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1 Introduction 

1.1 Taxonomy and Epidemiology 

Ebolavirus, Marburgvirus, and Cuevavirus form the family Filoviridae in the order 

Mononegavirales. The order Mononegavirales further includes Bornaviridae, 

Mymonaviridae, Nyamiviridae, Paramyxoviridae, Pneumoviridae, Rhabdoviridae, and 

Sunviridae, which all have a nonsegmented, negative-sense RNA genome in common.  

Family Genus Species Distinct Filovirus /  
Virus name 

Filoviridae 
 

Cuevavirus Lloviu cuevavirus Lloviu virus (LLOV) 
Ebolavirus 
 

Bundibugyo ebolavirus  Bundibugyo virus (BDBV) 
Reston ebolavirus  Reston virus (RESTV) 
Sudan ebolavirus  Sudan virus (SUDV) 
Taï Forest ebolavirus  Taï Forest virus (TAFV) 
Zaire ebolavirus  Ebola virus (EBOV) 

Marburgvirus Marburg marburgvirus Marburg virus (MARV) 
Ravn virus (RAVV) 

Table 1: Taxonomy of Filoviridae According to ICTV, 2016. 
Order, Family, Genus, and Species are written in italics. The virus name is never italicized and may be 

abbreviated113. 

 

Five virus species constitute the genus Ebolavirus. Ebola virus (EBOV), the only member 

of the species Zaire ebolavirus, and Sudan virus (SUDV), the sole member of the species 

Sudan ebolavirus, sporadically cause epidemics of a severe feverish disease in 

sub-Saharan Africa. In 1976, both viruses first emerged in two near simultaneous 

outbreaks in southern Sudan and in the Democratic Republic of Congo (DRC, formerly 

known as Zaire) 65
⁠

,66. In Sudan, 284 people were infected with a lethality of 53 %, whereas 

318 humans were infected in Zaire with a lethality of 88 %. The isolated virus was named 

after the nearby river Ebola, which in the local language means "black river"192. Only later 

it was realized that the two outbreaks were caused by two distinct viruses, SUDV and 

EBOV, respectively50. After their discovery, both viruses caused infrequent outbreaks in 

equatorial Africa273. In 1995, an outbreak of EBOV in Kikwit (DRC) received worldwide 

attention. Of the 315 infected persons, 250 died124. In 2000, a large outbreak of SUDV 

was reported with 425 cases and 224 deaths184.  

From 2013 to 2016, West Africa experienced the so far largest EBOV outbreak in history. 

28 616 suspected, probable, and confirmed cases of Ebola virus disease (EVD) and 

11 310 deaths were reported268. Cases of EBOV were imported to several European 

countries and the USA with isolated local transmission49.  
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Since 1976, three laboratory infections with EBOV and SUDV have been documented 

with a mortality rate of 66 % ⁠

4
⁠

,30
⁠

,69. 

Taï Forest virus (TAFV), the only member of the species Taï Forest ebolavirus, was 

discovered in 1994, when an ethnologist became ill after conducting an autopsy of a wild 

chimpanzee in the Côte-d'Ivoire135. Retrospectively, it was demonstrated that the 

chimpanzee and several other members of the chimpanzee community died of an 

infection with the same filovirus77. So far, no other cases of TAFV infection in humans 

have been described. 

In 1989, Reston virus (RESTV) was first discovered in Cynomolgus monkeys (Macaca 

fascicularis). The animals were imported from the Philippines to a primate facility in 

Reston, Virginia, and developed a severe hemorrhagic disease117. In later years, several 

outbreaks among monkeys from the Philippines were noted 93
⁠

,161
⁠

,201. In 2008, RESTV 

was also discovered in pigs on the Philippines13. No human infections with RESTV have 

been reported so far, but several workers who came into contact with infected animals 

developed antibodies against the virus161
⁠

,162. 

Bundibugyo virus (BDBV), representing the species Bundibugyo ebolavirus, was the 

latest filovirus to be discovered. The virus was isolated after a large hemorrhagic fever 

outbreak in December 2007 in Bundibugyo District, Western Uganda, among the local 

population242. In June 2012, the only other known outbreak of BDBV occurred in the 

Democratic Republic of Congo273. 

The species Marburg marburgvirus, belonging to the genus Marburgvirus, comprises the 

two distinct filoviruses Marburg virus (MARV) and Ravn virus (RAVV). MARV was 

discovered in 1967, when 31 people developed a severe hemorrhagic disease 

simultaneously in Marburg, Frankfurt (both Germany), and in Belgrade (Serbia, former 

Yugoslavia). A so far unknown virus was isolated from the patients. All the primary 25 

cases were laboratory members, who acquired the infection from African green monkeys 

(Cercopithecus aethiops). The monkeys were imported from Uganda for the production 

of poliovirus vaccine in monkey kidney cell cultures154
⁠

,225.  

In the following years, sporadic epidemics of MARV disease were reported in central 

Africa188. The so far largest outbreak happened in Angola in October 2004, with 252 

human cases and a mortality of 90 %187
⁠

,241.  

The first known infection with Ravn virus (RAVV) occurred in 1987 in a 15 year old boy 

after he visited Kitum cave in Mount Elgon National Park 121. RAVV also co-circulated 

during an outbreak from 1998-2000 in the Democratic Republic of Congo15.  
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Sequences specific for a new filovirus, the Lloviu virus (LLOV), genus Cuevavirus, were 

discovered in bat carcasses (Miniopterus schreibersii) in Cueva del Lloviu (Spain) in 

2002176. No human infections with LLOV have been described until today. 

 

1.2 Pathogenesis and Clinical Features  

Ebola virus disease (EVD) is a typical zoonosis. The virus is transmitted into the human 

population by direct contact with infected animals, both alive and dead. The reservoir for 

human pathogenic filoviruses remained a mystery for many years. Today bats are 

considered the natural host for filoviruses34
⁠

,66
⁠

,97
⁠

,138
⁠

,168
⁠

,196
⁠

,232
⁠

,243. Immunoglobulin G specific 

for EBOV was detected in the serum of Hypsignathus monstrosus, Epomops 

franqueti, and Myonycteris torquata fruit bats. In the liver and spleen of these animals, 

viral RNA sequences specific for EBOV were identified141
⁠

,193. The geographic distribution 

of the three fruit bat species overlaps with the outbreak regions141. In 2007, a massive 

annual fruit bat migration was linked to an EBOV outbreak in the DRC. The index person 

of the epidemic ate freshly killed fruit bats, making direct transmission from the reservoir 

into the human population likely140.  

Besides humans, gorillas (Gorilla gorilla gorilla), chimpanzees (Pan troglodytes 

troglodytes), and duikers (Cephalophus spp) can develop symptomatic EBOV infection, 

leading to dramatic declines in their populations. These periods of decline were 

accompanied by outbreaks in the human population, suggesting transmission between 

humans and great apes / duikers21
⁠

,37
⁠

,106
⁠

,202
⁠

,258. During outbreaks between 2001 and 2003, 

the human infections resulted from direct handling of infected wild animal carcasses202. 

In the recovered animal carcasses, different Ebola virus strains were detected142. The 

multi-emergence hypothesis favors independent virus spillovers by the reservoir into 

human populations and susceptible animals during certain ecological conditions142
⁠

,266.  

Similar to EBOV, MARV-specific RNA and antibodies were detected in Egyptian fruit bats 

(Rousettus aegyptiacus), and MARV was even successfully isolated from these 

bats125
⁠

,240. 

Introduction of filoviruses into the human population follows a recognizable pattern: the 

virus is transmitted to a single person from direct contact with the reservoir or infected 

wild animals. After manifestation of the infection, the disease spreads from 

human-to-human through the local communities by direct contact with infected patients 

or corpses at funerals 61
⁠

,65
⁠

,66
⁠

,124
⁠

,150. The epidemic may be self-limiting because of the high 

mortality associated with EVD, but diagnosis and measures to control disease spread 

are often delayed44. Most outbreaks are eventually stopped by the combination of 

infection-control practices and quarantine measures190. During the 1976 outbreak, virus 
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spread was accelerated by the medical use of unsterilized needles66. The route of 

exposure also partly determines the lethality of the virus. Parenteral exposure is 

associated with a higher mortality than viral invasion through broken skin or mucous 

membranes189. The oral route of ingestion is linked with a high infectious dose, as organ 

virus titers of dead animals can be as high as 108 pfu/g81
⁠

,114. Airborne transmission has 

not been described for EBOV, and direct physical contact with an ill person or bodily 

fluids is required61. Aerosol transmission has been documented under laboratory 

conditions only120
⁠

,262. 

EBOV replicates in a wide range of cells, including monocytes, macrophages, dendritic 

cells, endothelial cells, epithelial cells, fibroblasts, interstitial cells of the testis, 

hepatocytes, and adrenal cortical cells14
⁠

,32
⁠

,81
⁠

,114
⁠

,205
⁠

,276. Lymphocytes are resistant to 

EBOV infection, but profound lymphopenia is often observed80
⁠

,111. Lymphopenia has 

been attributed to direct cytotoxic effects of the viral glycoprotein111. Infection of mobile 

cells like monocytes and macrophages plays an important role in the rapid dissemination 

of the virus, first to local lymph nodes, liver, and spleen, and later throughout the infected 

host33
⁠

,81. In the acute phase of infection, filoviruses are present in the blood as free 

virions. The viral RNA can be detected by RT-PCR in various body fluids, such as saliva, 

feces, urine, semen, breast milk, tears, and sweat16
⁠

,45. 

Histopathologically, very little inflammation is seen around the infected cells, which is a 

hallmark of EBOV infection. Infected cells develop signs of necrosis, in early stages 

predominantly affecting lymph nodes, liver, spleen, thymus, and later also lung and 

kidney14
⁠

,205
⁠

,275. Necrosis of adrenal cortex cells impairs steroid biosynthesis, leading to 

sodium loss, hypovolemia, and hypotension73. Destruction of endothelial cells, either by 

EBOV-induced necrosis or by dysregulated immune mechanisms, might be responsible 

for coagulation abnormalities observed during EBOV infection ⁠

6
⁠

,83. A rise in the levels of 

tissue factor, released by infected macrophages, is associated with disseminated 

intravascular coagulation often seen in EVD83. During early stages of infection, 

macrophages release massive amounts of pro-inflammatory cytokines, such as 

interleukin-1beta (IL-1beta), tumor necrosis factor alpha, and IL-6 as well as the 

chemokines IL-8 and gro-alpha. Infection of dendritic cells is associated with a poor 

immune response, impaired type I Interferon production, and downregulation of 

costimulatory molecules31
⁠

,149
⁠

,227. EBOV-specific B- and T-cell activation during the acute 

EBOV infection has recently been described in four survivors of EVD156. 

After an incubation period of 2-21 days (mean 4-10 days), Ebola virus disease (EVD), 

previously known as Ebola hemorrhagic fever, manifests itself with clinical symptoms, 

such as fever, headache, asthenia, arthralgia, myalgia, or back pain. Patients often 



Introduction 

5 
 

develop gastrointestinal symptoms, like abdominal pain, diarrhea, and vomiting, leading 

to hypovolemia and electrolyte imbalances. The initial presentation is very unspecific and 

similar to other infections, such as malaria, typhoid fever, cholera, Lassa fever, or other 

tropical diseases. In later stages, infected persons may develop a maculopapular rash 

or even extensive hemorrhages, respiratory exhaustion, neurological symptoms 

(headaches, confusion, seizures, and coma), shock, and multiple organ failures, 

eventually leading to death. Patients usually die 7 to 11 days after onset of symptoms, 

the mortality rate ranges from 30 to 90 % 28
⁠

,264. Because of the high mortality rate 

associated with EVD, the virus is classified as a biosafety-level 4 (BSL-4) pathogen and 

must be handled in specialized research laboratories. 

Laboratory abnormalities include anemia, lymphopenia, granulocytosis, 

thrombocytopenia, prolongation of PTT and INR, and elevated D-dimers as signs of 

disseminated intravascular coagulation, severe electrolyte imbalances (especially 

hypokalemia, hypocalcemia, and hyponatremia) as well as elevation of blood urea 

nitrogen, creatinine, and hepatic enzymes, reflecting renal and hepatic organ 

dysfunction78
⁠

,212
⁠

,213
⁠

,248. 

Survivors often suffer from prolonged convalescence and long-term sequelae, such as 

ocular deficits, hearing loss, arthralgia, headache, depression, and insomnia. This range 

of symptoms is summarized as the "post-Ebola syndrome"46
⁠

,174. Occurence of post-

traumatic stress disorder, potentiated by stigmatization and isolation of survivors from 

the communities, is common147. 

EBOV can persist for long times in immunologically privileged organs. Viral RNA was 

detected by RT-PCR in the semen of male patients up to one year after acute 

infection⁠

1
⁠

,56. Sexual transmission of EBOV was documented in one case 5 months after 

the patient had recovered155. Another probable case of sexually transmitted EBOV was 

reported 531 days after onset of symptoms58. Viral RNA was also detected in other bodily 

fluids following infection45
⁠

,223. In one case, persistence of viable EBOV in ocular fluids led 

to acute uveitis, 14 weeks after the onset of symptoms250. Even more astonishingly, 

viable virus was detected in the cerebrospinal fluid of a nurse from Scotland, 9 months 

after the initial infection. She presented with neurological symptoms and received a 

diagnosis of acute meningitis due to a late EBOV relapse116.  

Survivors of EVD develop neutralizing antibodies, which have been detected up to 40 

years after infection133
⁠

,198
⁠

,226. Serosurveys in central Africa detected EBOV-specific 

antibodies in up to 18 % of the human population, suggesting asymptomatic infections 

or a high burden of infection36
⁠

,171. 
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1.3 Diagnosis, Therapeutic Options, and Prevention 

Rapid and accurate diagnosis of EVD is essential to initiate adequate infection control 

measures. Since there is no specific symptom for EBOV infection, laboratory diagnosis 

plays a crucial role. Today, RT-PCR tests to detect viral RNA or ELISA tests to detect 

viral antigens are can confirm an acute infection with EBOV, but tests are only reliable 

after the onset of symptoms. Depending on the specific assay, blood, urine, or saliva 

may be used. These molecular tests have replaced traditional viral culture techniques 

and electron microscopy35
⁠

,104. 

So far, no proven therapy is available for treatment of EVD. Treatment is symptomatic 

with oral and intravenous fluid replacement, targeted electrolyte replacement, treatment 

of hypoglycemia, parenteral nutrition, and antibiotics against secondary bacterial 

infections. In selected cases, respiratory supportive care or renal replacement therapy 

might be needed108
⁠

,131
⁠

,246.  

Experimental immune therapies and drugs have been investigated in response to the 

large and unanticipated outbreak from 2013 to 2016. One trial investigated the effect of 

passive immunization with a mixture of three monoclonal antibodies (designated ZMapp) 

directed against the surface protein GP for treatment of acute EVD54. Other approaches 

evaluated the use of siRNA (TKM-Ebola), nucleotide analoga (Favipiravir, Brincidofovir, 

GS-5734) and convalescent whole blood or plasma62
⁠

,63
⁠

,224
⁠

,249. So far, no statistical 

significant survival benefit could be demonstrated for any of these therapies92. 

Efforts also concentrated on the development of an active immunization ⁠

3
⁠

,72. First phase 

III study results suggest that the rVSV-ZEBOV vaccine is very effective and safe. No 

cases were reported in the vaccine groups 10 days or more after randomization, and 

antibody titers persisted for up to one year94
⁠

,95. 

Prevention plays an invaluable role in controlling an EBOV outbreak. According to the 

WHO and the CDC, prevention measures include reducing the risk of wildlife-to-human 

transmission (e.g. proper cooking of meat), reducing the risk of human-to-human 

transmission (e.g. by wearing appropriate personal equipment and practicing careful 

hygiene), reducing the risk of possible sexual transmission (e.g. male survivors should 

practice safe sex for 12 months after onset of symptoms), and outbreak containment 

measures (e.g. contact tracing and safe burial of the dead) 67
⁠

,194. 
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1.4 Morphology and Genome Organization 

Filoviruses were named for their characteristic threadlike shape (filo = thread in Latin). 

The diameter of the virions is about 80 nm, the length varies from several hundred nm 

up to 14 µm73. The filamentous viral particles may be straight, rod-shaped, branched, or 

curved, and are enveloped by a lipid bilayer, which is derived from the host cell plasma 

membrane. Glycoprotein (GP) trimers are inserted into the lipid membrane and form 

spikes, which can be seen by electron microscopy211. 

 

Figure 1: Morphology and Genome Organization of Ebola virus. 
A. Electron microscopy of a single EBOV particle. Copyright by Dr. Larissa Kolesnikova. B. Schematic 

representation of an EBOV particle. C. Genome structure of EBOV.  

 

The filamentous EBOV particles contain a negative-sense single-stranded RNA genome, 

surrounded by a complex of viral proteins, the so-called nucleocapsid68
⁠

,195. The open 

reading frames of the 19 kB-genome encode for 7 structural proteins [NP, VP35, VP40, 

GP, VP30, VP24, and L] and several nonstructural secreted glycoproteins (sGP, ssGP, 

and Δ-peptide) 158
⁠

,170
⁠

,170
⁠

,209
⁠

,255
⁠

,256. The viral genome is flanked by noncoding regions, the 

3' leader and the 5' trailer region. These regions contain important signals for 

encapsidation and replication of the viral RNA170. In addition, the viral genes are 

surrounded by conserved extragenic regions, which contain promotors and stop signals 

for transcription. Gene overlaps, which are limited to transcription signals, were found 

between VP35 and VP40, GP and VP30, and the VP24 and L genes209. 
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The nucleocapsid complex is composed of the nucleoprotein NP, which encapsidates 

the viral RNA and forms helical coiled structures, the viral proteins VP35, VP30, VP24, 

and the RNA-dependent RNA polymerase L10
⁠

,22
⁠

,180. Four of these proteins, namely NP, 

L, VP30, and the polymerase cofactor VP35, also mediate transcription and replication 

of the viral genome. VP24 is not needed for viral replication and transcription. It was also 

referred to as the minor matrix proteins for many years, but more recently it was 

discovered that VP24 instead plays an essential role in the formation of 

nucleocapsids10
⁠

,105
⁠

,179
⁠

,181
⁠

,260. VP40, the viral matrix protein, locates to the inner side of 

the viral membrane. It is required for the filamentous appearance of the virions and the 

release of new virions at the cellular plasma membrane118
⁠

,182
⁠

,238.  

Synthesis of the glycoprotein GP is dependent on mRNA editing. It exists in two major 

forms, the full length GP, which is inserted into the viral envelope, and smaller secreted 

glycoproteins254
⁠

,255. The surface GP is synthesized as a precursor protein (GP0) and 

proteolytically cleaved by furin into the two subunits GP1 and GP2 in the Golgi apparatus, 

which are linked by a disulfide bond and noncovalent interactions74
⁠

,137
⁠

,255.  

 

1.5 VP30 and NP 

VP30 (288 aa) is an essential activation factor of viral transcription, but is not needed 

for replication of the viral genome153
⁠

,163. Together with the nucleoprotein NP, the 

polymerase L, and the polymerase cofactor VP35, it forms the transcription complex170. 

VP30 is required for initiation of transcription at the first gene start site probably to 

overcome an RNA secondary structure and also plays a role in transcription reinitiation 

at the following genes153
⁠

,261. 

Homologues of VP30 exist in all filoviruses. In MARV, VP30 is not absolutely required 

for transcription initiation, but enhances reporter activity when tested in model 

systems160. The rescue of a recombinant MARV was not possible without VP30, 

suggesting an essential role of the protein in MARV as well71. Moreover, EBOV VP30 

also shares structural and functional characteristics with the M2-1 transcription factor of 

the human respiratory syncytial virus236.  

EBOV VP30 consists of an N-terminal region, which contains several phosphorylation 

sites, a Cys3-His type zinc-finger motif, as well as an RNA-binding site90
⁠

,119
⁠

,163. The 

C-terminal domain adopts a helical structure and folds into dimers, which assemble into 

hexamers that are present in the virions89
⁠

,90. Three intrinsically disordered protein regions 

have been described, spanning from residues 1 to 44, 120 to 140, and 268 to 288 of 

VP3090
⁠

,119. VP30 interacts with NP, the polymerase L, and VP3527
⁠

,87
⁠

,90
⁠

,214. The VP30-NP 

interaction is dependent on the binding of a short peptide in the C-terminal part of NP to 
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the C-terminal domain of VP3090
⁠

,125
⁠

,270. The interaction between VP30 and VP35 is 

mediated by RNA27. 

The function of VP30 as a transcription activation factor can be regulated via 

phosphorylation24
⁠

,152
⁠

,165. VP30 can be phosphorylated at two N-terminal clusters of 

conserved serine residues, each containing 3 serine residues (S29-S31 and S42, S44, 

S46), and at threonine 52170. Further VP30 phosphorylation sites (Thr 143 and Thr 146) 

have been identified more recently by mass spectrometry112.  

While protein phosphatase 1 and 2A (PP1 and PP2A) - and to a lesser extent PP2C - 

were identified to dephosphorylate VP30 in vitro, the responsible catalyzing kinases are 

unknown165. Using okadaic acid (OA), a PP1 / PP2A inhibitor, it was demonstrated that 

phosphorylation of VP30 impairs its function as a viral transcription factor, thereby 

favoring replication. This effect of OA could be revoked if the two clusters of VP30 serine 

residues were replaced by phosphoablative alanine residues (mutant VP30_AA) 165. In 

an animal model, inhibition of PP1 blocked viral proliferation by leading to a hyper-

phosphorylated form of VP30 that did not support viral transcription112.  

A model was developed in which dynamic phosphorylation of VP30 is regulating the 

balance between viral transcription and replication: phosphorylated VP30 favors 

replication of the full genome by NP / VP35 / L alone, but does not allow viral 

transcription, whereas nonphosphorylated VP30 (together with NP / VP35 / L) supports 

the transcription of individual viral genes26
⁠

,152
⁠

,153. It was postulated that VP30 

phosphorylation can change the composition of transcription / replication complexes: 

phosphorylation of VP30 enhances the interaction with NP. Contrary, phosphorylation of 

VP30 weakens the interaction with VP35, possibly excluding VP30 from the transcription-

complex to form a replicase-complex24
⁠

,165.  

By introducing VP30 serine mutations into recombinant EBOV, it was shown that the 

generation of a recEBOV without serine residues in the N-terminal region is 

impossible152. More recently, a recombinant EBOV with VP30 serine 29 as the only 

phosphorylation acceptor site in the N-terminal region was described, with similar growth 

characteristics as EBOV_wt. Phosphorylation of VP30 was needed during early time 

points of infection for primary transcription, and phosphorylation of VP30 serine 29 was 

sufficient to fulfill this function26.  

The amino acids surrounding the N-terminal phosphorylation cluster of VP30 contribute 

to RNA-binding activity. RNA-binding was mapped to residues 26 to 40, a region rich in 

arginines119. The RNA-binding function of VP30 can be weakened by hyper-

phosphorylation of VP3027. 

 



Introduction 

10 
 

The nucleoprotein NP (739 aa) is the major component of the nucleocapsid complex. It 

encapsidates the viral RNA, protecting it from digestion by cellular nucleases. As such, 

NP is indispensable for replication and transcription of the viral genome68
⁠

,170. The protein 

consists of a hydrophobic N-terminal half and a hydrophilic C-terminal half210. The 

N-terminal part is required for the formation of NP homo-oligomers and important for 

RNA-binding, whereas the C-terminal part is crucial for interaction with VP40 and 

subsequent incorporation of nucleocapsids into virions143
⁠

,173
⁠

,179
⁠

,183
⁠

,260.  

NP has a predicted molecular weight of 85 kDA. In SDS-PAGE it migrates at 115 kDA, 

which was attributed to two acidic domains in the C-terminal part of the protein. This 

region also mediated incorporation of nucleocapsids into viral particles219. Other reports 

suggested that glycosylation and sialyation of NP are responsible for the aberrant SDS 

migration105. 

In mammalian cells, recombinant expression of NP leads to the formation of perinuclear 

cytoplasmic inclusion bodies. In these, nucleocapsid-like helical structures with a 

diameter of 20 nm can be observed by electron microscopy180
⁠

,260. But only after 

expression of NP, VP35, and VP24, nucleocapsid structures similar to those observed 

during infection are formed105. 

Inclusion bodies also represent a characteristic feature of EBOV infection14. Here, 

inclusion bodies represent the site of viral genome replication98. During infection, VP35, 

VP30, and L colocalize with NP in the NP-induced inclusion bodies29
⁠

,87. Interactions 

between VP35 - L and VP35 - NP have been described, leading to the formation of 

heterotrimeric complexes, in which VP35 serves as a bridge between NP and L19. 

Interactions between NP and VP24 facilitate genome packaging and formation of 

nucleocapsids in inclusion bodies10.  
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1.6 Viral Life Cycle 

The viral replication cycle can be divided into three major stages: I) Attachment of virions 

to susceptible host cells, endocytosis, and membrane fusion. II) Transcription and 

replication of the viral genome. III) Assembly and budding of new virions. 

I) EBOV can infect many cell types and exploits different endocytotic pathways. This 

includes caveolae-dependent entry, receptor-mediated endocytosis, and 

macropinocytosis17
⁠

,70
⁠

,107
⁠

,172
⁠

,206
⁠

–208. The GP1 subunit plays a central role in binding 

attachment factors on the surface of susceptible host cells. Many binding partners have 

been identified, which probably reflects the broad cellular tropism of EBOV. The folate 

receptor, different C-type lectins (DC-SIGN, DC-SIGNR, L-SIGN, hMGL, ASGP-R, 

LSECtin), integrins, TIM-1, and Axl all have been described to mediate attachment of 

EBOV particles to host cells⁠

8
⁠

,20
⁠

,42
⁠

,86
⁠

,130
⁠

,216
⁠

,221
⁠

,222
⁠

,235. After binding to the plasma membrane, 

virions are internalized into acidified endosomes, where fusion of viral and cellular 

membranes take place234. In the endosome / lysosome, GP is cleaved by Cathepsin 

proteases and subsequently able to bind the endosomal / lysosomal cholesterol 

transporter NPC-139
⁠

,43
⁠

,215. Fusion of viral and cellular lipid membranes is supported by 

the fusion peptide of the GP2 subunit43
⁠

,100. After fusion, the nucleocapsids are released 

into the cytoplasm, where transcription and replication of the viral genome take place. 

II) Immediately after infection, the viral negative-sense RNA genome needs to be 

transcribed into individual mRNAs by the incorporated viral proteins only (primary 

transcription). Transcription of viral mRNAs is accomplished by the viral proteins NP, the 

RNA-dependent RNA polymerase L, the polymerase cofactor VP35, and VP30. The 

monocistronic mRNAs contain a 3' poly (A)-tail and a 5' cap. It is thought that the 

individual genes are transcribed sequentially from the 3' to the 5' end of the viral genome. 

Polyadenylation of the viral mRNAs by the viral polymerase slows down transcription at 

the gene ends and re-initiation at the following gene start site does not occur in all cases. 

Consequently a gradient of viral mRNAs is produced, with NP mRNA being transcribed 

the most and L mRNA the least98
⁠

,169. Following transcription, the mRNAs are translated 

by the cellular translation machinery into new viral proteins. The new viral proteins 

amplify synthesis of individual viral mRNAs (secondary transcription) and replicate the 

full-length positive-sense antigenomes and genomes, which are simultaneously 

encapsidated by NP (replication). For replication of the full length genome, VP30 is 

dispensable. Both the viral transcription and replication machinery use RNA 

encapsidated by NP as their template, rather than naked RNA. Encapsidation of the viral 

genome by NP is also thought to protect the RNA from degradation by cellular nucleases 

[reviewed by Mühlberger et al. 2007169]. 
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EBOV transcription and replication is accompanied by the formation of small viral 

inclusion bodies around the nucleus200. The viral inclusion bodies contain mainly viral 

proteins and represent the sites of viral replication98
⁠

,173. As such, they contain the viral 

proteins NP, VP35, and L, which are necessary for replication, but VP30, VP24, and 

VP40 also localize to the inclusion bodies10
⁠

,173. During the course of the infection the 

inclusion bodies increase in size, as more and more viral proteins are synthesized173. 

Within the inclusion bodies, the assembly of rod-like nucleocapsids can be 

observed105
⁠

,178.  

III) Nucleocapsids are electron-dense helical structures composed of NP, which 

encapsidates the viral RNA, as well as VP35, VP30, VP24, and L10
⁠

,22. They are formed 

in viral inclusion bodies and are transported along actin filaments to the plasma 

membrane, where they are packaged into new virions217. For recruitment of the 

nucleocapsids into new virions, an interaction between the C-terminus of NP and VP40 

is regarded as important82
⁠

,183. VP40, the matrix protein, plays a major role in the budding 

of new virions. EBOV can exploit parts of the Endosomal Sorting Complex Required for 

Transport (ESCRT) pathway, which involves the formation of multivesicular bodies 

(MVB) as well as parts of the COPII vesicular transport system, for release of new virions 

from the host cell91
⁠

,144
⁠

,272. The ESCRT pathway is usurped by many viruses for cellular 

egress because this pathway supports "reverse topology" membrane fission257. 

Components of the ESCRT pathway, such as Tsg101 or Nedd4, specifically interact with 

N-terminal "late domains" of VP4091
⁠

,144
⁠

,197. The surface protein GP colocalizes with VP40 

in MVBs and is incorporated into the membrane of newly formed viral particles127. In cell 

culture, budding of new virions mainly occurs at cellular protrusions, so-called 

filopodiae128
⁠

,217.  
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1.7 Viral Life Cycle Modeling Systems 

EBOV is a highly dangerous pathogen and requires handling under biosafety level 4 

conditions (BSL-4). Several systems modeling the EBOV life cycle under BSL-2 

conditions have been developed. These systems simulate and dissect certain parts of 

the virus life cycle. Here, an EBOV-specific minigenome and a transcription and 

replication competent virus-like particle (trVLP) assay are presented. Both assays are 

based on a viral genome analogue (so-called minigenome), in which the open reading 

frames of the viral genome are replaced by a single reporter gene (monocistronic 

minigenome). The reporter gene is flanked by the original 3' leader and 5' trailer regions 

of the EBOV genome, which contain important cis-regulating elements for transcription 

and replication. The negative-sense RNA minigenome is produced from cDNA by a T7 

RNA polymerase. The EBOV proteins need to be supplied in trans170.  

These life cycle modeling systems are based on reverse genetics. It is possible to 

observe the phenotypic effects of specific genetic alterations, which are inserted into the 

cDNA of the viral proteins [reviewed by Hoenen et al. 201499 and Biedenkopf et al. 

201725]. 

1.7.1 EBOV-Specific Minigenome Assay 
The minigenome assay models viral genome replication and transcription (Figure 2). 

Plasmids encoding the EBOV-specific minigenome, a T7 DNA-dependent RNA 

polymerase as well as the nucleocapsid proteins NP, VP35, L, and VP30 are transfected 

into HEK-293 cells. These four viral proteins represent the minimal requirement for viral 

transcription and replication. The plasmids encoding the T7 polymerase and the viral 

proteins contain eukaryotic promotors, hence the proteins are produced by the cellular 

transcription and translation machinery. The EBOV-specific minigenome on the other 

hand, which is under control of a T7 promotor, is transcribed by the T7 polymerase into 

a negative-sense RNA minigenome in the cytoplasm. The minigenome is encapsidated 

by transiently expressed NP and used for transcription and replication by VP35, VP30, 

and L. The activity of the reporter gene (Renilla luciferase) monitors viral transcription 

and replication and can be measured in a luminometer. Because the viral proteins are 

supplied in trans and are abundantly available, reporter gene activity reflects late stages 

of EBOV infection, as secondary transcription and genome replication occur in parallel. 
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Figure 2: EBOV-Specific Minigenome Assay. 
Plasmids encoding the viral transcription complex, a T7 DNA-dependent RNA polymerase and an EBOV-

specific minigenome (MG) are transfected into HEK-293 cells. The viral proteins and the T7 polymerase are 

transcribed and translated by the cellular machinery (not depicted). I) The cDNA of the MG is transcribed 

into a negative-sense RNA MG by a T7 polymerase. II) The MG is encapsidated by NP and associates with 

the other viral proteins. III) Secondary transcription of the viral MG into mRNA by NP, VP35, L, and VP30. 

IV) Translation into the reporter gene (Renilla luciferase). V) Replication of the viral MG by NP, VP35, and 

L. The activity of the reporter gene Renilla luciferase is measured in relative light units in a luminometer. 

Reporter gene activity reflects the potential of the viral proteins to support secondary transcription and 

genome replication. The figure is based on Hoenen et al. 201499. 

 

1.7.2 EBOV-Specifc Transcription and Replication Competent Virus-Like 
Particle Assay 

The EBOV-specific transcription and replication competent virus-like particle (trVLP) 

assay is based on the minigenome assay and simulates a single infectious cycle. 

Besides modeling viral transcription and replication like in the minigenome assay, it 

examines the morphogenesis and release of infectious virus-like particles as well as the 

infection of target cells (Figure 3). In the trVLP assay, all seven EBOV proteins are 

recombinantly expressed in producer cells (HEK-293 cells) along with a minigenome, 

which leads to the formation and release of nucleocapsid-containing virus-like particles. 

The trVLPs are purified from the supernatant to infect naïve indicator cells (HUH-7 cells). 

In the naïve indicator cells, the minigenome is transcribed by the incorporated viral 

proteins. The resulting reporter gene activity in the indicator cells not only reflects the 

primary transcription potential in the indicator cells, but also replication of the 

minigenome in the producer cells, assembly and budding of trVLPs, and entry into the 

indicator cells. 
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Figure 3: EBOV-Specific Transcription and Replication Competent Virus-Like Particle Assay. 
Plasmids encoding the seven EBOV proteins, a T7 DNA-dependent RNA polymerase, and an EBOV-specific 

minigenome (MG) are transfected into HEK-293 cells. The viral proteins and the T7 polymerase are 

transcribed and translated by the cellular machinery (not depicted). I) The cDNA of the MG is transcribed 

into a negative-sense RNA minigenome by a T7 polymerase. II) The MG is encapsidated by NP and 

associating viral proteins. III) Secondary transcription of the viral MG into mRNA by the viral proteins. IV) 

Translation into the reporter gene (Renilla luciferase). V) Replication of the viral MG by the viral proteins. VI) 

Assembly of trVLPs containing the MG. VII) Budding of trVLPs. VIII) Infection of naïve indicator cells with 

trVLPs. IX) Primary viral transcription using only the incorporated viral proteins. X) Translation into the 

reporter gene (Renilla luciferase). The activity of the Renilla luciferase is measured in relative light units in a 

luminometer. Reporter gene activity of the producer cells reflects the potential of the viral proteins to support 

secondary transcription and genome replication. Reporter gene activity of the indicator cells reflects genome 

replication in the producer cells, viral egress, viral entry, as well as primary transcription in the indicator cells. 

The figure is based on Hoenen et al. 201499. 
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1.8 Human Protein Kinases and Phosphatases 

Reversible protein phosphorylation is a fundamental regulatory mechanism for almost 

every biological process. Phosphorylation can alter the activity of enzymes, create new 

recognition sites for binding partners, affect subcellular localization, and influence 

stability of proteins122
⁠

,203. It is accomplished by the opposing actions of protein kinases 

and phosphatases. While kinases catalyze the transfer of the γ-phosphate group of ATP 

to Ser, Thr, or Tyr residues, phosphatases catalyze hydrolysis of the attached phosphate 

group237. In the context of viruses, post-translational dynamic phosphorylation of viral 

proteins expands the functional repertoire in the background of only a few viral 

proteins123
⁠

,136.  

Protein kinases constitute one of the largest gene families in eukaryotes. More than 

518 putative kinases have been identified (so-called kinome), making up ~2 % of the 

human genome151. It is estimated that up to 30 % of all eukaryotic proteins can be 

phosphorylated on at least one site75. Kinases can be divided into Ser / Thr kinases 

(~400) and Tyr kinases (~90), but a few dual-specificity kinases (~40) have been 

identified as well ⁠

7
⁠

,151. Proteomic experiments revealed that phosphoserine (pSer) 

accounts for ~90 % of the phosphorylated amino acids185. All protein kinases share a 

common protein fold with an N- and C-terminal lobe that are connected by a short linker 

region. The catalytically active center of the kinase is located between the two lobes. 

Conserved lysine and aspartate residues of the active center are essential for binding of 

Mg2+-ATP⁠

2. Different models exist, in which either the protein substrate or the 

co-substrate ATP bind the catalytic site first⁠

2
⁠

,259. Kinases preferentially phosphorylate 

sites of intrinsically disordered regions because these regions can mold into the active 

site of the kinase110. Very importantly, each kinase specifically phosphorylates only a 

subset of proteins, in the background of more than 700 000 potential cellular 

phosphorylation sites244. The exquisite substrate specificity is achieved by multiple 

mechanisms. This includes the structural characteristics of the catalytic kinase site, 

which interacts with the amino acids surrounding the phosphorylation site of the 

substrate, distal interactions between kinase and substrate, as well as the formation of 

multi-protein complexes with scaffolding proteins. Specificity is further accomplished 

through the subcellular localization of kinase / substrate and system level effects, e.g. 

the competition between two phosphorylation sites244.  

Protein phosphatases are classified into the three major groups Ser / Thr 

phosphatases, Tyr phosphatases, and Asp-based protein phosphatases. Ser / Thr 

phosphatases can be subclassified into the large phosphoprotein phosphatase (PPP) 

family, which comprises PP1, PP2A, PP2B, PP4, PP5, PP6, and PP7, and the protein 
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phosphatase family dependent on Mg2+. or Mn2+ (PPM), which comprises PP2C and 

pyruvate dehydrogenase phosphatase220.  

Interestingly, only ~40 Ser / Thr phosphatases are encoded by the human genome, in 

contrast to ~400 Ser / Thr kinases167. This discrepancy raises important questions about 

the regulation and specificity of protein phosphatases. Specificity of many phosphatases 

seems to be achieved by the combinatorial association of the catalytic phosphatase 

subunit with various interacting proteins, which target the phosphatase to specific 

substrates and locations220. Contrary to kinases, phosphatase activity and specificity is 

only modestly dependent on the amino acids adjacent to the phosphorylation site60. 

Protein phosphatase 1 (PP1) is expressed in all eukaryotic cells and is encoded by three 

different genes (PP1α, PP1β / δ, PP1γ). PP1 can be detected in the cytosol, but is 

enriched in the nucleus167. The holoenzyme consists of a catalytic subunit and one of 

over 100 regulatory subunits. Regulatory subunits or substrates contain the degenerate 

consensus sequence [H/K/R]-[A/C/H/K/M/N/Q/R/S/T/V]-[V]-[C/H/K/N/Q/R/S/T]-[F/W], 

which allows binding to the catalytic subunit159.  

Protein phosphatase 2A (PP2A) is one of the most abundantly available protein in 

eukaryotic cells. PP2A is a heterotrimeric enzyme: the PP2A core enzyme, consisting of 

a catalytic subunit (C-subunit) and a scaffolding subunit (A-subunit), interacts with 

various regulatory subunits (B-subunit). The C subunit and the A subunit exist in two 

isoforms (α and β). The B-subunit comprises four gene families known as B (also known 

as B55), B' (also known as B56), B'', and B'''. Each regulatory B-subunit exists in several 

isoforms that are encoded by different genes. Some isoforms primarily localize to the 

cytoplasm (such as B56α, B56β, and B56ε), while others are enriched in the nucleus 

(such as B56γ and B56δ). It is proposed that the regulatory subunits play an essential 

role for substrate recognition, substrate specificity, subcellular localization, and targeting 

of the catalytic subunit to its substrates. In 2016, a conserved degenerate [LxxIxE] short 

linear motif (SLIM) was identified as the binding site of regulatory B56 subunits96.  

Besides being inhibited by endogenous proteins, the catalytic subunits of both PP1 and 

PP2A are reversibly inhibited by okadaic acid (OA). OA is a tumor-inducing toxin 

produced by marine dinoflagellates233. 

PP2C is encoded by at least 18 distinct genes and was described in at least 22 

isoforms134
⁠

,167. Contrary to PP1 and PP2A, PP2C does not associate with regulatory 

subunits, and it is not clear how substrate specificity of PP2C is achieved. Many PP2C 

isoforms can be detected almost exclusively in the nucleus, such as PP2Cα, PP2Cγ, and 

PP2Cε51
⁠

,129
⁠

,263. PP2C is not inhibited by OA [reviewed by Shi et al. 2009220 and Moorhead 

et al. 2007167]. 
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1.9 Aim of the Thesis 

Transcription and replication of EBOV is regulated by proteins of the nucleocapsid 

complex, made up by the RNA genome and the viral proteins NP, VP30, VP35, VP24, 

and L. VP30 is an EBOV-specific transcription factor, which is not needed for replication 

of the viral genome. The activity of VP30 as a transcription factor is regulated by 

phosphorylation of six N-terminal serine residues of the protein (S29-S31 and 

S42 / S44 / S46). Dephosphorylated VP30 supports the synthesis of viral messenger 

RNA in a minigenome system, whereas phosphorylated VP30 cannot activate viral 

transcription. Replication of the viral genome is not dependent on the availability or 

absence of VP30, although replication is positively enhanced by VP30 phosphorylation 

or in absence of VP30. 

In model systems, phosphorylation of serine residue 29 plays an important role for the 

initial steps of primary transcription during the early stages of the viral life cycle. A 

recombinant EBOV with serine 29 as the only phosphoacceptor site could be rescued, 

showing similar growth characteristics as the wild type virus. In contrast, the generation 

of a recombinant virus without phosphoacceptor sites within the N-terminal region of 

VP30 was not possible.  

The exact regulation between viral transcription and replication is still unclear. 

Phosphorylation of VP30 seems to play a role, but it is still uncertain whether replication 

and transcription happen at different subcellular locations. Experiments conducted so far 

suggest that replication of the full length genome takes place in NP-induced inclusion 

bodies, whereas the location for viral transcription is unknown. With the help of additional 

VP30 phosphorylation mutants we aim to analyze transcriptional regulation in more 

detail. 

Besides the influence of phosphorylation on transcription and replication, VP30 

phosphorylation also regulates the interaction with other viral proteins such as the 

nucleoprotein NP. Evidence suggests that phosphorylated VP30 interacts stronger with 

NP and is thereby recruited into NP-induced inclusion bodies. The following studies 

examine VP30 phosphorylation with the help of a phosphospecific peptide antibody 

directed against phosphorylated serine 29. In immunofluorescence studies, the exact 

localization of phosphorylated VP30 will be determined. For this, experiments with 

recombinantly expressed VP30 phosphorylation mutants in combination with the 

nucleoprotein NP will be conducted. Likewise, phosphorylation of VP30 will be 

investigated during infection with the recombinant EBOV with serine 29 as the only 

phosphoacceptor site. Finally, several in vitro VP30 phosphorylation assays will be 

established. 



Materials 

19 
 

2 Materials 

2.1 Equipment 

Eppendorf centrifuge 5415R Eppendorf, Hamburg (GER)  

Eppendorf Research Plus® Pipetten  Eppendorf, Hamburg (GER)  

Heraeus Multifuge 3S-R  Thermo Fisher, Hudson (USA)  

Horizontal Shaker GFL, Burgwedel (GER) 

Ice machine  Ziegra, Isernhagen (GER)  

Incubator HERAcell 150 / 240 Thermo Fisher, Hudson (USA)  

Light microscope Axiovert200M  Zeiss, Jena (GER)  

Luminometer Centro LB 960 Berthold, Bad Wildbad (GER) 

Magnetic stirrer  Heidolph, Kelheim (GER)  

Mini-centrifuge GMC-060 neoLab, Heidelberg (GER)  

Odyssey Infrared Imaging System  Li-Cor Biosciences, Lincoln (USA)  

PCR Cycler Primus 25  Beckmann Coulter, Palo Alto (USA)  

Pipetting aid Pipetboy  Integra Bioscience, Chur (CH)  

Power Supply PowerPacTM HC  Biorad, Hercules (USA)  

Power Supply Standard Power Pack P25  Biometra, Göttingen (GER)  

Rotor Ultracentrifuge SW32, SW41, SW60  Beckmann Coulter, Palo Alto (USA)  

Safety Cabinet BDK SK 1200  BDK, Sonnenbühl-Genkingen (GER)  

SDS-polyacrylamide gel chamber Mini-

Protean  

Biorad, Hercules (USA)  

SemiDry Blot chamber Trans-Blot SD  Biorad, Hercules (USA)  

Sonifier Branson Ultrasonics S-450 Emerson, St. Louis (USA) 

Spectrophotometer NanoDrop Lite Thermo Fisher, Waltham (USA)  

Thermomixer compact  Eppendorf, Hamburg (GER)  

Tube Rotator Heidolph, Schwabach (GER) 

Ultracentrifuge OptimaTM L-100K / -80XP  Beckmann Coulter, Palo Alto (USA)  

UV-Light table 302 nm  Bachofer, Reutlingen (GER)  

Vacuumpump Mini-Vac E1  Axonlab, Reichenbach (GER)  

Vortex  neoLab, Heidelberg (GER)  

Water bath MT  Lauda, Lauda-Königshofen (GER)  

Weight scale excellence  Sartorius, Göttingen (GER)  

 

https://www.fishersci.com/shop/products/branson-sonifier-s-450-digital-ultrasonic-cell-disruptor-homogenizer-s-450d-digital-22-lb/15338553
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2.2 Consumables 

2 ml cryotubes  Corning ®, Acton (USA)  

25 cm², 75 cm², 175 cm² cell culture 

flasks  

Greiner bio-one, Frickenhausen (GER)  

6-, 24-, 96-well cell culture dishes  Greiner bio-one, Frickenhausen (GER)  

96-well plates LumiNuncTM Nunc, Roskilde (DK)  

Blotting paper GB 002 (3 mm)  Whatman, Maidstone (UK)  

Cell scraper  Sarstedt, Nürnbrecht (GER)  

Centrifuge tubes, Ultra-ClearTM for 

SW41, SW60, SW32, TLA55  

Beckmann, Palo Alto (USA)  

Coverslips, Ø 12 mm  Menzel, Braunschweig (GER)  

Nitrocellulose membranes Protran Whatman, Maidstone (UK)  

Object slide 76 x 22 mm  Menzel, Braunschweig (GER)  

Parafilm  Pechiney Plastic, Menasha (USA)  

PCR-tubes, 0.2 ml  Biozym, Hess. Oldendorf (GER)  

Petri dishes  Sarstedt, Nürnbrecht (GER)  

Pipette tips 0.1-1 μl, 10-100 μl, 100-

1000 μl TipOne (with and without filter)  

Starlab, Ahrensburg (GER)  

Pipettes 1, 2, 5, 10, 25 ml Cellstar  Greiner bio-one, Frickenhausen (GER)  

Polypropylene reaction tubes 15 / 50 ml  Greiner bio-one, Frickenhausen (GER)  

Reaction tube 1.5 ml  Sarstedt, Nürnbrecht (GER)  

Reaction tube 2 ml  Eppendorf, Hamburg (GER)  

Reaction tubes (screw top)  Sarstedt, Nürnbrecht (GER)  

 

2.3 Kits 

Beetle-Juice Kit PJK GMBH, Kleinblittersdorf (GER)  

E.Z.N.A.® FastFilter Plasmid DNA Maxi 

Kit 

OMEGA bio-tek, Norcross (USA)  

E.Z.N.A. ® Plasmid DNA Mini I Kit OMEGA bio-tek, Norcross (USA)  

Mix & Go E. coli Transformation Kit and 

Buffer Set 

Zymo Research, Orange (USA)  

 

PierceTM Silver Stain Kit Thermo Fisher, Waltham (USA) 

QuikChange Multi Site-Directed 

Mutagenesis Kit 

Agilent Technologies, Waldbronn (GER)  

https://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwiroJrL84rVAhWLXRQKHV77BC4QFggiMAA&url=http%3A%2F%2Fwww.sigmaaldrich.com%2Flabware%2Flabware-products.html%3FTablePage%3D17215790&usg=AFQjCNFnkBned90Vqd7B7mREncOviknEug
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QuikChange Site-Directed Mutagenesis 

Kit 

Agilent Technologies, Waldbronn (GER)  

Renilla-Juice Kit PJK GMBH, Kleinblittersdorf (GER)  

 

2.4 Chemicals 

1,4 Diazabicyclo-[2.2.2]-octan (DABCO)  Sigma-Aldrich, München (GER)  

4',6-Diamidino-2-phenylindol (DAPI)  Sigma-Aldrich, München (GER)  

Acetic acid  Merck, Darmstadt (GER)  

Acetone Merck, Darmstadt (GER) 

Agarose PeqGold universal  Peqlab, Erlangen (GER)  

Alcian blue Sigma-Aldrich, München (GER) 

Ammonium persulfate (APS)  Biorad, Hercules (USA)  

Ampicillin  Serva, Heidelberg (GER)  

Bacto Agar  Becto, Dickinson & Company (USA)  

β-Mercaptoethanol  Sigma-Aldrich, München (GER)  

Bovine serum albumin (BSA)  Sigma-Aldrich, München (GER)  

Bromphenol blue (BPB)  Roth, Karlsruhe (GER)  

Calcium chloride (CaCl2 x 2 H2O)  Merck, Darmstadt (GER)  

Casein hydrolysate  Merck, Darmstadt (GER)  

Cell extraction buffer (CEB) Invitrogen, Karlsruhe (GER) 

Cell extraction buffer is a denaturing buffer that contains phosphatase (NaF) 

and kinase inhibitors (EDTA). No additional protease inhibitors were added to 

cells lysed with CEB. 

 

Chloroform  Merck, Darmstadt (GER)  

cOmpleteTM Protease Inhibitor Cocktail 

Tablets, EDTA-free 

Roche Diagnostics, Indianapolis (USA)  

 

cOmpleteTM (EDTA-free), is a non-denaturing protease inhibitor cocktail and 

was added to every lysis buffer according to the manufacturer. For the in vitro 

phosphorylation assays it is important to use the EDTA-free variant. 

 

Coomassie Brilliant Blue R250  Serva, Heidelberg (GER)  

D(+)- Glucose  Merck, Darmstadt (GER)  

Dimethyl sulfoxide (DMSO)  Merck, Darmstadt (GER)  
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Dithiothreitol (DTT) Sigma-Aldrich, München (GER) 

Dithiotreitol, a reducing agent, was dissolved in DMSO to a stock 

concentration of 100 mmol/l, stored at -20 °C, and used in vitro at a final 

concentration of 1 mmol/l. DTT reduces the generation of disulfide bonds in 

order to preserve enzymatic activity of kinases and phosphatases. 

 

EDTA Roth, Karlsruhe (GER)  

EGTA Sigma-Aldrich, München (GER) 

Ethanol abs.  Sigma-Aldrich, München (GER)  

Ethanol denatured  Fischar, Saarbrücken (GER)  

Fluoprep  BioMérieux, Nürtingen (GER)  

Formvar Sigma-Aldrich, München (GER)  

Glutamine 200 mmol/l solution Invitrogen, Karlsruhe (GER)  

Glycerol  Roth, Karlsruhe (GER)  

Glycine  Roth, Karlsruhe (GER)  

Hydrochloric acid (HCl)  Merck, Darmstadt (GER)  

Isopropanol  Sigma-Aldrich, München (GER)  

Magnesium chloride (MgCl2 x 6H2O)  Merck, Darmstadt (GER)  

Magnesium sulfate (MgSO4 x 7H2O)  Merck, Darmstadt (GER)  

Methanol  Sigma-Aldrich, München (GER)  

Milk powder  Saliter, Obergünzburg (GER)  

Monopotassium phosphate (KH2PO4)  Roth, Karlsruhe (GER)  

N(onidet)P40  Merck, Darmstadt (GER)  

Nitrogen (99.996 %)  Messer-Griesheim, Siegen (GER)  

Nycodenz  Axis-Shield, Oslo (NOR)  

Paraformaldehyde (PFA)  Roth, Karlsruhe (GER)  

Penicillin / Streptomycin 5000 IU/ml  Invitrogen, Karlsruhe (GER)  

Peptone Merck, Darmstadt (GER)  

Phenylmethylsulfonyl fluoride (PMSF)  Sigma-Aldrich, München (GER)  

Phenylmethanesulfonyl fluoride, a proteinase K inhibitor, was dissolved in 

DMSO to a stock concentration of 200 mmol/l, stored at -20 °C, and used at a 

final concentration of 7.7 mmol/l. 

 

Phosphotungstic acid Serva, Heidelberg (GER)  

Polyacrylamide Rotiphorese® Gel 30 Roth, Karlsruhe (GER) 
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Polyethylenglykol (PEG) 4000 Sigma-Aldrich, München (GER) 

Potassium chloride (KCl)  Merck, Darmstadt (GER)  

Sodium azide (NaN3) Merck, Darmstadt (GER) 

Sodium chloride (NaCl)  Roth, Karlsruhe (GER)  

Sodium dodecyl sulfate (SDS)  Merck, Darmstadt (GER)  

Sodium hydrogen phosphate (Na2HPO4)  Merck, Darmstadt (GER)  

Sodium hydroxide (NaOH)  Riedel-de-Haën, Seelze (GER)  

Sucrose  Serva, Heidelberg (GER)  

Tetramethylethylenediamine (TEMED) Biorad, Hercules (USA)  

TransIT®-LT1 Transfection Reagent  Mirus Bio, Madison (USA)  

Tris(hydroxymethyl)aminomethane (Tris)  Acros Organics, Geel (B)  

TritonTM X-100  Sigma-Aldrich, München (GER)  

Tryptone  Merck, Darmstadt (GER)  

Tween® 20  neoLab, Heidelberg (GER)  

Yeast extract  Merck, Darmstadt (GER)  

 

 

 

Phosphatase inhibitors 

Okadaic acid (OA) Sigma-Aldrich, München (GER) 

(translucent film, 10 µg) 

or Merck, Darmstadt (GER) (# 495604) 

OA is a reversible, membrane-permeable protein phosphatase 1 / 2A inhibitor. 

OA was dissolved in Dimethyl sulfoxide (DMSO) to a stock concentration of 

100 µmol/l, stored at -20 °C, and used within 2 weeks. In cell culture 

experiments, the final concentration ranged from 1-100 nmol/l. In all in vitro 

assays with OA, the final concentration was 1 µmol/l. 

 

PhosSTOPTM, EDTA-free Roche Diagnostics, Mannheim (GER) 

PhosSTOPTM is a non-denaturing, EDTA-free cocktail of phosphatase 

inhibitors and was used according to the manufacturer.  

 

 

 

 

 

 



Materials 

24 
 

Kinase inhibitors 

Heparin sodium salt  Sigma-Aldrich, München (GER) 

(# H3393-10 KU) 

Heparin sodium salt, a polyanionic substance and casein kinase II inhibitor, 

was dissolved in dH2O to a stock concentration of either 50 mg/ml or 5 mg/ml 

and stored at 4 °C. 

 

N-ethylmaleimide (NEM) Sigma-Aldrich, München (GER) 

(# E1271 – 1 G) 

N-ethylmaleimide, a protein alkylating agent, was dissolved in ethanol to a 

stock concentration of 2 mol/l, stored at -20 °C, and used at a final 

concentration of 5 mmol/l in the lysis buffer. NEM inhibits kinases in vitro. 

When NEM was used in vitro, no DTT was added to the lysis buffer.  

 

Staurosporine Sigma-Aldrich, München (GER)  

(# S4400 - .1 MG) 

Staurosporine, a multi-kinase inhibitor, was dissolved in DMSO to a stock 

concentration of 250 µmol/l and stored at -20 °C. 

 

Tetrabromocinnamic acid (TBCA) Merck, Darmstadt (GER)  

(# 218710 – 5 mg) 

TBCA, a selective casein kinase II inhibitor (IC50 = 0.11 µmol/l), was 

dissolved in DMSO to a stock concentration of 10 mmol/l and stored at -80 °C. 

 

 

2.5 Cells and Viruses 

2.5.1 Prokaryotic Cells 
E. coli XL1-Blue Stratagene, Heidelberg (D) 
Genotype: recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac [F´ proAB lacIq Z∆M15 Tn10 (Tetr )] 

 

E. coli XL10-Gold  Agilent technologies, Ratingen (GER)  
Genotype: TetrΔ (mcrA)183 Δ(mcrCB-hsdSMR-mrr)173 endA1 supE44 thi-1 recA1 gyrA96 relA1 lac The *F' proAB 

lacIqZΔM15 Tn10 (Tetr) Amy Camr]  

 

2.5.2 Eukaryotic Cells 
HEK-293 cells Human embryonic kidney cells 

HUH-7 cells Human hepatoma cells 
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2.5.3 Viruses 
recEBOV_wt  Institute of Virology, Marburg (GER) 

recEBOV_S29  Institute of Virology, Marburg (GER) 

 

2.6 Growth Media 

2.6.1 Growth Media for Bacteria 
LB medium 

 

10 g  

5 g  

10 g  

ad 1 l dH2O 

NaCl  

Yeast extract  

Tryptone  

 

LB agar (1.5 %)  

 

3.75 g  

ad 250 ml LB Medium 

Bacto™ Agar  

 

NZY+ medium 

 

10 g 

5 g 

5 g 

12.5 ml  

12.5 ml  

20 ml  

ad 1 l dH2O 

Casein hydrolysate 

Yeast extract 

NaCl 

1 mol/l MgCl2 

1 mol/l MgSO4 

20 % Glucose in dH2O 

SOB medium 20 g 

5 g 

0.58 g 

0.19 g 

10 ml 

10 ml 

ad 1 l dH2O 

Peptone 

Yeast extract 

NaCl 

KCl 

1 mol/l MgCl2 

1 mol/l MgSO4 

 

 

2.6.2 Growth Media for Eukaryotic Cells 
DMEM 10 % FCS+Q+P/S  

(= DMEM +++) 

500 ml DMEM 

50 ml FCS (fetal calf serum) 

5 ml L-Glutamine 200 mmol/l  

5 ml Penicillin / Streptomycin 5000 IU/ml 

DMEM 5 % FCS+Q+P/S 500 ml DMEM 

25 ml FCS (fetal calf serum) 

5 ml L-Glutamine 200 mmol/l  

5 ml Penicillin / Streptomycin 5000 IU/ml 
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DMEM +Q+P/S 500 ml DMEM 

5 ml L-Glutamine 200 mmol/l  

5 ml Penicillin / Streptomycin 5000 IU/ml 

DMEM +Q  500 ml DMEM 

5 ml L-Glutamine 200 mmol/l  

Dulbecco's modified Eagle's 

medium (DMEM) 

Invitrogen, Karlsruhe (GER) 

Fetal calf serum (FCS) Invitrogen, Karlsruhe (GER) 

Opti-MEMTM Invitrogen, Karlsruhe (GER) 

 

2.7 Buffers and Solutions 

2.7.1 Buffers 
PBSdef, pH 7.5  

 

2.7 mmol/l  

1.5 mmol/l 

8 mmol/l 

137 mmol/l 

in dH2O  

KCl  

KH2PO4  

Na2HPO4  

NaCl  

 

TBS, pH 7.5  50 mmol/l  

150 mmol/l  

in dH2O 

Tris-HCl 

NaCl 

TBS + EDTA, pH 7.5  50 mmol/l  

150 mmol/l  

2 mmol/l  

in dH2O 

Tris-HCl  

NaCl 

EDTA 

TM buffer, pH 7.5  50 mmol/l  

5 mmol/l  

in dH2O 

Tris-HCl  

MgSO4 

TM buffer + CaCl2, pH 7.5 50 mmol/l  

5 mmol/l  

2 mmol/l  

in dH2O 

Tris-HCl 

MgSO4 

CaCl2 

 

TM buffer + EGTA, pH 7.5 50 mmol/l  

5 mmol/l  

5 mmol/l  

in dH2O 

Tris-HCl 

MgSO4 

EGTA 
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Co-IP buffer, pH 7.6 

(supplemented with 1 % TritonTM 

X-100 and 1x cOmpleteTM prior 

to use) 

5 mmol/l 

100 mmol/l 

1 % 

20 mmol/l 

in dH2O 

EDTA 

NaCl 

NP40 

Tris-HCl 

TE buffer, pH 7.6 20 mmol/l  

1 mmol/l  

in dH2O 

Tris-HCl 

EDTA  

 

CIP buffer, pH 7.9  50 mmol/l  

10 mmol/l  

in dH2O 

Tris-HCl  

MgCl2 

TNE buffer, pH 7.4 10 mmol/l  

150 mmol/l  

1 mmol/l  

in dH2O 

Tris-HCl 

NaCl 

EDTA  

 

Protein sample buffer (4x)  

 

10 ml  

200 mg  

20 ml  

10 ml  

4 g  

ad 50 ml 

Mercaptoethanol  

Bromphenolblue  

Glycerine  

1 mol/l Tris-HCl, pH 6.8  

SDS  

dH2O 

Blocking buffer for WB 

 

5 %  

in TBS 

BSA 

 

Blocking buffer for IFA  

 

2 %  

5 %  

0.05 %  

0.2 % 

in TBS 

BSA 

Glycerin  

NaN3  

Tween® 20  

Dilution buffer for antibodies  

(IFA and WB) 

 

1 %  

0.1 % 

in TBS 

BSA 

Tween® 20  

Washing buffer for WB  

 

0.1 % 

in TBS 

Tween® 20  

SDS-PAGE stacking gel buffer, 

pH 6.8 

 

0.4 %  

0.5 mol/l 

in dH2O 

SDS  

Tris-HCl 
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SDS-PAGE separation gel 

buffer, pH 8.8 

 

0.4 %  

1.5 mol/l  

in dH2O 

SDS  

Tris-HCl 

 

Protein gel running buffer (10x) 144 g 

10 g 

30 g 

ad 1 l dH2O 

Glycine 

SDS 

Tris 

Transfer buffer for WB 100 ml 

144 mg 

300 mg 

ad 1 l dH2O 

Ethanol 

Glycine 

Tris 

 

 

2.7.2 Solutions 
Ampicillin stock solution  

 

100 mg  

ad 1 ml dH2O 

Ampicillin 

 

Nycodenz 60 % (w / v) 600 g  

ad 1 l TNE buffer  

Nycodenz 

Coomassie staining 

solution  

 

400 ml  

100 ml  

0.2 %  

ad 1 l dH2O 

Ethanol  

Acetic acid  

Coomassie Brilliant Blue R250  

 

Destaining solution for 

Coomassie Brilliant Blue 

R250  

400 ml  

100 ml  

ad 1 l dH2O 

Ethanol  

Acetic acid  

 

 
2.8 Proteins and Peptides 

2.8.1 Enzymes 
Calf intestinal alkaline phosphatase 

(CIP), 1 U/µl 

Thermo Scientific, Waltham (USA) 

T4 DNA ligase  NEB, Ipswich (USA)  

T4 Polynucleotide Kinase (PNK) Thermo Scientific, Waltham (USA)  

DPN I (1 Weiss Unit/µl) NEB, Ipswich (USA) 

Proteinase K (0.9 U/μl)  Fermentas, St.Leon-Rot (GER)  

Trypsin-EDTA (0.5 %) Invitrogen, Karlsruhe (GER) 
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2.8.2 Peptides 
Name Sequence Molecular 

Weight 
Company 

FLAG-

Peptide 

DYKDDDDK-amide 1013 g/mol Sigma-Aldrich, 

München (GER) 

p_S29-

Peptide 

HHVRAR-pS-AAREN-amide 1484 g/mol Biogenes, Berlin (GER) 

nonp_S29-

Peptide 

HHVRAR-S-AAREN-amide 1404 g/mol Biogenes, Berlin (GER) 

 

2.8.3 Primary Antibodies 
   Dilution 

Name Species Company IFA WB 

α VP30  Guinea pig 

(g.p.) 

Institute of Virology, Marburg 

(GER) 

1:150 1:100 

α VP30  Rabbit 

(R1.61) 

Institute of Virology, Marburg 

(GER) 

1:50 1:100 

α pS29  Rabbit 

(7994) 

Biogenes, Berlin (GER)  1:50 1:100 

α NP  Chicken Institute of Virology, Marburg 

(GER) 

1:750 1:1000 

α GP / NP  Goat Institute of Virology, Marburg 

(GER) 

--- 1:10 000 

α ZEBOV  Goat 36.6 Institute of Virology, Marburg 

(GER) 

--- 1:2000 

α FLAG M2 Mouse Sigma-Aldrich, München (GER) 1:200 1:500 

α FLAG  Rabbit Sigma-Aldrich, München (GER) 1:200 1:500 

α FLAG M2, 

biotinylated  

Mouse Sigma-Aldrich, München (GER) --- 1:500 

α c-myc  Rabbit Santa Cruz Biotech, Santa Cruz 

(USA)  

--- 1:500 

α HA, 

biotinylated 

Mouse Sigma-Aldrich, München (GER) --- 1:1000 

α tubulin Mouse Sigma-Aldrich, München (GER) --- 1:5000 
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2.8.4 Secondary Antibodies for IFA 
Name Species Company Dilution 

α g.p.  Alexa 488 Goat Invitrogen, Karlsruhe (GER) 1:600 

α g.p.  Alexa 594 Goat Invitrogen, Karlsruhe (GER) 1:600 

α rabbit  Alexa 488 Goat Invitrogen, Karlsruhe (GER) 1:600 

α rabbit  Alexa 594 Goat Invitrogen, Karlsruhe (GER) 1:600 

α rabbit  Rhodamin Goat Dianova, Hamburg (GER) 1:100 

α chicken  Alexa 488 Goat Invitrogen, Karlsruhe (GER) 1:600 

α mouse  Alexa 488 Goat Invitrogen, Karlsruhe (GER)  1:600 

α mouse  Alexa 594 Goat Invitrogen, Karlsruhe (GER) 1:600 

α mouse  Rhodamin Goat Dianova, Hamburg (GER) 1:100 

DAPI (4ʹ,6-Diamidin-2-phenylindol) 1:10 000 

 

 

2.8.5 Secondary Antibodies for WB 
Name Species Company Dilution 

α g.p  780 nm Goat Li-Cor, Bad Homburg (GER)  1:5000 

α rabbit  680 nm Goat Invitrogen, Karlsruhe (GER) 1:5000 

α rabbit  780 nm Goat Li-Cor, Bad Homburg (GER) 1:5000 

α chicken  680 nm Donkey Invitrogen, Karlsruhe (GER) 1:5000 

α chicken  780 nm Donkey Li-Cor, Bad Homburg (GER) 1:5000 

α goat  680 nm Donkey Invitrogen, Karlsruhe (GER) 1:5000 

α goat  780 nm Donkey Li-Cor, Bad Homburg (GER) 1:5000 

α mouse  680 nm Goat Invitrogen, Karlsruhe (GER) 1:5000 

α mouse  780 nm Goat Li-Cor, Bad Homburg (GER) 1:5000 

Streptavidin  680 nm --- Invitrogen, Karlsruhe (GER) 1:5000 

 

 

2.8.6 Affinity Gels 
Name Species Company 

α FLAG M2 affinity gel Mouse Sigma-Aldrich, München (GER) 

Mouse IgG-Agarose Mouse Sigma-Aldrich, München (GER) 
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2.8.7 Protein Size Markers for WB Analysis 
PageRuler™ Plus Prestained Protein 

Ladder, 10-250 kDa 

Fermentas, St. Leon-Rot (GER) 

PageRuler™ Prestained Protein Ladder, 

10-170 kDA 

Fermentas, St. Leon-Rot (GER) 

 

2.9 Nucleotides 

dNTP mix, each 10 mmol/l: 

• 2' desoxyadenosine 5' triphosphate  

• 2' desoxyzytosine 5' triphosphate  

• 2' desoxyguanosine 5' triphosphate  

• 2' desoxythymidine 5' triphosphate  

Thermo Scientific, Waltham (USA)  

 

Adenosine 5' triphosphate (ATP) disodium 

salt hydrate 

Sigma-Aldrich, München (GER) 

(# A2382-1 G) 

Adenosine triphosphate disodium salt hydrate was dissolved in dH2O to a 

stock concentration of 100 mmol/l and stored at -80 °C. The pH of the stock 

solution was adjusted to pH = 7.0, using 5 mmol/l and 1 mmol/l NaOH. Unless 

otherwise stated, the final concentration of ATP is 2 mmol/l in the in vitro 

assays. 

 

2.10 DNA-Oligonucleotides 

Primer for sequencing of pCAGGS 

# Name Sequence (5'→3') 

1233 pCAGGS for  CCTTCTTCTTTTTCCTACAG  

 

Primers for cloning of VP30 mutants 
# Name: EBOV- Sequence (5'→3') 

3529 VP30_AA_A29D for CATGTTCGAGCACGAGatGC

AGCCAGAGAGAATTATC 

3613a VP30_AA_A29S_R26A for CACGACCACCATGTTgcAGC

ACGATCAGCAGCC 

3614a VP30_AA_A29S_R28A for CACCATGTTCGAGCAgcATC

AGCAGCCAGAGAG 

3615a VP30_AA_A29S_R26A_R28A for CACGACCACCATGTTgcAGC

AgcATCAGCAGCCAGAGAG 
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3628 VP30_E33A for CGATCATCATCCAGAGcGAA

TTATCGAGGTGAG 

3629 VP30_Q47A for TCAAGGAGCGCCTCAgcAGT

GCGCGTTCCTACTG 

3638 VP30_AA_A29S_A31S for 

 

CGAGCACGATCAGCAtCCAG

AGAGAATTATCGA GG 

3639 VP30_AA_A29S_A31S_R26A for 

 

GCAGCACGATCAGCAtCCAG

AGAGAATTATCGAGG 

3640 VP30_AA_A29S_A31S_R28A for 

 

CGAGCAGCATCAGCAtCCAG

AGAGAATTATCGAGG 

3641 VP30_AA_A29S_A31S_R26A_R28A for GCAGCAGCATCAGCAtCCAG

AGAGAATTATCGAGG 

3632 VP30_S29A for 

 

CATGTTCGAGCACGAgCATC

ATCCAGAGAGAATTATC 

3633 VP30_S30A for 

 

GTTCGAGCACGATCAtCATC

CAGAGAGAATTATC 

3634 VP30_S31A for 

 

CGAGCACGATCATCAtCCAG

AGAGAATTATCGAG 

3635 VP30_S42A for 

 

GGTGAGTACCGTCAAgCAA

GGAGCGCCTCACAAG 

3636 VP30_S44A for 

 

GTACCGTCAATCAAGGgcCG

CCTCACAAGTGCGC  

3637 VP30_S46A for 

 

CAATCAAGGAGCGCCgCAC

AAGTGCGCGTTCC 

3531  VP30_R26A_R28A for GACACGACCACCATGTTgcA
GCAgcATCATCATCCAGAGA

GAATT 

3657 VP30_AA_A30S_A44S for 

 

GTTCGAGCACGAGCAtCAG

CCAGAGAGAATTATCG 

3658 VP30_AA_A44S_A46S for 

 

CAAGCAAGGTCCGCCtCACA

AGTGCGCGTTCCTAC 
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Primers for cloning of a FLAG construct 

# Name Sequence (5'→3') 

3720a FLAG for 

 

GACGATGACAAGTAAGAAG

CCCCTTGAGCATCTGACTTC

TGG 

3721a FLAG rev 

 

GTCCTTGTAGTCCATGATCT

GCTAGCTAATTAAGAGCTC 

GCGGC 

 

Primers were synthesized by Invitrogen, Karlsruhe (GER). 
for: forward primer (complementary to the sense DNA strand) 

rev: reverse primer (complementary to the antisense DNA strand) 

small: changed base(s)  

bold: mutated amino acid  

underlinded: insertion  

#: internal primer number in the Institute of Virology, Marburg 

 

2.11 Vectors and Plasmids 

2.11.1 Vectors 
pCAGGS MCS Institute of Virology, Marburg (GER)  

 

2.11.2 Plasmids Encoding Recombinant Proteins 
Vector Protein Origin 

pCAGGS T7 Y. Kawaoka, Wisconsin (USA)  

pANDY 3E-5E (Renilla luciferase 

minigenome) 

Institute of Virology, Marburg (GER) 

pGL4 Firefly luciferase Institute of Virology, Marburg (GER) 

pCAGGS GP Institute of Virology, Marburg (GER) 

pCAGGS NP Institute of Virology, Marburg (GER) 

pCAGGS NPmyc Institute of Virology, Marburg (GER) 

pCAGGS L B. Moss, NIH, Bethesda (USA)  

pCAGGS VP24 Institute of Virology, Marburg (GER) 

pCAGGS VP35 Institute of Virology, Marburg (GER) 

pCAGGS VP35HA Institute of Virology, Marburg (GER) 

pCAGGS VP35f Institute of Virology, Marburg (GER) 

pCAGGS VP40 Institute of Virology, Marburg (GER) 
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pCAGGS VP30 wt Institute of Virology, Marburg (GER) 

pCAGGS VP30f wt Institute of Virology, Marburg (GER) 

pCAGGS VP30f AA Institute of Virology, Marburg (GER) 

pCAGGS VP30f DD Institute of Virology, Marburg (GER) 

pCAGGS VP30f SA Institute of Virology, Marburg (GER) 

pCAGGS VP30f AS Institute of Virology, Marburg (GER) 

pCAGGS VP30f DA Institute of Virology, Marburg (GER) 

pCAGGS VP30f AD Institute of Virology, Marburg (GER) 

pCAGGS VP30f AA A29S Institute of Virology, Marburg (GER) 

pCAGGS VP30f AA A30S Institute of Virology, Marburg (GER) 

pCAGGS VP30f AA A31S Institute of Virology, Marburg (GER) 

pCAGGS VP30f AA A42S Institute of Virology, Marburg (GER) 

pCAGGS VP30f AA A44S Institute of Virology, Marburg (GER) 

pCAGGS VP30f AA A46S Institute of Virology, Marburg (GER) 

pCAGGS VP30f R26A Institute of Virology, Marburg (GER) 

pCAGGS VP30f R28A Institute of Virology, Marburg (GER) 

pCAGGS VP30f R32A Institute of Virology, Marburg (GER) 

pCAGGS VP30f R40A Institute of Virology, Marburg (GER) 

pCAGGS VP30f R26A R28A R40A Institute of Virology, Marburg (GER) 

pCAGGS VP30f R40A R43A Institute of Virology, Marburg (GER) 

 

Cloned Plasmid (pCAGGS) Template (pCAGGS) Primer # Method 

VP30f AA A29D VP30f AA 3529 SDM 

VP30f AA A29S R26A VP30f AA A29S 3613a SDM 

VP30f AA A29S R28A VP30f AA A29S 3614a SDM 

VP30f AA A29S R26A R28A VP30f AA A29S 3615a SDM 

VP30f E33A VP30f wt 3628 SDM 

VP30f Q47A  VP30f wt 3629 SDM 

VP30f S29A VP30f wt 3632 SDM 

VP30f S30A VP30f wt 3633 SDM 

VP30f S31A VP30f wt 3634 SDM 

VP30f S42A VP30f wt 3635 SDM 

VP30f S44A VP30f wt 3636 SDM 

VP30f S46A VP30f wt 3637 SDM 
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VP30f AA A29S A31S VP30f AA A29S 3638 SDM 

VP30f AA A29S A31S R26A VP30f AA A29S R26A 3639 SDM 

VP30f AA A29S A31S R28A VP30f AA A29S R28A 3640 SDM 

VP30f AA A29S A31S R26A R28A VP30f AA A29S R26A 

R28A 

3641 SDM 

VP30f R26A R28A VP30f wt 3531 SDM 

VP30f AA A44S A46S VP30f AA A44S 3658 SDM 

VP30f S29A S31A S42A VP30f AA A44S  3657 + 

3658 

SDM 

FLAG pCAGGS MCS 3720a + 

3721a 

Insertion 

 

2.12 Software 

BLAST (Basic local alignment search tool, NCBI) 

www.ncbi.nlm.nih.gov/BLAST/ 

Sequence alignment 

Chromas  Sequence analysis 

Citavi 5 Reference management 

Clonemanager 9 Cloning strategies 

ClustalX2 Protein sequence alignment 

Li-Cor Odyssey Image Studio 2.1  

 

Western blot analysis and 

quantification 

Microsoft Excel 2013 Statistical analysis 

Microsoft Powerpoint 2016 Graphics and figures 

Microsoft Word 2016 Thesis writing 

OligoCalc Calculation of primer melting 

temperature  

Photoshop CS 5 / 6 Image editing 
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3 Methods 

3.1 Molecular Biological Methods 

3.1.1 Site-Directed Mutagenesis  
Site-directed mutagenesis introduces site-specific mutations into double-stranded 

plasmid DNA in vitro. Mutagenesis was achieved with the QuikChange Multi Site-

Directed Mutagenesis Kit (Agilent). The individually designed mutagenic oligonucleotide 

forward primer included one or several central mismatch base(s) with 12-20 

complementary nucleotides on each adjacent site. The melting temperature Tm of the 

primer was calculated with the following formula, with a target melting temperature of 

≥75 °C: 

𝑇𝑇𝑚𝑚 = 81.5 + 0.41 × (%𝐺𝐺𝐺𝐺) −
675
𝑁𝑁

− % 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ 

% GC: GC-content of primer in a whole number 

% mismatch: mismatch between template and primer in percent, as a whole number 

N: primer length in bases 

 

In the first step, the mutant strand was synthesized and linearly amplified by the 

thermostable, high fidelity Pfu polymerase during multiple rounds of denaturing, 

annealing, and elongation. 

Reagents 
 

 

 

 

 

Thermal Cycling Conditions 
Cycles Temperature Time 

1 95 °C 1 min 

30 95 °C 1 min 

55 °C 1 min 

65 °C 2 min / kb of plasmid length 

 8 °C ∞ 

10× QuikChange Multi reaction buffer 2.5 µl 

dsDNA template 100 ng 

mutagenic forward primer 100 ng each 

dNTP mix 1 µl 

QuikChange Multi enzyme blend 1 µl 

dH2O X µl to final volume of 25 µl 
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Following the generation and amplification of the mutant strand, 1 µl DPN I enzyme was 

added. DPN I (from diplococcus pneumoniae) is a methylation dependent restriction 

enzyme that degrades the template DNA, which is methylated by E. coli bacteria. The 

mutant strand on the other hand, which is synthesized in vitro, is not methylated and 

therefore not degraded. The reaction mixture was incubated for 1 h at 37 °C. The 

DPN I-treated DNA was now ready for transformation into XL10-Gold ultracompetent 

cells (3.1.3). 

3.1.2 DNA Insertion, Phosphorylation, and Ligation 
Insertion of new bases into a double-stranded DNA plasmid was achieved by a 

site-directed mutagenesis procedure (QuikChange site-directed Mutagenesis Kit). The 

mutagenic primers included around 20 bases on the 3' end, which were complementary 

to the DNA template, whereas the non-complementary bases designated for insertion 

were added upstream on the 5' end of the primer. The insertion was split between the 

forward and reverse primer. Primers were designed in a non-overlapping fashion and in 

back-to-back orientation. In the first step, the mutant strands were synthesized and 

exponentially amplified during multiple rounds of denaturing, annealing, and elongation. 

Reagents 
10× reaction buffer 5 µl 

dsDNA template 50 ng 

oligonucleotide primer for 0.3 µl (100 µmol/l) 

oligonucleotide primer rev 0.3 µl (100 µmol/l) 

dNTP mix 1 µl 

DMSO 2 µl 

PfuTurbo DNA polymerase (2.5 U/μl) 1 µl 

dH2O X µl to final volume of 50 µl 

 
Thermal Cycling Conditions 
Cycles Temperature Time 

1 95 °C 1 min 

18 95 °C 45 sec 

55 °C 1 min 

65 °C 21 min 

 8 °C ∞ 

Following the thermal cycling, 1 µl DPN I was added to the samples to digest the template 

DNA (1 h, 37 °C). 
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Phosphorylation and Ligation: 
The in vitro synthesized DNA strands are linear and not phosphorylated at the 5'-OH 

ends. The 5'-OH ends were phosphorylated by a polynucleotide kinase (PNK). 

Alternatively, it would also be possible to order primers with a 5' phosphate group. 
A T4 DNA ligase was added to create circular plasmids by joining of the new 5' phosphate 

group with the 3'-OH group. PEG was added for increased efficiency of the ligation 

reaction. The reaction was incubated for 1 h at room temperature. 

Reagents 
polymerase product (linear plasmid) 6 µl 

polynucleotide kinase (PNK) 2 µl 

T4 DNA ligase buffer 2 µl 

T4 DNA ligase 2 µl 

PEG 4000 Solution (50 %) 2 µl 

dH2O 6 µl 

The circular plasmids were now ready for transformation into XL1-Blue competent cells. 

3.1.3 Transformation of Plasmid DNA into Bacteria  
Transformation introduces foreign DNA into bacteria, a process during which competent 

bacterial cells take up and replicate DNA.  

For the purpose of amplification, plasmids were transformed into XL1-Blue competent 

E. coli. The XL1-Blue cells were prepared according to the 

Mix & Go E. coli Transformation Kit and Buffer Set. Aliquots were stored at -80 °C. For 

transformation, 100 µl XL1-Blue competent E. coli were thawed on ice, mixed with 10 ng 

of the respective plasmid, and incubated for 20 min on ice.  

Plasmids synthesized with the QuikChange Multi Site-Directed Mutagenesis Kit (Agilent) 

were transformed into XL10-Gold ultracompetent cells. For this, 45 µl XL10-Gold cells 

were thawed on ice and supplemented with 2 µl β-mercaptoethanol. Following 10 min of 

incubation, 1.5 µl of the DPN-I digested DNA was added and the mixture was incubated 

for 30 min on ice. Next, the tubes were heat-pulsed in a 42 °C water bath for 30 sec. Prior 

to plating, the bacteria were incubated in 500 µl NZY+ medium for 1 h at 37 °C, 220 rpm. 

3.1.4 Growth and Selection of Recombinant Bacteria 
For selection of successfully transformed bacteria, plasmids contained an antibiotic 

resistance gene. Following transformation, 100 µl of the bacteria were plated on LB agar 

plates, which contained 100 µg/ml Ampicillin. The plates were incubated for 16 h at 37 °C. 

Since all recombinant plasmids carried the Ampicillin resistance gene, only successfully 

transformed bacteria could grow colonies. 
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3.1.5 Isolation of Plasmids from Bacteria 
Following transformation of plasmids into competent bacteria and plating of the bacteria 

on LB-Ampicillin agar plates, single colonies were picked to inoculate either 3 ml 

(for "miniprep") or 100 ml (for "maxiprep") LB medium. The LB medium contained 100 µl 

of an Ampicillin stock solution. This only allowed the growth of successfully transformed 

bacteria. The inoculated medium was incubated for 16 h at 37 °C and 300 rpm. 

The plasmid DNA was isolated from the bacteria using the centrifugation protocol of the 

E.Z.N.A.® Plasmid DNA Mini I Kit (for "miniprep") or the vacuum protocol of the E.Z.N.A.® 

FastFilter Plasmid DNA Maxi Kit (for "maxiprep"). 

The DNA was eluted in 50 µl (for "miniprep") or 1.2 ml dH2O (for "maxiprep"). 

3.1.6 Nucleid Acid Quantification  
DNA concentration of plasmids was assessed by light absorbance at a wavelength of 

260 nm in a Nanodrop spectrophotometer. According to the Beer-Lambert law, light 

absorbance is directly proportional to the concentration of a substance: 

𝐴𝐴 = ε × B × C 

or 

𝐶𝐶 =
𝐴𝐴

ε × B
 

where A is light absorbance, ε the wavelength-dependent molar extinction coefficient, B 

is the path length, and C is the concentration of e.g. DNA. At a wavelength of 260 nm, 

the molar extinction coefficient of double-stranded DNA is 1 𝑚𝑚𝑚𝑚
50 µ𝑔𝑔×𝑐𝑐𝑐𝑐

 . 

The quotient of absorbance at 260 nm and 280 nm assesses for contamination by 

proteins, RNA, and phenol. Ratios around 1.8 were considered as "pure" for DNA. 

3.1.7 DNA Sequencing 
The recombinant DNA plasmids were sequenced by the Sanger method in the 

SEQLAB Laboratories (Göttingen). Samples were prepared by mixing 1200 ng of the 

respective plasmid, 30 pmol sequencing primer, and X µl dH2O to a final volume of 15 

 

3.2 Cell Biological and Virological Methods 

3.2.1 Cultivation of HUH-7 and HEK-293 Cells 
HEK-293 (human embryonic kidney) and HUH-7 (human hepatoma) cells were grown in 

75 cm2 tissue culture flask at 37 °C and 5 % CO2. Dulbecco's modified Eagle's medium 

(DMEM), supplemented with 10 % fetal calf serum (FCS), 5 mmol/l glutamine (Q), and 

penicillin / streptomycin (P/S) (= DMEM +++) was the standard growth medium. Cells were 
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passaged every 3 to 4 days upon reaching a confluency >80 %. For this, the growth 

medium was removed and cells were washed twice with pre-warmed PBSdef. For 

detachment of cells from the flask, 2 ml 0.05 % Trypsin / EDTA was added. Cells were 

incubated for 2-5 min at 37 °C. The reaction was stopped by addition of 8 ml DMEM +++. 

Cells were carefully resuspended and aliquoted into new tissue culture flasks or plates 

in the desired dilution. 

3.2.2 Transient DNA Transfection  
Plasmid DNA was transfected into mammalian cells with the TransIT®-LT1 reagent. This 

reagent contains histones and cationic lipids that mask the negative charge of the DNA. 

The TransIT®-LT1:DNA-complexes are taken up by cells through endocytosis. The 

plasmids enter the nucleus, but are not integrated into the cell genome. 

Cells were passaged one day prior to transfection to reach a confluency of 60-80 % at 

the time point of transfection. The TransIT®-LT1:DNA-complexes were prepared as 

recommended by the manufacturer. For 1 µg DNA, 3 µl transfection reagent was added. 

Both the DNA and the transfection reagent were preincubated separately with 

Opti-MEMTM for 5 min at room temperature, followed by combining the 

DNA / Opti-MEMTM and the TransIT® / Opti-MEMTM. The mixture was incubated for 20 min 

at room temperature. The volume was adjusted according to the growth area of cells that 

were to be transfected. Around 200 µl of the final mixture was added dropwise onto the 

cells of one well (6-well plate). In general, the following DNA amounts were transfected: 

Assay DNA amount per well 

Immunofluorescence analysis  200 ng / plasmid (12-well plate) 

Protein expression for western blot analysis, 

immunoprecipitation, in vitro assays  

500 ng / plasmid (6-well plate) 

trVLP assay  2.5 µg DNA, including 100 ng VP30 

(6-well plate) 

Minigenome assay  780 ng DNA, including 40 ng VP30 

(12-well plate) 

The empty vector pCAGGS_MCS was added to adjust the amout of transfected DNA. 

During the formation of the transfection complexes, cells were washed with DMEM +Q. 

DMEM +Q also was the initial growth medium. If cells were to grow for longer than one 

day post transfection, the medium was changed to DMEM +++ 16-24 h p.t. 



Methods 

41 
 

3.2.3 Cell Lysis  
Depending on the assay, cells were lysed with different buffers and methods (Table 2). 

The type of lysis buffer is essential for either preservation of enzymatic activity, e.g. the 

activity of kinases or phosphatases, or likewise, inactivation of the same enzymes.  

Buffer Detergent Properties and Use 

TM 0.5 % TritonTM X-100 Non-denaturing. Contains Mg2+-. 

In vitro phosphorylation assays (test 

tube, on-blot phosphorylation) 

TM 0.1 % TritonTM X-100 Non-denaturing. Contains Mg2+-. 

In vitro trVLP / recEBOV 

phosphorylation assay 

TBS 0.2 % Tween® 20 Non-denaturing.  

Lysation of HUH-7 cells for in situ 

phosphorylation  

TBS 0.5 % TritonTM X-100 Non-denaturing.  

In vitro phosphorylation assays 

Co-IP buffer 1 % NP-40 

1 % TritonTM X-100 

Non-denaturing.  

Immunoprecipitation assays 

CEB (Invitrogen) 
 

1 % TritonTM X-100 

0.1 % SDS  

0.5 % deoxycholate 

Denaturing. Contains phosphatase and 

kinase inhitibors. 

Lysis buffer for western blot analysis. 

Sample buffer 4x 8 % SDS Denaturing. 

Added to every sample prior to 

SDS-PAGE to a final concentration of 

1x (2 % SDS) 
Table 2: Lysis Buffers. 
 
Non-ionic detergents, such as TritonTM X-100, Tween® 20, and NP-40, are considered 

relatively mild detergents with non-denaturing properties, as they preserve the activity of 

most enzymes and do not disrupt protein-protein interactions. These detergents allow 

the in vitro study of kinases and phosphatases. Since these detergents also preserve 

the activity of cellular proteases, the protease inhibitor cocktail cOmpleteTM (Roche) was 

always added to non-denaturing lysis buffers according to the manufacturer. In some 

experiments, cells were additionally disrupted with sonication for 15-30 sec twice to 

physically disintegrate cellular membranes. DTT, OA, PhosSTOPTM, EDTA, EGTA, and 

NEM were added to the lysis buffers as indicated in the experiments. 
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In contrast, ionic agents, such as sodium dodecyl sulfate (SDS) and deoxycholate, are 

considered harsh detergents. They denature proteins and interrupt protein-protein 

interactions. Therefore, no protease inhibitors were added. When preservation of 

enzymatic activity was not important, cells were lysed with the commercially available 

cell extraction buffer. The cells of one well of a 6-well plate were washed with PBSdef and 

gently scraped from the growth area into 1 ml PBSdef. 250 µl - 500 µl of the resuspended 

cells were pelleted by centrifugation at 3000 rpm for 2 min. The supernatant was 

discarded. Cells were lysed on ice for 20 min by addition of 80 µl CEB. Cellular debris 

was pelleted for 5 min at 13 000 rpm. 60 µl of the supernatant were mixed with 20 µl 4x 

sample buffer. Samples were heated for 5 min at 95 °C prior to SDS-PAGE and WB 

analysis 

WB samples from the BSL-4 laboratory, supplemented with sample buffer, were heated 

for at least 10 min at 95 °C prior to transferring them out of the BSL-4 conditions. Before 

SDS-PAGE, samples were again heated for at least 10 min at 95 °C. 

3.2.4 EBOV-Specific Minigenome Assay and Treatment with Okadaic Acid  
A minigenome assay was performed to study the influence of VP30 phosphorylation on 

viral transcription and replication (chapter 1.7.1 and Figure 2).  

HEK-293 cells and HUH-7 cells, seeded at a densitiy of 2x105 cells per well of a 

12-well plate, were transfected with plasmids encoding the viral proteins necessary for 

viral transcription and replication (NP, L, VP35, VP30 wt / mutants), a 

T7 RNA polymerase, and the EBOV-specific minigenome encoding a Renilla luciferase 

reporter gene under control of a T7 promotor. A Firefly luciferase was added for 

normalization of transfection efficiency.  

The following DNA amounts were transfected per well of a 12-well plate: 

Plasmid Promotor Amount in ng 

1 pCAGGS NP β-actin (chicken)  50 

2 pCAGGS VP35 β-actin (chicken) 50 

3 pCAGGS L β-actin (chicken) 400 

4 pCAGGS T7 polyermase β-actin (chicken) 100 

5 pGL4 Firefly luciferase SV40 40 

6 pANDY 3E-5E Renilla luciferase 

(minigenome)  

T7 100 

7 pCAGGS VP30f_wt / mutant β-actin (chicken) 40 

 780 ng 



Methods 

43 
 

A mastermix was prepared from plasmids 1-6. VP30f_wt or mutants were added 

individually. DMEM +Q was used as the growth medium. 24 h p.t. the growth medium was 

removed. Cells were rinsed with PBSdef, scraped into 1 ml PBSdef, and pelleted for 2 min 

at 3000 rpm. The supernatant was discarded. Cells were resuspended in 100 µl 1x pjk 

Lysis Juice and lysed for 20 min at 1400 rpm and room temperature. Cellular debris was 

pelleted for 10 min at 13 000 rpm. Renilla and Firefly luciferase activity was measured in 

the supernatant in a luminometer (in relative light units, RLU). If necessary for a correct 

measurement, the supernatant was diluted with Lysis Juice up to 1:100. Firefly and 

Renilla substrates were prepared according to the manufacturer.  

T7-driven transcription of the minigenome results in a negative-sense minigenome RNA, 

which is replicated and transcribed into a positive-sense RNA by the viral nucleocapsid 

proteins. The effect of VP30 serine or arginine mutations on viral 

transcriptional / replicational activity was tested either under control conditions (DMSO) 

or when treated with the phosphatase inhibitor OA. OA and DMSO were added to the 

medium 0 h p.t.  

The activity of the Renilla luciferase represents the replicational and transcriptional 

potential of the viral proteins. The activity of the Firefly luciferase serves as an internal 

control reporter for normalization of transfection efficiency and cellular gene expression 

level. Results are shown as the quotient of the Renilla luciferase activity divided by the 

Firefly luciferase activity. 

Expression of the VP30 constructs and NP was verified by western blotting. For this, 4 µl 

of 4x sample buffer was added to 12 µl of cell lysate. Samples were heated for 5 min at 

95 °C. 

3.2.5 EBOV-Specific Transcription and Replication Competent Virus-Like 
Particle Assay  

An EBOV-specific transcription and replication competent virus-like particle (trVLP) 

assay was performed to study the influence of VP30 phosphorylation on primary viral 

transcriptional support activity (chapter 1.7.2 and Figure 3). HEK-293 cells, also called 

producer cells, were seeded at a density of 6x105 cells per well of a 6-well plate. The 

following day, cells were transfected with plasmids encoding the seven viral proteins, the 

EBOV-specific minigenome encoding a Renilla luciferase reporter gene under control of 

a T7 promotor, a T7 RNA polymerase and a Firefly luciferase. 
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The following DNA amounts were transfected per well of a 6-well plate: 

Plasmid Promotor Amount in ng 

1 pCAGGS NP β-actin (chicken)  125 

2 pCAGGS GP β-actin (chicken) 250 

3 pCAGGS VP40 β-actin (chicken) 250 

4 pCAGGS VP24 β-actin (chicken) 30 

5 pCAGGS VP35 β-actin (chicken) 125 

6 pCAGGS L β-actin (chicken) 1000 

7 pCAGGS T7 RNA polyermase β-actin (chicken) 250 

8 pGL4 Firefly luciferase SV40 100 

9 pANDY 3E-5E Renilla luciferase 

(minigenome)  

T7 250 

10 pCAGGS VP30f_wt / mutants β-actin (chicken) 100 

 2480 ng 

A mastermix was prepared from plasmids 1-9. VP30f_wt or mutants were added 

individually. When two VP30 mutants were combined, 50 ng / VP30 mutant was 

transfected. DMEM +Q was used as the initial transfection medium and was changed to 

3 ml DMEM 10 % FCS+Q+P/S per well 16-24 h p.t. 

T7-driven transcription of the minigenome results in a negative-sense minigenome RNA, 

which is replicated and transcribed into a positive-sense RNA by the viral nucleocapsid 

proteins. Due to the recombinant expression of the viral proteins in the producer cells, 

viral transcription here represents later stages of infection as in the minigenome system. 

This is in contrast to the limited amounts of incorporated viral proteins at the very 

beginning of an infection. 

Purification and Analysis of trVLPs 
Since all viral proteins are recombinantly expressed in the producer cells, the 

minigenome assembles together with the viral proteins and forms trVLPs that are 

released into the supernatant. The growth medium was collected 72 h p.t. and 

centrifuged for 10 min at 2500 rpm to pellet cellular debris. The supernatant was 

transferred into Ultra-Clear™ tubes for SW32 ultracentrifuge rotors and underlaid with 

5 ml of 20 % sucrose solution in TNE buffer. The tubes were tared with PBSdef and 

centrifuged for 2 h at 28 000 rpm and 4 °C. Following ultracentrifugation, the supernatant 

was discarded and the trVLP-containing pellet was resuspended in 90 µl PBSdef. 

30 µl of the resuspended trVLPs were analyzed for the specific incorporation of viral 

proteins. For this, a proteinase K digestion assay was performed. Proteinase K is a 
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broad-spectrum serine protease that degrades a broad range of proteins, but cannot 

digest proteins inside the trVLPs as they are protected by a lipid envelope. When a lysing 

agent such as TritonTM X-100 is added, proteins inside the trVLPs should be digested by 

the proteinase as well. 

10 µl trVLPs + 2 µl PBSdef 

10 µl trVLPs + 2 µl proteinase K (diluted 1:20 in PBSdef) 

10 µl trVLPs + 2 µl proteinase K (diluted 1:20 in PBSdef + 1 % TritonTM X-100)  

The samples were incubated for 40 min at 37 °C. Next, 1 µl of 100 mmol/l PMSF was 

added. Samples were incubated for 5 min at room temperature for inactivation of 

proteinase K. Prior to SDS-PAGE and subsequent WB analysis, 4 µl of 4x sample buffer 

was added. Samples were heated at 95 °C for 5 min. 

Measurement of Viral Transcriptional Activity in Producer Cells  
After the growth medium was removed for purification of the trVLPs (72 h p.t.), producer 

cells were rinsed with PBSdef, scraped into 1 ml PBSdef, and pelleted for 2 min at 

3000 rpm. The supernatant was discarded. Cells were resuspended in 200 µl 1x pjk Lysis 

Juice and lysed for 20 min at 1400 rpm and room temperature. Cellular debris was 

pelleted for 10 min at 13 000 rpm. Firefly and Renilla luciferase activity was measured in 

the supernatant at a dilution of 1:100-1:200. The activity of the Renilla luciferase 

represents the replicational and transcriptional potential of the viral proteins. The activity 

of the Renilla luciferase is normalized to the internal control reporter (Firefly luciferase). 

Expression of the VP30 constructs and NP was verified by SDS-PAGE and WB. For this, 

4 µl of 4x sample buffer was added to 12 µl of the producer cell lysate. Samples were 

heated for 5 min at 95 °C. 

Infection of Indicator Cells with trVLPs and Measurement of the Primary Viral 
Transcriptional Activity  
The remaining purified trVLPs were mixed with 250 µl DMEM +Q for infection of naïve 

HUH-7 cells, also called indicator cells. The HUH-7 cells were seeded in 12-well plates 

at a density of 2x105 cells / well one day prior to infection. First, HUH-7 cells were washed 

with DMEM +Q. The trVLPs were pipetted onto the cells and incubated for 2 h at 37 °C. 

Next, 2 ml DMEM 5 % FCS+Q+P/S was added. Cells were incubated for 60 h at 37 °C. The 

growth medium was removed. Cells were rinsed with PBSdef, scraped into 1 ml PBSdef, 

and pelleted for 2 min at 3000 rpm. The supernatant was discarded. Cells were 

resuspended in 100 µl 1x pjk Lysis Juice and lysed for 20 min at 1400 rpm and room 

temperature. Cellular debris was pelleted for 10 min at 13 000 rpm. Renilla luciferase 

activity was measured in the supernatant.  
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The Renilla luciferase activity obtained from the indicator cells reflects the ability of the 

trVLPs to start primary transcription in newly infected cells, using only the incorporated 

viral nucleocapsid proteins. In the context of VP30 phosphorylation it was particularly 

interesting to find out whether the primary transcriptional activity differs among trVLPs 

containing the various VP30 mutants. 

 
Figure 4: Overview of the EBOV-Specific trVLP Assay. 
Producer cells are transfected with plasmids encoding the seven EBOV proteins, an EBOV-specific 

minigenome, a T7 RNA polymerase, and a Firefly luciferase. 72 h p.t. trVLPs are purified from the 

supernatant to infect naïve indicator cells. The reporter gene activity is measured in a luciferase assay. 

 

Indirect Immunofluorescence Analysis of Indicator Cells  
HUH-7 cells, seeded in 12-well plates on coverslips at a density of 1x105 cells / well, were 

infected with trVLPs as described above. The trVLPs contained either VP30f_wt or VP30 

phosphorylation mutants. At 22 h p.i., cells were fixed with 4 % PFA in DMEM. The 

permeabilization of cells and blocking of unspecific signals were performed as described 

in 3.3.5. Cells were stained with anti-VP30 (from guinea pig) and anti-NP (from chicken) 

antibodies (3.3.5). 

 



Methods 

47 
 

3.2.6 Discontinous Nycodenz Gradient Purification of trVLPs 
trVLPs pelleted through a sucrose cushion can be further purified into spherical and 

filamentous particles with a discontinous Nycodenz step gradient purification method. 

The pelleted trVLPs were resuspended in 730 µl TNE buffer and carefully pipetted on 

top of the following gradient (Ultra-Clear™ tubes for SW60 ultracentrifuge rotors): 

30 % Nycodenz in 1xTNE 730 µl 

20 % Nycodenz in 1xTNE 490 µl 

15 % Nycodenz in 1xTNE 490 µl 

10 % Nycodenz in 1xTNE 490 µl 

7.5 % Nycodenz in 1xTNE 490 µl 

5 % Nycodenz in 1xTNE 490 µl 

2.5 % Nycodenz in 1xTNE 490 µl 

trVLPs 730 µl 

 4400 µl 

Tubes were centrifuged for 15 min at 15 000 rpm and 4 °C. Nine fractions were carefully 

collected (each 488.88 µl). Fractions 1-3, 4-6, and 7-9 were pooled and pipetted into 

Ultra-Clear™ tubes for SW41 ultracentrifuge rotors. The tubes were filled up with PBSdef 

and tared. trVLPs were pelleted by centrifugation for 1 h at 36 000 rpm. The supernatant 

was discarded, and trVLPs were resuspended for in vitro phosphorylation (3.4.3) or 

electron microscopy (3.2.7). Fractions 1-3 were to comprise vesicular trVLPs and 

contaminating exosomes / microvesicles, whereas fractions 4-6 and 6-9 were to 

comprise mainly filamentous trVLPs. 

3.2.7 Preparation of Purified trVLPs for Negative Staining Electron Microscopy 
Nycodenz gradient purified trVLPs were analyzed by Electron microscopy to detect 

contaminating vesicular particles, such as exosomes and microvesicles. 

2 µl of the resuspended trVLPs, purified as described in 3.2.6, were combined with 8 µl 

of 4 % PFA in DMEM. Sample preparation and electron microscopy were performed by 

Dr. Larissa Kolesnikova. Briefly, Formvar coated 400-mesh nickel grids - with an 

additional carbon layer - were pretreated with 1 % alcian blue to improve adherence of 

virus-like particles. The grid was incubated with the sample, followed by negative staining 

with 2 % phosphotungstic acid. Images were taken with a JEM1400 transmission 

electron microscope.  
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3.2.8 Infection of HUH-7 Cells with recEBOV_wt and recEBOV_S29  
The design and rescue of the recombinant viruses recEBOV_wt and recEBOV_S29 was 

outlined before23. One day prior to infection, HUH-7 cells were seeded into 12- or 6-well 

plates at a density of 5x104 and 4x105 cells / well, respectively. Infection of HUH-7 cells 

with recEBOV was carried out in DMEM +Q+P/S for 1 h at 37 °C. The supernatant was 

removed and DMEM 5 % FCS+Q+P/S was added. OA and DMSO were added to the medium 

1 h post infection. Cells were infected at a multiplicity of infection (MOI) of 3.  

Experiments with recombinant Ebola viruses were performed at the BSL-4 facility of the 

Philipps-University Marburg by Dr. Nadine Biedenkopf. 

 

3.3 Biochemical and Immunological Methods 

3.3.1 Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis 
One-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-

PAGE) seperates proteins by their molecular weight. The individual net charge of a 

protein is masked by the negatively charged SDS in the sample buffer. In an applied 

electric field, the proteins move to the positively charged anode. The speed of migration 

mainly depends on the molecular size, with smaller proteins moving faster.  

The SDS-polyacrylamide gel consists of a stacking gel on top of a seperation gel. The 

lower acrylamide concentration of the stacking gel allows the proteins to concentrate on 

the crossing to the separation gel. 

 Stacking gel (5 %) Separation gel (12 %) 

H2O 3.38 ml 3.3 ml 

SDS-PAGE stacking gel 
buffer, pH 6.8 

1.56 ml --- 

SDS-PAGE separation gel 
buffer, pH 8.8 

--- 2.6 ml 

30 % acrylamide mix 
(Rotiphorese® 30)  

1 ml 4 ml 

10 % APS 60 µl 100 µl 

TEMED 3 µl 4 µl 

Prior to gel electrophoresis, sample buffer was added to every cell lysate, and samples 

were heated at 95 °C for at least 5 min. Along with a protein size marker, samples were 

loaded into the wells of the stacking gel. Proteins were separated at 25 mA per gel, at 

maximum voltage, for approximately 45 min. The outer and inner chambers of the 

SDS-PAGE system were filled with 1x protein gel running buffer. SDS-PAGE was either 
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followed by staining of the proteins in the gel with Coomassie (3.3.2) or by the 

electrophoretic transfer of proteins onto nitrocellulose membranes (3.3.3). 

3.3.2 Coomassie Staining of Protein Gels 
For detection of proteins that associate with VP30, SDS-polyacrylamide gels from VP30-

immunoprecipitates were stained with a Coomassie brilliant blue R250 dye.  

Following gel electrophoresis, the SDS-polyacrylamide gel was washed in PBSdef twice. 

The gels were incubated in a Coomassie staining solution for at least 2 h, room 

temperature, on a horizontal shaker. Eventually, the gels were washed with water several 

times and incubated in the destainig-solution for 2-4 h until clear protein bands appeared. 

If necessary, the destaining solution was exchanged several times. Coomassie-stained 

SDS gels were scanned with the Li-Cor Odyssey imaging scanner at 680 nm wavelength. 

3.3.3 Western Blotting and Staining of Nitrocellulose Membranes 
Western blotting (WB) was performed for the identification of specific proteins in a 

heterogeneous mixture of different proteins. Following separation of the proteins by 

SDS-PAGE, they were transferred via an electric current from the SDS-polyacrylamide 

gel to a nitrocellulose membrane. The proteins were detected on the membrane by 

specific primary antibodies.  

Using a semi-dry approach, the SDS-polyacrylamide gel, the nitrocellulose membrane 

(5 x 8 cm), and Whatman blotting papers (6.5 x 8.5 cm) were incubated in transfer buffer 

for 5 min. From the anode to the cathode, four Whatman blotting papers, the 

nitrocellulose membrane, the SDS-polyacrylamide gel and, again, four Whatman blotting 

papers were assembled. Air bubbles and excess transfer buffer were removed by rolling 

a glas pipette over the sandwich construction. Western blotting was performed at 

constant voltage (20 V) for 40 min. 

Following the electrophoretic transfer of proteins, nitrocellulose membranes were 

blocked with 5 % BSA in TBS for 2 h on a horizontal shaker at room temperature to 

diminish unspecific binding of antibodies to the membrane. Subsequently, the blots were 

washed with WB washing buffer three times for 5 min. The protein of interest was 

detected by incubating the membrane with a primary antibody for 1 h at room 

temperature. Alternatively, the membrane was incubated with the primary antibody 

overnight at 4 °C. Membranes were washed three times for 15 min to remove 

unspecifically bound antibodies. To visualize primary antibodies, membranes were then 

incubated with IRDye labeled secondary antibodies for 1 h, followed by three additional 

washing steps. The IRDye labeled secondary antibodies were detected by the Li-Cor 

Odyssey infrared imaging system. All antibodies were diluted in an antibody dilution 

buffer. Note: BSA was used instead of milk powder and TBS buffer instead of PBSdef, as 
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this is a general recommendation when working with phosphospecific antibodies. Since 

the phosphospecific VP30 antibody is directed against a specific VP30 peptide, 

unspecific binding of the antibody to phosphoproteins such as casein seems very 

unlikely. Thus, milk powder and PBSdef might be used just as well. 

3.3.4 Quantification of VP30 Serine 29 Phosphorylation in WB Analysis 
To analyze the influence of other EBOV proteins on the phosphorylation status of VP30 

serine 29, HEK-293 cells, seeded in 6-well plates at a density of 6x105 cells / well, were 

transfected with different combinations of the following plasmids: 

100 ng pCAGGS-VP30f_AA_A29S ± 125 ng pCAGGS-NP, 125 ng pCAGGS-VP35HA, 

1000 ng pCAGGS-L, 30 ng pCAGGS-VP24, 250 ng pCAGGS-VP40, 

250 ng pCAGGS-GP, 200 ng pANDY 3E-5E, and 200 ng pCAGGS T7 RNA polymerase. 

The empty vector pCAGGS_MCS was added to adjust the amout of transfected DNA. 

24 h p.t. the medium was changed to DMEM 10 % FCS+Q+P/S, supplemented with 0.05 % 

DMSO (control) or 25 nmol/l OA / 50 nmol/l OA. At 48 h p.t., cells were lysed in CEB 

buffer. Gel electrophoresis and western blotting were performed. The signal strength 

obtained with the anti-pS29 antibody was normalized to the signal observed with the 

anti-FLAG antibody. Signal strength of bands was analyzed with Li-Cor western blot 

analysis software.  

3.3.5 Indirect Immunofluorescence Analysis  
Indirect immunofluorescence analysis (IFA) can detect and localize cellular antigens 

in situ. A primary antibody specifically binds the antigen of interest, whereas a secondary 

antibody is coupled to a fluorophore and directed against the primary antibody. Each 

fluorophore is excited at a certain wavelength, resulting in light emission at a lower 

wavelength, which is detected by a fluorescence microscope. 

HUH-7 cells, seeded on coverslips in 12-well plates at a density of 5x104 cells / well, were 

transfected with plasmids encoding EBOV proteins (200 ng each / well) or infected with 

recEBOV under BSL-4 conditions. When all EBOV proteins were recombinantly 

expressed, plasmid amounts were adjusted as described in 3.3.4.  

20 h p.t. the medium was removed. Transfected cells were washed twice with cold PBSdef 

and fixed with 4 % PFA in DMEM for 15 min at room temperature. HUH-7 cells infected 

with recEBOV were fixed with 4 % PFA in DMEM 24 h p.i. for at least 16 h. Coverslips 

were moved to new 12-well plates filled with 4 % PFA / DMEM before export from the 

BSL-4 laboratory. Prior to continuing, infected cells were incubated for additional 16 h 

with 4 % PFA / DMEM.  

The PFA was washed away, and unspecific surface antigens were blocked by incubating 

cells for 10 min with 100 mmol/l glycine in TBS. Cells were lysed with 0.1 % TritonTM in 
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TBS for 7 min at room temperature. Cells were washed again and incubated with 

blocking buffer for 20 min to remove unspecific intracellular antibody binding sites. 

When working with transfected cells, a shorter acetone-methanol fixation / lysis method 

was used alternatively. First, the growth medium was aspirated. Next, cells were rinsed 

with TBS twice. Ice-cold 1:1 acetone-methanol was added for 5 min at -20 °C. The 

acetone-methanol was removed, and cells were washed with TBS twice.  

Following fixation and lysis of cells, the coverslips were incubated for 1 h with the 

respective primary antibodies in a humid chamber at room temperature. Next, coverslips 

were washed three times with PBSdef and incubated with the secondary antibodies for 

1 h in the dark, as the fluorescent dyes are very light sensitive. DAPI 

(4′,6-diamidino-2′-phenylindol) was added to the secondary antibodies at a dilution of 

1:10 000. Coverslips were rinsed three additional times with PBSdef, followed by shortly 

immersing them in dH2O. Excess liquid was carefully blotted onto a Kimtech wipe. 

Finally, the coverslips were mounted onto microscope slides with Fluoprep (+DABCO), 

cells facing down. Once the mounting medium had dried, images were taken on the 

Axiovert 200 M (Zeiss®) fluorescence microscope, at a magnification of 400x or 1000x. 

3.3.6 Immunoprecipitation with anti-FLAG M2 Affinity Gel 
Immunoprecipitation is considered the gold standard when studying protein-protein 

interactions. The anti-FLAG M2 affinity gel is a commercially availabe mouse monoclonal 

anti-FLAG antibody covalently bound to agarose beads. The affinity gel pulls down 

FLAG-tagged fusion proteins such as a C-terminal FLAG-tagged VP30 construct. 

Cellular proteins that interact with the FLAG-tagged VP30 are co-immunoprecipitated. 

HEK-293 cells, seeded at a density of 6x105 cells / well in 6-well plates, were transfected 

with 500 ng DNA / well and plasmid (3.2.2). The next day, the growth medium was 

changed to DMEM +++. 48 h p.t. the growth medium was removed. Cells were rinsed with 

TBS and scraped into 1 ml TBS per well.  An aliquot of the resuspended cells was lysed 

with cell extraction buffer (3.2.3). The remaining cells were pelleted for 2 min at 3000 rpm, 

the supernatant was discarded, and cells were resuspended in Co-IP buffer 

supplemented with 1 % TritonTM X-100 and cOmpleteTM protease inhibitor cocktail (400 µl 

buffer / well). No phosphatase inhibitor was added. Cells were lysed for 30 min at room 

temperature. Cellular debris was pelleted for 10 min at 13 000 rpm. The supernatant was 

now ready for immunoprecipitation. 

The beads of the affinity gel, which are supplied in a 50 % glycerol suspension, were 

prepared by washing the beads three times with Co-IP buffer for 2 min at 2500 rpm. The 

gel was then diluted 1:1 with Co-IP buffer. Lysates were added onto the beads (25 µl 

undiluted affinity gel per lysate of a single well). The lysate / bead mixture was incubated 

for 2 h at 4 °C in a vertical rotator ("overhead rotator").  
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In the next step, the beads were pelleted at 4000 rpm. The supernatant was discarded. 

The beads were washed three times with Co-IP buffer, followed by two additional 

washing steps with either TM buffer for in vitro phosphorylation or TE buffer for 

subsequent mass spectrometry analysis. 

To elute the proteins from the beads, 4x sample buffer was added to a final concentration 

of 1x. Samples were heated for 10 min at 95 °C. The beads were pelleted by a short 

centrifugation step. Supernatants were analyzed by SDS-PAGE and WB. 

Immunoprecipitation for Mass Spectrometry Analysis 

For identification of specific binding partners of FLAG-tagged VP30, the 

immunoprecipitation protocol was optimized for subsequent mass spectrometry. Apart 

from large scale immunoprecipitation, two major modifications were made compared to 

the protocol as described above. 1) Prior to the immunoprecipitation of the FLAG-tagged 

fusion protein, a preclearing step of the cell lysate was performed with commercially 

available mouse IgG-agarose, to reduce unspecific binding of cellular proteins to the 

agarose-coupled mouse anti-FLAG antibody. The mouse IgG-agarose was prepared as 

described in 3.3.6. Cell lysates were added to the agarose, and the lysate / IgG-agarose 

mixture was incubated for 1 h at 4 °C in a vertical rotator. The IgG-agarose was pelleted 

by centrifugation for 2 min at 2500 rpm. The supernatant now was ready for 

immunoprecipitation of the FLAG-tagged fusion protein. 2) Instead of using the empty 

vector pCAGGS_MCS as the negative control, a FLAG construct was cloned (3.1.2). For 

FLAG-tagged fusion proteins, the appropriate negative control is a FLAG-peptide, since 

the FLAG-part of a FLAG-tagged fusion protein can interact with cellular proteins itself. 

Additionally, the FLAG-peptide will bind the anti-FLAG antibody of the affinity gel, thereby 

reducing unspecific binding to the otherwise empty antigen binding region. 

3.3.7 VP30 Peptides and a Phosphospecific VP30 Serine 29 Antibody  
For detection of phosphorylated serine 29 of EBOV VP30, a polyclonal, phosphospecific 

IgG peptide antibody was produced in rabbits by Biogenes (Berlin). The antibody was 

called anti-pS29. 

Two 12-mer-peptides were synthesized according to the amino acid sequence position 

23 to 34 of VP30, flanking serine 29, with serines 30 and 31 replaced by alanine. Two 

peptides were synthesized, one with phosphorylated serine at position 29, the other with 

serine at position 29. The peptides were coupled to a carrier. Following immunization of 

rabbits, antiserum was isolated. The IgG antibodies were purified by passing the 

antiserum through affinity columns, with the peptides immobilized in the stationary 

phase. Following several washing steps, the specifically bound IgG-fraction was eluted 

with 0.2 mol/l glycine / HCl, pH 2.2, 250 mmol/l NaCl.  
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The company provided us with the lyophilized phosphorylated 12-mer VP30 peptide. It 

was assessed to be hydrophil, aliquoted, and dissolved in dH2O to a concentration of 

1 nmol/µl, immediately before the peptide competition assay.  

Phosphorylated Peptide (p_S29-peptide) 
HHVRAR-pS-AAREN-amide  

Calculated molecular weight: 1484 g/mol 

The p_S29-peptide was dephosphorylated by the calf intestinal phosphatase (CIP) to 

generate a nonphosphorylated peptide. For this, 20 µl of the 1 mmol/l phosphorylated 

peptide were mixed with 60 µl CIP buffer and 20 µl of the 1 U/µl CIP. The mixture was 

incubated for 1 h at 37 °C. The concentration of the dephosphorylated peptide now was 

0.2 nmol/µl. 

Dephosphorylated Peptide (nonp_S29-peptide) 
HHVRAR-S-AAREN-amide  

Calculated molecular weight: 1404 g/mol 

3.3.8 Peptide Competition Assay 
A peptide competition assay was carried out to demonstrate the specificity of the 

anti-pS29 antibody for the phosphorylated form of VP30.  

HUH-7 cells, seeded on coverslips at a density of 5x104, were transfected with a plasmid 

encoding VP30f_AA_A29S. Prior to staining of VP30 in an immunofluorescence assay, 

the primary antibodies (anti-pS29 and anti-FLAG) were incubated with increasing 

concentrations of either a FLAG-peptide, the p_S29-peptide, the nonp_S29-peptide, or 

dH2O (control). The amount of peptide was calculated in relation to the amount of the 

anti-pS29 antibody. If there was 100 times more p_S29-peptide in relation to the 

anti-pS29 antibody during the preincubation, then this means that 50 p_S29-peptides 

competed for one antigen binding site.  
The anti-FLAG antibody served as a control staining of VP30f_AA_A29S on the same 

coverslip, independent of the phosphorylation status of VP30f_AA_A29S. The 

concentration of the monoclonal anti-FLAG® M2 antibody (Sigma) was 1 mg/ml. The 

FLAG-peptide (sequence: DYKDDDDK, molecular weight: 1013 g/mol) was dissolved in 

TBS to a concentration of 3 mg/ml (= 2.96 nmol/µl).  

The concentration of the anti-pS29 antibody was determined as described in 3.3.9. The 

preincubation was done in TBS buffer for 90 min on a horizontal shaker (300 rpm) at 

room temperature. Next, reaction tubes were centrifuged for 15 min at 13 200 rpm in 

order to pellet any immune-complexes formed during incubation. VP30 was stained with 
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the primary antibody containing supernatant, followed by staining with secondary 

antibodies (3.3.5). 

3.3.9 Protein Quantification  
The concentration of the anti-pS29 IgG antibody was estimated in a Nanodrop ND 1000 

spectrophotometer (light absorbance at 280 nm). According to the information of the 

manufacturer Biogenes, the predicted absorbance at 280 nm is 1.35 for a concentration 

of 1 mg/ml of the phosphospecific antibody. This is equivalent to a molar extinction 

coefficient280 nm of the anti-pS29 antibody of 202.500 𝑙𝑙
𝑚𝑚𝑚𝑚𝑚𝑚×𝑐𝑐𝑐𝑐

. 

Using this method, the concentration of the anti-pS29 antibody was 0.8 mg/ml. 

 

3.4 Analysis of VP30 Phosphorylation and Dephosphorylation in vitro  

Several non-radioactive in vitro assays were established to study VP30 phosphorylation. 

In vitro, the reaction equilibrium between the phosphorylated and dephosphorylated 

state of a protein can be manipulated by addition of phosphatase and kinase activators 

or inhibitors. The following substances were frequently used in the in vitro assays: 

Substance Characteristics 

Adenosine triphosphate 

(ATP) 

Essential co-substrate of kinases for protein 

phosphorylation. Is depleted in cell lysates. 

Mg2+- ions Essential for biologically activity of ATP4- . Two ions 

form a complex with ATP4-. Supplied with the TM buffer. 

Dithiothreitol (DTT) Reducing agent. Prevents formation of disulfide bonds 

and thereby ensures enzymatic activity. Added to 

rephoshorylation buffers prior to use. 

EDTA Chelator of Mg2+- and Ca2+- ions. 

EGTA Chelator of Ca2+- ions. 

N-ethylmaleimide (NEM) Irreversible inhibition of enzymes by protein alkylation 

at cystein residues. 

Okadaic acid (OA) Inhibitor of protein phosphatase 1 and 2A, which were 

shown to dephosporylate VP30. 

Sodium fluoride (NaF) General protein phosphatase inhibitor. 

PhosSTOPTM, EDTA-free Mixture of phosphatase inhibitors, including OA. 
Table 3: Reagents for in vitro VP30 Phosphorylation and Dephosphorylation. 

 

The in vitro approach is based on endogenous cellular kinases and phosphatases, which 

phosphorylate and dephosphorylate serine 29 of VP30. The enzymes are derived from 
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HUH-7 or HEK-293 cells, the substrate VP30 is recombinantly expressed in these cells. 

Phosphorylation of VP30 serine 29 is detected with the phosphospecific peptide antibody 

anti-pS29. 

3.4.1 Dephosphorylation and Phosphorylation of VP30 in Whole Cell Lysates 
Hek-293 cells, seeded in 6-well plates at a density of 6x105 cells / well, were transfected 

with a plasmid encoding VP30f_AA_A29S (500 ng / well). The medium was changed to 

DMEM +++ one day post transfection. 48 h p.t. the growth medium was removed. Cells 

were rinsed with TBS and scraped into 1 ml TBS.  

To analyze the "status quo" or "Input" phosphorylation status of VP30 - at the time of cell 

harvest – an aliquot of the cells was pelleted for 2 min at 3000 rpm and lysed in the 

denaturing CEB buffer. Alternatively, the pelleted cells were resuspended in TBS buffer, 

4x sample buffer was added immediately, and the sample was heated for 5 min at 95 °C. 

Denaturation destroys the catalytic activity of phosphatases and kinases, thus the 

phosphorylation status of VP30 is preserved. It is also possible to preserve the 

phosphorylation status of a protein in a non-denaturing lysis buffer by addition of a 

broad-spectrum phosphatase inhibitor, such as PhosSTOPTM or NaF. 

The remaining cells were lysed in a non-denaturing TM buffer, supplemented with 0.5 % 

TritonTM X-100 (350 µl lysis buffer per well). Cell lysates were incubated for at least 

30 min at 37 °C.  

If no phosphatase inhibitor is added to the lysis buffer, endogenous cellular PP1 and 

PP2A can dephosphorylate VP30 during the incubation time. Kinases, on the other hand, 

can no longer phosphorylate VP30 during the incubation time, because the essential 

co-substrate ATP is no longer produced after cell lysis. OA, added to the TM lysis buffer 

at a concentration of 1 µmol/l, was tested for its ability to prevent dephosphorylation of 

VP30 in the cell lysate. 

Following the 30 min incubation period, one aliquot was set aside to show the 

phosphorylation status of VP30 at this point in time. Next, ATP and other substances, 

including OA and kinase inhibitors, were added to the aliquots. Reactions were incubated 

with 2 mmol/l ATP for 1 h at 37 °C, unless otherwise noted. DTT was added to every 

aliquot at a concentration of 1 mmol/l. EGTA was added to the lysis buffer at a 

concentration of 5 mmol/l. EDTA was combined with a TBS lysis buffer for removal of 

magnesium. NEM was dissolved in ethanol and added 20 min prior to ATP, at a final 

concentration of 5 mmol/l. 

Reactions were stopped by the addition of sample buffer and heating for 5 min at 95 °C. 

Cell lysates were sonicated twice for 15 sec. Cellular debris was pelleted for 10 min at 

13 200 rpm. The supernatants were run on a SDS-polyacrylamide gel, and western 

blotting was performed. Membranes were incubated with specific primary antibodies 
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(anti-pS29 and anti-FLAG) and IRDye labeled secondary antibodies for detection by 

Li-Cor Odyssey imaging. 

3.4.2 In situ Studies on VP30 Phosphorylation in NP-Induced Inclusion Bodies 
In this in vitro assay, HUH-7 cells grown on coverslips in a 12-well plate at a density of 

5x104 cells / well, were transfected with plasmids encoding VP30f_AA_A29S, NP, and 

VP35 (200 ng each / well). 20 h p.t. one coverslip was fixed with ice-cold 

acetone-methanol (5 min, -20 °C) ("Input"). All other coverslips were not fixed, but instead 

incubated in a non-denaturing lysis buffer (TBS + 0.2 % Tween® 20) for 10 min at 37 °C. 

It turned out to be particularly important to use Tween® 20 as the lysing agent, since 

TritonTM X-100 removed most of the cells from the coverslips. Subsequently, coverslips 

were gently washed four times with TM buffer and incubated for at least 10 min in TM 

buffer. Next, the buffer was changed again, this time supplemented with reagents, such 

as ATP and OA. To irreversibly inactivate kinases, NEM was added 10 min prior to 

addition of ATP and OA at a concentration of 5 mmol/l.  

The rephosphorylation assay was done in small volumes of 50 µl per coverslip on a 

laboratory film (Parafilm), with the cells facing towards the buffer. All buffers were 

pre-warmed, the incubation temperature was 37 °C. During the following 30 min 

incubation period, coverslips were kept in a humid chamber to prevent drying. Reactions 

were stopped by fixation with ice-cold acetone-methanol 1:1 (5 min, -20 °C). Prior to 

fixation, one of the coverslips that was treated with OA and ATP was washed twiced with 

TM buffer and incubated for further 30 min in TM buffer. Staining was performed with 

specific primary antibodies (anti-pS29 and anti-FLAG) and Alexa-Fluor labeled 

secondary antibodies. 

3.4.3 Biochemical Analysis of trVLPs for Kinase Activity 
HEK-293 cells, seeded in 6-well plates at a density of 6x105 cells / well, were transfected 

with plasmids encoding the seven viral proteins (including VP30f_AA_A29S), the EBOV-

specific minigenome under control of a T7 promotor, plus a T7 RNA polymerase. 72 h p.t. 

trVLPs were purified from the supernatant by ultracentrifugation through a 20 % sucrose 

cushion (3.2.5) or a Nycodenz gradient (3.2.6). Producer cell lysates were subjected to 

in vitro phosphorylation (3.4.1). 

An aliquot of the purified and resuspended trVLPs was sampled immediately after 

centrifugation by addition of sample buffer and heating.  

The remaining trVLPs, resuspended in TM buffer, were incubated with 5 mmol/l ATP +/-

1 µmol/l OA, either with or without 0.1 % TritonTM X-100. One hour later, the reactions 

were stopped by addition of sample buffer. Samples were heated for 5 min at 95 °C and 



Methods 

57 
 

run on a SDS-polyacrylamide gel. Phosphorylation status of VP30 serine 29 was 

assessed by western blotting. 

In order to digest all proteins that were not incorporated into the trVLPs, aliquots of the 

purified trVLPs were treated with proteinase K for 30 min at 37 °C. Next, PMSF 

(in DMSO) was added to inactivate proteinase K. The trVLPs were again centrifuged 

through a 20 % sucrose cushion in a SW32 rotor. Finally, the pelleted trVLPs were 

subjected to the in vitro phosphorylation assay.  

3.4.4 Biochemical Analysis of recEBOV_S29 for Kinase Activity 
HUH-7 cells were seeded at a density of 1x107 cells / T175-flask and infected with 

recEBOV_S29 at a MOI of 3. At 24 h p.i., recEBOV_S29 was purified from the 

supernatant by ultracentrifugation through a 20 % sucrose cushion in a SW32 rotor at 

28 000 rpm and 4 °C. Cell lysates and purified virions were treated as outlined for the 

trVLPs, except that no proteinase K digestion was performed. Prior to exporting the 

samples from the BSL-4 laboratory, they were heated for 10 min at 95 °C. All work in the 

BSL-4 laboratory was performed by Dr. Nadine Biedenkopf. 

 

3.4.5 Immunoprecipitation of VP30 in Combination with a Rephosphorylation 
Assay 

HEK-293 cells, seeded in 6-well plates at a density of 6x105 cells / well, were transfected 

with plasmids encoding (1) VP30f_AA_A29S or (2) VP30f_AA_A29S + NP + VP35HA 

(500 ng / plasmid and well). At 48 h p.t., cells were lysed. Expression of the viral proteins 

was confirmed by cell lysis with CEB, SDS-PAGE (3.3.1), and western blotting (3.2.3). 

The remaining cells were lysed in a non-denaturing Co-IP buffer for 30 min at room 

temperature, without addition of phosphatase inhibitors. Lysates were centrifuged for 

10 min at 13 200 rpm to remove cellular debris. The supernatant was used for 

immunoprecipitation with anti-FLAG agarose (3.3.6). Subsequently, the beads were 

washed thoroughly five times: the first three times with the Co-IP buffer and twice with 

TM buffer. At this point in time, one aliquot was set aside, proteins were eluted with 

sample buffer, and the sample was heated to show the phosphorylation status of VP30 

serine 29 immediately after immunoprecipitation. The other aliquot was treated with 

2 mmol/l ATP and 1 µmol/l OA for 1 h at 37 °C (in TM buffer). Reactions were stopped by 

addition of sample buffer and heating. Following a short centrifugation step, supernatants 

were run on a SDS-polyacrylamide gel. Phosphorylation status of VP30 serine 29 was 

assessed by western blotting. 
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3.4.6 Kinase Inhibitors in vitro 
In vitro, kinase inhibitors can be tested at high concentrations without having to monitor 

cytotoxicity. This makes an in vitro approach ideal for screening of substances that can 

inhibit VP30 phosphorylation. 

Following the in vitro VP30 dephosphorylation step as outlined in section 3.4.1 and 3.4.2, 

several kinase inhibitors (Table 4) were tested for their ability to prevent 

rephosphorylation of VP30. The kinase inhibitors staurosporine, TBCA, and heparin 

were added 5 min prior to addition of ATP in the test tube rephosphorylation assay (3.4.1) 

and simultaneously with ATP in the in situ assay (3.4.2). 

Inhibitior Characteristics 

NEM Irreversible inhibition of enzymes by protein alkylation at cystein 

residues. Can only be used in vitro for kinase inhibition. Used at a 

concentration of 5 mmol/l. Added 10-20 min prior to 

rephosphorylation of VP30. 

EDTA Chelator of Mg2+- and Ca2+- ions. Inhibitis protein phosphorylation by 

removing the essential Mg2+- ions. Used in TBS lysis buffer at a 

concentration of 2 mmol/l. 

EGTA Chelator of Ca2+- ions, thereby inhibits calcium-dependent kinases 

such as CAMK. Used in TM lysis buffer at a concentration of 

2 mmol/l. 

Staurosporine Broad-spectrum, ATP-competitive kinase inhibitor. Used at 

concentrations from 10 nmol/l to 25 µmol/l. 

TBCA Selective casein kinase II inhibitor (IC50 = 0.11 µmol/l), ATP-

competitive. Used at concentrations from 100 nmol/l to 1 mmol/l. 

Heparin Polyanionic substance. Resembles DNA / RNA because of the high 

negative charge. Casein kinase II inhibitor. Used at concentrations 

from 0.1 µg/ml to 500 µg/ml. 
Table 4: Kinase Inhibitors. 

 
3.5 Statistical Analysis 

For statistical comparison of two sample means, a two-tailed t-test for samples with 

unequal variance was performed in Microsoft Excel.  

A p-value below 0.05 is summarized by one asterisk *, a p-value below 0.01 by two 

asterisks **, and a p-value below 0.001 by three asterisks ***. 
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4 Results 

4.1 Impact of VP30 Phosphorylation on EBOV Transcription 

4.1.1 Influence of VP30 Phosphorylation on Viral Transcriptional Activity 
VP30 is an essential EBOV transcription factor, but is dispensable for replication of the 

full length genome170. The function of VP30 as a transcription factor is inhibited by 

extensive phosphorylation of six N-terminal VP30 serine residues, and it was 

hypothesized that phosphorylation of VP30 can regulate the balance between viral 

transcription (VP30 dephosphorylated) and replication (VP30 phosphorylated) 165. The 

exact mechanism of how VP30 phosphorylation abolishes transcriptional activity is 

currently unclear. It was demonstrated that phosphorylation of VP30 impairs its 

RNA-binding capabilities27. Moreover, the interaction between VP30 and NP is enhanced 

upon phosphorylation, whereas the interaction between VP30 and RNA / VP35 is 

weakened by phosphorylation24. 

Although theoretically possible, simultaneous phosphorylation of all six N-terminal VP30 

serine residues seems unlikely under normal cellular conditions. Energetically speaking, 

the high negative charge of the adjacent phosphate groups would be very unfavorable. 

Regarding other proteins it is known that phosphorylation of one serine residue can 

influence the rate at which neighboring serine residues are phosphorylated. 

Phosphorylations that are mutually exclusive have been described 47
⁠

,79.  

We therefore asked if the transcriptional support activity of VP30 can also be regulated 

by phosphorylation of fewer or even single serine residues. We also wanted to know 

whether phosphorylation of each of the six N-terminal serine residues has the same 

consequence for VP30's function as a transcription factor or if phosphorylation of specific 

serine residues is of greater significance for transcriptional suppression. Different VP30 

phosphorylation mutants were tested in an EBOV-specific minigenome assay in 

combination with the phosphatase inhibitor OA. OA inhibits PP1 and PP2A, which are 

both known to dephosphorylate the N-terminal VP30 serine residues165. Inhibition of 

these phosphatases leads to a hyper-phosphorylated VP30f_wt, which is unable to 

support viral transcription165. The following results show the transcriptional support 

activity of the VP30 phosphorylation mutants in HEK-293 cells, both under control 

conditions (DMSO) and under phosphatase inhibition with OA. The findings were 

confirmed in HUH-7 cells to exclude cell-type specific effects. Expression of all VP30 

mutants was confirmed by western blotting (data not shown). 
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Initially, the effect of serine phosphorylation in the first (residues S29-S31, represented 

by the mutant VP30f_SA) or the second serine cluster (residues S42 / S44 / S46, 

represented by the mutant VP30f_ AS) was analyzed (Figure 5 A and B). VP30f_wt, 

VP30f_AA, VP30f_SA, and VP30f_AS were highly transcriptionally active in the 

minigenome assay under control conditions (white bars). Notably, the viral transcriptional 

support activity of VP30f_AA, which mimics permanently dephosphorylated VP30, was 

even higher than that of VP30f_wt, supporting the idea that VP30 phosphorylation 

impairs viral transcription. VP30f_DD, mimicking permanently phosphorylated VP30, was 

transcriptionally inactive. When OA was added to the growth medium, VP30f_wt and 

VP30f_SA lost most of its transcriptional support activity, whereas VP30f_AA and 

VP30f_AS still supported viral transcription (black bars).  

This means that VP30 is either predominantly phosphorylated in the first cluster upon 

treatment with OA or that phosphorylation of the first serine cluster (S29-S31) affects the 

transcriptional support activity of VP30 to a greater extent than phosphorylation of the 

other serine residues (S42 / S44 / S46).  

 
Figure 5: Transcriptional Support Activity of VP30 is Downregulated by Phosphorylation in the First 
VP30 Serine Cluster. 
(A) Reporter gene activity of VP30 phosphorylation mutants in an EBOV-specific minigenome assay under 

control conditions (white bars) or 25 nmol/l OA (black bars) (3.2.4). HEK-293 cells were transfected with 

all plasmids needed for the EBOV-specific minigenome assay, including VP30f_wt or mutants. Cells were 

treated either with 0.025 % DMSO (= control) or 25 nmol/l OA at 0 h post transfection. 24 h p.t. cells were 

lysed and the reporter gene activity was measured in a luciferase assay. Since the transcriptional activity of 

VP30f_AA cannot be influenced by phosphorylation in the N-terminal serine cluster, results obtained with 

VP30f_AA were set to 100 %. Statistical significance is shown in relation to VP30f_AA, unless otherwise 

noted. (B) Schematic presentation of the VP30 phosphorylation mutants. Serine was mutated either to 

alanine to mimic a permanently dephosphorylated residue or to aspartate to mimic a permanently 

phosphorylated residue. For a more detailed overview of VP30 phosphorylation mutants refer to the 

Appendix. 
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Next we wanted to determine whether phosphorylation of a single serine residue is 

sufficient to impair VP30's transcriptional potential. For this purpose, mutants with a 

single serine residue in the N-terminal region were tested in the minigenome assay. The 

five other serine residues were mutated to alanine (VP30f_AA_A29S to 

VP30f_AA_A46S, Figure 6 B). We could demonstrate that the transcriptional potential of 

these VP30 mutants does not differ significantly from VP30f_AA under control conditions 

(Figure 6, white bars). Also, phosphorylation of a single VP30 serine residue was not 

sufficient to impair transcriptional activation, since all single serine to alanine mutants 

kept their transcriptional support activity under phosphatase inhibition to a similar extent 

as VP30f_AA (black bars).  

 

Figure 6: Phosphorylation of VP30 S29 and S31, but not of a Single Serine Residue, is Sufficient for 
Downregulation of the Transcriptional Support Activity of VP30. 
(A) Reporter gene activity of VP30 phosphorylation mutants in an EBOV-specific minigenome assay under 

control conditions (white bars) or 25 nmol/l OA (black bars) (3.2.4). HEK-293 cells were transfected with 

all plasmids needed for the EBOV-specific minigenome assay, including VP30f_wt or mutants. Cells were 

treated either with 0.025 % DMSO (= control) or 25 nmol/l OA at 0 h post transfection. 24 h p.t. cells were 

lysed and the reporter gene activity was measured in a luciferase assay. Since the transcriptional activity of 

VP30f_AA cannot be influenced by phosphorylation in the N-terminal serine cluster, results obtained with 

VP30f_AA were set to 100 %. Statistical significance is shown in relation to VP30f_AA, unless otherwise 

noted. (B) Schematic presentation of the VP30 phosphorylation mutants. Serine was mutated either to 

alanine to mimic a permanently dephosphorylated residue or to aspartate to mimic a permanently 

phosphorylated residue. For a more detailed overview of VP30 phosphorylation mutants refer to the 

Appendix. 
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Since OA treatment indicated that phosphorylation of the first serine cluster plays an 

important role regarding the downregulation of viral transcription (Figure 5), we now 

wanted to know whether simultaneous phosphorylation of only two serine residues, 

namely S29 and S31, would be sufficient to downregulate the viral transcriptional activity. 

We generated a VP30 mutant with serine on position 29 and 31 only, while all other 

serine residues were mutated to alanine (VP30f_AA_A29S_A31S, Figure 6 B). In the 

DMSO control, this mutant was highly transcriptionally active (Figure 6 A, white bar, 

far right). When OA was added, however, this VP30 mutant showed a substantial 

decrease in transcriptional support activity (Figure 6 A, black bar, far right). 

To further investigate whether phosphorylation at certain serine residues is particularly 

important for downregulation of viral transcription, we generated single serine to alanine 

mutants, in which all other serine residues were maintained (Figure 7 B). With these 

mutants we tested whether the absence of phosphorylation at a specific serine residue 

could prevent the transcriptional inactivation of VP30 during phosphatase inhibition with 

OA. In the absence of OA, the VP30 mutants supported viral transcription equally well 

(Figure 7 A, white bars). Under phosphatase inhibition, both VP30f_S29A and 

VP30f_S31A were still able to support transcription, whereas VP30f_S30A, VP30f_S42A, 

VP30f_S44A, and VP30f_S46A were strongly inhibited (Figure 7 A, black bars). The 

mutations S29A or S31A prevented the inactivation of VP30 in the presence of OA, 

although the remaining five other serine residues could potentially be phosphorylated. 

These data reveal that, in our system, simultaneous phosphorylation of VP30 serine 

residues S29 and S31 decisively contributes to the negative effect of phosphorylation on 

VP30-mediated viral transcriptional activation. We conclude that simultaneous 

phosphorylation of VP30's serine residues 29 and 31 is both necessary and sufficient for 

downregulation of viral transcription in the EBOV-specific minigenome assay.  
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Figure 7: Simultaneous Phosphorylation of VP30 Serine Residues S29 and S31 is Necessary for 
Downregulation of the Transcriptional Support Activity of VP30. 
(A) Reporter gene activity of VP30 phosphorylation mutants in an EBOV-specific minigenome assay under 

control conditions (white bars) or 25 nmol/l OA (black bars) (3.2.4). HEK-293 cells were transfected with 

all plasmids needed for the EBOV-specific minigenome assay, including VP30f_wt or mutants. Cells were 

treated either with 0.025 % DMSO (= control) or 25 nmol/l OA at 0 h post transfection. 24 h p.t. cells were 

lysed and the reporter gene activity was measured in a luciferase assay. Since the transcriptional activity of 

VP30f_AA cannot be influenced by phosphorylation in the N-terminal serine cluster, results obtained with 

VP30f_AA were set to 100 %. Statistical significance is shown in relation to VP30f_AA, unless otherwise 

noted. (B) Schematic presentation of the VP30 phosphorylation mutants. Serine was mutated either to 

alanine to mimic a permanently dephosphorylated residue or to aspartate to mimic a permanently 

phosphorylated residue. For a more detailed overview of VP30 phosphorylation mutants refer to the 

Appendix. 
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4.1.2 Importance of VP30 Phosphorylation for Primary Viral Transcription 
Apart from the role of dephosphorylated VP30 in viral transcription (Figure 5 to Figure 7), 

VP30 phosphorylation plays an essential role during early steps of the viral life cycle 

immediately after infection of a new cell. trVLPs containing VP30 with no phosphorylation 

sites in the serine clusters (VP30_AA) were transcriptionally inactive in the indicator cells, 

and a corresponding recombinant virus recEBOV_AA could not be rescued23
⁠

,26. 

Contrary, VP30 with serine 29 as the only phosphoacceptor site was sufficient to activate 

primary transcription in a trVLP assay and it was possible to rescue a corresponding 

recEBOV_S29 with similar growth characteristics as recEBOV_wt23. The exact role of 

VP30 phosphorylation during the early time points of infection, however, was unclear. In 

that respect we wanted to investigate whether the permanent phosphorylation or a 

dynamic dephosphorylation / phosphorylation of serine 29 is essential for activating 

primary viral transcription in a trVLP assay. We therefore studied different VP30 

phosphorylation mutants, containing either no charge at serine 29 (VP30f_AA), a 

negatively charged aspartate (VP30f_AA_A29D), or a combination of both (Figure 8).  

 
Figure 8: Dynamic Phosphorylation of VP30 is Necessary for Primary Transcriptional Activity. 
(A) Reporter gene activity of VP30 phosphorylation mutants in producer (white bars) and indicator cells 
(grey bars) in an EBOV-specific trVLP assay (3.2.5). HEK-293 cells (= producer cells) were transfected with 

all plasmids required for the EBOV-specific trVLP assay, including VP30f_wt or mutants. Producer cells were 

lysed 72 h p.t. and a luciferase assay was performed (white bars). trVLPs were collected from the 

supernatants of the producer cells, purified by ultracentrifugation, and used to infect naïve HUH-7 cells 

(= indicator cells). Reporter gene activity was measured 60 h p.i. (grey bars). Results obtained with VP30f_wt 

were set to 100 %. For an overview of VP30 phosphorylation mutants refer to the Appendix. (B) Western 

blot analysis (3.3.3) of purified trVLPs. Aliquots of the trVLPs were analyzed for the incorporation of NP and 

VP30f_wt / phosphorylation mutants (3.2.5). NP was stained with chicken anti-NP and donkey anti-chicken 

680 nm antibodies, VP30 was stained with rabbit anti-flag and goat anti-rabbit 680 nm antibodies. 
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In the producer cells, all VP30 mutants enabled secondary viral transcription (white bars). 

In the indicator cells, however, only VP30f_wt and – to a lower extent - VP30f_AA_A29S 

were supporting primary transcription (grey bars). Both VP30f_AA and VP30f_AA_A29D 

were transcriptionally inactive in the indicator cells. Even the combination of both, 

phosphoablative VP30f_AA and phosphomimetic VP30f_AA_A29D, could not restore 

primary transcription. Incorporation of the VP30 mutants into purified trVLPs was 

confirmed in western blot analysis (Figure 8 B). 

These results suggest that dynamic phosphorylation of a specific serine residue is 

required for primary viral transcription. Since phosphorylation of VP30 actually impairs 

viral transcription per se (Figure 5 to Figure 7), we asked whether the essential dynamic 

phosphorylation at early stages of infection is required for efficient transport of VP30 to 

the sites of viral RNA synthesis in the perinuclear region. Therefore, we performed 

immunofluorescence analyses of naïve indicator cells infected with trVLPs containing 

different VP30 phosphorylation mutants, and stained for the viral NP and VP30 to detect 

intruding nucleocapsids (Figure 9). Around the nucleus, small typical NP-positive 

inclusion bodies were observed upon infection with trVLPs containing no VP30, 

VP30f_wt, or the VP30 phosphorylation mutants (Figure 9, i-vi). No inclusion bodies 

could be detected in the negative control (Figure 9, vii). The formation of inclusion bodies 

was obviously not dependent on newly synthesized NP, since there is no NP open 

reading frame encoded in the minigenome. Inclusion bodies had to be formed by NP 

incorporated into the trVLPs. Strikingly, we only observed a signal for VP30f_wt and for 

VP30f_AA_A29S, but not for the other VP30 phosphorylation mutants, including the 

combination of VP30f_AA and VP30f_AA_A29D (Figure 9, v). VP30f_wt and 

VP30f_AA_A29S colocalized with the NP-positive inclusion bodies. The 

immunofluorescence signal for VP30f_AA_A29S was weaker than for VP30f_wt, in 

correspondence with the lower activation of primary transcription of this mutant 

(Figure 8).  

These observations suggest that phosphorylation of VP30 ensures adequate transport 

of VP30 to the site of primary transcription, presumably by enhanced interaction of 

phosphorylated VP30 with other viral proteins like NP23. 
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Figure 9: Only VP30f_wt and VP30f_AA_A29S Localize to Small NP-Positive Inclusion Bodies Formed 
in Naïve Indicator Cells after Infection with trVLPs. 
Indirect immunofluorescence analysis (3.3.5) of naïve HUH-7 cells infected with trVLPs. The trVLPs were 

produced as described in 3.2.5 and contained either VP30f_wt or phosphorylation mutants. Twenty-two h p.i. 

cells were fixed with PFA. NP was stained with chicken anti-NP and goat anti-chicken Alexa 488 antibodies, 

VP30 was stained with guinea pig anti-VP30 and goat anti-guinea pig Alexa 594 antibodies. Nuclei were 

visualized with DAPI. Images were taken at a magnification of x1000 in close proximity to the nucleus (blue).  
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4.2 Characterization of the Phosphospecific VP30 Antibody anti-pS29 

With respect to the importance of VP30's serine 29 for phosphorylation-dependent 

regulation of EBOV transcription, we aimed to further decipher the role of VP30 

phosphorylation during the EBOV life cycle with an antibody specifically recognizing 

phosphorylated serine 29 (anti-pS29). For generation of a polyclonal phosphospecifc 

antibody, rabbits were immunized with a 12-mer phosphorylated VP30 peptide (3.3.7). 

This peptide included the original VP30 serine residue 29, centrally arranged 

(Figure 10 A and E). Importantly, serine residues at the original position 30 and 31 were 

changed to alanine to mimic nonphosphorylated serine residues. Hence, the new 

phosphospecific antibody was designed to detect phosphorylation on VP30 AA_A29S 

without interference of possible phosphorylation events on the neighboring serine 

residues. 

The resulting antibody anti-pS29 was tested for its specificity using FLAG-tagged VP30 

phosphorylation mutants (Figure 10 E). HEK-293 cells expressing the FLAG-tagged 

VP30 mutants were lysed, and expression of the VP30 constructs was verified by an 

anti-FLAG antibody (Figure 10 B). The phosphospecific antibody anti-pS29 detected 

both VP30f_wt and VP30f_AA_A29S, suggesting serine 29 to be phosphorylated in cells 

lysed with phosphatase inhibitors for preservation of the phosphorylation status 

(lanes 1 and 3). However, when cells were lysed in a non-denaturing buffer without 

phosphatase inhibitors and incubated for 30 min, VP30f_wt and VP30f_AA_A29S were 

no longer detected by the phosphospecific antibody, whereas the anti-FLAG antibody 

was still able to detect the presence of VP30 mutants (lanes 5 and 6). This suggested 

dephosphorylation of VP30 serine 29 by endogenous phosphatases. VP30f_AA, which 

mimics permanently dephosphorylated VP30 and differs from VP30f_AA_A29S by the 

alanine at position 29, was not detected by anti-pS29 (lane 2). VP30f_AA_A29D on the 

other hand, which mimics phosphorylated VP30 on position 29, was detected by the 

phosphospecific antibody, albeit weaker (lane 4). The observed lower signal for 

VP30f_AA_A29D might be explained by a lower affinity of the antibody for the aspartate 

residue than for phosphorylated serine.  

Similar results were obtained upon expression of the VP30 mutants in HUH-7 cells for 

immunofluorescence analysis (Figure 10 C). Here, expression of constructs was verified 

by an anti-VP30 antibody from guinea pig, revealing mostly a diffuse staining pattern of 

VP30. Again, the phosphospecific antibody detected VP30f_wt, VP30f_AA_A29S, and 

VP30f_AA_A29D, but not VP30f_AA. Furthermore, VP30f_AA_A30S, which has serine 

on position 30 instead of position 29, was not detected by the phosphospecific antibody. 
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Figure 10: Characteristics of a Phosphospecific VP30 Serine 29 Antibody (anti-pS29). 
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(A) Illustration of the VP30 peptides used to generate a polyclonal phosphospecific peptide antibody 

"anti-pS29" for detection of VP30 serine 29 phosphorylation. (B) Western blot analysis of 

VP30f_wt / phosphorylation mutants expressed in HEK-293 cells (3.3.3). 24 h p.t. cells were lysed in either a 

denaturing cell extraction buffer (lanes 1-4 and lane 7) or in a non-denaturing buffer (lanes 5 / 6). Cells lysed 

with the non-denaturing buffer were incubated for 30 min at room temperature, leading to VP30 

dephosphorylation by endogenous phosphatases. SDS-PAGE (3.3.1) and WB (3.3.3) were performed, 

followed by staining of total VP30 with mouse anti-FLAG and goat anti-mouse 780 nm antibodies and of 

phosphorylated VP30 with rabbit anti-pS29 and goat anti-rabbit 680 nm antibodies. (C) Immunofluorescence 

analysis of VP30f_wt / mutants expressed in HUH-7 cells (3.3.5). 16 h p.t. cells were fixed with PFA. Total 

VP30 was stained with guinea pig anti-VP30 and goat anti-guinea pig Alexa 594 antibodies. Phosphorylated 

VP30 was stained with rabbit anti-pS29 and goat anti-rabbit Alexa 488 antibodies. Nuclei were visualized 

with DAPI. (D) Confirmation of the specificity of the VP30 peptide antibody anti-pS29 in a peptide competition 

assay (3.3.8). The primary antibodies were preincubated with increasing concentrations of either the 

phosphorylated peptide or dephosphorylated S29-peptide, followed by staining of HUH-7 cells that 

expressed VP30f_AA_A29S (3.3.5). Preincubation with a FLAG-peptide and dH2O served as additional 

controls. Total VP30 was stained with mouse anti-flag and goat anti-mouse Alexa 594 antibodies, 

phosphorylated VP30 was stained with rabbit anti-pS29 and goat anti-rabbit Alexa 488 antibodies. Nuclei 

were visualized with DAPI. (E) Summary of the VP30 phosphorylation mutants and their recognition by the 

phosphospecific VP30 antibody anti-pS29. Serine was either mutated to alanine (blue, mimicking 

permanently dephosphorylated VP30) or to aspartate (red, mimicking permanently phosphorylated VP30). 

X: any amino acid. Grey box: binding site of the anti-pS29 antibody. Right column: recognition of the VP30 

mutants by the anti-pS29 antibody. (-): no recognition. (+) to (+++): weak to strong recognition. Figure is 

based on Lier et al. 2017145. 

 

As mentioned, all VP30 phosphorylation mutants generally had a diffuse distribution 

throughout the cytoplasm in IFA, but VP30f_wt had a strong tendency to form 

cytoplasmic aggregates, especially when highly overexpressed. This feature was not 

observed for the phosphorylation mutants VP30f_AA or VP30f_AA A29S, suggesting that 

the formation of VP30f_wt aggregates might be influenced by multisite phosphorylation. 

This is underlined by the observation that the phosphospecific antibody stained these 

aggregates strongly and that the mutant VP30f_DD, which mimics permanently 

phosphorylated VP30 on all six serine residues, aggregated as well (data not shown). 

We validated the specificity of the anti-pS29 antibody for phosphorylated 

VP30f_AA_A29S in a peptide competition assay (Figure 10 D). HUH-7 cells were 

transfected with the plasmid encoding VP30f_AA_A29S. Prior to staining, increasing 

concentrations of either the phosphorylated peptide p_S29, the nonphosphorylated 

S29-peptide, or a FLAG-peptide were added to the primary antibodies (anti-pS29 and 

anti-FLAG). 24 h p.t., the VP30f_AA_A29S-expressing cells were stained with the 

preincubated antibodies. With increasing concentrations of the p_S29-peptide, anti-pS29 

did no longer detect VP30f_AA_A29S (Figure 10 D, iii and iv), whereas preincubation with 

the nonphosphorylated S29-peptide did not affect detection by the anti-pS29 antibody 
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(Figure 10 D, v and vi). Incubation with a FLAG-peptide prevented staining by the 

anti-FLAG antibody, but not by phosphospecific anti-pS29 antibody (Figure 10 D, ii). 

Staining of VP30f_AA_A29S with the anti-FLAG antibody was not affected by 

preincubation with the VP30 S29-specific peptides (Figure 10 D, i and iii-vi). 

Overall, these findings confirm that the generated antibody is highly specific for the 

phosphorylated form of VP30f_AA_A29S and does not bind if serine residue 29 is 

dephosphorylated by endogenous cellular protein phosphatases or outcompeted by the 

corresponding phosphospecific peptide. 

 

4.3 Influence of NP and Other Viral Proteins on VP30 Phosphorylation 

4.3.1 Co-expression of VP30 with NP  
Earlier results obtained with phosphomimetic VP30 mutants carrying permanent charges 

at the phosphorylation sites indicated that phosphomimetic VP30 located strongly to 

NP-induced inclusion bodies, whereas a mutant mimicking permanently 

dephosphorylated VP30 distributed in a more diffuse pattern throughout the 

cytoplasm165. Also, co-immunoprecipitation data revealed a stronger interaction between 

NP and phosphorylated VP30 as compared with nonphosphorylated VP3024. As 

mentioned, these experiments were performed with VP30 mutants carrying permanent 

charges at the phosphorylation sites. With the anti-pS29 antibody we now had the 

opportunity to investigate the localization of dynamically phosphorylatable VP30 in the 

presence of NP in co-expression studies. 

In Figure 11 A, VP30 phosphorylation mutants were stained with an anti-VP30 antibody, 

independently of their phosphorylation status. The typical NP-induced inclusion bodies 

were visualized with an anti-NP antibody. VP30f_wt, as well as all VP30 mutants, located 

to the inclusion bodies, albeit the signal inside the inclusion bodies was weaker for the 

VP30 phosphorylation mutants. Less prominent, all VP30 phosphorylation mutants had 

a diffuse cytoplasmic localization upon co-expression with NP. 

In Figure 11 B, VP30 was stained with the phosphospecific antibody. For VP30f_wt, a 

very weak signal was observed, which was mostly located in the NP-induced inclusion 

bodies, but also diffusely in the cytoplasm. As expected, the anti-pS29 antibody did not 

stain VP30f_AA. To our surprise, the phosphospecific antibody did not stain 

VP30f_AA_A29S inside the NP-induced inclusion bodies. Instead, only the diffusely 

distributed VP30f_AA_A29S was detected in the cytoplasm. 
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Figure 11: VP30 Serine 29 is Predominantly Dephosphorylated in NP-Induced Inclusion Bodies. 
(A) – (B) Indirect immunofluorescence analysis of HUH-7 cells co-expressing VP30f_wt / phosphorylation 

mutants and NP (3.3.5). 20 h p.t. cells were fixed with PFA. NP was stained with chicken anti-NP and goat 

anti-chicken Alexa 488 antibodies. Nuclei were visualized with DAPI. In (A), total VP30 was stained with 

guinea pig anti-VP30 and goat anti-guinea pig Alexa 594 antibodies. In (B), phosphorylated VP30 was 

stained with rabbit anti-pS29 and goat anti-rabbit Alexa 594 antibodies. 

 

To exclude that the strong interaction of the phosphorylated VP30f_AA_A29S with NP 

masked the antibody epitope (phosphoepitope masking), we used VP30f_AA_A29D as 

control. The aspartate on position 29 mimics a permanent phosphorylation and was 

recognized by the phosphospecific antibody in single expression experiments 

(Figure 10 B and C). Contrary to VP30f_AA_A29S, VP30f_AA_A29D was recognized 

perfectly inside the NP-induced inclusion bodies, suggesting that the phosphoepitope 

per se (in this case the negatively charged aspartate) is freely accessible by the 

anti-pS29 antibody. 

This suggests that EBOV VP30 is mainly dephosphorylated in NP-induced inclusion 

bodies, either due to missing phosphorylation by cellular kinases or, more likely, due to 

rapid dephosphorylation by cellular phosphatases. We hypothesized that viral NP itself 

could influence the phosphorylation state of VP30, e.g. by recruiting cellular 

phosphatases. We therefore used OA to block dephosphorylation of VP30 by cellular 

PP1 / PP2A during co-expression of NP and VP30f_AA_A29S (Figure 12). In the 

DMSO-control and at very low concentrations of OA (1 nmol/l), no or only very weak 

signals of phosphorylated VP30 were observed inside the NP-induced inclusion bodies. 
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With increasing concentrations of OA, however, the phosphospecific antibody 

recognized VP30f_AA_A29S strongly inside the inclusion bodies (Figure 12, iii and iv).  

We conclude from these results that VP30f_AA_A29S is predominantly 

dephosphorylated when colocalizing with NP in the inclusion bodies, likely by recruitment 

of an OA-sensitive phosphatase by NP.  

 

 

Figure 12: During Phosphatase Inhibition, Phosphorylated VP30 is Detected in NP-Induced 
Inclusion Bodies. 
Indirect immunofluorescence analysis of HUH-7 cells co-expressing VP30f_AA_A29S and NP under the 

influence of the phosphatase inhibitor OA (3.3.5). OA was added to the growth medium 0 h p.t. 

Control = DMSO. Cells were fixed 20 h p.t. with PFA. NP was stained with chicken anti-NP and 

goat anti-chicken Alexa 488 antibodies, phosphorylated VP30 was stained with rabbit anti-pS29 and 

goat anti-rabbit Alexa 594 antibodies. Nuclei were visualized with DAPI. 

 

4.3.2 Co-expression of VP30 with Other Viral Proteins 
In the light of the striking influence of NP on VP30 phosphorylation, we wanted to 

determine whether other viral proteins also influence phosphorylation of VP30 serine 29. 

We transiently expressed various combinations of EBOV proteins together with 

VP30f_AA_A29S / VP30f_wt and analyzed their influence on VP30 phosphorylation in 

IFA (Figure 13). FLAG-tagged VP30 was stained with an anti-FLAG antibody 

independent of its phosphorylation status. VP35 alone did not influence the 

phosphorylation status of VP30f_AA_A29S (Figure 13, i). In contrast, when 

VP30f_AA_A29S was co-expressed with the nucleoprotein NP, the signal for 

phosphorylated VP30 was strongly diminished and the inclusion bodies could not be 

visualized with the phosphospecific antibody (Figure 13, ii), supporting the results in 
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Figure 11. The anti-FLAG staining though revealed the typical concentration of VP30 

inside the NP-induced inclusion bodies. When VP30f_AA_A29S was transfected with all 

other six viral proteins (NP, VP35, VP40, GP, VP24, L), there was no or only a very weak 

signal for the phosphospecific antibody (Figure 13, iii). The same was true for cells that 

expressed VP30f_wt together with all other viral proteins (Figure 13, iv). 

 
Figure 13: Besides NP, Other EBOV Proteins also Influence Phosphorylation of VP30 Serine 29. 
Indirect immunofluorescence analysis of HUH-7 cells, which were transfected with plasmids encoding 

VP30f_AA_A29S / VP30f_wt together with other viral proteins (3.3.5). Cells were fixed 20 h p.t. with PFA. 

Total VP30 was stained with mouse anti-flag and goat anti-mouse Alexa 594 antibodies, phosphorylated 

VP30 was stained with rabbit anti-pS29 and goat anti-rabbit Alexa 488 antibodies. Nuclei were visualized 

with DAPI.  

 

These immunofluorescence results were supported by western blot studies in HEK-293 

cells (Figure 14 A). Expression of VP30f_AA_A29S was again verified by staining with 

the anti-FLAG antibody. VP30f_AA_A29S was strongly phosphorylated at position 29 if 

expressed alone in the HEK-293 cells (lane 1). VP35 or the combination of VP35 / L did 

not reduce the amount of phosphorylated VP30 (lanes 2 and 5). When VP30f_AA_A29S 

was expressed together with the viral NP (+/- VP35), a significant weaker signal was 

observed for the phosphospecific antibody (lane 3 and 4). The same was true when all 

viral nucleocapsid proteins were expressed. The addition of the minigenome to these 

expression plasmids had little or no effect (lane 6 versus lane 7). The signal for the 

phosphospecific antibody was even lower or absent, when all EBOV proteins were 

expressed (lane 8).  
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Figure 14: NP and Other EBOV Proteins Decrease Phosphorylation of VP30 by Recruitment of an 
OA-Sensitive Phosphatase. 



Results 

75 
 

(A) - (C) Western blot analysis of HEK-293 cells expressing VP30f_AA_A29S, either alone or in combination 

with other viral proteins (3.3.4). The empty vector pCAGGS_MCS was added to adjust the amout of 

transfected DNA. 24 h p.t. the growth medium was changed, with (A) 0.05 % DMSO, (B) 25 nmol/l OA, or 

(C) 50 nmol/l OA dissolved in the medium. 48 h p.t. cells were lysed using the denaturing CEB. VP30 

phosphorylation was assessed by SDS-PAGE (3.3.1) and western blotting (3.3.3). Total VP30 was stained 

with mouse anti-FLAG and goat anti-mouse 780 nm antibodies, phosphorylated VP30 with rabbit anti-pS29 

and goat anti-rabbit 680 nm antibodies. Staining of GP and NP (with goat anti-GP/NP and donkey anti-goat 

780 nm antibodies), as well as VP35 (not shown), served as expression controls. (D) Quantification of 

several independent western blot experiments (3.3.4). For normalization of VP30f_AA_A29S amounts, the 

signal strength obtained with the phosphospecific antibody was divided by the signal-strength obtained with 

the anti-FLAG antibody. The result obtained for VP30f_AA_A29S single expression was set to 100 %. Unless 

otherwise noted, asterisks indicate the statistical deviation from VP30f_AA_A29S single expression.  

 

To inhibit VP30 dephosphorylation in vivo, we incubated the cells with increasing 

amounts of OA. Now the signal intensity of the phosphospecific antibody was similar to 

the anti-FLAG staining for all combinations of viral proteins (Figure 14 B and C). 

In Figure 14 D, VP30 protein bands from several independent experiments were 

quantified. The signal obtained with the phosphospecific antibody was normalized to the 

signal obtained with the anti-FLAG antibody. The observed differences of the 

phosphorylation signal were highly significant in the control (white bars). The most 

obvious decrease in VP30 phosphorylation was seen as soon as NP was co-expressed 

with VP30f_AA_A29S. The amount of phosphorylated VP30f_AA_A29S was again 

significantly lower when all viral proteins were expressed. Figure 14 D, grey bars, 

quantifies the effect of phosphatase inhibition on VP30 phosphorylation. OA was able to 

reverse the effect of NP on VP30 phosphorylation.  

Taken together, we propose that other viral proteins, especially the nucleoprotein NP, 

can shift the phosphorylation status of serine 29 of VP30 towards dephosphorylation, as 

serine 29 was preferentially dephosphorylated within NP-induced inclusion bodies. Since 

the phosphorylation status was changed upon addition of the PP1 / PP2A inhibitor OA, it 

seems that NP recruits phosphatases, which can dephosphorylate VP30 when 

interacting with NP. Besides NP, other viral proteins also influence the phosphorylation 

status of VP30, since the lowest signal for phosphorylated serine 29 was observed when 

all viral proteins were recombinantly expressed. 
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4.3.3 VP30 Phosphorylation during Infection with recEBOV_wt and 
recEBOV_S29 

The examination of VP30 phosphorylation during the EBOV life cycle was of great 

interest. HUH-7 cells were infected with recEBOV_wt and recEBOV_S29, and VP30 

phosphorylation was assessed by IFA. Figure 15 A confirms the expression of VP30, 

Figure 15 B assesses phosphorylation of VP30 serine 29. Staining of the infected cells 

with an NP-specific antibody served to visualize viral inclusion bodies.  

Our first observation was that in EBOV infected cells neither VP30_wt nor 

VP30_AA_A29S was detected by the phosphospecific antibody (Figure 15 B, i and iv, 

respectively). However, staining with an anti-VP30 antibody confirmed that VP30 was 

present and mainly localized inside the NP-induced inclusion bodies 

(Figure 15 A, i and iv). 

In order to block the putative phosphatase activity recruited by viral proteins, we treated 

the cells with OA to shift VP30 towards a phosphorylated state. In line with our 

minigenome assay results (Figure 5 to Figure 7), recEBOV_wt was very sensitive to 

treatment with OA. Most likely, phosphatase inhibition resulted in hyper-phosphorylation 

of the six N-terminal serine residues of VP30_wt, which then lost its transcriptional 

support activity. This, in turn, suppressed EBOV propagation, explaining the missing 

signal for NP or VP30_wt (Figure 15 A and B, ii and iii). 

recEBOV_S29 on the other hand, which has serine 29 as the only phosphoacceptor site 

within the N-terminal VP30 region, was able to propagate under treatment with OA 

because phosphorylation of a single VP30 serine residue is not sufficient to impair viral 

transcriptional activity (Figure 6). Upon OA treatment, the phosphospecific antibody 

detected VP30_AA_A29S in infected cells (Figure 15 B, v and vi), indicating that 

treatment of cells with the phosphatase inhibitor was able to shift the balance of serine 

29 towards the phosphorylated state. The signal was observed mostly in large inclusion 

bodies. When cell lysates from the same experiment were analyzed in WB analysis, the 

phosphospecific antibody did not detect phosphorylated VP30_AA_A29S despite 

treatment with OA, indicating that phosphorylation was still rather weak (data not shown).  

Our results reveal that during recEBOV infection only a minor fraction of VP30 serine 29 

is phosphorylated, most likely due to the activity of cellular phosphatases. These 

observations are in agreement with the transfection studies. When all EBOV proteins 

were recombinantly expressed, we observed a signal for the phosphospecific antibody 

only after phosphatase inhibition (Figure 14, lane 8).  

Even though unexpected, our results do not contradict the earlier observations that 

phosphorylated VP30 interacts stronger with NP, but rather adds new and 

complementing information24
⁠

,165. We presume that the high affinity of phosphorylated 
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VP30 for NP facilitates recruitment of VP30 to viral inclusion bodies where VP30 can 

initiate viral transcription upon dephosphorylation. The phosphatase activity in the 

inclusion bodies would assure adequate transcriptional support activity of VP30, since 

highly phosphorylated VP30 does not support viral transcription. 

 
Figure 15: VP30 Serine 29 is Predominantly Dephosphorylated during Infection with recEBOV. 
(A) - (B) Indirect immunofluorescence analysis of HUH-7 cells infected with recEBOV_wt or recEBOV_S29 

at an MOI of 3 (3.3.5 and 3.2.8). The growth medium contained either DMSO (control), 25 nmol/l OA, or 

50 nmol/l OA, 1 h p.i. At twenty-four h p.i. cells were fixed with PFA. NP was stained with chicken anti-NP 

and goat anti-chicken Alexa 488 antibodies, nuclei were visualized with DAPI. In (A), total VP30 was stained 

with rabbit anti-VP30 and goat anti-rabbit Alexa 594 antibodies. In (B), phosphorylated VP30 was stained 

with rabbit anti-pS29 and goat anti-rabbit Alexa 594 antibodies. 
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4.4 Investigations on Putative VP30 Kinase Recognition Motifs  

An efficient interaction between the catalytic center of the kinase and the 

phosphoacceptor site of the substrate is largely dependent on the neighboring amino 

acids of the phosphorylation site (P-site), both N- and C-terminal of the P-site244. The 

amino acids of the substrate interact with the active site of the kinase to ensure efficient 

phosphorylation and positioning of the P-site by adding important binding energy to the 

interaction244. Many conserved phosphoacceptor motifs have been described ⁠

9. Some of 

these, such as the amino acid motif S-X-X-E/D, are relatively specific for a certain kinase. 

Other phosphorylation motifs, such as the common R-X-X-S sequence, are used by a 

large number of kinases (Table 5). In Figure 16, potential kinase recognition motifs for 

the six N-terminal serine residues of VP30 are depicted⁠

9
⁠

,278. Many residues of these 

phosphorylation motifs, including R26 and R28, are conserved in the different Ebolavirus 

species (data not shown).  

 
Figure 16: Putative VP30 Phosphorylation Motifs. 
Illustration of potential EBOV VP30 phosphorylation motifs in the two N-terminal serine clusters. Many 

kinases are known to recognize specific amino acids close to the phosphorylation site. The phosphoacceptor 

serine residue is depicted in yellow, arginine in red, glutamate in blue, and glutamine in green. X = any amino 

acid.  

 

Minimal phosphorylation motif  Substrate motif for 
R-X-X-S PKA, PKC, CAMK, ROCK, RSK, CHK2, PKG 

R-X-R-X-X-S PKB (Akt), MAPKAPK1, RSK, p70 S6 

R-X-S PKA 

S-X-X-E/D Casein kinase II 

S-X-R PKC, PKG 

S-Q ATM / ATR, DNA-dependent protein kinase 

R-X-X-S-X-X-R CLK1 
Table 5: Putative VP30 Phosphorylation Motifs and Examples of Relevant Kinases. 
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In the following experiments, we tried to confirm the biological relevance of the putative 

kinase recognition motifs for VP30 phosphorylation. 

Initially, we expressed VP30 arginine mutants and analyzed the phosphorylation status 

of serine 29 with the phosphospecific anti-pS29 antibody. The arginine residues of the 

putative kinase recognition motifs were replaced by the uncharged alanine in the 

background of VP30f_AA_A29S (Figure 17 C). In immunofluorescence analysis, the 

expression of the VP30 mutants was verified with an anti-VP30 antibody (Figure 17 A), 

and in western blot analysis with an anti-FLAG antibody (Figure 17 B). In both assays, 

the phosphospecific antibody did not recognize VP30f_AA_A29S_R26A, which does not 

contain the putative R-X-X-S kinase recognition motif for S29 (Figure 17 A, ii and 

Figure 17 B, lane 5). Likewise, a double arginine mutant was not recognized 

(Figure 17 A, iv and Figure 17 B, lane 7). The mutant VP30f_AA_A29S_R28A on the 

other hand, which still contains the R-X-X-S motif for phosphorylation of serine 29, was 

recognized by the phosphospecific antibody, albeit weaker than VP30f_AA_A29S 

(Figure 17 A, iii and Figure 17 B, lane 6). 

These results are a first hint that phosphorylation of serine residue 29 is dependent on 

the common kinase recognition motif R-X-X-S involving arginine residue 26. However, 

this experiment needs to be interpreted carefully, since the phosphospecific antibody is 

a peptide antibody, and mutation of any amino acids located within the peptide sequence 

could lead to loss of detection by the antibody without necessarily influencing the 

phosphorylation status of serine 29 itself.  
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Figure 17: Phosphorylation of VP30 Serine 29 is Dependent on a Common R-X-X-S Kinase 
Recognition Motif. 
(A) Indirect immunofluorescence analysis of HUH-7 cells expressing VP30f_AA_A29S or arginine mutants 

(3.3.5). Cells were fixed 20 h post transfection. Total VP30 was stained with guinea pig anti-VP30 and goat 

anti-guinea pig Alexa 488 antibodies. Phosphorylated VP30 was stained with rabbit anti-pS29 and goat 

anti-rabbit Alexa 488 antibodies. Nuclei were visualized with DAPI. (B) Western blot analysis of HEK-293 

cells expressing VP30f_AA_A29S or arginine mutants (lanes 3 and 5-7) (3.3.3). 24 h p.t. cells were lysed in 

a denaturing cell extraction buffer. VP30 phosphorylation was assessed by SDS-PAGE (3.3.1) and western 

blotting (3.3.3). Total VP30 was stained with mouse anti-FLAG and goat anti-mouse 780 nm antibodies, 

phosphorylated VP30 with rabbit anti-pS29 and goat anti-rabbit 680 nm antibodies. (C) Schematic 

presentation of the VP30 arginine mutants. The putative kinase recognition motifs were mutated to alanine 

to impair binding of VP30 to the catalytic center of the kinase. For a more detailed overview of VP30 mutants 

refer to the Appendix. 
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Hence we wanted to confirm the significance of the putative kinase recognition motifs for 

VP30 function in an EBOV-specific minigenome assay (Figure 18 A). We mutated the 

arginine residues of the potential VP30 kinase recognition motifs to alanine, both in the 

background of VP30f_wt and VP30f_AA_A29_31S (Figure 18 B). The latter mutant 

showed a high sensitivity to OA, indicating a significant role of phosphorylation events at 

S29 and S31 for transcriptional regulation (Figure 6 and Figure 7). 

 
Figure 18: Hyper-phosphorylation of VP30 Serine 29 and Serine 31 Induced by OA Treatment is 
dependent on Arginine 26 and Arginine 28. 
(A) Reporter gene activity of VP30 arginine mutants in an EBOV-specific minigenome assay under control 
conditions (white bars) or 25 nmol/l OA (black bars) (3.2.4). HEK-293 cells were transfected with all 

plasmids needed for the EBOV-specific minigenome assay, including VP30f_wt or mutants. Cells were 

treated either with 0.025 % DMSO (= control) or 25 nmol/l OA at 0 h post transfection. 24 h p.t. cells were 

lysed and the reporter gene activity was measured in a luciferase assay. Since the transcriptional activity of 

VP30f_AA cannot be influenced by phosphorylation in the N-terminal serine cluster, results obtained with 

VP30f_AA were set to 100 %. Statistical significance is shown in relation to VP30f_AA, unless otherwise 

noted. (B) Schematic presentation of the VP30 arginine mutants. The putative kinase recognition motifs 

were mutated to alanine to impair binding of VP30 to the catalytic center of the kinase. For a more detailed 

overview of VP30 mutants refer to the Appendix. 
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In the absence of OA (control experiment, Figure 18 A, white bars), the reporter gene 

activity of the VP30 arginine mutants was similar to VP30f_wt. When the phosphatase 

inhibitor OA was added (Figure 18 A, black bars), transcriptional support activity of 

VP30f_wt was completely abolished as OA results in VP30 hyper-phosphorylation. 

Contrary, when arginine 26 or 28 were mutated to alanine, OA treatment resulted in only 

50 % reduction of the reporter activity (Figure 18 A, black bars, VP30_R26A and 

VP30_R28A). The same was also true when we introduced the arginine to alanine 

substitutions in the background of VP30f_AA_A29_31S (Figure 18 A, black bars, 

VP30f_AA_A29_31S_R26A and VP30f_AA_A29_31S_R28A). As an additional control, 

the mutant VP30f_R40A was tested. Arginine 40 could serve as a potential R-X-S kinase 

recognition motif for serine 42 (Figure 16). In Figure 7 we demonstrated that 

phosphorylation at serine 42 is not essential for transcriptional downregulation, because 

the serine to alanine mutant VP30_S42A was still transcriptionally inactive during 

phosphatase inhibition. Accordingly, VP30f_R40A was also transcriptionally inactive in 

the minigenome assay during treatment with OA (Figure 18 A, black bar).  

This results illustrates that the transcriptional support activity of the VP30 arginine 

mutants is not very sensitive to OA. We think that the respective serine residues cannot 

become hyper-phosphorylated when arginine 26 or 28 are missing, because the acting 

kinases are dependent on the two arginine residues. Our results suggest that both 

arginine 26 and arginine 28 serve as kinase recognition motifs for phosphorylation of 

serine residues 29 and 31. Mutation of either of the two arginine motifs impairs efficient 

phosphorylation at these sites. 

Finally, the importance of the VP30 kinase recognition motifs was validated in an 

EBOV-specific trVLP assay. Earlier we demonstrated that phosphorylation of VP30 

serine 29 is important to support primary transcription (Figure 8). However, in previous 

experiments the primary transcriptional support activity of VP30 was not exclusively 

dependent on serine 29, since phosphorylation of the second serine cluster alone 

(S42 / S44 / S46) was also sufficient for rendering VP30 active in primary transcription26. 

We therefore hypothesized that mutation of arginine 26 / 28 in the background of 

VP30f_wt would not impair primary transcriptional activity, because the second serine 

cluster would not be affected by these mutations and still be available for 

phosphorylation. Mutation of arginine 26 in the background of VP30f_AA_A29S, 

however, should abolish primary transcriptional activity if phosphorylation of serine 29 

indeed depends on the R-X-X-S motif. 

 



Results 

83 
 

In the producer cells, all VP30 arginine mutants enabled secondary viral transcription 

(Figure 19, white bars). Mutation of arginine 26 / 28 in the background of all six VP30 

serine residues did not affect the primary transcriptional activity in the indicator cells 

(Figure 19, grey bars, VP30f_R26A and VP30f_R28A). In the background of 

VP30f_AA_A29S, however, only mutation of arginine 26 abolished primary 

transcriptional activity completely, whereas mutation of arginine 28 did not (Figure 19, 

grey bars, VP30f_AA_A29S_R26A and VP30f_AA_A29S_R28A). Incorporation of the 

VP30 mutants into the purified trVLP's was confirmed by western blotting (Figure 19 B). 

Altogether, these findings establish that efficient phosphorylation of VP30 serine 29 

and serine 31 is dependent on the R-X-X-S kinase recognition motifs, with arginine 26 

playing an essential role for serine 29 phosphorylation. 

 

 
Figure 19: Phosphorylation of VP30 Serine 29 Depends on a R-X-X-S Kinase Recognition Motif.  
 (A) Reporter gene activity of VP30 arginine mutants in producer (white bars) and indicator cells 
(grey bars) in an EBOV-specific trVLP assay (3.2.5). HEK-293 cells (= producer cells) were transfected with 

all plasmids required for the EBOV-specific trVLP assay, including VP30f_wt or mutants. Producer cells were 

lysed 72 h p.t. and a luciferase assay was performed (white bars). trVLPs were collected from the 

supernatants of the producer cells, purified by ultracentrifugation, and used to infect naïve HUH-7 cells 

(= indicator cells). Reporter gene activity was measured 60 h p.i. (grey bars). Results obtained with VP30f_wt 

were set to 100 %. Results for VP30f_R26A and VP30f_R28A were kindly provided by Dr. Nadine 

Biedenkopf. For an overview of VP30 arginine mutants refer to the Appendix. (B) Western blot analysis of 

purified trVLPs (3.3.3). Aliquots of the trVLPs were analyzed for the incorporation of VP30f_wt / mutants in a 

proteinase K digestion assay (3.2.5). Enzymatic efficiency was controlled by addition of TritonTM X-100 

(lane 6). NP was stained with chicken anti-NP and donkey anti-chicken 680 nm antibodies, VP30 was stained 

with rabbit anti-VP30 and goat anti-rabbit 680 nm antibodies. 
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4.5 Characterization of VP30 Phosphorylation in vitro  

For further characterization of VP30 phosphorylation, we established an in vitro VP30 

phosphorylation and dephosphorylation assay, which is based on the addition of enzyme 

co-substrates or inhibitors and recognition of phosphorylated VP30 by the anti-pS29 

antibody. Cell lysates expressing VP30f_AA_A29S provided the source for kinases and 

phosphatases. Figure 20 schematically pictures the VP30 serine 29 phosphorylation and 

dephosphorylation reaction. Cellular kinases need ATP4-, complexed by divalent metal 

ions, usually two Mg2+-ions, as a co-substrate for phosphorylation of proteins ⁠

2. 

Ethylenediaminetetraacetic acid (EDTA) complexes and removes Mg2+- and Ca2+-ions 

from the lysate, whereas Ethylene glycol-bis(β-aminoethyl ether)-N,N,N',N'-tetraacetic 

acid (EGTA) only chelates Ca2+-ions. N-ethylmaleimide (NEM) irreversibly inactivates 

kinases in vitro by alkylation of thiol-groups245
⁠

,274. Okadaic acid (OA) inhibits PP1 and 

PP2A and is also part of a commercially available mixture of several phosphatase 

inhibitors (PhosSTOPTM). Sodium fluoride (NaF) is a commonly used general 

phosphatase inhibitor and is part of the denaturing cell extraction buffer (CEB, 

Invitrogen). 

 
Figure 20: Schematic Model of VP30_AA_A29S Serine 29 Phosphorylation and Dephosphorylation. 
In vitro, the reaction equilibrium between dephosphorylated and phosphorylated VP30 can be shifted by 

addition of enzyme co-substrates, inhibitors, or activators. Monitoring of VP30 serine 29 phosphorylation 

status is possible with the phosphospecific peptide antibody anti-pS29. VP30_AA_A29S is depicted from 

amino acid 26 to amino acid 47. 
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In Figure 21 A, HEK-293 cells were transfected with a plasmid encoding 

VP30f_AA_A29S. At 48 h p.t., cells were harvested and the in vitro rephosphorylation 

assay was started in test tubes. If cells were lysed in a buffer containing phosphatase 

inhibitors, VP30f_AA_A29S serine 29 phosphorylation could be detected by the 

phosphospecific antibody in western blot analysis (lanes 1-3, "Input"). Between the 

tested phosphatase inhibitors, no significant difference in signal strength was observed. 

In contrast, cell lysis under non-denaturing conditions in a TM lysis buffer without 

phosphatase inhibition, followed by incubation for at least 20 min at room temperature, 

resulted in no signal for phosphorylated serine 29 (lane 5). After this dephosphorylation 

step, it was possible to rephosphorylate VP30 in vitro by addition of ATP +/- OA to the 

cell lysates. Cell lysates were incubated for 1 h at 37 °C to allow rephosphorylation of 

VP30 by cellular kinases within the cell lysate. With increasing amounts of ATP, the 

signal for the phosphospecific antibody got stronger (lanes 7-11). The addition of OA to 

the cell lysate alone did not change the VP30 phosphorylation state (lane 6).   

The in vitro rephosphorylation reaction was fast and efficient (Figure 21 B). After 10 min 

of incubation with ATP alone, phosphorylated VP30 was detected by the phosphospecific 

antibody (lane 4). 

We next examined the characteristics of the kinase(s) phosphorylating VP30 in vitro in 

order to narrow down potential kinase candidates, which specifically phosphorylate VP30 

serine 29 (Figure 21 C). If no Mg2+ was provided with the lysis buffer and endogenous 

Mg2+ was withdrawn from the reaction by EDTA, rephosphorylation did not take place 

(lane 3). In contrast, Ca2+ seemed to be expandable for the phosphorylation reaction 

(lane 4) and we therefore assume that VP30 can be phosphoylated at serine 29 by 

kinases that are not dependent on Ca2+. The rephosphorylation reaction was stronger in 

the presence OA (lane 7 vs lane 6). It was possible to inactivate endogenous kinases 

with the alkylating agent N-ethylmaleimide (lane 8, VP30 running slightly higher because 

of protein alkylation). The rephosphoryation reaction was less efficient at lower 

temperatures (lane 10) and was inhibited by heat-denaturation of cellular kinases prior 

to addition of ATP (lane 12), which implies that the observed in vitro phosphorylation 

reaction is indeed catalyzed by cellular kinases and not by the spontaneous addition of 

a phosphate-group to the VP30 serine 29 residue.  
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Figure 21: Characteristics of VP30 Serine 29 in vitro Phosphorylation. 
(A) - (C) Hek-293 cells were transfected with a plasmid encoding VP30f_AA_A29S. At 48 h post transfection 

cells were lysed for an in vitro VP30 dephosphorylation and rephosphorylation assay (3.4.1). VP30 

phosphorylation was assessed by SDS-PAGE (3.3.1) and western blotting (3.3.3). Total VP30 was stained 

with mouse anti-FLAG and goat anti-mouse 780 nm antibodies, phosphorylated VP30 with rabbit anti-pS29 

and goat anti-rabbit 680 nm antibodies. (A) Several phosphatase inhibitors were tested for their ability to 

prevent dephosphorylation of VP30 in the cell lysate ("Input", lane 1-3). The remaining cells were lysed in a 

non-denaturing TM buffer containing no phosphatase inhibitors and incubated for 30 min at 37 °C to allow 

dephosphorylation of VP30 by cellular phosphatase 1 / 2A (lane 5). After the dephosphorylation step, 

increasing concentrations of ATP (+1 µmol/l OA) were added to the reaction, and cell lysates were again 

incubated for 1 h at 37 °C. (B) Timeline for the in vitro rephosphorylation step with 2 mmol/l ATP (without 

OA). (C) Characteristics of the kinase(s) phosphorylating VP30 serine 29 in vitro. EDTA was added to a TBS 

buffer, EGTA to a TM buffer. ATP concentration was 2 mmol/l. EtOH = Ethanol (NEM-control). In vitro 

reactions were stopped by addition of sample buffer and heating. 
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In a first attempt to further characterize the kinase(s) that phosphorylate VP30, the 

broad-spectrum kinase inhibitor staurosporine was tested in vivo for its effect on VP30 

serine 29 phosphorylation. These experiments suffered from high cytotoxicity and made 

any observed effects on VP30 phosphorylation difficult to interpret (data not shown).  

We therefore tested the potential of several kinase inhibitors to inhibit rephosphorylation 

of VP30 serine 29 after in vitro dephosphorylation (Figure 22). The kinase inhibitors were 

used at high concentrations since cytotoxicity was no longer an issue. Besides 

staurosporine, which is a broad-spectrum serine / threonine kinase inhibitor, heparin and 

TBCA were tested. At low concentrations, TBCA is a selective casein kinase II inhibitor 

(IC50 = 0.11 µmol/l). According to the known CK2 kinase consensus sequence 

S-X-X-E/D, this specific kinase is not responsible for phosphorylation of VP30 serine 29 

or serine 31. Both TBCA and staurosporine are ATP competitive inhibitors. Heparin, a 

polyanion, is thought to mimic the viral RNA.  

In comparison to the controls without kinase inhibitiors (lane 1), heparin and 

staurosporine were able to inhibit in vitro rephosphorylation of VP30 partially, but only at 

high concentrations (Figure 22 A and B). TBCA had only a marginal effect on 

rephosphorylation of VP30 (Figure 22 C).  

To sum up, the established VP30 in vitro phosphorylation assay shares the common 

characteristics of known kinase reactions.  

 
Figure 22: In vitro Phosphorylation of VP30 is Inhibited by Kinase Inhibitors. 
(A) - (C) Hek-293 cells were transfected with a plasmid encoding VP30f_AA_A29S. At 48 h p.t., cells were 

lysed in a non-denaturing TM buffer for an in vitro phosphorylation assay (3.4.1). Lysates were incubated 

for at least 30 min at 37 °C to allow dephosphorylation of VP30 by cellular phosphatase 1 / 2A. Next, 2 mmol/l 

ATP and 1 µmol/l OA were added to the reaction samples and cell lysates were incubated for 1 h at 37 °C, 

either under control conditions or with a kinase inhibitor (3.4.6). Kinase inhibitors were added 5 min prior to 

addition of ATP and OA. Reactions were stopped by addition of sample buffer and heating. VP30 

phosphorylation was assessed by SDS-PAGE (3.3.1) and western blotting (3.3.3). Total VP30 was stained 

with mouse anti-FLAG and goat anti-mouse 780 nm antibodies, phosphorylated VP30 with rabbit anti-pS29 

and goat anti-rabbit 680 nm antibodies. (A) Influence of heparin on VP30 in vitro rephosphorylation. (B) 
Influence of staurosporine on VP30 in vitro rephosphorylation. (C) Influence of TBCA on VP30 in vitro 

rephosphorylation. 



Results 

88 
 

4.6 Interaction between VP30 and Kinases 

Kinases recognize their substrates on multiple levels, which includes the local consensus 

sequence of the substrate, e.g. the phosphorylation motif R-X-X-S on VP30 for serine 

29, as well as distal kinase docking motifs on the substrate. Although the binding of a 

specific consensus sequence to the catalytic center of a specific kinase is often required 

for efficient substrate phosphorylation, this interaction is usually weak and only 

transient⁠

2. Contrary, the binding between distal recognition motifs on the substrate and 

auxiliary domains on the kinase is very important for stable recruitment of the kinase to 

the substrate and a high affinity enzyme-substrate interaction⁠

2
⁠

,57
⁠

,191
⁠

,244. For many protein 

kinases, these distal interactions are based on short linear motifs (SLIMs) either on the 

substrate itself or scaffolding proteins, which interact with docking surfaces of the kinase 

domain85
⁠

,126
⁠

,177
⁠

,247
⁠

,277. SLIMs (5-20 amino acids in length), sometimes also termed 

docking-motifs or D-motifs, are usually located in intrinsically disordered segments of 

proteins, potentially far away from the phosphorylation site277. The disordered regions of 

the protein adopt a defined structure only when binding interacting proteins52. EBOV 

VP30 contains three regions which are predicted to be intrinsically disordered  

(aa 1 to 44, 120 to 140, and 268 to 288) 90
⁠

,119. 

To test if VP30 interacts with a cellular kinase, we combined an immunoprecipitation 

assay with an in vitro rephosphorylation assay. VP30f_AA_A29S was 

immunoprecipitated alone as well as in combination with NP and VP35. For the 

expression controls, transfected HEK-293 cells were lysed in a buffer containing 

phosphatase inhibitors (Figure 23, lanes 1-4). Again, VP30 phosphorylation was stronger 

in single expression (lane 1) in comparison to co-expression with NP and VP35 (lane 3). 

Other aliquots of the transfected cells were lysed in a non-denaturing buffer without 

phosphatase inhibitors for immunoprecipitation with anti-FLAG agarose. Immediately 

after immunoprecipitation and washing of the beads, no signal could be obtained with 

the phosphospecific antibody (lanes 5 to 8), meaning that VP30 was completely 

dephosphorylated at serine 29 by cellular PP1 / PP2A during non-denaturing cell lysis. 

VP30 co-immunoprecipitated NP but not VP35 (lane 7), which might be explained by the 

low amount of VP35 observed in the expression controls (lanes 3-4).  

Next, the washed beads - with the dephosphorylated VP30f_AA_A29S still attached - 

were subjected to an in vitro phosphorylation assay by addition of ATP / OA and 

incubation at 37 °C (lanes 9-12). Staining of VP30 with the phosphospecific antibody in 

lanes 9 and 11 demonstrates that it was possible to rephosphorylate VP30f_AA_A29S 

after the immunoprecipitation. A separate protein gel was stained with Coomassie, and 
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many distinct bands were seen in the immunoprecipitate of VP30, but not in the 

respective controls (data not shown). 

This result indicates that at least one VP30-specific kinase co-precipitates with VP30 

even in the absence of other viral proteins. 

 

 
Figure 23: VP30 Co-precipitates an Unknown Cellular Kinase. 
Anti-FLAG immunoprecipitation assay of VP30f_AA_A29S (3.3.6) in combination with an in vitro 

phosphorylation assay (3.4.5). HEK-293 cells were transfected with plasmids encoding VP30f_AA_A29S 

only or the combination of VP30f_AA_A29S, NP, and VP35HA. 48 h p.t. cells were lysed and the expression 

of the viral proteins was confirmed by western blotting using a denaturing cell extraction buffer (lanes 1-4). 

The remaing cells were lysed in a non-denaturing Co-IP buffer for 40 min at room temperature, without 

addition of phosphatase inhibitors. The lysate was centrifuged for removal of cellular debris and used for an 

immunoprecipitation step with anti-FLAG agarose (2 h at 4 °C). Beads were then washed at least four times. 

Aliquots were set aside immediately after the immunoprecipitation (lanes 5-8), while the other aliquots were 

treated for 1 h with ATP and OA at 37 °C (lanes 9-12). Reactions were stopped by addition of sample buffer 

and heating. Samples were analyzed by SDS-PAGE (3.3.1) and western blotting (3.3.3). Total VP30 was 

stained with mouse anti-FLAG and goat anti-mouse 780 nm antibodies, phosphorylated VP30 with rabbit 

anti-pS29 and goat anti-rabbit 680 nm antibodies. NP was stained with goat anti-GP / NP and donkey 

anti-goat 680 nm antibodies. VP35HA was stained with biotinylated mouse anti-HA and Streptavidin 680 nm 

antibodies. 
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4.7 Incorporation of a VP30 Serine 29-Specific Kinase into trVLPs 

Many viruses incorporate host cell proteins, either actively or as passive bystanders38. 

For HIV, integration of several kinases has been described41
⁠

,84. Since EBOV VP30 

phosphorylation is essential during early time points of infection, either before or during 

primary transcription, we asked if trVLPs and the recEBOV_S29 incorporate a functional 

cellular kinase into newly formed virus like particles / virions, so that the integrated kinase 

can phosphorylate VP30 immediately after infection26. 

In Figure 24 A, all viral proteins were recombinantly expressed in HEK-293 cells in order 

to generate trVLPs. In lane 1, VP30 was for the most part dephosphorylated because of 

the influence of the other viral proteins on VP30 phosphorylation (see Figure 14), but it 

was possible to rephosphorylate VP30 in the cell lysate in vitro (lanes 3 and 4). 

Accordingly, no signal was observed for the phosphospecific antibody after the 

purification of trVLPs, meaning that VP30f_AA_A29S was also mainly dephosphorylated 

at position 29 in the trVLPs (lanes 6 and 8). When trVLPs were treated with ATP and OA 

in vitro without a lysing agent, the phosphorylation state of VP30f_AA_A29S did not 

change (lane 7). ATP cannot diffuse through the trVLP membrane due to its negative 

charge. If TritonTM X-100 was added to the buffer, it was possible to rephosphorylate 

serine 29 of VP30, indicated by a strong signal for the phosphospecific antibody 

(lanes 9 and 10).  

This suggests VP30-specific kinases to be incorporated or associated with the outer 

membrane of trVLPs. To exclude an unspecific attachment of a kinase to the trVLPs, we 

treated the trVLPs with proteinase K to digest all unincorporated proteins. Following a 

second centrifugation step to purify the trVLPs from the digested proteins, we were still 

able to detect a signal for the phosphospecific antibody after in vitro phosphorylation 

(lane 13), implying that a VP30-specific kinase is indeed incorporated into the trVLPs. 

No GP is seen in lanes 12-14 due to digestion of the GP ectodomain by proteinase K.  

When we repeated the experiment with recEBOV_S29, the phosphospecific antibody did 

not detect phosphorylated VP30 after in vitro phosphorylation of purified virions 

(Figure 24 B, lanes 9 and 10). So far, it is unclear whether this is a cell-type specific effect 

(trVLPs were produced in HEK-293 cells, virus in HUH-7 cells) or whether there is indeed 

no kinase incorporated into virions. In the cell lysate, a signal for phosphorylated VP30 

serine 29 was again only observed after in vitro phosphorylation (lanes 3 and 4) because 

of the influence of the other viral proteins on VP30 phosphorylation status. 
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Figure 24: A VP30-Specific Kinase is Incorporated into trVLPs, but not into recEBOV_S29. 
(A) Analysis of purified trVLPs for VP30-specific kinase activity (3.4.3). HEK-293 cells were transfected with 

plasmids encoding the seven viral proteins (including VP30f_AA_A29S), the EBOV-specific minigenome 

under control of a T7 promotor, plus a T7 polymerase. 72 h p.t. cells were lysed and submitted to an in vitro 

phosphorylation assay (lanes 1-4) (3.4.1). trVLPs were purified from the supernatant by ultracentrifugation 

and incubated with ATP +/- OA, either without (lane 7) or with TritonTM X-100 (lanes 9 and 10). An aliquot of 

the purified trVLPs was treated with proteinase K for 30 min at 37 °C in order to digest all proteins that are 

not incorporated into the trVLPs (lanes 12-14). For removal of proteinase K, PMSF was added and trVLPs 

were again centrifuged through a 20 % sucrose cushion, followed by in vitro phosphorylation (lane 13). 

Phosphorylation of VP30 was assessed by SDS-PAGE (3.3.1) and WB analysis (3.3.3). Total VP30 was 

stained with mouse anti-FLAG and goat anti-mouse 780 nm antibodies, phosphorylated VP30 with rabbit 

anti-pS29 and goat anti-rabbit 680 nm antibodies. GP and NP were stained with goat anti-GP / NP and 

donkey anti-goat 780 nm antibodies. (B) Analysis of purified recEBOV_S29 for VP30-specific kinase activity 

(3.4.4). HUH-7 cells were infected with recEBOV_S29 at a MOI of 3. Twenty four h p.i. viruses were purified 

through a 20 % sucrose cushion. The in vitro phosphorylation assay was performed as described above. 

Total VP30 was stained with guinea pig anti-VP30 and goat anti-guinea pig 780 nm antibodies, 

phosphorylated VP30 with rabbit anti-pS29 and goat anti-rabbit 680 nm antibodies. GP and NP were stained 

with goat anti-GP / NP and donkey anti-goat 780 nm antibodies. 
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4.8 VP30 Phosphorylation and Dephosphorylation in NP-Induced 
Inclusion Bodies 

Our results indicated that VP30 dephosphorylation takes place in NP-induced inclusion 

bodies, most likely by recruitment of phosphatases by NP (Figure 11, Figure 12, and 

Figure 15). However, it remained an open question whether VP30 also gets 

phosphorylated by the so far unidentified cellular kinase(s) inside the inclusion bodies. 

We therefore examined VP30 phosphorylation in situ with cells on coverslips. Principally, 

this assay follows the same rules as outlined for the in vitro phosphorylation above, with 

the exception that it was performed on coverslips and not in test tubes. First, HUH-7 cells 

were transfected with plasmids encoding NP, VP35, and VP30f_AA_A29S, leading to 

the formation of large inclusion bodies around the nucleus. After non-denaturing cell 

lysis, coverslips were washed several times to remove soluble material of the cytoplasm, 

while the cells were still adhering to the coverslips. The inclusion bodies are embedded 

in the cytoskeleton and are not washed away 217
⁠

,218. Therefore, this assay is assumed to 

be both in vitro and in situ.  

In Figure 25, i (not in vitro, "Input" = "Status quo") the phosphorylated form of 

VP30f_AA_A29S was detected in the cytoplasm but not in the inclusions bodies. 

Contrary, the anti-FLAG antibody stained VP30f_AA_A29S also inside the inclusion 

bodies. After washing and in vitro dephosphorylation, no phosphorylated 

VP30f_AA_A29S could be detected. Moreover, the anti-FLAG antibody no longer 

detected VP30f_AA_A29S in the cytoplasm, suggesting that the washing of cells after 

cell lysis was effective (Figure 25, ii). As expected, addition of OA alone did not change 

the phosphorylation status (Figure 25, iii). We did not obtain a signal for the 

phosphospecific antibody when ATP alone was added (Figure 25, iv). Opposite to this, a 

very strong signal for phosphorylated VP30f_AA_A29S was observed in virtually every 

transfected cell when ATP plus the phosphatase inhibitor OA were added together after 

the dephosphorylation step (Figure 25, v). After rephosphorylation of VP30f_AA_A29S 

with ATP and OA, it was even possible to subsequently dephosphorylate VP30 again by 

washing away the rephosphorylation buffer and incubating the coverslips in a buffer 

without OA and ATP (Figure 25, vi). The rephosphorylation of VP30 was dependent on 

Mg2+-, but not on Ca2+-ions (Figure 25, vii and viii), and it was possible to inactivate 

kinases by the alkylating agent N-ethylmaleimide (NEM) (Figure 25, ix). Similar to 

Figure 22, it was possible to partially inhibit rephosphorylation of VP30 by addition of 

heparin or staurosporine (data not shown). 
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Figure 25: VP30-Specific Kinases and Phosphatases Localize to NP-Induced Inclusion Bodies. 
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In situ phosphorylation assay of VP30 (3.4.2). For this in vitro assay, HUH-7 cells, grown on coverslips, were 

transfected with plasmids encoding VP30f_AA_A29S, NP, and VP35. 20 h p.t. one coverslip was fixed with 

acetone-methanol (i, "Input"). The other coverslips were incubated in a non-denaturing lysis buffer containing 

0.2 % Tween® 20 for 10 min at 37 °C. After cell lysis, coverslips were carefully washed at least three times 

with TM buffer and incubated in TM buffer for 10 min at 37 °C to allow complete dephosphorylation of VP30 

(ii, dephosphorylated). Rephosphorylation of VP30 serine 29 was achieved by incubation of cells in TM 

buffer with ATP +/- OA and other substances. EtOH = Ethanol (NEM-control). After rephosphorylation with 

ATP + OA, one coverslip was washed again and then incubated in TM buffer without phosphatase inhibitors 

(vi). Reactions were stopped by fixation with acetone-methanol (1:1). Phosphorylation status of VP30 was 

assessed by IFA (3.3.5). Total VP30 was stained with mouse anti-flag and goat anti-mouse Alexa 488 

antibodies, phosphorylated VP30 was stained with rabbit anti-pS29 and goat anti-rabbit Alexa 594 

antibodies. Nuclei were visualized with DAPI. 

 

Taken together, accumulated evidence indicates that both VP30-specific kinases and 

phosphatases localize to the NP-induced inclusion bodies. Together with the data from 

the previous sections, it seems likely that NP recruits the phosphatase(s) for VP30, 

whereas VP30 interacts directly with the cellular kinase(s). 
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5 Discussion 

Phosphorylation of viral proteins plays an important role in the viral life cycle of many 

members from the order Mononegavirales. Contrary to large DNA viruses, such as 

Herpesviruses or Poxviruses, which encode for viral protein kinases, RNA viruses from 

the order Mononegavirales hijack components of the cellular phosphorylation 

machinery115
⁠

,139. Cellular kinases and phosphatases are specifically recruited by 

negative-sense RNA viruses to modulate, regulate, and extend the function of their viral 

proteins.  

Among the negative-sense RNA viruses, phosphorylation of the P protein is best studied. 

The P protein is the essential polymerase cofactor of many Mononegavirales and 

represents the VP35 homologue of the Filoviridae. In contrast to VP35, the function of 

the P protein is influenced by phosphorylation at multiple sites (hence the name 

phosphoprotein). So far, many functions of P protein phosphorylation have been 

established, but the exact role of phosphorylation remains a mystery and may differ from 

virus to virus. Phosphorylation of the P proteins of vesicular stomatitis virus (VSV) and 

respiratory syncytial virus (RSV) was demonstrated to enable or modulate the activity of 

RNA synthesis11
⁠

,252. Contrary, phosphorylation of measles virus phosphoprotein 

downregulated viral transcriptional activity228. Several host kinases, including CKII, 

PKC- ζ, AKT, and PLK1, were identified to be responsible for phosphorylation of different 

P proteins11
⁠

,55
⁠

,229
⁠

,230
⁠

,253. 

Besides the P Protein, phosphorylation of the nucleoprotein has been reported for many 

Mononegavirales, including Sendai virus, Nipah virus, mumps virus, rabies virus, 

Marburg virus, and Ebola virus18
⁠

,68
⁠

,102
⁠

,103
⁠

,175
⁠

,269. For rabies virus, nucleoprotein 

phosphorylation is a prerequisite for efficient transcription and replication269. The MARV 

nucleoprotein can get phosphorylated in seven regions. Only phosphorylated forms of 

the MARV NP were detected in virions, suggesting a role of phosphorylation in the 

formation of nucleocapsid complexes18
⁠

,146. Furthermore, phosphorylation of MARV NP 

also influences viral RNA synthesis59. Ebola NP was found to be phosphorylated in two 

amino acid stretches. Besides VP30, it is the only other viral protein for which 

phosphorylation could be detected in purified SUDV68. 

As a special feature among the Mononegavirales, Filoviridae encode for the structural 

protein VP30, which is phosphorylated both in MARV and EBOV68
⁠

,164. It was 

demonstrated that phosphorylation of MARV VP30 at serine residue 40 and 42 is 

important for the interaction of VP30 with NP-positive inclusion bodies164. Similarly, 

phosphorylation of EBOV VP30 influences the interaction with other viral proteins and 
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viral RNA, but also impacts viral transcription and replication24
⁠

,26
⁠

,27. The only known 

homologue among the Mononegavirales with similar functions and structural 

characteristics to EBOV VP30 is the M2-1 protein of the respiratory syncytial virus (RSV). 

M2-1 acts as a transcription elongation factor, preventing transcription termination intra- 

and intergenically48
⁠

,236. Both M2-1 and EBOV VP30 are dynamically phosphorylated, 

bind RNA, contain a zinc binding region, and are dispensable for replication of the full 

length genome236. Phosphorylation of both proteins reduces their RNA-binding 

capabilities27
⁠

,236. Although M2-1 and VP30 share similar characteristics, they also display 

functional differences: phosphomimicry and phosphoablation of M2-1 serine 58 and 

serine 61, mimicked by either aspartate or alanine mutants, impairs the transcriptional 

potential236. Contrary, mutation of VP30 serines 29-31 and 42 / 44 / 46 to alanine 

enhanced the transcriptional activity, whereas mutation to aspartate abolished 

transcriptional activity of VP30165. 

 

5.1 Regulation of EBOV Transcription and Replication by VP30 
Phosphorylation 

During the EBOV life cycle, the negative-sense viral genome is sequentially transcribed 

into individual polyadenylated and capped mRNAs, which are translated by the cellular 

machinery into viral proteins. mRNA synthesis is regulated by cis-acting elements of the 

viral genome: it is initiated at individual gene start signals and stopped at gene end 

signals170. The viral genome is also replicated to produce full length positive-sense 

antigenome and negative-sense genome RNA that are neither capped nor 

polyadenylated. During the process of replication, gene end signals must be ignored by 

the viral polymerase. EBOV, like the other Mononegavirales, encodes only for a single 

polymerase L169
⁠

,170. This raises the important question, how the balance between 

transcription and replication is differentially regulated. For other nonsegmented, 

negative-sense RNA viruses it is believed that encapsidation of the RNA by the 

nucleoprotein NP allows the viral polymerase to read through gene end signals to 

replicate the full template157
⁠

,251. Increasing amounts of viral NP would then lead to a 

switch from viral transcription to replication. 

For EBOV, a different model for regulation of transcription and replication was proposed, 

based on phosphorylation of VP30. Replication of the full-length Ebola genome is 

achieved by NP, VP35, and L alone, whereas transcription of individual genes 

additionally requires VP30. It could be demonstrated that the transcriptional support 

activity of VP30 is abolished when 6 N-terminally serine residues (S29-S31 and 

S42 / S44 / S46) are replaced by aspartate to mimic permanently phosphorylated VP30 
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(VP30_DD) 165. Simultaneously, replication increased by almost twofold24. In line with 

this, the transcriptional activity of VP30_wt was also dramatically reduced when cells 

were treated with OA in a minigenome assay165. OA blocks PP1 and PP2A, which were 

shown to dephosphorylate VP30 in vitro. Conversely, mutation of the six serine residues 

to alanine (VP30_AA) enhanced transcription and diminished replication24. The 

transcriptional activity of VP30_AA was not inhibited by OA165. These results suggested 

that VP30 phosphorylation serves as an on-off switch to regulate transcription (VP30 

dephosphorylated, transcriptionally active) and replication (VP30 phosphorylated, 

transcriptionally inactive).  

However, it was demonstrated that VP30_AA is unable to support primary transcription 

in a trVLP assay26. During primary transcription, transcriptional activity is dependent on 

viral proteins associated with the incoming trVLPs / virions. In line with this, a 

recombinant virus encoding VP30_AA could not be rescued153. In contrast, recombinant 

viruses encoding either VP30_SA or VP30_AS were successfully recovered, and these 

VP30 mutants also enabled primary transcriptional activity in a trVLP assay26
⁠

,152. In 

further experiments the significance of serine 29 phosphorylation was demonstrated: 

serine 29 as the only phosphoacceptor site in the N-terminal VP30 region was sufficient 

to render VP30 transcriptionally active in a trVLP assay. The importance of S29 was 

further supported by the rescue of a recombinant virus encoding VP30_AA_A29S 

(recEBOV_S29), which had similar growth kinetics as recEBOV_wt26. Altogether, these 

results indicated that phosphorylation of VP30 is an essential step during the viral life 

cycle and that phosphorylation of serine 29 is sufficient to fulfill these functions. 

5.1.1 Role of VP30 Phosphorylation for Primary Transcriptional Activity 
In Figure 8 the importance of serine 29 phosphorylation for primary transcriptional activity 

was confirmed in a trVLP assay. Here, even the combination of VP30_AA and 

VP30_AA_A29D was unable to support viral transcription in the indicator cells, which 

indicates that phosphorylation needs to be dynamic within one and the same VP30 

molecule. We observed the formation of small inclusion bodies in the indicator cells 

(Figure 9), but only VP30_wt and VP30_AA_A29S localized to the inclusion bodies, 

suggesting that phosphorylation of at least one VP30 site is important for the transport 

with the incoming nucleocapsids to the inclusion bodies. Remarkably, the greater amount 

of VP30_wt in the inclusion bodies correlated with a higher transcriptional activity in the 

indicator cells, which might be attributed to more phosphorylation sites in VP30_wt when 

compared to VP30_AA_A29S. Because the N-terminal region of VP30 is predicted to be 

intrinsically disordered, it is conceivable that VP30 phosphorylation allows the dynamic 

binding to other viral proteins or host cell factors. This theory is supported by the 
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observation that phosphorylated VP30 has a higher affinity for NP23
⁠

,24. Phosphorylation 

of VP30 might be necessary during early time points of infection to ensure adequate 

interaction between VP30 and NP, which allows recruitment of VP30 into the NP-induced 

inclusion bodies in the indicator cells. In this context it should be mentioned though that 

enhanced interaction of phosphorylated VP30 with NP can just as well be attributed to 

greater self interaction of phosphorylated VP30. Although it was demonstrated that 

VP30_AA can interact with VP30_wt, a comparison between homo-oligomerization of 

phosphorylated VP30_wt and the homo-oligomerization of VP30_AA was never made23. 

When no VP30 was present in the small inclusion bodies, as was the case for VP30_AA 

and VP30_AA_A29D, primary viral transcription did also not take place. Because the 

sensitivity of the IFA is not high enough, it is not clear if VP30_AA and VP30_AA_A29D 

localized diffusely to the cytoplasm of the indicator cell or if they were degraded by 

cellular enzymes as they were not associated with the other viral proteins. Formation of 

inclusion bodies was also observed for trVLPs that did not contain VP30.  

Astonishingly, it was possible to rescue the primary transcriptional activity for 

VP30-deficient trVLPs even if large amounts of VP30_AA were supplied in trans in the 

indicator cells, suggesting that phosphorylation of VP30 is not required for the primary 

transcription process per se, but rather for efficient interaction with the other viral 

proteins26. On the other hand, it was not possible to efficiently rescue trVLPs containing 

VP30_AA by supplementing VP30_AA in trans in the indicator cells26. This might partly 

be attributed to reduced replication of the viral minigenome in the indicator cells 

expressing VP30_AA, but further unknown functions of VP30 phosphorylation during 

primary transcription - apart from ensuring transport with the nucleocapsid - cannot be 

excluded.  

The relevance of VP30 phosphorylation was underlined by experiments with arginine 

mutants of VP30 (Figure 19). Here, mutation of arginine 26 in the background of 

VP30_AA_A29S destroyed the putative S29 phosphorylation motif and abolished 

primary transcriptional activity. This implies that the mere presence of the 

nonphosphorylated serine 29 residue, which we tried to mimic by alanine, is not sufficient 

to support primary transcription. 

Altogether, our results indicate that phosphorylation of VP30 needs to be dynamic in the 

indicator cells, requiring cycles of phosphorylation and dephosphorylation. However, it 

should be mentioned that mimicry of phosphorylation by aspartate residues is not optimal 

because of its different size and unequal negative charge. It is not clear if a constant 

phosphate group at position 29 (not the aspartate residue!) would also inhibit transport 

of VP30 with the nucleocapsid to the inclusion bodies.  
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In the inclusion bodies, VP30 is probably rapidly dephosphorylated because of the high 

phosphatase activity associated with NP (f.i. Figure 11), which ensures transcriptional 

activity of VP30_wt. In first experiments it was not possible to detect phosphorylation at 

position 29 in the inclusion bodies of the indicator cells with the phosphospecific VP30 

antibody (data not shown). Phosphorylation of VP30 is probably only transient during 

early steps of infection and gets rapidly reversed by the high activity of phosphatases. It 

is conceivable that the phosphospecifc antibody is not sensitive enough to detect 

low-level, transient phosphorylation of VP30 serine 29. The kinase activity detected in 

purified trVLPs (Figure 24) might be responsible for the supposed initial phosphorylation 

step of VP30 in the trVLP assay. 

Our data also suggest that the small perinuclear inclusion bodies in the indicator cells 

represent the sites for primary transcription because the amount of VP30 in the inclusion 

bodies always correlated with the reporter gene signal in the indicator cells. To confirm 

this hypothesis, one could use FISH probes to detect positive-sense viral RNA. 

5.1.2 Relevance of VP30 Multisite Phosphorylation  
Previous experiments discovered that hyper-phoshorylation of VP30 reduces its 

transcriptional potential, however, no discrimination was made between the six 

N-terminal VP30 serine residues. Hence the functional significance of phosphorylation 

at each individual serine residue remained unknown. Here, we were able to demonstrate 

that simultaneous phosphorylation of VP30 serine 29 and serine 31 is both necessary 

and sufficient to downregulate the transcriptional support activity of VP30 (Figure 6 and 

Figure 7). These results are underlined by mutational studies of the putative VP30 

phosphorylation motifs, where only the R26A and R28A mutations were able to restore 

VP30 activity under OA treatment (Figure 18). Phosphorylation of a single serine residue 

within the N-terminal cluster was not sufficient to impair VP30's function as a 

transcriptional activator (Figure 6). This finding implies that multisite phosphorylation of 

at least S29 and S31 is a prerequisite for downregulation of VP30's transcriptional 

support function. In direct contrast to this, multisite phosphorylation was not a 

requirement for primary transcriptional activity (Figure 8). 

If phosphorylation of a single VP30 serine residue would have a functional impact on the 

transcriptional activity, VP30 could easily and largely be inactivated by cellular kinases. 

The requirement for multisite phosphorylation also refines the specificity of VP30 

phosphorylation; this is part of the kinetic proofreading concept that was first established 

in 1974 for DNA replication and protein synthesis, but also applies to protein 

phosphorylation101
⁠

,231. As demonstrated, VP30 must undergo a series of 

phosphorylations for inactivation, but at every phosphorylation step, kinases might 
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dissociate from VP30 and the rapid action of phosphatases would return VP30 to its 

basal state (also called error correction). The stability of the VP30-kinase complex is 

tested with each modification, leading to increased specificity of the reaction and less 

random phosphorylation events. Summarized, multisite phosphorylation reduces false 

positive signal transduction, ensuring only reliable transcriptional inactivation of VP30 ⁠

5.  

It is also tempting to speculate about the order of VP30 multisite phosphorylation and 

dephosphorylation. Several Ser / Thr kinases can phosphorylate their substrate 

sequentially12
⁠

,76
⁠

,148
⁠

,199. We demonstrated that VP30 S29 and S31 share the common 

R-X-X-S phosphorylation motif and thus could potentially be phosphorylated by the same 

kinase (Figure 16 to Figure 19). Similarly, hierarchical phosphorylations were described 

for the RSV M2-1 protein, where phosphorylation of S58 creates a new CKI 

phosphorylation motif for S6140. Currently, it is not clear whether VP30 phosphorylation 

and dephosphorylation follows a fixed order leading to cycles of VP30 activation and 

inactivation, or whether random VP30 phosphorylation and dephosphorylation takes 

place. 

Our finding that two phosphorylation steps are sufficient to inactivate VP30's function as 

a transcription factor, a scenario much more likely than simultaneous phosphorylation of 

all six serine residues, indicates that VP30 phosphorylation could indeed be responsible 

for a switch from viral transcription to replication. But, at the same time, the demand for 

several phosphorylation steps also questions whether phosphorylation of VP30 indeed 

plays a crucial role in regulating the balance between transcription and replication 

because the recEBOV_S29 showed similar growth kinetics as recEBOV_wt in cell 

culture experiments26. Since recEBOV_S29 contains only the single serine 29 as a 

phosphoacceptor site within the N-terminal serine cluster of VP30, recEBOV_S29 cannot 

downregulate transcription by VP30 phosphorylation. Accordingly, recEBOV_wt was 

inhibited stronger by OA than recEBOV_S29 (Figure 15). If phosphorylation of VP30 

would play an essential role in regulating the balance between transcription and 

replication during the viral life cycle, it would be expected that the recEBOV_wt has a 

growth advantage over recEBOV_S29. Similarly, a recombinant virus encoding 

VP30_AS was rescued152. In our minigenome assays, VP30_AS was transcriptionally 

active even under phosphatase inhibition (Figure 5). However, it is possible that both 

recEBOV_S29 and recEBOV_AS have reduced viral fitness when tested in different cell 

lines. Likewise, the lack to balance transcription / replication by VP30 phosphorylation 

might manifest itself only after several serial passages.  

One limitation of the current study is that we used OA to study the effect of VP30 

phosphorylation on transcriptional regulation. VP30 is dephosphorylated completely by 
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PP2A / PP1 and partly by PP2C in vitro, but it is not clear if all of these phosphatases 

have a biological relevance for VP30 dephosphorylation165. Theoretically, it is even 

possible that other phosphatases can dephosphorylate VP30 as well. OA is a more 

potent inhibitor of PP2A (IC50 = 0.1 nmol/l) than of PP1 (IC50 = 15-20 nmol/l). We used 

OA at 25 nmol/l and repeated the experiments with the same results at 50 nmol/l OA, but 

higher concentrations would be needed to inhibit all PP1. Similarly, PP2C is not inhibited 

by OA at all. Although it would be uncommon for phosphatases, PP1 or PP2A could also 

have a preference for certain phosphorylation sites of VP30. Altogether, the effect of 

VP30 phosphorylation at certain serine residues might be underestimated in our study 

design. For this reason, it would be interesting to test other phosphatase inhibitors, like 

Sanguinarin, Microcystin, Nodularin, or Tautomycin 233. 

A potential drawback of the minigenome assay is that not all viral proteins are 

recombinantly expressed. In Figure 14 A we demonstrated that the additional expression 

of VP24 / VP40 / GP also influences the phosphorylation status of VP30 serine 29 

towards dephosphorylation, which could be due to recruitment of other phosphatases by 

those viral proteins. Testing the influence of phosphatase inhibition on viral 

transcriptional activity in the context of all viral proteins would yield a more realistic 

picture. 

Seemingly contradicting our results, VP30_DA, which mimics permanently 

phosphorylated S29-S31, was transcriptionally active in a minigenome system153. Here 

it should be emphasized again that the attempt to mimic phosphate groups with 

negatively charged aspartate residues is not optimal. The negative charge induced by 

phosphorylation is greater than the negative charge of the carboxylic acid group. Most 

likely, the dynamic phosphate group has unique biological properties that are impossible 

to imitate by the constant negative charge of aspartate. This is supported by the fact that 

the phosphospecific antibody detected VP30_AA_A29D only weakly 

(Figure 10 B and C). Moreover, the phosphomimetic form was not recognized at all by 

another phosphospecific VP30 antibody (from rabbit 7993, not presented in this thesis), 

proving that proteins can indeed bind only to phosphorylated but not phosphomimetic 

VP30. As such, inhibition of phosphatases to produce stable phosphate groups of VP30 

is more realistic than imitation of phosphorylation with aspartate residues. Our results 

suggest that simultaneous phosphorylation of S29 and S31 is sufficient to downregulate 

transcriptional VP30 activity. 
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5.2 Regulation of VP30 Phosphorylation 

Every phosphorylation reaction must be spatially and temporally regulated to ensure 

accurate downstream effects. In our study we identified that the interaction between 

VP30 and other viral proteins, especially the nucleoprotein NP, dramatically modulates 

the phosphorylation status of VP30. With the help of a phosphospecific VP30 antibody 

we were able to describe previously unidentified interactions of VP30 with cellular 

kinases and of NP with cellular phosphatases. We think that these interactions are key 

regulators of VP30 phosphorylation.  

In recent years, much light was shed on the mechanisms by which pathogens hijack host 

proteins. Many viruses encode and mimic short linear motifs (SLIMs) of the host 

proteome to specifically recruit cellular factors53. Short linear motifs consist of short 

stretches of typically less than ten amino acids and reside in intrinsically disordered 

protein regions239. The interaction between SLIMs and structured protein domains is 

typically of low affinity (1-20 µmol/l), which allows the virus to dynamically interact with a 

range of host proteins. For VP30, three disordered regions are predicted, spanning from 

residues 1 to 44, 120 to 140, and 268 to 288119. Likewise, the C-terminal half of NP 

(residues 391–739) is mostly disordered64
⁠

,125. 

5.2.1 Interaction between VP30 and Cellular Kinases 
To ensure efficient phosphorylation, a regulated interaction between substrate and 

kinase is crucial. In immunoprecipitation studies, we were able to identify a specific 

interaction between VP30 and cellular kinases. Since the responsible kinases for VP30 

phosphorylation are unknown so far, it was not possible to detect kinases 

immunologically. Instead, VP30 kinase activity was detected with an in vitro biochemical 

kinase assay (Figure 23). Auto-phosphorylation by VP30 or by other viral proteins can 

be excluded (Figure 24 B, lanes 9 and 10). This finding strongly suggests that VP30 

interacts with cellular kinases, either by direct interaction or with the help of scaffolding 

proteins. Future studies might identify the responsible kinases by immunoprecipitation 

and subsequent tandem mass spectrometry. It should be mentioned though that our 

biochemical approach is probably very sensitive and as such prone to contamination. 

Prior to mass spectrometry, an in-gel kinase assay might help to identify relevant bands 

in the protein gel267. Any identified kinase should then be validated by other approaches 

to confirm its biological relevance, f.i. by experiments with siRNA or specific kinase 

inhibitors.  

Based on the knowledge from other studies, the interaction between VP30 and kinases 

is likely based on distal interactions between kinase and VP30, outside of the catalytically 
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active kinase center⁠

2
⁠

,191
⁠

,244. It is possible that VP30 contains a so far unknown SLIM in 

one of its intrinsically disordered protein regions, which binds one or several cellular 

kinases. We further demonstrated that phosphorylation of VP30 serine 29 is dependent 

on a common R-X-X-S motif (Figure 16 to Figure 19). Identification of this 

phosphorylation narrows down potential kinase candidates, but prediction solely based 

on the phosphorylation motif has low accuracy. Many kinases do not have a known 

phosphorylation motif, several kinases share similar motifs, and many motifs are 

degenerate. Specificity of protein phosphorylation is achieved on many different levels 

and the presence of a functional phosphorylation motif is probably not necessary for the 

interaction between VP30 and kinases57. Therefore, it is expected that both VP30_wt 

and VP30_AA_A29S as well as arginine mutants such as VP30_AA_A29S_R26A 

interact with the same cellular kinase(s). Dephosphorylation of VP30 prior to 

immunoprecipitation might additionally increase the affinity of VP30 for the kinase, as the 

dephosphorylated substrate, in contrast to the phosphorylated counterpart, also 

transiently binds the active site of the respective kinase⁠

2
⁠

,244. 

For a more realistic picture, the interaction between VP30 and kinases could be studied 

in the context of all viral proteins, either after recombinant expression or after infection 

with recEBOV. Theoretically, the interaction between VP30 and cellular proteins might 

be modulated by other viral proteins. In our experiments the kinase was not only 

co-precipitated during single expression of VP30, but also during co-expression of the 

viral VP30, NP, and VP35 (Figure 23, lane 11). Similarly, we were able to detect kinase 

activity for VP30 in inclusion bodies formed by NP, VP35, and VP30, which suggests 

that the kinase is recruited by VP30 to the sites of viral replication (Figure 25). Although 

unlikely, our experimental design of the in situ assay cannot completely exclude 

contamination by cytoplasmic kinases / phosphatases, which are not associated with the 

NP-induced inclusion bodies. The in situ phosphorylation assay could also be applied to 

cells infected with recEBOV.  

Moreover, we demonstrated that a cellular kinase is incorporated into trVLPs, likely by 

interaction with VP30 in the inclusion bodies. However, it was not possible to detect 

kinase activity in purified recEBOV_S29 (Figure 24). The obvious discrepancy between 

the trVLPs and the recEBOV_S29 is not resolved. We repeated the experiment with 

trVLPs purified through a Nycodenz gradient with the same result; kinase activity for 

VP30 was detected both in fractions 4-6 and 7-9 (data not shown). Nevertheless, it is still 

possible that kinases are not integrated into filamentous or vesicular trVLPs, but instead 

are contaminants from small round particles or microvesicles that were present even 

after gradient centrifugation (data not shown). On the other hand it is also well known 
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that different cell lines lead to incorporation of different proteins into newly formed virus 

particles84. We used HEK-293 cells to generate the trVLPs because of the good 

transfection efficiency, and HUH-7 cells for infection with recEBOV_S29. Another 

explanation would be that recEBOV_S29 is more efficient in eliminating cellular 

bystander proteins. We also do not know if the observed incorporation of a kinase into 

trVLPs is of any significance for the early steps of infection prior or during primary 

transcription, or if the integration of the kinase is merely a passive and random process. 

Apart from identification of VP30-specific kinases by mass spectrometry, kinase 

inhibitors might be tested in vitro (and eventually in vivo) for further characterization of 

the responsible kinases. Ideally, kinase inhibitors should be tested in primary cells or 

primary cell lysates, since immortalised cell lines are likely to have a deregulated and 

distrupted kinase network. As a general note, it should be mentioned that we cannot 

know for certain whether the kinases phosphorylating VP30 in vitro are the same that 

phosphorylate VP30 in vivo. In Figure 22, phosphorylation of VP30 was at least partially 

inhibited by staurosporine and heparin in vitro, and only marginally by very high 

concentrations of TBCA. We used very long incubation times (one hour), which makes 

the observed effects difficult to interpret. If kinase inhibitors are tested in future 

experiments, incubation times and concentrations of ATP / OA should be adjusted to 

better evaluate the effects of kinase inhibition. The observed effect of heparin on serine 

29 phosphorylation is not an effect of inhibition of CK2, but most likely results from 

binding of the negatively charged heparin molecule to the arginine residues 

R26 / R28 / R32 and subsequent sterical inhibition of the responsible kinases. In this way, 

heparin mimics viral RNA, which also recognizes the arginine residues of VP3027
⁠

,214. 

From a functional point of view, inhibition of kinases that phosphorylate serine 29 of VP30 

would abolish the transcriptional regulation via VP30 phosphorylation because 

simultaneous phosphorylation of serine 29 and 31 is a necessary condition to 

downregulate transcriptional activity (Figure 7). Still, the effect of inhibition of responsible 

kinases on viral proliferation is uncertain. It is likely that VP30 can get phosphorylated 

redundantly by several cellular kinases, which would complicate targeted inhibition. For 

example, certain cell types may lack the kinase(s) phosphorylating VP30 serine 29, but 

may express kinases that phosphorylate the other serine residues of VP30. In this 

respect, the six serine residues within VP30_wt might enable redundancy of 

phosphorylation. 
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5.2.2 Interaction between NP and Cellular Phosphatases 
In Figure 11 to Figure 14 we demonstrated that phosphorylation of VP30 is largely 

influenced by the presence of other viral proteins, especially by the nucleoprotein NP. 

We further established++ that OA, an inhibitor of PP1 and PP2A, counteracts the effect 

of NP (Figure 12 and Figure 14). Additionally, our in situ assay strongly suggests that the 

phosphatase activity is very high in the NP-induced inclusion bodies: contrary to the 

rephosphorylation assay in test tubes (Figure 21), rephosphorylation of VP30f_AA_A29S 

was only detectable in the presence of ATP and the phosphatase inhibitor OA 

(Figure 25, iv and v). The idea of high phosphatase activity is supported by the fact that 

phosphorylation of VP30f_AA_A29S was reversible after washing away of ATP and OA 

(Figure 25, vi). 

We think that NP recruits an OA-sensitive phosphatase and that VP30 is an indirect 

target. Since the effect was already seen at 5 nmol/l OA, which is below the IC50 value 

of PP1, it seemed likely that NP recruits PP2A. Moreover, neither NP nor VP30 contain 

the degenerate consensus sequence [H/K/R]-[A/C/H/K/M/N/Q/R/S/T/V]-[V]-

[C/H/K/N/Q/R/S/T]-[F/W], which allows binding to the catalytic PP1 subunit159. 

Nevertheless, binding of PP1 to viral proteins through regulatory subunits would still be 

a possibility.  

Following our studies, a group from Denmark discovered a conserved motif that provides 

binding specificity to the B56 subunit of PP2A96. The degenerated short linear motif 

[L/F/M]-[X]-[X]-[I/V/L]-[X]-[E] was also detected in the nucleoprotein of all members of the 

Filoviridae (starting at amino acid 562 in EBOV NP). Together, we could recently 

demonstrate that NP indeed recruits PP2A-B56 via the degenerate LxxIxE motif to 

NP-induced inclusion bodies in order to dephosphorylate and thereby activate VP30. The 

influence of PP2A-B56 as a VP30-specific phosphatase was crucial as small peptide 

inhibitors interfering with the NP-B56 motif resulted in a nearly complete abrogation of 

viral transcription and virus propagation, although PP1 was also present in the 

experimental setting132. If PP2A can no longer bind to NP and is therefore not recruited 

into spatial proximity of VP30, the VP30 associating kinases will hyper-phosphorylate 

VP30 serine 29 and 31, leading to transcriptional inactivation and suppression of virus 

proliferation (Figure 6). 

Generally speaking, recruitment of PP2A by viral proteins seems to be a common 

strategy [reviewed by Guergnon et al. 201188]. This interaction was described to activate 

cellular pathways involved in cell transformation, to induce apoptosis and to regulate viral 

replication and assembly88
⁠

,166.  
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5.2.3 Further Considerations 
In addition to the influence of the nucleoprotein NP, other EBOV viral proteins also 

modulate the phosphorylation status of VP30 serine 29. During co-expression of NP, 

VP35, L, and VP30 our phosphospecific antibody still recognized a limited amount of 

phosphorylated VP30 (Figure 14 A, lanes 6 and 7), but when all viral proteins were 

recombinantly expressed, almost no phosphorylated VP30 could be detected 

(Figure 14A, lane 8). Similarly, barely any phosphorylated VP30 was detected during 

infection with recEBOV_S29 and recEBOV_wt (Figure 15). This suggests that the viral 

VP24 / GP or VP40 further downregulate VP30 phosphorylation, either by recruitment of 

other phosphatases like PP1 / PP2C or by inhibition of VP30 kinase activity. The idea of 

PP1 recruitment is supported by the observation that the phosphorylation status of VP30 

did not reach 100 % during treatment with 50 nmol/l OA, a concentration too low to inhibit 

all PP1 (Figure 14 C). Both VP40 and GP do not contain a PP1 docking motif. VP24 

contains a HVVNY sequence (aa 168-172), which almost fits the PP1 binding motif, but 

the presence of tyrosine at position 5 inhibited binding to at least the PP1y1 isoform159. 

Nevertheless, PP1 recruitment via regulatory subunits or recruitment of other 

phosphatases should be considered, although recently published results argue that 

PP2A plays the major role in regulating the phosphorylation of VP30, since inhibition of 

the binding of the B56 subunit to NP resulted in a complete abrogation of transcription132. 

Another possible explanation would be that addition of VP24 / GP or VP40 rearranges 

the nucleocapsid complex in such a way that phosphatases now have preferred access 

to VP30 compared to the associating kinases.  

In the light of these results it is not surprising that we never obtained a signal for VP30 

with the phosphospecific antibody for native trVLPs / recEBOV_S29 / recEBOV_wt, 

suggesting that VP30 serine 29 is mainly dephosphorylated in viral particles (Figure 15 

and Figure 24). Earlier studies revealed that VP30 and NP are the only phosphorylated 

proteins in preparations of purified SUDV68. In contrast to our experiments, radioactive 

phosphate was added during infection, which was built into phosphorylated VP30. As a 

consequence, the phosphorylation signal was not specific for a certain amino acid, but 

represented the phosphorylation status of the whole VP30 protein. In this context it 

should be noted that the anti-pS29 antibody is polyclonal, and thus represents a mixture 

of antibodies with probably different binding characteristics and affinities. The peptide 

sequence of 12 amino acids in length, against which the phosphospecific VP30 antibody 

was raised, contains several epitope possibilities, usually around 5 to 8 amino acids, 

against which the antibody can be directed. Because of the purification process of the 

phosphospecific antibody, all recognized epitopes included the central phosphoserine 

residue (3.3.7). Our results suggest that when the phosphospecific antibody detects 
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VP30f_wt, serine residue 29 is indeed phosphorylated. However, in case the antibody 

does not bind VP30f_wt, it cannot be implicated that serine 29 is dephosphorylated, as 

phosphorylation at serine residue 30 and 31 could interfere with binding of the peptide 

antibody. Interestingly, the phosphospecific antibody detected very little amounts of 

phosphorylated VP30f_wt in co-expression studies with NP inside the inclusion bodies, 

contrary to no phosphorylated VP30f_AA_A29S (Figure 11). This marginal difference 

between the phosphorylation status of VP30f_wt and VP30f_AA_A29S might be 

explained by the assumption that mutation of 5 serines to alanine itself (as in the case of 

VP30f_AA_A29S) is able to influence the phosphorylation status of serine 29 by allowing 

access of more phosphatases, as they are no longer needed to dephosphorylate other 

serine residues (S30 / S31 / S42 / S44/ S46). Since kinases are, in contrast to the 

phosphatases, almost always specific for a single serine residue, this would then shift 

the phosphorylation status towards the dephosphorylated state on serine 29 in the 

mutant VP30f_AA_A29S, at least when compared to VP30f_wt.  

Studies with phosphomimetic VP30_DD suggested that phosphorylated VP30 is 

enriched in viral inclusion bodies165. Because VP30_DD is transcriptionally inactive, it 

was hypothesized that inclusion bodies are the site of viral replication but not viral 

transcription. Our finding that VP30 is mostly dephosphorylated at position 29 in the 

inclusion bodies, a form of VP30 that is always transcriptionally active (Figure 7), strongly 

suggests that inclusion bodies also represent a site of viral transcription. The fact that 

phosphatase activity is high in inclusion bodies underlines this new finding (Figure 26). 

At system level, competition between viral proteins for the catalyzing enzymes should be 

kept in mind. For example, it is likely that the phosphatase recruited by NP not only 

indirectly dephosphorylates VP30, but also dephosphorylates NP itself. Thus, the 

interaction theoretically enhances the extent of NP phosphorylation because VP30 acts 

as a competitive phosphatase inhibitor. Likewise, it is possible that the kinase(s) 

recruited by VP30 also phosphorylates other viral proteins, f.i. NP. Hence, the amount of 

phosphorylated VP30 additionally decreases. 

A further mechanism to modulate serine phosphorylation is methylation of arginine 

residues by protein arginine methyl transferases (PRMTs). Crosstalk between serine 

phosphorylation and arginine methylation was observed for histones, RNA-binding 

proteins, and transcription factors204
⁠

,271. Arginine methylation was also described for 

many viral proteins109
⁠

,265. Exemplary, VP30 contains a RGRPR sequence in its 

N-terminus, which is methylated in other proteins, but for now arginine methylation of 

EBOV VP30 is purely speculative186. 
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5.2.4 Model of VP30 Phosphorylation  
Altogether, our data suggest the following model for VP30 phosphorylation: VP30 

interacts with a cellular kinase, whereas NP binds to a VP30-specific cellular 

phosphatase. Interaction between the two viral proteins increases the local concentration 

of phosphatases around VP30. VP30 is phosphorylated by the associating kinase and is 

an indirect target of the phosphatase recruited by NP. Both classes of enzymes localize 

to perinuclear viral inclusion bodies. The observed rapid turnover of VP30 

phosphorylation suggests that viral inclusion bodies represent sites of viral transcription. 

 
Figure 26: Recruitment of a Complete Phosphorylation / Dephosphorylation System to Viral Inclusion 
Bodies. 
Model of interaction between VP30, NP, cellular kinase(s), and phosphatase(s). (1) VP30 interacts with a 

cellular kinase, either directly or by adaptor / scaffolding proteins. So far, the region of interaction is not 

known. (2) The kinase phosphorylates VP30 on the basis of specific phosphorylation motifs. (3) The 

C-terminus of VP30 interacts with a short peptide in the C-terminal NP. (4) NP interacts with an OA-sensitive 

phosphatase like PP1 / PP2A. (5) VP30 is an indirect substrate of the phosphatase recruited by NP. 
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6 Summary 

6.1 Summary (English) 

Ebola virus is a nonsegmented negative-strand RNA virus of the family Filoviridae. Ebola 

virus is highly pathogenic and classified as a BSL-4 agent. In humans, the virus causes 

a severe, often fatal disease. 

Replication and transcription of the viral genome are achieved by viral proteins of the 

nucleocapsid complex, which consists of the viral RNA genome and the viral proteins 

NP, VP24, L, VP35, and VP30. For replication of the viral genome, only NP, VP35, and 

L are needed, whereas transcription of individual genes also requires a functional VP30. 

Previous studies indicated that extensive serine phosphorylation of VP30 impairs viral 

transcription. Here, we demonstrated that phosphorylation of two VP30 serine residues, 

namely serine 29 and 31, is both necessary and sufficient for downregulation of VP30's 

transcriptional support activity. 

Phosphorylation of VP30 also dynamically modulates the interaction with other viral 

proteins. For primary transcription immediately after infection of new cells, a 

phosphorylatable VP30 is a prerequisite. We were able to show that VP30 

phosphorylation is essential at early time points of infection to ensure transport of VP30 

with the incoming nucleocapsids to the site of primary viral transcription. 

With the help of a phosphospecific peptide VP30 antibody directed against serine 29 

phosphorylation, we further demonstrated that the majority of VP30 is dephosphorylated 

at position 29 during infection with recombinant Ebola virus. By recombinantly expressing 

different combinations of viral proteins, we could show that other viral proteins, especially 

the nucleoprotein NP, decisively influence VP30 phosphorylation. We gathered first 

evidence showing that VP30 is a substrate of phosphatases recruited by NP into spatial 

proximity of VP30. Furthermore, we demonstrated that VP30 directly interacts with a so 

far unknown cellular kinase, which recognizes a common R-X-X-S phosphorylation motif 

for VP30 serine residue 29. On the basis of these interactions, both VP30-specific 

phosphatases and kinases are recruited to perinuclear viral inclusion bodies, where they 

modulate viral transcription and replication. 
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6.2 Zusammenfassung (Deutsch) 

Das Ebolavirus gehört zur Familie der Filoviridae, die ein nicht-segementiertes RNA-

Genom in negativer Orientierung besitzen. Da das Virus hochpathogen ist und bei 

Infektion von Menschen eine schwere, oft tödlich verlaufende Krankheit verursacht, wird 

der Erreger der biologischen Risikogruppe 4 zugeordnet. 

Replikation und Transkription des viralen Genoms werden durch Proteine des viralen 

Nukleokapsidkomplexes unterstützt, welcher aus dem RNA-Genom sowie den viralen 

Proteinen NP, VP24, L, VP35 und VP30 besteht. Während für die Replikation des viralen 

Genoms NP, VP35 und L ausreichend sind, wird für die Transkription individueller Gene 

zusätzlich ein funktionstüchtiges VP30 benötigt. Vorangegangene Studien zeigten, dass 

eine extensive Serin-Phosphorylierung des VP30 zu einer Inhibierung der Transkription 

führt. In unseren Studien konnten wir nun zeigen, dass die Phosphorylierung von zwei 

Serin-Resten, genauer gesagt an Serin 29 und Serin 31, sowohl notwendig als auch 

hinreichend ist, um die Funktion von VP30 als Transkriptionsaktivator herunter zu 

regulieren. 

Die Phosphorylierung von VP30 erlaubt auch eine dynamische Interaktion mit anderen 

viralen Proteinen. Für die primäre Transkription unmittelbar nach der Infektion neuer 

Zellen muss VP30 phosphorylierbar sein. Wir konnten zeigen, dass die VP30 

Phosphorylierung essentiell ist, um den Transport von VP30 mit den Nukleokapsiden 

zum Ort der primären Transkription sicherzustellen. 

Mit Hilfe eines phosphospezifischen VP30 Peptidantikörpers, der gegen die 

Phosphorylierung an Position S29 gerichtet ist, konnten wir darlegen, dass VP30 

während der Infektion mit rekombinanten Ebolaviren an Position 29 hauptsächlich 

dephosphoryliert ist. Während der rekombinanten Expression verschiedener 

Kombinationen der viralen Proteine zeigte sich, dass andere virale Proteine, besonders 

das Nukleoprotein NP, die Phosphorylierung des VP30 entscheidend beeinflussen. Wir 

haben erste Hinweise dafür gesammelt, dass VP30 ein Substrat einer Phosphatase ist, 

die durch NP in die räumliche Nähe von VP30 rekruitert wird. Darüberhinaus konnten wir 

zeigen, dass VP30 direkt mit einer bisher unbekannten Kinase interagiert, die ein weit 

verbreitetes R-X-X-S Phosphorylierungsmotiv für VP30 Serin 29 erkennt. Auf Basis 

dieser Interaktionen werden die VP30-spezifischen Phosphatasen und Kinasen in virale 

Einschlusskörper rekrutiert, wo beide Enzyme die virale Transkription und Replikation 

modulieren. 
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Appendix 
Overview of VP30 Mutants 
On the following pages, sequences of the VP30 mutants are shown, from amino acid 23 

to 50. This region comprises the two N-terminal phosphorylation clusters that are studied 

in this thesis. Serine is mutated to alanine to mimic a permanently nonphosphorylated 

serine residue and to aspartate to mimic permanently phosphorylated serine residue. 

Amino acids of putative VP30 phosphorylation motifs are mutated to uncharged alanine. 

The amino acids which differ from VP30 wt are framed.  

For reasons of simplification, the nomenclature of the VP30 mutants is not in accordance 

with the suggestions of the Human genome variation society (HGVS). EBOV VP30 

serines 29-31 is summarized as a first cluster of serine residues and serines 42 / 44 / 46 

as a second cluster of serine residues. When all six serine residues are mutated to 

alanine, the mutant is abbreviated as VP30_AA. The first A stands for mutation of the 

first serine cluster to alanine residues, the second A for mutation of the second cluster 

to alanine residues. Likewise, mutation of the first serine cluster to aspartate and of the 

second serine cluster to alanine is abbreviated as VP30_DA. Based on this 

nomenclature, a VP30 mutant with serine only on position 29 and alanine on the other 

positions can be named VP30_AA_A29S. According to the HGVS, the correct 

nomenclature for this mutant would be:  

p.VP30 [Ser30Ala; Ser31Ala; Ser42Ala; Ser44Ala; Ser46Ala] 

Alternative names for the VP30 mutants have previously been used in manuscripts and 

publications and are presented on the following pages. 
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RPM to RCF Conversion for Centrifuges 

For conversion of revolutions per minute (RPM) to the relative centrifugal force (RCF), 

the following equation can be used. RCF is expressed in multiples of the standard gravity 

(× g or times g). 

R is the radius of the rotor in mm. Rmid is used for the average RCF, Rmax for maximum 

RCF, and Rmin for mininum RCF. A table of rotors used in this thesis is shown below. 

𝑅𝑅𝑅𝑅𝑅𝑅 = 1.118 × 𝑅𝑅 × 𝑅𝑅𝑅𝑅𝑅𝑅2 × 10−6 

or 

𝑅𝑅𝑅𝑅𝑅𝑅 = 103 × √
𝑅𝑅𝑅𝑅𝑅𝑅

𝑅𝑅 × 1.118
 

 

 

Rotor Rmin (in mm) Rmid (in mm) Rmax (in mm) 

Beckmann Coulter 

SW32 66.8 109.65 152.5 

SW41 67.4 110.25 153.1 

SW60 63.1 91.7 120.3 

Eppendorf centrifuge 5415R 

– 24 place fixed angle rotor 

  84 

Heraeus Multifuge 3S-R – 

swinging bucket rotor 

  ~190 
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Abbrevations 
aa amino acid 

AKT protein kinase B 

APS ammonium persulfate 

ATM ataxia telangiectasia mutated 

ATP adenosine triphosphat 

ATR ataxia telangiectasia and rad3-related protein  

BDBV Bundibugyo virus  

bp base pairs 

BSA bovine serum albumin 

BSL biosafety level 

CAMK Ca2+ / calmodulin-dependent protein kinase 

CDC Center for Disease Control and Prevention 

cDNA complementary DNA or copy DNA 

CEB cell extraction buffer 

CHK checkpoint kinase 

CIP calf intestinal phosphatase 

CK  casein kinase 

CLK cdc2-like kinase 

Co-IP co-immunoprecipitation 

COP coat protein complex 

C-terminus carboxy-terminus 

d day 

DA Dalton 

DABCO 1,4-diazabicyclo[2.2.2]octane 

DAPI 4',6-diamidino-2-phenylindole 

DC-SIGN dendritic cell-specific ICAM-3 grabbing nonintegrin 

dH2O distilled H2O 

DMEM Dulbecco's modified Eagle's medium  

DMSO dimethyl sulfoxide 

DNA deoxyribonucleic acid 

dNTP deoxynucleotide triphosphates 

DRC Democratic Republic of Congo 

ds double-stranded 
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DTT dithiothreitol 

E. coli Escherichia coli 

e.g. exempli gratia 

EBOV  Ebola virus  

EDTA ethylenediaminetetraacetic acid 

EGTA ethylene glycol tetraacetic acid 

EM electron microscopy 

ESCRT endosomal sorting complexes required for transport 

EtOH ethanol 

EVD Ebola virus disease 

f flag 

f.i. for instance 

FCS fetal calf serum 

FF Firefly 

for forward 

g standard gravity 

GER Germany 

gp guinea pig 

GP glycoprotein 

h hour / hours 

HA hemagglutinin 

HEK-293 human embryonic kidney-293 cells 

HGVS Human Genome Variation Society 

HUH-7 human hepatoma-7 cells 

IC inhibitory concentration 

IC50 half maximal inhibitory concentration 

ICTV International Committee on Taxonomy of Viruses (ICTV) 

IFA immunofluorescence analysis 

INR international normalised ratio 

k kilo 

kb kilobases 

L large (protein) 

LB lysogeny broth 

LLOV Lloviu virus  
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L-SIGN liver / lymph node-specific ICAM-3 grabbing nonintegrin 

M mol / l 

MARV Marburg virus 

MCS multiple cloning site 

min minute / minutes 

MM mastermix 

MOI multiplicity of infection 

mRNA messenger RNA 

MVB multivesicular bodies 

NaF sodium fluoride 

NC nitrocellulose 

NEM N-ethylmaleimide 

NP nucleoprotein 

NP-40 nonyl phenoxypolyethoxylethanol 

N-terminus amino-terminus 

OA okadaic acid 

p.i. post infectionem 

P.K proteinase K 

p.t. post transfectionem 

P/S penicillin / streptomycin 

PAGE polyacrylamide gel electrophoresis 

PBS phosphate-buffered saline  

PBSdef phosphate-buffered saline deficient in calcium and magnesium 

PCR polymerase chain reaction 

PEG polyethylene glycol 

PFA paraformaldehyd 

Pfu Pyrococcus furiosus 

pfu plaque-forming unit 

pH potentia hydrogenii 

PKA protein kinase a 

PKB protein kinase b 

PKC protein kinase c 

PKG protein kinase g 

PLK1 Polo-like-kinase 1 
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PMSF phenylmethane sulfonyl fluoride 

PP protein phosphatase 

PRMT protein arginine methyl transferase 

pS29 phosphoserine at position 29 of VP30 

P-site phosphorylation site 

PTT prothrombin time 

R radius 

RCF relative centrifugal force 

rec recombinant 

REN Renilla 

RESTV Reston ebolavirus 

rev reverse 

rel. relative 

RLU relative light units 

RNA ribonucleic acid 

ROCK Rho-associated protein kinase  

RPM revolutions per minute 

RSK ribosomal s6 kinase 

RSV respiratory syncytial virus 

rt room temperature 

RT-PCR reverse transcriptase-PCR 

SDM site-directed mutagenesis 

SDS sodium dodecyl sulfate 

sec seconds 

sGP soluble glycoprotein 

siRNA small interfering RNA 

SLIM short linear motif 

SOB super optimal broth 

ssGP small soluble glycoprotein 

SUDV Sudan virus 

T7-pol T7 DNA-dependent RNA polymerase 

TAFV Taï Forest virus  

TBCA tetrabromocinnamic acid 

TBS Tris-buffered saline 
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TE Tris-EDTA 

TEMED tetramethylethylenediamine 

TM Tris-Magnesium 

TNE Tris-NaCl-EDTA buffer 

trVLP transcription and replication competent VLP 

U units 

UV ultraviolett 

VLP virus-like particle 

VP viral protein 

WB western blot 

WHO World Health Organization 

wt wild type 

α anti 
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Amino Acid Abbrevations 
 

Alanine Ala A 

Arginine Arg R 

Asparagine Asn N 

Aspartic acid  Asp D 

Cysteine Cys C 

Glutamine  Gln Q 

Glutamic acid  Glu E 

Glycine  Gly G 

Histidine  His H 

Isoleucine  Ile I 

Leucine  Leu L 

Lysine  Lys K 

Methionine  Met M 

Phenylalanine  Phe F 

Proline  Pro P 

Serine  Ser S 

Threonine  Thr T 

Tryptophan  Trp W 

Tyrosine  Tyr Y 

Valine  Val V 

Any amino acid  X 

 

 

Nucleic Acid Notation 
 

Adenine A 

Thymine T 

Guanine G 

Cytosine C 

Uracil U 
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