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Abstract

We investigate the topological consequences of actions of compact connected Lie groups.
Our focus lies on the Toral Rank Conjecture, which states that a suitable space X with
an almost free T r-action has to satisfy dimH∗(X;Q) ≥ 2r. We investigate various refine-
ments of formality in an equivariant setting and show that they imply the TRC in several
cases. Furthermore, we study the properties of the newly developed terminology with
regards to possible implications, inheritance under elementary topological constructions,
and characterizations in terms of higher operations on the equivariant cohomology. We
also attack the problem of finding bounds for dimH∗(X;Q) in the spirit of the TRC
outside of the formal context. Different lower bounds are constructed and applied in
particular to the case of cohomologically symplectic spaces.

Zusammenfassung

Wir untersuchen topologische Konsequenzen von Wirkungen kompakter und zusammen-
hängender Liegruppen. Im Vordergrund steht dabei die Toral Rank Conjecture (TRC),
welche besagt, dass für einen geeigneten Raum X mit einer fast freien T r-Wirkung
stets dimQH

∗(X;Q) ≥ 2r gilt. Dazu studieren wir unterschiedliche Begriffe von For-
malität im äquivarianten Kontext. Wir zeigen, dass diese in einigen Fällen die TRC im-
plizieren und beleuchten die neu entwickelten Konzepte unter verschiedenen Gesichtspunk-
ten: Neben grundlegenden Eigenschaften und möglichen Implikationen, untersuchen wir
Vererbarkeitseigenschaften unter elementaren topologischen Konstruktionen, sowie mög-
liche Charakterisierungen anhand höherer Operationen auf der äquivarianten Kohomolo-
gie. Darüber hinaus widmen wir uns dem Problem der Abschätzung von dimQH

∗(X;Q)
im Sinne der TRC in einem allgemeineren Kontext. Wir konstruieren verschiedene un-
tere Schranken für die Summe der Bettizahlen von X, welche keine zusätzlichen For-
malitätsannahmen benötigen. Diese werden insbesondere auf kohomologisch symplektis-
che Räume angewendet.





Acknowledgements

Mathematically, I want to thank Manuel Amann for the fruitful cooperation on many of
the central questions of this thesis. I also want to thank Chistopher Allday, Mark Walker,
and Bernhard Keller for helpful conversations. The author was supported by the German
Academic Scholarship Foundation.

On a more personal note, I am sincerely grateful for the experience of my time as a
PhD student in Marburg. My special thanks go to my supervisor Oliver Goertsches for
making this period of my working life as enjoyable as it was and teaching me a great
deal of things about mathematics and beyond. I believe you have succeeded very well
in finding the right balance between giving me the freedom to work independently and
guiding me along the way. Your contagious enthusiasm about mathematics has been and
will continue to be an inspiration.

Regarding the pleasant working atmosphere I of course want to extend my thanks to
all inhabitants of A8. Thank you, Ilka, for being a cornerstone of the (rightfully) self
proclaimed greatest research group. Thanks to Pablo for teaching me the way of the
great poet Michael T. – and training my reflexes. Thanks to my fellow PhD students
Stefan, Landi, and Marius for fun times and also the occasional exchange of pity (which
is hard to get from the higher-ups). Additionally I want to thank Marius for being my
– highly competent – personal technical support. Thank you, Taki, for an equally fun and
productive relationship; maybe with a slight tendency towards the fun side, but still very
productive. I also want to add that you have a great taste in music. Thanks to my office
colleagues Eugenia and Max for the very enjoyable atmosphere and to Birgit for being
the good soul of the research group. I was also happy to get to know the next generation
on A8. As for the previous generation, I want to thank Sam, Giovanni, Reinier, and
Benjamin for making my early days in Marburg a very pleasant time. You all left too
early. Outside of A8, I very much enjoyed the occasional exchanges with Ben, Sönke,
and Andreas which helped to preserve a welcome amount of abstractness in my life as a
member of “the smooth folk”.

Last but not least I want to thank my family and my friends for their continuous
support. Above all, I want to thank Hannah who has been a supporting pillar for all this
time. I am eternally grateful to have you in my life.





Contents

Introduction 1

1 Equivariant cohomology and its models 7
1.1 The Borel fibration and equivariant cohomology . . . . . . . . . . . . . . . 7
1.2 Sullivan models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 The Hirsch–Brown model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3.1 Definitions and properties . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.2 Construction of the Hirsch–Brown model via perturbations . . . . . 16

1.4 Higher homotopy models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.4.1 A∞- and C∞-algebras . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.4.2 A∞-modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.4.3 On the homotopy categories . . . . . . . . . . . . . . . . . . . . . . 23
1.4.4 Minimal models and formality . . . . . . . . . . . . . . . . . . . . . 24

2 Formality in an equivariant setting 27
2.1 Refinements of equivariant formality . . . . . . . . . . . . . . . . . . . . . 27

2.1.1 MOD-formality and consequences . . . . . . . . . . . . . . . . . . 27
2.1.2 Actions with formal core . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2 Inheritance under elementary constructions . . . . . . . . . . . . . . . . . . 34
2.2.1 Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2.2 Gluing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.2.3 Subgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.3 Higher operations on the cohomology . . . . . . . . . . . . . . . . . . . . . 42
2.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.4.1 Symplectic actions and Hard Lefschetz spaces . . . . . . . . . . . . 45
2.4.2 Counterexamples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3 Bounds on the toral rank 55
3.1 Toral rank and formality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.1.1 The total rank of free resolutions . . . . . . . . . . . . . . . . . . . 55
3.1.2 Small dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
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Introduction

Taking advantage of symmetries in order to understand geometric objects is an approach
which is deeply rooted within our perception. It is therefore not surprising that the study
of topological consequences of certain symmetries has become a classical problem in alge-
braic topology. In this thesis we are particularly interested in symmetries that manifest
through actions of a compact, connected Lie group G. The last century has brought forth
many fundamental results such as Borel localization and Atiyah-Bott-Berline-Vergne lo-
calization that enable the study of the geometry and topology of a G-space through the
fixed point data of the action. This strategy can be a powerful tool in the right situa-
tions. For example if an action of a compact torus T r on a (sufficiently nice) space X is
equivariantly formal in the sense of [29], then the sum of all Betti numbers is determined
by the fixed point set as

dimH∗(X;Q) = dimH∗(XT r

;Q).

An opposite extreme case, where the strategy of analysing X through fixed point data
is least applicable, is the case of a free action. Still one finds topological restrictions,
imposed on the space by the existence of such an action. Most famously, there is the
Toral Rank Conjecture (TRC), which was posed by Steve Halperin. The first printed
appearance known to the author is in [31] from the year 1985. The conjecture is usually
formulated, a little more generally, for almost free actions, which means that all stabilizers
are finite groups. The exact topological requirements for X vary throughout the literature
but we will stick to the following version:

Conjecture. Let T r act almost freely on a compact Hausdorff space X, then

dimH∗(X;Q) ≥ 2r.

In other words the conjecture states that in order for a torus to be able to act almost
freely on X, it is required that X has at least as many holes, in a cohomological sense,
as the torus, for which dimH∗(T r;Q) = 2r. The maximal number r such that T r acts
almost freely on X is also referred to as the toral rank of X – hence the name of the
conjecture. The beauty of the conjecture lies in its simplicity as well as the fact that
it is easy to verify by naive geometric intuition: for example if we imagine an S1-action
on X as a rotation symmetry on X, then the centre of the rotation remains fixed under
the action. Thus in order for the action to be free, the centre must be removed from X,
creating cohomology.

Maybe it is due to the beautifully simple nature of the problem that the conjecture
has become one of the most prominent questions in rational homotopy theory and the
cohomological theory of transformation groups. While it remains unsolved until today,
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2 INTRODUCTION

there has been some success in attacking the conjecture for specific kinds of spaces: it was
shown to hold e.g. for Hard Lefschetz spaces [3] or, more generally, c-symplectic spaces
of Lefschetz type [48]. It was also also proved for certain 2-stage spaces in [37], which
generalizes in particular the case of homogeneous spaces due to [31] and 2-step nilpotent
nilmanifolds from [13]. Another possible axis on which the conjecture can be approached
is by proving possibly weaker lower bounds on dimH∗(X). A classical result (see [4,
Theorem 4.4.3]) in this direction is the inequality

dimH∗(X;Q) ≥

{
2r

2(r + 1) if r ≥ 3
.

which has seen slight improvement in [5], where a linear lower bound of slope 8/3 is given.
The TRC is one of the guiding problems of this thesis and we will try to attack it in
both of the above ways: we will prove it under specific conditions and also provide lower
bounds on dimH∗(X;Q) in the general case. Our main result with regards to the latter
aspect is

Theorem A. Let X be a compact Hausdorff space of formal dimension n with an almost
free T r-action.

(i) Let b be the first Betti number of X and m = max(b− r, 0). Then

dimH∗(X;Q) ≥ min
k=m,...,b

n+ r − 1

n− r + 1
2k + 2b−k.

(ii) Let k be the degree corresponding to the first nontrivial odd Betti number. Then

dimH∗(X;Q) ≥ n+ r − 1

n− r + 1
2 dimH<k(X;Q).

We also discuss applications of the above theorem in the specific scenario of actions
on c-symplectic spaces, where it turns out to be particularly effective. We obtain bounds
that are, in a sense, quadratic and actually stronger than the TRC in a certain range of
values of r. In particular they imply the TRC for c-symplectic spaces of dimension ≤ 8.

With regards to the approach of proving the TRC under specific conditions, we will
explore actions that satisfy certain formality properties. This may sound contradictory
to the aforementioned fact that free actions and equivariantly formal actions are quite at
the opposite ends of the spectrum. Indeed, we call a G-action on X equivariantly formal
if the Borel fibration

X → XG → BG

turns H∗G(X;Q) := H∗(XG;Q) into a free module over H∗(BG;Q), which, in particular,
implies the existence of a fixed point. The condition got its name in the celebrated
paper [29]. However, the fact that the name stuck to the condition has to be attributed
rather to the success of the tools from [29] than to its actual connection to the classical
(nonequivariant) notion of formality.

The two are actually rather unrelated: we call a space X formal if there is a quasi-
isomorphism (ΛV, d) → (H∗(X), 0) of commutative differential graded algebras, where
ΛV is the minimal Sullivan model of X. This condition has far reaching consequences in
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that it allows us to reconstruct the rational homotopy type of a nilpotent space X directly
from its cohomology. Also, formal spaces are in a certain sense less complicated because
formality enforces the vanishing of higher operations on the cohomology known as Massey
products. A nice example which illustrates their meaning is given by the Borromean rings:
their linking can be detected by a nontrivial triple Massey product of the complement of
an embedding into S3 (see e.g. [53, 2.6 in Chapter 2]).

While some connections between the notions of formality and equivariant formality
do exist (see [12] for a result in the specific case of isotropy actions), it is fair to say that
the choice of name is suboptimal. It is thus not surprising that, over time, other concepts
arose which tried to stay more true to the classical notion from rational homotopy theory.
In [46], Lilliwhite considers actions for which the homotopy quotient XG is a formal space.
There has also been a redefinition by Scull in [59], [58] (see also [23] for the discrete case),
taking into account the richer structure provided by all the isotropy groups. We study
possible refinements of the existing notions and investigate implications within the new
terminology. Two main concepts eventually arise from the discussion, namely those of
MOD-formal actions and actions with formal core. Both are simultaneous generalizations
of all three of the previously mentioned notions and are, in particular, interesting in the
realm of free actions. With regards to our original motivation, we have the following
central

Theorem B. The TRC holds for MOD-formal actions and actions with formal core.

This is supplemented by an extensive study of these types of actions. In particular
we investigate inheritance under elementary constructions and give several criteria under
which the conditions hold. Additionally, we provide classes of examples as well as many
counterexamples, sharpening the terminology. More specific details are provided below
where the structure of the thesis is summarized.

To conclude the discussion on equivariant formality, we want to point out that our new
definitions are by no means replacements for the original notion of equivariant formality.
Also we want to mention that the latter has a natural generalization in the form of
Cohen–Macaulay actions (see [28]), which is seemingly more or less independent from our
terminology. In the author’s opinion, the most natural definition of equivariant formality
would be to find an algebraic category which is equivalent to the category of G-spaces up
to a certain rational notion of equivalence and then define equivariant formality through
the algebraic model, mirroring the nonequivariant definition. This is the approach of
[59], [58], which however comes with large technical difficulties and is not suited for our
applications.

As a last point, we want to comment on the methodology throughout the thesis. In the
case of free actions, the internal isotropy data is trivial so there is no obvious geometric
way of exploiting the existence of a free action. For this reason, the arguments usually
come down to algebraic considerations in suitable models of the equivariant cohomology
H∗G(X). The choice of model, i.e. algebraic structure which computes the equivariant
cohomology, is very important: although all of them extract certain information on the
action from the space XG, some models are more apt to display certain information than
others. It is often beneficial to pass to a smaller model while losing information. In this
spirit, many of our results stem from the realm of graded modules, only exploiting the
module structures provided by the map XG → BG even though we start with a much
richer structure.
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Most notably we profit from two recent developments, the first of which are the solved
Boij–Söderberg conjectures (see [17], [16], [10]). They give a precise description, up to
scalars, of the possible Betti numbers of graded modules over polynomial rings. The
second essential ingredient is the Buchsbaum-Eisenbud-Horrocks conjecture, which is still
unsolved in full generality but saw serious progress in the recent paper [61]. It predicts
lower bounds on the ranks in certain free resolutions and has a strong connection to the
TRC, which was used e.g. in [60]. Oftentimes, the aforementioned discussion of formality
is what allows us to draw the connection to these algebraic results on graded modules.

We point out that formality is essential to the success of reducing the information
to the level of module structures: in [36], an example of a differential graded module
over a polynomial ring in r variables was given, such that the total rank of the module
is less than 2r while the cohomology has finite length. This essentially shows that the
arising module structures alone do not contain enough information to deduce the TRC
in general. However, the counterexample is not topologically realizable and is hence not
a counterexample to the TRC. Still, a proof of the TRC – which the author strongly
believes to exist – will need to make use of more intricate structures.

Summary and structure of the thesis. The first chapter is devoted to setting up the
machinery that converts geometrical information of the group action into algebraic models.
In Section 1.1 we begin with a short recollection on equivariant cohomology and central
results of the theory. Subsequently, in 1.2, Sullivan models for equivariant cohomology are
discussed. We assume the reader is familiar with the basic theory of Sullivan models and
rational homotopy theory. Section 1.3 introduces minimal models of differential graded
modules and the Hirsch–Brown model of an action. While the results in this section
can mostly be found within the existing literature, we have provided simplified proofs in
the generality which is suited to our applications. We also provide explicit constructions
which will be useful throughout the later parts of the thesis. We aimed for a rather
elementary presentation while still covering the necessary theoretical aspects. This spirit
carries over to the final section 1.4 of the chapter, where we discuss the notions of A∞-
(resp. C∞)-algebras and modules. They provide alternative models which are very well
suited to display formality properties. Again, the aim is to lay the technical foundation
for later chapters and introduce terminology. While the section is meant as a concise
introduction, we have provided proofs only when the respective statements are elusive in
the literature.

The second chapter is devoted to the discussion of formality in an equivariant setting.
Section 2.1 forms the heart of the chapter. Here the terminology is developed and funda-
mental properties are discussed. We go on to study the behaviour of the arising concepts
under certain elementary topological constructions in Section 2.2. More specifically we
discuss products, certain gluing constructions, such as the equivariant connected sum, and
restriction to subgroups. As a next step, in 2.3, we investigate possible characterisations
of our formality properties in the language of higher operations of the minimal C∞-model.
Throughout the chapter, we have avoided to interrupt the presentation through the often
rather lengthy but necessary (counter)examples and instead have collected them in the
final Section 2.4. Also we show that a large class of examples of actions fulfilling the
central formality related properties is provided by actions on Hard Lefschetz spaces and
symplectic actions on Lefschetz type symplectic manifolds.
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In the third and last chapter we focus on applications with regards to the TRC and,
more generally, restrictions on the Betti numbers of G-spaces. The Chapter is divided
into two sections, the first of which discusses consequences of the formality properties
from the second chapter. We start Section 3.1 by discussing the connections between the
TRC and the Buchsbaum-Eisenbud-Horrocks conjecture and prove the TRC for MOD-
formal actions and actions with formal core. We also obtain a structural result on the
case where the bound of the TRC is sharp. This is followed by an investigation of the
TRC in low dimensions. In 3.1.3, we take a step back from the dimensional bounds of the
TRC and instead, after giving a short introduction to Boij–Söderberg theory, consider the
topological consequences of the latter. We make the immediate observation that the vector
of Betti numbers of a MOD-formal T -space is contained in a certain rational cone, and
go on to investigate the question of realizing integral points of the cone as Betti numbers
of T -spaces. Our final objective in the formal realm is to prove the TRC for spaces that
are elliptic and formal (in the classical nonequivariant sense). We noticed that this has
already been observed in [44] and we do not claim originality of the result. However, it
essentially builds upon a more general structural observation on formal elliptic spaces,
which we did not find explicitly stated. We feel like there is some value to a compact
display of the material and this seems like a fitting place to do so. The second section
3.2 is concerned with results on the Betti numbers outside of the formal setting. We
use Boij–Söderberg theory to derive a lower bound on the sum of Betti numbers of an
almost free T -space under assumptions on certain Betti numbers. This general bound is
applied to the specific case of cohomologically symplectic spaces providing a quadratic
lower bound on the Betti numbers.

We point out that Section 3.2 consists of results that we already published in the paper
[62]. This also includes parts of sections 1.3 and 3.1.3. Parts of the remaining material,
in particular of Chapter 2 and Section 3.1, were developed in cooperation with Manuel
Amann.





Chapter 1

Equivariant cohomology and its
models

1.1 The Borel fibration and equivariant cohomology

Throughout the thesis, G will denote a compact and connected Lie-Group and X will be
a topological space with a continuous G-action. The G-spaces considered are assumed
to be Hausdorff, connected, and have finite-dimensional rational cohomology. The latter
always refers to singular cohomology. Coefficients will be taken in the field Q if not stated
otherwise and will be suppressed in the notation.

Our main tool for studying topological aspects of a G-action on X is the Borel fibration

X → XG → BG

where BG = EG/G for some contractible space EG on which X acts freely and XG is the
orbit space of the diagonal action on EG×X. The map XG → BG is given by projection
onto the first component.

The cohomology of XG is called the equivariant cohomology of X and denoted by
H∗G(X). The map XG → BG induces a natural H∗(BG)-module structure on H∗G(X).
The ring H∗(BG) is a polynomial algebra with generators of even degree and will be de-
noted by R. In case G is a torus, the generators of R are all of degree 2. The assumption
dimH∗(X) <∞ ensures that H∗G(X) is finitely generated as an R-module (see [4, Propo-
sition 3.10.1]). Equivariant cohomology provides an essential link between geometry and
algebra and captures many important properties of the group action. For example, the
information of an action being almost free (meaning that all isotropy groups are finite)
can immediately be read off from the algebraic data in case X is compact.

Theorem 1.1.1. Assume X is compact. The G-action on X is almost free if and only if

dimH∗G(X) <∞.

This is a classical theorem due to Hsiang. In the torus case it is actually a direct
consequence of the more general Lemma 1.1.6 below. We have the following supplementary
proposition. Here fd(X) denotes the formal dimension, which is the highest integer n such
that dimHn(X) 6= 0.

7
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Proposition 1.1.2. Assume G acts almost freely on X.

(i) If X is compact, we have fd(XG) = fd(X)− dimG.

(ii) If X is a manifold, XG → X/G induces an isomorphism in cohomology.

(iii) Suppose X is compact, H∗(X) satisfies Poincaré duality, and H1(X) = 0. Then
H∗G(X) satisfies Poincaré duality.

Part (i) is an easy observation using the Serre spectral sequence of the fibration (up
to homotopy) G → X → XG. For (ii) see [21, Theorem 7.6]. Finally, (iii) follows by
applying [19, Theorems 3.6 and 4.3] to the Borel fibration X → XG → BG and using
that BG is a Gorenstein space by [19, Proposition 3.4]. Rather contrary to the above
case, where H∗G(X) is a torsion module, we formally recall the following classical

Definition 1.1.3. The G-action on X is equivariantly formal if one of the following
equivalent conditions holds:

(i) H∗G(X) is a free R-module.

(ii) H∗G(X) ∼= R⊗H∗(X) as modules.

(iii) The Serre spectral sequence of the Borel fibration is totally non-homologous to zero
(TNHZ), i.e. it collapses at E2.

(iv) The map H∗G(X)→ H∗(X) is surjective.

The equivalence of (ii), (iii), and (iv) follows from standard considerations on the
Serre spectral sequence of the Borel fibration. For the equivalence of the condition (i)
see [4, Cor. 4.2.3], [27, Prop. 2.3]. A central theorem in the cohomological theory of
transformation groups is the Borel localization theorem. For any multiplicatively closed
subset S ⊂ R, we set

XS = {x ∈ X | S−1H∗G(G · x) 6= 0}.

Here S−1M denotes the localization of an R-module M at S. The following version of the
localization theorem is [4, Theorem 3.2.6], where H

∗
G(X) = H

∗
(XG) denotes (equivariant)

Alexander-Spanier cohomology.

Theorem 1.1.4. Suppose X is compact, let Y ⊂ X be a closed invariant subspace, and
let S ⊂ R be a multiplicative subset. Then the localized map

S−1H
∗
G(X, Y ) −→ S−1H

∗
G(XS, Y S)

is an isomorphism.

Remark 1.1.5. The compactness condition above can be replaced by other finiteness
conditions. We point the reader towards [4, Section 3.2] for details. In order to obtain a
result on singular cohomology, which is the theory we will be working with, one would need
further assumptions which assure that Alexander-Spanier and singular cohomology agree
on the occurring spaces. This is known to hold e.g. if the spaces are locally contractible.

For us, the important application of Borel localization is the lemma below, which
only uses the case where Y = ∅ and XS = ∅. In this case, Borel localization actually
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has an easy proof which works for singular cohomology, provided the existence of tubular
neighbourhoods (see e.g. the first part of the proof of [35, Theorem III.1]). This is assured
by working with Hausdorff spaces since a compact Hausdorff space is Tychonoff and
those spaces admit tubular neighbourhoods (see [11, Theorem 5.4]). This leads to the
assumption of X being compact (and Hausdorff) which appears frequently throughout
the thesis. Without exception, the results carry over if we replace the assumption by
suitable other conditions as mentioned above.

Finally, we point out that the lemma below is proved in [25, Proposition 5.1]. We will
give a short proof nonetheless, for the sake of a compact presentation of this essential
ingredient and to provide clarity on the necessary topological requirements.

Lemma 1.1.6. Let X be a compact space with an action of a torus T . Then the codimen-
sion of H∗T (X), i.e. the height of its annihilator as an R-module, is the minimal dimension
among the orbits.

Proof. If X has an orbit O = T/H of dimension c, then ker(R → H∗T (O) = H∗(BH))
is generated by c linearly independent generators of R2 and is thus an ideal of height c.
Since this map factors through H∗T (X), it follows that Ann(H∗T (X)) = ker(R → H∗T (X))
is contained in this ideal and is therefore of height ≤ c.

Assume now that c is the minimal dimension among the orbits and let p be a prime
ideal of height c−1. By the previous considerations, ker(R→ H∗T (O)) is not contained in p
for any orbit O ⊂ X. Hence, setting S = R\p, we have XS = 0. Borel localization implies
S−1H∗T (X) = 0 which means that every element from H∗T (X) is annihilated by some
element in S. Since H∗T (X) is finitely generated, we obtain an element in S∩Ann(H∗T (X))
by taking products. We have shown that Ann(H∗T (X)) is not contained in p.

1.2 Sullivan models

While cohomology is a powerful tool to extract information from the Borel fibration,
we want to go deeper to the cochain level. Our main tool is the language of rational
homotopy theory and in particular commutative differential graded algebras (cdga) and
Sullivan models. We assume the reader is familiar with those theories and refer to [20]
for missing definitions. The point here is to preemptively sort out technical difficulties
that arise in later discussions, as well as to comment on the problem of realizing algebra
through geometry. We fix some notation: if V is a graded vector space, then ΛV will
denote the free unital commutative graded algebra on V . If not stated otherwise, all cdgas
will be assumed to be non-negatively graded. We will furthermore assume all (cd)gas to
be unital which means that they come with a fixed multiplicative unit element which is
preserved by morphisms.

One of the central objects in this thesis is the following construction: we fix a Sullivan
minimal model of the algebra Apl(BG) of the piecewise linear forms on BG. It is of the
form (R, 0) where R = H∗(BG). The fibration induces a map (R, 0)→ Apl(XG) for which
we choose a relative minimal model. This results in an extension sequence

(R, 0)→ (R⊗ ΛV,D)→ (ΛV, d)

where the first map is the inclusion of the relative minimal model and the second one is
the projection onto ΛV (with the induced differential) via the canonical augmentation of
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R that sends R+ to 0 and is the identity on R0 = Q. Then said projection is actually a
Sullivan model for X → XG. We will refer to such an extension sequence as a (minimal)
model for the Borel fibration.

Remark 1.2.1. (i) Throughout the thesis, we will work with a fixed minimal model
R→ Apl(BG). As the minimal model of the Borel fibration will be a central object,
we want to point out that it is independent of the choices made in the construction: if
(R′, 0)→ Apl(BG) is another minimal model and (R′⊗ΛV ′, D′) is a relative minimal
model for R′ → Apl(XG), then there is an isomorphism (R⊗ΛV,D) ∼= (R′⊗ΛV ′, D′)
that restricts to an isomorphism R ∼= R′. This follows from the basic homotopy
theory of cdgas: by uniqueness of the minimal model there is an isomorphism R ∼= R′

such that ϕ0 : R → Apl(XG) and ϕ1 : R ∼= R′ → Apl(XG) are homotopic. Let
h : R → Apl(XG) ⊗ (t, dt) be a homotopy such that ϕ0 = p0 ◦ h and ϕ1 = p1 ◦ h,
where pi is evaluation at t = i. Consider the commutative diagram

R //

��

Apl(XG)⊗ (t, dt)

p0

��

R⊗ ΛV
ϕ0

//

66

Apl(XG)

with the dashed arrow obtained by relative lifting (see e.g. [20, Lemma 14.4]). As
a result we deduce that by changing the homotopy class of ϕ0, through composing
the dashed arrow with p1, we can obtain a relative minimal model for ϕ1. Then the
claim follows from uniqueness of the relative minimal model.

(ii) The Sullivan model (R ⊗ ΛV,D) for XG is not minimal in general (however it is
always minimal for torus actions on simply-connected spaces). Still, it is usually our
preferred choice of model since it comes with a fixed R-module structure. Equivari-
ant maps induce morphisms that respect this structure: given an equivariant map
between G-spaces, we obtain a strictly commutative diagram between the Borel fi-
brations. If minimal models of the Borel fibrations are constructed as above, then
one can show through relative lifting (see [20, Prop. 14.6]) that there is a strictly
commutative diagram

(R, 0) //

1R

��

(R⊗ ΛV,D) //

��

(ΛV, d)

��

(R, 0) // (R⊗ ΛW,D) // (ΛW,d)

in which the rows are the relative minimal models and the horizontal morphisms are
Sullivan representatives for the corresponding maps between the Borel fibrations. If
such structure is present, we will usually assume the morphisms to be of this type.

As we will often care about R-module structures, the following lemma will be useful
throughout the thesis. By an R-cdga we mean a morphism (R, 0) → B of cdgas. We
will often just write B in case the specific morphism is not important or clear from the
context.
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Lemma 1.2.2. (i) For any cdga B, two morphisms (R, 0) → B are homotopic if and
only if they induce the same map on cohomology.

(ii) Consider any R-cdga B and a relative Sullivan algebra (R, 0)→ (R⊗ΛV,D). Then
any morphism (R⊗ ΛV,D)→ B such that ϕ∗ : H∗(R⊗ ΛV )→ H∗(B) respects the
R-module structures is homotopic to a morphism of R-cdgas.

Proof. For the proof of (i), let f, g be two such morphisms and R = Λ(X1, . . . , Xr). Then,
by assumption, for any Xi there is some vi ∈ B satisfying D(vi) = g(Xi) − f(Xi). We
can define a homotopy h : R→ B ⊗ Λ(t, dt), with t of degree 0, by setting

h(Xi) = f(Xi) + (g(Xi)− f(Xi))t− vidt.

In the situation of (ii), we have a diagram

R

$$��

R⊗ ΛV // B

which commutes on the level of cohomology. By (i) it is homotopy commutative so the
claim follows by extension of homotopies (see e.g. [21, Proposition 2.22])

Remark 1.2.3. We will frequently make use of the fact that we can obtain the model
(ΛV, d) of a space X from the (preferred) model of XG by forming another extension
sequence

(R⊗ ΛV,D)→ (R⊗ ΛV ⊗ S,D)→ (S, 0),

where S = Λ(s1, . . . , sr) is generated in odd degrees and D maps the si bijectively to the
generators of R. In fact, we have S = H∗(G). Sending R and S to 0 yields a quasi-
isomorphism (R ⊗ ΛV ⊗ S,D) ' (ΛV, d). The extension sequence above is a model for
G→ X → XG, which is a fibration up to homotopy equivalence.

For free torus actions, it is also possible to pass from algebra to geometry: given a
base space Y , any choice of r classes from H2(Y ) defines a morphism R→ H∗(Y ) which
lifts (uniquely up to homotopy by Lemma 1.2.2) to a map R→ Apl(Y ). In particular we
obtain a unique relative minimal model of the form R → R ⊗ ΛV . In the proposition
below, we expand on the discussion in [21, Prop. 7.17] and show that such algebraic data
is always realizable by the Borel fibration of a free torus action.

Proposition 1.2.4. Let R = Λ(X1, . . . , Xr) with Xi in degree 2, (ΛV, d) be a finite type
minimal Sullivan algebra, and

(R, 0)→ (R⊗ ΛV,D)→ (ΛV, d)

be an extension sequence with maps given by canonical inclusion and projection. Then
there exists a free T r-action on some space X such that the above sequence is the minimal
model of the associated Borel fibration. If the cohomology of the middle cdga is finite-
dimensional, then we can take X to be compact. If additionally H∗(ΛV, d) is simply-
connected, satisfies Poincaré duality with fundamental class in degree n, and n− r is not
divisible by 4, then we can take X to be a compact simply-connected manifold.
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In the above proposition, (ΛV, d) is the minimal model of X. In particular, the co-
homology of X is not necessarily finite-dimensional, which is an exception to the gen-
eral assumption of all G-spaces having finite-dimensional cohomology. Note that even
if dimH∗(ΛV, d) < ∞, we can only choose X to be compact if also the cohomology of
(R⊗ ΛV,D) is finite-dimensional as otherwise Theorem 1.1.1 would be violated.

Proof. Let Y be a CW-complex with Sullivan model (R ⊗ ΛV,D). We find an integer k
such that the cohomology classes of the kXi in H2(Y ;Q) come from classes in H2(Y ;Z).
Those uniquely determine the homotopy class of a map f : Y → K(Zr, 2) = BT r. The
minimal model R → Apl(BT

r) can be chosen in a way such that the canonical inclusion
R → R ⊗ V is a Sullivan model for f . Pulling back the universal principal bundle along
f yields a principal bundle

T r → X → Y.

We consider the following commutative diagram of principal T r-bundles

T r

��

T roo

��

// T r

��

// T r

��

ET r

��

ET r ×Xoo

��

// X

��

// ET r

��

BT r XT roo // Y // BT r

in which the left morphism of principal bundles is given by projection on the first com-
ponent, the central one is projection on the second component, and the right one is the
pullback diagram induced by f . Note that the central morphism actually consists of weak
equivalences so (R⊗ΛV,D) is a model for XT r . By naturality of the spectral sequence, the
transgressions of the associated Serre spectral sequence commute with the maps between
the base spaces. Thus the inner triangles in the diagram

H2(Y )

H2(BT r)

f∗ //

//

H1(T )

99

oo

%%

H2(XT r)

OO

are commutative. But the transgression H1(T r)→ H2(BT r) is actually an isomorphism
so the whole diagram commutes. Since R is generated in degree 2, it follows by Lemma
1.2.2 that the canonical inclusion R→ R⊗ΛV is not only a model for f but also for the
Borel fibration of X.

If (R ⊗ ΛV,D) has finite-dimensional cohomology we can choose Y to be a finite
CW-complex and homotope f such that it has image in some compact skeleton. As a
consequence, X will be compact. If (V, d) is additionally simply-connected and satisfies
Poincaré duality with fundamental class of degree n, then (R⊗ ΛV,D) satisfies Poincaré
duality with fundamental class in degree n − r (by the same reasoning as Proposition
1.1.2 (iii)). Then by [21, Theorem 3.2] we can choose Y as a compact simply-connected
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manifold. As before we can homotope f to have image in a compact skeleton which is
in fact contained in some (CPN)r for N large enough. If we go on to homotope f to a
smooth map, then X will be a smooth compact simply-connected manifold.

1.3 The Hirsch–Brown model

We will frequently leave the realm of cdgas and consider only the R-module structure.
While much information is lost in the process, this has the advantage of the resulting
models being a lot smaller and allowing a more direct access to the (nonequivariant)
cohomology of the underlying G-space.

We begin with the basic definitions leading to a notion of minimal model in the
module setting and go on to prove its essential properties. The material is certainly
not new: these kinds of models were introduced in [6], [20] (see in particular Exercise 8
of Chapter 6 for the notion of minimality) and were also described in [4, Appendix B].
Furthermore, the concept of minimality has been discussed in the more general framework
of model categories in [55], which applies to the setting of differential graded modules (cf.
[34]). More explicit applications of the general theory to differential graded modules were
discussed in [56]. However, the theory needed in this thesis can be developed rather
quickly, which we do for the convenience of the reader (the proofs are mainly simplified
versions of those for the corresponding statements for cdgas). We feel like the available
sources either do not fully cover our point of view or operate in greater generality, which
makes it hard to occasionally rely on the explicit constructions. As those will be essential,
we provide an alternative method of construction of the minimal model in the second part
of the section.

1.3.1 Definitions and properties

Let k be some ground field and (R, d) be a cdga over k.

Definition 1.3.1. • A graded R-module is a graded k-vector space M together with
an R module structure for which the multiplication map R ⊗M → M is a graded
map of degree 0.

• If a graded R-module carries a differential D of degree 1 such that D(a · m) =
da · m + (−1)ka · Dm for any a ∈ Rk, then we call (M,D) a differential graded
R-module (dgRm).

• A morphism f : (M,DM)→ (N,DN) of dgRms is a degree 0 map which is R-linear
and commutes with the differentials.

• A quasi-isomorphism of dgRms is a morphism that induces an isomorphism in co-
homology.

• Two morphisms f, g : (M,DM) → (N,DN) are homotopic if there is an R-linear
map h : M → N of degree −1 which satisfies f − g = DNh+ hDM .

In the definition above we restricted ourselves to morphisms of degree 0 to simplify the
language throughout the thesis. Also, in what follows we shall work under the following
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assumptions: the cdga R is concentrated in non-negative degrees and is simply-connected
(i.e. R0 = k and R1 = 0). Furthermore all differential graded R-modules are assumed to
be bounded from below (i.e. there is some k ∈ Z for which M≤k = 0). We denote by
m = R+ the maximal homogeneous ideal in R.

Definition 1.3.2. A dgRm (M,d) is minimal if M = R ⊗ V is a free module over some
graded k-vector space V and im(d) ⊂ mM .

Proposition 1.3.3 (Existence). For every dgRm (M,D) there is a minimal model, i.e.
a quasi-isomorphism ϕ : (R⊗ V, d)→ (M,D) from a minimal dgRm into (M,D).

Proof. Assume inductively that for some n we have constructed a map

ϕn : (R⊗ V ≤n, d) −→ (M,D)

from a minimal dgRm, which induces an isomorphism on cohomology in degrees up to n
and is injective in degree n+1. Let A = coker(Hn+1(ϕn) : Hn+1(R⊗V ≤n)→ Hn+1(M,D),
set d = 0 on A, and extend ϕn to R ⊗ A by linearly choosing representatives from
(kerD)n+1. The resulting map ϕ′n+1 : R ⊗ (V ≤n ⊕ A)→ (M,D) induces an isomorphism
in degrees up to n + 1. To achieve injectivity in degree n + 2, take B = kerH(ϕ′n+1)n+2,
considered as a vector space in degree n + 1, and extend d to B by choosing a basis of
B and mapping that basis onto representatives in (ker d)n+2. Setting V n+1 = A ⊕ B,
we can then extend ϕ′n+1 to a map ϕn+1 : (R ⊗ V ≤n+1, d) → (M,D). As R is simply-
connected, the introduction of B in degree n+ 1 does not generate any new cohomology
in degree n + 2. Thus ϕn+1 is injective on degree n + 2 cohomology. Also observe that
d(B) ⊂ (R ⊗ (V ≤n ⊕ A))n+2 is contained in m(V ≤n ⊕ A) so this inductive construction
indeed yields a minimal model.

Before discussing the fundamental properties of minimal models, we want to point
out that being homotopic is an equivalence relation on the set of morphisms between
two dgRms and is furthermore compatible with composition of morphisms. This is easily
verified and one of the points where the theory of dgRms is much easier than that of
cdgas. Also, we will need the following formulation of homotopy: consider the complex
I = (〈p0, p1, p〉k, d), with p0, p1 in degree 0, p in degree 1 and dp0 = p, dp1 = −p, dp = 0.
It comes with two projections ij : I → k, j = 0, 1 defined by sending pj to 1 and the
other generators to 0. A homotopy h between two morphisms f, g : M → N induces a
morphism

H : M → I ⊗N

of dgRms by setting H(x) = p⊗h(x) + p0⊗ f(x) + p1⊗ g(x). In turn any such H defines
a homotopy between (i0 ⊗ 1N) ◦H and (i1 ⊗ 1N) ◦H.

Proposition 1.3.4 (Lifting). Let f : (N,DN) → (M,DM) be a quasi-isomorphism and
ϕ : (R⊗ V, d)→ (M,DM) a morphism from a minimal dgRm.

(i) If f is surjective there is ϕ̃ : (R⊗ V, d)→ (N,DN) such that f ◦ ϕ̃ = ϕ.

(ii) There exists ϕ̃ : (R ⊗ V, d) → (N,DN), unique up to homotopy, such that f ◦ ϕ̃ is
homotopic to ϕ.
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Proof. We prove the existence of ϕ̃ in (i). Assume inductively that we have constructed
the lift ϕ̃ : R ⊗ V ≤n → (N,DN) for some n such that ϕ|R⊗V ≤n = f ◦ ϕ̃. For any x
in a fixed basis of V n+1, we have dx ∈ R ⊗ V ≤n due to the fact that (R ⊗ V, d) is
minimal and R is simply-connected. As a result, ϕ̃(dx) is defined and closed. We have
f(ϕ̃(dx)) = ϕ(dx) = DMϕ(x) so ϕ̃(dx) is exact because f is injective on cohomology.
Choose y ∈ N with DNy = ϕ̃(dx) and observe that f(y) − ϕ(x) ∈ kerDM . We claim
that we find z ∈ kerDN with f(z) = f(y) − ϕ(x). If we do, we can extend ϕ̃ by setting
ϕ̃(x) = y− z which completes the induction. Since f is surjective on cohomology, we find
some a ∈ kerDN , b ∈M such that f(a) = f(y)− ϕ(x) +DMb. Also f is surjective so we
find c ∈ N with f(c) = b. Thus the element z = a−DNc has the desired properties.

The existence in (ii) follows from (i) in the following way: Consider the acyclic module
(M ⊕ δM, δ), where the differential is an isomorphism δ : M ∼= δM and vanishes on δM .
This maps surjectively onto (M,DM) by m 7→ m, δm 7→ DMm. So we obtain a surjective
quasi-isomorphism (N ⊕M ⊕ δM,DN ⊕ δ)→ (M,DM). Now (i) yields the dashed arrow
in the diagram

N ⊕M ⊕ δM

��

// N

xx
R⊗ V

77

//M

in which the left hand triangle commutes and the right hand triangle commutes up to
homotopy. Composing with the arrow to N yields the desired lift.

Finally we argue that the lift is unique up to homotopy, which will be achieved by
lifting homotopies. We start by the observation that two maps ϕ̃1, ϕ̃2 : R ⊗ V → N are
homotopic if and only if their compositions with N → N ⊕M ⊕ δM are homotopic. This
holds because the latter map is a homotopy equivalence with the top horizontal arrow of
the above diagram as a homotopy inverse. Thus in what follows, we can assume f to be
surjective.

Consider the fiber product F = (I ⊗M)×M⊕M (N ⊕N), which is explicitly given by

F = {(x, y, z) ∈ (I ⊗M)⊕N ⊕N | (i0 ⊗ 1M(x), i1 ⊗ 1M(x)) = (f(y), f(x))}.

The map ψ = (1I⊗f⊕i0⊗1N⊕i1⊗1N) : I⊗N → F defines a surjective quasi-isomorphism.
This follows from a straight forward investigation of what it means to be a (exact) cocycle
in the two objects, which we leave to the reader. Now if ϕ̃1, ϕ̃2 : R ⊗ V → N are two
morphisms such that f ◦ ϕ̃1 and f ◦ ϕ̃2 are homotopic via a homotopy H : R⊗V → I⊗M ,
then we obtain the map H ⊕ ϕ̃1 ⊕ ϕ̃2 : R ⊗ V → F . By (i) we can lift this map through
the surjective quasi-isomorphism ψ which yields a homotopy between ϕ̃1 and ϕ̃2.

Proposition 1.3.5 (Uniqueness). A quasi-isomorphism between minimal dgRms is an
isomorphism.

Proof. Let ϕ : (R⊗ V, d)→ (R⊗ V ′, d′) be a quasi-isomorphism of minimal dgRms. This
induces a map ϕ : V ∼= (R ⊗ V )/mV → (R ⊗ V ′)/mV ′ ∼= V ′. We show that ϕ is an
isomorphism which implies that ϕ is an isomorphism as well.

Lifting 1R⊗V ′ through ϕ provides us with a morphism ψ : (R ⊗ V ′, d′) → (R ⊗ V, d)
such that ϕ ◦ ψ is homotopic to 1R⊗V ′ . By the definition of homotopy and minimality, it
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follows that ϕ ◦ ψ − 1R⊗V ′ takes values in mV ′. In particular ϕ ◦ ψ is an isomorphism,
where ψ : V ′ → V is defined analogously.

Since ψ ◦ ϕ ◦ ψ ◦ ϕ ' ψ ◦ ϕ, the uniqueness in Proposition 1.3.4 implies that also
ψ ◦ ϕ ' 1R⊗V . Hence, as before, we deduce that ψ ◦ ϕ is an isomorphism as well.
Consequently ϕ is an isomorphism.

Together, Propositions 1.3.4 and 1.3.5 imply the following

Corollary 1.3.6. Two dgRms are connected by a chain of quasi-isomorphisms (that is
to say they have the same quasi-isomorphism-type) if and only if they have isomorphic
minimal models.

1.3.2 Construction of the Hirsch–Brown model via perturba-
tions

The dgRm we are most interested in is the minimal (Sullivan) model

(R, 0)→ (R⊗ ΛV,D)→ (ΛV, d)

of the Borel fibration of a G-space X, where (ΛV, d) is the minimal Sullivan model of X.

Definition 1.3.7. The minimal Hirsch–Brown model of the action on X is the dgRm
minimal model of (R⊗ ΛV,D).

In this section we give an alternative method of constructing the Hirsch–Brown model
of an action directly from (R ⊗ ΛV,D). This will occasionally be more useful than the
construction in Proposition 1.3.3 and also provide insight to the explicit form of the
Hirsch–Brown model.

We will make use of Gugenheims theory of perturbations from [30]. Consider the
following situation: we have two differential graded R-modules (H, dH) and (M,dM) where
H is a retract of M in the sense that we find f : H →M and g : M → H with g ◦ f = 1H
and f ◦ g ' 1M via a homotopy φ of degree −1. We further assume φ fulfils the side
conditions φ2 = 0, φf = 0, and gφ = 0. We are interested in the following problem:
given a new differential DM on M , find a new differential on H such that the two new
differential graded modules are again homotopy equivalent. For all n ≥ 1 we define

t := DM − dM , tn := (tφ)n−1t, Σn := t1 + . . .+ tn,

and

δn+1 := dH + gΣnf fn+1 := f + φΣnf

gn+1 := g + gΣnφ φn+1 := φ+ φΣnφ.

Let A ⊂ End(M) be the (non-commutative) algebra consisting of maps that arise as
polynomials in the operators φ, t, and dM . Let J ⊂ A denote the ideal generated by t.

Lemma 1.3.8 ([30]). We have

δnδn ∈ gJnf, DMfn − fnδn ∈ Jnf,
δng − gDM ∈ gJn, gnfn = 1H ,

fngn − 1M −DMφn − φnDM ∈ Jn, φnfn = 0,

gnφn = 0, φnφn = 0.
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So if, in a pointwise sense, the above sequences of maps have a limit and Jn converges
to 0, the limits solve the problem described above. Now let us apply this to the case of
(R⊗ ΛV ).

First we choose the data of a retract (maps and the homotopy) of differential graded
Q-modules between (H∗(X), 0) and (ΛV, d). This can be done by choosing a vector space
splitting ΛV = A ⊕ B ⊕ C where B = im(d), A is a complement of B in ker(d), and C
is a complement of ker(d) in ΛV . Note that d maps C isomorphically onto B and that
A ∼= H∗(X) via projecting ker(d) onto cohomology. Sticking to the notation above we
define

f : H∗(X) ∼= A→ ΛV

g : ΛV → A ∼= H∗(X)

φ : ΛV → B
d−1

−−→ C → ΛV,

where all non-specified arrows correspond to the inclusions and projections with respect
to the decomposition. This defines a retract satisfying all the assumptions above.

Now extend all the maps R-linearly to a homotopy equivalence of the differential
graded R-modules (R ⊗ H∗(X), 0) and (R ⊗ ΛV, d̃) where d̃ = 1R ⊗ d. As we are not
interested in d̃ but in the twisted differential D on R ⊗ ΛV , set t = D − d̃ and also
φ̃ = 1R ⊗ φ. We want to show that elements in a sufficiently high power of the ideal J ,
which is additively generated by compositions of t, d̃, and φ̃ with at least one t, vanish
on R ⊗ (ΛV )≤n for some fixed n. Observe that since D and d̃ agree on the component
mapping 1R ⊗ ΛV to itself, t maps R⊗ (ΛV )n into R+ ⊗ (ΛV )≤n−1 and the same is true
for φ̃. Using the relations

d̃φ̃d̃ = d̃, φ̃d̃φ̃ = φ̃, d̃2 = 0 = φ̃2,

we see that any monomial in Jn+1 starts with a composition of n+1 factors of the form t,
td̃, tφ̃, td̃φ̃, or tφ̃d̃. All of those except for td̃ reduce the degree in ΛV . Using the relation
D2 = 0, which implies td̃ = t2 − d̃t, we can replace the td̃ factors with ones that do lower
the degree in ΛV . Hence the operators in Jn+1 vanish on R⊗ (ΛV )≤n.

In particular, on this domain, we have tk = 0 and Σn = Σk for k > n. Thus all
sequences of maps in Lemma 1.3.8 converge (pointwise) to respective limits, which by
the lemma define a differential δ on R ⊗ H∗(X) and a homotopy equivalence between
(R⊗H∗(X), δ) and (R⊗ΛV,D). Also (R⊗H∗(X), δ) is minimal because t takes values
in m⊗ ΛV . We deduce:

Corollary 1.3.9. The minimal Hirsch–Brown model of a G-action on X is of the form
(R⊗H∗(X), δ).

On R⊗H≤n(X), the differential is explicitly given by

δ = g̃Σnf̃ ,

where f̃ = 1R ⊗ f and g̃ = 1R ⊗ g.
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1.4 Higher homotopy models

The last type of models that we will discuss is the one that arises when relaxing the
structure of the previous models (cdga or dgRm) up to homotopy. In each case, no
information is lost in the process in the sense that the minimal models of the respective
type of structure can be constructed from one another (see Theorem 1.4.19 below). The
usefulness of the relaxed structures is that we obtain another type of minimal model
whose underlying algebraic object is just the cohomology, and the additional information,
of say the rational homotopy type, is encoded in higher operations on the cohomology.
These operations have strong connections to the classical notion of Massey products and
are well suited to discuss formality properties.

We give a brief summary of some basic definitions and results surrounding A∞-algebras
and modules. The aim here is to access the results we need while staying as elementary as
possible. For a more detailed introduction to the subject see e.g. [54], [45], or alternatively
[47] for the operadic viewpoint which we will occasionally refer to. For a broader overview
on the subject see [42]. In what follows, all vector spaces are considered over a field k of
characteristic 0. We will make use of the Koszul sign convention:

(f ⊗ g)(a⊗ b) = (−1)|g|·|a|f(a)⊗ g(b)

if f and g are graded linear maps and a, b are homogeneous elements from the respective
domains of f and g. Also the general assumptions that all (commutative) differential
graded algebras are non-negatively graded and unital will be suspended within this section
(unless stated otherwise).

1.4.1 A∞- and C∞-algebras

Definition 1.4.1. An A∞-algebra is a graded vector space A together with linear maps
mi : A

⊗i → A of degree 2− i for each i ≥ 1, satisfying for each n the relation∑
(−1)jk+lmi(1

⊗j ⊗mk ⊗ 1⊗l) = 0

where the sum runs over all decompositions j + k + l = n with k ≥ 1 and i = j + l + 1.

While the equations may look complicated at first glance, they take a familiar form if
n is small: for n = 1 we obtain m2

1 = 0 so m1 is a differential. For n = 2 we obtain the
statement that m1 is a derivation with respect to the binary product m2. In general m2

is not associative but it is so up to a homotopy given by m3 in the equation for n = 3.

Definition 1.4.2. The cohomology of (A;mi) is the cohomology of the chain complex
(A,m1).

By the discussion above, the product m2 induces a product on cohomology. This
product is associative giving the cohomology the structure of a graded algebra.

Remark 1.4.3. Any ordinary differential graded algebra (A, d) can be considered as an
A∞-algebra by taking m1 to be d, m2 the multiplication in A, and mi = 0 for i ≥ 3.
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Before we turn our attention to the definition of a morphism between A∞-algebras, let
us reinterpret the defining equations. We define the suspension sA of A via (sA)n = An+1

and also denote by s : A → sA the canonical isomorphism of degree −1. Consider the
reduced tensor coalgebra

TsA = sA⊕ (sA⊗ sA)⊕ . . .

and the map TsA→ sA of degree 1 which, on n-tensors, we define to be bi = −s−1◦mi◦s⊗i.
This map extends uniquely to a coderivation b of TsA by setting

b|sA⊗n =
∑

i+k+l=n

1⊗ksA ⊗ bi ⊗ 1⊗lsA.

The equations in Definition 1.4.1 are equivalent to the fact that b2 = 0. In particular
there is a one-to-one correspondence between A∞-structures on A and codifferentials of
the coalgebra TsA.

Definition 1.4.4. The differential graded coalgebra (TsA, b) is called the bar construction
of (A;mi) and denoted BA.

Remark 1.4.5. The transition from the mi to the bi is not canonical and there exist
different sign conventions in the literature, giving rise to different signs in the definition
of A∞-algebra. We stick to the ones used e.g. in [45] and [49].

A morphism between A∞-algebras (A;mi) and (C;mi) can just be defined as a mor-
phism of differential graded coalgebras f : BA → BC. By the universal property of the
cofree coalgebra, such a morphism is defined by the projection f : BA → sC. This data
is equivalent to a collection of maps fi : A

⊗i → C of degree i − 1 such that on i-tensors,
f is given by s−1 ◦ fi ◦ s⊗i. The condition of f being a morphism of differential graded
coalgebras translates, for each n, to the equation∑

(−1)jk+lfi(1
⊗j ⊗mk ⊗ 1⊗l) =

∑
(−1)smk(fi1 ⊗ . . .⊗ fik),

where the left hand sum runs over all decompositions n = j + k + l with k ≥ 1 and
i = j + 1 + l and the right hand sum runs over all decompositions n = i1 + . . .+ ik and

s =
∑

1≤α<β≤k

(iα)(iβ + 1)

which we could take as an alternative definition of morphism. The equations show that
f1 : A → B is always a chain map with respect to the differentials m1 on A and C.
Therefore it induces a map H∗(A)→ H∗(C). We call f a quasi-isomorphism if f1 induces
an isomorphism on cohomology.

We briefly introduce the concept of homotopy for morphisms of A∞-algebras. Consider
the dg-coalgebra (I, d) where I has basis e in degree −1 and e0, e1 in degree 0. The
differential is defined by d(e) = e0 − e1 and the coalgebra structure is defined by ∆e =
e0 ⊗ e + e ⊗ e1, ∆e0 = e0 ⊗ e0, and ∆e1 = e1 ⊗ e1. If A is an A∞-algebra, we may form
the coalgebra BA⊗ I together with the two inclusions i0 and i1 mapping BA to BA⊗ e0

and BA⊗ e1 and the projection p : BA⊗ I → BA which maps x⊗ e+ x0 ⊗ e0 + x1 ⊗ e1

to x0 + x1. Then p is a quasi-isomorphism and p ◦ ik = 1BA (see [45, 1.3.4.1]).
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Definition 1.4.6. We say two morphisms f, g : A → C are homotopic if there is a mor-
phism of coalgebras h : BA⊗ I → BC with h ◦ i0 = f and h ◦ i1 = g.

There is also a commutative version of A∞-algebras defined as follows:

Definition 1.4.7. Let (A;mi) be an A∞-algebra.

(i) The shuffle product on TsA is defined by

(a1 ⊗ . . .⊗ an) ∗sh (an+1 ⊗ . . .⊗ an+k) =
∑

σ∈Sh(n,k)

(−1)s(σ)aσ(1) ⊗ . . .⊗ aσ(n+k)

where sh(n, k) consists of all permutations σ with σ(i) < σ(j) whenever i < j and
either 1 ≤ i, j ≤ n or n+ 1 ≤ i, j ≤ n+ k. The sign s(σ) is given by the usual sign
of the action of the symmetric group on the graded space (sA)⊗n+k.

(ii) (A;mi) is called a C∞-algebra if the maps mi ◦ (s−1)⊗i vanish on all shuffles in TsA
(note that applying (s−1)⊗i to elements of word length i ≥ 2 changes signs by the
Koszul sign rule).

(iii) A morphism of C∞-algebras is a morphism f of A∞-algebras such that the maps
fi ◦ (s−1)⊗i vanish on all shuffles in TsA.

Remark 1.4.8. From an operadic viewpoint, the commutative version of an A∞-algebra
would be to consider the free Lie coalgebra instead of the free coalgebra as we did in
the bar construction of an A∞-algebra (cf. [57]). One can prove that the definition of a
C∞-algebra above is equivalent to such a structure (see [47, Prop. 13.1.14]).

We conclude this section by introducing the unital and augmented versions of the
previous structures. We consider the ground field k as a cdga concentrated in degree
0. All of the following notions for C∞-algebras have obvious analogous definitions for
A∞-algebras which we will not repeat.

Definition 1.4.9. (i) A strictly unital C∞-algebra is a C∞-morphism η : k → (A;mi)
such that

mi(1A ⊗ . . .⊗ 1A ⊗ η ⊗ 1A ⊗ . . .⊗ 1A) = 0

for i ≥ 3 and m2(1A ⊗ η) = m2(η ⊗ 1A) = 1A. A morphism of strictly unital
C∞-algebras is a morphism of the underlying C∞-algebras that commutes with the
units.

(ii) An augmented C∞-algebra is a strictly unital C∞-algebra A together with a strict
morphism ε : A→ k of strictly unital C∞-algebras. By ε being strict we mean that
the only nontrivial component is ε1. A morphism of augmented C∞-algebras is a
morphism of the underlying strictly unital C∞-algebras that commutes with the
augmentations.

We point out that there is an equivalence of categories between C∞-algebras and
augmented C∞-algebras. In the presence of an augmentation ε, one can consider the non-
augmented C∞-algebra ker ε with the induced structure. Conversely, for any C∞-algebra
(A;mi), we can consider A ⊕ k with the unique strictly unital C∞-structure that agrees
with the mi on A, where the unit and augmentation are given by the canonical inclusion
and projection of k. The two constructions are naturally inverse to another. All notions
such as quasi-isomorphisms or homotopy carry over to the augmented setting.
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Remark 1.4.10. If A is strictly unital, concentrated in positive degrees and A0 = k,
then it is naturally augmented by projecting onto the degree 0 component.

1.4.2 A∞-modules

Definition 1.4.11. Let (A;mi) be an A∞-algebra. An A∞-A-module structure on a
graded vector space M is a collection of maps mM

i : M ⊗ A⊗i−1 → M of degree 2− i for
each i ≥ 1, satisfying for each n the relation∑

(−1)jk+lmM
i (1⊗j ⊗mk ⊗ 1⊗l) = 0

where the sum runs over all decompositions j + k + l = n with k ≥ 1, i = j + l + 1, and
the expression 1⊗j ⊗mk ⊗ 1⊗l is interpreted as mM

k ⊗ 1⊗l whenever j = 0.

Let TsA = k ⊕ TsA be the free augmented coalgebra with comultiplication

∆TsA(x) = x⊗ 1 + ∆TsA(x) + 1⊗ x.

As before, the above data defines a map sM ⊗TsA→ sM of degree 1 which we define to
be −s◦mi ◦ (s−1)⊗i on sM ⊗ sA⊗i−1. Said map can be extended uniquely to a differential
d on the cofree comodule sM ⊗ TsA as in the following

Lemma 1.4.12. Let V be a vector space and (C,∆C , dC) a differential graded coalgebra.
Then any linear map d : V ⊗C → V can be coextended uniquely to a coderivation d of the
co-free comodule V ⊗ C by setting

d = 1V ⊗ dC + (d⊗ 1C) ◦ (1V ⊗∆C).

For counitary coalgebras this yields a one-to-one correspondence of maps d and coderiva-
tions d.

Definition 1.4.13. The cofree differential graded comodule (sM ⊗ TsA, d) is called the
bar construction of (M ;mM

i ) and denoted BM .

A morphism of A∞-modules is defined as a dg-comodule map f between the respective
bar constructions. Such a map f : BM → BN is determined by the projection

f : sM ⊗ TsA→ sN

and can thus be expressed by a collection of maps fi : M⊗A⊗i−1 → N of degree 1− i such
that f = s◦fi ◦ (s−1)⊗i on word length i. The fact that f commutes with the differentials
of the bar constructions translates to the equations∑

(−1)jk+lfi(1
⊗j ⊗mk ⊗ 1⊗l) =

∑
mk+1(fi ⊗ 1⊗k)

for every n ≥ 1, where the left hand sum runs over all decompositions n = j+k+ l, k ≥ 1
and the right hand sum runs over all decompositions n = i + k, i ≥ 1. From this, f is
reconstructed by just setting f = (f ⊗ 1TsA) ◦ (1sM ⊗∆TsA).

As for A∞-algebras, the operation mM
1 of an A∞-module (M ;mM

i ) is a differential and
we define the cohomology of M as that of the chain complex (M,mM

1 ). If f : (M ;mM
i )→

(N ;mN
i ) is a morphism of A∞-modules, then the above equation for n = 1 implies thatf1

is a chain map. Thus we obtain a map H∗(M) → H∗(N) on cohomology. We call f a
quasi-isomorphism if the map on cohomology is an isomorphism.
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Remark 1.4.14. As for A∞-algebras, if (A, d) is a regular dga, the category of classical
dg-modules over A can be seen as a subcategory of A∞-A-modules. Just define the
operation mM

1 to be the differential, mM
2 to be the multiplication map of the module, and

mM
i = 0 for i ≥ 3.

Remark 1.4.15. If (A;mi) is an A∞-algebra, it is in particular an A∞-module over itself
because TsA = A⊗ TsA.

We discuss how A∞-modules behave with respect to maps of the underlying A∞-
algebras. Analogous to the case of regular modules, a morphism f : (A;mi) → (C;mi)
of A∞-algebras yields a restriction functor from A∞-C-modules to A∞-A-modules. If
(M ;mM

i ) is a C-module and fi : A
⊗i → C are the components of f , then the A-module

f ∗M is defined by

mf∗M
i =

∑
(−1)smM

r+1(1M ⊗ fi1 ⊗ . . .⊗ fir)

where the sum runs over all decompositions i− 1 = i1 + . . .+ ir for r = 1, . . . , i− 1 and

s =
∑

1≤α<β≤r

iα(iβ + 1) +
r∑
j=1

(ij − 1).

In the language of the corresponding bar constructions BM and Bf ∗M , this can be
understood as the pullback of the differential along the map f : BA→ BC in the following
sense: the differential on BM = (sM ⊗ TsC, d) is the coextension of the projection
d : sM⊗TsC → sM (see Lemma 1.4.12). Then the corresponding differential of Bf ∗M =
(sM⊗TsA) is the coextension of d◦(1sM⊗f+) where f+ = (1k, f) : k⊕TsA→ k⊕TsC.

Lemma 1.4.16. Consider a commutative triangle

(R;mi)
f
//

h

%%

(A;mi)

g

��

(C;mi)

of A∞-Algebras. Then g induces an A∞-module homomorphism between the A∞-R-module
structures induced on A and C by the morphisms f and h.

Proof. Let dA, dC , dR be the differentials of the bar constructions BA, BC, BR of A∞-
algebras and let d+

A, d+
C , d+

R denote the extensions to TsA, TsC, TsR by sending k to 0.
Also denote by πA : BA → sA and πC : BC → sC the projections and set g = πC ◦ g as
well as dA = πA ◦ dA, dC = πC ◦ dC .

We want to define a map ϕ between the bar constructions of A and C when considered
as A∞-modules over (R;mi). Explicitly, the bar constructions are given as (sA⊗TsR,DA),
(sC ⊗ TsR,DC), where DA and DC are the coextensions (in the sense of Lemma 1.4.12)
of

DA = dA ◦ (1sA ⊗ f+) and DC = dC ◦ (1sC ⊗ h+).

We define ϕ : sA ⊗ TsR → sC to be the composition g ◦ (1sA ⊗ f+) and define ϕ to be
the coextension of ϕ, that is ϕ = (ϕ ⊗ 1TsR) ◦ (1sA ⊗ ∆TsR). It remains to check that
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ϕ commutes with the differentials, which can be confirmed on cogenerators: we need to
prove that DC ◦ ϕ = ϕ ◦DA and calculate

ϕ ◦DA = g ◦ (1sA ⊗ f+) ◦ (1sA ⊗ d+
R + (DA ⊗ 1TsR) ◦ (1sA ⊗∆TsR))

= g ◦ (1sA ⊗ (f+ ◦ d+
R) + (dA ⊗ 1TsA) ◦ (1sA ⊗ f+ ⊗ f+) ◦ (1sA ⊗∆TsR)

= g ◦ (1sA ⊗ d+
A + (dA ⊗ 1TsA) ◦ (1sA ⊗∆TsA)) ◦ (1sA ⊗ f+)

= g ◦ dA ◦ (1sA ⊗ f+)

= dC ◦ g ◦ (1sA ⊗ f+)

= dC ◦ (g ⊗ g+) ◦ (1sA ⊗∆TsA) ◦ (1sA ⊗ f+)

= dC ◦ (g ⊗ g+) ◦ (1sA ⊗ f+ ⊗ f+) ◦ (1sA ⊗∆TsR)

= dC ◦ (1sC ⊗ h+) ◦ (ϕ⊗ 1TsR) ◦ (1sA ⊗∆TsR)

= DC ◦ ϕ,

where we have identified TsA = sA⊗ TsA and TsC = sC ⊗ TsC.

Lemma 1.4.17. Let f, g : (A;mi) → (C;mi) be two homotopic morphisms between A∞-
algebras. Then the two induced A-module structures on C are quasi-isomorphic.

For the proof we will need the following result ([42, Section 6.2], [45, Théorème
4.1.2.4]). The notion of homotopy category is recalled in the next section.

Theorem 1.4.18. Let f : (A;mi) → (C;mi) be a quasi-isomorphism of A∞-algebras.
Then the restriction functor defines an equivalence between the homotopy categories D∞A
and D∞C of the categories of A∞-modules over A and C.

Proof of the lemma. With the terminology of Definition 1.4.6, it suffices to show that the
restrictions of the BA⊗ I-module h∗C along i0 and i1 are quasi-isomorphic, where h is a
homotopy between f and g. Since p is a quasi-isomorphism, restriction along p defines an
equivalence D∞BA → D∞BA ⊗ I so h∗C is quasi-isomorphic to p∗M for some dg-BA-
comodule M . But this means that i∗0(h∗C) is quasi-isomorphic to i∗0(p∗M) = M and the
same holds for i1.

1.4.3 On the homotopy categories

Let C be one of the categories of augmented dgas, augmented cdgas, or dg-A-modules,
where A is a fixed dga with unit. Also let C∞ be the corresponding category of either
augmented A∞-algebras, augmented C∞-algebras, or strictly unital A∞-modules over A.
The latter is defined as the full subcategory of A∞-modules (M ;mM

i ) over A such that
mi(1M ⊗ 1A ⊗ . . . ⊗ 1A ⊗ η ⊗ 1A ⊗ . . . ⊗ 1A) = 0 for i ≥ 3 and m2(1M ⊗ η) = 1M ,
where η : k → A is the unit of A. We have seen that there is an inclusion of categories
C → C∞ (see Remarks 1.4.3 and 1.4.14). The category C∞ is much larger in the sense
that it contains many new objects and morphisms. However, it does not introduce new
quasi-isomorphism types. Hence C∞ can be very useful when studying the category C up
to quasi-isomorphism.

Let Ho(C) and Ho(C∞) denote the homotopy categories of C and C∞ which are defined
as the localizations of the respective category at the set of quasi-isomorphisms. The
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categories C and Ho(C) have the same objects and two of them are isomorphic in Ho(C)
if and only if they are connected by a zigzag of quasi-isomorphisms in C (analogous for
C∞).

Theorem 1.4.19. The inclusion C → C∞ induces an equivalence of categories Ho(C) '
Ho(C∞).

For A∞- and C∞-algebras this follows from [47, Thm. 11.4.12] which covers the general
setting of homotopy algebras over Koszul operads and naturally carries over to the aug-
mented case through the equivalence at the end of Section 1.4.1. The case of A∞-modules
over A was proved in [45, Lemma 4.1.3.8, Prop. 3.3.1.8]. A similar result on A∞-modules
is more explicitly stated in [42, Section 4.3], however referring to the previous reference
for proofs.

1.4.4 Minimal models and formality

It has long been known that Massey products form an obstruction to formality. Con-
versely, the uniform vanishing of all Massey products implies formality. This idea of
uniform vanishing is best captured by seeing Massey products as the higher operations in
an A∞-structure on the cohomology. The following theorem goes back to [39] and [40]. It
has since been generalized in the language of operads [47, Theorem 10.3.15].

Theorem 1.4.20. Let (A;mA
i ) be an A∞-Algebra (resp. C∞-algebra). Then there is an

A∞- (resp. C∞-)algebra structure (H∗(A);mi) on the cohomology such that

• m1 = 0 and m2 is the product induced by mA
2 .

• there is a quasi-isomorphism (H∗(A);mi) → (A;mi) of A∞- (resp. C∞-)algebras
lifting the identity on cohomology.

This structure is unique in the sense that two of them are isomorphic via an isomorphism
of A∞- (resp. C∞-)algebras whose first component is the identity.

We will refer to the quasi-isomorphism H∗(A) → A as a minimal model for A. More
generally we will call an A∞-(resp. C∞-)algebra minimal if the operation m1 vanishes.
The operations mi, i ≥ 3 of the minimal model are also referred to as the higher Massey
products. There are several known formulas which compute these operations from the
A∞-structure on A (see e.g. [51], [47]). We quickly recall the original construction by
Kadeishvili ([41, Theorem 1]) of how to compute the minimal A∞-model of a dga. It was
shown in [49] that the same construction yields a minimal C∞-model when applied to a
cdga.

Let (A, d) be a (c)dga. Set m1 = 0 and let f1 : H∗(A) → A be a cycle choosing
homomorphism. Assume inductively that fi and mi have been constructed until i = n−1.
Define the operator Un : H∗(A)⊗n → A as U1

n + U2
n where

U1
n =

n−1∑
k=1

(−1)k(n+k+1)fk · fn−k

U2
n = −

n−1∑
k=2

n−k∑
i=0

(−1)ik+n+k+ifn−k+1(1⊗iA ⊗mk ⊗ 1⊗n−i−kA ).
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One can check that Un maps to cocycles and we define mn := [Un]. Now choose fn in a
way that dfn = f1mn − Un.

Remark 1.4.21. If (A, d) is a formal cdga, then it has a minimal Sullivan model (ΛV, d)
with a splitting V = W1 ⊕W2 such that d(W1) = 0 and any closed element in the ideal
generated by W2 is exact. In the construction of the minimal C∞-model, fn (n ≥ 2) can
be chosen to have image in the ideal generated by W2 which yields mn = 0 for n ≥ 3.

The converse statement of the remark is also true (see e.g. [38, Theorem 8]):

Theorem 1.4.22. A cdga (A, d) is formal if and only if it has a minimal C∞-model of
the form (H∗(A);mi) with mi = 0 for i 6= 2.

We will also make use of the following observations. A minimal model as in (ii) will
be called a unital minimal model.

Lemma 1.4.23. (i) Let ϕ : A→ B be a cohomologically injective morphism of (c)dgas.
Then for arbitrary choices of the fAn in the construction of the minimal model
(H∗(A);mA

i ) above, we can choose the maps fBn for the construction of (H∗(B);mB
i )

in a way that ϕ∗ ◦mA
n = mB

n ◦ (ϕ∗)⊗n and ϕ ◦ fAn = fBn ◦ (ϕ∗)⊗n.

(ii) The A∞- (C∞-)minimal model of a unital (c)dga A can be constructed in a way that
H∗(A) → A is a morphism of strictly unital A∞- (C∞-)algebras. If A is formal,
then the construction of the unital minimal model is compatible with Remark 1.4.21.

(iii) If ϕ : A → B is a cohomologically injective morphism of unital (c)dgas and A is
formal, then the unital minimal model of B can be constructed such that mB

n ◦(ϕ∗)⊗n

vanishes for n ≥ 3.

Proof. In the situation of (i) we choose any cycle choosing homomorphisms fA1 . Due to
the injectivity of ϕ∗ we can define fB1 in a way that ϕ◦ fA1 = fB1 ◦ϕ∗. Assume inductively
that we have constructed mA

n−1, mB
n−1, fAn−1, and fBn−1 such that the statement of the

lemma holds. By the formulas in the construction we also have ϕ ◦ UA
n = UB

n ◦ (ϕ∗)⊗n.
As a result

ϕ(fA1 m
A
n − UA

n ) = (fB1 m
B
n − UB

n ) ◦ (ϕ∗)⊗n.

Now for any choice of fAn we can define fBn on im(ϕ∗)⊗n to be ϕ ◦ fAn ◦ ((ϕ∗)⊗n)−1 and
complete the definition arbitrarily on a complement. Then fAn , fBn , mA

n , and mB
n satisfy

the desired properties.
For the proof of (ii) we can choose f1 such that it maps 1 ∈ H∗(A) to 1 ∈ A. The

map f2 can be chosen such that f2(1⊗ a) = f2(a⊗ 1) = 0 for all a ∈ H∗(A). From there
one proves inductively that Un vanishes on a1 ⊗ . . .⊗ an, whenever n ≥ 3 and aj = 1 for
some 1 ≤ j ≤ n, and thus also fn can be chosen equal to 0 on this kind of tensor. If A is
formal and has a minimal Sullivan model (ΛV, d) as in Remark 1.4.21, then we can choose
fn to have image in the ideal generated by W2 whenever we want fn to be nontrivial.

Finally, (iii) results from the fact that the choices made in (i) and (ii) can be performed
in a compatible way: as in (ii), we construct the unital minimal model of A such that the
higher operations vanish. Then the condition fBn |im(ϕ∗)⊗n = ϕ ◦ fAn ◦ ((ϕ∗)⊗n)−1 already
implies that fBn vanishes on pure tensors in im(ϕ∗)⊗n which have the unit as a factor.
Thus we can extend this partial definition of fBn in a way that produces a unital minimal
model of B as in (ii).
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Remark 1.4.24. We have only discussed minimal models of A∞- and C∞-algebras but
analogous concepts do exists for A∞-modules.



Chapter 2

Formality in an equivariant setting

2.1 Refinements of equivariant formality

2.1.1 MOD-formality and consequences

Let X be a G-space and (R, 0) → (R ⊗ ΛV,D) → (ΛV, d) be a model of the Borel
fibration. In particular (R ⊗ ΛV,D) is a Sullivan model for XG. When it comes to
common generalizations of equivariantly formal actions and actions with formal homotopy
quotient, we have the following natural

Definition 2.1.1. The action is calledMOD-formal if (R⊗ΛV,D) is formal as a differ-
ential graded R-module (dgRm), i.e. it is connected to (H∗G(X), 0) via quasi-isomorphisms
of dgRms.

Remark 2.1.2. In the definition above, as opposed to the condition of XG being a formal
space, we only require the quasi-isomorphisms to be multiplicative with respect to the
classes coming from BG. In this way one gets rid of formality obstructions that exist
within X independently of the action.

Lemma 2.1.3. Equivariantly formal actions and actions with formal homotopy quotient
are MOD-formal.

Proof. If XG is formal, there is a quasi-isomorphism of cdgas (R⊗ΛV,D)→ (H∗G(X), 0)
which covers the canonical projection on closed elements. This is in particular a morphism
of dgRms so the statement follows.

Now ifH∗G(X) is free, let b1, . . . , bk ∈ R⊗ΛV be representatives of anR-basis. Then the
inclusion H∗G(X) ∼= R⊗ 〈b1, . . . , bk〉Q → R⊗ ΛV induces an isomorphism on cohomology
if we take the differential on the left hand side to be trivial.

Example 2.1.4. When it comes to examples of actions that are neither equivariantly
formal nor have a formal homotopy quotient but satisfyMOD-formality, there are a few
trivial candidates: For example every S1-action can be seen to automatically be MOD-
formal (see Remark 2.1.7). Also take any G-action on X such that XG is formal and
let Y be a non-formal space. Then (X × Y )G = XG × Y is not formal (see [9, Prop.
5]). The Hirsch–Brown model of X × Y however arises from the Hirsch–Brown model
(R ⊗ H∗(X), D) of X by tensoring with H∗(Y ) and extending the differential to R ⊗

27
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H∗(X)⊗H∗(Y ) in the obvious way. A quasi-isomorphism (R⊗H∗(X), D) ' (H∗G(X), 0)
thus induces a quasi-isomorphism (R ⊗ H∗(X) ⊗ H∗(Y ), D) → (H∗G(X) ⊗ H∗(Y ), 0) so
the action isMOD-formal. The discussion in Section 2.3 is helpful for constructing more
interesting examples as Example 2.4.9.

One of the defining traits ofMOD-formal actions is given by the following observation:
Let X be a MOD-formal G-space. As minimal models of dgRms are unique among a
quasi-isomorphism type, it follows that the Hirsch–Brown model of the action is the
minimal model of the dgRm (H∗G(X), 0). To construct the latter, recall the notion of
minimal graded free resolution from commutative algebra: a graded free resolution of
H∗(XG) is an exact complex

0← H∗G(X)← F0
d←− F1

d←− . . .
d←− Fr ← 0

consisting of free graded R-modules and graded maps. In the usual conventions, those
maps are of degree 0 but we apply suitable degree shifts to consider them to be of degree
1. The resolution is said to be minimal if d(Fi) ⊂ mFi−1, where m = R+ is the maximal
homogeneous ideal. Thus for a minimal resolution, the projection map

r⊕
i=0

Fi → F0/d(F1) ∼= H∗G(X)

defines a minimal dgRm-model for (H∗G(X), 0), where we equip
⊕

i Fi with the differential
that sends F0 to 0 and equals d on Fi for i ≥ 1. We have shown

Theorem 2.1.5. An action is MOD-formal if and only if the minimal Hirsch–Brown
model is isomorphic to the minimal graded free resolution of the R-module H∗G(X) as a
differential graded R-module.

Remark 2.1.6. It is, of course, not true that the rational homotopy type of X and
XT is “a formal consequence” of the R-Algebra structure on H∗G(X), as is the case for
actions with formal homotopy quotient. However for MOD-formal actions, the spirit of
formality still lives on in the fact that the (additive) cohomology of X can be retrieved
from the R-module H∗G(X). Also, the algebra structure on the image of H∗G(X)→ H∗(X)
can be reconstructed from the R-algebra structure of H∗G(X), which holds more generally
for spherical actions which we define below. Note however that this map is usually not
surjective as its surjectivity is equivalent to classical equivariant formality.

Remark 2.1.7. In view of the characterization of Theorem 2.1.5, one can see from the
explicit construction of the minimal Hirsch–Brown model in Proposition 1.3.3 that any
S1-action isMOD-formal. Assume that we have constructed the model up until a certain
degree and that it has the structure of a free resolution

0← F0
D←− F1 ← 0

with cohomology concentrated in F0. Then when adding another generator to generate
cohomology, we can obviously add it to F0 and keep the structure of a free resolution.
When adding a generator α in order to kill cohomology, we can choose D(α) to be some
(non-exact) element of F0. Also D is injective on F1⊕Rα, which means the free resolution
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structure is preserved. To see this, we write R = Q[X1] and assume the existence of v ∈ F1

with D(v + Xk
1α) = 0 for some k ≥ 1. Then, since α is of maximal degree among the

generators, v is divisible by Xk
1 so Dα = −D(vX−k1 ) ∈ D(F1) was already exact, which

is a contradiction.

Before investigating further aspects of formality and their relations, we give some
reformulations of MOD-formality which will be useful throughout the thesis.

Lemma 2.1.8. Let (R⊗H∗(X), D) be the Hirsch–Brown model of a G-action on a space
X. The following are equivalent:

(i) The action is MOD-formal.

(ii) There exists a splitting R ⊗H∗(X) = V ⊕W of the Hirsch–Brown model into free
submodules such that D(V ) = 0 and every closed element in W is exact.

(iii) There is a vector space splitting R ⊗H∗(X) = kerD ⊕ C such that C ⊕ imD is an
R-submodule.

Proof. As we have seen, in case the action is MOD-formal, we can choose the minimal
Hirsch–Brown model to be the minimal free resolution

⊕
Fi of H∗G(X). The desired

decomposition in (ii) is given by V = F0 and W =
⊕

i≥2 Fi.
In the situation of (ii) we can choose a vector space splitting R⊗H∗(X) = kerD⊕C

such that C ⊂ W . Now if α is any R-linear combination of elements in C ⊕ imD, then,
since imD = imD|C , we find some c ∈ C with Dα = Dc. Thus α− c is the sum of exact
elements and closed elements in W which are exact by assumption. Consequently we have
α− c ∈ imD and α ∈ C ⊕ imD.

Finally, assume (iii) holds. We define a map ϕ from R⊗H∗(X) to its cohomology such
that it is the canonical projection on kerD and trivial on C. This obviously commutes
with the differential (which is trivial on H∗G(X)) and all that remains to show is the R-
linearity of ϕ. This clearly holds on kerD and by assumption, for any c ∈ C, r ∈ R we
have rc ∈ C ⊕ imD = kerϕ which proves the claim.

Definition 2.1.9. We say that an action is almost MOD-formal if dimH∗(X) is equal
to the rank of the minimal free resolution of H∗G(X) as an R-module.

Remark 2.1.10. The Eilenberg-Moore spectral sequence of the Borel fibration converges
to H∗(X) and has E∗,∗2 = Tor∗,∗R (H∗G(X), R/m). By the definition of Tor, the Q-dimension
of the right hand expression is precisely the total rank of the minimal free resolution of
H∗G(X). We deduce that almost MOD-formality is equivalent to the E2-degeneration of
the Eilenberg-Moore spectral sequence.

In case G = T is a torus, almost MOD-formality has the following interpretation
in terms of another spectral sequence (see also [60, Lemma 1.4] and [52, Remark 7]):
taking one step back in the Barratt-Puppe sequence of the Borel fibration, we obtain the
fibration (up to homotopy equivalence)

T → X → XT ,

which in the free case is equivalent to T → X → X/T .
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Proposition 2.1.11. The T -action is almost MOD-formal if and only if the Serre spec-
tral sequence of

T → X → XT

degenerates at the E3 term.

Proof. The second page of the spectral sequence is the Koszul complex HT (X)⊗S where
S = Λ(si) consists of a degree 1 generator for each variable Xi of R and the differential
maps si to the image of Xi in H2

T (X) (see Remark 1.2.3). Thus the E3-page is precisely
TorR(H∗T (X), R/m). By the commutativity of Tor, we deduce that dimQE3 is the rank
of the minimal free resolution of H∗T (X). As the spectral sequence converges to H∗(X),
this is equal to dimH∗(X) if and only if there are no more nontrivial differentials starting
from E3.

Before we study implications, let us discuss one more closely related property. The
choice of name in the following definition is motivated by [32, Section 8], which discusses
similar properties in the context of path space fibrations.

Definition 2.1.12. We call the action spherical if ker(H∗G(X) → H∗(X)) is equal to
mH∗G(X).

Of course, mH∗G(X) is always contained in the kernel because on the level of Sullivan
models the map is just the projection

R⊗ ΛV → ΛV

obtained by sending m to 0. However the kernel on the level of cohomology may be bigger
for there may be Massey products represented in m⊗ΛV which on the level of cohomology
might not lie in the multiples of m, see e.g. Example 2.4.5. In this light, being spherical
is a restriction on the existence of nontrivial Massey products and therefore related to
formality properties. Again, for G = T we can express this as degeneracy in a spectral
sequence.

Proposition 2.1.13. The action of a torus T on X is spherical if and only if in the Serre
spectral sequence of

T → X → XT

no nontrivial differentials enter E∗,0r for r ≥ 3.

Proof. Since the map H∗T (X) → H∗(X) factors as H∗(XT ) ∼= E∗,02 → E∗,0∞ ⊂ H∗(X),
it suffices to analyse the spectral sequence. From the description of the E2-page in the
proof of Proposition 2.1.11 we deduce that the image of d2 in E∗,02 corresponds exactly to
mH∗T (X). Thus there is more in the kernel if and only if there is a nontrivial differential
mapping to the bottom row after the E2 page.

Of course, the above proposition as well as Proposition 2.1.11 can be (less elegantly)
formulated for arbitrary compact G. The problem however is that the cohomological
generators of H∗(G) will not transgress on the E2-page for degree reasons. Still, for a
general G-action we have the following
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Theorem 2.1.14. For any G-action we have the implications

MOD-formal⇒ almost MOD-formal⇒ spherical.

Proof. The first implication is a consequence of Theorem 2.1.5. For torus actions the
second implication is a consequence of the above propositions. In the general setting we
instead consider the Eilenberg-Moore spectral sequence of the Borel-fibration. The column
E0,∗
∞ can be identified with the image of the map H∗G(X) → H∗(X) (see [50, Exercise

7.5]). This is a subspace of E0,∗
2 = Tor0,∗

R (H∗G(X), R/m) = H∗G(X)/mH∗G(X). Hence for
dimensional reasons (all objects are degree wise finite-dimensional), being spherical is
equivalent to the vanishing of all differentials starting in this column. By Remark 2.1.10
this holds if the action is almost MOD-formal.

In the above theorem, none of the converse implications hold, not even for simply-
connected compact manifolds. This is demonstrated by Examples 2.4.6 and 2.4.7 as well
as Remark 2.4.8. In the discussion, the following description of spherical actions will be
helpful.

Lemma 2.1.15. The G-action on X is spherical if and only if there is a generating set
of the R-module H∗G(X) such that the restriction H∗G(X) → H∗(X) is injective on its
Q-span.

Proof. The condition is equivalent to the existence of a Q-subspace V ⊂ H∗G(X) such that
the projection V → H∗G(X)/mH∗G(X) is surjective and the projection V → H∗G(X)/ ker(r)
is injective. Since all spaces are degreewise finite-dimensional and mH∗G(X) ⊂ ker(r), the
condition is equivalent to equality in the last inclusion.

2.1.2 Actions with formal core

As for the previously introduced notions, we search for ways to impose the triviality
of certain Massey products in the equivariant cohomology and thus create a more local
version of formality.

One of the more direct ways to do this is to demand that, rationally, the map
XG → BG factors cohomologically injectively through a formal space. On models this is
equivalent to the following condition: let

(R, 0)→ (R⊗ ΛV,D)→ (ΛV, d)

be a model of the Borel fibration of the action. Let A ⊂ H∗G(X) be a subalgebra that
contains im(R → H∗G(X)) and let (C, d) ' (A, 0) be a relative minimal model of the
canonical morphism (R, 0)→ (A, 0).

Definition 2.1.16. We call the action formally based with respect to A if there exists a
morphism (C, d)→ (R⊗ ΛV,D) of R-cdgas for which the induced map

A = H∗(A, 0) ∼= H∗(C, d)→ H∗(R⊗ ΛV,D) ∼= H∗G(X)

is the inclusion. If the action is formally based with respect to im(R→ H∗G(X)), we also
just refer to it as being formally based.
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Remark 2.1.17. (i) The existence of the morphism (C, d)→ (R ⊗ ΛV,D) in the def-
inition does not depend on the particular choice of relative minimal models (see
Remark 1.2.1). However, note that its homotopy class may not be unique.

(ii) If an action is formally based with respect to some A, then it is automatically
formally based with respect to any A′ satisfying im(R → H∗G(X)) ⊂ A′ ⊂ A as the
inclusion A′ ⊂ A lifts to the Sullivan models. In particular the action is formally
based if the homotopy quotient XG is formal.

(iii) The existence of an orbit with isotropy of maximal rank implies the injectivity of
R → H∗G(X) (the converse follows by Borel localization in case X is compact). In
this case, for A = im(R→ H∗G(X)), one may choose (C, d) = (R, 0) so the action is
formally based.

A special case of this is given by the following

Definition 2.1.18. An action is hyperformal if the kernel of R → H∗G(X) is generated
by a homogeneous regular sequence.

Lemma 2.1.19. Hyperformal actions are formally based.

Proof. In the notation above we have A = R/(a1, . . . , ak) for homogeneous ai which
form a regular sequence in R. A relative minimal model of (R, 0) → (A, 0) is given by
(C, d) = (R ⊗ Λ(s1, . . . , sk), d) with d|R = 0 and d(si) = ai. The fact that the ai form
a regular sequence implies that the map C → A, defined by sending the si to 0 and
projecting R canonically to A, is a quasi-isomorphism. Also the ai are exact in R ⊗ ΛV
by definition. We choose zi ∈ R ⊗ ΛV with D(zi) = ai. The desired lift C → R ⊗ ΛV is
now obtained by sending si to zi and R identically to R.

It is natural to not only demand “formality of the image” of H∗(BG) → H∗G(X)
through the formally based condition but to also pay attention to how said image is
embedded in the ambient space. Especially with regards to the TRC, it is interesting to
impose additional degeneracy conditions. For example, this shows up in the requirements
of Theorem 2.3.1 compared to those of Theorem 2.3.5.

We will investigate another such condition: given an action that is formally based with
respect to some A ⊂ H∗G(X), we define the algebra (C, d) as above. We may form the
cdga (C, d) where C = C/(R+), which is again a Sullivan algebra. Now any morphism
(C, d)→ (R⊗ΛV,D) of R-cdgas induces a morphism (C, d)→ (ΛV, d) into the model of
X because ΛV = (R⊗ ΛV )/(R+).

Definition 2.1.20. Let A be an R-subalgebra of H∗G(X). We say an action has formal
core with respect to A if there is a morphism (C, d)→ (R⊗ΛV,D) as in Definition 2.1.16
such that additionally the induced morphism (C, d)→ (ΛV, d), obtained by dividing out
R+, is cohomologically injective. If such an A exists, we also just refer to the action as
having formal core.

Remark 2.1.21. (i) If XG is formal, then we can choose A = H∗G(X), C = R ⊗ ΛV .
The map C → ΛV is just the identity and the action has formal core.
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(ii) Other than for the notion of being formally based, having formal core with respect
to A does not imply formal core with respect to any A′ ⊂ A: the injectivity of
H∗(C, d)→ H∗G(X) depends on the particular choice of A. This can be observed in
Example 2.4.12.

(iii) In case the action has an orbit with isotropy of maximal rank, as in Remark 2.1.17,
the action is formally based with (C, d) = (R, 0). Thus C = Q and the action
automatically has formal core.

(iv) Any S1-action has formal core: we are either in case (iii) or im(R → HS1(X))
is isomorphic to R/(Xn

1 ) for some n, where R = Q[X1]. We may thus set C =
(R⊗Λ(α), D) with Dα = Xn

1 and obtain a lift C → R⊗ΛV by mapping α to some
β with Dβ = Xn

1 . It suffices to argue that the projection β ∈ ΛV is not exact. If
dγ = β, then β −Dγ is divisible by X1 and thus D(X−1

1 (β −Dγ)) = Xn−1
1 which is

a contradiction.

Proposition 2.1.22. Let f : X → Y be an equivariant map of G-spaces that induces
injections on both regular and equivariant cohomology (e.g. an equivariant retract). If the
action on Y has formal core, then so does the action on X.

Proof. The equivariant map f induces a commutative diagram

R //MX
G

//MX

R //

1R

OO

MY
G

//

f∗G

OO

MY

f∗

OO

in which the rows are relative minimal models for the Borel fibrations of X and Y .
Suppose Y has formal core with respect to A ⊂ H∗G(Y ) and let ι : (C, d) → MY

G and
ι : (C, d) → MY be constructed as above. By assumption the maps f ∗G ◦ ι and f ◦ ι are
both injective on cohomology. Consequently the action on X has formal core with respect
to f ∗G(A) ⊂ H∗G(X).

Theorem 2.1.23. (i) Let G act on X such that the action is almost free and formally
based with respect to A ⊂ H∗G(X). If A satisfies Poincaré duality, then the action
has formal core with respect to A.

(ii) Any hyperformal action has formal core.

Proof. Let C and C be defined as above. By assumption we have a commutative diagram

(C ⊗ S, d) //

��

(R⊗ ΛV ⊗ S,D)

��

(C, d) // (ΛV, d)

where the differentials in the top row map the generators of S = Λ(s1, . . . , sr) bijectively
onto the generators of R = Λ(X1, . . . , Xr) and the vertical maps are quasi-isomorphisms
defined by sending R+ and S+ to 0. It suffices to show cohomological injectivity of the
top horizontal map which we denote by ϕ.
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As A = H∗(C) is a Poincaré duality algebra, it follows that the cohomology of C ⊗ S
satisfies Poincaré duality as well (see [20, Lemma 38.2]). The fundamental class of C ⊗S
is contained in every nontrivial ideal of H∗(C ⊗ S). Hence it maps to 0 under

ϕ∗ : H∗(C ⊗ S)→ H∗(R⊗ ΛV ⊗ S)

if and only if kerϕ∗ 6= 0. As a consequence, we only need to prove injectivity of ϕ∗ on the
top degree cohomology.

To see this, filter C ⊗ S by degree in C and R ⊗ ΛV ⊗ S by degree in R ⊗ ΛV . The
morphism ϕ respects this filtration and consequently induces a map between the spectral
sequences. On the E2 page, this morphism is given by the inclusion

A⊗ S → H∗G(X)⊗ S.

Since the top degree cohomology of A ⊗ S is located in the top row, its image on the
right cannot be killed by any differential and hence induces a nontrivial element on the
∞-page. This shows that ϕ∗ is not 0 in the top degree which concludes the proof of (i).

In the situation of (ii), if the kernel of R → H∗G(X) is generated by a homogeneous
regular sequence f1, . . . , fk, then the action is formally based by Lemma 2.1.19 and we
have a morphism of R-cdgas ψ : (C, d) → (R ⊗ ΛV,D), where C = R ⊗ Λ(a1, . . . , ak)
and dai = fi. We want to prove that the map ψ : C → ΛV is cohomologically injective.
Observe that if the regular sequence was maximal in R = Λ(X1, . . . , Xr), meaning k = r,
then H∗(C) would be a Poincaré duality algebra and we could use (i) to finish the proof.

If k < r we may complete the fi to a maximal regular sequence and extend ψ to a map
(C ⊗Λ(ak+1, . . . , ar), d)→ (R⊗ΛV ⊗Λ(ak+1, . . . , ar), D) where the differentials map the
additional ai onto the additional fi. Cohomological injectivity of

ψ ⊗ 1 : C ⊗ Λ(ak+1, . . . , ar)→ ΛV ⊗ Λ(ak+1, . . . , ar)

is equivalent to the original map ψ being injective. Applying (i) yields the claim.

Remark 2.1.24. We want to investigate how all of the previously defined notions interact.
As it turns out, the concepts introduced in this section seem to be rather independent from
the notion ofMOD-formality: Example 2.4.10 is a hyperformal action (with formal core),
which is not spherical and thus in particular not (almost) MOD-formal. Furthermore,
in 2.4.11, we construct an example of aMOD-formal action which is not formally based.
However, we want to point out that while no direct implications exist, common roots
can be found in the vanishing of certain Massey products, which is best captured in the
degeneracy of minimal C∞-structures: in Theorem 2.3.1 we give a sufficient condition for
MOD-formality that builds upon the notion of being formally based (see also Theorem
2.3.5).

2.2 Inheritance under elementary constructions

2.2.1 Products

If X is a G-space and Y is a G′ space, then X × Y is naturally a G×G′ space.
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Proposition 2.2.1. Let X be a G-space, Y be a G′ space. If both, the G- and the G′-
action, satisfy one of the conditions of being spherical, (almost) MOD-formal, formally
based or having formal core, then the same is true for the G×G′-action on X × Y .

Proof. Let R →MX
G →MX and R′ →MY

G′ →MY be relative minimal models for the
respective Borel fibrations. Then

R⊗R′ →MX
G ⊗MY

G′ →MX ⊗MY

is a relative minimal model for the Borel fibration of the G × G′-action. The associated
Hirsch–Brown model is given by the tensor product of the minimal Hirsch–Brown models
of the G- and the G′-action hence the statement for almostMOD-formal actions follows.
Furthermore, formality is compatible with the tensor product and we obtain the proposi-
tion under the assumption ofMOD-formality. In the case of spherical actions, the kernel
of H∗G(X)⊗H∗G′(Y )→ H∗(X)⊗H∗(Y ) is given by

(R+ ·H∗G(X))⊗H∗G′(Y ) +H∗G(X)⊗ (R′+ ·H∗G′(Y )) = (R⊗R′)+ ·H∗G×G′(X × Y ).

Finally, if the G-action is formally based with respect to A ⊂ H∗G(X) and the G′-action
is formally based with respect to A′ ⊂ H∗G′(Y ), then, by considering the tensor product
of the occurring maps, we see that the G × G′-action is formally based with respect to
A⊗A′ ⊂ H∗G(X)⊗H∗G′(Y ) ∼= H∗G×G′(X×Y ). In the same way one obtains the statement
for actions with formal core.

2.2.2 Gluing

In this section we assume all G-spaces to be Tychonoff spaces (so e.g. CW-complexes)
in order to ensure the existence of tubular neighbourhoods (see [11, Theorem 5.4]). Let
X and Y be two G-spaces. If G → X and G → Y are equivariant maps onto orbits of
X and Y , we may construct their pushout X ∨G Y , which is naturally a G-space. If the
stabilizers of the image of 1 ∈ G in X and Y agree, then X ∨G Y is just X and Y glued
together at these orbits.

Proposition 2.2.2. Suppose that X and Y are MOD-formal (resp. have formal homo-
topy quotients XG and YG) and have an almost free G-orbit of the same orbit type. Then
the G-space X ∨G Y obtained by gluing X and Y along this orbit is MOD-formal (resp.
has formal homotopy quotient).

In the proof we make use of the following notation: if A and B are connected cdgas,
then A ⊕Q B is the sub-cdga of the product cdga A ⊕ B which in degree 0 is generated
by (1, 1) and agrees with A ⊕ B in positive degrees. We use the analogous notation for
dgRms whose degree 0 component is Q.

Proof. The orbits are equivariant retracts of open G-invariant neighbourhoods in X and
Y . Using these, we can cover X∨GY with open sets U, V which equivariantly retract onto
X and Y and whose intersection retracts equivariantly onto the glued orbit. We consider
the equivariant Mayer–Vietoris sequence of this cover. As the equivariant cohomology of
an almost free orbit is just Q, it follows that

H∗G(X ∨G Y ) ∼= H∗G(X)⊕Q H
∗
G(Y ).
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We now turn our attention to models. LetMX∨GY
G ,MX

G , andMY
G denote the Sullivan

models of the homotopy quotients of the respective G-spaces as in Remark 1.2.1 (ii). The
previous discussion implies that the induced map MX∨GY

G → MX
G ⊕QMY

G is a quasi-
isomorphism. In fact it can be chosen as a morphism of R-cdgas, where the R-module
structure on the right is the diagonal one. If the actions have formal homotopy quotient,
then we have a quasi-isomorphism

MX
G ⊕QMY

G → H∗G(X)⊕Q H
∗
G(Y )

of cdgas which ends the proof. In case the actions are MOD-formal, let MX and MY

denote the Hirsch–Brown models of the action and note that by the previous discussion,
MX ⊕Q MY is a dgRm-model for MX∨GY

G . We have a quasi-isomorphism

MX
G ⊕Q MY

G → H∗G(X)⊕Q H
∗
G(Y )

of dgRms, which finishes the proof.

Proposition 2.2.3. Let X and Y be formally based G-spaces. Then X ∨G Y obtained
by gluing X and Y along an almost free orbit of the same orbit type is formally based.
Moreover, if the actions have formal core and the Sullivan models for XG and YG in a
relative minimal model of the respective Borel fibrations are already minimal, then the
action on X ∨G Y has formal core.

If XG and YG are nilpotent spaces, then the technical minimality condition on their
models in the above proposition is equivalent to the surjectivity of

πk(XG)⊗Q→ πk(BG)⊗Q and πk(YG)⊗Q→ πk(BG)⊗Q

for k ≥ 2. In particular the condition is automatically fulfilled in case G is a torus and
X and Y are simply-connected.

Proof. Suppose the G-spaces are formally based with respect to A ⊂ H∗G(X) and A′ ⊂
H∗G(Y ). Let R→MX

G and R→MY
G be relative minimal models for the respective Borel

fibrations. As in the proof of the previous proposition, we see that MX
G ⊕Q MY

G and
MX∨GY

G are quasi-isomorphic as R-cdgas, where the R-module structure of the sum is
defined by the diagonal inclusion. Let R⊗ C and R⊗ C ′ be relative minimal models for
R→ A and R→ A′. Also let R→ C ′′ be a relative minimal model for R→ A⊕QA

′. We
may lift C ′′ → A⊕QA

′ to C⊕QC
′ by applying the lifting lemma of Sullivan algebras to each

summand separately. By assumption we have maps C → MX
G and C ′ → MY

G inducing
the inclusion on cohomology. Piecing everything together we obtain the composition

C ′′ → C ⊕Q C
′ →MX

G ⊕QMY
G

which induces the inclusion A⊕QA
′ → H∗G(X)⊕QH

∗
G(Y ) ∼= H∗G(X ∨G Y ) on cohomology.

Lifting the morphism toMX∨GY
G relative to R shows that the action on X∨GY is formally

based with respect to A⊕Q A
′.

Now assume that the actions on X and Y have formal core with respect to A and A′.
For X (and analogously for Y ) this means that we can assume the map (C ⊗ S,D) →
(MX

G ⊗ S,D) between Hirsch extensions to be injective on cohomology, where D maps
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generators (si) of S = Λ(si) to the generators Xi of R = Λ(X1, . . . , Xr). In order to show
that X ∨G Y has formal core, it suffices to show that

((C ⊕Q C
′)⊗ S,D)→ ((MX

G ⊕QMY
G)⊗ S,D)

is injective on cohomology where Dsi = (Xi, Xi). Consider the commutative diagram

(C ⊕Q C
′)⊗ S //

��

(MX
G ⊕QMY

G)⊗ S

��

(C ⊕ C ′)⊗ S // (MX
G ⊕MY

G)⊗ S

in which the bottom horizontal map is actually the direct sum of C ⊗ S →MX
G ⊗ S and

C ′ ⊗ S →MY
G ⊗ S. By assumption this map is injective on cohomology, and it remains

to prove that, on cohomology, the top horizontal map is injective on the kernel

K = ker (H∗((C ⊕Q C
′)⊗ S) −→ H∗((C ⊕ C ′)⊗ S))

of the morphism induced by the left vertical inclusion. Observe that the cokernel of this
inclusion has a basis represented by a basis of (1, 0)⊗ S. The differential induced on the
cokernel vanishes. The resulting short exact sequence of complexes

0 −→ ((C ⊕Q C)⊗ S,D) −→ ((C ⊕ C)⊗ S,D) −→ ((1, 0)⊗ S, 0) −→ 0

induces a long exact sequence on homology from which we see that K is represented by
D((1, 0)⊗ S).

Thus it suffices to show that D((1, 0) ⊗ S) descends injectively to the cohomology
of (MX

G ⊕QMY
G) ⊗ S. By assumption, MX

G and MY
G are actually minimal as Sullivan

models. Consequently, D((MX
G⊕MY

G)+⊗S) ⊂ ((MX
G )+ ·(MX

G )+⊕(MY
G)+ ·(MY

G)+)⊗S).
The only way to hit an element of D((1, 0) ⊗ S) ⊂ 〈(X1, 0), . . . , (Xr, 0)〉 ⊗ S with the
differential of (MX

G ⊕QMY
G) ⊗ S is as the image of some element in (1, 1) ⊗ S. These,

however, are never 0 in the second component which proves that K maps injectively to
H∗((MX

G ⊕QMY
G)⊗ S).

Let M be a smooth G-manifold with (possibly empty) boundary. By the slice theorem,
the orbit of any interior point x ∈ M has a G-invariant tubular neighbourhood which is
equivariantly diffeomorphic to

Vx = G×Gx TxM/Tx(G · x)

where Gx acts on the right hand side via the isotropy action and G · x corresponds to
[G, 0] ⊂ Vx. Now if N is a G-manifold with boundary of the same dimension, with
an interior point y ∈ N such that Gy = Gx and TxM/Tx(G · x) ∼= TyN/Ty(G · y) as
representations, then we may form the equivariant connected sum as follows: the iso-
morphism defines an equivariant diffeomorphism ϕ : Vx ∼= Vy of tubular neighbourhoods.
Choose some Gx-invariant inner product on TxM/Tx(G · x), and let S ⊂ TxM/Tx(G · x)
be the associated unit sphere. The equivariant connected sum M#GN is the quotient of
(M − {G · x}) t (N − {G · y}) obtained by gluing the points [g, ts] and ϕ([g, (1 − t)s])
for all g ∈ G, t ∈ (0, 1), and s ∈ S. The result is a G-manifold with boundary whose
homotopy type does however depend on the choice of ϕ.
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Proposition 2.2.4. Let M and N be almost free G-manifolds with boundary such that
the equivariant connected sum M#GN at some interior orbit is defined.

(i) If M and N are MOD-formal, then so is M#GN .

(ii) If M and N are simply-connected and MG and NG are formal, then also (M#GN)G
is formal.

We want to point out that in the proof of (ii), one of the cases is essentially the proof of
the fact that the (nonequivariant) connected sum of compact simply-connected manifolds
preserves formality (see e.g. [21, Theorem 3.13]).

Proof. In the notation of the construction of M#GN , let D ⊂ TxM/Tx(G ·x) be the unit
disk. The collapsing of D − {0} induces an equivariant map G ×Gx (D − {0}) → G · x
which induces an equivariant map

p : M#GN −→M ∨G N.

Both are almost free G-spaces so the map on equivariant cohomology can be determined
from the orbit spaces (see Proposition 1.1.2). There it induces the collapse of the subspace

X := (G×Gx (D − {0}))/G ∼= (D − {0})/Gx ' S/Gx.

Thus we may understand the map p∗ : H∗G(M ∨G N) → H∗G(M#GN) via the long exact
homology sequence

· · · → Hk((M#GN)/G,X)→ Hk((M#GN)/G)→ Hk(X)→ · · ·

where we can identify Hk((M#GN)/G,X) ∼= Hk(M/G∨N/G) = Hk
G(M∨GN) in positive

degrees.
The algebra H∗(X) = H∗(S)Gx is isomorphic to either Q or H∗(S). Let n = dimM −

dimG, so dimS = n − 1. There are three possible scenarios. The map p∗ is either
surjective with 1-dimensional kernel in degree n, injective with 1-dimensional cokernel
in degree n − 1, or a quasi-isomorphism. In the last case we are done since M ∨G N is
MOD-formal by Proposition 2.2.2. Otherwise consider the map p̃ : M∨ →M# between
minimal Hirsch–Brown models of M ∨G N and M#GN . As M ∨G N is MOD-formal,
the Hirsch–Brown model takes the form of a free resolution

M∨ =

(⊕
i≥0

Fi, d

)

with d : Fi → Fi−1 being exact at every i ≥ 1. If p∗ has nontrivial kernel, we add a
generator α of degree n − 1 to F1 and define dα ∈ F0 to be a representative for the
generator of ker p∗. Also p̃(dα) is exact in M# so we may extend p̃ to α. At this point,
p̃ induces an isomorphism F0/d(F1) ∼= H∗G(M#GN) but there may now be additional
cohomology represented in F1. As the newly introduced generator lives in degree n − 1
and R is simply-connected, kerd |F1 remains unchanged up to degree n + 1. But the
cohomology of M#GN vanishes in degrees above n so it follows that p̃ maps the newly
introduced cohomology to exact elements. Hence if we introduce new generators in F2 and
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use them to kill the cohomology generated in F1, then p̃ extends to the new generators.
We may repeat this process inductively and obtain a free resolution quasi-isomorphic to
M#. Thus M#GN is MOD-formal.

If p∗ is injective, then we start by adding a generator α to F0 in degree n − 1 and
define p̃(α) to be a representative of the cokernel of p∗. Now add generators of degree
≥ n to F1 and map them to a minimal generating set of ker(F0 → H∗G(M#GN)). Again
p̃ extends to the new F1. We are now in the same position as before and we analogously
conclude that M#GN is MOD-formal. This proves (i).

The proof of (ii) works by applying the analogous argument to the cdga machinery.
Consider the map ϕ : M∨ → M# between the Sullivan minimal models of (M ∨G N)G
and (M#GN)G. As (M ∨GN)G is formal by Proposition 2.2.2, it has a bigraded minimal
model with an additional lower grading

M∨ = Λ

(⊕
i≥0

Vi

)

and cohomology concentrated in (ΛV )0 as in e.g. [21, Theorem 2.93]. We observe that
M ∨G N is simply-connected if M and N are and therefore M1

∨ = 0. The proof now
proceeds as before with the role of Fi replaced by (ΛV )i. If e.g. p∗ is surjective with 1-
dimensional kernel in degree n (and necessarily lower degree 0), then we add a generator
to V1 and use it to kill the existing kernel in cohomology. AsM1

∨ = 0, no new cohomology
is generated up until cohomological degree n + 1. Now for the same reasons as in the
module case, we can extend ϕ to a quasi-isomorphism from a bigraded minimal model in
the above sense, showing that M#GN is formal. The other cases transfer analogously.

Proposition 2.2.5. Let M and N be almost free m-dimensional G-manifolds with bound-
ary such that the equivariant connected sum along an interior orbit is defined. Assume
that they have formal core with respect to A ⊂ H∗G(M), A′ ⊂ H∗G(N), with Am−dimG =
A′m−dimG = 0, and that the conditions of Proposition 2.2.3 are satisfied. Then M#GN
has formal core.

We want to point out that the condition Am−dimG = 0 is automatically fulfilled if M
has non-empty boundary, is non-compact, or is not orientable: in this case Hm(M) = 0
whence Hm−dimG

G (M) = 0 by Proposition 1.1.2. In case M is closed and orientable, it just
means that A is supposed to not contain the fundamental class of M/G.

Proof. Let n = m − dimG and recall the equivariant map M#GN → M ∨G N from
the proof of the previous proposition. As we showed there, on cohomology, it is either
injective or has 1-dimensional kernel in degree n. Hence if A and A′ are trivial in degree
n, then

ψ : A⊕Q A
′ −→ H∗G(M ∨G N) −→ H∗G(M#GN)

is injective.
LetM∨ andM# be models for (M ∨N)G and (M#GN) arising from relative minimal

models of the respective Borel fibrations and let ϕ : M∨ →M# be a map of R-cdgas that
is a Sullivan representative of the equivariant map M#GN → M ∨G N . By Proposition
2.2.3, M ∨G N has formal core with respect to A ⊕Q A

′, which means we have a map
φ : C ′′ → M∨ of R-cdgas as in the proof of 2.2.3 (X and Y replaced by M and N).
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Since ψ is injective, we see that M#GN is formally based with respect to ψ(A⊕Q A
′) by

considering the composition ϕ ◦ φ.
To prove that the action has formal core it remains to see that this map is still

cohomologically injective when extending it to the Hirsch extensions

C ′′ ⊗ S −→M∨ ⊗ S −→M# ⊗ S

in which the differential maps generators of S = Λ(si) bijectively to generators of R.
Cohomological injectivity of φ⊗ 1S is part of Proposition 2.2.3, so we only need to prove
injectivity of (ϕ ⊗ 1S)∗ on the cohomological image of φ ⊗ 1S. To see this we consider
the maps between the Serre spectral sequences arising by filtering the Hirsch extensions
above in the degrees of the left hand cdgas. The second pages are isomorphic to the tensor
products of the (non-twisted) cohomologies of the respective factors so by naturality we
obtain the maps

(A⊕Q A
′)⊗ S −→ H∗G(M ∨G N)⊗ S −→ H∗G(M#GN)⊗ S.

Again, we distinguish the three possible cases for the map ϕ∗. If it is an isomorphism,
then so is ϕ∗ ⊗ 1S and we are done. If ϕ∗ is injective and its cokernel is generated by
some α ∈ Hn−1(M#GN), then the map ϕ∗ ⊗ 1S on the second pages is an isomorphism
up to the column α⊗ S ⊂ En−1,∗

2 . As the differentials in the spectral sequence vanish on
this column for degree reasons, we deduce that ϕ⊗ 1S induces an injective map between
the E∞-pages which implies injectivity on cohomology.

Finally, consider the case where ϕ∗ is an isomorphism up to 1-dimensional kernel
contained in Hn

G(M ∨G N). We claim that the kernel of the map induced by ϕ ⊗ 1S
on the E∞-pages is contained in En,∗

∞ . Since the image of φ∗ ⊗ 1S on the E2 pages is
contained in E<n,∗

2 , and the same degree restrictions carry over to the E∞ pages, this
will imply injectivity of (ϕ ◦ φ) ⊗ 1S on the E∞-pages and thus finish the proof of the
proposition. The claim can be verified via induction: assume the map between the rth
pages is injective on E<n,∗

r and an isomorphism on E≤n−r,∗r . Then it is a straightforward
diagram chase to show that on the (r + 1)th pages the induced map is injective on E<n,∗

r+1

and an isomorphism on E≤n−r−1,∗
r+1 .

2.2.3 Subgroups

We investigate how the previously defined notions behave under restriction of the action
to subgroups. As it turns out, problems arise when restricting to subgroups of smaller
rank. The only one of the discussed concepts which behaves well under restriction to
arbitrary subgroups is the classical equivariant formality. Example 2.4.5 is an action
with formal homotopy quotient such that the restriction to a certain subgroup is neither
formally based nor spherical. However, we have the following

Proposition 2.2.6. A G-action fulfils one of the conditions of being spherical, almost
MOD-formal, or MOD-formal if and only if the respective condition is fulfilled by the
action of a maximal subtorus.

Proof. Let G act on X and let T be a maximal torus of G. The central observation
needed for the proof is the fact that the Borel fibration of the T -action is the pullback of
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the Borel fibration of the G-action along the map BT → BG. We denote the minimal
models of BT and BG by R and S. Now if

(S, 0)→ (S ⊗ ΛV,D)→ (ΛV, d)

is a minimal model for the fibration of the G-action, a minimal model for the pullback
fibration is given by

(R, 0)→ (R⊗S (S ⊗ ΛV ),1R ⊗S D)→ (ΛV, d)

(see [20, Prop. 15.8]). Since T is maximal, the map S → R turns R into a finitely
generated, free S-module. In particular, R ⊗S (S ⊗ ΛV ) ∼= R ⊗ ΛV splits as a sum
of multiple degree shifted copies of S ⊗ ΛV . This decomposition is respected by the
differential so it induces an analogous splitting of the cohomology. We obtain H∗T (X) =
R⊗S H∗G(X) (actually as algebras although the splitting is one of S-modules).

As tensoring with R over S is exact, we deduce that the minimal free resolution of
H∗T (X) is obtained from the one of H∗G(X) by tensoring with R. This implies that the
G-action is almost MOD-formal if and only if this holds for the T -action.

In view of the statement for spherical actions, this also shows that a minimal generating
set of H∗G(X), i.e. one which descends to a basis of H∗G(X)/S+ ·H∗G(X), is also a minimal
generating set of H∗T (X). By Lemma 2.1.15, the condition of being spherical is equivalent
to the restriction to H∗(X) being injective on the span of such a generating set. The
claim now follows from the observation that the inclusion

H∗G(X) = S ⊗S H∗G(X) ⊂ R⊗S H∗G(X) = H∗T (X)

commutes with the restriction to H∗(X).
We turn our attention to MOD-formal actions. Let (M, D̃) → (S ⊗ ΛV,D) be the

minimal Hirsch–Brown model of the G-action, with M = S ⊗ H∗(X). By the previous
discussion it follows that

(R⊗H∗(X), D̃) ∼= (R⊗S M,1R ⊗S D̃)→ (R⊗S (S ⊗ ΛV ), D)

induces a quasi-isomorphism. Note that the induced differential on R ⊗S M satisfies the
minimality condition so this is indeed the minimal Hirsch–Brown model of the T -action.

A quasi-isomorphism (M, D̃)→ (H∗G(X), 0) induces a quasi-isomorphism

(R⊗S M, D̃)→ (R⊗S H∗G(X), 0).

Thus MOD-formality of the G-action implies MOD-formality of the T -action. For the
converse implication we use criterion (iii) of Lemma 2.1.8 by which we obtain a vector
space splitting R ⊗S M = ker D̃ ⊕ C such that C ⊕ imD̃ is an R-submodule. As argued
above, R⊗S M splits as the sum of multiple degree shifted copies of M when regarded as
a differential graded S-module. We identify M with the summand S ⊗S M ⊂ R ⊗S M.
Denote by π : R⊗S M→M the projection onto this summand. The differential restricts
to an isomorphism D̃ : C → imD̃ and we denote its inverse by D̃−1. Set

C ′ = π ◦ D̃−1(M ∩ imD̃).
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We claim that C ′ fulfils the requirements of Lemma 2.1.8 (iii) with respect to the G-action.
We observe that in the commutative diagram

D̃−1(M ∩ imD̃)

π

��

D̃

((

C ′ D̃ //M ∩ imD̃

all maps are isomorphisms. It follows that C ′ is a complement of ker D̃|M in M and it
remains to show that a closed S-linear combination

∑
sic
′
i of elements in C ′ is already

exact in M. As D̃|C is an isomorphism onto imD̃, there are unique elements ci ∈ C with
D̃ci = D̃c′i. They fulfil π(ci) = c′i and have closed elements in all the other components
with respect to the decomposition of R⊗SM (because the differential respects the decom-
position). Consequently, the element

∑
sici is closed. By the choice of C it follows that

it is already exact which is equivalent to exactness in every component. In particular,∑
sic
′
i is exact in M, which proves the claim.

Proposition 2.2.7. If the G-action is formally based or has formal core, then the same
holds for the action of its maximal torus.

Proof. Let S,R as above and assume the G-action is formally based with respect to some
A ⊂ H∗G(X). Let (C, d) ' (A, 0) be a relative minimal model of the canonical morphism
(S, 0)→ (A, 0). The map R→ H∗T (X) corresponds to R⊗S S → R⊗S H∗G(X) which has
image R⊗SA, and the induced map (R⊗SC, d) ' (R⊗SA, 0) is a relative minimal model
for (R ⊗S S, 0) → (R ⊗S A, 0). Clearly, a morphism (C, d) → (S ⊗ ΛV,D) of S-cdgas
induces a morphism (R⊗S C, d)→ (R⊗S (S ⊗ΛV ), D) of R-cdgas. Thus the T -action is
formally based if the G-action is.

If the G-action has formal core with respect to A, then we may take C/S+ → ΛV to
be cohomologically injective. It factors through the morphism C/S+ → (R ⊗S C)/R+,
which is an isomorphism. This implies that also (R ⊗S C)/R+ → ΛV is cohomologically
injective. Consequently, the T -action has formal core as well.

2.3 Higher operations on the cohomology

As established earlier (see Prop. 1.2.4 and before), fixing a base space Y , there is a
correspondence between free torus actions with orbit space Y and degree 2 cohomology
classes of Y . This correspondence is one-to-one in a suitable rational sense so it is a natural
question how the formality properties of those actions are encoded in the corresponding
cohomology classes. The usual algebra structure on the cohomology is not sufficient for
answering this kind of question. Instead, in this section we attack the problem via certain
higher operations on the cohomology.

We consider, more generally, any G action on X. As before, let R⊗ΛV be a Sullivan
model for XG. Then we can consider its minimal C∞-model (H∗G(X); 0,m2,m3, . . .) which
is unique up to isomorphism of C∞-algebras (see Section 1.4.4). It is known that XG

is formal if and only if it admits a C∞-model of the form (H∗G(X), 0,m2, 0, . . .) where
all higher operations vanish (see Theorem 1.4.22). Thus there is a characterization of
actions with formal homotopy quotient in terms of the higher operation on the equivariant
cohomology. Our goal is to find something similar for MOD-formal actions.



2.3. HIGHER OPERATIONS ON THE COHOMOLOGY 43

Theorem 2.3.1. Let A ⊂ H∗G(X) be the image of H∗(BG) → H∗G(X). If the unital
minimal C∞-model (H∗G(X);mi) can be chosen in a way that mi vanishes on the subspace
H∗G(X)⊗ A⊗i−1 for i ≥ 3, then the action is MOD-formal.

Remark 2.3.2. The above theorem is particularly useful for constructing free MOD-
formal torus actions (see Example 2.4.9): isomorphism classes of simply-connected, min-
imal, unital C∞-models are in one-to-one correspondence with simply-connected rational
homotopy types. Hence, starting with any finite-dimensional, simply-connected, mini-
mal, unital C∞-algebra (H,mi), we find a finite CW -complex Y with minimal C∞-model
(H;mi). Now any choice of r elements in H2(Y ) = H2 defines (the rational homotopy
type of) a free T r-space with orbit space M (see Prop. 1.2.4). If we choose the degree 2
classes in a way that their spanned subalgebra A ⊂ H fulfils mi(x, a1, . . . , ai−1) = 0 for
ai ∈ A, i ≥ 3, then the corresponding action will be MOD-formal.

Proof. Let
(R, 0)→ (R⊗ ΛV,D)→ (ΛV, d)

be a Sullivan minimal model of the Borel fibration of the action. Suppose there is a min-
imal unital C∞-model ϕ : (H∗G(X);mi)→ (R⊗ ΛV,D) satisfying the properties from the
theorem. Then the canonical map f1 : R → H∗G(X) can be extended to a C∞-morphism
f : (R, 0) → (H∗G(X);mi) by setting the higher components to be trivial. This yields a
diagram

(R, 0) //

f

&&

(R⊗ ΛV,D)

(H∗G(X);mi)

ϕ

OO

of augmented C∞-algebras (see Remark 1.4.10) which commutes on the level of cohomol-
ogy. We claim that it commutes up to homotopy of A∞-algebras.

The inclusion functor cdga+ → C∞-alg+ between the augmented cdgas and aug-
mented C∞-algebras induces an equivalence between the homotopy categories Ho(cdga+)
and Ho(C∞-alg+), which are the localizations of the respective categories at the quasi-
isomorphisms (see Theorem 1.4.19). Also, since (R, 0) and (R⊗ΛV,D) are both free cdgas,
they are both fibrant and cofibrant with respect to a model category structure whose
weak equivalences are the quasi-isomorphisms (see e.g. [47, Section B.6.11]). Through the
equivalence

cdga+
cf/ ∼→ Ho(cdga+)

(∼ being the homotopy relation), we deduce that the equivalence class of the morphism
ϕ ◦ f in Ho(C∞-alg+) contains a (unital) cdga-morphism ψ : (R, 0)→ (R ⊗ ΛV,D). This
is not necessarily the standard inclusion, which we denote by i, but it induces the same
map in cohomology. By Lemma 1.2.2, this already implies that i and ψ are homotopic.
It follows that i and ϕ ◦ f give rise to the same morphism in Ho(C∞-alg), which implies
they are in particular homotopic when considered as A∞-morphisms through the forgetful
functor (see [45, Cor. 1.3.1.3]).

Now by Lemma 1.4.17 the two A∞-R-module structures on R ⊗ ΛV defined by the
morphisms i and ϕ◦f are quasi-isomorphic as A∞-R-modules and by Lemma 1.4.16 they
are also quasi-isomorphic to the A∞-R-module structure on H∗G(X) defined by f . As the
higher operations of H∗G(X) vanish on the image of f by assumption, all but the binary
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operation of the A∞-R-module H∗G(X) vanish. Thus the latter is just the differential
graded R-module (H∗G(X), 0).

We have shown that the differential graded R-modules (H∗G(X), 0) and (R ⊗ ΛV,D)
are quasi-isomorphic as A∞-R-modules. But then Theorem 1.4.19 implies that they are
also quasi-isomorphic as ordinary differential graded R-modules.

By the formal cohomogeneity of a G-action on X we mean the difference fd(X)−dimG
of the formal dimensions of X and G, where formal dimension is the highest degree in
which nontrivial cohomology exists.

Corollary 2.3.3. Let G act almost freely on X. Let c be the formal cohomogeneity of
the action and assume that one of the following holds:

(i) c ≤ 3.

(ii) G is semisimple, X is k-connected for 0 ≤ k ≤ 3 and c ≤ 7 + k.

Then the action is MOD-formal.

Proof. It follows from Theorem 1.1.2 that H∗G(X) vanishes in degrees above the codi-
mension c. We argue that in the situation of (i) and (ii), the conditions of Theorem
2.3.1 are fulfilled for degree reasons. Choose a unital minimal C∞-model structure on
H∗G(X), which means that the higher operations mi, i ≥ 3 vanish if the argument has a
tensor component of degree 0. Thus we only need to check the vanishing of the mi on
H+
G (X)⊗A+ ⊗ . . .⊗A+ where A is the image of H∗(BG)→ H∗G(X). In the situation of

(i), the minimal nonzero and nontrivial degree of A+ is at least 2. Hence mi, which is of
degree 2− i, takes values in degrees ≥ i+ 1 when restricted to this subspace. This proves
(i).

If G is semisimple, then the first nontrivial degree of A+ is 4. If X is k-connected,
0 ≤ k ≤ 3, so is XG and it follows that mi takes values in degrees ≥ k + 3i − 1 when
restricted to H+

G (X)⊗ A+ ⊗ . . .⊗ A+. This implies (ii).

Remark 2.3.4. Instead of arguing via minimal C∞-models, the corollary above could also
be deduced from analogous degree considerations in the minimal A∞-R-module model
without the detour through algebras made in Theorem 2.3.1.

The precise nature of the connection between Massey products of algebras andMOD-
formality is hard to grasp and the sufficient condition of Theorem 2.3.1 is not necessary as
shown by example 2.4.11: in the example, the action isMOD-formal despite the existence
of nontrivial quadruple Massey products which cause m4 to be nontrivial on A⊗4 for any
C∞-model structure on the equivariant cohomology. We want to add that contrary to
this observation, the nontriviality of certain quadruple Massey products in A4 can be an
obstruction to MOD-formality in the right situation.

Other thanMOD-formality, the notion of being formally based has a precise descrip-
tion via higher C∞-operations and is equivalent to a weakened form of the requirement of
Theorem 2.3.1.

Theorem 2.3.5. Let A ⊂ H∗G(X) be an R-subalgebra. The action is formally based with
respect to A if and only if the unital minimal C∞-model (H∗G(X);mi) can be chosen in a
way that mi vanishes on A⊗i for i ≥ 3.
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Proof. Suppose that the action is formally based which means we have a morphism

ϕ : (C, d)→ (R⊗ ΛV,D)

of R-cdgas, where (C, d) is a relative minimal model for R → A. Then by part (iii) of
Lemma 1.4.23, we can construct the unital C∞-model of XG in the desired way.

Conversely suppose we have a unital minimal model (H∗G(X);mXG
i ) where the mXG

i

vanish on A. The cdga (C, d) is formal with cohomology equal to A so by part (ii) of
Lemma 1.4.23 we can choose a unital minimal C∞-model of the form (A;mA

i ) with mA
i = 0

for i 6= 2 and mA
2 the ordinary multiplication. The inclusion (A;mA

i ) → (H∗G(X);mXG
i )

defines a unital morphism of C∞-algebras with trivial higher components. Thus we have
a morphism (C, d)→ (R⊗ ΛV,D) in Ho(C∞-alg+) defined by

(C, d)← (A;mA
i )→ (H∗G(X);mXG

i )→ (R⊗ ΛV,D).

We observe that (C, d) and (R⊗ΛV,D) are Sullivan cdgas and conclude as in the proof of
Theorem 2.3.1 that the morphism in Ho(C∞-alg+) is represented by a morphism (C, d)→
(R ⊗ ΛV,D) of cdgas. Then it is also represented by a morphism of R-cdgas by Lemma
1.2.2.

2.4 Examples

2.4.1 Symplectic actions and Hard Lefschetz spaces

In recent decades, the topology of torus actions on symplectic and Kähler manifolds has
been a very successful field of study. In particular it was proved in [3] that Hard Lefschetz
manifolds satisfy the TRC (going back to the study of derivations on the cohomology
algebra by [8]) and the result has been generalized to free actions on cohomologically
symplectic spaces of Lefschetz type in [2] and [48] (we come back to this in Section 3.2.2).
It is therefore no surprise that among those spaces, we find classes of examples satisfying
our formality properties. However, it will turn out that in the generalized setting of
Lefschetz type spaces, the topology alone will not yield the formality properties we seek
and we will need to resort to the geometric condition of the action being symplectic. Let
us recall some notions

Definition 2.4.1. A 2n-dimensional compact symplectic manifold (M,ω) is said to
be of Lefschetz type if multiplication with ωn−1 defines an isomorphism H1(M ;R) →
H2n−1(M ;R).

Theorem 2.4.2. Let T be a torus acting on X such that one of the following holds:

(i) Any derivation of negative odd degree on H∗(X) vanishes if it vanishes on H1(X).

(ii) X is a compact symplectic manifold of Lefschetz type and the T -action is smooth
and symplectic.

Then the action is MOD-formal and has formal core.
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The property in (i) is fulfilled in particular for compact Kähler or more generally Hard
Lefschetz manifolds (see [8, Théorème II.1.2]). It is however a little more general as it
holds e.g. for any space with cohomology concentrated in even degrees and is stable under
products ([7, Prop. 3.5]). The proof of the theorem relies on the following property that
unifies both types of actions.

Lemma 2.4.3. Suppose the T -action on X satisfies either condition (i) or (ii) above and
that the map H2(BT )→ H2

T (X) is injective. Then the action is equivariantly formal.

Proof. Observe that the injectivity assumption is equivalent to the vanishing of the trans-
gression on the second page of the Serre spectral sequence of the Borel fibration. Under
condition (i) the lemma follows from [21, Proposition 4.40] (note that differentials on odd
pages vanish automatically as R is concentrated in even degrees). In case (ii), note first
that it suffices to consider real coefficients. We may thus work with the spectral sequence
of the Borel fibration which is obtained from the Cartan model by filtering in polynomial
degree. The symplectic form induces an element [ω] ∈ E0,2

2 and we claim that d2[ω] = 0.
If d2[ω] = v ∈ E2,1

2 = H2(BT ) ⊗ H1(X) was nontrivial, Poincaré duality of X would
imply the existence of some element x ∈ E0,2n−1

2 = H2n−1(X) such that xv 6= 0. As X is
of Lefschetz type, we may write x = [ω]n−1u for some u ∈ E0,1

2 . By assumption we have
d2u = 0 and [ω]nu = 0 for degree reasons. This implies 0 = d2[ω]nu = n[ω]n−1uv which is
a contradiction.

By the definition of the Cartan differential, this means precisely that contractions of
ω with the fundamental vector fields are exact. Consequently the action is Hamiltonian
and thus equivariantly formal ([43, Prop. 5.8]).

Remark 2.4.4. Interestingly, although the proof of the TRC generalizes to cohomolog-
ically symplectic spaces of Lefschetz type in the purely topological setting (see Section
3.2.2), the statement of (ii) in the above lemma is false without the geometric assumptions:
[1, Example 1] is an S1-action with a fixed point on a simply-connected cohomologically
symplectic space that is however not equivariantly formal.

Proof of Theorem 2.4.2. Set V = ker(R2 → H∗T (X)). There is a subtorus T ′ ⊂ T such
that the kernel of H2(BT )→ H2(BT ′) is exactly V . Let Xi ∈ V be a basis and Yi ∈ R2

be a basis of a complement of V . Then we have the following commutative diagram

(Λ(Xi, Yj), 0) //

��

(Λ(Xi, Yi)⊗ ΛV,D)

��

// (ΛV, d)

1ΛV

��

(Λ(Yj), 0) // (Λ(Yj)⊗ ΛV,D) // (ΛV, d)

where the top row is a model for the Borel fibration of the T action on X, the bottom
row is a model for the Borel fibration of the restricted T ′-action (note that the T ′-Borel
fibration is up to homotopy the pullback of the T -Borel fibration along BT ′ → BT ),
and the vertical maps are defined by sending the Xi to 0. By construction, the Yj map
injectively into the cohomology of (Λ(Yj)⊗ ΛV,D) and thus the bottom row fibration is
TNHZ by Lemma 2.4.3.

By assumption there are si ∈ V 1 with D(si) = Xi. In particular ΛV = Λ(si) ⊗ ΛW
where d(si) = 0 and D(si) = 0. Thus in the bottom row it makes sense to quotient out
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the ideal generated by the si, which yields an extension sequence

(Λ(Yj), 0)→ (Λ(Yj)⊗ ΛW, D̃)→ (ΛW, d). (∗)

We argue that this is TNHZ as well. By naturality of spectral sequences it suffices to
argue that the projection (ΛV, d) → (ΛW, d) is surjective on cohomology. To see this,
consider the composition

(Λ(Xi, si)⊗ ΛW,D′)→ (ΛV, d)→ (ΛW, d)

where D′ is obtained from D by dividing out the Yj. It is defined by sending the con-
tractible algebra (Λ(Xi, si), D) to 0 and is thus a quasi-isomorphism. In particular this
shows cohomological surjectivity of the second morphism and thus degeneracy of the Serre
spectral sequence of (∗) at E2.

As in the proof of Lemma 2.1.3, we obtain a quasi-isomorphism between the free
differential graded Λ(Yj)-modules (Λ(Yj) ⊗ ΛW, D̃) and (H∗(Λ(Yj) ⊗ ΛW ), 0), which we
consider as Λ(Xi, Yj)-modules via the projection. As before, sending Λ(Xi, si) to 0 yields
a quasi-isomorphism

(Λ(Xi, Yi)⊗ ΛV,D)→ (Λ(Yj)⊗ ΛW, D̃)

of Λ(Xi, Yj) modules. We have shown that the action is MOD-formal.
To see that it has formal core, set A = im(R→ H∗G(X)) and note that in the language

of Definition 2.1.16, ΛC is given by (Λ(Xi, Yj, si), D). Thus the morphism C → ΛV is
just given by the inclusion of (Λ(si), 0). By Lemma 3.2.2 the si span an exterior algebra
in H∗(ΛV, d). This shows the cohomological injectivity of C → ΛV .

2.4.2 Counterexamples

Example 2.4.5. We show that the notions we defined in Section 2.1 are not preserved
by restriction to subgroups of smaller rank. Consider the threefold Hopf action
of T 3 on M = (S3)3. The space MT 3 is formal so it is in particular MOD-formal as
well as formally based. However, if we restrict the action to T 2 along the homomorphism
(s, t) 7→ (s, st, t), the model of the Borel fibration becomes

(Λ(X, Y ), 0)→ (Λ(X, Y, a, b, c), D)→ (Λ(a, b, c), 0),

with |X| = |Y | = 2, |a| = |b| = |c| = 3, D(a) = X2, D(b) = X2 + 2XY + Y 2, and
D(c) = Y 2. Now 2Y a − X(b − a − c) defines a nonzero cohomology class in degree 5
which maps to 0 in H5(M) = 0. Also H3

T 2(M) = 0 so said class does not lie in mH∗T 2(M),
where m = (X, Y ). It follows that the action is not spherical. It is also not formally
based because of the nontrivial Massey product 〈X,X, Y 〉: the image of H∗(BT 2) →
H∗T 2(M) is isomorphic to Λ(X, Y )/(X2, XY, Y 2). Let (C, d) be as in Definition 2.1.16
and α, β, γ ∈ C with dα = X2, dβ = X2 + 2XY + Y 2, and dγ = Y 2. Any morphism
(C, d) → (Λ(X, Y, a, b, c), D) that is the identity on R also has to map α 7→ a, β 7→ b,
γ 7→ c, which is not possible since there is nontrivial cohomology represented in the
Λ(X, Y )-span of a, b, and c but not in that of α, β, and γ.
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Example 2.4.6. We construct an action which is spherical but not almost MOD-
formal. Consider Λ(X1, X2, X3) with Xi in degree 2 and set the differential D to be
trivial on the Xi. Add generators aij for i ≤ j ∈ {1, 2, 3} and set D(aij) = XiXj. One
checks that a basis of the kernel of D in degree 5 is given by

• miij = Xjaii −Xiaij, for (i, j) ∈ {1, 2, 3}2 with i 6= j, where aij := aji in case i > j.

• m312 = X3a12 −X2a13, m123 = X1a23 −X2a13.

The easiest way to verify this is by observing that the listed elements are linearly indepen-
dent and that the differential maps the 18-dimensional degree 5 component surjectively
onto the 10-dimensional Λ3(X1, X2, X3).

Now for each of the mijk except for m112, we introduce a generator cijk in degree 4
with D(cijk) = mijk. Furthermore, we add a generator b in degree 3 with Db = 0 and
glue it to the remaining Massey product by introducing the generator c112 in degree 4 and
setting D(c112) = m112 −X1b. We extend the cdga

(A,D) = (Λ(Xi, aij, b, cijk), D)

to a minimal Sullivan algebra (C,D) by adding generators in degrees ≥ 5 to inductively
kill all cohomology in degrees ≥ 6.

Setting R = Λ(X1, X2, X3), we have H∗(C) = R/R≥3⊗Λ(b). By Proposition 1.2.4 we
find a compact space X with a T 3 action such that the Borel fibration has minimal model

R→ (C,D)→ (C,D)

with the latter cdga being the quotient by the ideal generated by R+. As an R-module,
H∗T 3(X) = H∗(C) is generated by the classes of 1 and b which map injectively to H∗(X) =
H∗(C) so the action is spherical by Lemma 2.1.15.

Let us now argue that it is not almostMOD-formal. By Proposition 2.1.11, it suffices
to find a nontrivial differential on the E3-page of the spectral sequence of the fibration
T 3 → X → X/T 3. It is obtained by filtering (C ⊗ ΛS,D) in the degree of C where
S = Λ(s1, s2, s3) with Dsi = Xi. We find a nontrivial differential by defining a suitable
zigzag: consider the element α2 = X1s123 in filtration degree 2, where the multi index
stands for the respective product of the si. We have D(α2) = X2

1s23−X1X2s13 +X1X3s12.
Thus for α3 = −a11s23 + a12s13 − a13s12, we obtain

D(α2 + α3) = (X2a13 −X3a12)s1 + (X3a11 −X1a13)s2 + (X1a12 −X2a11)s3

in filtration degree 5. We claim that this defines a nontrivial element in E5,1
3 , which

implies that we have a nontrivial differential starting from E2,3
3 .

First note thatD(α2+α3) ≡ D(α2+α3)+D(c312s1−c113s2) ≡ −m112s3+X1c213−X2c113

in E5,1
3 . For this to be trivial in E5,1

3 we need to have

m112s3 −D(e12s12 + e13s13 + e23s23 + e1s1 + e2s2 + e3s3) ∈ C6

for some eij ∈ A3 and ei ∈ A4. We see that the eij are necessarily closed and hence
multiples of b. If the eij were nontrivial, then their image under D would produce error
terms of the form Xibjsk which cannot cancel with the D(eisi) because no element in
R2 · 〈b〉 is exact. Thus we have eij = 0. But then it follows that the projection of the
whole right hand expression D(· · · ) to the A5⊗〈s3〉 component is given by D(e3)s3, which
can never be equal to m112s3 because m112 is not exact in A.
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Example 2.4.7. We construct an almost MOD-formal but not MOD-formal free
action. Consider the cdga (C,D) from Example 2.4.6. We set R = Λ(X1, X2) and obtain
a compact T 2-space Y such that the Borel fibration is given by R → C. The R-module
H∗T 2(Y ) is generated by the classes of 1, X3, b, and X3b which map injectively to H∗(Y ).
Thus the action is spherical by Lemma 2.1.15. A nontrivial differential past the second
page of the spectral sequence from Proposition 2.1.11 would need to map from E∗,23 to
E∗,03 because we only have a T 2-action. But those are also trivial according to Proposition
2.1.13. Thus the action is almost MOD-formal.

Finally, we argue that the action is not MOD-formal. To see this, we construct the
lower part of the Hirsch–Brown model ϕ : R⊗V → C (see 1.3.3). In degree 0 we introduce
the generator 1 and set ϕ(1) = 1. In degree 1 there is nothing to do and in degree 2 we
introduce generators X3 and define ϕ(X3) = X3. To achieve surjectivity in degree 3,
we introduce b, with ϕ(b) = b. Injectivity of ϕ in degree 4 is achieved by introducing
a11, a12, a22 with D(aij) = XiXj ·1 as well as a13 and a23 with D(ai3) = Xi ·X3 and setting
ϕ(aij) = aij. The procedure is continued by adding generators of degree ≥ 4 to form the
Hirsch–Brown model.

If the action were MOD-formal, the criterion in Lemma 2.1.8 would tell us that we
can choose preimages α, β, γ ∈ V 3 of the exact cocycles X2

1 · 1, X1X2 · 1, and X2
2 · 1 such

that every closed element in R ⊗ 〈α, β, γ〉Q is exact. Every such α, β, and γ are of the
form α = a11 + tαb, β = a12 + tβb, γ = a22 + tγb for tα, tβ, tγ ∈ Q. But no choice of scalars
fulfils the condition that

ϕ(X2α−X1β) = m112 + (tαX2 − tβX1)b

and ϕ(X2β −X1γ) = −m221 + (tβX2 − tγX1)b

are simultaneously exact: exactness of the first element would require (tα, tβ) = (0, 1),
whereas for the second one we need (tβ, tγ) = (0, 0).

Remark 2.4.8. We point out that the counterexamples 2.4.6 and 2.4.7 can be modified
to produce simply-connected compact manifolds. By Proposition 1.2.4 it suffices to
extend the cdga (C,D) to a cdga whose cohomology satisfies Poincaré duality and check
that the arguments carry over.

To do this, choose any big enough degree N in which the fundamental class shall live.
We assume N ≥ 11 for convenience in the arguments below. Now introduce generators
e1, e2, and e3 in degree N − 5 and map them to 0 under the differential. In degree
N − 3, cohomology is now generated by the Xiej for 1 ≤ i, j ≤ 3. We introduce new
generators in degree N − 4 and map them (under the differential) to Xiej for i 6= j as
well as to X1e1 − X2e2 and X2e2 − X3e3. Let V N−4 denote the space spanned by the
newly introduced generators. Now the cohomology in degree N − 3 is 1-dimensional and
represented by any of the Xiei. Also, degree N − 2 cohomology is represented by be1,
be2, and be3 and cocycles in V N−4 · 〈X1, X2, X3〉. Introduce new generators V N−3 to kill
all cohomology of the latter kind in degree N − 2. Since the differential is injective on
C3 ·V N−4, cohomology in degree N − 1 is entirely represented in V N−3 · 〈X1, X2, X3〉. We
kill this cohomology by introducing generators in V N−2.

We claim that in degree N , the elements of the form Xibei are not exact (although
they are cohomologous to one another). Indeed, since for i = N −3, N −2 the differential
maps V i into the ideal generated by V i−1, it suffices to check whether e.g. X1be1 is in the
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image of C3 · V N−4, which is clearly not the case. We choose a complement of 〈[X1be1]〉
in degree N cohomology and introduce generators V N−1 which map bijectively to repre-
sentatives of a basis of the complement. Now inductively kill all cohomology in degrees
> N . Representatives for a basis of the cohomology are given by

degree 0 2 3 5 N − 5 N − 3 N − 2 N
X1 X1b e1 be1

generators 1 X2 b X2b e2 Xiei be2 Xibei
X3 X3b e3 be3

and we observe that Poincaré duality holds.
To check that the arguments in Examples 2.4.6 and 2.4.7 carry over, note first that

both the T 3-action defined by X1, X2, X3 as well as the T 2-action defined by X1, X2 are
still spherical: for R = Λ(X1, X2, X3), a generating set of the cohomology as an R-module
is given by 1, b, ei, and eib for i = 1, 2, 3. For R = Λ(X1, X2) we need to also add X3 and
X3b to the list. In any case, none of those generators become exact when dividing by the
ideal of R+ so both actions are spherical by Lemma 2.1.15. The arguments showing that
the actions are not (almost)MOD-formal took place only in the lower half of the cdgas,
which we did not modify.

Example 2.4.9. We construct a MOD-formal action that is neither equivariantly
formal nor has a formal homotopy quotient. We expand on a discussion from [38].
Consider the graded vector space H with Betti numbers 1, 0, 3, 0, 0, 1. For degree reasons,
all operations of a unital A∞-algebra structure onH vanish except form3 : H2⊗H2⊗H2 →
H5. In turn one checks that any specification of m3 does indeed yield an A∞-structure,
where the formal one is just given by the cohomology of S2 ∨ S2 ∨ S2 ∨ S5. For an
A∞-structure to be C∞ it is required that it vanishes on all shuffles. In our case this is
equivalent to m3 vanishing on all elements of the form a⊗ b⊗ c− a⊗ c⊗ b+ c⊗ a⊗ b for
a, b, c ∈ H2. Let α ∈ H5 be a generator and let X, Y, Z ∈ H2 be a basis. Then by setting
m3(Z ⊗ Z ⊗X) = α, m3(X ⊗ Z ⊗ Z) = −α, and m3(a⊗ b⊗ c) = 0 for all other tensors
with a, b, c ∈ {X, Y, Z}, we obtain a C∞-structure on H. We observe that m3 vanishes
on H2 ⊗ A ⊗ A, where A = 〈X, Y 〉 is the sub-algebra of H (with trivial multiplication)
generated by X and Y . Consequently, the classes X, Y satisfy the requirements of Remark
2.3.2 and we obtain a freeMOD-formal T 2-action on a compact space such that the orbit
space has the rational homotopy type of (H,m3).

To see that this is indeed not the formal rational homotopy type, note that the only
nontrivial component of a C∞-morphism f : (H,m3) → (H,m′3) is f1, again for degree
reasons. Thus m3 and m′3 yield isomorphic C∞-structures if and only if f1 ◦m3 = m′3 ◦
(f1⊗f1⊗f1) for an automorphism f1 of the graded vector space H. In particular (H,m3)
and (H, 0) are not isomorphic.

Example 2.4.10. We construct a hyperformal action which is not spherical. Con-
sider the nilmanifold with model

(N, d) = Λ(y1, . . . , y5, z1, . . . , z4, d)

with dyi = 0, dzi = yiyi+1. The extension

(Λ(X1, X2), 0)→ (Λ(X1, X2)⊗N,D)→ (N, d)



2.4. EXAMPLES 51

with Xi of degree 2, Dz1 = X1+y1y2, Dz4 = X2+y4y5, and D = d on the other generators
is the model of the Borel fibration of a free T 2-action. By dividing out a contractible ideal,
we obtain a commutative diagram

(Λ(X1, X2), 0) //

**

(Λ(X1, X2)⊗N,D)

��

// (N, d)

(Λ(y1, . . . , y5, z2, z3), d)

66

where the vertical map is a quasi-isomorphism with X1 7→ −y1y2, X2 7→ −y4y5, z1, z4 7→ 0
and which is the identity on the remaining generators. Since y1y2y4y5 defines a nonzero
cohomology class in the lower cdga while (y1y2)2 = (y4y5)2 = 0, the kernel of Λ(X1, X2)→
H∗(Λ(X1, X2)⊗N,D) equals (X2

1 , X
2
2 ). Hence the action is hyperformal.

Now consider the cocycle α = −y1y4y5z2 + y1y2y5z3 in the bottom cdga of the above
diagram. One checks that the cohomology class [α] is not in the algebra span of the degree
2 classes which are represented by yiyj, y2z2, y3z2, y3z3, and y4z3. In particular [α] does
not lie in Λ+(X1, X2) ·H∗(Λ(yi, z2, z3), d) with respect to the module structure defined by
the diagram. However, it becomes exact in (N, d) where

α = d(y3z1z4 − y1z2z4 − y5z1z3).

This shows that the action is not spherical.

Example 2.4.11. We show the existence of aMOD-formal action that is not formally
based by constructing the cdga (ΛW,D) in the following way: introduce generators X, Y
in degree 2 and a, b, c in degree 3 with D(a) = X2, D(b) = XY , and D(c) = Y 2. Then
the kernel in degree 5 is generated by α1 = Y a−Xb and α2 = Y b−Xc. Now introduce
generators d and e in degree 4 and set D(d) = α1, D(e) = α2. At this point, (ΛW≤4, D)
has no cohomology in degrees 3, 4, and 5 while in degree 6 representatives for a basis are
given by α3 = Y d + ac + Xe, α4 = Xd + ab, and α5 = bc + Y e. Now complete ΛW to a
minimal cdga by inductively killing all cohomology starting from degree 7. By Proposition
1.2.4, there is a free T 2-action on a finite CW -complex M whose homotopy quotient MT 2

has (ΛW,D) as minimal model. One quickly sees that (ΛW,D) is not formal because α1,
α2, and α3 represent nontrivial quadruple Massey products. However, we argue that it is
formal as a Λ(X, Y )-module by constructing a quasi-isomorphism ΛW → H∗(MT 2). We
set this map to be the canonical projection in degrees 0 and 2 and trivial in all other
degrees except degree 6. In degree 6, we choose the canonical basis given by the products
of the generators and map Λ3W 2 and W 2 ·W 4 to 0 while sending ac, ab, and bc to [α3],
[α4], and [α5]. It is easy to check that this map does have the desired properties.

To see that the action is not formally based, we observe that for degree reasons the
only possible nontrivial operation of a unital C∞-structure on H = H∗(MT 2) is

m4 : H2 ⊗H2 ⊗H2 ⊗H2 −→ H6.

This map has to be nontrivial for every C∞-model structure because MT 2 is not formal.
But H∗(BT 2) = Λ(X, Y ) → H∗(ΛW,D) = H∗(MT 2) is surjective in degree 2 so the
requirements of Theorem 2.3.5 are not met.
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Example 2.4.12. We give an example of an action on a homogeneous space which
has a formal homotopy quotient but does not have formal core with respect to
a smaller subalgebra of H∗G(X). Consider the action of the maximal diagonal torus T 4

on U(4) by multiplication from the left. If X1, . . . , X4 ∈ H2(BT 4) is the basis dual to the
standard basis of the Lie-Algebra of T 4 and R = Λ(X1, . . . , X4), then the model of the
borel fibration is given as

(R, 0)→ (R⊗ ΛZ,D)→ (ΛZ, 0)

where Z is 4-dimensional and D maps a basis to the elementary symmetric polynomials
σ1, . . . , σ4 in the variables Xi. Now we make a change of basis by pulling back the action
along the automorphism φ of T 4 which, in the standard basis of the Lie algebra, is given
by the matrix

A =


1 0 0 0
0 1 −2 0
0 0 1 0
0 0 0 1

 .

This induces an automorphism φ∗ of R which, in the basis X1, . . . , X4, is represented by
At. The model of the Borel fibration of the new action is the same except D is replaced
by the differential D̃ which maps a basis of Z to the polynomials φ∗(σi). We consider the
splitting T 4 = T ×T ′ with T consisting of the two circle factors on the left and T ′ of those
on the right. We claim that the T -action on U(4)/T ′ has a formal homotopy quotient but
does not have formal core with respect to im(H∗(BT )→ HT (U(4)/T ′).

The model of the Borel fibration of the T -action is

(Λ(X1, X2), 0)→ (R⊗ ΛZ, D̃)→ (Λ(X3, X4)⊗ ΛZ,D).

The middle cdga is formal so the action does indeed have a formal homotopy quotient.
Let S = Λ(X1, X2) and i : S → R be the inclusion. Then J := ker(S → H∗T (U(4)/T ′)) =
i−1(φ∗(I)), where I ⊂ R is the ideal generated by the σi. One computes that (φ∗)−1 ◦
i(X1) = X1 as well as (φ∗)−1 ◦ i(X2) = X2 + 2X3 and, using appropriate tools, we obtain

J = (X4
1 , 28X3

1X
2
2 + 12X2

1X
3
2 + 3X1X

4
2 , X

6
2 ).

We recommend the freely available software Macaulay2 for such computations and the
ones that follow below. Let (C, d) be a relative minimal model of (S, 0)→ (S/J, 0). It is
our goal to show that a morphism

(C ⊗ ΛZ ′, d)→ (R⊗ ΛZ ⊗ ΛZ ′, D̃)

can not be cohomologically injective, where the differentials map the generators Z ′ =
〈z1, z2〉 to X1 and X2. This follows for dimensional reasons: formality provides us with
quasi-isomorphisms

(C ⊗ ΛZ ′, d)→ (S/J ⊗ ΛZ ′, d) and (R⊗ ΛZ ⊗ ΛZ ′, D̃)→ (R/φ∗(I)⊗ ΛZ ′, d).

The cohomologies are thus given by

TorS∗ (S/J, S/(X1, X2)) and TorS∗ (R/φ
∗(I), S/(X1, X2))
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which can again be computed with standard software. Doing so, one finds the first one to
be nontrivial in degree 11 (in the cdga grading) while the second one is 0 in this degree.
It follows that the action has the desired properties. As a side note we want to add that
without the change of basis via φ, the analogous construction does yield an action that
has formal core with respect to im(S → HT (U(4)/T ′).
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Chapter 3

Bounds on the toral rank

3.1 Toral rank and formality

3.1.1 The total rank of free resolutions

Formality can help link the Buchsbaum–Eisenbud–Horrocks Conjecture (see below) and
the Toral Rank Conjecture. For example it was observed in [60] (see also [52]) that such
a link is given by the fact that the Serre spectral sequence of the homotopy fibration

T → X → XT

collapses at E3 if XT is a formal space. In our language this comes down to the fact
that those actions are in particular almost MOD-formal (see Prop. 2.1.11). Rather
recently, in [61], the following breakthrough theorem was proved, solving a weak form of
the Buchsbaum–Eisenbud–Horrocks conjecture.

Theorem 3.1.1. Let R be a commutative Noetherian ring that is locally a complete in-
tersection such that spec(R) is connected. Further, let M be a nonzero finitely generated
R-module of finite projective dimension such that M is 2-torsion free and

0←M ← P0 ← . . .← Pd ← 0

a projective resolution. Then
d∑
i=0

rkR(Pi) ≥ 2c,

where c is the codimension of M .

In its strong incarnation one conjectures the more specific bounds

rkR(Pi) ≥
(
c

i

)
to hold. The link to the TRC is provided by the equivariant cohomology: for a torus T
acting on a spaceX, take R = H∗(BT ) andM = H∗T (X). Then R is a polynomial ring and
thus regular which implies all the conditions of the above theorem. Also H∗T (X) is finitely
generated (see [4, Prop. 3.10.1]) and of finite projective dimension. The codimension c

55
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of H∗T (X) has a nice geometrical interpretation: if X is compact, then c is the minimal
dimension among the orbits (see Lemma 1.1.6).

Thus the only missing piece is linking the projective resolution of H∗T (X) to H∗(X).
The number

∑
rkR(Pi) from the above theorem gives an upper bound for dimH∗(X),

which is not sharp in general as it is the dimension of the E2 page in Remark 2.1.10.
Equality holds if and only if said spectral sequences collapse at E2.

Theorem 3.1.2. Suppose the T -action on the compact space X is (almost)MOD-formal
or has formal core. Then

dimH∗(X) ≥ 2c,

where c is the minimal dimension among the orbits. In particular the TRC holds for those
kinds of actions.

Proof. The rank of the minimal Hirsch–Brown model is precisely dimH∗(X) so the state-
ment for (almost) MOD-formal actions follows directly from Theorems 2.1.5 and 3.1.1.

Regarding actions with formal core with respect to some A ⊂ H∗G(X), note first that
dimH∗(X) ≥ dimH∗(C, d) where we use the notation surrounding Definitions 2.1.16
and 2.1.20. The map (R, 0) → (C, d) turns (C, d) into a formal dgRm so by the same
arguments as in the MOD-formal case we obtain dimH∗(C, d) ≥ 2c

′
, where c′ is the

height of the annihilator of H∗(C) as an R-module. But the annihilators of H∗T (X) and
H∗(C, d) are just given by the kernel of the map R→ H∗(C, d) ⊂ H∗T (X). In particular,
c = c′ and

dimH∗(X) ≥ dimH∗(C, d) ≥ 2c.

When T acts almost freely, we have c = dimT which yields the TRC.

Also, there is the following addendum to Theorem 3.1.1 from [61].

Theorem 3.1.3. Suppose R is a local (Noetherian, commutative) ring of Krull dimension
d which is the quotient of a regular local ring by a regular sequence. Assume further that 2
is invertible in R and let M be a finitely generated R-module of finite projective dimension
and finite length. If the sum of the Betti numbers of M is 2d then M is the quotient of R
by a regular sequence of d elements.

For torus actions, we deduce the following

Proposition 3.1.4. Suppose a T -action on a compact space X is almost MOD-formal
or has formal core and fulfils

dimH∗(X) = 2c,

where c is the minimal dimension among the orbits. Then X is rationally equivalent to a
product of c odd-dimensional spheres.

Proof. If the action is formally based with respect to some A ⊂ H∗G(X), observe that,
in the notation surrounding Definitions 2.1.16 and 2.1.20, dimH∗(C, d) ≥ 2c. As it
cohomologically injects into H∗(X), we deduce that (C, d) is a model for X. Consequently,
(C, d) is a model for XT and the action is MOD-formal.

For an almost MOD-formal action, the total rank of the minimal graded free resolu-
tion of H∗T (X) as an R-module is dimH∗(X) = 2c. Let p be a minimal prime containing
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Ann(H∗T (X)). Then H∗T (X)p has finite length. Since localization is exact, we obtain a
free resolution of H∗T (X)p by localizing the minimal graded free resolution of H∗T (X). The
codimension of H∗T (X)p is also c and thus this resolution has to be minimal by Theorem
3.1.1. This means that the sum of the Betti numbers of H∗T (X)p is equal to 2c.

We may now apply Theorem 3.1.3 and conclude that H∗T (X)p is a quotient of Rp

by a regular sequence of c elements. Since the minimal free resolution of H∗T (X)p was
constructed from the one of H∗T (X), we conclude that also H∗T (X) is a quotient of R by
c elements. Those elements span Ann(H∗T (X)) which is of height c, so it follows that
they also form a regular sequence in R. To see this formally, note that a sequence of
homogeneous elements of positive degree is regular in R if and only if it is regular in Rm,
where m = R+. After localizing at R+ we may use [14, Corollary 17.7] combined with the
fact that R is a Cohen–Macaulay ring.

We observe that, in this special case, the R-module structure determines also the
algebra structure on H∗T (X). A quotient of a polynomial ring by a regular sequence is
intrinsically formal (see [18, Remark 3.1]) so a Sullivan model for XT is given by the
Koszul complex (R ⊗ ΛZ,D) where D maps a basis of Z to the regular sequence. It
follows that (ΛZ, 0) is a model for X.

3.1.2 Small dimensions

As we have shown in Corollary 2.3.3, actions of small enough codimension are MOD-
formal and hence fulfil the TRC by Theorem 3.1.2. We can achieve stronger results by
placing additional topological restrictions on X. Recall that by the formal cohomogeneity
of a G-action on X we mean the number fd(X)− dimG.

Lemma 3.1.5. Let G act almost freely on X with formal cohomogeneity c and assume
one of the following holds

(i) X is simply-connected and c ≤ 4.

(ii) X is simply-connected, satisfies Poincaré duality, and c ≤ 2k, where k ≥ 3 is the
minimal odd degree such that πk(X)⊗Q 6= 0.

Then XG is formal.

Proof. By Proposition 1.1.2 we have fd(XG) = c. If X is simply-connected, so is XG.
Any simply-connected space of formal dimension ≤ 4 is formal as higher operations in
the minimal unital C∞-model vanish for degree reasons. This proves the lemma under
condition (i).

In the situation of (ii), XG is also a Poincaré duality space by Proposition 1.1.2. The
Sullivan minimal model of X does not have an odd degree generator up until degree k.
As the rational homotopy of BG is concentrated in even degrees, we deduce that the
minimal model of XG also does not have odd generators of degree < k. This implies that
the differential in the minimal model of XG vanishes in degrees from 1 up to k− 1. Thus
XG is (k − 1)-formal and by [22, Theorem 3.1], XG is formal because fd(XG) ≤ 2k.

Not only do we know that the TRC holds for small cohomogeneities but it is also a
classical result that it holds for actions of T r if r ≤ 3 ([4, Theorem 4.4.3]). Together with
Corollary 2.3.3, Lemma 3.1.5, and Theorem 3.1.2 this yields
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Theorem 3.1.6. The toral rank conjecture holds for

(i) spaces of formal dimension ≤ 7.

(ii) simply-connected spaces of formal dimension ≤ 8.

(iii) simply-connected Poincaré duality spaces of formal dimension ≤ 2k+4, where k ≥ 3
is the minimal odd degree such that πk(X)⊗Q 6= 0.

Case (iii) does in particular imply the TRC for simply-connected orientable manifolds
of dimension ≤ 10. This was proved earlier in [33, Théorème A], also using formality of
the homotopy quotient but concluding differently.

3.1.3 Boij–Söderberg theory and consequences

We give a brief introduction to the theory surrounding the solved conjectures by Boij
and Söderberg (see [24] for a detailed survey) and illustrate their applications to MOD-
formal torus actions. The purpose here is twofold: while we obtain obstructions to the
existence of MOD-formal torus actions that are much more refined than the TRC, the
theory below turns out to be a powerful tool, even in the absence of formality, which will
be further explored in Section 3.2.1.

In this section, R denotes a polynomial ring in r variables over an arbitrary field. The
sources surrounding Boij–Söderberg theory usually work with a grading in which R has
variables of degree 1 and differentials are usually of degree 0. We refer to this as the free
resolution grading (FRG). This is of course different from the topological grading (TG)
where variables of R = H∗(BT ) are of degree 2 and differentials are of degree 1. When
discussing the algebraic theory, we stick to the FRG conventions and later translate to
the TG conventions for applications.

Let us briefly recall the basic facts about graded free resolutions (see e.g. the first
chapter of [15]) and introduce notation. All modules will be assumed to be finitely gen-
erated. For any graded R-module M =

⊕
kM

k and integer n, we denote by M(n) the
graded module with M(n)k = Mn+k. A (graded) free resolution of M is an exact complex

0←M ← F0 ← F1 ← . . .

of free R-modules Fi =
⊕

R(−j)βi,j and degree 0 maps. Thus the numbers βi,j correspond
to the degrees of the generators of the free R-module Fi. The module M has a so called
minimal free resolution F∗ with the property that for any other free resolution F ′∗ of
M we have F ′∗

∼= F∗ ⊕ C∗ as complexes of graded R-modules for some complex C∗ of
free R-modules. In particular, the minimal resolution requires the minimal amount of
generators. It is unique up to isomorphism of complexes and is characterized by the fact
that at each stage, the image of the map Fi ← Fi+1 is contained in mFi, where m is the
maximal homogeneous ideal in R. The (uniquely determined) integers βi,j in the minimal
free resolution are called the graded Betti numbers of M .

By Hilberts syzygy theorem, the length of the minimal free resolution of M is at most
r, which means that Fi = 0 for i > r. Only finitely many of the Betti numbers are nonzero.
Hence, we can see the collection of the βi,j as an element of

⊕
j∈Z Zr+1 ⊂ D :=

⊕
j∈ZQr+1.

This element is called the Betti diagram of M .
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Example 3.1.7. For R = Q[x, y], consider the module M = R/(x, y2). A free resolution
is given by

0←M ← R

(
x y2

)
←−−−−− R(−1)⊕R(−2)

 y2

−x


←−−−− R(−3)← 0.

As the maps between the free modules in the resolution have image in the multiples of m,
this is the minimal free resolution of M . If we display the corresponding Betti diagram
(βi,j) ∈ D as an array, showing only the window of D where (βi,j) is nontrivial, we obtain

0 1 2


0 1 0 0
1 0 1 0
2 0 1 0
3 0 0 1

,

where βi,j is located in the ith column and jth row.

A very important class of modules is given by those whose depth is equal to their
dimension, which by the Auslander-Buchsbaum formula is equivalent to the fact that their
codimension coincides with the length of their minimal free resolution. Those modules
are called Cohen–Macaulay.
The main result of Boij–Söderberg theory is to classify all possible Betti diagrams of
Cohen–Macaulay R-modules up to multiplication by a rational number. The result then
extends to arbitrary R-modules, even without the Cohen–Macaulay assumption. Let us
make this precise.

Definition 3.1.8. (i) An element d = (d0, . . . , dc) ∈ Zc+1 such that d0 < . . . < dc is
called a degree sequence of length c.

(ii) Let d be a degree sequence of length c. We say that a finitely generated graded R-
module has a pure diagram of type d if its Betti numbers satisfy βi,j = 0 whenever
i > c or j 6= di.

A digram is pure if and only if it has only one nontrivial entry in each column when
displayed as above. Given a degree sequence d of length c, we define the associated pure
diagram π(d) ∈ D by

π(d)i,j =

{∏
k 6=i

1
|dk−di|

if 0 ≤ i ≤ c and j = di

0 else
.

One can prove that any Betti diagram of a codimension c Cohen–Macaulay R-module
with pure diagram of type d is a rational multiple of π(d). This is a consequence of certain
restrictions on Betti diagrams known as the Herzog-Kühl equations, which simplify to the
above formulas in the pure case. Thus pure diagrams are understood up to multiplication
by a rational number. The Boij–Söderberg conjectures enable us to extend this under-
standing to the Betti diagrams of arbitrary (Cohen–Macaulay) modules. We summarize
some of the main results in the following
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Theorem 3.1.9. (i) The Betti diagram of an R-module of codimension c is a positive
rational linear combination of the Betti diagrams of Cohen–Macaulay R-modules of
codimension ≥ c.

(ii) The Betti diagram of a Cohen–Macaulay module of codimension c is a positive ra-
tional linear combination of Betti diagrams of codimension c Cohen–Macaulay R-
modules with pure diagrams.

(iii) For any degree sequence d, there is a Cohen–Macaulay module with pure diagram of
type d.

In the theorem above, a positive rational linear combination really means that all
scalars are positive. Part (ii) and (iii) were proved in [17]. Note that the characteristic
zero case of (iii) was proved earlier in [16]. Part (i) was then proved last in [10], extending
the previous results to the non-Cohen–Macaulay case.

Remark 3.1.10. Let M and N be two R-modules with Betti-diagrams πM , πN ∈ D.
Then any positive rational linear combination p1

q1
πM + p2

q2
πN is the Betti diagram of the

sum of p1q2 copies of M and p2q1 copies of N , up to multiplication with (q1q2)−1, where
we assume pi, qi ≥ 0. So the theorem above indeed classifies all Betti diagrams up to
rational scalars: Betti diagrams of codimension c Cohen–Macaulay R-modules are, up to
scalars, precisely the positive linear combinations of the π(d), where d is a degree sequence
of length c. Without the Cohen–Macaulay condition we allow degree sequences of length
≥ c.

Let us translate this to the realm of torus actions. Let T = T r act on a space
X. Then (in TG) we have H∗T (X) = H0 ⊕ H1 as dgRms, where H0 = Heven

T (X) and
H1 = Hodd

T (X). We consider now the graded vector spaces H0 and H1 with
(
H0

)n
= H2n

0

and
(
H1

)n
= H2n+1

1 . The graded R-module structure on H0 and H1 in TG translates to

graded R-module structures on H0 and H1 with respect to FRG. Let

H0 ← F∗ and H1 ← F ′∗

be free resolutions in FRG. Then we set F̃i to be the graded vector space with (F̃i)
n =

(Fi)
n+i

2 if n+i is even and (F̃i)
n = 0 if n+i is odd. We also define F̃ ′i via (F̃ ′i )

n = F
′n+i−1

2
i if

n+ i is odd and (F̃ ′i )
n = 0 if n+ i is even. Then on F̃i and F̃ ′i we have canonically induced

graded R-module structures in TG and the degree 0 differentials of the free resolutions
induce degree 1 differentials

F̃ n+1
i−1 ← F̃ n

i and F̃ ′
n+1

i−1 ← F̃ ′
n

i .

We observe that the canonical degree 0 maps F̃0 → H0 and F̃ ′0 → H1 make
⊕

i(F̃i ⊕ F̃ ′i )
the minimal dgRm-model of (H∗T (X), 0) in TG.

If the action is (almost)MOD-formal, we have R⊗H∗(X) ∼=
⊕

i(F̃i ⊕ F̃ ′i ) as graded
R-modules, so the Betti numbers of the (FRG) graded modules H0 and H1 translate to
the (TG) Betti numbers of X in the above fashion. In particular they are given by positive
rational linear combinations of pure diagrams by Theorem 3.1.9 (with a degree shift). In
case X is compact, the codimension c from Theorem 3.1.9 is given by the minimal orbit
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dimension so in this case we only need to consider degree sequences of length ≥ c. Also if
fd(X) = n is the highest degree with Hn(X) = 0, then this gives a natural bound on the
degrees that can occur in the degree sequences: if d is a degree sequence of length l ≥ c
contributing to the Betti diagram of H0, then degree restrictions imply dl ≤ (n+ l)/2. As
the sequence is strictly increasing we obtain i ≤ di ≤ (n + l)/2− (l − i) = (n− l)/2 + i.
Similar restrictions apply to the sequences contributing to the Betti diagram of H1. We
sum up the discussion in the corollary below. For a degree sequence d of length l, we
define the associated vector π̃(d) ∈ QZ of Betti numbers via

π̃(d)j =

{∏
k 6=i

1
|dk−di|

if j = 2di − i, for 0 ≤ i ≤ l

0 else
.

and also set π̃′(d)j = π̃(d)j−1. The degree sequences dk below correspond to the free
resolution of H0, while the δl correspond to H1.

Corollary 3.1.11. Let X be a compact space of formal dimension n with a MOD-
formal T -action whose minimal orbits are of dimension c. Then there are degree sequences
d1, . . . , ds and δ1, . . . , δt with c ≤ length(dk), length(δl) ≤ r, satisfying i ≤ dki ≤ (n −
length(dk))/2 + i and i ≤ δli ≤ (n − length(δl) − 1)/2 + i for 1 ≤ k ≤ s, 1 ≤ l ≤ t,
such that the vector of Betti numbers (b0, . . . , bn) ⊂ Qn+1 ⊂ QZ of X is a positive rational
linear combination

s∑
k=1

akπ̃(dk) +
t∑
l=1

αlπ̃
′(δl).

Example 3.1.12. As an application, let us examine possible Betti numbers of an almost
free compact T 2-space X with fd(X) ≤ 5. By Corollary 2.3.3 the action is automatically
MOD-formal. As the minimal orbit dimension is 2, we only need to consider degree
sequences of length 2. In the Betti diagram of H0 and H1, the degree restrictions allow
only the degree sequences (0, 1, 2), (0, 1, 3), (0, 2, 3), and (1, 2, 3). We deduce that the
vector (b0, . . . , b5) of Betti numbers of X lies in the rational cone which is generated by
the vectors

(1, 2, 1, 0, 0, 0), (2, 3, 0, 0, 1, 0), (1, 0, 0, 3, 2, 0), and (0, 0, 1, 2, 1, 0),

coming from H0 and the same set of vectors, with nontrivial entries shifted one position
to the right, from H1. If we number the above degree sequences by d1, . . . , d4 from left to
right, then e.g. for the Betti numbers of T 5 we have

(1, 5, 10, 10, 5, 1) =
1

2
π(d1) +

1

2
π(d3) +

5

2
π(d4) +

7

2
π′(d1) +

1

2
π′(d3).

The same considerations carry over more generally to the case of an almost free T r-
action when fd(X) ≤ r + 3. In this case we obtain r + 2 admissible degree sequences for
each of the Hi, giving rise to a cone spanned by 2r + 4 vectors.

As Boij–Söderberg theory is a complete classification, up to scalars, of possible Betti
diagrams, it is natural to ask for a classification of possible vectors of Betti numbers of
MOD-formal T -spaces, in particular for compact spaces. For (almost) free actions there
seems to be hope since it is possible to pass from algebra to geometry within the compact
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realm (see Proposition 1.2.4). Still the task seems out of reach as algebra structures are
far more complex than R-modules. Also note that the idea of a stable approach, i.e.
classifying Betti vectors up to multiplication by scalars, does not seem suited since on
each path component we normalize to b0 = 1.

The last condition does however only concern Heven
T (X) and we will see below that

there are no intrinsic restrictions on whichR-modules can occur asHodd
T (X). This provides

a partial converse to the previous corollary within the realm of almost free actions.

Corollary 3.1.13. Let v =
∑

k αkπ̃
′(δk) be a positive rational linear combination where

the δk are degree sequences of length r in degrees δki ≥ 0 for all k and 0 ≤ i ≤ r. Let N
be the maximum among the δkr and set d = (0, N − r + 1, N − r + 2, . . . , N). Then there
are positive integers a, α such that the vector aπ̃(d) + αv consists of the Betti numbers of
a compact free MOD-formal T -space X.

Proof. By Theorem 3.1.9 there is a finitely generated graded (in FRG) R-module H1

of dimension 0 whose Betti diagram is αv, where α is some positive integer and v =∑
k αkπ(δk). We construct the dgRm (H1, 0) (in TG) as above. It is concentrated in odd,

positive degrees and the number of generators of its minimal Hirsch–Brown model, which
we build from the minimal free resolution of H1, is described by the vector αv in each
degree. Observe that H1 has finite length and that the maximal nontrivial degree is N−r
(see [15, Corollary 4.4]). This translates to degree 2(N − r) + 1 as the top degree of H1.

SetH0 = R/R2(N−r)+1 and consider theR-moduleH = H0⊕H1. We claim that there is
a graded commutative algebra structure on H such that the previous R-module structure
is induced by the canonical map R → H0 ⊂ H. We need to define a multiplication map
µ : H⊗H → H. On H0⊗H0 we define µ to be the canonical multiplication H0⊗H0 → H0,
while on H1⊗H1 we set µ = 0. Finally the multiplication on H0⊗H1 is the one induced
from the module structure R⊗H1 → H1. This is well defined since R2(N−r)+1 annihilates
H1 for degree reasons. We do the same for H1 ⊗ H0 after applying the switching map
H1 ⊗ H0

∼= H0 ⊗ H1. With this definition, µ is easily checked to be commutative and
associative.

Consider a relative minimal Sullivan model for (R, 0)→ (H, 0). Then by Proposition
1.2.4, there is a free T -action on a compact space X such that the relative model is
a model for the Borel fibration of X. Since (H, 0) is a formal cdga, the action is in
particularMOD-formal. The Betti numbers of X agree, in each degree, with the number
of generators of the Hirsch–Brown model of (H, 0). The latter decomposes as the model
of (H0, 0) and the model of (H1, 0) which are just the respective minimal free resolutions.
We conclude the proof by the observation that R/R(2(N−r)+1 corresponds to R/RN−r+1

in FRG, which has a pure Betti diagram of type d = (0, N − r+ 1, N − r+ 2, . . . , N).

In the corollary above, the construction of course works more generally if we replace
R/RN−r+1 by R/J for some ideal J which is generated in degrees ≥ N − r+ 1 (in FRG).
In this case, π̃(d) in the statement of the corollary is replaced by a suitable degree shifted
version of the Betti diagram of R/J .

3.1.4 Formal elliptic spaces

Assuming formality of the space X itself does not seem to yield immediate results when
attacking the TRC in full generality. In this section however, we provide a proof of the
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TRC in case X is formal and elliptic.
Recall that an elliptic space of positive Euler characteristic, i.e. a positively elliptic

space, has a minimal model given by a pure algebra (ΛV, d) such that d maps a basis of
V odd to a maximal regular sequence of V even. Recall that we say a fibration is totally
non-homologous to zero (TNHZ) if its Serre spectral sequence collapses at E2.

Proposition 3.1.14. Let X be a formal elliptic space. Then rationally it is the total
space of a TNHZ fibration with model

(ΛB, 0)→ (ΛB ⊗ ΛV,D)→ (ΛV, d),

where B = Bodd and (ΛV, d) is positively elliptic.

Proof. By [18], X has a two-stage model of the form (ΛZ,D), where Z = Z0 ⊕ Z1, such
that Z1 = Zodd

1 and D maps a basis of Z1 to a regular sequence a1, . . . , ak in ΛZ0. Now set
V = Zeven

0 ⊕ Z1 and B = Zodd
0 , which produces the desired extension sequence. We now

show that (ΛV, d) is positively elliptic, where d is the differential obtained by projecting
B+ to 0.

Observe that a1, . . . , ak is in particular a regular sequence in the strictly commutative
ring

(ΛZ0)even = ΛZeven
0 ⊗ (ΛZodd

0 )even.

The right hand tensor factor has Krull dimension 0 whence the Krull dimension of
(ΛZ0)even is equal to r := dimZeven

0 . In particular, we have k ≤ r. Denote by J ⊂ ΛZeven
0

the ideal generated by the canonical projections a1, . . . , ak of the ai to ΛZeven
0 . It follows

from the odd spectral sequence of the elliptic algebra (ΛZ,D) that the quotient ΛZeven
0 /J

is finite-dimensional. In particular, J has height r. Since J is generated by k ≤ r elements,
it follows that r = k and that the ai form a regular sequence in ΛZeven

0 .
It remains to prove that the Serre spectral sequence collapses at E2. Observe that

E∗,∗2 = H∗(ΛB, d)⊗H∗(ΛV, d). In particular we have E0,∗
2 = H∗(ΛV, d). This is completely

represented by polynomials in Zeven
0 due to the fact that (ΛV, d) is positively elliptic. As

D vanishes on Zeven
0 , it follows that also the differentials of the spectral sequence vanish

on E0,∗
r , r ≥ 2, which causes the spectral sequence to collapse.

Corollary 3.1.15 ([44]). The TRC holds for formal elliptic spaces.

Proof. Let X be formal and elliptic and display its model as in the previous proposition.
For the homotopy Euler characteristic of X, we obtain χπ(X) = − dimB which implies
rk0(X) ≤ dimB. On the other hand, due to the collapse of the Serre spectral sequence,
we have

dimH∗(X) = dimH∗(ΛV, d) · 2dimB.

3.2 Bounds in the general setting

3.2.1 Under assumptions on certain Betti numbers

One of the classical results regarding the toral rank is the inequality

dimH∗(X) ≥ 2rk0(X)
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by Allday and Puppe. The idea of the proof is that since R ⊗ H0(X) gets mapped to
0 by the differential in the minimal Hirsch–Brown model of a T r-action, almost all of
R ⊗ H0(X) has to get killed in cohomology in order for the cohomology of XT r to be
finite-dimensional. By projecting to this submodule, the differential induces a map

R⊗Hodd → R⊗H0(X)

with image in m ⊗ H0(X), whose cokernel is finite-dimensional over Q. One can show,
e.g. by means of the Krull height theorem, that such a map Rl → R requires l to be at
least r since its image is an ideal of maximal height. From this, the above inequality can
be deduced using the fact that the Euler characteristic of X is 0.

Our goal is to investigate how the above result can be improved if there are multiple
copies of R getting mapped to 0 by the differential of the Hirsch–Brown model. In other
words: if we have a map Rl → Rk with image in mRk and finite-dimensional cokernel,
what can be said about the relation of k and l? The R-linear maps defined by the matrices

(
0 X Y
X Y 0

)
,

(
0 W X Y Z
W X Y Z 0

)
,

 0 0 X Y Z
0 X Y Z 0
X Y Z 0 0


fulfil l = k+r−1 (if R is considered to be the polynomial ring over the variables occurring
in the respective matrix). The author suspects the pattern seen in the matrices can be
used to construct examples where l = k + r − 1 for all values of k and r.

This rather unsatisfactory lower bound may however be improved under certain addi-
tional assumptions: in the examples above, the cokernel, whilst being finite-dimensional,
has rather large formal dimension. It is our goal to obtain a better estimate by taking this
factor into consideration. For the following proposition we want to apply Boij–Söderberg
theory and thus momentarily use the free resolution grading (FRG, see Section 3.1.3).

Proposition 3.2.1. Let k, l ≥ 1 and f : Rl → Rk be a graded R-linear map with respect
to some grading on Rl and the grading with generators concentrated in degree 0 on Rk.
Assume further that im(f) ⊂ mRk and that coker(f) has finite length. Let N be the
maximal degree in which coker(f) is nontrivial. Then

l ≥ N + r

N + 1
k.

Proof. We may change the grading on Rl such that f becomes a degree 0 map of graded
R-modules. Consider the minimal free resolution im(f) ← F0 ← F1 ← . . . of im(f). As
minimality is equivalent to the image of the map Fi ← Fi+1 being contained in mFi at
each stage, we deduce that

coker(f)← Rk ← F0 ← F1 ← . . .

is a minimal free resolution of coker(f). For the graded Betti numbers βi,j of coker(f),
we set βi =

∑
j βi,j. Note that the original sequence

coker(f)← Rk ← Rl
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can also be completed to a (not necessarily minimal) free resolution of coker(f) by just
taking any free resolution of ker(f). In particular, minimality of the first resolution implies
that Rl contains F0 as a direct summand so l ≥ β1. We also have k = β0 because Rk is
the first step of the minimal free resolution of coker(f).

We have a closer look at the Betti diagram of coker(f). The Castelnuovo-Mumford
regularity of coker(f) is equal to N (c.f. [15, Cor. 4.4]). This means that βi,j = 0 for
j > N + i. Furthermore, note that the Krull dimension and the depth of coker(f) are
equal to 0 because coker(f) has finite length. So coker(f) is a Cohen–Macaulay module
of codimension r. By Theorem 3.1.9, the Betti diagram of coker(f) can be written as a
positive linear combination of pure diagrams of length r. This implies that a lower bound
on the ratio of the first two Betti numbers of such a pure diagram gives a lower bound
for β1/β0 and thus for l/k.
Let b0, . . . , br be the Betti numbers of a codimension r Cohen–Macaulay module C with
pure Betti diagram of type d, where d is a degree sequence of length r. We can assume
that d0 = 0 and di ≤ N+i, for otherwise the Betti diagram of C can not occur nontrivially
in a positive linear combination forming the Betti diagram of coker(f) due to the degree
restrictions above. The Herzog-Kühl equations yield

b1

b0

=
r∏
i=2

di
di − d1

.

This ratio is minimal when the di take their maximum values di = N + i and d1 takes its
minimum value 1. In total, we get

b1

b0

≥
r∏
i=2

N + i

N + i− 1
=
N + r

N + 1
,

which proves the claim.

Note that this bound is sharp: By part (iii) of Theorem 3.1.9, for any N ≥ 0, there
is a codimension r Cohen–Macaulay module with pure diagram of type d, where d0 = 0,
d1 = 1, and di = N + i for 2 ≤ i ≤ r. This module is of finite length and its maximal
nontrivial degree coincides with the Castelnuovo-Mumford regularity N . Consequently,
the first map in the free resolution has the desired properties.
The question that ensues is when we actually have generators in the minimal Hirsch–
Brown model that map to 0 under the differential. The following trick, used in the
proof of the TRC for Hard Lefschetz manifolds in [3], will be fundamental to assume the
existence of such generators.

Lemma 3.2.2. Let X be a finite CW-complex with an almost free T r-action and

(R, 0)→ (R⊗ ΛV,D)→ (ΛV, d)

a Sullivan model for the associated Borel fibration. If Z ⊂ V 1 is a subspace such that
d(Z) = 0 and D|1⊗Z is injective, then Z generates an exterior algebra in H∗(X). In
particular, if fd(X) − 1 ≤ r ≤ fd(X), then H∗(X) contains an exterior algebra on r-
generators of degree 1.
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Proof. We show the first part via induction. Assume that im(d) ∩ ΛlZ = 0 and d(x) ∈
Λl+1Z for some x ∈ ΛV . We can write D(x) = d(x) + y for some y ∈ R≥2 ⊗ ΛV . By
assumption, D(Z) is contained in R2 ⊗ 1 so D maps d(x) into R2 ⊗ ΛlZ. As D2(x) = 0,
it follows that D(y) = −D(d(x)) ∈ R2⊗ΛlZ. But as the R2⊗ΛV component of D(y) is,
for degree reasons, equal to (1⊗d)(y), this implies D(y) = 0 by the induction hypothesis.
Hence, D(d(x)) = 0 and also d(x) = 0 because D is injective on ΛZ. By induction, we
obtain that im(d) ∩ ΛZ is trivial so ΛZ projects injectively into cohomology.
Now, if fd(X) − 1 ≤ r ≤ fd(X), then fd(XT r) ≤ 1 so D must map surjectively onto
R2 ⊗ 1, which is r-dimensional. Preimages must, for degree reasons, lie in V 1 ∩ ker(d) so
the second part follows.

Together, the previous considerations enable the main result of this section.

Theorem 3.2.3. Let X be a compact space of formal dimension n with an almost free
T r-action.

(i) Let b be the first Betti number of X and m = max(b− r, 0). Then

dimH∗(X) ≥ min
k=m,...,b

n+ r − 1

n− r + 1
2k + 2b−k.

(ii) Let k be the degree corresponding to the first nontrivial odd Betti number. Then

dimH∗(X) ≥ n+ r − 1

n− r + 1
2 dimH<k(X).

Proof. For the proof of (i), consider the relative minimal model

(R, 0)→ (R⊗ ΛV,D)→ (ΛV, d)

for the Borel fibration of the action. By assumption, ker(d|V 1) is b-dimensional. Now
decompose ker(d|V 1) = Z ⊕ Z ′, where Z ′ = ker(D|V 1) and let k ∈ {max(b − r, 0), . . . , b}
be the dimension of Z ′. By Lemma 3.2.2, Z generates an exterior algebra in cohomology.
If k = 0, Theorem 3.2.3 holds so in what follows we will assume k ≥ 1. If r = n, then
H1(XT r) = 0, which implies k = 0 so we will assume r < n as well.
Let us now construct the minimal Hirsch–Brown model of the action. We decompose
ΛV = A⊕B⊕C as vector spaces as in the construction presented in Section 1.3.2. Note
that since ΛZ ⊕Z ′ projects injectively into cohomology, the decomposition above can be
chosen in a way that ΛZ ⊕ Z ′ is contained in A. Let (R ⊗ H∗(X), δ) be the resulting
Hirsch–Brown model and recall that on R⊗H≤l(X), δ is explicitly given by

δ = g̃Σlf̃

with notation as in Section 1.3.2. Note that since t maps R ⊗ (ΛZ ⊕ Z ′) to itself and
thus into R ⊗ A, we have φ̃t|ΛZ⊕Z′ = 0 and in particular δ|ΛZ⊕Z′ = g̃tf̃ = g̃Df̃ , where

ΛZ,Z ′ ⊂ H∗(X) denote the corresponding subspaces of cohomology. This implies

δ(R⊗ ΛZ) ⊂ R⊗ ΛZ and δ(R⊗ Z ′) = 0.
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Hence, when composed with a suitable projection onto R⊗ Z ′, δ induces a map

R⊗ (H∗(X)/ΛZ)even → R⊗ Z ′

with image in m⊗Z ′, whose cokernel is finite-dimensional because the cohomology of the
Hirsch–Brown model is.
This cokernel vanishes in degrees above the formal dimension of XT r which is n − r in
TG. This implies that when we give R ⊗ Z ′ the grading from Proposition 3.2.1, where
generators are in degree 0 and the variables of R have degree 1, the maximal degree N in
which the cokernel is nontrivial fulfils 2N + 1 ≤ n − r, so N ≤ n−r−1

2
. Proposition 3.2.1

yields

dim(H∗(X)/ΛZ)even ≥ n+ r − 1

n− r + 1
k.

As (ΛZ)even has dimension 2b−k−1, we obtain

dimH∗(X)even ≥ n+ r − 1

n− r + 1
k + 2b−k−1.

Using that the Euler characteristic of X is 0 completes the proof of (i).
In the situation of (ii), note that in a minimal Hirsch–Brown model of an almost

free T r-action, R ⊗ H<k(X) gets mapped to 0 for degree reasons. Projecting onto this
submodule, the differential induces a map

R⊗Hodd(X)→ R⊗H<k(X)

which has image in m ⊗ H<k(X) and finite-dimensional cokernel as the cohomology of
XT r is finite-dimensional. Applying Proposition 3.2.1 as in (i) together with the fact that
the Euler characteristic is 0 yields the desired lower bound.

Let us take some time to put Theorem 3.2.3 into perspective and compare it to the
known results. The quotient (n + r − 1)/(n − r + 1) approaches 2r − 1 as r approaches
n. In this sense, for a fixed space X, we can say that our lower bound in (ii) approaches
a linear bound of slope 4 dimH<k(X) for smaller cohomogeneities.

For the bound in (i), calculations show that for positive a, b ∈ R, the real valued
function f(x) = ax + 2b−x has global minimum a(b − log2(a) + (1 + log log(2))/ log(2)).
Thus, in the same vague sense as before and neglecting logarithmic terms, the bound
approximates to a linear bound with slope close to 4b when approaching the extreme
case r = n. However, note that in both cases, the approximation occurs rather late and
that the result is not interesting for very small cohomogeneities, such as n − 1 ≤ r ≤ n,
where the TRC is proved easily as seen in Lemma 3.2.2 above. Still, the theorem gives
an improved lower bound in many cases.
The tables below are meant to give a feeling for the behaviour of our lower bounds and
when Theorem 3.2.3 is an improvement of the established linear bound of slope 8/3 from
[5]. In both tables, we have set n = 10. Let us begin with estimate (i):

r 1 2 3 4 5 6 7 8 9 10
b = 4 8 9 10 12 13 14 16 16 16 16
b = 6 12 14 16 19 22 26 32 39 50 64
b = 10 20 24 28 34 41 50 64 84 122 216
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Now let us have have a look at scenario (ii) of Theorem 3.2.3 where we set l = dimH<k(X).

r 1 2 3 4 5 6 7 8 9 10
l = 4 8 10 12 15 19 24 32 46 72 152
l = 6 12 15 18 23 28 36 48 68 108 228
l = 10 20 25 30 38 47 60 80 114 180 380

3.2.2 Application to c-symplectic spaces

As an application of the previous section, we investigate the cohomological consequences
of almost free torus actions on the following class of spaces.

Definition 3.2.4. A space M is called c-symplectic if H∗(M) satisfies Poincaré duality
with fundamental class in degree 2n and there is an element ω ∈ H2(M) such that ωn is
nontrivial.

The most important examples of c-symplectic spaces are of course compact symplectic
manifolds. However, the notion of a c-symplectic space is a little more general, even within
the realm of compact manifolds. For instance certain connected sums of copies of CPn

are known to not carry almost complex structures and thus, in particular, can not be
symplectic (see [26]).

Torus actions on c-symplectic spaces are quite well understood as a lot of ideas from
equivariant symplectic geometry carry over to the purely topological setting. In the
context of this thesis, the most interesting result is the following: the orbit map T r →M
of an almost free T r-action on a c-symplectic space M of Lefschetz type (which means
that multiplication with ωn−1 induces an isomorphism H1(M) ∼= H2n−1(M)) induces a
surjection on cohomology. This was proved in [48] and [2], where the first reference has a
homotopy theoretical approach while the second reference operates purely on the level of
equivariant cohomology. As an immediate consequence we see that H∗(M) contains an
exterior algebra on r generators of degree 1 and in particular the TRC holds. Without the
Lefschetz type assumption, a weaker form of this statement is still true in the form of the
theorem below which was proved in [48]. We give a simplified proof through equivariant
cohomology. Note that the core idea of our proof (the fact that a c-Hamiltonian S1-action
has a fixed point) was also shown in [2] using similar machinery.

Theorem 3.2.5. Let M be a c-symplectic compact space with an almost free T r-action.
Then

r ≤ b1,

where b1 is the first Betti number of M .

Proof. Assume that r > b1. Let a1, . . . , ab1 be a basis of H1(M), denote by d2 the differ-
ential on the second page of the Serre spectral sequence of the Borel fibration associated
to the action, and by ω the symplectic class in H2(M). We have

d2(ω) =

b1∑
i=1

ai ⊗ pi
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for certain p1, . . . , pb1 ∈ H2(BT r). Since r > b1 there exists a sub-circle S1 ⊂ T r such
that the pi lie in the kernel of the map H∗(BT r)→ H∗(BS1). The morphism

M //

��

MT r //

��

BT r

��

M //MS1 // BS1

of the Borel fibrations of the T r- and the restricted S1-actions induces a morphism of
the associated spectral sequences. Therefore, by construction, the second differential of
the spectral sequence associated to the lower row vanishes on ω. Observe that the same
holds for all subsequent differentials due to degree reasons. This implies that ωn lives to
infinity, where 2n is the formal dimension of M . But this contradicts the fact that the
formal dimension of MS1 is less than 2n.

Remark 3.2.6. To put the above proof into a geometric context, note that we essentially
show that, in case of an almost free action, the element d2(ω) ∈ H2(BT r) ⊗ H1(M) ∼=
t∗ ⊗H1(M) ∼= hom(t, H1(M)) has to be injective, where t denotes the Lie-algebra of T r.
Compare this to the situation of a symplectic action on a smooth symplectic manifold
(M,ω): any element in the kernel of the homomorphism t → H1(M) sending X to the
contraction of ω along the fundamental vector field of X generates a subgroup of T r that
acts in a Hamiltonian fashion and thus has fixed points, preventing the action to be almost
free. The connection between the two homomorphisms can be made explicit using the
Cartan model.

Corollary 3.2.7. Let M be a c-symplectic compact space with fd(M) = 2n ≥ 4 and an
almost free T r-action. Then

dimH∗(M) ≥ 4r.

Proof. By Theorem 3.2.5, we have dimH1(M) ≥ rk0(M). As H∗(M) fulfils Poincaré
duality, the same is true for dimH2n−1(M). If r ≥ 1, then the Euler characteristic of M
is equal to 0. Both 1 and 2n− 1 are odd so the corollary follows.

With regards to the toral rank conjecture one might hope that the r linearly indepen-
dent elements ofH1(M) whose existence is assured by Theorem 3.2.5 pull back nontrivially
to H1(M) via the orbit map. In this case they would span an exterior algebra and the
TRC would follow. To see that this fails without the Lefschetz type assumption, one
needs to look no further than the standard T 2-action on the Kodaira-Thurston manifold:
here the orbit map has 1-dimensional kernel in cohomology. The example below makes
it clear that we can not hope to directly obtain an improved lower bound on dimH∗(M)
by using the algebra structure of H∗(M) and the elements in H1(M) given by Theorem
3.2.5.

Example 3.2.8. Consider the cdga (Λ(a1, a2, a3, b1, b2, b3), d) where all generators are of
degree 1 and d(a1) = d(a2) = d(a3) = 0, d(b1) = a2a3, d(b2) = a3a1 and d(b3) = a1a2.
This is the Sullivan model of a compact nilmanifold M which is a T 3-bundle over T 3.
The element ω = a1b2 + a2b3 + a3b1 fulfils d(ω) = 0 and ω3 = −6a1a2a3b1b2b3 so M
is c-symplectic. Notice that H1(M) is spanned by the classes of the ai and that the
cohomology class of any element of the form aiaj is trivial in H2(M). Thus every two
elements of H1(M) have trivial product.
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The results of the previous section enable us to make use of Theorem 3.2.5 without
using the multiplicative structure. Combining it with Theorem 3.2.3 immediately yields

dimH∗(M) ≥ min
k=0,...,r

2n+ r − 1

2n− r + 1
2k + 2r−k (∗)

for a c-symplectic compact space M of formal dimension 2n with an almost free T r-action.
To see this, one quickly checks that the bound (i) from Theorem 3.2.3 grows monotonously
in b because this is true for a fixed k and the minimum is never realized by k = b. Thus
by Theorem 3.2.5, we can replace b by r. The bound (∗), in contrast to Theorem 3.2.3,
requires no assumptions on Betti numbers and, in the same vague spirit as the discussion
after Theorem 3.2.5, approaches a quadratic bound for small cohomogeneities. Note that
the proof of (∗) does not yet make any use of Poincaré duality, which holds by definition
for c-symplectic spaces. The remainder of this section is dedicated to the improvements
that can be made by refining the previous arguments with regards to using Poincaré
duality.

Theorem 3.2.9. Let M be a c-symplectic compact space of formal dimension 2n with an
almost free T r-action. Then

(i)

dimH∗(M) ≥ min
k=0,...,r

2n+ r − 1

2n− r + 1
4k + 4

n−1
2∑
i=0

(
r − k

2i

)
if n is odd and r ≥ n+ 1.

(ii)

dimH∗(M) ≥ min
k=0,...,r

2n+ r − 1

2n− r + 1
4k + 4

n−2
2∑
i=0

(
r − k

2i

)
+ 2

(
r − k
n

)
if n is even and r ≥ n.

In particular, the TRC holds for M if n ≤ 4.

Remark 3.2.10. Calculations show that, for n ≥ 7, the minimum of the bounds in
Theorem 3.2.9 is realized for k > r − n. In particular, in both the even and the odd
bound, we can replace the sum of the binomial coefficients by 2r−k+1. So both bounds
coincide and are exactly double the bound (∗). However, for n ≤ 6 the distinction is
necessary.

Proof. The proof is, for the most part, identical to the proof of Theorem 3.2.3 but we pay
more attention to the degrees of elements to be able to use Poincaré duality. Let k, Z, Z ′

be as in the proof of Theorem 3.2.3 and construct the map

p : R⊗ (H∗(M)/ΛZ)even → R⊗ Z ′

as before. Again, we treat the case k = 0 (and thus also r = 2n) separately: H∗(M)
contains an exterior algebra on r generators of degree 1 and fulfils Poincaré duality so the
theorem holds. Thus in what follows we will assume k > 0 and r < 2n.
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Now instead of just applying Proposition 3.2.1, let us refine the argument a little. As
in the proof of Proposition 3.2.1, we can consider p as the first step in a free resolution of
coker(p). Now decompose R⊗(H∗(M)/ΛZ)even = F ⊕F ′, where F, F ′ are free R modules
and p|F : F → R⊗Z ′ is the first stage of a minimal free resolution of coker(p). The space
of generators F ⊗RQ ∼= F/mF of F injects into (H∗(M)/ΛZ)even. A generator of F that
is of degree l with respect to the free resolution grading as in Proposition 3.2.1 (meaning
that variables of R have degree 1, Z ′ is concentrated in degree 0 and p has degree 0)
injects into the degree 2l component of (H∗(M)/ΛZ)even (in TG; see the discussion on
the degree shifts in Section 3.1.3).

Now assume first that n is odd and r ≥ n + 1. Since H∗T r(M) vanishes in degrees
above 2n − r (in TG), the Castelnuovo-Mumford regularity N of coker(p) satisfies N ≤
(2n − r − 1)/2 ≤ (n − 2)/2. In particular, the generators of F lie in degrees ≤ n/2 and
thus contribute to (H∗(M)/ΛZ)<n, even. Analogous to the proof of Theorem 3.2.3, adding
the part of ΛZ that lies in even degrees below n, we obtain

dimH<n, even(M) ≥ 2n+ r − 1

2n− r + 1
k +

n−1
2∑
i=0

(
r − k

2i

)
.

Now the lower bound for dimH∗(M) follows by using Poincaré duality and the fact that
the Euler characteristic vanishes to multiply this bound by 4.
In case n is even, we have to pay extra attention to degree n because it can not be
doubled using Poincaré duality. First, we deal with the case when n ≤ r ≤ n + 1. The
case r ≥ n+ 2 will be exposed as an easy special case. For some d1 <

2n−r+3
2

, define

S(d1) :=
r∏
i=2

2n− r − 1 + 2i

2n− r − 1 + 2i− 2d1

.

Recall that for a codimension r Cohen–Macaulay module of Castelnuovo-Mumford reg-
ularity ≤ 2n−r−1

2
with pure Betti diagram of type d, we can bound the ratio of the first

two Betti numbers by
β1

β0

≥ S(d1)

as in the proof of Proposition 3.2.1. The Betti diagram of coker(p) decomposes as a
positive linear combination a1π(d1) + . . . + alπ(dl) of pure diagrams. The sum of all
aiπ(di)0,0 equals k, the zeroth Betti number of coker(p). Define α to be the sum of those
aiπ(di)0,0 for which di1 = n/2. Note that di > n/2 is not possible due to the degree
restrictions of the regularity. At the first stage of the minimal free resolution of coker(p)
we obtain

dim(F ⊗R Q)
n
2 ≥ S

(n
2

)
α and dim(F ⊗R Q)<

n
2 ≥ S(1)(k − α)

because S(1) ≤ S(di1) for any of the di. As above, adding ΛZ, we obtain

dimHn(M) ≥ S
(n

2

)
α +

(
r − k
n

)
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and

dimH<n, even(M) ≥ S(1)(k − α) +

n−2
2∑
i=0

(
r − k

2i

)
.

When bounding all of H∗(M), we can count the < n part twice, due to Poincaré duality
and then double everything using the Euler characteristic. In total, we obtain

dimH∗(M) ≥ S(1)4(k − α) + S
(n

2

)
2α + 4

n−2
2∑
i=0

(
r − k

2i

)
+ 2

(
r − k
n

)
.

Note that, for α = 0, this is the bound claimed in the theorem. For n ≤ r ≤ n + 1 and
n ≥ 4, Lemma 3.2.11 below shows that S

(
n
2

)
≥ 2S(1) so the above bound is minimal for

α = 0 and the theorem holds. When n = 2, the desired bound is dominated by Corollary
3.2.7. If r ≥ n + 2, α = 0 must hold from the start because of the degree restrictions of
the regularity. To verify that this (in combination with Corollary 3.2.7) proves the TRC
for n ≤ 4, see Remark 3.2.13 below.

For the remaining values of r, the bound (∗) can not be doubled with the help of
Poincaré duality. However, we still get a rather complicated, intermediate result that lies
between (∗) and the bound from Theorem 3.2.9. Let us do some calculations first, where
S(·) is defined as in the proof of Theorem 3.2.9.

Lemma 3.2.11. Let n ≥ 4 even and 3 ≤ r ≤ n+ 1. Then S
(
n
2

)
≥ 2S(1).

Proof. Observe first that S(1) = 2n+r−1
2n−r+1

≤ 3n
n

= 3 and that

S
(n

2

)
=

r∏
i=2

2n− r − 1 + 2i

n− r − 1 + 2i
≥

r∏
i=2

2n+ r − 1

n+ r − 1
≥
(

3

2

)r−1

.

This implies that, independent of n, the claim is true for r ≥ 6. For the remaining cases,
we use induction over n. Assume that the claim is true for some n, r which is equivalent
to P (n) ≥ 2 where

P (n) :=
S
(
n
2

)
S(1)

=
r∏
i=2

2n− r − 3 + 2i

n− r − 1 + 2i
.

Leaving r fixed, we obtain

P (n+ 2) =
r∏
i=2

2n− r − 3 + 2(i+ 2)

n− r − 1 + 2(i+ 1)
= P (n)

f

g

where f = (2n+ r+ 1)(2n+ r− 1)(n− r+ 3) and g = (2n− r+ 1)(2n− r+3)(n+ r+ 1).
So P (n + 2) ≥ P (n) is equivalent to f − g = 12n(r − 1)− 2r3 + 6r2 + 2r − 6 ≥ 0. As
n ≥ r−1, this expression is bounded from below by −2r3+18r2−22r+6, which is positive
for 3 ≤ r ≤ 5. This implies that if the claim is true for (n, r) with 3 ≤ r ≤ 5, it is also true
for (n + 2, r). The lemma now follows by checking that it holds for (n, r) = (4, 3), (4, 4),
and (4, 5).
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Theorem 3.2.12. Let M be a c-symplectic compact space of formal dimension 2n with
an almost free T r-action where r ≤ n if n is odd and r ≤ n− 1 if n is even. Then

dimH∗(M) ≥ min
k=0,...,r
γ∈[0,k]

max (B1(k, γ), B2(k, γ))

where
B1(k, γ) = 2S(1)(k − γ) + 2S

(⌊n
2

+ 1
⌋)

γ + 2r−k

and
B2(k, γ) = 4S(1)(k − γ) + 2r−k+1.

Proof. Define k, Z, Z ′, p, F as in the proof of Theorem 3.2.9. Again, the theorem holds
for k = 0 so assume k > 0. Let us treat the case when n is even. We decompose the
Betti diagram of coker(p) as a positive linear combination a1π(d1) + . . .+ alπ(dl) of pure
diagrams. Now define α and γ as the sum of those aiπ(di)0,0 for which di1 = n

2
and

di1 ≥ n
2

+ 1. As before, we obtain bounds on dimF ⊗Q in certain degrees which translate
into the bounds

dimH<n, even(M) ≥ S(1)(k − α− γ) + 2r−k−1

dimHn(M) ≥ S
(n

2

)
α

dimH>n, even(M) ≥ S
(n

2
+ 1
)
γ,

where we have used that the even part of ΛZ is contained in H<n, even(M). With the
help of the Euler characteristic, we obtain

dimH∗(M) ≥ C1(k, α, γ) := 2S(1)(k − α− γ) + 2S
(n

2

)
α + 2S

(n
2

+ 1
)
γ + 2r−k.

On the other hand, if we forget about cohomology in degree > n and use Poincaré duality
first, we get

dimH∗(M) ≥ C2(k, α, γ) := 4S(1)(k − α− γ) + 2S
(n

2

)
α + 2r−k+1.

This implies dimH∗(M) ≥ max (C1(k, α, γ), C2(k, α, γ)). If we can prove that this ex-
pression takes its minimum for α = 0, this proves the claim. For r ≤ 2, the bounds get
dominated by Corollary 3.2.7 so there is nothing to prove. For n ≥ 4 and r ≥ 3, this is a
consequence of Lemma 3.2.11. Hence, the theorem is proved in case n is even. If n is odd,
the proof is completely analogous except we can assume α = 0 from the start because F
has no elements in degree n

2
.

Let us have a look at some values of the lower bounds given by Theorems 3.2.9 and
3.2.12.

r 1 2 3 4 5 6 7 8 9 10
n = 2 3 6 10 16
n = 3 3 6 12 28 44 64
n = 4 3 7 13 25 40 65 110 214
n = 5 3 6 11 20 33 52 80 123 208 428
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Remark 3.2.13. Recall that the TRC is fulfilled for cohomogeneity 3 or less by Corollary
2.3.3. Combining this with the values of the above table, it follows that the TRC holds
for c-symplectic spaces of formal dimension 8 or less. In dimension 10, the only missing
case is r = 6 where we have a lower bound of 52 instead of the necessary 64. It is also
interesting to note that, for some small r and n, our lower bounds are actually stronger
than the TRC which is sharp for compact manifolds in general.
This is of course due to the fact that we consider special spaces in a fixed formal dimension.
However, dropping either of both assumptions results in the TRC becoming sharp again:
the torus acting on itself shows that the TRC is sharp for c-symplectic spaces. Also, if
we only fix a formal dimension n and omit the assumption of being c-symplectic, the
TRC can be seen to be sharp by considering e.g. a suitable product of r odd spheres with
total dimension n, at least in the case r ≡ n mod 2. Improvements on the TRC may be
possible if r and n are of different parity: for MOD-formal actions this is a consequence
of Proposition 3.1.4.
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