funda-
mental vector fields X,Y ∈ m by

T∇
0 (X,Y ) = Λ∇

XY − Λ∇
Y X − [X,Y ]m, (2.2)

where the subscript m denotes projection to m ⊂ g. The connection is metric if and only if
ΛX ∈ so(m) for every X ∈ m.

Corollary 2.1.4. Let M = G/H be a homogeneous space with reductive complement m ⊂ g.
Then there is a unique G-invariant connection given by Λ ≡ 0. It has torsion T (X,Y ) =
−[X,Y ]m.

We will call this connection the Ambrose-Singer connection of the reductive decomposition
g = h⊕m.

Example 2.1.5. A naturally reductive space is a homogeneous space that admits a reduc-
tive decomposition g = h⊕m and a G-invariant metric induced by an ad h-invariant scalar
product ⟨·, ·⟩ on m such that

⟨[X,Y ]m, Z⟩ = −⟨Y, [X,Z]m⟩ ∀X,Y, Z ∈ m. (2.3)

Equation (2.3) shows that the Ambrose-Singer connection has skew torsion exactly if the
homogeneous space is naturally reductive. The torsion and curvature of this connection
are always parallel. In fact, if there exists a metric connection with parallel skew torsion
and curvature on a manifold M , it has to be locally isometric to a naturally reductive
homogeneous space, see [Tri92].

Note that the Ambrose-Singer connection depends on the groups G,H and the reductive
complement m. So a Riemannian homogeneous space (M = G/H, g) might be naturally
reductive, but not with respect to the data G,H and m.

We discuss another important class of geometries.

6



2 Connections with Skew Torsion

Definition 2.1.6. Let (Mn, g) be a Riemannian manifold with orthogonal frame bundle
L(M, g). Suppose G ⊂ SO(n) is a subgroup. A G-structure is a G-principal subbundle
P ⊂ L(M, g).

Most of the time G-structures will be defined in such a way that G is the stabilizer of some
tensor on TM . For instance this is true for the classes appearing in Berger’s holonomy list.
Now the Levi-Civita connection preserves the G-structure exactly in those cases, paralleliz-
ing the defining tensors. For other geometries we would like to have connections preserving
their G-structure as well. Of course this comes with the cost of some non-trivial torsion
tensor.

Definition 2.1.7. Ametric connection∇ on a Riemannian manifold (M, g) withG-structure
is called the characteristic connection if it is the unique connection with skew torsion pre-
serving the G-structure.

Example 2.1.8. Important examples of manifolds admitting characteristic connections are
nearly Kähler manifolds and nearly parallel G2-manifolds. Their connections first occurred
in [Gra76] for nearly Kähler manifolds, and for nearly parallel G2-manifolds in [FI02].
T. Friedrich and S. Ivanov also show in their work that these are indeed characteristic
connections. Both examples have parallel torsion.

The most important examples for this thesis are almost contact metric manifolds and their
connections. These will be discussed in Chapter 3.

Let us now discuss curvature for metric connections with torsion. For proofs of the formulas
we refer to the survey [Agr06] and the references therein. We define the curvature tensor of
a metric connection ∇ as the (4, 0)-tensor given by

R∇(X,Y, Z, V ) := g((∇X∇Y −∇Y∇X −∇[X,Y ])Z, V ).

The curvature of the Levi-Civita connection will be called Riemannian curvature and de-
noted by a superscript g. With this reference point we compare the curvature R∇ to Rg. In
order to simplify the formulas we restrict our discussion to connections with skew torsion.
Then

Rg(X,Y, Z, V ) = R∇(X,Y, Z, V )− 1

2
(∇XT )(Y,Z, V ) +

1

2
(∇Y T )(X,Z, V ) (2.4)

− 1

4
g(T (X,Y ), T (Z, V ))− 1

4
σT (X,Y, Z, V ).

Here and in many instances forward we use the 4-form σT associated to a skew torsion
tensor defined by

σT (X,Y, Z, V ) :=
X,Y,Z

S g(T (X,Y ), T (Z, V ))

:= g(T (X,Y ), T (Z, V )) + g(T (Y,Z), T (X,V )) + g(T (Z,X), T (Y, V )),

where S denotes the cyclic sum, i.e. the sum over all even permutations of (X,Y, Z). These
curvature tensors inherit some symmetries of the Riemannian curvature. By definition they
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2 Connections with Skew Torsion

are skew-symmetric in the first two entries and for a metric connection in the last two entries
as well. If we assume ∇ is a connection with parallel skew torsion (2.4) also implies the pair
symmetry of R∇

R∇(X,Y, Z, V ) = R∇(Z, V,X, Y ). (2.5)

One also obtains a modified first Bianchi identity

X,Y,Z

S R(X,Y, Z, V ) = dT (X,Y, Z, V )− σT (X,Y, Z, V ) + (∇V T )(X,Y, Z),

which once again simplifies under the assumption of parallel torsion. In that case we find
dT = 2σT and thus the Bianchi identity becomes

X,Y,Z

S R(X,Y, Z, V ) = σT (X,Y, Z, V ). (2.6)

Let ⟨·, ·⟩ denote the metric on Λ2M induced by g. We may then define the curvature operator
R∇ : Λ2M → Λ2M of the connection ∇ via

⟨R∇(X ∧ Y ), Z ∧ V ⟩ = −R∇(X,Y, Z, V ).

From now on we will assume that ∇ has parallel skew torsion such that R∇ ∈ Sym(Λ2M)
by (2.5). Let us motivate the additional − sign in the definition of R. Recall that the
sectional curvature sec∇ of a plane spanned by X,Y ∈ TM is given by

sec∇(X,Y ) :=
R∇(X,Y, Y,X)

g(X,X)g(Y, Y )− g(X,Y )2
.

With the given sign conventions we have that the sectional curvature sec∇ > 0 if R∇ > 0 is
positive definite as a linear operator Λ2M → Λ2M .

Definition 2.1.9. Let (M, g) be a Riemannian manifold and ∇ a connection with parallel
skew torsion. We say that

a) (M, g) has a positive ∇-curvature operator if R∇ > 0,

b) (M, g) has strongly positive ∇-curvature if R∇ + ω > 0 for some ω ∈ Λ4M ,

c) (M, g) has positive ∇-curvature if sec∇(X,Y ) > 0 for all X,Y ∈ TM .

In accordance with usual notion we omit ∇ if we consider the Levi-Civita connection.

Observe that a 4-form ω ∈ Λ4M regarded as an operator Λ2M → Λ2M is always symmetric
and ω(X,Y, Y,X) = 0. Thus, part b) is a reasonable definition and

positive ∇-curvature operator ⇒ strongly positive ∇-curvature ⇒ positive ∇-curvature.

As for the Levi-Civita connection we may define holonomy for an arbitrary connection ∇.
Along any smooth path γ : [0, 1] → M we find a unique parallel vector field X : [0, 1] →
TM along γ with fixed initial value X(0) = X0. This is as usual an application of the
Picard-Lindelöf theorem. Evaluating X at the endpoint defines the parallel transport
P∇
γ : Tγ(0)M → Tγ(1)M .
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2 Connections with Skew Torsion

Definition 2.1.10. The holonomy group of a connection ∇ at a point p ∈M is given by

Hol∇(p) = {P∇
γ | γ a closed loop in M with endpoint p} ⊂ Gl(TpM).

The reduced holonomy group Hol∇0 (p) of ∇ is the connected component of the identity
inside Hol∇(p) and hol∇(p) its Lie algebra.

On a connected manifold the (reduced) holonomy groups of any two points are conjugate.
Thus, we will just talk about the (reduced) holonomy group of a manifold M . Also we will
usually drop the mention of ∇ when it is clear from context which connection is meant.
In case ∇ is a metric connection, parallel transport preserves the metric and thus Hol∇0 ⊂
SO(n).

The notion of holonomy is closely connected to curvature. In fact, the classical Ambrose-
Singer theorem [AS53] tells us that the Lie algebra hol of the holonomy group is generated
by the curvature.

Theorem 2.1.11 ([AS53]). The holonomy algebra hol of a metric connection ∇ is the
subalgebra of so(TpM) generated by

P−1
γ ◦ R(PγX,PγY ) ◦ Pγ

where γ runs through all piece-wise smooth curves from p to q and R(X,Y ) ∈ Λ2M ∼=
so(TqM) is the curvature operator evaluated at X,Y ∈ TqM .

Since Hol0 ⊂ SO(n) for any metric connection ∇, the type of torsion tensor T is Hol0-
invariant. Under the additional assumption ∇T = 0 the torsion tensor itself is invariant
under the holonomy.

2.2 Skew Torsion with Reducible Holonomy

A key assumption in Berger’s holonomy theorem was the irreducibility of Holg0. This as-
sumption was warranted as otherwise by de Rham splitting M is locally a Riemannian
product manifold. For connections with torsion we do not have de Rham splitting. In this
case we need a refined splitting condition on the tangent space.

Theorem 2.2.1 ([Sto17]). Let (M, g) be a Riemannian manifold and ∇ a metric connection
∇ = ∇g +A, where A ∈ V ⊗ so(V ). If the tangent space splits into ∇-parallel distributions
TM = V1 ⊕ V2 such that

A = A1 +A2, Ai ∈ Vi ⊗ so(Vi),

then (M, g) is locally a product manifold.
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2 Connections with Skew Torsion

Conversely given two manifolds (M1, g1), (M2, g2) both admitting metric connections ∇1,∇2

with ∇i = ∇gi +Ai, then the product

(M, g) = (M1, g1)× (M2, g2)

with metric connection ∇ = ∇g +A1 +A2 satisfies the conditions of Theorem 2.2.1. In the
case of skew torsion this warrants the following definition.

Definition 2.2.2. Let (M, g) be a connected Riemannian manifold and ∇ a metric connec-
tion with skew torsion T . Then the triple (M, g,∇) is called

a) decomposable, if there exist ∇-parallel distributions TM = V1⊕V2 such that T = T1+T2

with Ti ∈ Λ3Vi,

b) reducible, if the representation of hol∇ on TM is reducible,

c) irreducible, if it is not reducible.

Clearly decomposable implies reducible, but if T ̸= 0 they are not equal.

Corollary 2.2.3. The triple (M, g,∇) with skew torsion is locally isometric to a product

(M, g,∇) = (M1, g1,∇1)× (M2, g2,∇2)

if and only if it is decomposable.

On the other end, in [CS04, Theorem 5.14] R. Cleyton and A Swann have classified the
irreducible case under the assumption of parallel torsion.

Theorem 2.2.4 ([CS04]). Let (M, g) be a Riemannian manifold and ∇ a connection with
non-zero parallel torsion such that the holonomy representation is irreducible. Then one of
the following statements holds:

a) (M, g) is locally isometric to a non-symmetric, isotropy irreducible homogeneous space,

b) (M, g) is locally isometric to one of the irreducible symmetric spaces (G×G)/G or GC/G
with G = Hol∇(M, g),

c) (M, g) has weak holonomy SU(3) or G2.

Remark 2.2.5. In case a) ∇ has skew torsion if and only if it is the Ambrose-Singer
connection of a naturally reductive homogeneous space as discussed in Example 2.1.5. Case
c) are the connections with skew torsion on nearly Kähler, respectively nearly parallel G2-
manifolds mentioned in Example 2.1.8. Case b) is also known to carry connections with
skew torsion.

This leaves us with the reducible, non-decomposable case of parallel skew torsion. These
have been investigated in [CMS21]. We recall their notation.

Suppose the tangent space TM decomposes under the action of the holonomy group Hol of
∇T into a sum of irreducible representations v1, . . . , vr, h1, . . . , hs.

10



2 Connections with Skew Torsion

Definition 2.2.6. An irreducible submodule of the holonomy representation is called ver-
tical, adequately denoted by vj , if the subspace kvj = so(vj)∩ hol of hol acting purely on vj
is trivial.

Conversely, a subspace ha is called horizontal if the subspace kha = so(ha)∩hol ̸= {0} of hol
acting purely on ha is non-trivial.

We need a slight generalization of the results obtained in [CMS21]. Suppose the tangent
space decomposes into TM = v1 ⊕ · · · ⊕ vr ⊕ h1 ⊕ · · · ⊕ hs as before. Let TM = VΓ ⊕HΓ

be a decomposition such that

HΓ :=

s⨁︂
a=1

ha ⊕
⨁︂

j∈Γ0\Γ

vj , VΓ :=
⨁︂
j∈Γ

vj , (2.7)

for some subset Γ ⊂ Γ0 = {1, . . . , r}. Suppose further that for the decomposition (2.7)

0 = prHΓ⊗Λ2VΓ
T ∈ HΓ ⊗ Λ2VΓ ⊂ Λ3(HΓ ⊕ VΓ). (2.8)

i.e. the projection of T onto the space HΓ ⊗ Λ2VΓ vanishes. This condition turns out to be
sufficient to prove Lemmas 3.7-3.10 and Remark 3.11 from [CMS21]. In fact, they prove
that the maximal decomposition HΓ0 =

⨁︁s
a=1 ha, VΓ0 =

⨁︁r
j=1 vj always satisfies (2.8). We

obtain

Corollary 2.2.7. Suppose the decomposition TM = VΓ ⊕ HΓ from (2.7) fulfills condition
(2.8). Then

a) the distribution VΓ is the vertical distribution of a locally defined Riemannian submersion
(M, g)

π−→ (N, gN ) with totally geodesic leaves,

b) there exists a 3-form σ ∈ Λ3N satisfying π∗σ = prΛ3HΓ
T ,

c) ∇σ := ∇gN + 1
2σ defines a connection with parallel skew torsion σ on N . In particular,

we have
∇σ

XY = π∗(∇T
X
Y ), (2.9)

for the horizontal lifts X,Y ∈ TM of the vectors fields X,Y ∈ TN .

Remark 2.2.8. Let us clearify on the notion of locally defined Riemannian submersion. It
means that for every point p ∈M there is an open neighborhood U ⊂M , a local submanifold
S through p, transverse to the foliation, and a Riemannian submersion πp : U → S where S
is equipped with the metric on H. However, we consider the πp as patches of a joint map
π : M → N where N is the set of leaves. There arise some difficulties as N might not be a
manifold unlike the individual transverse sections S.

Mostly we are interested in cases where the foliation tangent to VΓ is given by the orbits
of a compact Lie group G acting on M . Then the quotient M/G is necessarily an orbifold.
For a proof of that fact and a thorough introduction into orbifolds we refer to [MM03]. An
orbifold of the form M/G is locally homeomorphic to T/H where T is a local transverse
section through some point p ∈ M and H is the leaf holonomy group in p. That means H
is the finite group given by the return maps in T along paths in the leaf Lp through p.
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2 Connections with Skew Torsion

Proof. We note that by (2.8) and the invariance of VΓ under ∇ for any vertical vector fields
V,W ∈ VΓ we have

∇g
V W = ∇T

V W −
1

2
T (V,W ) ∈ VΓ.

Therefore, the distribution VΓ is integrable and a curve is geodesic on the integral subman-
ifold tangent to VΓ if and only if it is a geodesic in M . The integral submanifolds give rise
to a foliation and hence to a submersion π from a small neighborhood U ⊂ M to a local
transverse section S. We show that the metric restricted to HΓ × HΓ is constant along
vertical vector fields and therefore projectable. For X,Y ∈ H we have

(LV g)(X,Y ) = V (g(X,Y ))− g([V,X], Y )− g(X, [V, Y ]) = g(∇g
XV, Y ) + g(X,∇g

Y X)

= g(∇T
XV, Y ) + g(X,∇T

Y V ) = 0

since V is preserved by ∇T . This proves that π is a Riemannian submersion.

To prove the second assertion we denote TH = prΛ3HΓ
T . If we show that TH is constant

along the fibers it projects to a well-defined 3-form σ. Let V ∈ VΓ. Then

TH(X,Y, T (V,Z)) = 0 (2.10)

whenever either X,Y, Z ∈ VΓ. Indeed, by (2.8) we have that T (V,Z) ∈ VΓ if Z ∈ VΓ and,
hence, T (V,Z) TH = 0. Now consider X,Y, Z ∈ HΓ. Since ∇T preserves VΓ and HΓ the

curvature R∇T
(X,Y, Z, V ) = 0 and the Bianchi identity for connections with parallel skew

torsion, (2.6), implies

0 = −
X,Y,Z

S R∇T
(X,Y, Z, V ) = −σT (X,Y, Z, V ) = −

X,Y,Z

S g(T (X,Y ), T (Z, V ))

=
X,Y,Z

S T (X,Y, T (V,Z)) =
X,Y,Z

S TH(X,Y, T (V,Z)),

where the last step used again that T (V,Z) ∈ HΓ. Thus, (2.10) holds for any X,Y, Z ∈ TM .

As the subspaces VΓ, HΓ are preserved by ∇T so are the components of tensors on TM . In
particular, ∇TT = 0 implies ∇TTH = 0. Use (2.10) and ∇T

ZV ∈ VΓ to obtain

LV T
H(X,Y, Z) = V (TH(X,Y, Z))−

X,Y,Z

S TH(X,Y, LV Z)

= (∇T
V T

H)(X,Y, Z)+
X,Y,Z

S TH(X,Y,∇T
V Z)

−
X,Y,Z

S TH(X,Y,∇T
V Z −∇T

ZV − T (V,Z))

=
X,Y,Z

S TH(X,Y, T (V,Z)) = 0.

Equation (2.9) follows directly from ∇gN
X Y = π∗(∇g

X
Y ) for Riemannian submersions, see

for instance [Pet06, Prop. 13]. Finally we conclude that σ is ∇σ-parallel:

(∇σ
Aσ)(X,Y, Z) = A(σ(X,Y, Z))−

X,Y,Z

S σ(X,Y,∇σ
AZ)

= A(π ◦ TH(X,Y , Z))−
X,Y,Z

S σ(X,Y, π∗(∇T
A
Z))

= A(TH(X,Y , Z))−
X,Y,Z

S TH(X,Y ,∇T
A
Z)

= (∇T
A
TH)(X,Y , Z) = 0
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2 Connections with Skew Torsion

Riemannian submersions have been studied intensively in [ONe66]. The author assigns to
a submersion π : M → N with V = ker dπ and H = V⊥ the tensors, now called O’Neill
tensors,

AXY = (∇g
XH

YH)V + (∇g
XH

YV)H, TXY = (∇g
XV

YH)V + (∇g
XV

YV)H.

Here the subscripts denote projection on the respective subspaces. In fact A and T charac-
terize the submersion uniquely.

Theorem 2.2.9 ([ONe66]). Given two Riemannian submersions π, π̃ : M → N . If their
respective O’Neill tensors are equal A = Ã, T = T̃ and dxπ = dxπ̃ for some point x ∈ M
then π = π̃.

For the submersion of Corollary 2.2.7 the O’Neill-tensors A and T simplify a lot:

Lemma 2.2.10. The O’Neill tensors A and T associated to the submersion defined by
TM = VΓ ⊕HΓ are given by

g(AXY,Z) = −1

2
(T (XHΓ

, YHΓ
, ZVΓ

) + T (XHΓ
, YVΓ

, ZHΓ
)), T = 0.

Proof. Since HΓ and VΓ are ∇T -holonomy invariant (∇T
XYHΓ

)VΓ
= (∇T

XYVΓ
)HΓ

= 0. Thus,
g(∇g

XYHΓ
, ZVΓ

) = −1
2T (X,YHΓ

, ZVΓ
) and g(∇g

XYVΓ
, ZHΓ

) = −1
2T (X,YVΓ

, ZHΓ
). The first

expression follows directly. The identity T = 0 is then an immediate consequence of condi-
tion (2.8).

The vanishing of T does not come as a surprise since it is equivalent to the fibers being
totally geodesic.

13



3 Almost Contact Metric Geometry

This chapter is concerned with certain odd dimensional geometries. Namely the classes of
almost contact metric manifolds in every odd dimension and of almost 3-contact metric
manifold in dimensions 4n + 3. A complete account of almost contact metric and Sasaki
geometry can be found in [BG08]. Apart from G2-geometry, odd dimensions do not appear
in Berger’s list, implying that the Levi-Civita connection is not well adapted. Hence, we
will consider suitable connections with torsion alongside these classes.

3.1 Sasaki Manifolds

We begin with almost contact metric geometry often considered as odd dimensional analogue
to even dimensional almost Hermitian manifolds.

Definition 3.1.1. An almost contact metric structure on (M2n+1, g) is a triple (ξ, η, φ)
where ξ ∈ TM is a unit length vector field, η ∈ T ∗M and φ ∈ End(TM) such that

η(ξ) = 1, φ(ξ) = 0, η ◦ φ = 0, φ2 = −id + ξ ⊗ η,

g(φX,φY ) = g(X,Y )− η(X)η(Y ).

We call ξ the Reeb vector field of (M, g, ξ, η, φ).

Remark 3.1.2. Usually one defines (strict) almost contact structures (ξ, η, φ) onM without
reference to a metric g and omits the last compatibility condition. We will always have a
metric present so we will not take this detour. For a discussion in absence of a metric see,
for instance, [BG08, Chapter 6].

An almost contact metric manifold can be thought of as a manifold with a codimension 1
distribution H = ⟨ξ⟩⊥ called contact or horizontal distribution admitting an almost Hermi-
tian structure. Accordingly the distribution V := ⟨ξ⟩ is denoted the vertical distribution.
In analogy to Hermitian manifolds we call

Φ(X,Y ) = g(X,φY ) (3.1)

the fundamental 2-form of the almost contact metric structure (M, g, ξ, η, φ). We also define
a Nijenhuis tensor by

N(X,Y ) := [φX,φY ]− φ[X,φY ]− φ[φX, Y ] + φ2[X,Y ] + dη(X,Y )ξ. (3.2)

We will use this ad hoc definition for the Nijenhuis tensor. It can be motivated as the
obstruction to integrability on the cone, see Remark 3.1.10.
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3 Almost Contact Metric Geometry

Definition 3.1.3. An almost contact metric manifold (M, g, ξ, η, φ) is called

a) normal if N ≡ 0,

b) quasi-Sasaki manifold if it is normal and dΦ = 0,

c) α-contact metric manifold if dη = 2αΦ for a constant α ̸= 0,

d) α-K-contact metric manifold if ξ is a Killing field and dη = 2αΦ for a constant α ̸= 0,

e) α-Sasaki manifold if it is normal and dη = 2αΦ for a constant α ̸= 0.

For the value α = 1 α-Sasaki/α-(K-)contact metric manifolds are simply called Sasaki/
(K-)contact metric manifolds.

Remark 3.1.4. There are obvious inclusion relations between these classes. One can show
that also α-Sasaki implies α-K-contact, in particular the Reeb vector field of a Sasaki struc-
ture is Killing, see [BG08, Prop. 6.5.14]. The inclusion tree is as follows.

α-K-contact →→ α-contact

α-Sasaki

→↗

↘→

←←

quasi-Sasaki →→ normal

By Cartans formula

ξ dη = Lξη = ξ (Lξg). (3.3)

In particular, when ξ is Killing we have ξ dη = 0. We consider two standard examples of
Sasaki structures in detail.

Example 3.1.5. Let R2n+1 and fix coordinates (x1, y1, . . . , xn, yn, z). Set

η = dz −
n∑︂

i=1

(xidyi − yidxi)

and consider the metric g = η2 +
∑︁

dx2i + dy2i . Then ξ = ∂z, Yi = ∂yi + xi∂z and Xi =
∂xi−yi∂z make up an orthonormal basis dual to η, dxi, dyi. We complete the almost contact
metric structure with

φ =
n∑︂

i=1

Xi ∧ Yi =
n∑︂

i=1

Xi ⊗ dyi − Yi ⊗ dxi

Immediately we have dη = 2
∑︁

dxi ∧ dyi = 2Φ. Normality is proved on the basis ξ,Xi, Yi
independently. These have commutators

[Xi, Xj ] = [Xi, Yj ] = [Yi, Yj ] = 0, i ̸= j, [Xi, ξ] = [Yi, ξ] = 0, [Xi, Yi] = 2ξ. (3.4)
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3 Almost Contact Metric Geometry

Then by value of (3.3) we have ξ N = 0. We also haveN(Xi, Xj) = N(Yi, Yj) = N(Xi, Yj) =
0 for i ̸= j as dη = 2

∑︁
dxi ∧ dyi. Finally

N(Xi, Yi) = −[Xi, Yi] + dη(Xi, Yi)ξ = −2ξ + 2ξ = 0.

We remark that by (3.4) the basis vectors generate the Heisenberg algebra

hn,C =

⎧⎨⎩
⎛⎝0 X

t
Z

0 0 X
0 0 0

⎞⎠ ∈ gl(n+ 2,C), X ∈ Cn, Z ∈ iR

⎫⎬⎭ .

Example 3.1.6. Equip the odd dimensional sphere S2n+1 ⊂ Cn+1 with its standard metric.
Consider its Hopf bundle

S1 → S2n+1 → CPn

(z0, . . . , zn) ↦→ [z0 : . . . : zn].

Denote by ξ ∈ TS2n+1 the unit length vector field generating the action of S1, η its metric
dual and φ : (Z0, . . . , Zn) ↦→ prTS2n+1(−Z0i, . . . ,−Zni) defined by multiplication with −i
form the right. Here we have identified T(z1,...,zn)S

2n+1 = (z1, . . . , zn)
⊥. These clearly

define an almost contact metric manifold. Set zj = xj + iyj then η takes the form η =∑︁
xidyi − yidxi and hence

dη = 2
∑︂

dxi ∧ dyi = 2Φ.

Note that the last equality holds as both sides are considered only on TS2n+1. Normality
follows immediately from the equivalent condition we will give in Remark 3.1.10 since the
cone is C(S2n+1) = R+ × S2n+1 = C \ {0}.

One observes that an almost contact metric manifold has its structure group reduced to a
subgroup of U(n)× id ⊂ SO(2n+1). Conversely any reduction to U(n)× id gives rise to an
almost contact metric manifold. With this reduction we can ask which almost contact metric
manifolds admit characteristic connections as defined in Definition 2.1.7. A characteristic
connection ∇ has to preserve the given U(n)× id-structure. This is equivalent to

∇ξ = ∇η = ∇φ = 0.

The question was investigated and solved by T. Friedrich and S. Ivanov.

Theorem 3.1.7 ([FI02]). An almost contact metric manifold (M, g, ξ, η, φ) admits a char-
acteristic connection ∇ if and only if

� ξ is a Killing field,

� the Nijenhuis-tensor N is skew-symmetric.

In this case the torsion is given by

T = η ∧ dη + dφΦ+N − η ∧ (ξ N),

where dφΦ(X,Y, Z) = −dΦ(φX,φY, φZ).
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Corollary 3.1.8. The torsion tensor decomposes under TM = V ⊕ H as T = TH + Tm

where

TH := prΛ3HT = dφΦ+ (N − η ∧ (ξ N)), Tm := prV⊗Λ2HT = η ∧ dη. (3.5)

Proof. T is skew-symmetric and V 1-dimensional. Hence, only Tm and TH can exist. We
need to show that dφΦ + (N − η ∧ (ξ N)) ∈ Λ3H. It is true for the first summand since
V = kerφ. For the second summand we notice that η ∧ (ξ N) is the projection of N to
V ⊗ Λ2H:

N(ξ,X, Y ) = η(ξ)(ξ N)(X,Y ) = η ∧ (ξ N)(ξ,X, Y ).

Observe that the class of α-Sasaki manifolds satisfies both conditions and the torsion tensor
becomes T = η∧dη. In particular, TH ≡ 0. Since dη = 2αΦ is automatically parallel. Thus
we obtain

Corollary 3.1.9. An α-Sasaki manifold (M, g, ξ, η, φ) admits a characteristic connection
∇ with parallel torsion

T = η ∧ dη.

We conclude this brief exposition of Sasaki and related almost contact metric manifolds by
discussing their relation to Kähler geometry. In fact, almost contact manifolds are related
to almost Hermitian manifolds in dimensions 2n + 2 above and 2n below. In dimension
2n+ 2 one considers the Riemannian cone

C(M) = (R+ ×M,dr2 + r2g)

over (M2n+1, g, ξ, η, φ). This comes equipped with an almost Hermitian structure I induced
from the almost contact metric structure on (M, g) via

IZ = −ξ, IX = φX + η(X)Z, X ∈ TM, Z = r
∂

∂r
.

We will not be concerned with cones any further in this thesis yet they were key to the
motivation of almost contact metric structures.

Remark 3.1.10. Several classes of almost contact manifolds are defined in such a way that
the almost Hermitian manifold on the cone is of specific kind. In particular,

� the cone over a normal almost contact metric manifold is an integrable Hermitian
space,

� the cone over a Sasaki manifold is a Kähler space.
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In the dimension 2n below we consider the space of Reeb orbits M/Fξ, where Fξ is the
foliation induced by the flow of the Reeb vector field. This is a 1-dimensional foliation as
the Reeb vector field vanishes nowhere. In general there is little hope that the leaf space is
a manifold. However, under reasonable assumptions we obtain at least orbifolds.

We obtain the following result from [BG08, Theorem 7.1.4]. They assume an additional
technical condition. A foliation F on a manifold M is called quasi-regular if there exists
an k ∈ N such that for every p ∈ M there is a neighborhood that intersects any given leaf
in only finitely many plaques. If k = 1 the foliation is called regular. In other words, the
orders of leaf holonomy groups are globally bounded by k.

Theorem 3.1.11 ([BG08, Theorem 7.1.4.]). Let (M, g, ξ, η, φ) be a quasi-regular K-contact
manifold with compact leaves. Then

a) the space of leaves M/Fξ is a symplectic orbifold and the projection π : M →M/Fξ is a
Riemannian orbifold submersion,

b) M is the total space of a principal S1-orbibundle over M/Fξ with connection 1-form η
whose curvature is dη = π∗ω for a symplectic form ω on M/Fξ,

c) if the characteristic foliation Fξ is regular then the S1 action is free and M is the total
space of a principal S1-bundle over a symplectic manifold defining an integral class [ω] ∈
H2(M/Fξ,Z),

d) (M, g, ξ, η, φ) is Sasaki if and only if (M/Fξ, ω) is Kähler.

We will revisit the relation between Sasaki manifolds and their underlying Kähler spaces in
the light of canonical submersions in Section 4.1.

We recall that there is a converse construction. We start with a suitable symplectic manifold
and construct a K-contact S1-bundle, named Boothby-Wang bundle after its inventors.

Theorem 3.1.12 ([BW58]). Suppose (N,ω) is a symplectic manifold such that in coho-
mology [ω] ∈ H2(N,Z) defines an integral class. Then there exists a principal S1-bundle
π : M → N with a K-contact structure (g, ξ, η, φ) such that dη = π∗ω.

Corollary 3.1.13. If (N, J, g) is a Kähler manifold with integral fundamental form [ω] ∈
H2(N,Z) then the corresponding Boothby-Wang bundle (M, g, ξ, η, φ) is Sasaki.

3.2 Almost 3-Contact Metric Manifolds

Similar as we viewed almost contact metric manifold as an analogue to Hermitian geometry,
we now want to look at almost 3-contact metric manifolds in dimension 4n+3 as an analogue
to hyperhermitian geometry mimicking quaternions.
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3 Almost Contact Metric Geometry

Definition 3.2.1. Let (M4n+3, g) be a Riemannian manifold. An almost 3-contact metric
structure is a set of 3 almost contact metric structures (ξi, ηi, φi)i=1,2,3 on (M, g) that satisfy
the compatibility relations

φk = φiφj − ξi ⊗ ηj = −φjφi + ξj ⊗ ηi, ξk = φiξj = −φjξi, ηk = ηi ◦ φj = −ηj ◦ φi

for any even permutation (ijk) of (123).

We remark immediately that the compatible conditions force the Reeb vector fields to be
orthogonal. We denote the spaces

V = ⟨ξ1, ξ2, ξ3⟩ and H = V⊥ =
3⋂︂

i=1

ker ηi

the vertical and horizontal distribution of TM . The compatibility conditions creates via
φ1, φ2, φ3 the structure of a quaternion vector space on the horizontal spaceH. In particular,
this reduces the structure group of M to id3 × Sp(n). We can define adapted frames
subordinate to this reduction.

Definition 3.2.2. An adapted basis of an almost 3-contact metric manifold is an orthonor-
mal frame e1, . . . , e4n+3 such that

ei = ξi, e4l+i = φie4l

for all i = 1, 2, 3 and l = 1, . . . , n.

An almost 3-contact metric structure comes equipped with the tensors Ni and Φi, defined
in (3.2) and (3.1), for each individual almost contact metric structure (g, ξi, ηi, φi). Canon-
ically we may define classes of almost 3-contact metric manifolds, requiring the additional
conditions as in Definition 3.1.3 for each of the three structures individually.

Definition 3.2.3. An almost 3-contact metric manifold (M, g, ξi, ηi, φi) is called

a) hypernormal if (M, g, ξi, ηi, φi) is normal for i = 1, 2, 3,

b) 3-contact if (M, g, ξi, ηi, φi) is contact for i = 1, 2, 3,

c) 3-α-Sasaki if (M, g, ξi, ηi, φi) is α-Sasaki for i = 1, 2, 3,

d) 3-Sasaki if (M, g, ξi, ηi, φi) is Sasaki for i = 1, 2, 3.

Apriori it is unclear whether these definitions have additional consequences beyond those
following immediately from the individual classes. A strong result in this direction is given
by Kashiwada, [Kas01], rendering the class of 3-contact metric manifolds essentially obsolete.

Theorem 3.2.4. A 3-contact metric manifold is hypernormal and, thus, 3-Sasaki.
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The idea of interplay between the almost contact metric structures suggest that they are part
of greater structure. Indeed, given 3 almost contact metric structures, (ξi, ηi, φi), i = 1, 2, 3,
every

φa ∈ {φa = a1φ1 + a2φ2 + a3φ3, a = (a1, a2, a3) ∈ S2}

is an isometry that squares to −id on a codimension 1 distribution and defines an almost
contact metric structure (ξa, ηa, φa) on (M, g) where

ξa = a1ξ1 + a2ξ2 + a3ξ3, ηa = a1η1 + a2η2 + a3η3.

Definition 3.2.5. Let (M, g, ξi, ηi, φi)i=1,2,3 be an almost contact metric structure. We
denote

ΣM := {(ξa, ηa, φa), a ∈ S2}

the associated sphere of almost contact metric structures.

Clearly these structures preserve the splitting TM = V ⊕H. More properties carry over to
the sphere of almost contact metric structures.

Proposition 3.2.6 ([CDY16],[BG08, Theorem 13.2.1]). Let (M, g, ξi, ηi, φi)i=1,2,3 be an hy-
pernormal almost 3-contact metric/3-α-Sasaski/3-Sasaki manifold. Then every almost con-
tact metric structure in ΣM is normal/α-Sasaki/Sasaki.

Remark 3.2.7. Let a, b, c ∈ R3 be any oriented orthonormal basis and (ξi, ηi, φi)i=a,b,c their
corresponding structures in ΣM , then we again obtain an almost 3-contact metric manifold,
compare the discussion in [BG08, Section 13.1]. By the proposition above each of these
almost 3-contact metric manifolds is again hypernormal/3-α-Sasaki/3-Sasaki if the original
one is.

Let us now consider the standard example of a 3-Sasaki manifold.

Example 3.2.8. Consider the sphere S4n+3 ⊂ Hn+1. For each of the three complex gen-
erators i, j, k ∈ H we obtain a Sasaki structure defined by right multiplication as described
in Example 3.1.6. Indeed, they satisfy the compatibility conditions since i, j, k do and thus
form a 3-Sasaki manifold.

The analogy to the case described in Example 3.1.6 goes further. The entire vertical distri-
bution gives a foliation F with leaves diffeomorphic to S3. In fact the projection to the leaf
space is just the quaternionic Hopf fibration

S3 → S4n+3 → HPn.

One might expect that in analogy to Sasaki manifolds the quotient space M/F = HPn is a
hyperkähler manifold admitting three parallel almost complex structures. This is false, but
it is quaternionic Kähler instead. Let us recall both definitions.
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Definition 3.2.9. An almost hyperhermitian manifold (M4n, g, I1, I2, I3) is a Riemannian
manifold together with three almost complex structures I1, I2, I3 ∈ End(TM) that are
compatible with the metric g and satisfy the quaternion relation IiIj = Ik for every even
permutation (ijk) of (123).

A hyperkähler manifold is a hyperhermitian manifold (M4n, g, I1, I2, I3) such that all almost
complex structures are parallel ∇gIi = 0.

A quaternionic Kähler manifold is a tupel (M4n, g,O) where O ⊂ End(TM) is a subbundle
locally spanned by an almost hyper Hermitian structure {I1, I2, I3} such that ∇gIi ∈ O. If
n = 1 we additionally assume that (M, g) is Einstein and anti-self-dual.

We have encountered both hyperkähler and quaternionic Kähler manifold in Berger’s holon-
omy theorem. Hyperkähler manifolds are exactly those with Holg ⊂ Sp(n) and quaternionic
Kähler manifolds those that satisfy Holg ⊂ Sp(n)Sp(1) := Sp(n)× Sp(1)/(−id,−id).

Remark 3.2.10. In the case n = 1 we have Sp(1)Sp(1) = SO(4) so the holonomy condi-
tion for quaternionic Kähler manifolds is empty. This motivates the now customary extra
conditions placed in dimension 4.

As shown by C. Boyer, K. Galicki and B. Mann the submersion property of S4n+1 is no
coincidence, but a general phenomenon.

Theorem 3.2.11 ([BGM94]). Let (M, g, ξi, ηi, φi) be a 3-Sasaki manifold. Then the vertical
distribution is integrable and gives rise to a foliation F with totally geodesic leaves. If
the vector fields ξi, i = 1, 2, 3, are complete, the leaf space O = M/F is a quaternionic
Kähler orbifold and the projection π : M → O gives a G-principal orbifold bundle with
either G = SU(2) or G = SO(3). Further, π is a Riemannian submersion and the scalar
curvature of the O is scalg = 16n(n+ 2).

We now want to consider connections adapted to almost 3-contact metric manifolds. Recall
that under the conditions of Theorem 3.1.7 the individual almost contact metric structures
admit characteristic connections. However, even in the specific case of 3-Sasaki manifolds,
we have connections ∇i with torsion

Tφi = ηi ∧ dηi ̸= ηj ∧ dηj = Tφj

if i ̸= j. For instance, observe that Tφi(ξj , X, Y ) = 0 for all X,Y ∈ H. Hence, the
assumption that all φi are parallel under a single connection is too rigid. Considering the
sphere ΣM of almost contact metric structures where individual structures are not preserved
by a given connection reminds of the quaternionic Kähler case compared to hyperkähler
manifolds. In analogy [AD20] investigated the less restrictive condition

∇Xφi = β(ηk(X)φj − ηj(X)φk) (3.6)

for every even permutation (ijk) of (123). They obtain the following criterion.
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Theorem 3.2.12 ([AD20]). Let (M, g, ξi, ηi, φi)i=1,2,3 be an almost 3-contact metric man-
ifold. Then there exists a metric connection ∇ with skew torsion satisfying (3.6) for some
function β ∈ C∞(M) if and only if for all i, j = 1, 2, 3 and X,Y, Z ∈ H the following are
satisfied

a) Nφi is skew-symmetric on H,

b) ξi is Killing,

c) Nφi(X,Y, Z) + dφiΦi(X,Y, Z) = Nφj (X,Y, Z) + dφjΦj(X,Y, Z),

d) Aij(X,Y ) =
∑︁

ϵijkβΦk(X,Y ) for some fixed β ∈ C∞(M),

where Aij(X,Y ) := g((Lξjφi)X,Y ) + dηj(X,φiY ) + dηj(φiX,Y ).

If this is satisfied ∇ is the unique such connection.

Definition 3.2.13. If the conditions in Theorem 3.2.12 are satisfied (M, g, ξi, ηi, φi)i=1,2,3 is
called canonical almost 3-contact metric manifold and ∇ is called the canonical connection.

3.3 3-(α, δ)-Sasaki Manifolds

The classes of almost 3-contact metric manifolds studied initially were defined by imposing
additional conditions on the individual almost contact structures. We now want to include
the possibility that the almost contact metric structures interact. This leads to the definition
of 3-(α, δ)-Sasaki manifolds. These were initially investigated in [AD20].

Definition 3.3.1. An almost 3-contact metric manifold is called 3-(α, δ)-Sasaki manifold
if

dηi = 2αΦi + 2(α− δ)ηj ∧ ηk (3.7)

for every even permutation (ijk) of (123) and constants 0 ̸= α ∈ R, δ ∈ R.

Notation. This definition is actually a slight abuse of notation. For a given 3-(α, δ)-Sasaki
manifold α and δ are fixed numbers, but the class of 3-(α, δ)-Sasaki manifolds is not fixed
to the specific value of α and δ. When α = α0, δ = δ0 are given we denote the manifold a
3-(α, δ)-Sasaki manifold with α = α0 and δ = δ0.

We note key properties for 3-(α, δ)-Sasaki manifolds.

Proposition 3.3.2 ([AD20]). Let (M, g, ξi, ηi, φi) be a 3-(α, δ)-Sasaki manifold. Then

a) it is hypernormal,

b) the vertical distribution V is integrable with totally geodesic leaves,
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c) the Reeb vector fields are Killing and for any even permutation (ijk) of (123)

Lξiφi = 0, Lξiφj = −Lξjφi = 2δφk (3.8)

[ξi, ξj ] = −[ξj , ξi] = 2δξk. (3.9)

The first part can be considered as a generalization of Kashiwada’s theorem to 3-(α, δ)-
Sasaki manifolds. This means that whenever α = δ a 3-(α, δ)-Sasaki manifold is 3-α-Sasaki
and we can perceive 3-(α, δ)-Sasaki as generalizations thereof.

Proposition 3.3.3. Let (M, g, ξi, ηi, φi)i=1,2,3 be a 3-(α, δ)-Sasaki manifold. For any ori-
ented orthonormal basis a, b, c ∈ R3 the corresponding almost contact metric structures
(M, g, ξi, ηi, φi)i=a,b,c in ΣM define again a 3-(α, δ)-Sasaki structure.

Proof. By Remark 3.2.7 (M, g, ξi, ηi, φi)i=a,b,c is an almost 3-contact metric manifold. We
need to verify the differential condition.

dηa = d(a1η1 + a2η2 + a3η3) = 2αΦa + 2(α− δ)(a1η2 ∧ η3 + a2η3 ∧ η1 + a3η1 ∧ η2)

and using a = b× c

ηb ∧ ηc = (b1η1 + b2η2 + b3η3) ∧ (c1η1 + c2η2 + c3η3)

= (b1c2 − b2c1)η1 ∧ η2 + (b3c1 − b1c3)η3 ∧ η1 + (b2c3 − b3c2)η2 ∧ η3

= a3η1 ∧ η2 + a2η3 ∧ η1 + a1η2 ∧ η3.

Since V is integrable its commutators are again in V. The distribution H is quite the
opposite. Its non-integrability is strongly related to the fundamental forms.

Lemma 3.3.4. For two horizontal vectors X,Y ∈ H we have

[X,Y ]V = −2α
3∑︂

i=1

Φi(X,Y )ξi.

Proof. Since the vertical distribution is spanned by the Reeb vector fields, we have

[X,Y ]V =

3∑︂
i=1

ηi([X,Y ])ξi = −
3∑︂

i=1

dηi(X,Y )ξi = −2α
3∑︂

i=1

Φi(X,Y )ξi.

Let us take a closer look at the commutator relation (3.9). It suggests that the case δ = 0
might be quite different. Indeed, in the case δ ̸= 0 the Reeb vector fields span a Lie algebra
isomorphic to su(2) while in the case δ = 0 their span is isomorphic to the abelian Lie
algebra R3. This motivates the first part of the following definition.

Definition 3.3.5. A 3-(α, δ)-Sasaki manifold is called

a) degenerate if δ = 0 and non-degenerate if δ ̸= 0,
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b) positive if αδ > 0 and negative if αδ < 0.

The motivation behind the second part of the definition comes from H-homothetic defor-
mations.

Proposition 3.3.6 ([AD20]). Let (M, g, ξi, ηi, φi) be a 3-(α, δ)-Sasaki manifold with α = α0,
δ = δ0. Let a, b, c ∈ R with a > 0 and a+ b = c2 > 0 and consider the deformed tensors

ξ′i =
1

c
ξi, η′i = cηi, φ′

i = φi, g′ = ag + b

3∑︂
i=1

ηi ⊗ ηi. (3.10)

Then (M, g′, ξ′i, η
′
i, φ

′
i) is again a 3-(α, δ)-Sasaki manifold with

α =
c

a
α0, δ =

1

c
δ0.

Definition 3.3.7. We will call (3.10) a H-homothetic deformation and the 3-(α, δ)-Sasaki
manifold (M, g′, ξ′i, η

′
i, φ

′
i) H-homothetic to (M, g, ξi, ηi, φi).

Remark 3.3.8. Let us remark two special cases of H-homothetic deformations.

a) Let b = 0 and c =
√
a > 0. With respect to these parameters H-homothetic deformation

is merely a global scaling of the metric by a = c2. To compensate the ξi are scaled by 1
c .

In terms of α and δ we have the new values α′ = α/c and δ′ = δ/c.

b) If b = 0, a = 1 and c = −1 H-homothetic deformation changes the sign of the Reeb
vector fields ξi. If we consider the sphere of almost contact metric structures spanned
by (ξi, ηi, φi)i=1,2,3 then this deformation really only changes the orientation induced by
the 3-(α, δ)-Sasaki structure. However, we have α′ = −α, δ′ = −δ. This reasons to often
just consider α > 0.

One observes that degenerate 3-(α, δ)-Sasaki manifolds are closed under H-homothetic de-
formation and so is the sign of αδ for non-degenerate 3-(α, δ)-Sasaki manifolds motivating
the distinction between positive and negative ones. With careful choice of a, b, c one finds
that this is the only restriction.

Proposition 3.3.9 ([AD20]). A 3-(α, δ)-Sasaki manifold is

a) positive, if and only if it is H-homothetic to a 3-Sasaki manifold.

b) negative, if and only if it is H-homothetic to a 3-(α, δ)-Sasaki manifold with α = 1,
δ = −1.

c) degenerate, if and only if it is H-homothetic to a 3-(α, δ)-Sasaki manifold with α = 1,
δ = 0.
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Positive 3-(α, δ)-Sasaki manifolds are therefore deformed 3-Sasaki manifolds. For examples
of negative ones we refer to the structured investigation of homogeneous non-degenerate
3-(α, δ)-Sasaki manifolds in Chapter 5. For degenerate 3-(α, δ)-Sasaki manifolds the easiest
example is the quaternionic Heisenberg group. This has been described as naturally reduc-
tive homogeneous almost 3-contact metric manifold in [AFS15] and framed as degenerate
3-(α, δ)-Sasaki manifold in [AD20].

Example 3.3.10. We consider the 4n+ 3-dimensional quaternionic Heisenberg group

Hn,H =

⎧⎨⎩
⎛⎝1 xt |x|2

2 + z
0 idn x
0 0 1

⎞⎠ ∈ GL(n+ 2,H), x ∈ Hn, z ∈ ImH

⎫⎬⎭ .

One observes that there is an diffeomorphism Hn,H ∼= Hn × ImH, in particular Hn,H is the
simply connected Lie group with Lie algebra

hn,H =

⎧⎨⎩
⎛⎝0 X

t
Z

0 0 X
0 0 0

⎞⎠ ∈ gl(n+ 2,H), X ∈ Hn, Z ∈ ImH

⎫⎬⎭ .

Set ξ1, ξ2, ξ3 ∈ hn,H the components of Z and e4r, . . . , e4r+3 ∈ hn,H the components of Xr,
r = 1, . . . , n. Then the only non-trivial commutators are

[e4r, e4r+1] = 2ξ1, [e4r+2, e4r+3] = 2ξ1, [e4r, e4r+2] = 2ξ2,

[e4r+3, e4r+1] = 2ξ2, [e4r, e4r+3] = 2ξ3, [e4r+1, e4r+2] = 2ξ3.

Compare to the usual Heisenberg algebra in Example 3.1.5. The following should be re-
garded as a 3-fold conjunction of the Sasaki structure on h2n,C.

Consider ξ1, ξ2, ξ3, e4, . . . , e4n+3 to be an orthonormal base of an inner product g on hn,H.
Set ηi the metric dual to ξi and define endomorphisms φi by

φi = ξk ∧ ξj +

n∑︂
l=1

e4l+i ∧ e4l + e4l+k ∧ e4l+j ,

for every even permutation (ijk) of (123). Extend (g, ξi, ηi, φi) left-invariantly to the entirety
of Hn,H. Then one can show that

dηi = 2(Φi + ηj ∧ ηk).

Hence, (Hn,H, g, ξi, ηi, φi) defines a homogeneous degenerate 3-(α, δ)-Sasaki manifold with
α = 1, δ = 0.

In [AFS15] the authors show that (Hn,H, g) is naturally reductive. Note that this is not
trivial as the metric defined above is not biinvariant. Instead they consider the metric
connection ∇ with skew torsion

T =

3∑︂
i=1

ηi ∧ dηi − 8η123.
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They show that ∇T = ∇R = 0 and hence that ∇ is the Ambrose-Singer connection of the
natural reductive structure on Hn,H, compare Example 2.1.5. They further show that the
holonomy is given by hol∇ = su(2) acting irreducibly on V ∼= ImH and through n copies of
H on H. A direct computation also shows

∇Xφi = 4(ηj(X)ξk − ηk(X)ξj)

implying that ∇ is a canonical connection as defined in Definition 3.2.13.

The natural reductive structure on a 3-(α, δ)-Sasaki manifold is an isolated instance, but the
canonical connection is not. In [AD20] the authors show that every 3-(α, δ)-Sasaki manifold
is canonical in the sense of Theorem 3.2.12. We compile the implications and further core
properties they have shown for the canonical connection of a 3-(α, δ)-Sasaki manifold into
the following theorem.

Theorem 3.3.11. A 3-(α, δ)-Sasaki manifold admits a unique metric connection ∇ with
skew torsion such that

∇Xφi = β(ηk(X)φj − ηj(X)φk), (3.11)

for every even permutation (ijk) of (123) and some function β ∈ C∞(M).

The function is a constant given by β = 2(δ−2α). The connection ∇ preserves the splitting
TM = V ⊕H and its torsion is given by

T = 2α

3∑︂
i=1

ηi ∧ Φi − 2(α− δ)η123. (3.12)

In particular, the torsion is parallel ∇T = 0.

For later use we note the formula for T as a (2, 1)-tensor:

T (X,Y ) = 2α

3∑︂
i=1

(︁
ηi(Y )φiX − ηi(X)φi(Y ) + Φi(X,Y )ξi

)︁
− 2(α− δ)

i,j,k

S ηij(X,Y )ξk

(3.13)

Corollary 3.3.12 ([AD20]). The canonical torsion of a 3-(α, δ)-Sasaki manifold satisfies

dT = 4α2
3∑︂

i=1

Φi ∧ Φi + 8α(δ − α)
i,j,k

S Φi ∧ ηjk. (3.14)

In accordance with previous notion the connection ∇ defined by condition (3.11) is called
the canonical connection of a 3-(α, δ)-Sasaki manifold.

Corollary 3.3.13. The fundamental 4-form Ψ :=
∑︁

Φi ∧ Φi is parallel. In particular, the
holonomy algebra of ∇ satisfies

hol(∇) ⊂ (sp(n)⊕ sp(1))⊕ so(3) ⊂ so(4n)⊕ so(3).
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Using (∇Xφi)ξi = −φi(∇Xξi) and (3.11) reveals that the constant β controls all covariant
derivatives of the structure tensors:

∇Xφi = β(ηk(X)φj − ηj(X)φk)

∇Xξi = β(ηk(X)ξj − ηj(X)ξk) (3.15)

∇Xηi = β(ηk(X)ηj − ηj(X)ηk)

This warrants a seperate name if β = 0.

Definition 3.3.14. A 3-(α, δ)-Sasaki manifold with β = 0 is called parallel 3-(α, δ)-Sasaki.

For parallel 3-(α, δ)-Sasaki manifolds the holonomy even becomes a subspace hol(∇) ⊂
sp(n). Since β = 2(δ − 2α) they necessarily live in the realm of positive 3-(α, δ)-Sasaki
spaces. The plane of 3-(α, δ)-Sasaki structures with the special cases is depicted in the
following diagram. Note that the α = 0 axis is not included. A possible extension has been
discussed in [Dil21], but we will only consider α ̸= 0.

degenerate

α

δ

3-
α-
Sa
sa
ki

p
ar
al
le
l
(δ

=
2α

)

3-Sasaki manifolds

1

1

negative 3-(α, δ)-Sas. (αδ < 0)

positive 3-(α, δ)-Sas.

The curvature of the canonical connection is particularly well behaved on the defining tensors
of a 3-(α, δ)-Sasaki manifold. We will make use of this to compute directly related curvature
identities in the following two propositions. These, in turn, allowed us to prove the existence
of the canonical submersion in [ADS21a].

Proposition 3.3.15. Let (M,φi, ξi, ηi, g) be a 3-(α, δ)-Sasaki manifold. Let ∇ be the canon-
ical connection and R the curvature tensor of ∇. Then, the following equations hold:

R(X,Y )φiZ − φiR(X,Y )Z = 2αβ{Φk(X,Y )φjZ − Φj(X,Y )φkZ}
− 2αβ{(ηi ∧ ηj)(X,Y )φjZ − (ηk ∧ ηi)(X,Y )φkZ},

(3.16)

R(X,Y )ξi = 2αβ{Φk(X,Y )ξj − Φj(X,Y )ξk}
− 2αβ{(ηi ∧ ηj)(X,Y )ξj − (ηk ∧ ηi)(X,Y )ξk},

(3.17)

where X,Y, Z ∈ TM and (ijk) is an even permutation of (123).
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Proof. Applying the Ricci identity, (3.11) and (3.7), we have

R(X,Y )φiZ − φiR(X,Y )Z

= (∇X(∇Y φi))Z − (∇Y (∇Xφi))Z − (∇[X,Y ]φi)Z

= β{X(ηk(Y ))φjZ + ηk(Y )(∇Xφj)Z −X(ηj(Y ))φkZ − ηj(Y )(∇Xφk)Z}
− β{Y (ηk(X))φjZ + ηk(X)(∇Y φj)Z − Y (ηj(X))φkZ − ηj(X)(∇Y φk)Z}
− β{ηk([X,Y ])φjZ − ηj([X,Y ])φkZ}

= β{dηk(X,Y )φjZ − dηj(X,Y )φkZ}
+ β2{ηk(Y )(ηi(X)φkZ − ηk(X)φiZ)− ηj(Y )(ηj(X)φiZ − ηi(X)φjZ)}
− β2{ηk(X)(ηi(Y )φkZ − ηk(Y )φiZ)− ηj(X)(ηj(Y )φiZ − ηi(Y )φjZ)}

= 2αβ{Φk(X,Y )φjZ − Φj(X,Y )φkZ}
+ {2β(α− δ) + β2}{(ηi ∧ ηj)(X,Y )φjZ − (ηk ∧ ηi)(X,Y )φkZ},

which gives (3.16), since β = 2(δ − 2α).

Proposition 3.3.16. The curvature tensor R of the canonical connection of a 3-(α, δ)-
Sasaki manifold satisfies for any X,Y, Z ∈ H and i, j, k, l = 1, 2, 3 the identities

R(X, ξi, Y, ξj) = R(X,Y, Z, ξi) = R(ξi, ξj , ξk, X) = 0, (3.18)

R(ξi, ξj , ξk, ξl) = −4αβ(δikδjl − δilδjk), (3.19)

R(ξi, ξj , X, Y ) = ±2αβΦk(X,Y ), (3.20)

R(X,Y, Z, φiZ) +R(X,Y, φjZ,φkZ) = ∓2αβΦi(X,Y )∥Z∥2, (3.21)

where ± refers to an even, respectively odd, permutation (ijk) of (123).

Proof. Considering the symmetries of R we immediately obtain the first three expressions
from equation (3.17). Using (3.16) for φj we obtain

R(X,Y, φjZ,φkZ) = g(φjR(X,Y )Z,φkZ)

+ 2αβ(Φi(X,Y )g(φkZ,φkZ)− Φk(X,Y )g(φiZ,φkZ)

= −R(X,Y, Z, φiZ) + 2αβΦi(X,Y )∥Z∥2.
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4 The Canonical Submersion

We come to the first core chapter of the thesis. It combines the preliminary chapters
applying results on connections with skew torsion to 3-(α, δ)-Sasaki manifolds. We will
obtain the structure Theorem 4.2.5 establishing a connection to quaternionic Kähler spaces.
This theorem will in later chapters give us the means to investigate curvature properties of
3-(α, δ)-Sasaki manifolds.

4.1 The Model Case of α-Sasaki manifolds

We first want to obtain a canonical submersion in the case that (M, g, ξ, η, φ) is a Sasaki
manifold. This will serve as a model for the more involved 3-(α, δ)-Sasaki case later. For now
assume (M, g, ξ, η, φ) is an almost contact metric manifold satisfying the conditions in The-
orem 3.1.7, hence admitting a characteristic connection ∇. Recall that for the characteristic
connection

∇ξ = 0, ∇η = 0.

This implies that V = ⟨ξ⟩ and H = ker η are invariant under hol∇. Furthermore, the rep-
resentation of hol∇ on V is trivial. Hence V is vertical with regard to the notion in Corol-
lary 2.2.7. We further assume that ∇ has parallel skew torsion. Since V is 1-dimensional
Λ2V = 0 and 0 = prH⊗Λ2VT . Thus, we can apply Corollary 2.2.7 for the decomposition
TM = V ⊕H. We obtain

Proposition 4.1.1. Let (M, g, ξ, η, φ) be an almost contact metric manifold with charac-
teristic connection ∇ such that ∇T = 0. Then

a) there exists a locally defined Riemannian submersion π : M → N with fibers tangent to
ξ,

b) N admits a Hermitian structure J = π∗ ◦φ ◦ s∗ for an arbitrary local section s : N →M
of π and

c) N admits a connection ∇σ with skew torsion σ such that π∗σ = TH = dφΦ + (N − η ∧
(ξ N)) and for all X,Y ∈ TN

∇σ
XY = π∗(∇XY ).
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4 The Canonical Submersion

Proof. The only assertion still to prove is that J gives an almost complex structure compati-
ble with gN . The compatibility follows immediately as π∗ : H → TN and prH◦s∗ : TN → H
are isometric. We check that J2 = − id. Since s is a section of π we have s∗ ◦ π∗ = id on
the image of s and thus

J2 = π∗ ◦ φ ◦ s∗ ◦ π∗ ◦ φ ◦ s∗ = π∗ ◦ φ2 ◦ s∗ = π∗ ◦ (− id+η ⊗ ξ) ◦ s∗ = − id .

We now reprove the result from Theorem 3.1.11 that every Sasaki manifold with compact
Reeb orbits fibers over a Kähler orbifold.

Theorem 4.1.2. Let (M, g, ξ, η, φ) be a Sasaki manifold. Then there exists a locally defined
Riemannian submersion π : M → N such that N admits a Kähler structure given by J =
π∗ ◦ φ ◦ s∗ where s : N →M is a local section of the submersion π.

Proof. We recall from Corollary 3.1.9 that a Sasaki structure admits a characteristic con-
nection with parallel torsion and we may use Proposition 4.1.1. Hence we obtain a locally
defined π : M → N with (N, gN , J) a Hermitian manifold. Further TH = 0 so

∇gN
X Y = π∗(∇XY ).

It remains to see that J is parallel. We first compute the covariant derivative of a basic
vector field Y with respect to ξ. We have

∇ξY = ∇Y ξ + LξY + T (ξ, Y ) = η ∧ dη(ξ, Y, ·) = −2φY.

Observe that the horizontal lift of a vector field is necessarily basic and π∗(φ(s∗Y ))H =

(φ(s∗Y ))H when the right side is defined, that is on the image s(N). Set X̂ := X− s∗X the
vertical part of −s∗X. Note that both φ and ∇ preserve the splitting TM = H⊕ V. Then

(∇gN
X J)Y = ∇gN

X (JY )− J(∇gN
X Y ) = π∗(∇XJY )− π∗(φ(s∗(π∗(∇XY ))))

= π∗(∇X(π∗(φ(s∗Y ))))− π∗(φ(∇XY ))

= π∗(∇X̂(π∗(φ(s∗Y )))) + π∗(∇s∗X(φ(s∗Y )))− π∗(φ(∇X̂Y ))− π∗(φ(∇s∗XY ))

= −2η(X̂)π∗(φ(π∗(φ(s∗Y )))− φ2Y ) + π∗(∇s∗X(φ(s∗Y ))− φ(∇s∗X(s∗Y )))

= −2η(X̂)π∗(φ
2(s∗Y )− φ2(s∗Y )) + π∗((∇s∗Xφ)s∗Y ) = 0.

Corollary 4.1.3. If the Reeb orbits of M are compact, M is a principal S1 orbifold-bundle
over a Kähler orbifold.

The statement essentially comes down to a theorem by Wadsley.

Theorem 4.1.4 ([Wad75]). Let R act on M such that each orbit is a circle. Then there
exists an action of S1 on M with the same orbits as the R-action if and only if there is a
Riemannian metric such that the orbits are totally geodesic submanifolds.
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4 The Canonical Submersion

Proof of Corollary 4.1.3. Since the Reeb vector fields are geodesic and nowhere vanishing,
by Wadsley’s theorem they are the orbits of a locally free circle action. In this case the
leaf space has the structure of an orbifold, see [MM03, Corollary 2.16]. Locally the fibers of
the canonical submersion agree with the Reeb orbits. Thus, the leaf space agrees with the
locally defined base U of the canonical submersion up to a quotient by a finite group. In
fact, these local patches U are orbifold charts for N .

4.2 The Canonical Submersion onto qK spaces

We now discuss the situation for 3-(α, δ)-Sasaki manifolds. By (3.11) the holonomy represen-
tation of the canonical connection ∇ of a 3-(α, δ)-Sasaki manifold splits into the horizontal
and vertical subspaces H and V. In the non-parallel case V is irreducible, in the parallel
case it decomposes into 3 trivial 1-dimensional representations. In either case the curvature
properties stated in Proposition 3.3.16 allow us to prove:

Lemma 4.2.1. The vertical distribution V of a 3-(α, δ)-Sasaki manifold is vertical with
respect to Definition 2.2.6.

Proof. By the Ambrose-Singer Theorem 2.1.11 the holonomy algebra hol of the holonomy
group Hol(p) at a point p is given by

hol = {P−1
γ ◦ R(PγX,PγY ) ◦ Pγ | γ some path from p to q, X,Y ∈ TpM} ⊂ so(TpM)

where Pγ denotes parallel transport along γ and R(X,Y ) ∈ Λ2M ∼= so(TqM) the curvature
operator. The horizontal and vertical distribution are invariant under parallel transport with
respect to the canonical connection. Thus, we may assume γ to be trivial when investigating
the holonomy action on these distributions. By (3.18) we know that the holonomy is only
non-trivial if X,Y ∈ V or X,Y ∈ H. In the first case (3.19) and (3.20) show that every
element of hol acting non-trivially on V must also act non-trivially on H. The action of an
element R(X,Y ), X,Y ∈ H, on V is again given by (3.20). Any such element of hol acts
non-trivially on V if β ̸= 0 and Φi(X,Y ) ̸= 0 for some i = 1, 2, 3. In this case R(X,Y ) is
also a non-trivial operator on H by (3.21).

Proposition 4.2.2. The decomposition TM = H⊕V of a 3-(α, δ)-Sasaki manifold M satis-
fies the conditions in Corollary 2.2.7. In particular, there exists a locally defined Riemannian
submersion π : M → N such that

∇gN
X Y = π∗(∇XY ). (4.1)

Definition 4.2.3. We will call π : M → N the canonical submersion of a 3-(α, δ)-Sasaki
manifold.
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4 The Canonical Submersion

Proof of Proposition 4.2.2. By (3.11) and Lemma 4.2.1 the decomposition TM = V ⊕H is
of type (2.7) with respect to the canonical connection ∇. By (3.12) the projection of the
torsion onto H⊗Λ2V vanishes, satisfying (2.8). Therefore the conditions of Corollary 2.2.7
are satisfied. Moreover, (3.12) shows that the projection of T onto Λ3H vanishes so the
connection ∇σ in (2.9) for the canonical submersion is the Levi-Civita connection ∇gN on
N .

We observe that the canonical submersion is an almost contact metric 3-submersion in the
sense of [Wat84]. Though we never make explicit use of this property. We give a preliminary
lemma needed to prove that the base of the canonical submersion admits a qK structure.

Lemma 4.2.4. For any vertical vector field X ∈ V and for any basic vector field Y ∈ H we
have

(∇XY )H = −2α
3∑︂

i=1

ηi(X)φiY.

Proof. We first use the identity g(∇g
XY,Z) = −1

2g([Y, Z], X) for any vector fields X ∈
V, Y, Z ∈ H, with Y and Z projectable, of a Riemannian submersion [Pet06, Proposition
13]. Note that the horizontal and vertical distributions of the Riemannian submersion agree
with the same notion in the 3-(α, δ)-Sasaki setting. Further, we make use of Lemma 3.3.4
to obtain

g(∇g
ξi
Y, Z) = −1

2
g([Y,Z], ξi) =

1

2
dη(Y,Z) = αΦi(Y,Z).

Therefore

g(∇XY,Z) = g(∇g
XY,Z) +

1

2
T (X,Y, Z) =

3∑︂
i=1

ηi(X)(αΦi(Y,Z) + αΦi(Y, Z))

= −2α
3∑︂

i=1

ηi(X)g(φiY, Z).

Theorem 4.2.5. The base N of the canonical submersion π : M → N of any 3-(α, δ)-Sasaki
manifold M carries a quaternionic Kähler structure locally defined by

φǐ = π∗ ◦ φi ◦ s∗, i = 1, 2, 3,

where s : U →M is any local section of π. The covariant derivatives of the almost complex
structures φ̌i are given by

∇gN
X φ̌i = 2δ(η̌k(X)φ̌j − η̌j(X)φ̌k),

where η̌i(X) = ηi(s∗X) for i = 1, 2, 3.
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4 The Canonical Submersion

Proof. Let s be a local section of the canonical submersion π : M → N , hence π∗ ◦ s∗ = id
and Im(s∗ ◦ π∗ − id) ⊂ V on the image s(N) ⊂M . Define

φ̌i = π∗ ◦ φi ◦ s∗

for i = 1, 2, 3. The horizontal and vertical distributions, H and V, are invariant under φi.
Thus, π∗ ◦ φi = φǐ ◦ π∗ on s(N). This yields

φ̌iφ̌j = φ̌i ◦ (π∗ ◦ φj ◦ s∗) = π∗ ◦ (φiφj) ◦ s∗.

Now use that (φi|H)2 = −id|H and (φi|H)(φj |H) = ±φk|H with sign ± depending on whether
(ijk) is an even or odd permutation of (123). This shows φ̌2

i = −id and φ̌iφ̌j = ±φ̌k.

Finally, by means of (4.1) and (3.11), we show that the quaternionic structure is parallel.
First

(∇gN
X φ̌i)Y = (∇gN

X (φ̌iY ))− (φ̌i(∇
gN
X Y )) = π∗∇X(φ̌iY )− φ̌i

(︁
π∗(∇XY )

)︁
= π∗∇X(π∗ (φi(s∗Y )))− π∗

(︁
φi

(︁
s∗
(︁
π∗
(︁
∇XY

)︁)︁)︁)︁
.

By the properties of any Riemannian submersion we have that (π∗ (φi(s∗Y ))) = (φi(s∗Y ))H
wherever the right side is defined, that is on the image s(N) ⊂ M . Thus, we take the
covariant derivatives in the direction of s∗X resulting in a vertical correction term X̂ =
X − s∗X ∈ V. Recall that ∇ and φi preserve the horizontal and the vertical distribution.
Using Lemma 4.2.4, we obtain

∇X(π∗ (φi(s∗Y ))) = ∇s∗X(φi(s∗Y ))H +∇X̂((π∗ (φi(s∗Y ))))

= (∇s∗X (φi(s∗Y )))H − 2α
3∑︂

l=1

ηl(X̂)φl (φi(s∗Y ))H .

For the second summand, the horizontal projection is given by(︁
φi

(︁
s∗
(︁
π∗
(︁
∇XY

)︁)︁)︁)︁
H = φi

(︁
s∗
(︁
π∗
(︁
∇XY

)︁)︁)︁
H

= φi (∇s∗X(s∗Y ))H + φi∇X̂(Y )

= (φi (∇s∗X(s∗Y )))H − 2α

3∑︂
l=1

ηl(X̂)φi(φl(s∗Y ))H.

Recombining both identities we obtain

(∇gN
X φ̌i)Y = π∗

(︁
∇s∗X (φi(s∗Y ))− φi (∇s∗X(s∗Y ))

+ 2α
3∑︂

l=1

ηl(X̂)(φiφl(s∗Y )H − φlφi(s∗Y )H)
)︁

= π∗
(︁
(∇s∗Xφi)s∗Y − 2α

3∑︂
l=1

ηl(s∗X)(φiφl(s∗Y )H − φlφi(s∗Y )H)
)︁

= (β + 4α)
(︁
(ηk(s∗X) ◦ s)π∗(φj(s∗Y ))− (ηj(s∗X) ◦ s)π∗(φk(s∗Y ))

)︁
= 2δ(η̌k(X)φ̌j − η̌j(X)φ̌k)Y.
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4 The Canonical Submersion

Here we used the defining identity (3.11) of the canonical connection for any even permuta-
tion (ijk) of (123). Therefore, the quaternionic structure is parallel and N is quaternionic
Kähler.

Remark 4.2.6. A priori the locally defined quaternionic structure may depend on the
chosen section s. Indeed, the individual almost complex structures φ̌i vary with s. However,
following the work of P. Piccinni and I. Vaisman [PV01], one can see that the quaternionic
structure is preserved under the Bott connection D̊ : V×H → H defined by D̊V X = [V,X]H,
since for any even permutation (ijk) of (123)

(D̊ξiφj)X = [ξi, φjX]H − φj [ξi, X]H = ((Lξiφj)X)H = 2δφkX

where we have used identity (3.8) in the last step. This implies that the quaternionic
structure is projectable and, thus, independent of choices.

Moreover, we can identify a unique quaternionic Kähler structure to each leaf not only to a
point in the image of some patch of π.

We observe one special case from both Theorem 4.2.5 and the remark.

Corollary 4.2.7. A 3-(α, δ)-Sasaki manifold fibers locally over a hyperkähler manifold if it
is degenerate. In this case the almost complex structures are independent of the choice of
local section s.

Remark 4.2.8. Apart from the degenerate case the induced quaternionic Kähler structure
is hyperkähler if and only if s∗X ∈ H for all X ∈ TN . Such a section exists if and only if
the horizontal distribution is tangent to s(N) and, thus, integrable. By Lemma 3.3.4 this
can not happen for any 3-(α, δ)-Sasaki manifold.

We should also mention the more subtle case of n = 1. Recall that one requires 4-dimensional
quaternionic Kähler spaces to be Einstein and anti-self-dual. We show that this is true for
the base of the canonical submersion of a 7-dimensional 3-(α, δ)-Sasaki manifold. This
permits ot omit the restriction in Theorem 4.2.5.

Proposition 4.2.9. If n = 1, the base (N, gN ) of the canonical submersion is quaternionic
Kähler.

Proof. We need to prove that (N, gN ) is Einstein and self-dual. For the latter we refer to
Remark 6.3.2 when we investigate the curvature more closely. For now let us check that
(N, gN ) is Einstein. In [AD20, Proposition 2.3.3] it is shown that the Ricci curvature of M
is

Ricg = 2α(2δ(n+ 2)− 3α)g + 2(α− δ)((2n+ 3)α− δ)g|V . (4.2)

For submersions with O’Neill tensor T = 0 and for some orthonormal base e1, . . . , e4n of H
the Ricci tensor is

Ricg(X,Y ) = π∗RicgN (X,Y )− 2
4n∑︂
j=1

g(AXej ,AY ej), (4.3)
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4 The Canonical Submersion

see [Bes08, Proposition 9.36]. This implies that the space (N, gN ) is Einstein if and only if∑︁4n
j=1 g(AXej ,AY ej) is a multiple of gN . By Lemma 2.2.10 and (3.12) for X,Y ∈ H

AXY = −1

2
T (X,Y )V = −α

3∑︂
i=1

Φi(X,Y )ξi. (4.4)

Rewriting this formulas we obtain

4n∑︂
j=1

g(AXej ,AY ej) = α2
4n∑︂
j=1

3∑︂
i=1

Φi(X, ej)Φi(Y, ej) = 3α2g(X,Y )

where we have used that (φiej)j=1,...,4n is again an orthonormal basis of H.

The formulas used above also give us an immediate interpretation of positive and negative
3-(α, δ)-Sasaki with respect to the base.

Theorem 4.2.10. Let π : M → N be the canonical submersion of a 3-(α, δ)-Sasaki mani-
fold. Then

scalgN = 16n(n+ 2)αδ.

Proof. Let e1, . . . , e4n be a local adapted frame for H. Then by (4.4)

4n∑︂
i,j=1

g(Aeiej , Aeiej) = α2
4n∑︂

i,j=1

3∑︂
k=1

Φ2
k(ei, ej) = α2 · 3 · 4n = 12nα2.

Combining the identities (4.2) and (4.3) we have

scalgN =
4n∑︂
i=1

RicgN (π∗ei, π∗ei) =
4n∑︂
i=1

Ricg(ei, ei) + 2
4n∑︂

i,j=1

g(Aeiej , Aeiej)

= 4n · 2α(2δ(n+ 2)− 3α) + 24nα2 = 16n(n+ 2)αδ.

Remark 4.2.11. In particular, we recover the scalar curvature result scalgN = 16n(n+ 2)
known in the 3-Sasaki case, see Theorem 3.2.11.

4.3 The Global Picture

A priori the canonical submersion of a 3-(α, δ)-Sasaki manifold is a purely local statement.
Yet, on a sufficiently small open set V it is given by the projection to the space of plaques
tangent to V. This suggests to investigate the space of leaves tangent to V globally.

Definition 4.3.1. The foliation F with leaves tangent to V will be called the canonical
foliation of a 3-(α, δ)-Sasaki manifold.
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In general the space of leaves M/F does not have a smooth structure. However, in the
non-degenerate case we always have a submersion over a quaternion Kähler orbifold.

Theorem 4.3.2. The local patches of the canonical submersion π̃ : M ⊃ U → S of a non-
degenerate, complete 3-(α, δ)-Sasaki manifold globally form a submersion π : M → N where
N is a quaternion Kähler orbifold. The local transverse sections give rise to orbifold charts.

Proof. We observe that by (3.15)

∇g
ξi
ξi = ∇ξiξi = 0.

Thus, the flow lines of the ξi are geodesics and by completeness of M they extend for
all time. In the non-degenerate case the Reeb vector fields generate a su(2)-subalgebra of
X(M). Since their flow is complete they generate an action by the compact group SU(2) on
M .

As the ξi are everywhere linearly independent the action of SU(2) is locally free and therefore
induces a foliation F . The quotient N = M/F of such a foliation induced by a compact
group is necessarily an orbifold [MM03, Corollary 2.16.]. It remains to check that the
projection onto the quotient space agrees with the canonical submersion up to the quotient
by a finite group. To this extent we note that the locally defined canonical submersion
projects onto the leaves of the restricted foliation F|V and the map to N is then just the
quotient by the finite leaf holonomy group.

For degenerate 3-(α, δ)-Sasaki manifolds the canonical submersion does not behave as nice
globally. This boils down to the fact that the Reeb vector fields generate an abelian Lie
algebra, so we can not expect the leaves to be compact. Therefore the leaf holonomy group
might be infinite and hence the quotient is not an orbifold anymore. That being said let us
consider the model case of a degenerate 3-(α, δ)-Sasaki manifold with compact fibers. That
is a T 3-fiber bundle over a suitable hyperkähler manifold.

Let (N, g, I1, I2, I3) be a hyperkähler manifold. Suppose that the fundamental two-forms
are integer classes [ωi] ∈ H2(N,Z). Then from Corollary 3.1.13 we obtain a Boothby-Wang

bundle S1 → Pi
πi−−→ N for each Kähler structure. In particular, these bundles have Chern

class [ωi] and the total spaces Pi are equipped with Sasaki structures (gi, φ̃i, ηi, ξi), such
that ξi generates the fiber.

Now consider the product bundle

T 3 −→ P1 × P2 × P3
Π=(π1,π2,π3)−−−−−−−−−→ N3.

Set M = Π−1(∆N) the restriction of P1×P2×P3 to the diagonal ∆(N) = {(x, x, x) ∈ N3}
and consider M as a fiber bundle M

π−−→ N , where π is the composition

P1 × P2 × P3 ⊃M
Π−−→ ∆(N)

∼=−−→ N, (p1, p2, p3) ↦→ (x, x, x) ↦→ x.
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If we denote the fiber of Pi over x ∈ N by (Pi)x := π−1
i ({x}) ∼= S1, then the bundle M

π−→ N
can be seen as the fiber bundle with fiber (P1)x× (P2)x× (P3)x over any given point x ∈ N .
Evidently for p = (p1, p2, p3) ∈M we have

TpM ∼= TxN ⊕ ⟨ξ1, ξ2, ξ3⟩

as ξi generates the fiber of Pi. The construction as a product bundle ensures that the
Reeb vector fields ξi are independent from one another, [ξi, ξj ] = 0, as they ought to be for
degenerate 3-(α, δ)-Sasaki manifolds. Compare (3.9).

Extend ηi trivially, i.e. ker ηi = TN ⊕ ⟨ξj , ξk⟩, with j, k ̸= i, and ηi(ξi) = 1. Set the metric
g := π∗gN +η21+η22+η23, then π : (M, g)→ (N, gN ) becomes a Riemannian submersion and,
in fact, the canonical submersion.

Theorem 4.3.3. Let (N, gN , I1, I2, I3) be a hyperkähler manifold with integer fundamental
forms. Construct (M, g, ηi, ξi) as above and set φi = φ̃i + ηj ⊗ ξk − ηk ⊗ ξj for any cyclic
permutation (ijk) of (123).
Then (M, g, ξi, ηi, φi) defines a degenerate 3-(α, δ)-Sasaki manifold with α = 1, δ = 0.

Remark 4.3.4. In [For00a] the author obtains a so-called complex contact manifold by con-
structing a T 2-bundle over N in similar fashion. His construction imposes a less restrictive
assumption than hyperkähler on N . However, in this special case the complex T 2-bundle
he considers can be obtained from our construction as the quotient by one of the Reeb
vector fields. This should be considered as the analogue of the twistor space over a positive
quaternion Kähler manifold and the 3-Sasaskian space above, compare [For00b].

Proof. Observe that (g, ηi, ξi, φi) extends the almost contact metric structure on TpiPi
∼=

TxN ⊕ Rξi to TpM ∼= TxN ⊕ ⟨ξi, ξj , ξk⟩. The 3 a.c.m. structures are compatible on the
vertical subspace by definition of φi. On the horizontal distribution φi projects to Ii, thus
φiφj |H = φk|H.

The last identity to check is the differential condition dηi = 2Φi + 2ηj ∧ ηk. Since ηj ∧ ηk =
−Φi|V we need to show

dηi = 2Φi|H. (4.5)

As (ξi, ηi, φ̃i) defines a Sasaki structure on Pi we have for vertical vectors X,Y ∈ TpiPi that
gi(X, φ̃iY ) = dη̃i(X,Y ). This remains true for X,Y ∈ H ⊂ TpM as φi is just φ̃i on H. If
either vector X,Y ∈ V, the left hand side should vanish as does the right hand side of (4.5).
We have

ξj dηi = Lξjηi − d(ξj ηi) = 0

as ηi is defined on the factor Pi of the product P . In particular, it is invariant under ξj for
j ̸= i. Finally, ξi dηi = 0 from the Sasaki condition on Pi.
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As shown in Corollary 4.2.7 locally any degenerate 3-(α, δ)-Sasaki manifold submerges onto
a hyperkähler space. The above construction describes the converse starting from a hy-
perkähler manifold. By construction the Reeb vector fields span the fiber of the bundle
T 3 →M

π−→ N . Therefore the canonical submersion agrees globally with π mapping onto a
hyperkähler manifold, namely the initial manifold N . Observe that starting with a compact
hyperkähler manifold in this way one again obtains a compact degenerate 3-(α, δ)-Sasaki
manifold.

On the non-compact side consider the quaternionic Heisenberg group Hn,H ∼= Hn × ImH
from example Example 3.3.10. Here the canonical submersion is just the projection to Hn.
Accordingly the fibers are the non-compact R3 = ImH. One can take the quotient by Z3 in
the space R3 = ImH generated by the Reeb vector fields. This quotient can than be seen as
the 3-Bothby-Wang bundle from Theorem 4.3.3 over the quaternion vector space Hn with
its canonical hyperkähler structure.

In preparation for the next chapter we consider automorphisms of 3-(α, δ)-Sasaki manifold.

Definition 4.3.5. A 3-(α, δ)-Sasaki automorphism ϕ is an isometry ϕ : (M, g) → (M, g)
that preserves the tensor fields ξi, ηi, φi. A manifold is called a homogeneous 3-(α, δ)-Sasaki
manifold if the automorphism group acts transitively.

Theorem 4.3.6. If (M, g, ξi, ηi, φi)i=1,2,3 is a non-degenerate homogeneous 3-(α, δ)-Sasaki
manifold. Then the space of leaves N is a homogeneous quaternionic Kähler manifold.

Proof. Any automorphism ϕ of the 3-(α, δ)-Sasaki structure preserves the vertical space and
thus maps leaves to leaves. Now let ϕ map L1 to L2. It then also maps a local transverse
section around x ∈ L1 to a local transverse section of ϕ(x) ∈ L2. For every closed loop in
π1(L1, x) we get a closed loop in π1(L2, ϕ(x)). This induces an homomorphism of the leaf
holonomy groups and an isomorphism considering the inverse ϕ−1. Since the automorphism
group acts transitive all leaf holonomy groups are isomorphic and thus necessarily trivial.
Therefore the quotient is a manifold N = M/F with an induced transitive action, hence
homogeneous.

We check that the quaternionic structure is preserved under the induced action. Let ϕ : M →
M be an automorphism and ϕ̌ : N → N its induced map. By Remark 4.2.6 the quaternionic
structure is independent of the lift into the fiber. So for leaves L1, L2 = ϕ̌L1 ∈ N define the
quaternionic structure by the lift to points p1 ∈ L1, p2 = ϕ(p1) ∈ L2. Then ϕ preserves the
almost complex structures φi and thus ϕ̌ the quaternionic structures.
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5 Homogeneous 3-(α, δ)-Sasaki manifolds

Theorem 4.3.6 and Theorem 4.2.10 show that the base N of a non-degenerate homogeneous
3-(α, δ)-Sasaki manifold is a homogeneous quaternionic Kähler space of non-vanishing scalar
curvature. There are two families of such spaces known: Compact qK symmetric spaces,
named Wolf spaces, their non-compact duals and Alekseevsky spaces. The latter are ho-
mogeneous qK spaces admitting a solvable transitive group action. D. Alekseevsky conjec-
tured that all homogeneous qK spaces with negative scalar curvature are Alekseevsky spaces
[Ale75]. Only recently a proof of this conjecture has been given by C. Böhm and R. Lafuente
in [BL21]. Note that therefore the non-compact qK symmetric spaces are included in the
class of Alekseevsky. We will give independent constructions of homogeneous 3-(α, δ)-Sasaki
manifolds over symmetric base spaces and such fibering over Alekseevsky spaces.

5.1 Homogeneous 3-(α, δ)-Sasaki manifolds over symmetric
quaternionic Kähler spaces

Let G/G0 be a real symmetric space, i.e. g = g0 ⊕ g1 with [gi, gj ] ⊂ gi+j on the level of
Lie algebras. Suppose there exists a connected subgroup H ⊂ G0 such that g0 splits into a
direct sum of Lie algebras g0 = h ⊕ sp(1). Finally, assume that gC1 = C2 ⊗C W , for some
hC-module W of dimCW = 2n, and the adjoint action of gC0 is given by

hC ⊕ sp(1)C ∋ (A,B) · ((z1, z2)⊗ w) = B(z1, z2)⊗ w + (z1, z2)⊗Aw,

where sp(1)C = su(2)C = sl(2,C) acts by multiplication on C2. We will call (G,G0, H)
generalized 3-Sasaki data.

Remark 5.1.1. a) For compact G this is called 3-Sasaki data in [DOP20, Definition 12, p.
12].

b) Consider the homogeneous space M = G/H. The assumptions above imply that g =
h⊕m with m = sp(1)⊕g1 is a reductive decomposition. We rename the spaces V = sp(1)
and H = g1 to express their role as vertical and horizontal subspaces of a 3-(α, δ)-Sasaki
manifold via T0M ∼= m. For clarity we restate the bracket relations between all these
spaces. We have g = h⊕ V ⊕H, where h and V are commuting subalgebras. Thus they
form the joint subalgebra h⊕ V = g0 ⊂ g. The full set of commutator relations is

[h, h] ⊂ h [V,V] ⊂ V [h,V] = 0

[h,H] ⊂ H [V,H] ⊂ H [H,H] ⊂ V ⊕ h.

In particular, both V and H are h-invariant.

39



5 Homogeneous 3-(α, δ)-Sasaki manifolds

c) Since G/G0 is a symmetric space there exists a dual symmetric space G∗/G0 for every
generalized 3-Sasaki data (G,G0, H). The Lie algebras can then be identified as

g∗ = h⊕ V ⊕ iH ⊂ gC. (5.1)

It is then clear that (G∗, G0, H) is generalized 3-Sasaki data as well. This yields pairs of
compact and non-compact generalized 3-Sasaki data. For clarity we will use G for the
compact one and G∗ for the non-compact one.

d) By [DOP20] any 3-Sasaki data gives rise to a homogeneous 3-Sasaki manifold. They
were completely determined in [BGM94] by the fact that they are fiber bundles over
the quaternionic Kähler base space G/G0. The non-compact G∗ are thus given as the
isometry group of the non-compact quaternionic Kähler symmetric spaces [Bes08, p.
409]. Alltogether, we obtain Table 5.1.1.

G G∗ H G0 dim

Sp(n+ 1) Sp(n, 1) Sp(n) Sp(n)Sp(1) 4n+ 3 n ≥ 0

SU(n+ 2) SU(n, 2) S(U(n)×U(1)) S(U(n)×U(2)) 4n+ 3 n ≥ 1

SO(n+ 4) SO(n, 4) SO(n)× Sp(1) SO(n)SO(4) 4n+ 3 n ≥ 3

G2 G2
2 Sp(1) SO(4) 11

F4 F−20
4 Sp(3) Sp(3)Sp(1) 31

E6 E2
6 SU(6) SU(6)Sp(1) 43

E7 E−5
7 Spin(12) Spin(12)Sp(1) 67

E8 E−24
8 E7 E7Sp(1) 115

Table 5.1.1: Complete table of generalized 3-Sasaki data

Theorem 5.1.2. Consider some generalized 3-Sasaki data (G,G0, H) and 0 ̸= α, δ ∈ R.
Additionally suppose αδ > 0 if G is compact and αδ < 0 if G is non-compact.

Let κ(X,Y ) = tr(ad(X) ◦ ad(Y )) denote the Killing form on g. Then define the inner
product g on the tangent space TpM = Tp(G/H) ∼= m by

g|V =
−κ

4δ2(n+ 2)
, g|H =

−κ
8αδ(n+ 2)

, V ⊥ H.

Let ξi = δσi ∈ V = sp(1), where the σi are the elements of sp(1) = su(2) given by

σ1 =

(︃
i 0
0 −i

)︃
, σ2 =

(︃
0 −1
1 0

)︃
, σ3 =

(︃
0 −i
−i 0

)︃
.
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5 Homogeneous 3-(α, δ)-Sasaki manifolds

Define endomorphisms φi ∈ Endh(m) for i = 1, 2, 3 by

φi|V =
1

2δ
ad ξi, φi|H =

1

δ
ad ξi.

Together with ηi = g(ξi, ·) the collection (G/H,φi, ξi, ηi, g) defines a homogeneous 3-(α, δ)-
Sasaki structure.

Before we proceed with the proof, we collect some observations.

Remark 5.1.3. a) In case αδ > 0 the given 3-(α, δ)-Sasaki structure is obtained via a H-
homothetic deformation with parameters a = 1

αδ , b =
1
δ2
− 1

αδ , c =
1
δ from the 3-Sasaki

structure given in [DOP20].

b) Consider a homogeneous 3-(α, δ)-Sasaki manifold (G/H,φi, ξi, ηi, g) with αδ > 0 such
that the isotropy group H is connected, i.e. G/H ̸= RP4n+3. Then a H-homothetic
deformation with a = αδ and c = δ induces a homogeneous 3-Sasaki manifold with
G/H ̸= RP4n+3 and thus is given by the model in [DOP20]. By definition of H-
homothetic deformations the above inverse deformation will restore the original objects.
Thus, (G/H,φi, ξi, ηi, g) is given by the construction in the theorem.

c) Usually the real representation g1 of h will be irreducible and will only become reducible
when complexified, thus we cannot describe the action of V = sp(1) on H easily. From
the complexified action we still find that the relations ad ξ2i = −δ2id and ad ξi ◦ ad ξj =
±δad ξk when (ijk) is an even, resp. odd permutation of (123) hold on H.

d) The Riemannian metric on H is a fixed multiple of the Killing form on g and thus the
projection onto the symmetric orbit space

G/H → G/G0

is a Riemannian submersion. Indeed, this is the canonical submersion obtained in The-
orem 4.2.5.

e) The real projective space RP 4n+3 = Sp(n+1)
Sp(n)×Z2

and its non compact dual Sp(n,1)
Sp(n)×Z2

also

admit 3-(α, δ)-Sasaki structures. They are obtained as the quotient of S4n+3 = Sp(n+1)
Sp(n) ,

resp. Sp(n,1)
Sp(n) by the action of Z2 inside the fiber. Since the action is discrete these spaces

cannot be discerned in the Lie algebra picture. Note that all relevant tensors are invariant
under the Z2 action and thus local results obtained for S4n+3 = Sp(n+1)

Sp(n) , resp. Sp(n,1)
Sp(n) ,

remain true on RP 4n+3 and its non compact dual.

f) Since the metric is a multiple of the Killing form and the Killing form is ad-invariant
[X, · ] will be metric if it preserves H and V. This is precisely the case if X ∈ V. For
X ∈ H, we compute with Y ∈ V, Z ∈ H

g([X,Y ], Z) =
−1

8αδ(n+ 2)
κ([X,Y ], Z) =

1

8αδ(n+ 2)
κ(Y, [X,Z]) = − δ

2α
g(Y, [X,Z]).

Thus [X, · ] ∈ so(m) if and only if δ = 2α, i.e. we are in the parallel case. This is exactly
the condition that our homogeneous space is naturally reductive. This can only occur if
αδ > 0, i.e. we are in the positive case.

41



5 Homogeneous 3-(α, δ)-Sasaki manifolds

g) Elements of the Lie algebra g are often identified with the respective fundamental vector
field induced by the left action ofG. The vector fields ξi defined on m are not fundamental
vector fields of the G-action, but left-invariant vector fields. For instance, observe that
they can never generate automorphisms, since they rotate the other two Reeb vector
fields. In fact, we can identify them as a subgroup of the centralizer of H in G acting by
right multiplication.

Proof (of Theorem 5.1.2). If G is compact, κ < 0. If G is of non-compact type, we have
κ|V < 0 while κ|H > 0 by (5.1) . Thus, in both cases the given metric g is indeed positive
definite.

Remark 5.1.3 shows tr(ad2ξi|H) = tr(−δ2id|H) = −4nδ2. On V we have

[ξi, [ξi, ξj ]] = ±2δ[ξi, ξk] = −4δ2ξj ,

whenever (ijk) is an even, respectively odd, permutation of (123). Thus, tr(ad2ξi|V) = −8δ2
and therefore

g(ξi, ξi) =
−tr(ad2ξi)
4δ2(n+ 2)

=
−tr(ad2ξi|H)− tr(ad2ξi|V)

4δ2(n+ 2)
=

8δ2 + 4δ2n

4δ2(n+ 2)
= 1.

On the contrary we have tr(ad ξi ◦ ad ξj |H) = tr(±ad ξk|H) = 0 as its trace on the com-
plexification vanishes. And similar [ξi, [ξj , ξk]] = 0 if (ijk) is any permutation of (123) or
[ξi, [ξj , ξk]] = 4δ2ξj if i = k ̸= j. In any case tr(ad ξi ◦ ad ξj) = 0 and, hence, g(ξi, ξj) = 0 if
i ̸= j.

Next we check that the endomorphisms φi are metric almost complex structures on the
complement to ξi. Note that they vanish on their corresponding ξi. Furthermore,

φ2
i (ξj) =

1

4δ2
[ξi, [ξi, ξj ]] = −ξj ,

φ2
i |H =

1

δ2
ad2ξi|H =

−δ2

δ2
id = −id.

SinceH and V are invariant under φi we check orthogonality on each component individually.
On H use the associativity of κ to find

κ(φiX,φiY ) = −κ(X,
1

δ2
ad2ξiY ) = κ(X,Y )

and thus g(φiX,φiY ) = −κ(φiX,φiY )
8αδ(n+2) = −κ(X,Y )

8αδ2(n+2)
= g(X,Y ). On V we have

g(φiξj , φiξj′) = g(
1

2δ
ad ξi(ξj),

1

2δ
ad ξi(ξj′)) = g(±ξk,±ξk′) = g(ξj , ξj′)

if (ijk), (ij′k′) are according permutations of (123) and the left side vanishes whenever j or
j′ equals i.

Next we check the compatibility conditions of the 3 almost contact metric structures. Sup-
pose (ijk) is an even permutation of (123) then φiξj = ξk and together with the invariance of
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5 Homogeneous 3-(α, δ)-Sasaki manifolds

H under φi we conclude ηi ◦φj = ηk. Further, φiφj |H = 1
δ2
ad ξi ◦ad ξj |H = 1

δad ξk|H = φk|H
and on V we have

φiφjξi =
1

4δ2
[ξi, [ξj , ξi]] = ξj = φkξi = φkξi + ηj(ξi)ξi,

φiφjξj = 0 = ξi − ξi = φkξj − ηj(ξj)ξi,

φiφjξk =
1

4δ2
[ξi, [ξj , ξk]] =

1

2δ
[ξi, ξi] = 0 = φkξk + ηj(ξk)ξi.

We have thus shown that the given structure is a homogeneous almost 3-contact metric
structure. It remains to show the 3-(α, δ)-Sasaki condition dηi = 2αΦi + 2(α − δ)ηj ∧ ηk,
for any even permutation (ijk) of (123). We show this case by case. Note that the last
summand vanishes whenever either entry is in H. Let X ∈ H. Then, since ad ξjX ∈ H,

dηi(ξj , X) = ξj(ηi(X))−X(ηi(ξj))− ηi(ad ξjX) = −ηi(ad ξjX) = 0,

2αΦi(ξj , X) = 2αg(ξj , φiX) =
2α

δ
g(ξj , ad ξiX) = 0.

For X,Y ∈ H we use associativity of κ

dηi(X,Y ) = X(ηi(Y ))− Y (ηi(X))− ηi([X,Y ]) = −g(ξi, [X,Y ])

=
1

4δ2(n+ 2)
κ(ξi, [X,Y ]) =

−1
4δ2(n+ 2)

κ(ad ξiY,X),

2αΦi(X,Y ) = 2αg(X,φiY ) =
2α

δ
g(X, ad ξiY ) =

−2α
8αδ2(n+ 2)

κ(X, ad ξiY )

=
−1

4δ2(n+ 2)
κ(X, ad ξiY ).

Finally, we have

dηi(ξj , ξk) = ξj(ηi(ξk))− ξk(ηi(ξj))− ηi([ξj , ξk]) = −ηi(2δξi) = −2δ,
2αΦi(ξj , ξk) = 2αg(ξj , φiξk) = −2αg(ξj , ξj) = −2α,

2(α− δ)ηi+1 ∧ ηi+2(ξj , ξk) = 2(α− δ) = 2α− 2δ.

(5.2)

5.2 3-(α, δ)-Sasaki over Alekseevsky Spaces

In order to construct the second family of homogeneous 3-(α, δ)-Sasaki manifolds we recall
the unified construction of Alekseevsky spaces due to V. Cortés [Cor00]. Let q ∈ N. Set V =
R3,q the real vector space with signature (3, q). Let Cℓ0(V ) denote the even Clifford algebra
over V . Depending on q mod 4 there exist exactly one or two inequivalent irreducible
Cℓ0(V )-modules. Accordingly, let l ∈ N, if q ̸≡ 3 mod 4, or l+, l− ∈ N, if q ≡ 3 mod 4.
Then set

g = so(V )⊕ V ⊕ RD ⊕W,

where W is the sum of l equivalent irreducible Cℓ0(V )-modules (or the sum of l+, l− irre-
ducible Cℓ0(V )-modules if there are two inequivalent ones) and D a derivation with eigen-
value decomposition so(V ) ⊕ V ⊕W and respective eigenvalues (0, 1, 1/2). The action of
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5 Homogeneous 3-(α, δ)-Sasaki manifolds

so(V ) on V is given by the standard representation and so(V ) acts on W via the isomor-
phism so(V ) ∼= spin(V ) ⊂ Cℓ0(V ), e ∧ e′ ↦→ −1

2ee
′ where e, e′ are orthogonal. V commutes

with itself and W . Finally the commutators [W,W ] are given by some non-degenerate
so(V )-equivariant map Π: Λ2W → V where so(V ) acts on W as spin(V ).

Let g = so(V ) ⊕ V ⊕ RD ⊕W with W = Rl ⊗W0 for an irreducible Cℓ0(V )-module W0.
Similar in the case that there exist two inequivalent irreducible Cℓ0(V )-modules W+,W−,
we have W = (Rl+ ⊗W+)⊕ (Rl− ⊗W−).

Remark 5.2.1. Note that Π is unique up to rescaling along the irreducible summands
of W [Cor00, Theorem 5]. This rescaling leads to an isomorphism of the Lie algebras
g(Π) and g(Π′) corresponding to two such maps Π and Π′. The isomorphism extends to
an isomorphism of the 3-(α, δ)-Sasaki structures defined later on. We will prove this in
Theorem 5.2.6. Thus, we will ignore the ambiguity in Π from here on.

Notation. On V = R3,q fix an ONB ê1, ê2, ê3, e1, . . . , eq with signature (+,+,+,−, . . . ,−).
Then with the identification so(V ) ∼= Λ2V we also obtain a standard basis of the space
so(V ) given by {êi ∧ êj , êi ∧ ek, ek ∧ el}i,j=1,2,3

k,l=1,...,3
.

Denote σi = 2êk ∧ êj for any even permutation (ijk) of (123). Using the identification
End(V ) = V ⊗ V ∗ this implies [σi, êj ] = 2êk and [σi, σj ] = 2σk where again (ijk) is an even
permutation of (123).

We further set V = so(3) ⊂ so(3, q), H0 the subspace generated by the elements D and
êi + σi and H1 the subspace generated by e1, . . . , eq ∈ V and ei ∧ êj ∈ so(3, q).

The 4-dimensional spaces H0 and ⟨el, el ∧ êj⟩ ⊂ H1 will form the quaternionic subspaces
inside so(V ) ⊕ V ⊕ RD ⊂ g. Accordingly, we show that they have the only commutators
with non-trivial V-part.

Lemma 5.2.2. The only non-trivial projections on V of commutators are

πV([σi, σj ]) = ±2σk, πV([D, êi + σi]) = −σi, πV([êi + σi, êj + σj ]) = ∓2σk,

πV([el, êi ∧ el]) = −σi, πV([êi ∧ el, êj ∧ el]) = ±
1

2
σk, πV([w1, w2]) = πV(Π(w1, w2))

for all permutations (ijk) of (123) with ± indicating the sign of the permutation, l = 1, . . . , q
and w1, w2 ∈W .

Proof. The full list of commutators of basis vectors is

[σi, σj ] = ±2σk, [σi, D] = 0, [êi + σi, êi ∧ el] = el,

[σi, el] = 0, [σi, êi ∧ el] = 0, [êi ∧ el,W ] = W,

[D, el] = el, [D, êi ∧ el] = 0, [êi ∧ el, êj ∧ em] = 0,

[D,W ] = W, [σi, êi + σi] = 0, [êi + σi,W ] = W,

[σi,W ] = W, [êi + σi, el] = 0, [êi ∧ el, êi ∧ em] = −el ∧ em,

[el, em] = 0, [el,W ] = W, [el, eî ∧ em] = 0,
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5 Homogeneous 3-(α, δ)-Sasaki manifolds

[σi, êj + σj ] = ±2(êk + σk), [σi, êj ∧ el] = ±2êk ∧ el,

[D, êi + σi] = êi = (êi + σi)− σi, [êi + σi, êj ∧ el] = ±2êk ∧ el,

[êi ∧ el, êj ∧ el] = −êi ∧ êj = ±
1

2
σk, [el, eî ∧ el] = eî = (eî + σi)− σi

and finally

[êi + σi, êj + σj ] = [σi, êj ]− [σj , êi] + [σi, σj ] = ±4êk ± 2σk = ±4(êk + σk)∓ 2σk,

where (ijk) is a permutation of (123) with ± indicating the sign of the permutation and
l,m = 1, . . . , q with l ̸= m. For the commutator [W,W ] we have [w1, w2] = Π(w1, w2) ∈
V ⊂ H0 ⊕H1 ⊕ V.

By [Cor00, Proposition 3] the adjoint action of g on r = RD⊕V ⊕W ⊂ g is faithful. Thus,
g is a subalgebra g ⊂ der(r). Set G the subgroup G ⊂ Aut(r) with Lie Algebra g. Let
h = so(q) ⊂ so(V ) ⊂ g and H ⊂ G the corresponding connected subgroup. Then both G
and H are closed subgroups of Aut(r). This follows from [Cor00, Corollary 3] and the fact
that H is closed in Spin0(V ) ⊂ G. In particular, G/H is a homogeneous space. We now
define the desired negative 3-(α, δ)-Sasaki structure on M = G/H.

Theorem 5.2.3. Let α, δ ∈ R with αδ < 0. Let G,H with Lie algebras g, h as above. Then
m = V ⊕H0 ⊕H1 ⊕W is a reductive complement to h in g. Set

ξ1 = δσ1, ξ2 = δσ2, ξ3 = δσ3.

Define the almost complex structures φi : m → m on V, H0, H1 and W individually. For
any permutation (ijk) of (123) with signature ± we set

φi(σj) = ±σk, φi(σi) = 0, (V)
φi(2D) = êi + σi, φi(êi + σi) = −2D, φi(êj + σj) = ±(êk + σk), (H0)

φi(el) = 2êi ∧ el, φi(2êi ∧ el) = −el, φi(êj ∧ el) = ±êk ∧ el, (H1)

φi|W = ρ(σi), (W )

where ρ is the Clifford-multiplication on W .

Define a scalar product g[e] by declaring the following vectors to be an orthonormal basis of
V ⊕H0 ⊕H1:

δσi,
√
−4αδD,

√
−αδ(êi + σi),

√
−4αδ êi ∧ el,

√
−αδ el.

On W we set the scalar product

g[e]|W×W (s, t) = (−2αδ)−1b(s, t) := (−2αδ)−1⟨êi,Π(ρ(êj êk)s, t)⟩,

where ⟨, ⟩ is the scalar product on V and (ijk) is any even permutation of (123). We set W
orthogonal to V ⊕H0 ⊕H1. Set ηi = g(ξi, · ) the dual to ξi.

Then (G/H, g, ξi, ηi, φi) defines a homogeneous 3-(α, δ)-Sasaki manifold.
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Proof. We first note that the defined scalar product is positive definite and Spin(q)-invariant.
This is clear on V ⊕ H0 ⊕H1 and it is shown for b in [Cor00, Theorem 1 and Proposition
9]. Thus, the scalar product extends to an invariant Riemannian metric on G/H. The
invariance under H of the ξi is obvious. For an invariant 3-a.c.m. structure, it remains to
check that the φi are invariant as well. Spin(q) acts trivial on V⊕H0 and onH1 by its adjoint
action on el ∈ Rq ⊂ V . On W it acts by Clifford multiplication with orthogonal vectors
Rq twice, thus commuting with the Clifford multiplication defining the almost complex
structures on W .

The endomorphisms φi are compatible with the metric by definition on V ⊕ H0 ⊕H1 and
by Spin(q) · Spin(3)-invariance of b on W . Next we check the compatibility conditions of
the 3 almost contact structures. Again on V ⊕H0 ⊕H1 this is a direct consequence of the
definition and on W we have

ρ(σi)ρ(σj)w = êk · êj · êi · êk · w = (−1)2êj · êk · êk · êi · w = −êj · êi · w = ρ(σk)w.

Finally we need to check the defining condition dηi = 2αΦi+2(α− δ)ηj ∧ ηk. By bilinearity
it suffices to check it for any pair of two basis vectors individually. On V ×V this is exactly
the same computation as in the 3-(α, δ)-Sasaki structure over symmetric bases (compare
(5.2)). Apart from V × V the equation reduces to dηi = 2αΦi. Note that the left hand side
reduces to checking the commutators. From Lemma 5.2.2 and the definition of the φi we see
that both sides vanish for all mixed terms regarding the decomposition V ⊕H0⊕H1⊕W of
the tangent space. Similarly on H1 if the index l of êi ∧ el, respectively el, is not the same
both sides vanish. On H0 ×H0 we compute

dηi(D, êi + σi) = −ηi([D, êi + σi]) = −ηi(−σi) =
1

δ
g(δσi, δσi) =

1

δ
,

2αΦi(D, êi + σi) = 2αg(D,φi(êi + σi)) =
2α

−2αδ
g(
√
−4αδ D,−

√
−αδ 2D) =

1

δ
.

In similar fashion for the remaining pairs in H0 ×H0 and on H1 ×H1 we have

2

δ
= −ηk(2σk) = dηk(êi + σi, êj + σj) = 2αΦk(êi + σi, êj + σj) =

2

δ
,

1

δ
= −ηi(−σi) = dηi(el, êi ∧ el) = 2αΦi(el, êi ∧ el) =

1

δ
,

1

2δ
= −ηk(−

1

2
σk) = dηk(êi ∧ el, êj ∧ el) = 2αΦk(êi ∧ el, êj ∧ el) =

1

2δ

for any even permutation (ijk) of (123). Finally, we look at W ×W . Let w1, w2 ∈ W and
suppose Π(w1, w2) =

∑︁q
r=1 arer +

∑︁3
s=1 âsês. Then

dηi([w1, w2]) = −ηi(Π(w1, w2)) = −ηi

(︄
q∑︂

r=1

arer +

3∑︂
s=1

âsês

)︄

= −ηi

(︄
3∑︂

s=1

âs((ês + σs)− σs)

)︄
=

âi
δ

46



5 Homogeneous 3-(α, δ)-Sasaki manifolds

and

2αΦi(w1, w2) = 2αg(w1, φiw2) =
2α

−2αδ
⟨êi,Π(w1, êj êkêj êkw2)⟩

=
(−1)32α
−2αδ

⟨eî,Π(w1, w2)⟩ =
1

δ

⟨︄
êi,

q∑︂
r=1

arer +

3∑︂
s=1

âsês

⟩︄
=

âi
δ
.

Remark 5.2.4. We try to motivate the construction. In [Cor00] Cortés shows that so(V )⊕
V ⊕ RD is isomorphic to a subalgebra of so(4, q + 1) ∼= Λ2(V ⊕ ⟨e+, e−⟩), with e+, e− unit
length vectors of corresponding signature, given by the inclusion

so(V ) ↦→ Λ2V, V ↦→ V ∧ (e+ − e−), D ↦→ e+ ∧ e−.

Now φi is modeled on so(V )⊕V ⊕RD after the adjoint action with êj∧êk+êi∧e+ ∈ so(3)+ ⊂
so(3)+ ⊕ so(3)− = so(4) in the known SO(4, q + 1)/SO(q + 1)SO(3) setting. However, this
does not exist as an inner derivative in g unlike in the (semi-)simple case. Therefore we
prescribe the behavior manually.

We owe the reader a proof that the defined 3-(α, δ)-Sasaki structure is indeed independent
of the choice of Π: Λ2W → V .

Remark 5.2.5. Any two suitable maps Π, Π′ can be related by a Γ ∈ Gl(l) where l is
the number of irreducible spin-invariant submodules W0 of W . By [Cor00, Theorem 4] for
any such map Π one can find a basis vi of Rl such that Π decomposes as a sum of maps
Λ2(vi⊗W0)→ V . Then [Cor00, Theorem 5] shows that any such map Λ2W0 → V is unique
up to scaling. This can be combined into a linear map Γ̂ that induces an isomorphism
Γ: g(Π) → g(Π′) as long as we assume Π,Π′ to be non-degenerate. The result in the case
l ≡ 3 mod 4 is the same with Γ = Γ+ × Γ−. Whenever we need to clarify the Lie algebra
structure we will denote g(Π).

Theorem 5.2.6. Suppose Π,Π′ : Λ2W → V are two non-degenerate spin(V )-equivariant
maps. Let Γ̂ : Rl → Rl be an automorphism, such that Π′ = Γ∗Π for the induced map
Γ: g(Π) → g(Π′), Γ

⃓⃓
g(V )

= idg(V ), Γ
⃓⃓
W

= Γ̂ ⊗ idW0. Then Γ: g(Π) → g(Π′) induces an

isomorphism of the homogeneous 3-(α, δ)-Sasaki manifolds.

Proof. First note that Γ: g(Π) → g(Π′) is an isomorphism of Lie algebras. Suppose X ∈
g(V ) and v1 ⊗ w1, v2 ⊗ w2 ∈W . Then

Γ([X, v1 ⊗ w1]g(Π)) = Γ(v1 ⊗ ρ(X)w1) = Γ̂v1 ⊗ ρ(X)w1 = [Γ(X),Γ(v1 ⊗ w1)]g(Π′)

Γ([v1 ⊗ w1, v2 ⊗ w2]g(Π)) = Π(v1 ⊗ w1, v2 ⊗ w2) = (Γ−1)∗Π′(v1 ⊗ w1, v2 ⊗ w2)

= Π′(Γ(v1 ⊗ w1),Γ(v2 ⊗ w2)) = [Γ(v1 ⊗ w1),Γ(v2 ⊗ w2)]g(Π′).

The map Γ fixes the isotropy so that the homogeneous spaces are diffeomorphic. Next we
show that this linear isomorphism induces an isometry. It suffices to show that on W .
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5 Homogeneous 3-(α, δ)-Sasaki manifolds

Denote the Riemannian metrics defined by Π, respectively Π′ by gΠ, respectively gΠ′ . Then
we have

gΠ(v1 ⊗ w1, v2 ⊗ w2) = ⟨ê1,Π(v1 ⊗ w1, ê2ê3(v2 ⊗ w2))⟩
= ⟨(ê1, (Γ−1)∗Π′(v1 ⊗ w1, v2 ⊗ ê2ê3w2)⟩
= ⟨(ê1,Π′(Γ̂v1 ⊗ w1, Γ̂v2 ⊗ ê2ê3w2)⟩
= (Γ−1)∗gΠ′(v1 ⊗ w1, v2 ⊗ w2).

Finally we need to compare the 3 almost complex structures on W . But the φ act on W0,
while Γ acts on Rl, so they commute.

5.3 Examples

We begin with an example of the construction over a symmetric Wolf space.

Example 5.3.1. Our first example is the Aloff-Wallach space W 1,1 = SU(3)/S1 = G/H.
In this case the isotropy algebra h inside g = su(3) is the 1-dimensional space generated by

h =

⎡⎣−i 0 0
0 −i 0
0 0 2i

⎤⎦ .

We locate the space sp(1) = su(2) ⊂ su(3) as the upper left 2-by-2 block. One checks that
this is a splitting of su(3) as necessary. Then for α, δ > 0 the Reeb vector fields are given
by

ξ1 = δ

⎡⎣i 0 0
0 −i 0
0 0 0

⎤⎦ , ξ2 = δ

⎡⎣0 −1 0
1 0 0
0 0 0

⎤⎦ , ξ3 = δ

⎡⎣ 0 −i 0
−i 0 0
0 0 0

⎤⎦ .

On the horizontal subspace we choose a basis vector

ẽ1 =

⎡⎣ 0 0 1
0 0 0
−1 0 0

⎤⎦ .

Then we normalize it g(ẽ1, ẽ1) = −6tr(ẽ1·ẽ1)
24αδ = 1

2αδ , i.e. e1 =
√
2αδ · ẽ1, and generate an

adapted basis:

e2 =
√
2αδ

⎡⎣0 0 i
0 0 0
i 0 0

⎤⎦ , e3 =
√
2αδ

⎡⎣0 0 0
0 0 1
0 −1 0

⎤⎦ , e4 =
√
2αδ

⎡⎣0 0 0
0 0 −i
0 −i 0

⎤⎦ .

Example 5.3.2. Next consider the dual negative 3-(α, δ)-Sasaki space SU(2, 1)/S1. We
realize the Lie algebra

su(2, 1) = g∗ = h⊕ sp(1)⊕ iH ⊂ su(3)C
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as described in (5.1). Then as for the Aloff-Wallach space we identify the 1-dimensional
isotropy h generated by

h =

⎡⎣−i 0 0
0 −i 0
0 0 2i

⎤⎦ .

Analogously the Reeb vector fields are given by

ξ1 = δ

⎡⎣i 0 0
0 −i 0
0 0 0

⎤⎦ , ξ2 = δ

⎡⎣0 −1 0
1 0 0
0 0 0

⎤⎦ , ξ3 = δ

⎡⎣ 0 −i 0
−i 0 0
0 0 0

⎤⎦ .

On the horizontal subspace we choose

ẽ∗1 = iẽ1 =

⎡⎣ 0 0 i
0 0 0
−i 0 0

⎤⎦ ⊂ iH.

We have

g(ẽ∗1, ẽ
∗
1) =

−i2

24αδ
κ(ẽ1, ẽ1) = −

1

2αδ
.

Thus we find an adapted base of SU(2, 1)/S1 by e∗1 = i
√
−2αδẽ1 and

e∗2 =
√
−2αδ

⎡⎣ 0 0 −1
0 0 0
−1 0 0

⎤⎦ , e∗3 =
√
−2αδ

⎡⎣0 0 0
0 0 i
0 −i 0

⎤⎦ , e∗4 =
√
−2αδ

⎡⎣0 0 0
0 0 1
0 1 0

⎤⎦ .

We now discuss the lowest dimensional example T̂ (1) of a negative homogeneous 3-(α, δ)-
Sasaki manifold, fibering over the Alekseevsky space T (1), not obtained by the construction
over symmetric spaces.

Remark 5.3.3. The first new example arising from the construction over Alekseevsky
spaces appears only in dimension 19. Table 5.3.1 lists all homogeneous 3-(α, δ)-Sasaki
manifolds obtained by Theorem 5.2.3 up to dimension 19 and, if existing, the isomorphic
ones appearing in Table 5.1.1, i.e. obtained by Theorem 5.1.2 over non-compact symmetric
spaces. The list gets more intricate with higher dimension, in particular, there appear two
inequivalent even Clifford modules for q = 3 beginning in dim27 and for q ≥ 4 we have

dimWq > 4. Further, observe that the symmetric base cases SU(2, 1)/U(1), G
(2)
2 /SO(3) are

not obtained by this construction.

We now give more concrete descriptions of the Cℓ0(3, q)-modules Wq for q = 0, 1, 2. Note
that there are choices to be made though these lead to isomorphisms of the modules since all
these modules are unique. Let R3,q = ⟨e1̂, e2̂, e3̂, e1, . . . , eq⟩, where eî have signature +1 while
ei have signature −1. Then we have Cℓ0(3, 0) = H, Cℓ0(3, 1) =M2(C), Cℓ0(3, 2) =M4(R)
realized as follows. Table 5.3.2 lists the cases q = 0 and q = 1, while Table 5.3.3 is devoted
to the case q = 2.
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Dimension parameters g h alternative description

7 q = 0, l = 0 so(3)⊕ R3 ⊕ RD 0 Sp(1, 1)/Sp(1)

11
q = 0, l = 1 so(3)⊕ R3 ⊕ RD ⊕W0 0 Sp(2, 1)/Sp(2)
q = 1, l = 0 so(3, 1)⊕ R3,1 ⊕ RD 0 SU(2, 2)/S(U(2)×U(1))

15
q = 0, l = 2 so(3)⊕ R3 ⊕ RD ⊕ 2W0 0 Sp(3, 1)/Sp(3)
q = 1, l = 1 so(3, 1)⊕ R3,1 ⊕ RD ⊕W1 0 SU(3, 2)/S(U(3)×U(1))
q = 2, l = 0 so(3, 2)⊕ R3,2 ⊕ RD so(2) SO0(3, 4)/SO(3)× SO(3)

19

q = 0, l = 3 so(3)⊕ R3 ⊕ RD ⊕ 3W0 0 Sp(4, 1)/Sp(4)
q = 1, l = 2 so(3, 1)⊕ R3,1 ⊕ RD ⊕ 2W1 0 SU(4, 2)/S(U(4)×U(1))

q = 2, l = 1 so(3, 2)⊕ R3,2 ⊕ RD ⊕W2 so(2) T̂ (1) non symmetric base
q = 3, l = 0 so(3, 3)⊕ R3,3 ⊕ RD so(3) SO0(4, 4)/SO(4)× SO(3)

Table 5.3.1: 3-(α, δ)-Sasaki manifolds over Alekseevsky spaces of dim ≤ 19, see Re-
mark 5.3.3.

q = 0 deg 0 : [ 1 ] +1

deg 2 : e1̂2̂ = [ i ], e2̂3̂ = [ j ], e3̂1̂ = [ k ] −1

q = 1 deg 0 : [ 1 1 ] +1

deg 2 : e1̂2̂ =
[︁
i
−i

]︁
, e2̂3̂ =

[︁
i

i

]︁
, e3̂1̂ =

[︁ −1
1

]︁
−1

e3̂1 =
[︁
1
−1

]︁
, e1̂1 = [ 1

1 ], e2̂1 =
[︁

i
−i

]︁
+1

deg 4 : e1̂2̂3̂1 =
[︁
i
i

]︁
−1

Table 5.3.2: Choice of Cℓ0(3, q)-representations for q = 0 and q = 1

The notation is as follow: We denote elements eij = eiej ∈ Cℓ0(V ) and analogous for the
action of elements in Cℓ0(V ) of higher degree. The last line denotes the square of elements
in the respective row, which are invariant of choices unlike the matrices itself.

With this we can find the map Π: Λ2W2 → R3,2.

Theorem 5.3.4. Set W2
∼= R4 = ⟨E1, E2, E3, E4⟩ with the spin(3, 2)-module structure

above. Then the map Π: Λ2W2 → R3,2 given by

Π(E1 ∧ E2) = −ê3 − e1, Π(E1 ∧ E3) = −ê2, Π(E1 ∧ E4) = −ê1 + e2,

Π(E2 ∧ E3) = ê1 + e2, Π(E4 ∧ E2) = ê2, Π(E3 ∧ E4) = ê3 − e1

is spin(3, 2)-invariant and non-degenerate.
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deg 0 :

[︃
1
1
1
1

]︃
+1

deg 2 : e1̂2̂ =

[︃ −1
1

1
−1

]︃
, e2̂3̂ =

[︃ −1
1

−1
1

]︃
, e3̂1̂ =

[︃ −1
−1

1
1

]︃
, e12 =

[︃
1
−1

−1
1

]︃
−1

e3̂1 =

[︃
1
1
−1

−1

]︃
, e1̂1 =

[︃
1
1

1
1

]︃
, e2̂1 =

[︃ −1
1

1
−1

]︃
, e3̂2 =

[︃
1
−1

1
−1

]︃
+1

e1̂2 =

[︃−1
1
1
−1

]︃
, e2̂2 =

[︃ −1
−1

−1
−1

]︃

deg 4 : e1̂2̂3̂1 =

[︃ −1
1

−1
1

]︃
, e1̂2̂3̂2 =

[︃
1

1
−1

−1

]︃
−1

e1̂2̂12 =

[︃
1

1
1

1

]︃
, e2̂3̂12 =

[︃ −1
−1

1
1

]︃
, e3̂1̂12 =

[︃
1
−1

1
−1

]︃
+1

Table 5.3.3: Choice of Cℓ0(3, q)-representations for q = 2

Recall that the action of so(3, q) on the Cℓ0(3, q)-module W , and thereby W ∧W , is given
by the isomorphism ad−1 : so(3, q) → spin(3, q) = Cℓ0(3, q), ei ∧ ej ↦→ −1

2eij , where i, j ∈
{1̂, 2̂, 3̂, 1, . . . , q}.

Proof. Non-degeneracy is clear. It suffices to check the invariance on a generating set of
Cℓ0(3, 2). One such set is given by e1̂2̂, e2̂3̂, e1̂1, e12. Each of these map certain subspaces of
W2 onto one another, hence their action on the exterior product of these subspaces vanishes.
This yields the identities

−2ê1 ∧ ê2(ê3 ± e1) = 0 = Π(e1̂2̂(E1 ∧ E2)) = Π(e1̂2̂(E3 ∧ E4)),

−2ê2 ∧ ê3(ê1 ± e2) = 0 = Π(e2̂3̂(E1 ∧ E4)) = Π(e2̂3̂(E2 ∧ E3)),

−2ê1 ∧ e1(ê2) = 0 = Π(e1̂1(E1 ∧ E3)) = Π(e1̂1(E4 ∧ E2)),

−2e1 ∧ e2(ê2) = 0 = Π(e12(E1 ∧ E3)) = Π(e12(E4 ∧ E2)).

The rest is just more computations. We start with e1̂2̂:

Π(e1̂2̂(E1 ∧ E3)) = Π(E2 ∧ E3) + Π(E1 ∧ −E4) = ê1 + e2 + ê1 − e2 = 2ê1

= −2ê1 ∧ ê2(−ê2) = −2ê1 ∧ ê2(Π(E1 ∧ E3)),

Π(e1̂2̂(E1 ∧ E4)) = Π(E2 ∧ E4) + Π(E1 ∧ E3) = −ê2 − ê2 = −2ê2
= −2ê1 ∧ ê2(−ê1 + e2) = −2ê1 ∧ ê2(Π(E1 ∧ E4)),

Π(e1̂2̂(E2 ∧ E3)) = Π(−E1 ∧ E3) + Π(E2 ∧ −E4) = ê2 + ê2 = 2ê2

= −2ê1 ∧ ê2(ê1 + e2) = −2ê1 ∧ ê2(Π(E2 ∧ E3)),

Π(e1̂2̂(E4 ∧ E2)) = Π(E3 ∧ E2) + Π(E4 ∧ −E1) = −ê1 − e2 − ê1 + e2 = −2ê1
= −2ê1 ∧ ê2(ê2) = −2ê1 ∧ ê2(Π(E4 ∧ E2)).
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For e2̂3̂:

Π(e2̂3̂(E1 ∧ E2)) = Π(E4 ∧ E2) + Π(E1 ∧ −E3) = ê2 + ê2 = 2ê2

= −2ê2 ∧ ê3(−ê3 − e1) = −2ê2 ∧ ê3(Π(E1 ∧ E2)),

Π(e2̂3̂(E1 ∧ E3)) = Π(E4 ∧ E3) + Π(E1 ∧ E2) = −ê3 + e1 − ê3 − e1 = −2ê3
= −2ê2 ∧ ê3(−ê2) = −2ê2 ∧ ê3(Π(E1 ∧ E3)),

Π(e2̂3̂(E4 ∧ E2)) = Π(−E1 ∧ E2) + Π(E4 ∧ −E3) = ê3 + e1 + ê3 − e1 = 2ê3

= −2ê2 ∧ ê3(ê2) = −2ê2 ∧ ê3(Π(E4 ∧ E2)),

Π(e2̂3̂(E2 ∧ E4)) = Π(E3 ∧ E2) + Π(E3 ∧ −E1) = −ê2 − ê2 = −2ê2
= −2ê2 ∧ ê3(ê3 − e1) = −2ê2 ∧ ê3(Π(E3 ∧ E4)).

For e1̂1:

Π(e1̂1(E1 ∧ E2)) = Π(E3 ∧ E2) + Π(E1 ∧ E4) = −ê1 − e2 − ê1 + e2 = −2ê1
= −2ê1 ∧ e1(−ê3 − e1) = −2ê1 ∧ e1(Π(E1 ∧ E2)),

Π(e1̂1(E1 ∧ E4)) = Π(E3 ∧ E4) + Π(E1 ∧ E2) = ê3 − e1 − ê3 − e1 = −2e1
= −2ê1 ∧ e1(−ê1 + e2) = −2ê1 ∧ e1(Π(E1 ∧ E4)),

Π(e1̂1(E2 ∧ E3)) = Π(E4 ∧ E3) + Π(E2 ∧ E1) = −ê3 + e1 + ê3 + e1 = 2e1

= −2ê1 ∧ e1(ê1 + e2) = −2ê1 ∧ e1(Π(E2 ∧ E3)),

Π(e1̂1(E3 ∧ E4)) = Π(E1 ∧ E4) + Π(E3 ∧ E2) = −ê1 + e2 − ê1 − e2 = −2ê1
= −2ê1 ∧ e1(ê3 − e1) = −2ê1 ∧ e1(Π(E3 ∧ E4)).

And finally for e12:

Π(e12(E1 ∧ E2)) = Π(−E3 ∧ E2) + Π(E1 ∧ E4) = ê1 + e2 − ê1 + e2 = 2e2

= −2e1 ∧ e2(−ê3 − e1) = −2e1 ∧ e2(Π(E1 ∧ E2)),

Π(e12(E1 ∧ E4)) = Π(−E3 ∧ E4) + Π(E1 ∧ −E2) = −ê3 + e1 + ê3 + e1 = 2e1

= −2e1 ∧ e2(−ê1 + e2) = −2e1 ∧ e2(Π(E1 ∧ E4)),

Π(e12(E2 ∧ E3)) = Π(E4 ∧ E3) + Π(E2 ∧ E1) = −ê3 + e1 + ê3 + e1 = 2e1

= −2e1 ∧ e2(ê1 + e2) = −2e1 ∧ e2(Π(E2 ∧ E3)),

Π(e12(E3 ∧ E4)) = Π(E1 ∧ E4) + Π(E3 ∧ −E2) = −ê1 + e2 + ê1 + e2 = 2e2

= −2e1 ∧ e2(ê3 − e1) = −2e1 ∧ e2(Π(E3 ∧ E4)).

To display the algebra g with q = 2, l = 1 corresponding to T̂ (1) = G/H we use the inclu-
sion g ⊂ der(r) ⊂ gl(R3,2 ⊕ RD ⊕W2). We give these elements as matrices with respect to
the basis ê1, ê2, ê3, e1, e2, D,E1, E2, E3, E4 of r.
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Recall g = so(3, 2)⊕ R3,2 ⊕ RD ⊕W2. We begin with so(3, 2):

2ê1 ∧ ê2 =

⎡⎢⎢⎢⎢⎣
0 2 0
−2 0 0

0 0
0 0
0 0

0 0 0 0 0 0 0 0 0 0
0 0 1
0 −1 0
0 0 1
0 −1 0

⎤⎥⎥⎥⎥⎦, 2ê3 ∧ ê1 =

⎡⎢⎢⎢⎢⎣
0 −2 0
0 0

2 0 0
0 0
0 0

0 0 0 0 0 0 0 0 0 0
0 1 0
0 0 1
0 −1 0
0 0 −1

⎤⎥⎥⎥⎥⎦,

2ê2 ∧ ê3 =

⎡⎢⎢⎢⎢⎣
0 0

0 2 0
−2 0 0

0 0
0 0

0 0 0 0 0 0 0 0 0 0
0 0 1
0 −1 0
0 0 1
0 −1 0

⎤⎥⎥⎥⎥⎦,

2ê1 ∧ e1 =

⎡⎢⎢⎢⎢⎢⎣
0 −2 0

0 0
0 0

−2 0 0
0 0

0 0 0 0 0 0 0 0 0 0
0 −1 0
0 0 −1
0 −1 0
0 0 −1

⎤⎥⎥⎥⎥⎥⎦, 2ê1 ∧ e2 =

⎡⎢⎢⎢⎢⎣
0 −2 0

0 0
0 0
0 0

−2 0 0
0 0 0 0 0 0 0 0 0 0

0 1 0
0 0 −1
0 −1 0
0 0 1

⎤⎥⎥⎥⎥⎦,

2ê2 ∧ e1 =

⎡⎢⎢⎢⎢⎣
0 0

0 −2 0
0 0

−2 0 0
0 0

0 0 0 0 0 0 0 0 0 0
0 0 1
0 −1 0
0 0 −1
0 1 0

⎤⎥⎥⎥⎥⎦, 2ê2 ∧ e2 =

⎡⎢⎢⎢⎢⎣
0 0

0 −2 0
0 0
0 0

−2 0 0
0 0 0 0 0 0 0 0 0 0

0 0 1
0 1 0
0 0 1
0 1 0

⎤⎥⎥⎥⎥⎦,

2ê3 ∧ e1 =

⎡⎢⎢⎢⎢⎣
0 0
0 0

0 −2 0
−2 0 0

0 0
0 0 0 0 0 0 0 0 0 0

0 −1 0
0 0 −1
0 1 0
0 0 1

⎤⎥⎥⎥⎥⎦, 2ê3 ∧ e2 =

⎡⎢⎢⎢⎢⎣
0 0
0 0

0 −2 0
0 0

−2 0 0
0 0 0 0 0 0 0 0 0 0

0 −1 0
0 0 1
0 −1 0
0 0 1

⎤⎥⎥⎥⎥⎦,

2e1 ∧ e2 =

⎡⎢⎢⎢⎢⎣
0 0
0 0
0 0
0 −2 0
2 0 0

0 0 0 0 0 0 0 0 0 0
0 −1 0
0 0 1
0 1 0
0 0 −1

⎤⎥⎥⎥⎥⎦.

Recall that 2e1 ∧ e2 generates the isotropy algebra h.

Next we describe the element 2D:

2D =

⎡⎢⎢⎢⎢⎣
2 0
2 0
2 0
2 0
2 0

0 0 0 0 0 0 0 0 0 0
0 1
0 1
0 1
0 1

⎤⎥⎥⎥⎥⎦.
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5 Homogeneous 3-(α, δ)-Sasaki manifolds

The generators of V = R3,2 are:

ê1 =

⎡⎢⎢⎢⎢⎣
−1
0
0
0
0

0 0 0 0 0 0 0 0 0 0
0
0
0
0

⎤⎥⎥⎥⎥⎦, ê2 =

⎡⎢⎢⎢⎢⎣
0
−1
0
0
0

0 0 0 0 0 0 0 0 0 0
0
0
0
0

⎤⎥⎥⎥⎥⎦, ê3 =

⎡⎢⎢⎢⎢⎣
0
0
−1
0
0

0 0 0 0 0 0 0 0 0 0
0
0
0
0

⎤⎥⎥⎥⎥⎦,

e1 =

⎡⎢⎢⎢⎢⎣
0
0
0
−1
0

0 0 0 0 0 0 0 0 0 0
0
0
0
0

⎤⎥⎥⎥⎥⎦, e2 =

⎡⎢⎢⎢⎢⎣
0
0
0
0
−1

0 0 0 0 0 0 0 0 0 0
0
0
0
0

⎤⎥⎥⎥⎥⎦.

Finally we have the 4 basis elements of W2:

2E1 =

⎡⎢⎢⎢⎢⎣
0 −2
0 −2
0 −2
0 2
0 2

0 0 0 0 0 0 0 0 0 0
−1
0
0
0

⎤⎥⎥⎥⎥⎦, 2E2 =

⎡⎢⎢⎢⎢⎣
0 2
0 −2
0 2
0 2
0 2

0 0 0 0 0 0 0 0 0 0
0
−1
0

⎤⎥⎥⎥⎥⎦

2E3 =

⎡⎢⎢⎢⎢⎣
0 −2
0 2
0 2
0 −2
0 −2

0 0 0 0 0 0 0 0 0 0
0
0
−1
0

⎤⎥⎥⎥⎥⎦, 2E4 =

⎡⎢⎢⎢⎢⎣
0 2
0 2
0 −2
0 2
0 −2

0 0 0 0 0 0 0 0 0 0
0
0
0
−1

⎤⎥⎥⎥⎥⎦

5.4 Nomizu Maps

Recall that by the Nomizu Theorem 2.1.3 invariant connections on reductive homogeneous
spacesM = G/H are in bijective correspondence with isotropy equivariant maps Λ: m×m→
m. This section is meant to apply the Nomizu Theorem to both the canonical and the Levi-
Civita connection.

For the following theorem we need a similar statement to Lemma 3.3.4 for two fundamental
vector fields. Note that even in the case when X,Y ∈ g are horizontal in the origin they
fail to be horizontal in other points. Yet we have

Lemma 5.4.1. Let G act by automorphisms on a 3-(α, δ)-Sasaki manifold M from the left,
X,Y ∈ g with fundamental vector fields X̂, Ŷ ∈ TM . Then

ˆ︂[X,Y ]V = −
3∑︂

i=1

(︁
2αΦi(X̂, Ŷ ) + 2(α− δ)ηj ∧ ηk(X̂, Ŷ )

)︁
ξi.
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5 Homogeneous 3-(α, δ)-Sasaki manifolds

Proof. Since G is a group of automorphisms we have LX̂ηi = 0 so

dηi(X̂, Ŷ ) = X̂(ηi(Ŷ ))− Ŷ (ηi(X̂))− ηi([X̂, Ŷ ])

= ηi([X̂, Ŷ ])− ηi([Ŷ , X̂])− ηi([X̂, Ŷ ]) = ηi([X̂, Ŷ ]) = −ηi(ˆ︂[X,Y ]).

Using ˆ︂[X,Y ]V =
∑︁3

i=1 ηi(
ˆ︂[X,Y ])ξi and (3.7) yields the result.

Theorem 5.4.2. The Nomizu map for the canonical connection Λ∇ : m × m → m of a
homogeneous 3-(α, δ)-Sasaki manifold with m = V ⊕H is given by

Λ∇
XY =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ΛgN
X Y X, Y ∈ H

β
2δ [X,Y ] X,Y ∈ V
[X,Y ]− 2α

∑︁3
i=1 ηi(X)φiY X ∈ V, Y ∈ H

0 X ∈ H, Y ∈ V,

where ΛgN : H×H → H is the Nomizu map of the Levi-Civita connection on the homogeneous
base of the canonical submersion.

Proof. We first prove that the torsion of Λ∇ given by (2.2) agrees with the canonical torsion

T∇ = 2α
3∑︂

i=1

ηi ∧ ΦH
i + 2(δ − 4α)η123.

We begin with the case X,Y ∈ H. Evaluating Lemma 5.4.1 in the origin T0M ∼= m we
obtain [X,Y ]V = −2α

∑︁3
i=1Φi(X,Y )ξi. Thus,

Λ∇
XY − Λ∇

Y X − [X,Y ] = ΛgN
X Y − ΛgN

Y X − [X,Y ]H − [X,Y ]V

= T gN (X,Y ) + 2α
3∑︂

i=1

Φi(X,Y )ξi = 2α
3∑︂

i=1

Φi(X,Y )ξi = T∇(X,Y )

as the torsion T gN = 0 of the Levi-Civita connection on the base vanishes. Suppose now
that X = ξi and Y ∈ H. Then

Λ∇
XY − Λ∇

Y X − [X,Y ] = [X,Y ]− 2αφiY − [X,Y ] = −2αφiY = T∇(X,Y ).

Finally if both X = ξi, Y = ξj ∈ V and (ijk) is an even permutation of (123), we have

Λ∇
XY − Λ∇

Y X − [X,Y ] =
β

2δ
[X,Y ]− β

2δ
[Y,X]− [X,Y ] = (2− 4α

δ
− 1)[ξi, ξj ]

= (1− 4α

δ
)2δξk = T∇(X,Y ).

We further need to verify that Λ∇
X ∈ so(m) for all X ∈ m, that is g(Λ∇

XY,Z)+g(Y,Λ∇
XZ) = 0

for all Y, Z ∈ m. Suppose X ∈ H and Y, Z ∈ H. Then Λ∇
X = ΛgN

X and g|H = gN thus Λ∇
X is

metric as ΛgN
X is. If Y ∈ V and Z ∈ H we find that Λ∇

XY = 0 by definition while Λ∇
XZ ∈ H

is orthogonal to Y . Analogously, if Y, Z ∈ V the Nomizu map Λ∇
X acts trivially on both
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5 Homogeneous 3-(α, δ)-Sasaki manifolds

sides. Now suppose X ∈ V. Then X0 =
∑︁

ai(ξi)0. Observe that the vector field X̃ =
∑︁

aiξi
is left-invariant and Killing by [AD20, Corollary 2.3.1]. Thus

g(LXY, Z) + g(Y, LXZ) = X(g(Y,Z)) = X̃(g(Y,Z)) = g(LX̃Y,Z) + g(Y, LX̃Z) = 0

and LX ∈ so(m). In particular, if Y,Z ∈ V then Λ∇
XY = β

2δLXY is metric. If Y ∈ H we
have

g(Λ∇
XY, Z) = g(LXY − 2α

∑︂
ηi(X)φiY, Z) = −g(Y, LXZ − 2α

∑︂
ηi(X)φiZ).

If Z ∈ H the right hand side is just −g(Y,Λ∇
XZ) by definition while for Z ∈ V

LXZ − 2α
∑︂

ηi(X)φiZ ∈ V

is perpendicular to Y . Hence, g(Λ∇
XY,Z) = 0 = −g(Y,Λ∇

XZ).

Remark 5.4.3. For symmetric spaces the Levi-Civita connection corresponds to the trivial
Nomizu map ΛgN = 0. The Nomizu map of the Alekseevsky base is given in [Cor00, Lemma
5, p. 35].

In the case of a positive homogeneous 3-(α, δ)-Sasaki manifold or its non-compact sibling
the Nomizu map Λ∇ simplifies drastically.

Proposition 5.4.4. The canonical connection ∇ of a homogeneous 3-(α, δ)-Sasaki manifold
over a Wolf space or its non-compact dual corresponds to the map

Λ∇
X =

{︄
0, X ∈ H
β
2δadX, X ∈ V.

Proof. In the case of a Riemannian symmetric space the Levi–Civita connection agrees with
the Ambrose–Singer connection. Thus, ΛgN ≡ 0. Now let X ∈ V and Y ∈ H. Then

2α
3∑︂

i=1

ηi(X)φi|H =
2α

δ

3∑︂
i=1

ηi(X)ad ξi =
2α

δ
adX.

It follows Λ∇
XY = (1− 2α

δ )[X,Y ] = β
2δ [X,Y ].

Remark 5.4.5. As noted in Remark 5.1.3 the homogeneous 3-(α, δ)-Sasaki space is natu-
rally reductive if and only if β = 0. Then the Ambrose-Singer connection is metric. In this
case Proposition 5.4.4 shows that the canonical and Ambrose-Singer connections agree.

Proposition 5.4.6. The Levi–Civita connection corresponds to the map

Λg
XY =

⎧⎪⎨⎪⎩
1
2 [X,Y ]m X,Y ∈ V or X,Y ∈ H
(1− α

δ )[X,Y ] X ∈ V, Y ∈ H
α
δ [X,Y ] X ∈ H, Y ∈ V.
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5 Homogeneous 3-(α, δ)-Sasaki manifolds

Proof. Note that the correspondence is Λ∇
XY = ∇XY − [X,Y ], for X,Y ∈ m, and the

canonical connection is given by ∇ = ∇g+ 1
2T where the canonical torsion is given by (3.12),

or equivalently (3.13). Thus we have Λg
XY = ∇g

XY − [X,Y ] = ∇XY − [X,Y ]− 1
2T (X,Y ) =

Λ∇
XY − 1

2T (X,Y ). Again we look at each case individually. Let X,Y ∈ H. Then

1

2
T (X,Y ) = α

3∑︂
i=1

Φi(X,Y )ξi = α
3∑︂

i=1

g(X,φiY )ξi

=
α

δ

3∑︂
i=1

g(X, [ξi, Y ])ξi =
α

8αδ2(n+ 2)

3∑︂
i=1

κ(X, [Y, ξi])ξi

=
1

8δ2(n+ 2)

3∑︂
i=1

κ([X,Y ], ξi)ξi

= −1

2

3∑︂
i=1

g([X,Y ]m, ξi)ξi = −
1

2
[X,Y ]m,

where we have used that κ(h,V) = 0 and [X,Y ]m ∈ V = span{ξ1, ξ2, ξ3}. Thus

Λg
XY = Λ∇

XY − 1

2
T (X,Y ) =

1

2
[X,Y ]m

For vertical vectors X = ξi, Y = ξj , (ijk) an even permutation of (123), we find

Λg
ξi
ξj = Λ∇

ξi
ξj − (δ − 4α)η123(ξi, ξj , ·) =

β

2δ
[ξi, ξj ]− (δ − 4α)ξk

= βξk + (δ − 4α)ξk = δξk = [ξi, ξj ]

and by linearity for arbitrary X,Y ∈ V. Let X ∈ V, Y ∈ H then

T (X,Y ) = 2α

3∑︂
i=1

ηi ∧ ΦH
i (X,Y, · ) = 2α

3∑︂
i=1

ηi(X)ΦH
i (Y, · )

= −2α
3∑︂

i=1

ηi(X)φiY = −2α

δ

[︄
3∑︂

i=1

ηi(X)ξi, Y

]︄
= −2α

δ
[X,Y ]

and thus

Λg
XY = Λ∇

XY − 1

2
T (X,Y ) = (1− 2α

δ
)[X,Y ] +

α

δ
[X,Y ] = (1− α

δ
)[X,Y ].

For the final expression X ∈ H, Y ∈ V use the above identity for T with X ↔ Y . Then

Λg
XY = Λ∇

XY − 1

2
T (X,Y ) =

1

2
T (Y,X) =

α

δ
[X,Y ].

The Nomizu operators in Proposition 5.4.4 allow to immediately compute the curvature
operators of Example 5.3.1 and Example 5.3.2 via

R(X,Y, Z, V ) = g(Λ∇
XΛ∇

Y Z − Λ∇
Y Λ

∇
XZ − Λ∇

[X,Y ]m
Z − ad([X,Y ]h)Z, V ),

compare [KN96, p.191]. The discussion in the next chapter is more structural, but these
examples should provide a comparison for the identities developed there.
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Example 5.4.7. We give the canonical curvature operator of Example 5.3.1 and Exam-
ple 5.3.2 with respect to the basis defined therein. The choice of basis vectors in a dual
manner yields a matrix representation of R that is identical for both examples, yet in one
case αδ > 0 in the other αδ < 0.

R∇ =

⎡⎢⎢⎢⎢⎢⎣
αβ+6αδ αβ−6αδ 0 0 0 0 0 2αβ 0
αβ−6αδ αβ+6αδ 0 0 0 0 0 2αβ 0

0 0 αβ αβ 0 0 0 0 2αβ
0 0 αβ αβ 0 0 0 0 2αβ
0 0 0 0 αβ αβ 2αβ 0 0
0 0 0 0 αβ αβ 2αβ 0 0
0 0 0 0 2αβ 2αβ 4αβ 0 0

2αβ 2αβ 0 0 0 0 0 4αβ 0
0 0 2αβ 2αβ 0 0 0 0 4αβ

⎤⎥⎥⎥⎥⎥⎦
Here we omitted the trivial part H⊗ V and considered the induced basis on Λ2H⊕ Λ2V ⊂
Λ2M with the following order:

e1 ∧ e2, e3 ∧ e4, e1 ∧ e3, e4 ∧ e2, e1 ∧ e4, e2 ∧ e3, ξ1 ∧ ξ2, ξ2 ∧ ξ3, ξ3 ∧ ξ1.
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We take a closer look at the canonical curvature operator R = R∇, i.e. the curvature
operator of the canonical connection, of any 3-(α, δ)-Sasaki manifold. Through the canonical
submersion we want to compare it with the Riemannian curvature of the quaternion Kähler
base space. Meanwhile, on the total space we compare it to the Riemannian curvature
operator via (2.4).

6.1 Decomposition of the Canonical Curvature

Recall that the canonical submersion π : M → N tells us that the Levi-Civita connection on
N essentially is a projection of the canonical connection on M . Using this relation we can
understand the missing purely horizontal part of R, compare (3.21) in Proposition 3.3.16.

Theorem 6.1.1. The canonical curvature on Λ2H⊗ Λ2H is given by

R(X,Y , Z, V ) = RgN (X,Y, Z, V ) + 4α2
3∑︂

i=1

Φi(X,Y )Φi(Z, V ),

where X,Y, Z, V ∈ TN with horizontal lifts X,Y , Z, V ∈ H.

Proof. We note that by ∇gN
X Y = π∗(∇XY ) the vector field ∇XY ∈ H is π-related to ∇gN

X Y

and thus ∇XY = π∗(∇XY ). We obtain

gN (∇gN
X ∇

gN
Y Z, V ) = gN (∇gN

X π∗(∇Y Z), V ) = g(∇Xπ∗(∇Y Z), V ) = g(∇X∇Y Z, V ),

gN (∇gN
[X,Y ]Z, V ) = gN (π∗∇[X,Y ]

Z, V ) = g(∇[X,Y ]Z −∇[X,Y ]V
Z, V )

= g(∇[X,Y ]Z, V ) + 4α2
3∑︂

i=1

Φi(X,Y )Φi(Z, V )

where we have used Lemma 3.3.4 and Lemma 4.2.4. Plugging these identities into the
curvature we find

RgN (X,Y, Z, V ) = gN (∇gN
X ∇

gN
Y Z −∇gN

Y ∇
gN
X Z −∇gN

[X,Y ]Z, V )

= g(∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z, V )− 4α2
3∑︂

i=1

Φi(X,Y )Φi(Z, V )

= R(X,Y , Z, V )− 4α2
3∑︂

i=1

Φi(X,Y )Φi(Z, V ).
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We now want to look at the canonical curvature as a curvature operator and consider its
eigenvalues and definiteness. Recall that the canonical curvature operator R : Λ2M → Λ2M
defines a symmetric operator. Rewriting (3.18) as operator identities we obtain

⟨R(X ∧ ξi), Y ∧ ξj⟩ = ⟨R(X ∧ Y ), Z ∧ ξi⟩ = ⟨R(ξi ∧ ξj), ξk ∧X⟩ = 0

showing that the canonical curvature operator vanishes on V∧H. Thus, it can be considered
as a symmetric operator R : Λ2V⊕Λ2H → Λ2V⊕Λ2H. It does not restrict to the individual
summands but we can accomplish a more nuanced decomposition.

Proposition 6.1.2. The curvature operator R can be decomposed as

R = αβR⊥ +Rpar

where R⊥ is defined by

R⊥ :=
i,j,k

S (Φi − ξjk)⊗ (Φi − ξjk) (6.1)

and Rpar is trivial outside of the horizontal part, i.e. Rpar|(Λ2H)⊥ = 0.

Proof. (3.19) and (3.20) in terms of the curvature operator read

⟨R(ξi ∧ ξj), ξk ∧ ξl⟩ = 4αβ
3∑︂

µ=1

Φµ(ξi, ξj)Φµ(ξk, ξl), (6.2)

⟨R(ξi ∧ ξj), X ∧ Y ⟩ = 2αβ
3∑︂

µ=1

Φµ(ξi, ξj)Φµ(X,Y ). (6.3)

We observe that the right hand sides of (6.2) and (6.3) are of the form C
∑︁3

i=1Φi ⊗ Φi,
where the coefficient C is either 4 or 2. Using the symmetry of R and setting the coefficient
1 in the purely horizontal part we obtain

3∑︂
i=1

(︁
4(Φi|Λ2V ⊗ Φi|Λ2V) + 2(Φi|Λ2H ⊗ Φi|Λ2V)

+ 2(Φi|Λ2V ⊗ Φi|Λ2H) + (Φi|Λ2H ⊗ Φi|Λ2H)
)︁

=
i,j,k

S (Φi − ξjk)⊗ (Φi − ξjk) =: R⊥.

By construction Rpar := R− αβR⊥ is trivial on (Λ2H)⊥.

By definition we immediately get

Lemma 6.1.3. R⊥ has the single eigenvalue 2(n+2) with eigenspace generated by Φi− ξjk
for i = 1, 2, 3.
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Proof. Immediately by definition Φi − ξjk are the only non-vanishing eigenvectors with
eigenvalue |Φi − ξjk|2. From the identities

⟨Φi,Φj⟩ = (2n+ 1)δij , ⟨Φi, ξjk⟩ = Φi(ξj , ξk) = −ϵijk, (6.4)

we obtain the eigenvalue 2(n+ 2).

Lemma 6.1.4. The kernel of Rpar contains the space generated by Z ∧ φiZ + φjZ ∧ φkZ,
where Z ∈ H.

Proof. For X,Y, Z ∈ H compare (3.21) with (6.1) to obtain

⟨R(X ∧ Y ), Z ∧ φiZ + φjZ ∧ φkZ⟩ = 2αβΦi(X,Y )∥Z∥2

= ⟨αβR⊥(X ∧ Y ), Z ∧ φiZ + φjZ ∧ φkZ⟩

for any even permutation (ijk) of (123). Thus, Z ∧ φiZ + φjZ ∧ φkZ ∈ kerRpar.

6.2 Special Eigenvalues of R and Rg

In this section we will determine eigenvalues of the canonical and Riemannian curvature
operators, that only depend on α and δ. In particular, this will allow us to characterize the
Einstein condition in terms of such eigenvalues.

Theorem 6.2.1. The curvature operator R of the canonical connection of any 3-(α, δ)-
Sasaki manifold (M,φi, ξi, ηi, g) admits the following six orthogonal eigenforms:

� Φi − ξjk = ΦH
i − 2ξjk, i = 1, 2, 3, eigenform with eigenvalue 2αβ(n+ 2),

� Φi + (n+ 1)ξjk = ΦH
i + nξjk, i = 1, 2, 3, eigenform with vanishing eigenvalue.

Proof. We observe that ΦH
i = −1

4

∑︁4n+3
r=4 er ∧ φier + φjer ∧ φker for an adapted basis er.

Lemma 6.1.4 then shows ΦiH ∈ kerRpar. Also ξjk ∈ Λ2V ⊂ kerRpar so we only have to
check that Φi−ξjk and Φi+(n+1)ξjk are eigenvectors ofR⊥ with the respective eigenvalues.
Lemma 6.1.3 provides just that under the observation ⟨Φi + (n+ 1)ξjk,Φi − ξjk⟩ = 0.

For later use we observe that the same argument yields

R(Φi) = R⊥(Φi) = 2αβ(n+ 1)(Φi − ξjk), (6.5)

R(ξjk) = R⊥(ξjk) = −2αβ(Φi − ξjk). (6.6)

Recall that by (2.4) applied to any connection with parallel torsion

Rg(X,Y, Z, V ) = R∇(X,Y, Z, V )− 1

4
g(T (X,Y ), T (Z, V ))− 1

4
σT (X,Y, Z, V ). (6.7)
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In particular, the Riemannian and canonical curvature operators, Rg and R, are related by
the operators ST and GT defined by

⟨ST (X ∧ Y ), Z ∧ V ⟩ := σT (X,Y, Z, V ) =
1

2
dT (X,Y, Z, V ), (6.8)

⟨GT (X ∧ Y ), Z ∧ V ⟩ := GT (X,Y, Z, V ) = g(T (X,Y ), T (Z, V )). (6.9)

They act on the forms Φi and ξjk as follows.

Proposition 6.2.2. Let (M,φi, ξi, ηi, g) be a 3-(α, δ)-Sasaki manifold. The torsion T of
the canonical connection satisfies the following:

ST (ξjk) = 2αβ(Φi + ξjk), (6.10)

ST (Φi) =
{︁
4α2(2n+ 1)− 2αβ

}︁
Φi +

{︁
4α2(2n+ 1) + 2αβ(2n− 1)

}︁
ξjk. (6.11)

Proof. First we show that for vector fields X,Y and every even permutation (ijk) of (123)

dT (X,Y, ξi, ξj) = 4αβ{Φk(X,Y ) + (ηi ∧ ηj)(X,Y )}, (6.12)

which is equivalent to (6.10), taking into account (6.8). Indeed, we compute

3∑︂
l=1

(Φl ∧ Φl)(X,Y, ξi, ξj)

= 2{Φk(X,Y )Φk(ξi, ξj) + Φk(X, ξi)Φk(ξj , Y ) + Φk(X, ξj)Φk(Y, ξi)}
= 2{−Φk(X,Y ) + ηj(X)ηi(Y )− ηi(X)ηj(Y )}
= − 2{Φk(X,Y ) + (ηi ∧ ηj)(X,Y )}.

We can also compute

l,m,n

S (Φl ∧ ηm ∧ ηn)(X,Y, ξi, ξj)

=
l,m,n

S {Φl(X,Y )ηmn(ξi, ξj) + Φl(X, ξi)ηmn(ξj , Y ) + Φl(X, ξj)ηmn(Y, ξi)

+ Φl(ξi, ξj)ηmn(X,Y ) + Φl(ξj , Y )ηmn(X, ξi) + Φl(Y, ξi)ηmn(X, ξj)}
= Φk(X,Y )− Φk(X, ξi)ηi(Y )− Φk(X, ξj)ηj(Y )

− ηij(X,Y )− Φk(ξj , Y )ηj(X) + Φk(Y, ξi)ηi(X)

= Φk(X,Y )− ηj(X)ηi(Y ) + ηi(X)ηj(Y )− ηij(X,Y )− ηi(Y )ηj(X) + ηj(Y )ηi(X)

= Φk(X,Y ) + ηij(X,Y ).

Therefore, using (3.14) we get (6.12).

In order to prove (6.11), first we show that for every X,Y ∈ H

4n+3∑︂
r=1

dT (X,Y, er, φier) = {−16α2(2n+ 1) + 8αβ}Φi(X,Y ), (6.13)
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where er, r = 1, . . . , 4n+ 3, is a local orthonormal frame. Indeed, we can compute

4n+3∑︂
r=1

3∑︂
l=1

(Φl ∧ Φl)(X,Y, er, φier)

= 2
∑︂
r

∑︂
l

{Φl(X,Y )Φl(er, φier) + Φl(X, er)Φl(φier, Y ) + Φl(X,φier)Φl(Y, er)}

= 2
∑︂
r

Φi(X,Y )Φi(er, φier) + 2
∑︂
l

g(φlX,φiφlY )− 2
∑︂
l

g(φiφlX,φlY )

= −2(4n+ 2)Φi(X,Y )− 2g(φiX,Y )− 4g(X,φiY ) + 2g(X,φiY ) + 4g(φiX,Y )

= −8(n+ 1)Φi(X,Y ).

We also compute

4n+3∑︂
r=1

l,m,n

S (Φl ∧ ηm ∧ ηn)(X,Y, er, φier)

=
∑︂
r

l,m,n

S Φl(X,Y )(ηm ∧ ηn)(er, φier)

= Φi(X,Y ){(ηj ∧ ηk)(ξj , ξk) + (ηj ∧ ηk)(ξk,−ξj)}
= 2Φi(X,Y ).

Applying (3.14),we can deduce that

4n+3∑︂
r=1

dT (X,Y, er, φier) = −32α2(n+ 1)Φi(X,Y )− 16α(α− δ)Φi(X,Y ),

which gives (6.13), being β = 2(δ − 2α). Now, from (6.8) and (6.13), we have

⟨ST (Φi), X ∧ Y ⟩ = −1

2

4n+3∑︂
r=1

⟨ST (er ∧ φier), X ∧ Y ⟩ = −1

4

4n+3∑︂
r=1

dT (X,Y, er, φier)

= {4α2(2n+ 1)− 2αβ}⟨Φi, X ∧ Y ⟩.

From (3.14), one can see that for every X,Y, Z ∈ H and r, s, t = 1, 2, 3

dT (X,Y, Z, ξr) = 0, dT (X, ξr, ξs, ξt) = 0,

which imply that

⟨ST (Φi), X ∧ ξs⟩ = −
1

2

4n+3∑︂
r=1

⟨ST (er ∧ φier), X ∧ ξs⟩ = −
1

4

4n+3∑︂
r=1

dT (er, φier, X, ξs) = 0.

Finally, using (6.10) and (6.4),

⟨ST (Φi), ξj ∧ ξk⟩ = ⟨ST (ξj ∧ ξk),Φi⟩ = 2αβ⟨Φi + ξjk,Φi⟩
= 2αβ(2n+ 1 + Φi(ξj , ξk)) = 4αβn

and analogously, ⟨ST (Φi), ξi ∧ ξj⟩ = ⟨ST (Φi), ξi ∧ ξk⟩ = 0, thus completing the proof of
(6.11).
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Proposition 6.2.3. Let (M,φi, ξi, ηi, g) be a 3-(α, δ)-Sasaki manifold. The torsion T of
the canonical connection satisfies the following:

GT (ξjk) = (β − 4α) {2αΦi + (β − 2α)ξjk} , (6.14)

GT (Φi) =
{︁
8α2(n+ 1)− 2αβ

}︁
Φi +

{︁
−8α2(n+ 1)− β2 + 2αβ(2n+ 3)

}︁
ξjk. (6.15)

Proof. By direct computation using (3.12) or (3.13), one easily gets that for all vector fields
X,Y and for every even permutation (ijk) of (123)

T (X,Y, ξi) = 2αΦi(X,Y ) + 2(δ − 3α)(ηj ∧ ηk)(X,Y ),

T (ξj , ξk) = 2(δ − 4α)ξi.

Hence,

⟨GT (ξjk), X ∧ Y ⟩ = g(T (ξj , ξk), T (X,Y )) = 2(δ − 4α)T (X,Y, ξi)

= 2(δ − 4α){2αΦi(X,Y ) + 2(δ − 3α)(ηj ∧ ηk)(X,Y )},

which gives (6.14), since β = 2(δ − 2α).

In order to prove (6.15), notice that for every X,Y, Z, V ∈ H, applying (3.13), we have

GT (X,Y, Z, V ) = 4α2
3∑︂

l=1

Φl(X,Y )Φl(Z, V ).

Then, choosing a local orthonormal frame of type er, r = 1, . . . , 4n, ξi, ξj , ξk, and using
2Φi = −

∑︁
er ∧ φier, for every X,Y ∈ H we have

⟨GT (Φi), X ∧ Y ⟩ = −1

2

4n∑︂
r=1

GT (er, φier, X, Y )−GT (ξj , ξk, X, Y )

= −2α2
4n∑︂
r=1

3∑︂
l=1

Φl(er, φier)Φl(X,Y )− 2α(β − 4α)Φi(X,Y )

= 8α2nΦi(X,Y )− 2α(β − 4α)Φi(X,Y )

= {8α2(n+ 1)− 2αβ}⟨Φi, X ∧ Y ⟩.

Now, from (3.13), we also have that for every X,Y, Z ∈ H and r, s, t = 1, 2, 3,

GT (X,Y, Z, ξr) = 0, GT (ξr, ξs, ξt, X) = 0,

which give

⟨GT (Φi), X ∧ ξs⟩ = −
1

2

4n∑︂
r=1

GT (er, φier, X, ξs)−GT (ξj , ξk, X, ξs) = 0.

Finally, using (6.14) and (6.4),

⟨GT (Φi), ξjk⟩ = ⟨GT (ξjk),Φi⟩ = (β − 4α){2α(2n+ 1)− β + 2α},

which is coherent with (6.15). Analogously,

⟨GT (Φi), ξij⟩ = ⟨GT (Φi), ξki⟩ = 0,

thus completing the proof of (6.15).
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Proposition 6.2.4. Let (M,φi, ξi, ηi, g) be a 3-(α, δ)-Sasaki manifold. Then, the Rieman-
nian curvature of M satisfies

Rg(ξjk) = −
(︁
2α2 + αβ

)︁
Φi +

(︁
2α2 + αβ +

1

4
β2
)︁
ξjk, (6.16)

Rg(Φi) =
{︁
α2(4n+ 3) + αβ(2n+ 1)

}︁
Φi −

(︁
α+

1

2
β
)︁2
ξjk. (6.17)

Proof. Since Rg and R are related by (6.7), the result follows from direct computations
using equations (6.6), (6.14), (6.10), and equations (6.5), (6.15), (6.11).

Remark 6.2.5. Being β = 2(δ − 2α), equations (6.16) and (6.17) can be rephrased as

Rg(ξjk) = 2α(α− δ)Φi + {α2 + (α− δ)2}ξjk, (6.18)

Rg(Φi) = {α(δ − α)(4n+ 1) + αδ}Φi − (α− δ)2ξjk. (6.19)

The Riemannian Ricci tensor of a 3-(α, δ)-Sasaki manifold has been computed in [AD20,
Proposition 2.3.3]:

Ricg(X,Y ) = 2α{2δ(n+ 2)− 3α}g(X,Y ) + 2(α− δ){(2n+ 3)α− δ}
3∑︂

i=1

ηi(X)ηi(Y )

implying that the manifold is Einstein if and only if δ = α or δ = α(2n+3). In the following
we provide one further characterization.

Theorem 6.2.6. Let (M,φi, ξi, ηi, g) be a 3-(α, δ)-Sasaki manifold. Then, the following
conditions are equivalent:

a) each 2-form Φi − ξjk is an eigenform of Rg;

b) each 2-form Φi + (n+ 1)ξjk is an eigenform of Rg;

c) either δ = α or δ = (2n+ 3)α;

d) (M, g) is Einstein.

If δ = α, that is in the 3-α-Sasaki case, the six orthogonal eigenforms Φi−ξjk, Φi+(n+1)ξjk
admit the same eigenvalue λ = α2. If δ = α(2n + 3), then each Φi − ξjk has eigenvalue
λ1 = α2(8n2 + 16n+ 9), while each Φi + (n+ 1)ξjk has eigenvalue λ2 = α2(2n+ 1)2.

Proof. The equivalence of c) and d) is known. From (6.18) and (6.19), we have that Rg(Φi−
ξjk) = aΦi + bξjk with

a = α(δ − α)(4n+ 1) + αδ − 2α(α− δ), b = −α2 − 2(α− δ)2,

which give
a+ b = 2(δ − α){α(2n+ 3)− δ}.
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Then Φi− ξjk is an eigenform of Rg if and only if a+ b = 0, that is δ = α or δ = (2n+3)α.
In particular, if δ = α, the corresponding eigenvalue is λ = a = α2. If δ = α(2n + 3), the
eigenvalue is λ1 = a = α2(8n2 + 16n+ 9).

Analogously, we can compute Rg(Φi + (n+ 1)ξjk) = a′Φi + b′ξjk with

a′ = α(δ−α)(4n+1)+αδ+2α(α− δ)(n+1), b′ = −(α− δ)2+(n+1)α2+(α− δ)2(n+1),

from which
(n+ 1)a′ − b′ = n(δ − α){α(2n+ 3)− δ},

thus proving the equivalence of b) and c). If δ = α, then the eigenform Φi + (n + 1)ξjk
has eigenvalue λ = a′ = α2. If δ = α(2n + 3), the corresponding eigenvalue is λ2 = a′ =
α2(2n+ 1)2.

6.3 Positivity of Curvature Operators

Recall from Proposition 6.1.2 the decomposition

R = αβR⊥ +Rpar,

where Rpar is trivial on (Λ2H)⊥. Via horizontal lift we consider the Riemannian curvature
operator RgN on the base N of the canonical submersion as a curvature operator Λ2H →
Λ2H. Via Theorem 6.1.1 we can then compareRpar with the Riemannian curvature operator
to obtain

Rpar = RgN − 2αδ
3∑︂

µ=1

ΦH
µ ⊗ ΦH

µ . (6.20)

Analogous to R⊥ we set RH
⊥ :=

∑︁3
i=1Φ

H
i ⊗ ΦH

i . Then

Lemma 6.3.1. RH
⊥ has the only non-zero eigenvalue 2n with eigenspace spanned by ΦH

i ,
i = 1, 2, 3.

Lemma 6.1.3, Lemma 6.1.4 and Lemma 6.3.1 show that Rpar and R⊥ share eigenspaces and
analogously Rpar and RH

⊥ . Additionally, the eigenspaces to non-zero eigenvalues of Rpar are
inside the kernel of R⊥ and vice versa. The same holds for Rpar and RH

⊥ . Thus the space
Spec(R) of eigenvalues of R is the union

Spec(R) = Spec(Rpar) ∪ {0, 2αβ(n+ 2)} (6.21)

of the eigenvalues of Rpar and the eigenvalues {0, 2αβ(n + 2)} of αβR⊥. Similarly the
eigenvalues of RgN are

Spec(RgN ) ∪ {0} = Spec(Rpar) ∪ {0, 4αδn}. (6.22)

Remark that Spec(R) certainly contains 0 as ΦH
i + nξjk ∈ kerR, by Theorem 6.2.1, while

Spec(RgN ) may or may not contain 0.
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Remark 6.3.2. The discussion on the curvature operator RgN actually proved that the
ΦH
i are eigenvectors of RgN with eigenvalue 4αδn. This shows that in the case n = 1 the

space (N, gN ) is anti-self-dual. We, thus, finally completed the proof of Proposition 4.2.9
that 7-dimensional 3-(α, δ)-Sasaki manifolds have a quaternionic Kähler base.

Theorem 6.3.3. Let M be a 3-(α, δ)-Sasaki manifold with canonical submersion π : M →
N .

a) If N has a non-negative Riemannian curvature operator RgN ≥ 0 then R is non-negative
if and only if αβ ≥ 0.

b) If N has a non-positive Riemannian curvature operator RgN ≤ 0 then R is non-positive.

Proof. By (6.22) if RgN is either non-negative or non-positive then so is Rpar and the sign
of αδ. Using (6.21) we obtain part a) directly. For part b) note that if αδ ≤ 0 then
αβ = 2αδ − 4α2 < 0.

In the following we investigate the eigenspaces and eigenvectors more closely. We need
some notation. For i = 1, 2, 3 denote the 2-dimensional spaces Ni := span{ΦH

i , ξjk}. Then
decompose the space of 2-forms into orthogonal subbundles

Λ2M = Λ2
1 ⊕ Λ2

2 ⊕ Λ2
3,

where the Λ2
i are given by

Λ2
1 =

3⨁︂
i=1

Ni, Λ2
2 = Λ2H ∩ {ΦH

1 ,Φ
H
2 ,Φ

H
3 }⊥, Λ2

3 = V ∧ H.

For a linear map A : Λ2M → Λ2M we denote A1 := A|Λ2
1
and correspondingly for the other

spaces.

Let us motivate this decomposition. The obvious Λ2(V⊕H) = Λ2V⊕V∧H⊕Λ2H motivates
Λ2
3 = V ∧ H, in particular since R|Λ2

3
= 0. However, R does not restrict to Λ2V and Λ2H,

but to Λ2
1 and Λ2

2. In fact, the characterization R = αβR⊥+Rpar is with respect to Λ2
1 and

Λ2
2 as noted in the proof of Theorem 6.2.1. The space Λ2

1 can be seen as controlled by the
3-(α, δ)-Sasaki structure, while Λ2

2 reflects the geometry of the base N . This is emphasized
by the fact that the common eigenforms discussed in Theorem 6.2.1 all lie in Λ2

1.

We can now discuss strong non-negativity. Recall that by (6.7) the curvature operators R
and Rg are related by

Rg = R+
1

4
GT +

1

4
ST .

In particular, (M, g) is strongly non-negative with 4-form −1
4σT if and only if

R+
1

4
GT ≥ 0.

Observe that GT is non-negative by definition so we directly have strong non-negativity, if
R is non-negative. We can relax the condition on the base to strong non-negativity, but we
need an additional assumption on the 4-form.
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Definition 6.3.4. We call a 4-form ω ∈ Λ4N on a quaternionic Kähler spaceN quaternionic
non-negative if ω, considered as an operator Λ2N → Λ2N , restricts to a map from the
quaternionic bundle Q ⊂ Λ2N to itself and this restriction is a non-negative operator.

Given a 3-(α, δ)-Sasaki manifold with canonical submersion π : M → N the quaternionic
non-negativity of ω ∈ Λ4N implies that π∗ω admits a block diagonal structure π∗ω =
(π∗ω)1 ⊕ (π∗ω)2 with (π∗ω)1 ≥ 0. Note that (π∗ω)3 vanishes trivially as π∗V = 0.

Theorem 6.3.5. Let M be a 3-(α, δ)-Sasaki manifold with αβ ≥ 0 such that the base N
of the canonical submersion is strongly non-negative with respect to a quaternionic non-
negative 4-form ω. Then M is strongly non-negative with 4-form π∗ω − 1

4σT .

Proof. We follow the same line of thought as in Theorem 6.3.3. Decompose R + π∗ω =
Rpar + (π∗ω)2 +R⊥ + (π∗ω)1 and the condition on ω gives

Spec(R+ π∗ω) ∪ {0} = Spec(Rpar + (π∗ω)2) ∪ Spec(R⊥ + (π∗ω)1)

⊂ Spec(RgN + ω) ∪ Spec(R⊥ + (π∗ω)1) ⊂ [0,∞[.

Now Rg + π∗ω − 1
4ST = R+ π∗ω + 1

4GT ≥ 0 proving the theorem.

Strong positivity requires a more deliberate investigation of how GT acts on the spaces Λ2
i .

From equation (3.13) it follows that the torsion T of the canonical connection satisfies

T (X,Y ) ∈ H ⇔ X ∧ Y ∈ V ∧H and T (X,Y ) ∈ V ⇔ X ∧ Y ∈ Λ2V ⊕ Λ2H.

Thus, GT preserves Λ2
3 = V ∧ H and, by Proposition 6.2.3, Λ2

1 as well. Therefore GT splits
into a direct sum of operators G1 ⊕ G2 ⊕ G3 on Λ2

1 ⊕ Λ2
2 ⊕ Λ2

3.

Consider some adapted basis er, r = 1, . . . , 4n + 3 of M . We may define the quaternionic
spaces Hl = span{e4l, e4l+1, e4l+2, e4l+3}, l = 1, . . . , n, and accordingly we have

Λ2
2 =

(︄
n⨁︂

l=1

Λ2Hl

)︄
∩⟨ΦH

i ⟩⊥ ⊕
⨁︂
k<l

Hk ∧Hl, Λ2
3 =

n⨁︂
l=1

V ∧ Hl.

Note that these descriptions depend on the choice of adapted basis unlike the spaces Λ2
i

themselves.

Lemma 6.3.6. The linear operator G2 vanishes. The operator G3 has the unique non-
vanishing eigenvalue 12α2 with eigenspace generated by el ∧ ξ1 + φ3el ∧ ξ2 − φ2el ∧ ξ3,
l = 4, . . . , 4n+ 3.

Proof. The space
(︁⨁︁

Λ2Hl

)︁
∩ ⟨ΦH

i ⟩⊥ ⊂ Λ2
2 is spanned by el ∧ φiel − er ∧ φier, r, l =

4, . . . , 4n+ 3, i = 1, 2, 3. G2 vanishes on these. Indeed, by expression (3.13)

T (el ∧ φiel) = 2αΦi(el, φiel)ξi = −2αξi = T (er ∧ φier) (6.23)

for any l = 4, . . . , 4n + 3. G2 vanishes on Hk ∧ Hl as well since Φi(X,Y ) = 0 whenever X
and Y are in different quaternionic subspaces.
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We observe that G3 is the sum of n identical copies Ĝ3 for each space V∧Hi, since T (X,Y ) ∈
Hi if X ∈ Hi and Y ∈ V. Again using (3.13), we find

T (el ∧ ξi) = 2αφiel = T (φkel ∧ ξj) = −T (φjel ∧ ξk). (6.24)

In particular,

GT (er ∧ ξi) = GT (φker ∧ ξj) = GT (−φjer ∧ ξk) = 4α2(er ∧ ξ1 + φ3er ∧ ξ2 − φ2er ∧ ξ3)

for the adapted basis e4l, . . . , e4l+3 of Hl. Hence, the vectors er∧ξ1+φ3er∧ξ2−φ2er∧ξ3 are
four linearly independent eigenvectors with eigenvalue 12α2. In fact, these are all non-zero
eigenvectors since (6.24) shows that

4 ≤ rk(Ĝ3) = dimT (V ∧ Hl) ≤
dimV ∧ Hl

3
=

12

3
= 4.

This implies that analogous toR⊥ the sum αβR⊥+
1
4GT is orthogonal toRpar. In particular,

R + 1
4GT + π∗ω can never be non-negative unless Rpar + (π∗ω)2 is. Unlike for R⊥, the

eigenspace decomposition of αβR⊥+ 1
4GT inside the spaces Ni varies with α and δ. Still we

have

Lemma 6.3.7. The operator αβR⊥ + 1
4GT is positive on Ni, i = 1, 2, 3, if and only if

αβ > 0.

Proof. From (3.12) and (6.23) we compute that

GT (el ∧ φiel) = −4α2ΦH
i − 4α(δ − 4α)ξjk

GT (ξjk) = 4α(δ − 4α)ΦH
i + 4(δ − 4α)2ξjk

Thus on Ni, with respect to the basis ΦH
i and ξjk, the sum takes the matrix form

αβR⊥ +
1

4
GT =

(︃
2nα(2δ − 3α) −α(3δ − 4α)
−2nα(3δ − 4α) δ2

)︃
.

Note that |ΦH
i |2 = 2n, so αβR⊥ + 1

4GT is self-adjoint. Hence, the restriction to the 2-
dimensional space Ni is positive if and only if both the determinant and the trace are. We
have

trNi

(︃
αβR⊥ +

1

4
GT
)︃

= 2nα(2δ − 3α) + δ2.

Setting c = δ
α ∈ R one obtains the quadratic polynomial

trNi

(︃
αβR⊥ +

1

4
GT
)︃

= α2(c2 + 4nc− 6n).

Hence, positivity holds if c >
√
4n2 + 6n− 2n. For αβ = 2α(δ − 2α) = 2α2(c− 2) > 0 also

c > 2 and the condition above holds as√︁
4n2 + 6n− 2n < 2.
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The second condition reads

det

(︄(︃
αβR⊥ +

1

4
GT
)︃ ⃓⃓⃓

Ni

)︄
= 2nα(2δ3 − 3αδ2 − α(3δ − 4α)2)

= 4nα4(c3 − 6c2 + 12c− 8) = 4nα4(c− 2)3 > 0.

This is exactly the case if αβ = 2α2(c− 2) > 0.

We recollect the results so far. Under R⊥, Rpar and GT the spaces Λ2
1, Λ2

2 and Λ2
3 are

invariant. Under the assumption that RgN + ω > 0 and αβ > 0 the results are summarized
in the following table.

space dim αβR⊥
1
4GT Rpar + (π∗ω)2 (π∗ω)1

Λ2
1 6 sum > 0 0 ≥ 0?

Λ2
2 6n− 3 +

(︁
n
2

)︁
· 16 0 0 > 0 0

Λ2
3 n · 12 0 ≥ 0 0 0

It now remains to show that a suitable 4-form provides strict positivity on the kernel of G3.

Lemma 6.3.8. The operator ST corresponding to σT is negative definite on the kernel of
G3 if and only if αβ > 0.

Proof. As in the proof of Lemma 6.3.6 we may split G3 into n copies of Ĝ3 on each quater-
nionic subspace. Let e4l, . . . , e4l+3 ∈ Hl be an adapted basis of one such subspace. Then,
from the same proof, we find that T (er ∧ ξi) = 2αφiel = −T (φjer ∧ ξk). Thus

ker Ĝ3 = kerT ∩ (Hl ∧ V) = span{er ∧ ξi + φjer ∧ ξk | i = 1, 2, 3; r = 4l, . . . , 4l + 3}.

By definition of ST we have

g(ST (er ∧ ξi), es ∧ ξa) = g(T (er, ξi), T (es, ξa)) + g(T (es, er), T (ξi, ξa))

− g(T (es, ξi), T (er, ξa)).

With T = 2α
∑︁n

i=1 ηi ∧ ΦH
i + 2(δ − 4α)η123 we compute each term individually

g(T (er, ξi), T (es, ξa)) =

{︄
4α2, es = −φaφier

0
,

g(T (es, er), T (ξi, ξa)) =

{︄
2α(β − 4α), es = φiφaer and a ̸= i

0
,

g(T (es, ξi), T (er, ξa)) =

{︄
4α2, es = −φiφaer

0
.
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We thus obtain the full expression

ST (er ∧ ξi) = 4α2
3∑︂

a=1

(−φaφier + φiφaer) ∧ ξa + 2α(β − 4α)
∑︂
a̸=i

φiφaer ∧ ξa

= 2αβ
∑︂
a̸=i

φiφaer ∧ ξa

= 2αβ(φker ∧ ξj − φjer ∧ ξk).

Finally compute ST on ker Ĝ3 to obtain the result

ST (er ∧ ξi + φjer ∧ ξk) = 2αβ(φker ∧ ξj − φjer ∧ ξk + φjφjer ∧ ξi − φiφjer ∧ ξj)

= −2αβ(er ∧ ξi + φjer ∧ ξk).

We can finally prove the main theorem of this section providing strong positivity on M
given a sufficient positivity condition on N .

Theorem 6.3.9. Let M be a 3-(α, δ)-Sasaki manifold with αβ > 0. Suppose further that
the base N of the canonical submersion has strongly positive curvature with respect to either

a) a quaternionic non-negative 4-form ω ∈ Λ4TN or

b) an arbitrarily small 4-form ω ∈ Λ4TN .

Then M has strongly positive curvature with 4-form π∗ω − (14 + ε)σT , ε > 0 sufficiently
small.

Remark 6.3.10. We consider a space strongly positive with respect to an arbitrarily small
4-form ω if positivity is obtained for all 4-forms εω, 0 < ε ≤ 1. For sake of notation we will
denote by ω the 4-form for a sufficiently small value of ε. Note that in this case RgN ≥ 0
since it is a closed condition.

Proof. In case a) the operator Rg + π∗ω − 1
4σT is non-negative by Theorem 6.3.3. In case

b) we have that Rg + 1
4σT ≥ 0 by Theorem 6.3.3 and Remark 6.3.10. Then Lemma 6.3.7

proves positivity on Λ2
1. By assumption RgN + ω > 0 on Λ2N . Thus,

(Rpar + π∗ω)2 = π∗((RgN + ω)Q⊥) > 0.

In case a) (π∗ω)1 ≥ 0, in case b) (π∗ω)1 is sufficiently small such that in both cases (Rg +
π∗ω − 1

4σT )1 > 0. Finally the addition of −εσT by Lemma 6.3.8 guarantees positivity on
Λ2
3. If we choose ε > 0 sufficiently small it will not disturb positivity on Λ2

1 ⊕ Λ2
2.
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6.4 The Homogeneous Case

We like to apply the positivity discussion to homogeneous 3-(α, δ)-Sasaki manifolds, more
precisely to those that fiber over Wolf spaces and their non-compact duals as constructed
in Theorem 5.1.2.

Theorem 6.4.1. Let M = G/H be a homogeneous 3-(α, δ)-Sasaki manifold.

a) If M is a positive 3-(α, δ)-Sasaki manifold then the canonical curvature operator R is
non-negative if and only if αβ ≥ 0. In this case M is strongly non-negative.

b) If M is a negative 3-(α, δ)-Sasaki manifold over a symmetric base then the canonical
curvature operator R is non-positive.

Proof. In the positive case M has to fiber over a symmetric base. In this case the base is a
compact symmetric space, hence the curvature operator RgN is non-negative. In part b) the
base is a non-compact symmetric space by assumption, hence RgN ≤ 0. Therefore in both
cases it fulfills the requirement of Theorem 6.3.3. In the positive case also Theorem 6.3.5
applies with ω = 0.

We will next focus on strong positivity. This is much more restrictive than strong non-
negativity. In particular, strong positivity implies strict positive sectional curvature and
homogeneous manifolds with strictly positive sectional curvature have been classified, see
[Wal72], [Ber61]. Out of these only the 7-dimensional Aloff-Wallach-space W 1,1, the spheres
S4n+3 and real projective spaces RP 4n+3 admit homogeneous 3-(α, δ)-Sasaki structures. We
will thus prove

Theorem 6.4.2. The 3-(α, δ)-Sasaki spaces

a) W 1,1 = SU(3)/S1 with 4-form −(14 + ε)σT for small ε > 0,

b) S4n+3, RP 4n+3, n ≥ 1, with 4-form αδ
4 π∗ΩN − (14 + ε)σT for small ε > 0

with ΩN the fundamental 4-form of the qK base, are strongly positive if and only if αβ > 0.

Remark 6.4.3. The strong positivity of all three spaces W 1,1 and S4n+3, RP 4n+3, can
actually be proven by the Strong Wallach Theorem in [BM18]. We compare to our case:

a) Observe that all positive homogeneous 3-(α, δ)-Sasaki manifolds are given by a homoge-
neous fibration

SO(3) = G0/H → G/H → G/G0.

In the case of S4n+3 the fiber is Sp(1) instead.

b) In their strong Wallach theorem [BM18] the autors consider the metrics gt = tQ|V +Q|H
for 0 < t < 1, where Q is a negative multiple of the Killing form. If we set Q = −κ

8αδ(n+2)

as in the 3-(α, δ)-Sasaki setting then t = 2α
δ and, thus, the condition 0 < t < 1 is

equivalent to β > 0.
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c) We have dimG0/H = 3 and G0/H = SO(3) = RP 3, S3 in the case of S4n+3, with a
scaled standard metric. In particular the fiber is of positive sectional curvature.

d) They require a strong fatness property for the homogeneous fibration. Adapted to our
notation the bundle is strongly fat if there is a 4-form τ such that F +τ : H⊗V → H⊗V
is positive definite, where F is given by

g(F (X ∧ ξi), Y ∧ ξj) = g([X, ξi], [Z, ξj ]) = δ2g(φiX,φjY )

=
δ2

4α2
g(T (X ∧ ξi), T (Y ∧ ξj)) =

δ2

4α2
g(GT (X ∧ ξi), Y ∧ ξj).

Thus by the previous lemma τ = −εσT achieves strong fatness for sufficiently small ε.

e) The final condition is for the base to be one of S4n,RP 4n,CP 2n,HPn. The only ho-
mogeneous 3-(α, δ)-Sasaki manifolds where this holds are S4n+3, RPn, which fiber over
HPn, and W 1,1, which fibers over CP 2.

Note that a)-d) are valid for all positive homogeneous examples not only for the spheres,
real projective spaces and W 1,1.

Proof of Theorem 6.4.2. Since our discussion is pointwise we will identify tensors on N with
those on H.

a) On any 7-dimensional homogeneous 3-(α, δ)-Sasaki manifold we have that [AD20, The-
orem 4.4.1]

σT |Λ4H =
1

2
dT |Λ4H = 2α2

3∑︂
i=1

ΦH
i ∧ ΦH

i = 12α2dVolN .

Observe that in this case also Λ2
2 = Λ2

− is the (−1)-eigenspace of the volume form on N .
In fact, for αδ > 0, (6.20) shows that (RgN )1 is positive, so the addition of ω = −εσT |Λ4H
provides positivity. Hence, we may apply Theorem 6.3.9. The stated 4-form is obtained
by the observation that π∗ω can be included in the addition −εσT from Theorem 6.3.9.

b) The 4-form ω = αδ
4 ΩN appears as possible 4-form in the strong positivity of HPn. In

[BM18] they prove that the 4-form b(µ) suffices where µ1 is given as the symmetric prod-
uct of twice the A-tensor of the submersion (S4n+3, g0) → (HPn, gB), (RP 4n+3, g0) →
(HPn, gB) respectively and b is the Bianchi map

b : Sym(Λ2M)→ Λ4(M), b(T )(X,Y, Z, V ) :=
X,Y,Z

S T (X,Y, Z, V ).

Here the metric g0 denotes up to global scaling by 1
8αδ(n+2) the standard round metric.

Adapted to our notation

µ(X ∧Y, Z∧V ) = g0(AXY,AZV ) =
1

4
g0([X,Y ]m, [Z, V ]m) =

αδ

2

3∑︂
i=1

ΦH
i (X,Y )ΦH

i (Z, V ).

1Due to conflicting notation, we renamed this µ from α in [BM18].
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and thus

b(µ) =
αδ

2

3∑︂
i=1

b(ΦH
i ⊗ ΦH

i ) =
αδ

4

3∑︂
i=1

ΦH
i ∧ ΦH

i =
αδ

4
π∗ΩN .

Therefore we have RgN + αδ
4 ΩN > 0 on Λ2N . It remains to check that ω is quaternionic

non-negative. We compute for a basis e1, . . . , e4n of TN

ω(ΦH
i ) =

αδ

4

3∑︂
s=1

ΦH
i (ΦH

s ∧ ΦH
s )

=
αδ

2

(︄
2nΦH

i −
1

2

4n∑︂
l=1

3∑︂
s=1

(︁
(el ΦH

s ) ∧ (φiel ΦH
s )
)︁)︄

=
αδ

2

(︄
2nΦH

i +
1

2

4n∑︂
l=1

3∑︂
s=1

φsel ∧ φsφiel

)︄

=
αδ

2

(︄
2nΦH

i +
1

2

4n∑︂
l=1

(el ∧ φiel − φjel ∧ φkel + φkel ∧ φjel

)︄

=
αδ

2

(︄
2nΦH

i +
1

2

4n∑︂
l=1

(el ∧ φiel − 2φjel ∧ φiφjel

)︄

=
αδ

2
(2n+ 1)ΦH

i

6.5 The Inhomogeneous Case

The theory we established in Section 6.3 goes beyond the homogeneous spaces. These can
only be seen as the most tractable examples. For inhomogeneous 3-(α, δ)-Sasaki spaces
the base of the canonical submersion will typically be inhomogeneous as well. In [LS94]
the authors conjecture that all complete quaternionic Kähler manifolds of positive scalar
curvature are Wolf spaces and therefore homogeneous. Hence, we are forced to consider
actual orbifolds admitting a quaternionic Kähler structure with strongly positive curvature
and either of the assumptions in Theorem 6.3.9. No such result has been obtained so far,
yet there are good candidates. Accordingly, this section is meant as an exposition of these
and outlook into further research.

Recall that strongly positive curvature implies positive sectional curvature. Quaternionic
Kähler manifolds of such type were investigated by M. Berger in [Ber66]. As observed in
[Dea04], Berger’s argument is purely local and, thus, extends to orbifolds.

Theorem 6.5.1 ([Ber66],[Dea04]). Let n ≥ 2 and (M, g,Ω) a 4n-dimensional quaternionic
Kähler orbifold of positive sectional curvature. Then locally (M, g,Ω) is isometric to the
quaternionic projective space HPn with its usual metric and quaternionic structure up to a
finite quotient.

Let us first consider the trivial possible example.

74



6 Curvature

Example 6.5.2. Consider the lens space Zk\S4n+3 where Zk acts as a subgroup of S1

generated by diagonal left multiplication of eiϕ = cos(ϕ)+ i sin(ϕ) on S4n+3 ⊂ Hn+1. Equip
S4n+3 with the 3-(α, δ)-Sasaki structure defined by right multiplication as in Example 3.2.8.
Then the action of Zk preserves the structure and, thus, the lens spaces are 3-(α, δ)-Sasaki
manifolds themselves. If k = 2 this is exactly RP 4n+3. For k odd the quotients are Nk =
Zk\HPn. Our theory applies since Nk is locally isometric to HPn. However, the result
is equally trivial as the lens spaces are locally just S4n+3, so strong positivity for some
3-(α, δ)-Sasaki metrics is not surprising.

With that we now restrict ourselves to the case of positive 7-dimensional 3-(α, δ)-Sasaki man-
ifolds over 4-dimensional quaternionic Kähler spaces. Recall that these are H-homothetic
to 7-dimensional 3-Sasaki manifolds. Accordingly we will use the machinery of 3-Sasaki
geometry. We recall 3-Sasaki reduction invented in [BGM94] to construct new 3-Sasaki
manifolds.

Definition 6.5.3. Let (M, g, ξi, ηi, φi)i=1,2,3 be a 3-Sasaki manifold and G a compact con-
nected Lie group such that G ↷ M by 3-Sasaki automorphisms. The map

µ : M → g∗ ⊗ R3,

p ↦→ (µ1(p), µ2(p), µ3(p))

such that for all X ∈ g with fundamental vector field X̂

⟨µi(p), X⟩ =
1

2
ηi(X̂)

is called the 3-Sasaki moment map of the action G ↷ M .

Theorem 6.5.4 ([BGM94]). Let (M, g, ξi, ηi, φi)i=1,2,3 be a 3-Sasaki manifold, G a compact
connected Lie group such that G ↷ M by 3-Sasaki automorphisms. Assume that 0 is a
regular value of µ and G acts freely on µ−1(0).

Then there is a unique 3-Sasaki structure (M̌, ǧ, ξ̌i, η̌i, φ̌i)i=1,2,3 on the quotient manifold
M̌ = µ−1(0)/G such that ι∗g = π∗ǧ and ξ̌i = π∗(ξi|µ−1(0)).

Now let G = S1 and M = S11 ⊂ H3 with the usual 3-Sasaki structure defined by right
multiplication. Consider the action of ρ(p1,p2,p3) : S

1 ↷ S11 with positive weights p1, p2, p3 ∈
N given by

ρ(p1,p2,p3)(z)(q1, q2, q3) = (zp1q1, z
p2q2, z

p3q3).

Clearly this action preserves the 3-Sasaki structure. We have

Corollary 6.5.5 ([BG08, p.500]). The action of S1 with weights (p1, p2, p3) is free on
µ−1
(p1,p2,p3)

(0) if the pi are pairwise coprime. Hence the space

S(p1, p2, p3) := µ−1
(p1,p2,p3)

(0)/S1
(p1,p2,p3)

admits a 3-Sasaki structure.
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Let us now explain why their underlying quaternionic Kähler orbifolds O(p1, p2, p3) are good
candidates to admit strongly positive curvature. In [BGM94] the authors prove that the
spaces S(p1, p2, p3) are diffeomorphic to biquotients SU(3)//S1, where S1 acts from both
sides as

S1 × SU(3)→ SU(3)

z, A ↦→ diag(zp1 , zp2 , zp3) ·A · diag(1, 1, zp1+p2+p3).

J. Eschenburg investigated these biquotients in [Esc82] showing that they admit metrics of
positive sectional curvature coming from SU(3).

Our considerations focus on a different construction of positive sectional curvature metrics
on these space due to [Dea04].

Theorem 6.5.6 ([Dea04]). Let (M, g, ξi, ηi, φi) be a 3-Sasaki manifold and assume that the
leaf space N = M/F has positive sectional curvature. Then (M, gt) with gt = g|H + tgV for
t < 1/2 have positive sectional curvature.

We remark that the metric gt is exactly the metric obtained by H-homothetic deformation
with parameters a = 1, b < −1/2 and 0 < c < 1/

√
2, compare (3.10). Considering that

for 3-Sasaki manifolds α = δ = 1 this corresponds to those metrics for 3-(α, δ)-Sasaki
manifolds with β > 0. This makes Theorem 6.5.6 a positive sectional curvature version of
Theorem 6.3.9.

O. Dearricott then proved positive sectional curvature of O(p1, p2, p3) under an additional
condition on the pi.

Theorem 6.5.7 ([Dea04]). If
√
2min{p1, p2, p3} > max{p1, p2, p3} then O(p1, p2, p3) has

positive sectional curvature.

We expect to show even strongly positive curvature of O(p1, p2, p3) under possibly further
conditions on the weights. We mention one final case strengthening this expectation. If
p1 = p2 = p3 = 1 the 3-Sasaki manifold S(p1, p2, p3) = W 1,1 = SU(3)/S1 is the homoge-
neous Aloff-Wallach space encountered before and we have implicitly used in the proof of
Theorem 6.4.2 that O(p1, p2, p3) = CP 2 is strongly positive with a sufficiently small multiple
of the volume form.
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