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1. INTRODUCTION

Representation stability in the sense of Church and Farb (see [5] and [4]) is a property
of sequences of symmetric group representations. For every number n € N we write 5,
for the symmetric group on {1,2,...,n}. The following basic facts about symmetric group
representations can be found in [16]. The irreducible representations of S,, are indexed by
integer partitions. An integer partition A F n is a finite sequence A = (A, ..., \;) of positive
integers with A\; > ... > \; and |A| == Zi:l Ai = n. We sometimes write (1™, ...,n™") for
A = (A, ..., \) where every m; = m;(A) is the number of occurences of i in (A, ..., \;).
We write S* for the irreducible representation corresponding to A and sy for its Frobenius
characteristic. We refer to [12] for background on symmetric functions. For every n € N the
functions s, with |A\| = n are called Schur functions and form a Z-basis of A, the group
of symmetric functions whose monomials all have degree n. The function h, := s, is
called a complete homogeneous symmetric function and e, := s(i») is called an elementary
symmetric function. Now we introduce representation stability in the sense of Church and
Farb. Let A = (Aq, ..., \)) Fn. Then A+ (1) :== (A, + 1, Ay, ..., A)) Fn+ 1. If an S,-module
V has a decomposition

V= @ CLAS/\

AFn
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then we define
V4 (1) = P as.
AFn
Similarly, if a symmetric function f has a decomposition

[ = ZCL,\S,\

then we define

F41) = asriq).

Next, we look at sequences {V},},>0 0f Spin,-representations or sequences of their charac-
teristics. Such a sequence stabilizes at m > ng if

Vo =Vo1+ (1) for all n > m.
The sequence stabilizes sharply at m > ng if m is the smallest integer such that
Vo= Va1 + (1) for all n > m.

In Chapter 2, we consider arrangements of diagonal subspaces of (R?)" for natural num-
bers d and n. For a finite arrangement A of linear subspaces of (R?)", we define the union
Uy = UyeaV and the complement M 4 = (R%)"\ U4. The intersection lattice L4 is the set
of intersections of arbitrarily many elements of A ordered by reverse inclusion. The least
element 0 is (RY)™ the empty intersection, and the greatest element 1 is the intersection of
all elements of A. For a subset T" of L4 the join sublattice of L4 generated by T consists
of all intersections of arbitrarily many elements of 7" also ordered by reverse inclusion. If
A is the arrangement of diagonal subspaces given by all equations of the form w; = w; for
1<i<j<n w=(wy,..,w,) € (RY)", the intersection lattice L4 is isomorphic to the
lattice II, of set partitions of {1,...,n}. For a set partition 7 of {1,...,n} let W< be the
linear subspace of n-tuples (wy, ..., w,) of points in R? such that w; = w; whenever ¢ and j
are in the same block of 7. We also write 7 for the corresponding subspace W2 of (R4)". If
7 € I1,, is a set partition into the subsets By, ..., By of {1,...,n} called blocks of 7, we write
7 = By|...|B;. In this notation, we have 0 = {1}|{2}|...|{n}. The set partition 7 = B|...|B;
is said to be finer than 7’ = C4|...|C,,, if for every 1 <i <[ there is a 1 < j < m such that
B; C C;. We may reorder the sets By, ..., B; such that # B, > ... > #B,;. The integer parti-
tion (#B4, ..., #B;) is then called the type of 7. If A is a set of integer partitions of n, then
IT, is the join sublattice of II,, generated by all set partitions of type A for all A € A. For
an integer partition A we denote by A¢ the arrangement of all subspaces W¢ such that  is
of type A. More generally, set A% = Uycp A§ for every finite set A of integer partitions of n.
The complement M$ = (R?)™ \ Uwead W is a real manifold. If A = {A}, we write M for
M4. The action of the symmetric group S, on n-tuples of points in R? by permuting the
coordinates induces an S,,-representation on the reduced singular cohomology H*(M$%,C).
Formulas for these S,-representations were determined by Sundaram and Welker in [19].
We look into representation stability of these modules.

Our main purpose in Chapter 2 is to prove that sequences of these modules stabilize, and
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to obtain stabilization bounds. This is the content of Theorem 2.1. The fact that this se-
quence stabilizes can also be deduced by results of Gadish ([8, Theorem A]) and Petersen
(|13, Theorem 4.15]). Their theorems do not provide bounds. The case A = {(2,1"?)} was
proved by Church ([4, Theorem 1]) and for this case Hersh and Reiner provided the exact
stabilization bounds (|11, Theorem 1.1]). The results of Chapter 2 are published in [14].
In Chapter 3, we define a generalized kind of stability for sequences of representations.
Motivated by Lemma 2.2 where we show that the product of a stabilizing sequence with a
constant sequence also stabilizes, we show in Chapter 3 that sequences obtained as prod-
ucts of stabilizing sequences fulfill certain recursive relations in a way that generalizes the
definition of representation stability. We use methods from the theories of symmetric func-
tions and polytopes. These results can be found in [15].

The aim of Chapter 4 is to look for further examples where representation stability occurs.
We look at relative subspace arrangements, i.e. pairs of arrangements (A, B) such that
Ug C Uy. For sequences {(A,, B,)}, of relative arrangements one can ask whether the
sequence {H(Uy, \ Ug,,C)}, stabilizes. We take one step into this direction by deriving
a Goresky-MacPherson like formula ([9],[19, Theorem 2.5(ii)|,[2, Theorem 2.1]) for relative
arrangements. Our formula corrects a formula from [21, Theorem 4.8] where too weak as-
sumptions are formulated. For deriving the formula we use an approach from Ziegler and
Zivaljevi¢ (|23]). We study homotopy colimits. In particular, we give elementary proofs
of G-equivariant versions of classical results from this theory. We see at an example that
stability will not hold in general but we believe that it could hold for nice classes of relative
arrangements.

2. STABILITY FOR ARRANGEMENTS DEFINED BY INTEGER PARTITIONS

2.1. Main theorem and proof. For an integer partition A we write [(\) for its length
i.e. its number of parts. As in [11, Definition 2.5] let rank(\) := |A\| —I(\) be the rank of A.
Note that set partitions of type A have rank(\) as their poset rank in the partition lattice.
Now we formulate the main theorem of this chapter.

Theorem 2.1. Let A be a nonempty finite set of integer partitions of the number ng
not containing (1™). For every n > ng let A™ be the set of all integer partitions of n
obtained from integer partitions in A by adding n — ng parts of size 1. Let rank(A) =
min{rank(\) | A\ € A}. For every i and d > 2 the sequence {H' (M2, ,C)}, stabilizes at
4(i+ 1 —rank(A))/(d — 1).

d
An)>

The following lemma is a generalization of [11, Lemma 2.2|. For integer partitions v, A
and p with ¢ C v, we write LR}, , for the set of all Littlewood-Richardson tableaux of
shape v/p and weight A. A thtlewood Richardson tableaux T of shape v/u and weight A
is a semistandard skew tableau of shape v/u whose boxes are labeled with Ay 1’s; Ag 2’s
etc. and concatening the reversed rows of T" from top to bottom yields a word w With the
property: In every initial part of w the integer ¢ occurs at least as often as ¢ + 1 for every
1> 1.
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Lemma 2.2. Let A and « be integer partitions. For every n > aq we consider the integer
partition (n,a) = (n,aq, ag,...). The sequence {5 a)Sx}n stabilizes sharply at Ay + oy. In
other words

S(n,a)Sx = S(n—1,a)Sx + (1)
if and only if n > A\ + ag.

Proof. Suppose n > A1 + ;. Let v be an integer partition of n + || + |a| with (n,«) C v.
By the Littlewood-Richardson rule (see [12]) the multiplicity of s, in S(na)sx is #LE(, ) »-
Let v/ be the integer partition of n— 1+ |\| + || obtained from v by replacing 4 by v; — 1.
We define the map /

Qb : LRl(/n,a),)\ — LR(Vn—l,oz))\
by the following procedure: Remove the first empty box in the first row of the tableau and

then move all other boxes of the first row one place to the left. The two steps are illustrated
below with n =5, a =(1,1), A=(3,1) and v = (6,4, 1):

[1]

[1]
2] — 12 — [[1]2

1]

We want to show that the resulting tableau is indeed a Littlewoood-Richardson tableau so
that ¢ is well defined. The only condition that has to be checked is that, in the first two
rows, we have no two 1’s lying in the same column. But this follows from the inequality
vy > n, since n > A1 + oy implies that n is larger than the number oy of empty boxes in
the second row plus the number of 1’s in the second row. Note that ¢ has an inverse map:
Given a tableau in LRZ/—L , we move the first row one place to the right and put an empty
box in the gap. So ¢ is bijective and #Lh’(”n,a%A = #LR’(’JL_M)M\. This shows that {s(, )51 }n
stabilizes at A\; +aq or sooner. Now let n = A\;+a; and v = (n,n, Ao+ an, A3+as, ...). There
is a Littlewood-Richardson tableau of shape v/(n,a) and weight A\: We look at the Ferrers
diagram of v and put A\; 1’s at the end of the second row, Ay 2’s at the end of the third
row and so on. It follows that we have a Schur function s, with 1 = v, and multiplicity
greater than or equal to 1 in the decomposition of s, «)sx. This shows that s(, )5 cannot
equal f + (1) for any symmetric function f, completing the proof of sharpness.

Though the special case of Lemma 2.2 where a = () (|11, Lemma 2.2|) suffices to prove
our main results, Theorem 2.1 and Theorem 2.5, the general case might also be of interest
as we show in Section 4.

Proof of Theorem 2.1. By |19, Theorem 2.5(ii)| and |2, Theorem 2.1| we have

[j[i(Mjl\(n) 5 C) = @ Indfgn)ﬁ (ﬁcodim(ﬂ)_i_Q«O, 7T), (C) ® [N{COdim(n)_l(Sdnil N 7TJ‘, C))
re(I0,))/Sn
(HX(@“))/STL is a set of representatives of the action of S, on Il m excluding 0. (Sn)r is

the stabilizer subgroup of 7. H;((0,7),C) is the reduced simplicial homology on the order
complex A((0, 7)) in degree j > —1. The number codim(r) is the codimension of 7 as a real
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subspace of R and S%~! is the unit sphere in R, If 7 is of type p = (1™ 2m2() ) |-
n, then its stabilizer (S,), is the product of wreath products []; S, (.)[S;] and codim(7) =
d(n — I(y)) = d - rank(p). The length of a chain in II,, from 0 to 7 is less than or equal
to Zé(’q(,uj 1) = n —I(p) = rank(p). Since the atoms in Il are of shape A for A € A,
the length of a chain in IT, from 0 to 7 is less than or equal to rank(u) — rank(A) + 1 and
contributes to homology in degree less than or equal to rank(u) — rank(A) — 1. It follows

that if the homology ﬁcodim(ﬂ)_i_g((ﬁ, 7),C) is not zero, then
—1 < d-rank(p) — i — 2 < rank(p) — rank(A) — 1
and then
(1 +1)/d <rank(p) < (i + 1 —rank(A))/(d —1).
Let i be the integer partition obtained from p by removing the parts of size 1. The rank

of v and the rank of fi are the same. From [11, Proposition 2.8|, we have rank(f1) + 1 <
|| < 2-rank(@). This yields

1+ (i+1)/d < |ji| <2(i+ 1 — rank(A))/(d — 1).

The subgroup Sy, () [S1] = Sm, () acts trivially on ﬁcodlm(ﬁ) e 2((6 ), C). The coordinates
of vectors in the space 7 which correspond to the singletons of 7T are zero. It follovvs that
the above copy of Sy, (,) acts trivially on Hcodlm (SNt (C) Let S(m() he the
trivial Sy, (,-module. We get the following 1som0rphlsm of [T;51 Sm,(w[5;]-modules:

gcodim(w)—i—Q((O 7),C) ® Hcodlm (8t (C)
~ gmW) (ﬁcodim(w)—i—2((07 m),C) ® Hcodlm (St 0)).

We consider the interval (0,7) in IT,(). The atoms in (0, 7) have at least n —ng singletons.
If we delete min{n — |fi|,n — ng} many singletons from 7, after renumbering we can view
(0,7) as an interval in I, maztiangy. We may also ignore the coordinates of vectors in Tt
which correspond to the singletons of 7. We have codim(n) = d - rank(j). It follows that
the [[,59 Sm;([S;]-module

gcodim(ﬂ')—i—Q((O ) C) ® Hcodlm (Sdn ! N 7T (C)

does not depend on n and we write Vj; for it. Using the transitivity of induction on
H]Zl Sim; (1055 < Sy X Sn—my(u) < Sn We get:

Sn m
Sn m1 p,) n ml(u)
= Indg Sy (1) X Smmw)(s ®In d [I;>25 m[S}(V))
_ n—|f S\l -
Ind n—1al %S \(S ®Ind [L>2 m]-m)[Sﬂ(VM))'

Let
f o Ch(Ind]._‘[l]L2 Sm7(u)[s }(Vﬂ))



We have s
Sn n—| i

= Il fi
where h,,_ |5 = S|z It follows that the characteristic of Hi(./\/ljl\(m, C) is

>, Pt f-

fi an integer partition with no parts of size 1,

14 (i41)/d<|fi| <2(i+1—rank(A))/(d~1)

From Lemma 2.2, it follows that the sequence stabilizes at a number larger than 2|j| for
every i occurring in the sum. This is fulfilled at 4(i + 1 — rank(A))/(d — 1). [

2.2. Improved stability bounds for k-equal arrangements. We consider the sequence
{Hi(M‘(ik 1n_k),(C)}n for £ > 2. Theorem 2.1 states that stabilization occurs at 4(i + 2 —

k)/(d — 1). First we have a closer look at the special case k = 2. In this case, stabilization
occurs at 4i/(d —1). We compare this to the known results in the literature which focus on
the case k = 2: By [4, Theorem 1] we have stabilization at 2i for d > 3 and stabilization
at 4i for d = 2. By [11, Theorem 1.1] we have the following for ¢ > 1. The sequence is zero
from the beginning, if d — 1 does not divide i. Otherwise it stabilizes sharply at 3i/(d — 1)
for odd d > 3 and it stabilizes sharply at 3i/(d — 1) + 1 for even d > 2.

Now we consider {ﬁi(M?k,1n7k>, C)}, for general k > 2. The stability of this sequence was
also considered by Gadish (|8, Example 6.11]) as an example of his general results. We want
to determine smaller upper bounds than the ones given in Theorem 2.1 where stabilization
occurs for k > d + 1. Let h,, = s(,) be the complete homogeneous symmetric function,
en = S(in) the elementary symmetric function and w the involutive ring homomorphism
of the ring of symmetric functions with w(h,) = e,. We write 7, for the characteristic of
H"3(A(I1,),C) and I, = w(m,). For symmetric functions f and g we write f[g] for the
plethysm of these two functions.

Theorem 2.3. [19, Theorem 4.4(iii)] Let d > 2, k > 2,5 > 0 and n > 1. Let Uy :=
> isk S(—k+1,16-1)- For every r,t > 1 and ¢ > 0 such that i = (d—1)(n —r —q) + t(k — 2)
let Wp gt be

(w (w (er e zj]) e t[Uk]> ldeg n—qltq if dis even
((hT[Zj21 lﬂ) |deg t[Uk]> |deg n—qgPq if dis odd and k is even .
k (((—1)thr[2j21(—1)jwj}> e t[Uk]> ldog n_qhy if d and k are odd

Then the characteristic of the S, -representation on ﬁi(M?k [nk); C) is

Z wn,q,r,t-

r,t>1,¢>0:i=(d—1)(n—r—q)+t(k—2)
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Lemma 2.4. Letd > 2, k>d+1,i >0 andn > 1. Let r,t > 1 and q > 0 be such that
i=(d—-1)(n—r—q)+t(k—2). Let Uy := 3 .o S(-rt1,15-1) and Py g be

(W <wk ( i1l ]) |deg t[Uk]> |ldeg n—qllg if dis even

he[> i1l ) |deg t[Uk]> |deg n—qPq if dis odd and k is even .

(Ch>
(( ]>1 1)]'7%) |deg t[Uk]> ldeg n—qhtq if d and k are odd

\

)¢nqrt ¢n—1,q—17r,t+(1) qu>n/2 ananQ

i) Yngrt = Un-1g-1,0+ (1) if d is even, ¢ >tk and n > 2.
)wnqn—()zfr>t0rt>n/k
iv)
)

¢n ,q,rt T 0
wn,q,r,t - O

Proof. (i) We have 1, 4.+ = fu—qh, for a symmetric function f,_, of degree n — ¢ and
hy = s(g). From Lemma 2.2, we get

wmq,r,t = fn—qhq = fn—qhq—l + (1) = f(nfl)f(qfl)hq—l + (1) = wn—l,q—l,r,t + (1)

if ¢ > n — q or equivalently ¢ > n/2.

(ii) If d is even, then ¥y, 4.1 = W(fi]Uk])|deg n—qhq for a symmetric function f; of degree t.
The partition of every Schur function in Uy = ijk 8(j—k+1,1+-1) has length k. From [11,
Proposition 4.3 (d)] it follows that for every s, with A = n — ¢ occurring in the Schur
function decomposition of w(f;[Uk])|deg n—q the first row of A has length less than or equal
to tk. If ¢ > tk, it follows from Lemma 2.2 that

Vngrt = W(fi [Uk])ldeg n—qhq = W(ft[Ukmdeg n—ghg—1+ (1)

= W(ft[Uk])’deg (n—l)—(q—l)hqfl + (1) = wn—l,qfl,r,t + (1)-

(ii) If 7 > ¢ the terms e,[Y5 .o, ], he[30;51 1] and (=1)'h,[3° .-, (=1)7;] only have terms
of degree greater than ¢. Then the whole term 1, 4, is zero. U, only has terms of degree
greater than or equal to k. Then f;[Uy] for a symmetric function f; of degree ¢ has only
terms of degree greater than or equal to tk. If ¢ > n/k then tk > n > n — ¢ and again
Un.qrt 1S Z€TO.

(iv) Suppose ¢, 4, # 0. We have to
From ), 4.+ # 0 and (ii) we get r < t. From ¢ < n/2 and i = (d 1)(n —r—q)+ t(k: 2)
we get

=2 _ i o ik=2)
d—1 —1—-4d 17—

Td+n/2+

=T



Using r < t we get

m+n/2+t<§_ 12) <t
and simplifying yields
i td+1—k)
"2 T d—1
Using k > d+ 1 we get
21
d 1

(v) Let k > d+ 2. Suppose 9, 4+ # 0 and ¢ < tk. We have to show that n < k—]fji—l' From
q<tk,i=(d—1)(n—r—q)+t(k—2)and r <t by (iii) we get

LIPS Gk T Gl S
1—d i—1 —~1-d4 " 1T g1 T"="
It follows that ( )
-2
- — <
1—d+n tk + 11 <t
and then
n< kT2
d—1 1—d '
From (iii) we know ¢ < n/k. It follows that
1 k—2
< — — +1
n_d_l—l—k(k‘+1_d+)
and then
k—2 ki
-1 <
Mg Vs
Using k > d + 2 we get
ki
ki
n < -1
21 k-d-1

Theorem 2.5. Letd > 2, k > d+1 andi > 0. The sequence {HZ( k Jn—ky C)}n stabilizes
at Qf If d is even and k > d + 2, the sequence stabilizes at

71
Proof. From Theorem 2.3, we have that the characteristic of the S,-representation on

Hi(ME, |, ., C) is
Z wn,qmt

rt>1,g>0:1=(d—1)(n—r—q)+t(k—2)

where 1, ,,+ is as in the previous lemma. If ¢ > n/2 then we get

wn,q,r,t - ¢n—1,q—1,r,t + (1)



from Lemma 2.4(i). From Lemma 2.4 (iv) we get ¥, ..+ = 0if ¢ < n/2 and n >

Putting these facts together we get for n > -2

d—1"
Z 77b7z,q,r,t - Z 77Z)n,q,7‘,t -
rt>1,q>0:0=(d—1)(n—r—q)+t(k—2) rt>1,q>1:u=(d—1)(n—r—q)+t(k—2)
Z zﬁnfl,qfl,r,t + (1) = Z wnfl,q,r,t + (1)
rit>1,g>1:i=(d—1)(n—r—q)+t(k—2) rt>1,g>0:i=(d—1)(n—1—r—q)+t(k—2)

Now let d be even and k > d + 2. If d is even and ¢ > tk we have

wn,q,'r,t = wn—l,q—l,'r,t + (1)
from Lemma 2.4(ii) and ¢, 4,+ = 0 if ¢ < tk and n > %~ from Lemma 2.4 (v). For

n > # the same computation as above yields the stability property. |

In Table 2.7, we give a list of sharp stability bounds for these representations.

Question 2.6. Is there an explicit formula for the sharp stability bound of ﬁi(M‘(‘{kJn,k), C)
for general k, d,i?

Table 2.7 (Sharp stability bounds for F[Z(/\/l?k 1wy ©))e
If k 1s fized and © grows, the sequence of bounds appears to increase by 1 in most of the
steps especially at the beginning and with large k. Later, there also appear steps with bound

differences 2 or 3.

? 7 /8 |9 |10(11 12|13 |14 (15|16 17|18 1920
bound | 10 |11 | 12| 13|14 |15 |16 |19 |21 |22 |23 |24 |25 |26

For the computations Maple 18.01 and the SF-package of J. R. Stembridge
(www.math.lsa.umich.edu/ jrs) is used.
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7 11112113114 [15]16 | 1718|1920 |21 |22 |23 |24 |25 |26 |27
bound | 14 | 15|16 | 17|18 {1920 |21 22|23 24|27 |29 |30|31|32|33

7 13114115116 17|18 [19(20 2122|2324 25|26 |27 28|29
bound | 16 | 17 | 18 | 19|20 |21 [ 22|23 |24 |25 26|27 |28 |31 |33 |34 |35

I 15116 |17 1811920 |21 |22 |23|24|25|26 |27 28|29 |30 |31
bound | 18 | 19 |20 |21 22|23 24 25|26 |27 |28|29|30 (3132|3537

2.3. Stability in the homology of k-equal partition lattices. We showed in Lemma 2.2
that for integer partitions o and A the sequence {s(;,4)s)}n stabilizes at a; 4+ A;. In this
section we give an application of this fact in a situation where « is not the empty partition.
For every 2 < k < n we consider the lattice II(; 1»—# of set partitions all of whose block sizes
are 1 or greater than or equal to k ordered by reverse refinement. We have Il (g -2y = II,,.
Note that II; 1+ is the intersection lattice of the subspace arrangement with complement
M?k,l"—k)' We recall the following result on the homology of the order complex of IIj jn—&:

Theorem 2.8. [18, Corollary 3.6] (i) Let 3 < k <n and1 <t < |n/k|. The characteristic
of Hy—3_y(k—2) (g 1n-ky, C) tensored with the sign representation is given by the degree n
term in

W () [Z 5(jk+1,1k1)] .

izk

(i1) Let 2 = k < n. The characteristic of H,_s(IL,, C) tensored with the sign representation
15 given by the degree n term in

[n/2]
S [zsm] .
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By [18, Lemma 3.2| the term w®(l;) [ijk S(j_k+1’1k—1)i| ldeg n decomposes into the sum

Z ¢k’,t,n,/\
A

where
¢k,t,n,A = Wk<lt)‘ni21; my>0 Sm, [® 3(jk+1,1k1)]
>k
and the sum runs over all partitions A = (A1,..., \;) = (0, ..., k™) of n with ¢ parts

and all parts greater than or equal to k. Now we apply Lemma 2.2 to {¢rsn}r, where
Ao, ...y A, k and ¢ are fixed and A; and n = n(\) = ZZZI i gTOw.

Proposition 2.9. The sequence {¢p1nx}y, stabilizes at \y =k + 2122 A

Proof. TIf Ay > Ay then my, = 1 and the restriction w*(Iy)|7., o —oSm, 18 the tensor product

of the trivial S;-module and a [[;51,2y, ;50 Smi-module. We get dpynx = Sx,—gt1,16-1)f
for a symmetric function f of degree 2122 Ai. It follows from Lemma 2.2 that {¢g¢nata,
stabilizes at \y =k + >0, Ai. [

3. PRODUCTS OF STABILIZING REPRESENTATIONS

3.1. Introduction. In this chapter, we formulate all statements about S,-representations
in the world of symmetric functions. We refer to [12] for background on S,-representations
and symmetric functions. We extend the notation from Chapter 2: The componentwise
sum of two partitions A = (Ay,...,\)) and p = (pq, ..., ug) with [ <k is defined by A+ p =
(A1 + 1y ooy N+ fg, fug1s -, pi). For a fixed partition A we denote by s, + A the function
su+x and extend this definition from the basis of Schur functions linearly to all symmetric

functions. By Ago’k we denote the Z-module of sequences { f,, }nen with f,, € Apgin, for all
n € N. For every ng € N, every partition A and every divisor m of |A| we define

Af\n : A§07|/\|/m — A§07|/\|/m, {fn}nZO — {A;fn—km}nzo

where A) f, = fu — (fa—m + A) for all n > m.
We write A* for A7,

Ezxample 3.1. (i) Let {S(m2)}n € A% Then
AWs 00 = S(n2) — (Sm-1.2) + (1)) = S(n2) — S(n2) = 0.
(i) Let {S@nm }n € AY". Then

A(4)3(3n,n) = S(3n,n) — (S(Sn—3,n—1) =+ (4)) = 5(3n,n) — S(Bn+1,n—1)

and

A(371)8(371,77,) = S3n,n) — (8(371—3777,—1) + (37 1)) = 53n,n) = S(3n,;n) = 0.
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For a partition A = (A1, ..., \;) and n > A\ we write(n, \) for (n, A, A, ..., A;). We consider
sequences of Schur functions of the form {5(n7A)}n2,\1 € AK\"I. Let aq,...,ar € N and
A1, ...; A be number partitions. Then the sequence of products {Sgta;.) " Smtagre) fn 19
an element of A§1+|Al‘+"'+a’“+u’“"k. We can apply difference operators Aﬁd/k on it where |u|
is a multiple of k. Using these operators, representation stability in the sense of Church

and Farb can be described in the following way: A sequence {f,}, € Ag‘)’l stabilizes at
N e N if
AW (f,)=0foralln > N.

This can be seen as a special case of a wider set of properties of symmetric function
sequences. There are sequences who do not eventually become zero by applying A but by
applying another of the difference operators defined above or a finite sequence of them. This
is the case for sequences of componentwise products of two or three stabilizing sequences.
Now, we are in position to formulate our main theorem.

Theorem 3.2. Let aq > ay > a3 > 0 and A, \a, A3 be number partitions. Then
(a)
APAED (5000 Stmtase)) = 0 for all n > | M| + [Ag] + 1 — aa.

The set {A®) ATDY is minimal in the sense that the above sequence is not even-
tually zero if we remove one of the difference operators.

(b)
Af’g)A(?’)A(z’l)A(l’l’l)(5(n+a1,Al)5(n+a2,A2)5(n+a3,A3)) =0
for all n > max{4, a1 — g + I(A1)} + 2(| A1 | + [A2| + | As] + 1) — as.
The set {Ag‘*”, A®ACH AGLDY s minimal in the sense that the above sequence
1s not eventually zero if we remove one of the difference operators.

There is experimental evidence that an analogous statement about fourfold products
holds. We formulate this in the following conjecture. We do not provide a complete proof
of this statement but show how our methods indicate its validity until reaching a point
where the number of cases to discuss is massive.

Conjecture 3.3. Let ag > g > a3 > ay > 0 and A\, Ao, A3, Ay be number partitions. Then
A§4’4’4)A53’3’2)A(4)A(B’l)(A(2’2))Z(A(Q’l’l))zA(l’l’l’l)(5(n+a1,,\1)5(n+a2,,\2)5(n+a3,A3)5(n+a4,A4)) —0

for sufficiently large n.

The multiset {A§4’4’4), A§3’3’2), AW ABD AR AR ACLY ACLY AGLLDY 45 minimal
in the sense that the above sequence is not eventually zero if we remove one of the difference
operators.

We show in Lemma 3.9 that every difference operator A} is linear so that we can expand
the theorem to a wider set of symmetric function sequences. We get the following corollary.

Corollary 3.4. Let mq, mo, m3, N, No, N3 € N and {fﬁ”}n, {fr(f)}n, {f,§3)}n be sequences
such that {f\'}, € A stabilizes at Ny for all i € {1,2,3}. Then
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ABAED(FI ) =0
for all n > max{Ny, Ny, m; + my + N1 + Ny + max{Ny, No} — 2}.

The set {A® AV s minimal in the sense that the above sequence is not even-
tually zero if we remove one of the difference operators.
(b)
Agg’g)A(g)A(z’l)A(l’l’l)(f,(f)ff)ff’)) —0
for all n > max{Ny, Ny, 2(m; + mo + mg + max{my, ma, ms}) + 3(Ny + Ny + N3) — 7}.
The set {ASY A® ACD ACQLDY s minimal in the sense that the above sequence
1s not eventually zero if we remove one of the difference operators.

In the same way, Conjecture 3.3 is equivalent to the following statement.

Conjecture 3.5. Let my,...,my, Ni,... Ny € N and {f\" Vo, {210 A58 1 {F9Y, be
sequences such that {f#)}n € A" stabilizes at Ny for alli € {1,2,3,4}. Then

A§’4,4,4)A§3,3,2)A(4)A(3,1) (A(2,2))Z(A(2,1,1))2A(1,1,1,1) (fr(zl)fr(f)fég)fr(;l)) -0

for sufficiently large n.

The multiset {A§4’4’4), A53’3’2)7 AW ABGD A@2) A2 ACLD ARLD AGLLDY s minimal
in the sense that the above sequence is not eventually zero if we remove one of the difference
operators.

We formulate a statement about products of arbitrarily many stabilizing sequences as a
question.

Question 3.6. Let k > 1 and {f\"}, € ARt (i, € A" be stabilizing sequences.
Let {A1, ..., A\.} be the set of partitions of the numbers k, 2k, ..., (k — 1)k. Is there a set of
nonnegative integers {qi, ..., ¢x—1} and a number N such that

(Af\fl\/k)ql T (A\A;,,\/k)qr (fél) s f,E’“)) =0foralln >N

and ¢; + ... + g,_1 is minimal with this property and how can we compute the numbers
qi,---,q- and N7
By Lemma 3.9 (ii) this is equivalent to

Question 3.7. Let £ > 1, oy > --- > a4y > 0 and pq, ..., pux be number partitions. We
consider the sequence {S(ta; ) " Stntapm)fn € A§1+‘“1|+"'+a’“+|“’“"k. Let {1, ..., A} be
the set of partitions of the numbers k, 2k, ..., (k — 1)k. Is there a set of nonnegative integers
{q1,.--,qx—1} and a number N such that

A r r —
(A|)\11|/k)q1 ) (A|):\T|/k)q (s(nJral,ul) e S(nJrak,/lk)) =0foralln>N

and q; + ... + qr_1 is minimal with this property and how can we compute the numbers
qi,...,q and N7
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Corollary 3.4 can be applied to cohomology groups with coefficients in C of products of
spaces X,, C C" on which the symmetric group S, acts and { H?(X,,,C)},, is representation
stable like the spaces considered in Chapter 2. If X,,,Y,,, Z,, C C" are spaces with an action
of S, the group S, x S,, acts on X,, XY}, and the group S, x .S, xS, acts on X,, XY, X Z,.
By the Kiinneth formula, we have the following equalities of (S,, x S,)— and (S, X S,, X S,,)-
modules:

HY(X, x Y,,C)= @ H'(X,,C)® H(Y,,C),
i+j=k
HY(X, x Y, x Z,,C) = @ H'(X,,C)® H(Y,,C)® H'(Z,,C).
itj+l=k
If all the sequences
{H" (X0, C)}n, {H" (Y5, C) o, {H"(Z0, C) }e

are representation stable for all ¢ then inducing the (S,, x S, )-representations up to Sa,
and the (S, x S, x S,)-representations up to Ss, leads to the following corollary:

Corollary 3.8. Let { X, }n, {Ya}n, {Zn}n be sequences of topological spaces equipped with an
Sn-action on X, Y, and Z, for every n such that the sequences { H (X, C)}n, {H (Yy, C) }n
and {H(Z,,C)},, are representation stable sequences of Sy-representation for every i then
for every k the sequences { H*(X, xY,,C)},, and {H*(X,, xY,,x Z,,C)},, fulfill the following
recurrence relations:
APDACDIdZ o H*(X,, x Y,,,C) =0,
APIADACDACID @S o o HY(X, x Y, X Z,,C) =0
for sufficiently large n.

The rest of the chapter is dedicated to the proof of Theorem 3.2 and Corollary 3.4.

3.2. Reduction to homogeneous symmetric functions. We show in the following
lemma that the difference operators commute such that we are free to choose their order
and that they are linear.

Lemma 3.9. Let A\ and p be partitions, m a divisor of |A| and | a divisor of |u| with
i/l = || /m. Let ng >0 and {f,}n € AL™. Then

(i)
AN ANV (f) = AFAX (f,) = for all n.

(ii) The map AX : ApM™ 5 ATOWI™ 4o linear.
Proof. (i) We have
Af;LAffn - AﬁL(fn - (fn—l + #)) - fn - (fn—l + M) - (fn—m + )‘) + (fn—l—m + % + /\)

= Af(fn — (fa-m + ) = AluA;fn-
(ii) A} is the difference of the shift operator {f,}, = {fnim}n Which is linear and the
map {fu}n — {fn + A}, which is a linear extension. |
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It follows from Lemma 3.9 (i) that we can define iterated products [],., A over sets of
difference operators D = {A) ... A" }. Now, we prove Corollary 3.4 using Theorem 3.2
and Lemma 3.9 (ii).

Proof. (a) The sequence {f,gf)}n € AQ! stabilizes at N; for every i € {1,2}. Tt follows that

fff) is a linear combination of Schur functions s(,4q, ) With a; > 1 — N; and A; = m; — a4
for all n > Nj;. Theorem 3.2 yields that

APAED (5000 Smtasrey) = 0 for all > |Ai| + [Ag| + 1 — min{ay, as}.
We have
ALl 4+ [A2] + 1 —min{aq, az} < my +mg + Ny + Ny + max{ Ny, No} — 2.

The claim follows from Lemma 3.9 (ii).

(b) The sequence {f{"}, € AR stabilizes at N; for every i € {1,2,3}. It follows that £
is a linear combination of Schur functions s¢,1q,,,) With m; > a; > 1—N; and A, F m; —«;
for all n > N,;. Suppose oy > as > a3. Theorem 3.2 yields that

3,3
Ag )A(B)A(Q’l)A(LLl)(3(n+a1)\1)3(n+a2)\2)3(n+a3,>\3)) =0

for all n > max{4, a1 — as + (A1)} + 2(|A1] + | Aa] + [ N3] + 1) — as.
We have
max{4,a; — as + 1(A1)} + 2(| 1] + |Xo| + X3 + 1) — a3
<mp+No—1+my+ N —1+2(my+me+mg+ Ny + No+ Ng—2)+ Ny — 1
=4my + 2mg + 2m3 + 3(Ny + No+ N3) — 7
The claim follows from Lemma 3.9 (ii). |

We want to show next that we can restrict to products of homogeneous symmetric
functions s, if we additionally multiply with a constant sequence.

Lemma 3.10. Let k£ € N and Ay, ..., \,, be number partitions of multiples of k. If for
all number partitions B and o, ...,ap—1 € N the sequence {Sgmia,)** Sntar_1)Sm)S8tn €

A§]1+"'+0¢k—1+‘5‘7k fulﬁlls

A Am _
AR AR e (8mtan) ** Sttar—)SmySs) =0

for all n greater than some number ng(ay,...,ax_1,|5|) then for all number partitions

W1y ey g and o, ..., o1 € N the sequence

ayt g [ ekl k
{5(n+a1,lt1) T S(n+ak—1#k—l)5(nvﬂk)}n S ANl o T fulfills

A Am _
AR e AN e (Sttrarm) ** Stran s 1) S(nu)) = 0

for all
n > max{ng(a+i, ..., tp+ig, |1 | =i+ .|| —ix) | i € {0, ..., 1(pg)} for all g € {1, ..., k}}.
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Proof. Let oy, = 0. The Jacobi-Trudi identity yields

k
H S(n+aq )
q=1

i S(ntaq) S(ntagtl) o S(ntagti(ug))
_ H det S(pg,1—1) S(nq,1) o S(pga+(ug)—1)
S(pg,1(ug)—Uka)) S(1q,1(uq))
ko f1ng)
H Z S(n+og+i) (— ) det(MMqvi)
g=1 \ i=0
pa)  Upw) k
_ Z Z (H n+aq+lq)> (_1)i1+...+ik Hdet(Muq,iq)
i1=0 1 =0 q=1

where for v € {{u, ..., i } the matrix M, ; is the matrix we get by deleting the ith column
of

Sm=1)  Sm) - SnH(m)-1)

Sy =) e e S(ey)
The degree of Hk,1 det(My,i,) is |p1] — i1 + ... + || — ig. It follows from the assumption

that this sequence vanishes under AM A’\m for n > max{ng(ay + iy, ..., g + i, |p1| — i1 +
o el = k) | g € {0, 1(11g)} for all g € {1, ..., K}}. u

It follows that to prove Theorem 3.2 it is sufficient to prove the following

Proposition 3.11. Let oy, as, a3 € N and 8 be a number partition.
(a) The sequence {S(m+ta,)Sm)Sp}n € A§1+|B|’2 fulfills

APAED (5,4 008mm85) = 0 for all n > By + 1.
(b) The sequence {S(mta1)S(n+az)Smn)Ss}n € AO“JFOQW| ® fulfills
Ag&s A 3)A(2’1 A 1’1’1)(S(n+a1)3(n+a2)3(n)3,8) =0
for all n > max{4,a; — s + B1 + 2} + b1.
(¢) The sequence {S(nta1)S(ntas)Sn+as)Sm)Satn € A§1+a2+a3+|ﬁ"4 fulfills
Ai(’)474’4)A§37372)A(4)A(3’1)(A(Q’Z))Q(A(2’171))2A(1717171)(S(n+a1)8(n+a2)8(n+a3)s(n)sﬁ) =0
for sufficiently large n.

For every symmetric function f and [ € N we write f<; for the part of the Schur function
decomposition of f with partitions of length less than or equal to [ and f; for the part of
the Schur function decomposition with partitions of length greater than [.
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Lemma 3.12. Let k,ng,l € N and {f.}» € Ag‘)’k. Let A\, ..., A\, be number partitions of
multiples of k. Suppose

A1
AR e AR () =
Then

H A|)\|/k fn)gl:o-

Proof. We have

A Am A Am Am
AR e i = AR e AR )<t + AR e AR e (F) s

= H A\Al/k H A|A|/k (f)<t + AR i AR i fa) st
We can write

H AN i | (F)<t = (fa)<i + n-

(N>l

for a function g, with only partitions of length greater than [ in its Schur function decom-
position. It follows

0=A% A% fo= | TT A% | U<+ H A\wk In

(M) <

)\ n
+AR - \Am|/k(fn)

All partitions with length less than or equal to [ appear in (HZ 100)<l AI\A \/k> (fn)< while all

partitions with length greater than [ appear in <H 1w <l AIA \/k> 9"+A|/\1|/k; |>\m‘/k(fn)>l
and it follows that each of these two parts must itself be zero.

Consider a semistandard skew tableau T of shape v/ and weight (n+ oy, n+ag,...,n+
ar). We split T into two parts: The part of the first 5; columns which we call the centre of
T and denote it centre(7") and the rest which we call the arm of 7" and denote it arm(7T’).
For example, let

1[1]1]2]
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Then

2(2 1{1{1]2]

centre(T) = 3] and arm(7) = 213
For fixed g and k, there are only finitely many tableaux appearing as centres of tableaux
of shape v/ for arbitrary v and we denote this finite set by cx(5). We denote the set of

semistandard Young tableaux of weight v and arbitrary shape by ST () and the number
of occurences of the Symbol ¢ in the tableau ¢ € ¢, (8) by c(7)

Lemma 3.13. Let aq, ..., € N and 8 be a number partition. Then

S(n+ay)---S(nt+ai)Sg = Z (S(n—l—al—c(l))'”S(n—i-ak—c(k)))gmax{i | shape(c);=p1} + shape(c)
ceer(B)
for all n € N.

Proof. We have

S(n+ai)-+S(n+ay)S8 = Z Sshape(T")
T/
where the sum runs over all semistandard skew tableau 7" of shape v/ for any v and
weight (n + a1,n + ag, ...,n + a;) We can rewrite this sum by splitting every such skew
tableau into its centre and arm:

Zsshape(T’) = Z Z Sshape(c)+shape(T) = Z ((Z Sshape(T)> + Shape<c))

T cecn(8) T cece(d) \ \ T

where the sum runs over all 7' € ST((n + a; — ¢(1),...,n + o, — ¢(k))) such that T has
as most as many rows as c¢ has rows of length ;. Note that ), Sehape(r) is the part of
S(ntai—c(1))---S(ntap—c(k)) With Schur functions with partitions with at most as many rows
as ¢ has rows of length f;. ]

The following lemma follows from the previous two lemmas.

Lemma 3.14. Let k € N and § be a number partition. Let A\, ..., \,, be number partitions
of multiples of k. If for all numbers aq, ..., o € N there is a number N (o, ..., o) such that
the sequence {Smiar)---Stmtay)} € A§1+“'+a’“’k fulfills

A,’x e A;\ﬂ(s(nml) “ Stntay)) = 0 for alln > N(ou, ..., ap)
then the sequence {Smta,)---Stm+ay)S3) € A§1+”'+a’“+w|’k fulfills
AN AN (Sttan) * S(ntar)Ss) = 0
for all n > max{N(a; —¢(1),...,ap — c(k)) | ¢ € cx(B)} + b1
This lemma shows that it is sufficient to prove the following proposition.

Proposition 3.15. Let a; > as > 0.
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(a) The sequence {S(mian)Sem)tn € AN fulfills
A(Z)A(l’l)s(mrm)s(n) =0 for all n > 1.

The set {A®) AWDY s minimal in the sense that the above sequence is not even-
tually zero if we remove one of the difference operators.
(b) The sequence {Smiay)SmanSm) fn € A T>? fulfills

APIAGACHALID g s han) Sy = O
for all n > max{4, a; — aq + 2}.

The set {A§3’3), AB)ACD AGLDY s minimal in the sense that the above sequence
1 not eventually zero if we remove one of the difference operators.

We do not provide a complete proof of the following statement about fourfold products
but show how our methods point to its validity until reaching a point where the number
of cases to discuss is massive.

Conjecture 3.16. Let ay > an > ag > 0. The sequence {s(n+a1)s(n+a2)s(n+a3)s(n)}n €
Agrteetest gglls

A§4’4’4)Ag3’3’2)A(4)A(3’1)(A(Z’Q))2(A(Z’l’l))QA(l’l’l’l)8(n+a1)S(n+a2)8(n+a3)8(n) —0

for sufficiently large n.
The multiset {A§4’4’4), AF3D AGD AGD AR AR ACLD ARLD, AGLEOY G minimal
in the sense that the above sequence is not eventually zero if we remove one of the difference
operators.

3.3. Proof of Proposition 3.15. In the whole section n and a; > @y > a3 are natural
numbers. In the next lemmas, we use partial matrices of the form

a1 12 13 e A1k
21 22 cee G2 (k1)

Ak-1),1 Q(k-1),2
Q1

For every i € {1,...,k — 1}, we write a; for the ith row of a and |a;| for the sum of the
entries of the ith row. Let k,;n € Nand a = (aq, ..., ) € N'g with a3 > ... > ay. Let Py 0

aiq ai12 a3 e a1k

a21 22 cee G2 (k-1)
be the set of all partial matrices : with real entries

Ak-1),1 Q(k-1),2

Q1
and

OSaian—l—oziﬂ-_lforalllgigkandlgjgk—i—l—l,
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D ai; <> agoy;, forall2<i<kandl1<m<k—i+l,
j=1

j=1

Zai,(mﬂ_i) =n+aq,foralll <m<k.

i=1

or written as vector inequalities and equalities:

A(i—1),1
~1 1 G
11 -1 1 =12 0
' @; 2 <[:], forall 2 <i <Kk,
-1 1 -1 1 0
A(i—1),(k—i+1)
Q4 (k—i+1)
a1
12
a1
1 a13
1 1 22 n+ aq
1 11 as1 —
‘. : n + oy
1 1 ... 1 A1k
A(k-1),2
g1

k41
Py, 1s a convex polytope in RS TF M is a set of partial matrices we write M for its
subset of partial matrices with only integer valued entries.

Proposition 3.17. Let k,n € N and a = (aq,...,a) € NE with oy > ... > «ap. The
polytope Py o 15 (’;) -dimensional.
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Proof. Py, . is contained in the affine subspace defined by

a11
@12
21
1 ais
11 a22 n-+ o

1 11 asy _

" . n -+ oy
1 1 ... 1 a1k

A(k-1),2
A1

The above matrix has rank k. This implies that the affine subspace has dimension (kgl) —

k = (g) Otherwise, Py, o contains the following (’;) + 1 affine independent points. For
every i € {0,...,k — 1} we construct min{1,4} points starting with

n+a; 0 0 ... 0 n+ap_iy1 ... N+
n—+ og_; 0

0 .

0

We get the next point by moving n + «y diagonally left and down:

n+a; 0 0 ... 0 n4+ak+1 ... n+ap1 O
n+ay 0 ... 0 O 0 n 4+ ay
n -+ og_; 0

0 i

0
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Now, we move n + a;_1 and n + ay, diagonally left and down:

n+a; 0 0 ... 0 nd+agy1 ... Nn+aro 0 0
n+ay, 0 ... 0 O 0 n+arq, O
n+a; 0 ... 0 0 0 n 4+ ay
n -+ op—; 0

0 .

0

We go on moving the rightmost nonzero values diagonally left and down until getting the
point

n+a; 0 0 ... 0 n4+ar1 .. 0 00
n + Qo 0 ... 0 n+ozk_2-+2 0 0
n + asg 0 0 0 n+ak—i+3 0
0 0 0 0 n+4+o
n+ak_z~ 0
0
0

We constructed 1+1+2+---(k—1) = (’;) + 1 affine independent points lying in Py, .. B

Lemma 3.18. Let k,n € N and o = (ay, ..., ax) € N§ with ay > ... > ay. Then

k

[s0ra0=" D St tan:

i=1 A€PE,
Proof. The product Hle S(n+a;) 18 the homogeneous symmetric function hya,,. ntay)- It
follows from the transition matrix between the basis of Schur functions and the basis of
homogeneous symmetric functions that A(,4a,,.. nta,) 1S the sum dor Sshape(T)) TUNNING Over
all semistandard Young tableaux T of weight (n 4+ aq,...,n + ;). For every such tableau
T let a; j(T') be the number of (i + j — 1)’s in the ith row. Then the map given by

all(T) alg(T) a13 (T) Ce alk(T)
21 (T) 929 (T) e &27(]4_1) (T)
T :

ak-1)1(T)  a@g-1)2(T)
ak71(T)
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is a bijection between the semistandard Young tableaux T of weight (n + aq,...,n + ai)
and P” |

kn,o*

Lemma 3.19. Let k > 1 and a = (ay,...,ax) € NE with oy > ... > «y,. We consider the
sequence {[]_, S(n+es) fn € AK;"”“. For alln > 1, we have

k
k
AP <H S(n+ai))

i=1

- Z S(lal,--lak-1])-

AcP? s ag,1=0

k,n,a”

Proof. 1t follows from the previous lemma that

k
1k:
X >(Hs(nm>)= S = S Sttt

i=1 AepPf AePL

k,n—1,a

. . . . Z Z .
There is an injection P, , , — By, , given by

11 12 13 e A1k ap +1 12 @13 . A1k
a2 22 cee A2 (k-1) a + 1 22 cee A2 (k-1)
-~ .
a(k/‘fl)vl a(k71)92 a’(kfl):l + 1 a(k71)72
a1 a1 + 1

The matrices that are not hit by this map are those with a 0 in the first column. This

property is equivalent to a; = 0 because of 0 < a1 < ap—11 < ... < agg. [ |
We look at the polytope A(lk)Pk,n,a ={A € Pina: ar1 =0}

Proposition 3.20. Let k > 1 and o = (ay,...,ax) € NE with a; > ... > ay. The set

A(lk)Pk,nya is a facet of Pyy -

Proof. A(lk)Pk,n,a is a proper face of Py, o because of a;; = 0 for all A € A(lk)Pkm,a but
not for every A € Py, and axy > 0 for all A € Py, . This face is ((’;) — 1)—dimensional
because the set of (g) + 1 many affine independent points of Py, given in the proof of
Proposition 3.17 contains exactly one point that does not lie in A(lk)Pkﬂw. |

Lemma 3.21. Let k > 1 and a = (ay,...,ax) € N§ with oy > ... > ay,. We consider the
sequence {[]_, S(n+ai) fn € A‘R?Lk. For all n > 2, we have

k
k—2 k
ABTHACH) (H smai))
=1
- Z S(latl,.lak—1])-

AePl, ¢ ak,1=0A(a1,=0Vay_1,1=0)

k,n,a”
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Proof. Lemma 3.19 yields

k
A(Q’lk_Q)A(lk) H S(Tl+Oti)
i=1

= : : S(‘a’llv'w'ak—l') - : : S(‘a1|+27|a2|+1 """ Ia’k—lH_l)'

AepL s agp,1=0 AepZ tag,1=0

k,n,a" k,n,a"

There is an injective map {A € P,f Dagy =0} {Ae€ P,fn’a : agy = 0} given by

n—1,a *

a1 19 ais c. A1k ap + 1 a19 ais Ce a1 + 1
21 22 cee A2 (k-1) as + 1 22 cee A2 (k-1)
— .
aj(kfl)vl a(kfl)v2 a(kfl)vl + 1 a(k71)72
0 0

The matrices that are not hit are those with ¢;; =0foral <¢<k—1or ay; = 0. We can
reduce the condition to aj; = 0 or az_1,1 = 0 because of 0 < ap_11 < a2 < ... < ay. A

Let A(z’lkiz)A(lk)P]ﬂ’ma = {A S A(lk)Pk7n7a LA = oV Arp—11 = 0}

Proposition 3.22. Let k > 1 and o = (ay, ..., ) € N§ with ay > ... > .
The set A(Q’lk_2)A(1k)Pk7n7a is the union of the two facets {A € A(lk)P;m,a :ary =0} and
{A € A(lk)Pk,n,a Pag-11 = O} Of A(lk)Pk,n,oc-

Proof. The two sets are proper subsets of A(lk)Pk,ma and faces because of a;, > 0 and
ap—11 > 0forall A € A(lk)Pk,ma. {Ae A(lk)Pk,n,a . ap—11 = 0} is a facet of A(lk)Pkﬂm be-
cause the set of (]2“) +1 many affine independent points of P, , given in the proof of Propo-
sition 3.17 contains exactly two points with ax_;; > 0. For {A € A(lk)Pk’n,a Dap, =0} we
slightly modify the list of affine independent points given in the proof of Proposition 3.17.
For every i € {2,...,k — 2} we take the i points

n+aoa; 0 0 ... 0 n4+ar+1 ... n+ar1 O
n+ay 0 ... 0 O 0 n 4+ oy
n -+ Qp_; 0 ,
0 i
0



and

n -+ o
0
0

n+a; 0 0 0 n+ a1 n+ao 0 0
n —+ Qs 0 0 0 n —+ o1 0
n+ag 0 0 0 n+ oy
n—+ Qg_; 0
0 .
0
n+ o 0 0 n+ak_i+1 0 0 0
n + oo 0 0 7”L+Oékfi+2 0 0
n+asg 0 0 0 n+agis3 0
0 0 O n+ o
n -+ og_; 0
0
0
n+ o 0 0 1 n+agy1 ... 0 00
n + oo 0 0 n+o€k7i+2 0 0
n+ as 0 0 0 n+ag3 0
0 0 00 n+ ag
n+aoap_;—1 0
0
0
We additionally take the £k — 1 points
n + oo n+ap_1 0 n+o; nta
0 0 0 n —+ oy 0 n+ as
0 0 0
0O 0 0 Tl 0 ntars
0 0 0 n+ap_q
0 0 7l+0zk
0

26
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and
n+a; n+ay—1 ... 00 0 0
1 n 4+ as ... 000
0 : ... 00
0 n+ap_o 0 O
0 n—+ qp_q 0
0 n + ag
0

These are 24+3+ ...+ (k—2)+(k—1) = (g) — 1 many affine independent points. [
Now we can prove Proposition 3.15.
Proof of Proposition 3.15. (a) It follows from Lemma 3.21 that for all n > 2:
AP AT 50, 00)50m)

- ZS(Iallv\az\)
A

running over all

a a
A= ( 11 12) c P227n7a

with
az; =0, a1 =n+ag, a;p =n,
aj;; =0 or aj;p = 0.
But this cannot be for n > 0. Therefore the sum is zero.
We show the minimality of the set {A® A1} next. By Lemma 3.19, we have

ANY s 00y S(m)

- ZS(IMI:\@D
A

running over all

a a
A= ( 11 12) c P2Z7n7a

with
az =0, a1 =n+ oy, a;p =n.

_(n+ao n
()

and the above sum is not zero. The term A(Q)s(nwl)s(n) does also not equal zero because
the sum

This is the matrix

S(nta1)S(n) = Z S(la1l,|az])
AeP?

2,n,a
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has the summand s(,1q, ) that is not cancelled by applying A® because |a;| > n—14+ay
forall Ae P}, .
(b) It follows from Lemma 3.21 that for all n > 2:

A(2’1)A(LLI)3(n+a1)8("+a2)8(n)

- ZS(Ially\az\)
A

running over all
air a1z G13
A= |an ax € Psha
asy
with
az =0,
a3 = 0 or ag; = 0.
We want to apply the map A®) next. We treat the two sets Q01 = {A € P?%n—l,a | a1 =
0Aayn =0} and Quis ={Ae€ P}, |,
an injection Q,,—1.21 — @21 given by

| az1 = 0 A a;3 = 0 A ag; > 0} separately. There is

ail Q12 Q13 ap+1 ap+1 az+1
0 a9 — 0 a22
0 0
n+oa n+ay 0
The only matrix that is not hit by this map is 0 n . It follows
0

A(3)A(Zl)A(I’Ll)S(n—&-oq)S(n—i—oez)s(n)

= S(2n+laln) Z S(laxl,Jaz]) — Z S(|bal,[b2])

A€Qn 13 BeQn-1,13

n4+a; n+ay—asn 0 n+|oz]
Qn13 = az n | ag € {1,..., {—J}
0 2

We have

It follows that for every B € (),_1,13 there is exactly one A € Q13 with (Ja1],]as|) =
(|b1] + 3, |b2]). It is the matrix A with ag; = by — 1. There is one matrix in (113 and
one or two matrices in (), 13 not involved in this correspondence depending on the parity
of n 4 |a|. These matrices are

n—14+a; n—2+ay 0

1 n—1 € Qn-1,13
0
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n+ o (m+ay—a1)/2+1 0 n+o  (n+ax—aq)/2 0
(n+laf)/2 -1 n | (n+lal)/2 n € Qus
0 0
if n + |a] is even,
n+ o m+as—a;+1)/2 0
(n+|a]—1)/2 n € Qa3 if n+ |a is odd.
0

Now in A@ACDAGID (g0 StiasSm), the Schur function s(on4jaln) from before is
subtracted and what is left is

8(3n+|al)/241,(3n+lal)/2—1) T S((3n+]al)/2,(3n+]al)/2), if 7+ |af is even

S((3n+lal+1)/2,(3n+lal-1)/2); i 1+ o] is odd.

Applying A§3’3) to this yields 0.
We show the minimality of the set {A{® A®) ACD A0} pext. We see above that
A(3)A(2’1)A(1’1’1)(S(n+a1)$(n+a2)8(n)) is not zero. The term AéS’S)A(‘g)A(ZI)(S(n+a1)8(n+a2)8(n))
is not zero because the summand S(,4a, ntas,n) i the Schur function expansion of
S(nton)S(ntaz)S(n) i not cancelled by A® or AZD because |a;| > n — 1+ ay for all A €
Py, |, and it is not cancelled by AP because |a;| > n— 2+ ay for all A € Pl 4
The term A§3’3)A(2’1)A(13)(s(nml)s(nm@s(n)) is not zero because the summand $(,4|a|) in
the Schur function expansion of S(,1a,)S(n+as)Sm) 15 not cancelled. In order to show that

the term Aé3’3)A(3)A(13)(s(n+a1)s(n+a2)s(n)) is not zero we show that the multiplicity of
S(2n+|al,n) 10 its Schur function decomposition is not zero. We denote the multiplicity of a
Schur function s, in a symmetric function f by mult(}A, f). Now, we have

3,3 3
mult((?n + |a|7 TL), Aé )A(?))A(l )<S(n+a1)3(n+a2)3(n)))

— mle(20 + Jal, 1), A1) ({0 S(n500)
—mult((2n — 3+ o), n), AY) (500 1100)S(n11an)S(n-1))
—mult((2n — 3 + |a|,n — 3), A(lg)(s(n_2+a1)s(n_2+a2)s(n_2)))
+mult((2n — 6 + |a|,n — 3), A(13)(s(n,gml)s(n,3+02)s(n,3))).

The four involved numbers count in this order the number of matrices in A(14)P427n7a of the
form
n+oa N+ qy— a1 a2
a91 n — asy for all aq; € {0, e n},

0

n—1+a; n—1+ay—as as —1
a1 n — ag for all ag; € {1,...,n — 1+ min{l, as}},
0
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n—2+a1 n—2+a2—a21 CL21+1

a21 n—3— a921 for all ao1 € {O, = 3},
0
n—3+0¢1 n—3+a2—a21 asq
921 n—3—a21 for all as € {O,,n—B}
0

It follows
3
mult((2n + ‘04‘7 n)> Ag&g)A(g)A(l )<3(n+a1)8(n+a2)5(”)))
=n+1—(n—1+min{l,as})—(n—-2)+(n—2)> 1
[ |

The next lemmas are dedicated to the statement Conjecture 3.16 about fourfold prod-
ucts.

Lemma 3.23. We have
2,1,1)\2 A (1%
(APTD2ZAND (50,4 00)8(ntan) S (ntas) S ()
= E : S(la1l,|az],|as])-
AEA(2’1’1)A(14)PZH7QI a13=0Vaz2=0Va3z1=a21Vazi+az2+az3=ai1+ai2+ai3

Proof. Lemma 3.21 yields

4
ACEDAT (5,4 00) 8 (n402) 8 (n ) S(m)) = > S(jax ool Jasl)
AeACIDAOHPE

There is an injective map AGLDANY pZ — A(2’1’1)A(14)P427n7a given by

4n—1,a
ail @12 A13 G4 ap +1 a12 a3+ 1 ay
G21 Q22 G923 o | g +1 a2 a3
asy asp agr  az +1
0 0

The matrices that are not hit are those with a13 =0V as; =0V ags =0V as; = as Vas +
(92 + G93 = a11 + a12 + aq3. as; = 0 implies asz; = as; because of 0 < az; < ao. |

Let (A(Q’l’l))2A(14)P47n7a = {A S A(Q’l’l)A(14)P47n7a . a3 = 0V a3y — 0V as3p — a921 \Y
as1 + Q9o + agg = ayy + arz + ayz}. We know so far that

P4,n,0¢ 2 A(14)f)4,n,oz 2 A(27171)A(14)f)4,n,01
is a sequence of unions of faces of P, , , with corresponding dimensions
6>5>4

where we say that the dimension of a union of polytopes is the maximum of the di-
mensions of the polytopes. Here, we have again that the subset (AGLD)2ZACYP, C
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ACGLDAN P, | is a union of faces. Tts dimension is 3 because the face {A € Py, o a4 =
ayg = a;3 =0} C (A(Q’l’l))2A(14)P4,n,a contains the 4 affine independent points

n+oa; n+ay 0 0 n+oa n+a 0 0

0 n+az n 0 n+az 0
0 0 ’ 0 n ’
0 0
n+a; n+a—1 0 0 n+a; n+a—1 0 0
1 n+ as 0 1 n+a3—1 n
0 n ’ 1 0
0 0

Lemma 3.24. We have
4
A(272)(A(2’1’1))2A(1 )(5("+a1)S(n+a2)8(n+a3)3("))

= : : S(‘allvlaQ‘vlaSD'

AG(A(271*1>)2A(14>PZ 1 a12=0Va22=0Vaz23=0Vaz1+az2=a11+ai2Vazi+azz=az1+a22

4,n,a°

Proof. There is an injection (AGID)2ACYPE | — (ARLDRAGYPE - given by

aj; G2 Q13 a4 aj; +1 app+1 ais aiq
Qg1 Qo2 Qg3 . a2 azp +1 axs+1

az1 a3z as1 a3z

Q41 Q41

The matrices that are not hit are those with a9 = 0 or asg = 0 or ass = 0 or ag; + agsy =
a11 + a2 Or azy + age = ag + age. u

Let ACD(ARLORAMN P, = A e (ACLDRAWIP 0 a1, =0V ag = 0V ay =
0oV a9 + Q99 = G171 + G192 V asy + a3y = A1 + CLQQ}. The face {A € P4,n,oz LoQq = Qg =
13 = ap3 = 0} € AGD(ARLD2ZAM) P, has dimension 2 because it contains the 3 affine
independent points

n+a; n+a 0 0 n+a; n+ay—1 0 0

0 n+ag 0 1 n+ as 0
0 n ’ 0 n ’
0 0

n+a; n+as—1 0 0
1 n+az3—1 0
1 n

0
We summarize that
P4na 2 A(14)P4TLOC 2 A(2’171)A(14)P)4na 2 (A(2’171))2A(14)P4na 2 A(2’2)(A(2’171))2A(14)P4na
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is a sequence of unions of faces of P, , , with corresponding dimensions

6>5>4>3>2.

4. RELATIVE ARRANGEMENTS OF LINEAR SUBSPACES

4.1. Introduction. In this chapter we prove a Goresky-MacPherson type formula for the
complement of two arrangements of linear subspaces sitting set theoretically inside another.
The union Uy of a subspace arrangement A in R? is the set theoretic union [ J,,. , V C R?
equipped with the subspace topology. Relative arrangements are a concept introduced in
[21]. We say that a pair (A, B) of arrangements of subspaces in R? is a relative arrangement
of subspaces if (Uy,Ug) is a pair of topological spaces; i.e. Ug C Uy. Our main goal is
to prove a formula for the cohomology of the complement Mz := Uy \ Up in terms
of combinatorial and dimension data. We first recall the classical Goresky-MacPherson
formula.

For later use for a subspace V of R? and a subspace arrangement B we write My 5 for
V' \ Ug. In particular, Mpa 5 = R\ Ug. For an arrangement of subspaces B we write Lz
for the set of intersections mVeB’ V for all subsets B’ C B ordered by reversed inclusion
and enlarged by a unique minimal element 0 and a unique maximal element 1. We set
Lg = Ly \ {0,1}. As usual we consider the intersection Nyveg V as RY, but deviate from
the convention in the literature to identify R? with the unique minimal element of Lg.
Also by our convention if the intersection of all subspaces in B is not empty then the
intersection will not be identified with the unique maximal element 1. The partially ordered
set Ly is indeed a lattice and is referred to as the intersection lattice of B. For V € Lg
we write (R?, V) for the interval of all subspaces in Lp strictly between R? and V. We
denote by H;((R% V), R) the reduced homology of the simplicial complex of all linearly
ordered subsets of (R V) with coefficients in a ring R. Recall the formula by Goresky and
MacPherson.

Theorem 4.1 (Goresky-MacPherson Formula). 9] Let B # R? be an arrangement of
subspaces in RY. Then

PNI"(MRQB, 7) = @ F[d—dim(V)—i—2((Rd7 V), Z).

VeLs\{R4}

If (A, B) is a relative arrangement then without changing the topology of Uy, Ug and
M 45 we may assume that B C A. In this case Ly € L4 and indeed, without changing
the topology we may assume that Lp is an upper order ideal in L 4. Thus (L, Lg) is a
pair of lattices. We set Lag = (L4 \ Lg) U {0,1} and consider it partially ordered with
the order inherited from L 4. In particular, 0 is the unique least and 1 the unique maximal
element in L 4 5. Our assumptions imply that L 4 5 is again a lattice and we call L4 3 the
intersection lattice of (L., Lg).

For V € L 45 we also write (0, V) for the interval of all subspaces W € L A lying strictly
between 0 and V.
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Theorem 4.2. Let (A, B) be a relative arrangement of linear subspaces such that U # Ug.

Assume that for all VW € L;\,B with V- C W we have codim(W,V + 5", ,UNW) > 1.
Then for all i > 0O:

H(MupZ) = @ P H(0,V),Z) @ H (Myg, 7).

VEL,Z,B l+k=i—1

Note that My is the complement V' \ Ug of the arrangements B’ = {U NV | U € B}
of subspaces of V. In particular, FI’“(MMB,Z) can be computed with the usual Goresky-
MacPherson formula.

Now consider the following equivariant situation. If a finite subgroup G of Gl,,(R) leaves
U, invariant then we say that A is a G-arrangement. If (A, B) is a relative arrangement
and A, B are G-arrangements then we say that (A, B) is a relative G-arrangement. For a
subspace V' we write Gy for the stabilizer of V in G. The action of G on M 4 s determines
a representation on H (M43, C).

Theorem 4.3. Let (A, B) be a relative G-arrangement of linear subspaces in R™ for a
finite subgroup G of Gl,,(R) such that Uy # Ug. Assume that for all V)W € Lap with
V C W we have codim(W,V + >, ., UNW) > 1. Then for all i > 0:

H'(Mup,C) = @ Idf, 5 H((0,V),C)® H* (Mys,C).

VEL,:"B l+k=i—1

4.2. Basics of diagrams of spaces. In this section we describe the basic constructions
and results from the theory of diagrams of spaces and homotopy colimits needed for our
purposes. In our description we do not consider the full generality of the theory but a
version tailored for the forthcoming applications. We refer to [3] and [20] for background
on diagrams of spaces.

Let P be a finite partially ordered set, poset for short. We consider P as the small
category whose objects are the poset elements and whose morphisms p — ¢ are the order
relations p > ¢ in P.

A diagram (of spaces) over P is a covariant functor D : P — Top from the small cat-
egory P with morphisms p — ¢ whenever p > g € P to the category of CW-complexes
and continuous functions. For every p € P we write D, for the image of p under D and
dpy : D, — D, for the image of p — ¢ under D. We write Up for U,epD,. Let G be a
group. We say that a topological space X is a G-space if G acts on X as a group of home-
omorphisms. We call a diagram D over a poset P a GG-diagram if G acts on P in an order
preserving manner, D, is a Gp-space for all p € P, U,epD, is a G-space with g- D, = D,.,
forall g € G, p € P, and ¢ -dp4(x) = dypgqelg-x) forall g € G, p > ¢ € P and
x € D,. For every p € P we write G, for the stabilizer of p in G. For a group G we denote
~ for G-homotopy equivalence of topological spaces and = for G-isomorphie of modules.

Let P be a poset and D a P-diagram. We introduce two limit constructions for dia-
grams. The colimit colim(D) is U,epD, modulo the relation generated by v = d,,(v) for
all ¢ > p € P and v € D,. As a topological space, colim(D) is the quotient space of
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UpepD, modulo this relation. The second one is called the homotopy colimit and denoted
by hocolim(D) for any diagram D. We write P for the poset P U {0,1} obtained from P
by adding a least element 0 and a greatest element 1. For every p € P we write P, for
the poset {g € P | ¢ < p}. Let D be a diagram over the poset P. The homotopy colimit
hocolim(D) of D is defined as the disjoint union UpePA(F;p) x D, modulo the equivalence
relation generated by

(u,v) = (u,dyp(v)) forallp<ge P, ue A(ﬁg\p) - A(F;]), v e D,

Its topology also is the quotient topology.

Now we provide an elementary proof of a G-equivariant version of the Projection Lemma
by a sequence of lemmas. We write [n] for the set {1,...,n} and 2" for its set of subsets.
This is a poset by the inclusion relation. We use partitions of unity. We refer to [10] for
background on paracompact spaces and partitions of unity. A partition of unity subor-
dinate to an open covering D, ..., D, of a space X is a sequence {¢;};c[, of continuous
functions ¢; : X — [0, 1] with the properties
e supp(¢;) C D; for every i € [n].
e > " ¢i(x) =1 for every z € X.
If Dy, ..., D, is an open covering of a paracompact space X then there is a sequence {¢; };cs
of continuous functions ¢; : X — [0, 1] indexed over some set J with the properties
e For every j € J there is an i € [n] with supp(¢;) C D;.
e For every x € X there is a neighborhood U(z) such that all but finitely many of
the functions ¢; are zero on U(z) and the sum of those that are not identically zero
is 1 on U(x).
Let M; = {j € J | supp(¢;) C D;} for all i € [n]. We set M| = M; and M = M; \ (M U
.UM;_y) for all : > 2. Now we define functions ¢; : X — [0, 1] by ¢}(z) = EjeM; ¢,(x) for
every © € X. Then {¢]}ic[ is a partition of unity subordinate to Dy, ..., D, as we defined
it above.

Lemma 4.4. Let {¢}icp be a partition of unity subordinate to an open covering Dy, ..., D,
of a G-space X where G permutes Dn, ..., D,. Then {¢;}ici) given by

1 /
¢ix) = €] > bilgr)

geG
is a partition of unity subordinate to the same covering with ¢;(gx) = ¢g-1,(x).

Proof. 1f ¢;(z) # 0 then there is a g € G with ¢,(gx) # 0. Then it follows gz € Dy; = gD;.
Applying ¢g~! yields x € D;. Similarly, in a convergent sequence ()3 of points 7, € X
with ¢;(xy) # 0, for every k there is a g, € G with ¢ ;(grwr) # 0. We can divide the
sequence (grry)y into the subsequences (gzy,, ), where all the elements gy, are a constant
element g. Every of these subsequences (gzy,, ), converges to a point in D,, = gD; and
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then (zy, ), converges to a point in D;. Then the whole sequence (zy)y converges to a
point in D;. It follows supp(¢;) C D;. Furthermore we have

Zqﬁz( el ZZ%Z 9%)

gelG =1

|G|ZZ¢ =g L=

geG =1 geG
and

oi(gr) = € Z(bm hgz) = Gl Zqﬁhg 1, (ha) = ¢g-1;(x).

heG heG
|

Lemma 4.5. Let X be a convex subspace of R? that is also a G-space and ¢, : X — X
be two G-equivariant continuous maps. Let H : X x [0,1] — X be a homotopy between ¢
and ¢. Then H' : X x [0,1] — X defined by

"(x,t) g H(gz,t)
-G

geG

s a G-equivariant homotopy between ¢ and 1.

Proof. We have

Zg (g, 0) Zg‘1¢ Zg‘lg¢ (),

gEG geG gEG

analogously H’(x 1) = ¢( ) and

H'(gx,t) Zh 'H(hgz,t) Zgh YH(hz,t) = gH' (z,1).
~lal = @l =

Lemma 4.6. Let D be a G-diagram over a poset P with n atoms 1, ...,n such that P is the
intersection poset of Dy, ...,D,. Let f : 2" — P, I — Me;D;. We define the 2" -diagram
E by Er = f(I) and epq = dyp),5(q)- G acts on 20" by acting on the elements of subsets.
In this way, E becomes a G-diagram. Then

hocolim(D) ~¢ hocolim(FE).

Proof. We define ¢ : P — 2" by ¢ (p) = {i € [n] | D, C D;} for all p € P. We extend f and
¥ on A(2I") and A(P) in the obvious way. Then fo) = ida(p)- f and v are G-equivariant.
There is a linear homotopy H' between idxmy and 9 o f because A2 is convex. It
follows from Lemma 4.5 that there is a G-equivariant homotopy H between idx )y and
to f. The induced maps f : hocolim(E) — hocolim(D) and v : hocolim(D) — hocolim(E)
are also G—equivariant and f o) = idnocolim(p)- We have (¢ o f)( ) 2 1 and E; = Eyor) ()
for every I € 2", It follows that if z € E; and u € A( ) for some I € 2 then
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(o f)(u) € A(Z[n ¢Of)(l)) and © € E(yogyr)- It follows that H induces a G-equivariant
homotopy between idhocolim(g) and 1 o f by

H((u,2),1) = (H(u,1),2)
for all u € A(2M), 2 € Ueom By and t € [0, 1]. |

Lemma 4.7 (Projection Lemma). [17, Proposition 4.1]|3, XII,3.1(iv)]|23, Lemma 1.6]|22,
Proposition 3.1][7, Theorem 7.41| Let X be a paracompact Hausdorff space covered by open
spaces Dy, ..., D, and let G be a group of homeomorphisms on X permuting D+, ..., D,. Let
P be the intersection poset of Dy, ..., D, with corresponding diagram D. Then

colim(D) ~¢ hocolim(D).
Proof. Let E be the G-diagram over 2/ from the previous lemma. Let pr be the projection
pr : hocolim(E) — colim(E), (u,x) — .

It follows from the paracompactness of X and from Lemma 4.4 that there is a partition
of unity {¢;}icjn) for the covering with the property ¢;(gz) = ¢,-1;(x) for all i € [n] and
g € G. Let ey, ..., e, be the vertices of A(2"). We define

Y : colim(E) — hocolim(E), x +— (Zgb x)e;, x > :

x) # 0 implies € D,. It follows that ¢(z) € A(ZZI) x By for all x € colim(£) and
={i € [n] | ¢i(z) # 0}. We have

— <Z gbi(ga:)e,-,gx> <Z Pg-14( 6179I>
= (Zqﬁl( eg,,gx> =g (Z(lﬁz elv )

for all € colim(F) and g € G. So v is G-equivariant. We have pr o ¢ = idolim(p) While
Y o pr and idyocolim(r) are homotopic by a linear homotopy. [ |

Lemma 4.8. [19, Proposition 2.3| Let D be a G-diagram over a poset P such that for all
p > q the map d, 4 is trivial in homology. Then for all ¢ > 0:

H'(hocolim(D),C) =¢ P md, P (H'(A(P,),C) @ H*(D,,C)).
peP/G I+k=i—1
4.3. Goresky-MacPherson formula for relative arrangements. In order to apply

Lemma 4.8, we have to make further assumptions on our relative arrangement. The fol-
lowing lemma provides a condition in terms of codimensions.

Lemma 4.9. Let (A, B) be a relative G-arrangement of linear subspaces in R™ for a finite
subgroup G of Gl,(R). Let VW € Lag with V-C W such that codim(W,V + 3, .s,U N
W) > 1. Then the inclusion My — Mg is homotopically trivial.
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Proof. If codim(W,V +3 ., UNW) > 1 then there is a point c € W\ (V 43, ., UNW).
Let v € V. Suppose there is a t € [0,1) such that u := tv + (1 — t)c € Ug N W. Then
¢ =15w—t) € V+ > ,5UNW, a contradiction. It follows that there is the null

homotopy H : My x [0,1] = My given by H(v,t) = tv + (1 —t)c. |
Ezample 4.10. (i) Let n € N, k € {1,...,n — 1} and A? , be the arrangement of sub-
spaces

{(z1,..;z,) € RY™ | z; =0 foralli e [} for all I C {1,...,n} with #I = k. We
consider the relative arrangement (A, B) with A = A%, and B = A%, . In this
case, the lattice L;\’B is an antichain and the assumption in the previous lemma
holds vacuously.

(ii) Let Aik be the arrangement from the previous example for k£ > 1 or the k-equal
arrangement in (R?)" for k > 2. We consider the relative arrangement (A?,, A7 )
for k < n. Then the assumption of the previous lemma holds, because the arrange-
ment A% = consists of only the space of points with z; = ... = x, which is the
intersection of all spaces of A% .

Theorem 4.11. Let (A, B) be a relative G-arrangement of linear subspaces in R"™ for a
finite subgroup G of Gl,,(R) such that Usy # Ug. Assume that for oll V,W € Ly g with
V C W we have codim(W,V 43" ,.sUNW) > 1. Then for all i > 0:

H'(Mup,C) = H(Lap.C)® € mdf, 5 H((0,V),C)® H (Mys,C).
VEL,Z\,B/G l+k=i—1

Proof. Let D be the G-diagram over Lyz \ {0} with Dy = My =V \ U for all V €
L;\,B, D; = 0 and the morphisms dy being the inclusions. Then colim(D) = M5 is a
paracompact space with the open covering {V\Ug | V € A}. We have H'(colim(D),C) =
Hi(hocolim(D), C) by the Projection Lemma. Lemma 4.8 together with Lemma 4.9 yield

H'(hocolim(D),C) =¢ H'(Las,C)® P Wndg, @ H((0,V),C)o H*(Myz,C).
VEL,Z,B/G l+k=i—1

Example 4.12. For k > 1 we consider the arrangement A, of spaces Vi = {(z1,...,x,) €
R"™ | z; = 0 for all j € I} for all I C [n] and the relative arrangement (A, x, A, k+1). The
set LAn,ijan consists of all the spaces V; with #1 = k, they are pairwise not comparable.
Theorem 4.11 implies

ﬁi(MAn,kvAn,k+l7 C) =5, gi(LMAn)k,A C) D Indg:xsn,kﬁi(MV[k]vA (C>

n,k+1 ’ n,k+17

for all ¢ > 0. For further considerations one has to look at the (S x Sn,k)—aftion on the poset
{WN Vi | W € A, ki1 } and determine the (Sy, x S,_y)-representation H'(My;, 4, ,.,,C)
using the Goresky-MacPherson formula (|9],[19, Theorem 2.5]). We look at the case i = 0.

The S,-representation fIO(LAn,hAnka,C) is ((}) — 1)-dimensional. The space My,.4

k n,k+1
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is homeomorphic to {(21, ..., 2, 1) € R*™* | 2; # 0 for all i € [n — k]} which has 2"~ con-
nected components. We get the following formula for the dimension of H%(M 4 C):

(00 n- ()

This implies that the sequence {HO(MAn,k,-An,kJrl? C)}n does not stabilize, because the di-
mensions in a stabilizing sequence must grow polynomially (see [6]).

n,kn-AnJc-kl ?

There is no known counterexample for relative arrangements of diagonal subspaces. More
precisely, we mean the following: For two integer partitions p and A of ng € N we say that
is finer than A if there are number partitions v; - \; such that by concatenating them and
then sorting this list we get u. Let A¢ be the subspace arrangement defined as in Chapter
2 for every integer partition A of ng and for every n > ng let A(™ be the integer partition
obtained from A by adding n — ng parts of size 1. If ;1 and A are integer partitions of ng
such that s is finer than A then x(™ is finer than A\(") for every n > ny and {Afl\(m,AZ(n)}n
is a sequence of relative arrangements.

Question 4.13. Let p and A be number partitions of ny € N such that p is finer than A
and 7 > 0. Does the sequence of S,-representations { H*(M 4o 4 ),C)}n stabilize?

A7 (n
REFERENCES

[1] A. Bjorner, G. M. Ziegler, Combinatorial stratification of complex arrangements, J. Amer. Math. Soc.,
5, (1992), 105-149
[2] P. V. M. Blagojevi¢, W. Liick, G. M. Ziegler, Equivariant topology of configuration spaces, Journal
of Topology, 8, (2015), 414-456
[3] A. K. Bousfield, D. M. Kan, Homotopy limits, completions and localizations, Lecture Notes in Math-
ematics, 304. Springer-Verlag, Berlin-New York, (1972), v+348
[4] T. Church, Homological stability for configuration spaces of manifolds, Invent. Math. 188 (2012), no.
2, 465-504
[5] T. Church, B. Farb, Representation theory and homological stability, Advances in Mathematics 245
(2013) 250-314
[6] T. Church, J. S. Ellenberg, B. Farb, FI-modules and stability for representations of symmetric groups,
Duke Math. J. 164 (2015), no. 9, 1833-1910
[7] L. Fajstrup, E. Goubault, E. Haucourt, S. Mimram, M. Raussen, Directed algebraic topology and
concurrency, Springer, [Cham], (2016)
[8] N. Gadish, Representation stability for families of linear subspace arrangements, Advances in Mathe-
matics 322 (2017), 341-377
[9] M. Goresky, R. MacPherson, Stratified Morse Theory. Ergebnisse der Mathematik und ihrer Grenzge-
biete, 14, Berlin, Heidelberg, New York: Springer 1988
[10] A. Hatcher, Vector Bundles and K-Theory, http://pi.math.cornell.edu/ hatcher/VBKT/VBpage.html
[11] P. Hersh, V. Reiner, Representation stability for cohomology of configuration spaces in R?, Int. Math.
Res. Not. IMRN 2017 (2017), no. 5, 1433-1486
[12] I.G. Macdonald, Symmetric Functions and Hall Polynomials, 2. ed., Clarendon Press, Oxford, 1995
[13] D. Petersen, A spectral sequence for stratified spaces and configuration spaces of points, Geometry &
Topology 21 (2017), 2527-2555
[14] A. Rapp, Representation stability on the cohomology of complements of subspace arrangements,
Algebraic Combinatorics 2 (2019) no. 4, 603-611



[15]
[16]

[17]
[18]

[19]
[20]
[21]
22]

[23]

39

A. Rapp, Products of stabilizing representations, arXiv:1904.11743

B. E. Sagan, The symmetric group, Representations, combinatorial algorithms, and symmetric func-
tions, 2. ed., Graduate Texts in Mathematics 203 (2001) Springer-Verlag, New York

G. Segal, Classifying spaces and spectral sequences, Inst. Hautes Etudes Sci. Publ. Math., 34, (1968)
S. Sundaram and M. Wachs, The homology representations of the k-equal partition lattice, Trans.
Amer. Math. Soc. 349 (1997), no. 3, 935-954.

S. Sundaram and V. Welker, Group actions on arrangements of linear subspaces and applications to
configuration spaces, Trans. Amer. Math. Soc. 349 (1997), no. 4, 1389-1420.

R. M. Vogt, Homotopy limits and colimits, Math. Z., 134, (1973), 11-52,

V. Welker, Partition Lattices, Group Actions on Subspace Arrangements & Combinatorics of Dis-
criminants, Habilitationsschrift, Department of Mathematics and Computer Science, GH. Universitét
Essen (1996)

V. Welker, G. M. Ziegler, R. T. Zivaljevié, Homotopy colimits—comparison lemmas for combinatorial
applications, J. Reine Angew. Math., 509, (1999), 117-149

G. M. Ziegler, R. T. Zivaljevié, Homotopy types of subspace arrangements via diagrams of spaces
Math. Ann., 295 (1993), no. 3, 527548



40

ERKLARUNG

Hiermit versichere ich, dass ich meine Dissertation mit dem Titel
Some Representation stability results and generalizations

selbstindig und ohne fremde Hilfe verfasst, nicht andere als die in ihr angegebenen Quellen
oder Hilfs-mittel benutzt, alle vollstindig oder sinngeméfs iibernommenen Zitate als solche
gekennzeichnet sowie die Dissertation in der vorliegenden oder einer dhnlichen Form noch
bei keiner anderen in- oder ausldndischen Hochschule anldsslich eines Promotionsgesuchs
oder zu anderen Priifungszwecken eingereicht habe. Dies ist mein erster Versuch einer Pro-
motion.

Artur Rapp, Januar 2020



41

DEUTSCHE ZUSAMMENFASSUNG

Darstellungsstabilitidt im Sinne von Church und Farb (siehe [5] und [4]) ist eine Eigen-
schaft von Folgen von Darstellungen von symmetrischen Gruppen. Fiir jede Zahl n € N
schreiben wir S, fiir die symmetrische Gruppe auf {1,2, ..., n}. Die irreduziblen Darstellun-
gen der S, sind durch Zahlpartitionen indiziert. Fine Zahlpartition A\ - n ist eine endliche
Folge A = (Aq,..., \;) positiver ganzer Zahlen mit A\; > ... > )\, und 22:1 A = n. Wir
schreiben S* fiir die irreduzible Darstellung, die zu \ korrespondiert und s, fiir dessen
Frobenius-Charakteristik. Fiir jedes n € N heiflen die Funktionen s, mit A\ - n Schur-
Funktionen und bilden eine Z-Basis von A,,, dem Ring der symmetrischen Funktionen mit
Koeffizienten in Z, deren Monome alle den Grad n haben. Sei A = (\y,..., \;) F n. Dann
definieren wir A + (1) := (A1 + 1, A2, ..., A;) F n+ 1. Wenn ein S,,-Modul V' die Zerlegung

V = @CLAS)\

AFn
hat, dann definieren wir
V+ (1) = P ars*.
AFn
Entsprechend definieren wir fiir eine symmetrische Funktion f mit Zerlegung

f= ZGASA

AFn
dann

FH1) =) asaq).
AFn
Als néchstes betrachten wir Folgen {V,},>0 von S, ,,,-Darstellungen oder Folgen ihrer
Charakteristiken. Eine solche Folge stabilisiert bei m > ng, wenn

Vi = Vo1 + (1) fiir alle n > m.
Die Folge stabilisiert scharf bei m > ng, wenn m die kleinste Zahl ist mit
Vi = Va1 + (1) fiir alle n > m.

In Kapitel 2 betrachten wir Arrangements von diagonalen Unterriumen von (R)™ fiir
natiirliche Zahlen d und n. Fiir ein endliches Arrangement A von linearen Unterrdumen von
(R4)™ definieren wir die Vereinigung Uy = Uye4V und das Komlement M 4 = (R?)™\ Uy.
Der Schnittverband L 4 ist die Menge aller Schnitte beliebig vieler Elemente von A sortiert
durch umgekehrte Inklusion. Das kleinste Element 0 ist (R%)", der leere Schnitt, und das
grohte Element 1 ist der Schnitt aller Elemente von A. Fiir eine Mengenpartition 7 von
{1,...,n} sei W der lineare Unterraum aller n-Tupel (wy, ..., w,) von Punkten aus R%
sodass w; = w;, wenn ¢ und j im selben Block der Partition 7 sind. Fiir eine Zahlpartition
A schreiben wir A¢ fiir das Arrangement aller Unterr dume W2, sodass = vom Typ A ist,
das heift, dass die Teile von A\ den Miéchtigkeiten der Blocke von 7 entsprechen. Allge-
meiner setzen wir A% = UyeaAS fiir jede endliche Menge A von Zahlpartitionen von n.
Das Komplement M4 = (R%)™ \ Uy 42 W ist eine reelle Mannigfaltigkeit. Falls A = {A},
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schreiben wir M¢ fiir M$. Die Wirkung der symmetrischen Gruppe S,, auf n-Tupeln von
Punkten aus R? durch Permutieren der Koordinaten induziert eine S,-Darstellung auf der
reduzierten singuliren Kohomologie H'(M$,C). Formeln fiir diese S,-Darstellung wurden
von Sundaram und Welker in [19] hergeleitet. Wir untersuchen diese Darstellungen auf
Darstellungsstabilitét.

Das Hauptziel in Kapitel ist zu beweisen, dass Folgen dieser Darstellungen stabilisieren und
Stabilitdtsschranken herzuleiten. Dies ist der Inhalt von Theorem 2.1. Die Tatsache, dass
diese Folgen stabilisieren, kénnen auch aus Ergebnissen von Gadish (|8, Theorem A|) und
Petersen (|13, Theorem 4.15]) impliziert werden. Deren Sétze beinhalten keine Aussagen
iiber Schranken. Der Fall A = {(2,1"2)} wurde von Church bewiesen ([4, Theorem 1])
und fiir diesen Fall bestimmten Hersh and Reiner die exakten Stabilititsschranken (|11,
Theorem 1.1]). Die Ergebnisse von Kapitel 2 sind in [14] verdffentlicht.

In Kapitel 3 definieren wir eine verallgemeinerte Art von Stabilitét fiir Folgen von Darstel-
lungen. Motiviert durch Lemma 2.2, wo wir zeigen, dass das Produkt einer stabilisieren-
den Folge mit einer konstanten Folge auch stabilisiert, zeigen wir in Kapitel 3, dass Pro-
dukte mehrerer stabilisierender Folgen gewisse rekursive Relationen erfiillen, die den Stabil-
itatsbegriff verallgemeinern. Wir verwenden Methoden aus der Theorie der symmetrischen
Funktionen und Polytope.

Das Ziel von Kapitel 4 ist, weitere Beispiele zu suchen, wo Darstellungsstabilitit gilt.
Wir untersuchen relative Arrangements. Das sind Paare von Arrangements (A, B), so-
dass Ug C Uy. Fiir Folgen {(A,, B,)}, von relativen Arrangements kann man die Folge
{H! (U, \Us,,C)}, auf Darstellungsstabilitit untersuchen. Wir gehen einen Schritt in diese
Richtung, indem wir eine der Goresky-MacPherson-Formel (|9],[19, Theorem 2.5(ii)|,|2,
Theorem 2.1]) &hnliche Formel fiir relative Arrangements beweisen. Dazu verwenden wir
Methoden von Ziegler und Zivaljevié (|23]). Genauer verwenden wir Homotopie-Kolimiten.
An einem Beispiel sehen wir, dass Stabilitdt nicht immer gilt. Wir vermuten aber, dass fiir
bestimmte Klassen relativer Arrangements Stabilitat gilt.
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